USB: EHCI: log a warning if ehci-hcd is not loaded first
[deliverable/linux.git] / drivers / usb / core / hcd.c
1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/usb.h>
43
44 #include "usb.h"
45 #include "hcd.h"
46 #include "hub.h"
47
48
49 /*-------------------------------------------------------------------------*/
50
51 /*
52 * USB Host Controller Driver framework
53 *
54 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55 * HCD-specific behaviors/bugs.
56 *
57 * This does error checks, tracks devices and urbs, and delegates to a
58 * "hc_driver" only for code (and data) that really needs to know about
59 * hardware differences. That includes root hub registers, i/o queues,
60 * and so on ... but as little else as possible.
61 *
62 * Shared code includes most of the "root hub" code (these are emulated,
63 * though each HC's hardware works differently) and PCI glue, plus request
64 * tracking overhead. The HCD code should only block on spinlocks or on
65 * hardware handshaking; blocking on software events (such as other kernel
66 * threads releasing resources, or completing actions) is all generic.
67 *
68 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70 * only by the hub driver ... and that neither should be seen or used by
71 * usb client device drivers.
72 *
73 * Contributors of ideas or unattributed patches include: David Brownell,
74 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
75 *
76 * HISTORY:
77 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
78 * associated cleanup. "usb_hcd" still != "usb_bus".
79 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
80 */
81
82 /*-------------------------------------------------------------------------*/
83
84 /* Keep track of which host controller drivers are loaded */
85 unsigned long usb_hcds_loaded;
86 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
87
88 /* host controllers we manage */
89 LIST_HEAD (usb_bus_list);
90 EXPORT_SYMBOL_GPL (usb_bus_list);
91
92 /* used when allocating bus numbers */
93 #define USB_MAXBUS 64
94 struct usb_busmap {
95 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
96 };
97 static struct usb_busmap busmap;
98
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
102
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
105
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
108
109 /* wait queue for synchronous unlinks */
110 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
111
112 static inline int is_root_hub(struct usb_device *udev)
113 {
114 return (udev->parent == NULL);
115 }
116
117 /*-------------------------------------------------------------------------*/
118
119 /*
120 * Sharable chunks of root hub code.
121 */
122
123 /*-------------------------------------------------------------------------*/
124
125 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
126 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
127
128 /* usb 2.0 root hub device descriptor */
129 static const u8 usb2_rh_dev_descriptor [18] = {
130 0x12, /* __u8 bLength; */
131 0x01, /* __u8 bDescriptorType; Device */
132 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
133
134 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
135 0x00, /* __u8 bDeviceSubClass; */
136 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
137 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
138
139 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
140 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
141 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
142
143 0x03, /* __u8 iManufacturer; */
144 0x02, /* __u8 iProduct; */
145 0x01, /* __u8 iSerialNumber; */
146 0x01 /* __u8 bNumConfigurations; */
147 };
148
149 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
150
151 /* usb 1.1 root hub device descriptor */
152 static const u8 usb11_rh_dev_descriptor [18] = {
153 0x12, /* __u8 bLength; */
154 0x01, /* __u8 bDescriptorType; Device */
155 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
156
157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
158 0x00, /* __u8 bDeviceSubClass; */
159 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
160 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
161
162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
163 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
165
166 0x03, /* __u8 iManufacturer; */
167 0x02, /* __u8 iProduct; */
168 0x01, /* __u8 iSerialNumber; */
169 0x01 /* __u8 bNumConfigurations; */
170 };
171
172
173 /*-------------------------------------------------------------------------*/
174
175 /* Configuration descriptors for our root hubs */
176
177 static const u8 fs_rh_config_descriptor [] = {
178
179 /* one configuration */
180 0x09, /* __u8 bLength; */
181 0x02, /* __u8 bDescriptorType; Configuration */
182 0x19, 0x00, /* __le16 wTotalLength; */
183 0x01, /* __u8 bNumInterfaces; (1) */
184 0x01, /* __u8 bConfigurationValue; */
185 0x00, /* __u8 iConfiguration; */
186 0xc0, /* __u8 bmAttributes;
187 Bit 7: must be set,
188 6: Self-powered,
189 5: Remote wakeup,
190 4..0: resvd */
191 0x00, /* __u8 MaxPower; */
192
193 /* USB 1.1:
194 * USB 2.0, single TT organization (mandatory):
195 * one interface, protocol 0
196 *
197 * USB 2.0, multiple TT organization (optional):
198 * two interfaces, protocols 1 (like single TT)
199 * and 2 (multiple TT mode) ... config is
200 * sometimes settable
201 * NOT IMPLEMENTED
202 */
203
204 /* one interface */
205 0x09, /* __u8 if_bLength; */
206 0x04, /* __u8 if_bDescriptorType; Interface */
207 0x00, /* __u8 if_bInterfaceNumber; */
208 0x00, /* __u8 if_bAlternateSetting; */
209 0x01, /* __u8 if_bNumEndpoints; */
210 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
211 0x00, /* __u8 if_bInterfaceSubClass; */
212 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
213 0x00, /* __u8 if_iInterface; */
214
215 /* one endpoint (status change endpoint) */
216 0x07, /* __u8 ep_bLength; */
217 0x05, /* __u8 ep_bDescriptorType; Endpoint */
218 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
219 0x03, /* __u8 ep_bmAttributes; Interrupt */
220 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
221 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
222 };
223
224 static const u8 hs_rh_config_descriptor [] = {
225
226 /* one configuration */
227 0x09, /* __u8 bLength; */
228 0x02, /* __u8 bDescriptorType; Configuration */
229 0x19, 0x00, /* __le16 wTotalLength; */
230 0x01, /* __u8 bNumInterfaces; (1) */
231 0x01, /* __u8 bConfigurationValue; */
232 0x00, /* __u8 iConfiguration; */
233 0xc0, /* __u8 bmAttributes;
234 Bit 7: must be set,
235 6: Self-powered,
236 5: Remote wakeup,
237 4..0: resvd */
238 0x00, /* __u8 MaxPower; */
239
240 /* USB 1.1:
241 * USB 2.0, single TT organization (mandatory):
242 * one interface, protocol 0
243 *
244 * USB 2.0, multiple TT organization (optional):
245 * two interfaces, protocols 1 (like single TT)
246 * and 2 (multiple TT mode) ... config is
247 * sometimes settable
248 * NOT IMPLEMENTED
249 */
250
251 /* one interface */
252 0x09, /* __u8 if_bLength; */
253 0x04, /* __u8 if_bDescriptorType; Interface */
254 0x00, /* __u8 if_bInterfaceNumber; */
255 0x00, /* __u8 if_bAlternateSetting; */
256 0x01, /* __u8 if_bNumEndpoints; */
257 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
258 0x00, /* __u8 if_bInterfaceSubClass; */
259 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
260 0x00, /* __u8 if_iInterface; */
261
262 /* one endpoint (status change endpoint) */
263 0x07, /* __u8 ep_bLength; */
264 0x05, /* __u8 ep_bDescriptorType; Endpoint */
265 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
266 0x03, /* __u8 ep_bmAttributes; Interrupt */
267 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
268 * see hub.c:hub_configure() for details. */
269 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
270 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
271 };
272
273 /*-------------------------------------------------------------------------*/
274
275 /*
276 * helper routine for returning string descriptors in UTF-16LE
277 * input can actually be ISO-8859-1; ASCII is its 7-bit subset
278 */
279 static int ascii2utf (char *s, u8 *utf, int utfmax)
280 {
281 int retval;
282
283 for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
284 *utf++ = *s++;
285 *utf++ = 0;
286 }
287 if (utfmax > 0) {
288 *utf = *s;
289 ++retval;
290 }
291 return retval;
292 }
293
294 /*
295 * rh_string - provides manufacturer, product and serial strings for root hub
296 * @id: the string ID number (1: serial number, 2: product, 3: vendor)
297 * @hcd: the host controller for this root hub
298 * @data: return packet in UTF-16 LE
299 * @len: length of the return packet
300 *
301 * Produces either a manufacturer, product or serial number string for the
302 * virtual root hub device.
303 */
304 static int rh_string (
305 int id,
306 struct usb_hcd *hcd,
307 u8 *data,
308 int len
309 ) {
310 char buf [100];
311
312 // language ids
313 if (id == 0) {
314 buf[0] = 4; buf[1] = 3; /* 4 bytes string data */
315 buf[2] = 0x09; buf[3] = 0x04; /* MSFT-speak for "en-us" */
316 len = min (len, 4);
317 memcpy (data, buf, len);
318 return len;
319
320 // serial number
321 } else if (id == 1) {
322 strlcpy (buf, hcd->self.bus_name, sizeof buf);
323
324 // product description
325 } else if (id == 2) {
326 strlcpy (buf, hcd->product_desc, sizeof buf);
327
328 // id 3 == vendor description
329 } else if (id == 3) {
330 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
331 init_utsname()->release, hcd->driver->description);
332
333 // unsupported IDs --> "protocol stall"
334 } else
335 return -EPIPE;
336
337 switch (len) { /* All cases fall through */
338 default:
339 len = 2 + ascii2utf (buf, data + 2, len - 2);
340 case 2:
341 data [1] = 3; /* type == string */
342 case 1:
343 data [0] = 2 * (strlen (buf) + 1);
344 case 0:
345 ; /* Compiler wants a statement here */
346 }
347 return len;
348 }
349
350
351 /* Root hub control transfers execute synchronously */
352 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
353 {
354 struct usb_ctrlrequest *cmd;
355 u16 typeReq, wValue, wIndex, wLength;
356 u8 *ubuf = urb->transfer_buffer;
357 u8 tbuf [sizeof (struct usb_hub_descriptor)]
358 __attribute__((aligned(4)));
359 const u8 *bufp = tbuf;
360 int len = 0;
361 int status;
362 int n;
363 u8 patch_wakeup = 0;
364 u8 patch_protocol = 0;
365
366 might_sleep();
367
368 spin_lock_irq(&hcd_root_hub_lock);
369 status = usb_hcd_link_urb_to_ep(hcd, urb);
370 spin_unlock_irq(&hcd_root_hub_lock);
371 if (status)
372 return status;
373 urb->hcpriv = hcd; /* Indicate it's queued */
374
375 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
376 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
377 wValue = le16_to_cpu (cmd->wValue);
378 wIndex = le16_to_cpu (cmd->wIndex);
379 wLength = le16_to_cpu (cmd->wLength);
380
381 if (wLength > urb->transfer_buffer_length)
382 goto error;
383
384 urb->actual_length = 0;
385 switch (typeReq) {
386
387 /* DEVICE REQUESTS */
388
389 /* The root hub's remote wakeup enable bit is implemented using
390 * driver model wakeup flags. If this system supports wakeup
391 * through USB, userspace may change the default "allow wakeup"
392 * policy through sysfs or these calls.
393 *
394 * Most root hubs support wakeup from downstream devices, for
395 * runtime power management (disabling USB clocks and reducing
396 * VBUS power usage). However, not all of them do so; silicon,
397 * board, and BIOS bugs here are not uncommon, so these can't
398 * be treated quite like external hubs.
399 *
400 * Likewise, not all root hubs will pass wakeup events upstream,
401 * to wake up the whole system. So don't assume root hub and
402 * controller capabilities are identical.
403 */
404
405 case DeviceRequest | USB_REQ_GET_STATUS:
406 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
407 << USB_DEVICE_REMOTE_WAKEUP)
408 | (1 << USB_DEVICE_SELF_POWERED);
409 tbuf [1] = 0;
410 len = 2;
411 break;
412 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
413 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
414 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
415 else
416 goto error;
417 break;
418 case DeviceOutRequest | USB_REQ_SET_FEATURE:
419 if (device_can_wakeup(&hcd->self.root_hub->dev)
420 && wValue == USB_DEVICE_REMOTE_WAKEUP)
421 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
422 else
423 goto error;
424 break;
425 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
426 tbuf [0] = 1;
427 len = 1;
428 /* FALLTHROUGH */
429 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
430 break;
431 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
432 switch (wValue & 0xff00) {
433 case USB_DT_DEVICE << 8:
434 if (hcd->driver->flags & HCD_USB2)
435 bufp = usb2_rh_dev_descriptor;
436 else if (hcd->driver->flags & HCD_USB11)
437 bufp = usb11_rh_dev_descriptor;
438 else
439 goto error;
440 len = 18;
441 if (hcd->has_tt)
442 patch_protocol = 1;
443 break;
444 case USB_DT_CONFIG << 8:
445 if (hcd->driver->flags & HCD_USB2) {
446 bufp = hs_rh_config_descriptor;
447 len = sizeof hs_rh_config_descriptor;
448 } else {
449 bufp = fs_rh_config_descriptor;
450 len = sizeof fs_rh_config_descriptor;
451 }
452 if (device_can_wakeup(&hcd->self.root_hub->dev))
453 patch_wakeup = 1;
454 break;
455 case USB_DT_STRING << 8:
456 n = rh_string (wValue & 0xff, hcd, ubuf, wLength);
457 if (n < 0)
458 goto error;
459 urb->actual_length = n;
460 break;
461 default:
462 goto error;
463 }
464 break;
465 case DeviceRequest | USB_REQ_GET_INTERFACE:
466 tbuf [0] = 0;
467 len = 1;
468 /* FALLTHROUGH */
469 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
470 break;
471 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
472 // wValue == urb->dev->devaddr
473 dev_dbg (hcd->self.controller, "root hub device address %d\n",
474 wValue);
475 break;
476
477 /* INTERFACE REQUESTS (no defined feature/status flags) */
478
479 /* ENDPOINT REQUESTS */
480
481 case EndpointRequest | USB_REQ_GET_STATUS:
482 // ENDPOINT_HALT flag
483 tbuf [0] = 0;
484 tbuf [1] = 0;
485 len = 2;
486 /* FALLTHROUGH */
487 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
488 case EndpointOutRequest | USB_REQ_SET_FEATURE:
489 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
490 break;
491
492 /* CLASS REQUESTS (and errors) */
493
494 default:
495 /* non-generic request */
496 switch (typeReq) {
497 case GetHubStatus:
498 case GetPortStatus:
499 len = 4;
500 break;
501 case GetHubDescriptor:
502 len = sizeof (struct usb_hub_descriptor);
503 break;
504 }
505 status = hcd->driver->hub_control (hcd,
506 typeReq, wValue, wIndex,
507 tbuf, wLength);
508 break;
509 error:
510 /* "protocol stall" on error */
511 status = -EPIPE;
512 }
513
514 if (status) {
515 len = 0;
516 if (status != -EPIPE) {
517 dev_dbg (hcd->self.controller,
518 "CTRL: TypeReq=0x%x val=0x%x "
519 "idx=0x%x len=%d ==> %d\n",
520 typeReq, wValue, wIndex,
521 wLength, status);
522 }
523 }
524 if (len) {
525 if (urb->transfer_buffer_length < len)
526 len = urb->transfer_buffer_length;
527 urb->actual_length = len;
528 // always USB_DIR_IN, toward host
529 memcpy (ubuf, bufp, len);
530
531 /* report whether RH hardware supports remote wakeup */
532 if (patch_wakeup &&
533 len > offsetof (struct usb_config_descriptor,
534 bmAttributes))
535 ((struct usb_config_descriptor *)ubuf)->bmAttributes
536 |= USB_CONFIG_ATT_WAKEUP;
537
538 /* report whether RH hardware has an integrated TT */
539 if (patch_protocol &&
540 len > offsetof(struct usb_device_descriptor,
541 bDeviceProtocol))
542 ((struct usb_device_descriptor *) ubuf)->
543 bDeviceProtocol = 1;
544 }
545
546 /* any errors get returned through the urb completion */
547 spin_lock_irq(&hcd_root_hub_lock);
548 usb_hcd_unlink_urb_from_ep(hcd, urb);
549
550 /* This peculiar use of spinlocks echoes what real HC drivers do.
551 * Avoiding calls to local_irq_disable/enable makes the code
552 * RT-friendly.
553 */
554 spin_unlock(&hcd_root_hub_lock);
555 usb_hcd_giveback_urb(hcd, urb, status);
556 spin_lock(&hcd_root_hub_lock);
557
558 spin_unlock_irq(&hcd_root_hub_lock);
559 return 0;
560 }
561
562 /*-------------------------------------------------------------------------*/
563
564 /*
565 * Root Hub interrupt transfers are polled using a timer if the
566 * driver requests it; otherwise the driver is responsible for
567 * calling usb_hcd_poll_rh_status() when an event occurs.
568 *
569 * Completions are called in_interrupt(), but they may or may not
570 * be in_irq().
571 */
572 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
573 {
574 struct urb *urb;
575 int length;
576 unsigned long flags;
577 char buffer[4]; /* Any root hubs with > 31 ports? */
578
579 if (unlikely(!hcd->rh_registered))
580 return;
581 if (!hcd->uses_new_polling && !hcd->status_urb)
582 return;
583
584 length = hcd->driver->hub_status_data(hcd, buffer);
585 if (length > 0) {
586
587 /* try to complete the status urb */
588 spin_lock_irqsave(&hcd_root_hub_lock, flags);
589 urb = hcd->status_urb;
590 if (urb) {
591 hcd->poll_pending = 0;
592 hcd->status_urb = NULL;
593 urb->actual_length = length;
594 memcpy(urb->transfer_buffer, buffer, length);
595
596 usb_hcd_unlink_urb_from_ep(hcd, urb);
597 spin_unlock(&hcd_root_hub_lock);
598 usb_hcd_giveback_urb(hcd, urb, 0);
599 spin_lock(&hcd_root_hub_lock);
600 } else {
601 length = 0;
602 hcd->poll_pending = 1;
603 }
604 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
605 }
606
607 /* The USB 2.0 spec says 256 ms. This is close enough and won't
608 * exceed that limit if HZ is 100. The math is more clunky than
609 * maybe expected, this is to make sure that all timers for USB devices
610 * fire at the same time to give the CPU a break inbetween */
611 if (hcd->uses_new_polling ? hcd->poll_rh :
612 (length == 0 && hcd->status_urb != NULL))
613 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
614 }
615 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
616
617 /* timer callback */
618 static void rh_timer_func (unsigned long _hcd)
619 {
620 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
621 }
622
623 /*-------------------------------------------------------------------------*/
624
625 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
626 {
627 int retval;
628 unsigned long flags;
629 int len = 1 + (urb->dev->maxchild / 8);
630
631 spin_lock_irqsave (&hcd_root_hub_lock, flags);
632 if (hcd->status_urb || urb->transfer_buffer_length < len) {
633 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
634 retval = -EINVAL;
635 goto done;
636 }
637
638 retval = usb_hcd_link_urb_to_ep(hcd, urb);
639 if (retval)
640 goto done;
641
642 hcd->status_urb = urb;
643 urb->hcpriv = hcd; /* indicate it's queued */
644 if (!hcd->uses_new_polling)
645 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
646
647 /* If a status change has already occurred, report it ASAP */
648 else if (hcd->poll_pending)
649 mod_timer(&hcd->rh_timer, jiffies);
650 retval = 0;
651 done:
652 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
653 return retval;
654 }
655
656 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
657 {
658 if (usb_endpoint_xfer_int(&urb->ep->desc))
659 return rh_queue_status (hcd, urb);
660 if (usb_endpoint_xfer_control(&urb->ep->desc))
661 return rh_call_control (hcd, urb);
662 return -EINVAL;
663 }
664
665 /*-------------------------------------------------------------------------*/
666
667 /* Unlinks of root-hub control URBs are legal, but they don't do anything
668 * since these URBs always execute synchronously.
669 */
670 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
671 {
672 unsigned long flags;
673 int rc;
674
675 spin_lock_irqsave(&hcd_root_hub_lock, flags);
676 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
677 if (rc)
678 goto done;
679
680 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
681 ; /* Do nothing */
682
683 } else { /* Status URB */
684 if (!hcd->uses_new_polling)
685 del_timer (&hcd->rh_timer);
686 if (urb == hcd->status_urb) {
687 hcd->status_urb = NULL;
688 usb_hcd_unlink_urb_from_ep(hcd, urb);
689
690 spin_unlock(&hcd_root_hub_lock);
691 usb_hcd_giveback_urb(hcd, urb, status);
692 spin_lock(&hcd_root_hub_lock);
693 }
694 }
695 done:
696 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
697 return rc;
698 }
699
700
701
702 /*
703 * Show & store the current value of authorized_default
704 */
705 static ssize_t usb_host_authorized_default_show(struct device *dev,
706 struct device_attribute *attr,
707 char *buf)
708 {
709 struct usb_device *rh_usb_dev = to_usb_device(dev);
710 struct usb_bus *usb_bus = rh_usb_dev->bus;
711 struct usb_hcd *usb_hcd;
712
713 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
714 return -ENODEV;
715 usb_hcd = bus_to_hcd(usb_bus);
716 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
717 }
718
719 static ssize_t usb_host_authorized_default_store(struct device *dev,
720 struct device_attribute *attr,
721 const char *buf, size_t size)
722 {
723 ssize_t result;
724 unsigned val;
725 struct usb_device *rh_usb_dev = to_usb_device(dev);
726 struct usb_bus *usb_bus = rh_usb_dev->bus;
727 struct usb_hcd *usb_hcd;
728
729 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
730 return -ENODEV;
731 usb_hcd = bus_to_hcd(usb_bus);
732 result = sscanf(buf, "%u\n", &val);
733 if (result == 1) {
734 usb_hcd->authorized_default = val? 1 : 0;
735 result = size;
736 }
737 else
738 result = -EINVAL;
739 return result;
740 }
741
742 static DEVICE_ATTR(authorized_default, 0644,
743 usb_host_authorized_default_show,
744 usb_host_authorized_default_store);
745
746
747 /* Group all the USB bus attributes */
748 static struct attribute *usb_bus_attrs[] = {
749 &dev_attr_authorized_default.attr,
750 NULL,
751 };
752
753 static struct attribute_group usb_bus_attr_group = {
754 .name = NULL, /* we want them in the same directory */
755 .attrs = usb_bus_attrs,
756 };
757
758
759
760 /*-------------------------------------------------------------------------*/
761
762 static struct class *usb_host_class;
763
764 int usb_host_init(void)
765 {
766 int retval = 0;
767
768 usb_host_class = class_create(THIS_MODULE, "usb_host");
769 if (IS_ERR(usb_host_class))
770 retval = PTR_ERR(usb_host_class);
771 return retval;
772 }
773
774 void usb_host_cleanup(void)
775 {
776 class_destroy(usb_host_class);
777 }
778
779 /**
780 * usb_bus_init - shared initialization code
781 * @bus: the bus structure being initialized
782 *
783 * This code is used to initialize a usb_bus structure, memory for which is
784 * separately managed.
785 */
786 static void usb_bus_init (struct usb_bus *bus)
787 {
788 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
789
790 bus->devnum_next = 1;
791
792 bus->root_hub = NULL;
793 bus->busnum = -1;
794 bus->bandwidth_allocated = 0;
795 bus->bandwidth_int_reqs = 0;
796 bus->bandwidth_isoc_reqs = 0;
797
798 INIT_LIST_HEAD (&bus->bus_list);
799 }
800
801 /*-------------------------------------------------------------------------*/
802
803 /**
804 * usb_register_bus - registers the USB host controller with the usb core
805 * @bus: pointer to the bus to register
806 * Context: !in_interrupt()
807 *
808 * Assigns a bus number, and links the controller into usbcore data
809 * structures so that it can be seen by scanning the bus list.
810 */
811 static int usb_register_bus(struct usb_bus *bus)
812 {
813 int result = -E2BIG;
814 int busnum;
815
816 mutex_lock(&usb_bus_list_lock);
817 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
818 if (busnum >= USB_MAXBUS) {
819 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
820 goto error_find_busnum;
821 }
822 set_bit (busnum, busmap.busmap);
823 bus->busnum = busnum;
824
825 bus->dev = device_create(usb_host_class, bus->controller, MKDEV(0, 0),
826 bus, "usb_host%d", busnum);
827 result = PTR_ERR(bus->dev);
828 if (IS_ERR(bus->dev))
829 goto error_create_class_dev;
830
831 /* Add it to the local list of buses */
832 list_add (&bus->bus_list, &usb_bus_list);
833 mutex_unlock(&usb_bus_list_lock);
834
835 usb_notify_add_bus(bus);
836
837 dev_info (bus->controller, "new USB bus registered, assigned bus "
838 "number %d\n", bus->busnum);
839 return 0;
840
841 error_create_class_dev:
842 clear_bit(busnum, busmap.busmap);
843 error_find_busnum:
844 mutex_unlock(&usb_bus_list_lock);
845 return result;
846 }
847
848 /**
849 * usb_deregister_bus - deregisters the USB host controller
850 * @bus: pointer to the bus to deregister
851 * Context: !in_interrupt()
852 *
853 * Recycles the bus number, and unlinks the controller from usbcore data
854 * structures so that it won't be seen by scanning the bus list.
855 */
856 static void usb_deregister_bus (struct usb_bus *bus)
857 {
858 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
859
860 /*
861 * NOTE: make sure that all the devices are removed by the
862 * controller code, as well as having it call this when cleaning
863 * itself up
864 */
865 mutex_lock(&usb_bus_list_lock);
866 list_del (&bus->bus_list);
867 mutex_unlock(&usb_bus_list_lock);
868
869 usb_notify_remove_bus(bus);
870
871 clear_bit (bus->busnum, busmap.busmap);
872
873 device_unregister(bus->dev);
874 }
875
876 /**
877 * register_root_hub - called by usb_add_hcd() to register a root hub
878 * @hcd: host controller for this root hub
879 *
880 * This function registers the root hub with the USB subsystem. It sets up
881 * the device properly in the device tree and then calls usb_new_device()
882 * to register the usb device. It also assigns the root hub's USB address
883 * (always 1).
884 */
885 static int register_root_hub(struct usb_hcd *hcd)
886 {
887 struct device *parent_dev = hcd->self.controller;
888 struct usb_device *usb_dev = hcd->self.root_hub;
889 const int devnum = 1;
890 int retval;
891
892 usb_dev->devnum = devnum;
893 usb_dev->bus->devnum_next = devnum + 1;
894 memset (&usb_dev->bus->devmap.devicemap, 0,
895 sizeof usb_dev->bus->devmap.devicemap);
896 set_bit (devnum, usb_dev->bus->devmap.devicemap);
897 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
898
899 mutex_lock(&usb_bus_list_lock);
900
901 usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
902 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
903 if (retval != sizeof usb_dev->descriptor) {
904 mutex_unlock(&usb_bus_list_lock);
905 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
906 dev_name(&usb_dev->dev), retval);
907 return (retval < 0) ? retval : -EMSGSIZE;
908 }
909
910 retval = usb_new_device (usb_dev);
911 if (retval) {
912 dev_err (parent_dev, "can't register root hub for %s, %d\n",
913 dev_name(&usb_dev->dev), retval);
914 }
915 mutex_unlock(&usb_bus_list_lock);
916
917 if (retval == 0) {
918 spin_lock_irq (&hcd_root_hub_lock);
919 hcd->rh_registered = 1;
920 spin_unlock_irq (&hcd_root_hub_lock);
921
922 /* Did the HC die before the root hub was registered? */
923 if (hcd->state == HC_STATE_HALT)
924 usb_hc_died (hcd); /* This time clean up */
925 }
926
927 return retval;
928 }
929
930
931 /*-------------------------------------------------------------------------*/
932
933 /**
934 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
935 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
936 * @is_input: true iff the transaction sends data to the host
937 * @isoc: true for isochronous transactions, false for interrupt ones
938 * @bytecount: how many bytes in the transaction.
939 *
940 * Returns approximate bus time in nanoseconds for a periodic transaction.
941 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
942 * scheduled in software, this function is only used for such scheduling.
943 */
944 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
945 {
946 unsigned long tmp;
947
948 switch (speed) {
949 case USB_SPEED_LOW: /* INTR only */
950 if (is_input) {
951 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
952 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
953 } else {
954 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
955 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
956 }
957 case USB_SPEED_FULL: /* ISOC or INTR */
958 if (isoc) {
959 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
960 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
961 } else {
962 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
963 return (9107L + BW_HOST_DELAY + tmp);
964 }
965 case USB_SPEED_HIGH: /* ISOC or INTR */
966 // FIXME adjust for input vs output
967 if (isoc)
968 tmp = HS_NSECS_ISO (bytecount);
969 else
970 tmp = HS_NSECS (bytecount);
971 return tmp;
972 default:
973 pr_debug ("%s: bogus device speed!\n", usbcore_name);
974 return -1;
975 }
976 }
977 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
978
979
980 /*-------------------------------------------------------------------------*/
981
982 /*
983 * Generic HC operations.
984 */
985
986 /*-------------------------------------------------------------------------*/
987
988 /**
989 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
990 * @hcd: host controller to which @urb was submitted
991 * @urb: URB being submitted
992 *
993 * Host controller drivers should call this routine in their enqueue()
994 * method. The HCD's private spinlock must be held and interrupts must
995 * be disabled. The actions carried out here are required for URB
996 * submission, as well as for endpoint shutdown and for usb_kill_urb.
997 *
998 * Returns 0 for no error, otherwise a negative error code (in which case
999 * the enqueue() method must fail). If no error occurs but enqueue() fails
1000 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1001 * the private spinlock and returning.
1002 */
1003 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1004 {
1005 int rc = 0;
1006
1007 spin_lock(&hcd_urb_list_lock);
1008
1009 /* Check that the URB isn't being killed */
1010 if (unlikely(urb->reject)) {
1011 rc = -EPERM;
1012 goto done;
1013 }
1014
1015 if (unlikely(!urb->ep->enabled)) {
1016 rc = -ENOENT;
1017 goto done;
1018 }
1019
1020 if (unlikely(!urb->dev->can_submit)) {
1021 rc = -EHOSTUNREACH;
1022 goto done;
1023 }
1024
1025 /*
1026 * Check the host controller's state and add the URB to the
1027 * endpoint's queue.
1028 */
1029 switch (hcd->state) {
1030 case HC_STATE_RUNNING:
1031 case HC_STATE_RESUMING:
1032 urb->unlinked = 0;
1033 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1034 break;
1035 default:
1036 rc = -ESHUTDOWN;
1037 goto done;
1038 }
1039 done:
1040 spin_unlock(&hcd_urb_list_lock);
1041 return rc;
1042 }
1043 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1044
1045 /**
1046 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1047 * @hcd: host controller to which @urb was submitted
1048 * @urb: URB being checked for unlinkability
1049 * @status: error code to store in @urb if the unlink succeeds
1050 *
1051 * Host controller drivers should call this routine in their dequeue()
1052 * method. The HCD's private spinlock must be held and interrupts must
1053 * be disabled. The actions carried out here are required for making
1054 * sure than an unlink is valid.
1055 *
1056 * Returns 0 for no error, otherwise a negative error code (in which case
1057 * the dequeue() method must fail). The possible error codes are:
1058 *
1059 * -EIDRM: @urb was not submitted or has already completed.
1060 * The completion function may not have been called yet.
1061 *
1062 * -EBUSY: @urb has already been unlinked.
1063 */
1064 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1065 int status)
1066 {
1067 struct list_head *tmp;
1068
1069 /* insist the urb is still queued */
1070 list_for_each(tmp, &urb->ep->urb_list) {
1071 if (tmp == &urb->urb_list)
1072 break;
1073 }
1074 if (tmp != &urb->urb_list)
1075 return -EIDRM;
1076
1077 /* Any status except -EINPROGRESS means something already started to
1078 * unlink this URB from the hardware. So there's no more work to do.
1079 */
1080 if (urb->unlinked)
1081 return -EBUSY;
1082 urb->unlinked = status;
1083
1084 /* IRQ setup can easily be broken so that USB controllers
1085 * never get completion IRQs ... maybe even the ones we need to
1086 * finish unlinking the initial failed usb_set_address()
1087 * or device descriptor fetch.
1088 */
1089 if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1090 !is_root_hub(urb->dev)) {
1091 dev_warn(hcd->self.controller, "Unlink after no-IRQ? "
1092 "Controller is probably using the wrong IRQ.\n");
1093 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1094 }
1095
1096 return 0;
1097 }
1098 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1099
1100 /**
1101 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1102 * @hcd: host controller to which @urb was submitted
1103 * @urb: URB being unlinked
1104 *
1105 * Host controller drivers should call this routine before calling
1106 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1107 * interrupts must be disabled. The actions carried out here are required
1108 * for URB completion.
1109 */
1110 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1111 {
1112 /* clear all state linking urb to this dev (and hcd) */
1113 spin_lock(&hcd_urb_list_lock);
1114 list_del_init(&urb->urb_list);
1115 spin_unlock(&hcd_urb_list_lock);
1116 }
1117 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1118
1119 /*
1120 * Some usb host controllers can only perform dma using a small SRAM area.
1121 * The usb core itself is however optimized for host controllers that can dma
1122 * using regular system memory - like pci devices doing bus mastering.
1123 *
1124 * To support host controllers with limited dma capabilites we provide dma
1125 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1126 * For this to work properly the host controller code must first use the
1127 * function dma_declare_coherent_memory() to point out which memory area
1128 * that should be used for dma allocations.
1129 *
1130 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1131 * dma using dma_alloc_coherent() which in turn allocates from the memory
1132 * area pointed out with dma_declare_coherent_memory().
1133 *
1134 * So, to summarize...
1135 *
1136 * - We need "local" memory, canonical example being
1137 * a small SRAM on a discrete controller being the
1138 * only memory that the controller can read ...
1139 * (a) "normal" kernel memory is no good, and
1140 * (b) there's not enough to share
1141 *
1142 * - The only *portable* hook for such stuff in the
1143 * DMA framework is dma_declare_coherent_memory()
1144 *
1145 * - So we use that, even though the primary requirement
1146 * is that the memory be "local" (hence addressible
1147 * by that device), not "coherent".
1148 *
1149 */
1150
1151 static int hcd_alloc_coherent(struct usb_bus *bus,
1152 gfp_t mem_flags, dma_addr_t *dma_handle,
1153 void **vaddr_handle, size_t size,
1154 enum dma_data_direction dir)
1155 {
1156 unsigned char *vaddr;
1157
1158 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1159 mem_flags, dma_handle);
1160 if (!vaddr)
1161 return -ENOMEM;
1162
1163 /*
1164 * Store the virtual address of the buffer at the end
1165 * of the allocated dma buffer. The size of the buffer
1166 * may be uneven so use unaligned functions instead
1167 * of just rounding up. It makes sense to optimize for
1168 * memory footprint over access speed since the amount
1169 * of memory available for dma may be limited.
1170 */
1171 put_unaligned((unsigned long)*vaddr_handle,
1172 (unsigned long *)(vaddr + size));
1173
1174 if (dir == DMA_TO_DEVICE)
1175 memcpy(vaddr, *vaddr_handle, size);
1176
1177 *vaddr_handle = vaddr;
1178 return 0;
1179 }
1180
1181 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1182 void **vaddr_handle, size_t size,
1183 enum dma_data_direction dir)
1184 {
1185 unsigned char *vaddr = *vaddr_handle;
1186
1187 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1188
1189 if (dir == DMA_FROM_DEVICE)
1190 memcpy(vaddr, *vaddr_handle, size);
1191
1192 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1193
1194 *vaddr_handle = vaddr;
1195 *dma_handle = 0;
1196 }
1197
1198 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1199 gfp_t mem_flags)
1200 {
1201 enum dma_data_direction dir;
1202 int ret = 0;
1203
1204 /* Map the URB's buffers for DMA access.
1205 * Lower level HCD code should use *_dma exclusively,
1206 * unless it uses pio or talks to another transport.
1207 */
1208 if (is_root_hub(urb->dev))
1209 return 0;
1210
1211 if (usb_endpoint_xfer_control(&urb->ep->desc)
1212 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1213 if (hcd->self.uses_dma)
1214 urb->setup_dma = dma_map_single(
1215 hcd->self.controller,
1216 urb->setup_packet,
1217 sizeof(struct usb_ctrlrequest),
1218 DMA_TO_DEVICE);
1219 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1220 ret = hcd_alloc_coherent(
1221 urb->dev->bus, mem_flags,
1222 &urb->setup_dma,
1223 (void **)&urb->setup_packet,
1224 sizeof(struct usb_ctrlrequest),
1225 DMA_TO_DEVICE);
1226 }
1227
1228 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1229 if (ret == 0 && urb->transfer_buffer_length != 0
1230 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1231 if (hcd->self.uses_dma)
1232 urb->transfer_dma = dma_map_single (
1233 hcd->self.controller,
1234 urb->transfer_buffer,
1235 urb->transfer_buffer_length,
1236 dir);
1237 else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1238 ret = hcd_alloc_coherent(
1239 urb->dev->bus, mem_flags,
1240 &urb->transfer_dma,
1241 &urb->transfer_buffer,
1242 urb->transfer_buffer_length,
1243 dir);
1244
1245 if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1246 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1247 hcd_free_coherent(urb->dev->bus,
1248 &urb->setup_dma,
1249 (void **)&urb->setup_packet,
1250 sizeof(struct usb_ctrlrequest),
1251 DMA_TO_DEVICE);
1252 }
1253 }
1254 return ret;
1255 }
1256
1257 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1258 {
1259 enum dma_data_direction dir;
1260
1261 if (is_root_hub(urb->dev))
1262 return;
1263
1264 if (usb_endpoint_xfer_control(&urb->ep->desc)
1265 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1266 if (hcd->self.uses_dma)
1267 dma_unmap_single(hcd->self.controller, urb->setup_dma,
1268 sizeof(struct usb_ctrlrequest),
1269 DMA_TO_DEVICE);
1270 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1271 hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1272 (void **)&urb->setup_packet,
1273 sizeof(struct usb_ctrlrequest),
1274 DMA_TO_DEVICE);
1275 }
1276
1277 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1278 if (urb->transfer_buffer_length != 0
1279 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1280 if (hcd->self.uses_dma)
1281 dma_unmap_single(hcd->self.controller,
1282 urb->transfer_dma,
1283 urb->transfer_buffer_length,
1284 dir);
1285 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1286 hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1287 &urb->transfer_buffer,
1288 urb->transfer_buffer_length,
1289 dir);
1290 }
1291 }
1292
1293 /*-------------------------------------------------------------------------*/
1294
1295 /* may be called in any context with a valid urb->dev usecount
1296 * caller surrenders "ownership" of urb
1297 * expects usb_submit_urb() to have sanity checked and conditioned all
1298 * inputs in the urb
1299 */
1300 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1301 {
1302 int status;
1303 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1304
1305 /* increment urb's reference count as part of giving it to the HCD
1306 * (which will control it). HCD guarantees that it either returns
1307 * an error or calls giveback(), but not both.
1308 */
1309 usb_get_urb(urb);
1310 atomic_inc(&urb->use_count);
1311 atomic_inc(&urb->dev->urbnum);
1312 usbmon_urb_submit(&hcd->self, urb);
1313
1314 /* NOTE requirements on root-hub callers (usbfs and the hub
1315 * driver, for now): URBs' urb->transfer_buffer must be
1316 * valid and usb_buffer_{sync,unmap}() not be needed, since
1317 * they could clobber root hub response data. Also, control
1318 * URBs must be submitted in process context with interrupts
1319 * enabled.
1320 */
1321 status = map_urb_for_dma(hcd, urb, mem_flags);
1322 if (unlikely(status)) {
1323 usbmon_urb_submit_error(&hcd->self, urb, status);
1324 goto error;
1325 }
1326
1327 if (is_root_hub(urb->dev))
1328 status = rh_urb_enqueue(hcd, urb);
1329 else
1330 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1331
1332 if (unlikely(status)) {
1333 usbmon_urb_submit_error(&hcd->self, urb, status);
1334 unmap_urb_for_dma(hcd, urb);
1335 error:
1336 urb->hcpriv = NULL;
1337 INIT_LIST_HEAD(&urb->urb_list);
1338 atomic_dec(&urb->use_count);
1339 atomic_dec(&urb->dev->urbnum);
1340 if (urb->reject)
1341 wake_up(&usb_kill_urb_queue);
1342 usb_put_urb(urb);
1343 }
1344 return status;
1345 }
1346
1347 /*-------------------------------------------------------------------------*/
1348
1349 /* this makes the hcd giveback() the urb more quickly, by kicking it
1350 * off hardware queues (which may take a while) and returning it as
1351 * soon as practical. we've already set up the urb's return status,
1352 * but we can't know if the callback completed already.
1353 */
1354 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1355 {
1356 int value;
1357
1358 if (is_root_hub(urb->dev))
1359 value = usb_rh_urb_dequeue(hcd, urb, status);
1360 else {
1361
1362 /* The only reason an HCD might fail this call is if
1363 * it has not yet fully queued the urb to begin with.
1364 * Such failures should be harmless. */
1365 value = hcd->driver->urb_dequeue(hcd, urb, status);
1366 }
1367 return value;
1368 }
1369
1370 /*
1371 * called in any context
1372 *
1373 * caller guarantees urb won't be recycled till both unlink()
1374 * and the urb's completion function return
1375 */
1376 int usb_hcd_unlink_urb (struct urb *urb, int status)
1377 {
1378 struct usb_hcd *hcd;
1379 int retval;
1380
1381 hcd = bus_to_hcd(urb->dev->bus);
1382 retval = unlink1(hcd, urb, status);
1383
1384 if (retval == 0)
1385 retval = -EINPROGRESS;
1386 else if (retval != -EIDRM && retval != -EBUSY)
1387 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1388 urb, retval);
1389 return retval;
1390 }
1391
1392 /*-------------------------------------------------------------------------*/
1393
1394 /**
1395 * usb_hcd_giveback_urb - return URB from HCD to device driver
1396 * @hcd: host controller returning the URB
1397 * @urb: urb being returned to the USB device driver.
1398 * @status: completion status code for the URB.
1399 * Context: in_interrupt()
1400 *
1401 * This hands the URB from HCD to its USB device driver, using its
1402 * completion function. The HCD has freed all per-urb resources
1403 * (and is done using urb->hcpriv). It also released all HCD locks;
1404 * the device driver won't cause problems if it frees, modifies,
1405 * or resubmits this URB.
1406 *
1407 * If @urb was unlinked, the value of @status will be overridden by
1408 * @urb->unlinked. Erroneous short transfers are detected in case
1409 * the HCD hasn't checked for them.
1410 */
1411 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1412 {
1413 urb->hcpriv = NULL;
1414 if (unlikely(urb->unlinked))
1415 status = urb->unlinked;
1416 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1417 urb->actual_length < urb->transfer_buffer_length &&
1418 !status))
1419 status = -EREMOTEIO;
1420
1421 unmap_urb_for_dma(hcd, urb);
1422 usbmon_urb_complete(&hcd->self, urb, status);
1423 usb_unanchor_urb(urb);
1424
1425 /* pass ownership to the completion handler */
1426 urb->status = status;
1427 urb->complete (urb);
1428 atomic_dec (&urb->use_count);
1429 if (unlikely (urb->reject))
1430 wake_up (&usb_kill_urb_queue);
1431 usb_put_urb (urb);
1432 }
1433 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1434
1435 /*-------------------------------------------------------------------------*/
1436
1437 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1438 * queue to drain completely. The caller must first insure that no more
1439 * URBs can be submitted for this endpoint.
1440 */
1441 void usb_hcd_flush_endpoint(struct usb_device *udev,
1442 struct usb_host_endpoint *ep)
1443 {
1444 struct usb_hcd *hcd;
1445 struct urb *urb;
1446
1447 if (!ep)
1448 return;
1449 might_sleep();
1450 hcd = bus_to_hcd(udev->bus);
1451
1452 /* No more submits can occur */
1453 spin_lock_irq(&hcd_urb_list_lock);
1454 rescan:
1455 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1456 int is_in;
1457
1458 if (urb->unlinked)
1459 continue;
1460 usb_get_urb (urb);
1461 is_in = usb_urb_dir_in(urb);
1462 spin_unlock(&hcd_urb_list_lock);
1463
1464 /* kick hcd */
1465 unlink1(hcd, urb, -ESHUTDOWN);
1466 dev_dbg (hcd->self.controller,
1467 "shutdown urb %p ep%d%s%s\n",
1468 urb, usb_endpoint_num(&ep->desc),
1469 is_in ? "in" : "out",
1470 ({ char *s;
1471
1472 switch (usb_endpoint_type(&ep->desc)) {
1473 case USB_ENDPOINT_XFER_CONTROL:
1474 s = ""; break;
1475 case USB_ENDPOINT_XFER_BULK:
1476 s = "-bulk"; break;
1477 case USB_ENDPOINT_XFER_INT:
1478 s = "-intr"; break;
1479 default:
1480 s = "-iso"; break;
1481 };
1482 s;
1483 }));
1484 usb_put_urb (urb);
1485
1486 /* list contents may have changed */
1487 spin_lock(&hcd_urb_list_lock);
1488 goto rescan;
1489 }
1490 spin_unlock_irq(&hcd_urb_list_lock);
1491
1492 /* Wait until the endpoint queue is completely empty */
1493 while (!list_empty (&ep->urb_list)) {
1494 spin_lock_irq(&hcd_urb_list_lock);
1495
1496 /* The list may have changed while we acquired the spinlock */
1497 urb = NULL;
1498 if (!list_empty (&ep->urb_list)) {
1499 urb = list_entry (ep->urb_list.prev, struct urb,
1500 urb_list);
1501 usb_get_urb (urb);
1502 }
1503 spin_unlock_irq(&hcd_urb_list_lock);
1504
1505 if (urb) {
1506 usb_kill_urb (urb);
1507 usb_put_urb (urb);
1508 }
1509 }
1510 }
1511
1512 /* Disables the endpoint: synchronizes with the hcd to make sure all
1513 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1514 * have been called previously. Use for set_configuration, set_interface,
1515 * driver removal, physical disconnect.
1516 *
1517 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1518 * type, maxpacket size, toggle, halt status, and scheduling.
1519 */
1520 void usb_hcd_disable_endpoint(struct usb_device *udev,
1521 struct usb_host_endpoint *ep)
1522 {
1523 struct usb_hcd *hcd;
1524
1525 might_sleep();
1526 hcd = bus_to_hcd(udev->bus);
1527 if (hcd->driver->endpoint_disable)
1528 hcd->driver->endpoint_disable(hcd, ep);
1529 }
1530
1531 /*-------------------------------------------------------------------------*/
1532
1533 /* called in any context */
1534 int usb_hcd_get_frame_number (struct usb_device *udev)
1535 {
1536 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1537
1538 if (!HC_IS_RUNNING (hcd->state))
1539 return -ESHUTDOWN;
1540 return hcd->driver->get_frame_number (hcd);
1541 }
1542
1543 /*-------------------------------------------------------------------------*/
1544
1545 #ifdef CONFIG_PM
1546
1547 int hcd_bus_suspend(struct usb_device *rhdev)
1548 {
1549 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1550 int status;
1551 int old_state = hcd->state;
1552
1553 dev_dbg(&rhdev->dev, "bus %s%s\n",
1554 rhdev->auto_pm ? "auto-" : "", "suspend");
1555 if (!hcd->driver->bus_suspend) {
1556 status = -ENOENT;
1557 } else {
1558 hcd->state = HC_STATE_QUIESCING;
1559 status = hcd->driver->bus_suspend(hcd);
1560 }
1561 if (status == 0) {
1562 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1563 hcd->state = HC_STATE_SUSPENDED;
1564 } else {
1565 hcd->state = old_state;
1566 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1567 "suspend", status);
1568 }
1569 return status;
1570 }
1571
1572 int hcd_bus_resume(struct usb_device *rhdev)
1573 {
1574 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1575 int status;
1576 int old_state = hcd->state;
1577
1578 dev_dbg(&rhdev->dev, "usb %s%s\n",
1579 rhdev->auto_pm ? "auto-" : "", "resume");
1580 if (!hcd->driver->bus_resume)
1581 return -ENOENT;
1582 if (hcd->state == HC_STATE_RUNNING)
1583 return 0;
1584
1585 hcd->state = HC_STATE_RESUMING;
1586 status = hcd->driver->bus_resume(hcd);
1587 if (status == 0) {
1588 /* TRSMRCY = 10 msec */
1589 msleep(10);
1590 usb_set_device_state(rhdev, rhdev->actconfig
1591 ? USB_STATE_CONFIGURED
1592 : USB_STATE_ADDRESS);
1593 hcd->state = HC_STATE_RUNNING;
1594 } else {
1595 hcd->state = old_state;
1596 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1597 "resume", status);
1598 if (status != -ESHUTDOWN)
1599 usb_hc_died(hcd);
1600 }
1601 return status;
1602 }
1603
1604 /* Workqueue routine for root-hub remote wakeup */
1605 static void hcd_resume_work(struct work_struct *work)
1606 {
1607 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1608 struct usb_device *udev = hcd->self.root_hub;
1609
1610 usb_lock_device(udev);
1611 usb_mark_last_busy(udev);
1612 usb_external_resume_device(udev);
1613 usb_unlock_device(udev);
1614 }
1615
1616 /**
1617 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1618 * @hcd: host controller for this root hub
1619 *
1620 * The USB host controller calls this function when its root hub is
1621 * suspended (with the remote wakeup feature enabled) and a remote
1622 * wakeup request is received. The routine submits a workqueue request
1623 * to resume the root hub (that is, manage its downstream ports again).
1624 */
1625 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1626 {
1627 unsigned long flags;
1628
1629 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1630 if (hcd->rh_registered)
1631 queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1632 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1633 }
1634 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1635
1636 #endif
1637
1638 /*-------------------------------------------------------------------------*/
1639
1640 #ifdef CONFIG_USB_OTG
1641
1642 /**
1643 * usb_bus_start_enum - start immediate enumeration (for OTG)
1644 * @bus: the bus (must use hcd framework)
1645 * @port_num: 1-based number of port; usually bus->otg_port
1646 * Context: in_interrupt()
1647 *
1648 * Starts enumeration, with an immediate reset followed later by
1649 * khubd identifying and possibly configuring the device.
1650 * This is needed by OTG controller drivers, where it helps meet
1651 * HNP protocol timing requirements for starting a port reset.
1652 */
1653 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1654 {
1655 struct usb_hcd *hcd;
1656 int status = -EOPNOTSUPP;
1657
1658 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1659 * boards with root hubs hooked up to internal devices (instead of
1660 * just the OTG port) may need more attention to resetting...
1661 */
1662 hcd = container_of (bus, struct usb_hcd, self);
1663 if (port_num && hcd->driver->start_port_reset)
1664 status = hcd->driver->start_port_reset(hcd, port_num);
1665
1666 /* run khubd shortly after (first) root port reset finishes;
1667 * it may issue others, until at least 50 msecs have passed.
1668 */
1669 if (status == 0)
1670 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1671 return status;
1672 }
1673 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1674
1675 #endif
1676
1677 /*-------------------------------------------------------------------------*/
1678
1679 /**
1680 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1681 * @irq: the IRQ being raised
1682 * @__hcd: pointer to the HCD whose IRQ is being signaled
1683 *
1684 * If the controller isn't HALTed, calls the driver's irq handler.
1685 * Checks whether the controller is now dead.
1686 */
1687 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1688 {
1689 struct usb_hcd *hcd = __hcd;
1690 unsigned long flags;
1691 irqreturn_t rc;
1692
1693 /* IRQF_DISABLED doesn't work correctly with shared IRQs
1694 * when the first handler doesn't use it. So let's just
1695 * assume it's never used.
1696 */
1697 local_irq_save(flags);
1698
1699 if (unlikely(hcd->state == HC_STATE_HALT ||
1700 !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1701 rc = IRQ_NONE;
1702 } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1703 rc = IRQ_NONE;
1704 } else {
1705 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1706
1707 if (unlikely(hcd->state == HC_STATE_HALT))
1708 usb_hc_died(hcd);
1709 rc = IRQ_HANDLED;
1710 }
1711
1712 local_irq_restore(flags);
1713 return rc;
1714 }
1715
1716 /*-------------------------------------------------------------------------*/
1717
1718 /**
1719 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1720 * @hcd: pointer to the HCD representing the controller
1721 *
1722 * This is called by bus glue to report a USB host controller that died
1723 * while operations may still have been pending. It's called automatically
1724 * by the PCI glue, so only glue for non-PCI busses should need to call it.
1725 */
1726 void usb_hc_died (struct usb_hcd *hcd)
1727 {
1728 unsigned long flags;
1729
1730 dev_err (hcd->self.controller, "HC died; cleaning up\n");
1731
1732 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1733 if (hcd->rh_registered) {
1734 hcd->poll_rh = 0;
1735
1736 /* make khubd clean up old urbs and devices */
1737 usb_set_device_state (hcd->self.root_hub,
1738 USB_STATE_NOTATTACHED);
1739 usb_kick_khubd (hcd->self.root_hub);
1740 }
1741 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1742 }
1743 EXPORT_SYMBOL_GPL (usb_hc_died);
1744
1745 /*-------------------------------------------------------------------------*/
1746
1747 /**
1748 * usb_create_hcd - create and initialize an HCD structure
1749 * @driver: HC driver that will use this hcd
1750 * @dev: device for this HC, stored in hcd->self.controller
1751 * @bus_name: value to store in hcd->self.bus_name
1752 * Context: !in_interrupt()
1753 *
1754 * Allocate a struct usb_hcd, with extra space at the end for the
1755 * HC driver's private data. Initialize the generic members of the
1756 * hcd structure.
1757 *
1758 * If memory is unavailable, returns NULL.
1759 */
1760 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1761 struct device *dev, const char *bus_name)
1762 {
1763 struct usb_hcd *hcd;
1764
1765 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1766 if (!hcd) {
1767 dev_dbg (dev, "hcd alloc failed\n");
1768 return NULL;
1769 }
1770 dev_set_drvdata(dev, hcd);
1771 kref_init(&hcd->kref);
1772
1773 usb_bus_init(&hcd->self);
1774 hcd->self.controller = dev;
1775 hcd->self.bus_name = bus_name;
1776 hcd->self.uses_dma = (dev->dma_mask != NULL);
1777
1778 init_timer(&hcd->rh_timer);
1779 hcd->rh_timer.function = rh_timer_func;
1780 hcd->rh_timer.data = (unsigned long) hcd;
1781 #ifdef CONFIG_PM
1782 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1783 #endif
1784
1785 hcd->driver = driver;
1786 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1787 "USB Host Controller";
1788 return hcd;
1789 }
1790 EXPORT_SYMBOL_GPL(usb_create_hcd);
1791
1792 static void hcd_release (struct kref *kref)
1793 {
1794 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1795
1796 kfree(hcd);
1797 }
1798
1799 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1800 {
1801 if (hcd)
1802 kref_get (&hcd->kref);
1803 return hcd;
1804 }
1805 EXPORT_SYMBOL_GPL(usb_get_hcd);
1806
1807 void usb_put_hcd (struct usb_hcd *hcd)
1808 {
1809 if (hcd)
1810 kref_put (&hcd->kref, hcd_release);
1811 }
1812 EXPORT_SYMBOL_GPL(usb_put_hcd);
1813
1814 /**
1815 * usb_add_hcd - finish generic HCD structure initialization and register
1816 * @hcd: the usb_hcd structure to initialize
1817 * @irqnum: Interrupt line to allocate
1818 * @irqflags: Interrupt type flags
1819 *
1820 * Finish the remaining parts of generic HCD initialization: allocate the
1821 * buffers of consistent memory, register the bus, request the IRQ line,
1822 * and call the driver's reset() and start() routines.
1823 */
1824 int usb_add_hcd(struct usb_hcd *hcd,
1825 unsigned int irqnum, unsigned long irqflags)
1826 {
1827 int retval;
1828 struct usb_device *rhdev;
1829
1830 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1831
1832 hcd->authorized_default = hcd->wireless? 0 : 1;
1833 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1834
1835 /* HC is in reset state, but accessible. Now do the one-time init,
1836 * bottom up so that hcds can customize the root hubs before khubd
1837 * starts talking to them. (Note, bus id is assigned early too.)
1838 */
1839 if ((retval = hcd_buffer_create(hcd)) != 0) {
1840 dev_dbg(hcd->self.controller, "pool alloc failed\n");
1841 return retval;
1842 }
1843
1844 if ((retval = usb_register_bus(&hcd->self)) < 0)
1845 goto err_register_bus;
1846
1847 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1848 dev_err(hcd->self.controller, "unable to allocate root hub\n");
1849 retval = -ENOMEM;
1850 goto err_allocate_root_hub;
1851 }
1852 rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1853 USB_SPEED_FULL;
1854 hcd->self.root_hub = rhdev;
1855
1856 /* wakeup flag init defaults to "everything works" for root hubs,
1857 * but drivers can override it in reset() if needed, along with
1858 * recording the overall controller's system wakeup capability.
1859 */
1860 device_init_wakeup(&rhdev->dev, 1);
1861
1862 /* "reset" is misnamed; its role is now one-time init. the controller
1863 * should already have been reset (and boot firmware kicked off etc).
1864 */
1865 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1866 dev_err(hcd->self.controller, "can't setup\n");
1867 goto err_hcd_driver_setup;
1868 }
1869
1870 /* NOTE: root hub and controller capabilities may not be the same */
1871 if (device_can_wakeup(hcd->self.controller)
1872 && device_can_wakeup(&hcd->self.root_hub->dev))
1873 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1874
1875 /* enable irqs just before we start the controller */
1876 if (hcd->driver->irq) {
1877
1878 /* IRQF_DISABLED doesn't work as advertised when used together
1879 * with IRQF_SHARED. As usb_hcd_irq() will always disable
1880 * interrupts we can remove it here.
1881 */
1882 if (irqflags & IRQF_SHARED)
1883 irqflags &= ~IRQF_DISABLED;
1884
1885 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1886 hcd->driver->description, hcd->self.busnum);
1887 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1888 hcd->irq_descr, hcd)) != 0) {
1889 dev_err(hcd->self.controller,
1890 "request interrupt %d failed\n", irqnum);
1891 goto err_request_irq;
1892 }
1893 hcd->irq = irqnum;
1894 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1895 (hcd->driver->flags & HCD_MEMORY) ?
1896 "io mem" : "io base",
1897 (unsigned long long)hcd->rsrc_start);
1898 } else {
1899 hcd->irq = -1;
1900 if (hcd->rsrc_start)
1901 dev_info(hcd->self.controller, "%s 0x%08llx\n",
1902 (hcd->driver->flags & HCD_MEMORY) ?
1903 "io mem" : "io base",
1904 (unsigned long long)hcd->rsrc_start);
1905 }
1906
1907 if ((retval = hcd->driver->start(hcd)) < 0) {
1908 dev_err(hcd->self.controller, "startup error %d\n", retval);
1909 goto err_hcd_driver_start;
1910 }
1911
1912 /* starting here, usbcore will pay attention to this root hub */
1913 rhdev->bus_mA = min(500u, hcd->power_budget);
1914 if ((retval = register_root_hub(hcd)) != 0)
1915 goto err_register_root_hub;
1916
1917 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
1918 if (retval < 0) {
1919 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
1920 retval);
1921 goto error_create_attr_group;
1922 }
1923 if (hcd->uses_new_polling && hcd->poll_rh)
1924 usb_hcd_poll_rh_status(hcd);
1925 return retval;
1926
1927 error_create_attr_group:
1928 mutex_lock(&usb_bus_list_lock);
1929 usb_disconnect(&hcd->self.root_hub);
1930 mutex_unlock(&usb_bus_list_lock);
1931 err_register_root_hub:
1932 hcd->driver->stop(hcd);
1933 err_hcd_driver_start:
1934 if (hcd->irq >= 0)
1935 free_irq(irqnum, hcd);
1936 err_request_irq:
1937 err_hcd_driver_setup:
1938 hcd->self.root_hub = NULL;
1939 usb_put_dev(rhdev);
1940 err_allocate_root_hub:
1941 usb_deregister_bus(&hcd->self);
1942 err_register_bus:
1943 hcd_buffer_destroy(hcd);
1944 return retval;
1945 }
1946 EXPORT_SYMBOL_GPL(usb_add_hcd);
1947
1948 /**
1949 * usb_remove_hcd - shutdown processing for generic HCDs
1950 * @hcd: the usb_hcd structure to remove
1951 * Context: !in_interrupt()
1952 *
1953 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1954 * invoking the HCD's stop() method.
1955 */
1956 void usb_remove_hcd(struct usb_hcd *hcd)
1957 {
1958 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1959
1960 if (HC_IS_RUNNING (hcd->state))
1961 hcd->state = HC_STATE_QUIESCING;
1962
1963 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1964 spin_lock_irq (&hcd_root_hub_lock);
1965 hcd->rh_registered = 0;
1966 spin_unlock_irq (&hcd_root_hub_lock);
1967
1968 #ifdef CONFIG_PM
1969 cancel_work_sync(&hcd->wakeup_work);
1970 #endif
1971
1972 sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
1973 mutex_lock(&usb_bus_list_lock);
1974 usb_disconnect(&hcd->self.root_hub);
1975 mutex_unlock(&usb_bus_list_lock);
1976
1977 hcd->driver->stop(hcd);
1978 hcd->state = HC_STATE_HALT;
1979
1980 hcd->poll_rh = 0;
1981 del_timer_sync(&hcd->rh_timer);
1982
1983 if (hcd->irq >= 0)
1984 free_irq(hcd->irq, hcd);
1985 usb_deregister_bus(&hcd->self);
1986 hcd_buffer_destroy(hcd);
1987 }
1988 EXPORT_SYMBOL_GPL(usb_remove_hcd);
1989
1990 void
1991 usb_hcd_platform_shutdown(struct platform_device* dev)
1992 {
1993 struct usb_hcd *hcd = platform_get_drvdata(dev);
1994
1995 if (hcd->driver->shutdown)
1996 hcd->driver->shutdown(hcd);
1997 }
1998 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
1999
2000 /*-------------------------------------------------------------------------*/
2001
2002 #if defined(CONFIG_USB_MON)
2003
2004 struct usb_mon_operations *mon_ops;
2005
2006 /*
2007 * The registration is unlocked.
2008 * We do it this way because we do not want to lock in hot paths.
2009 *
2010 * Notice that the code is minimally error-proof. Because usbmon needs
2011 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2012 */
2013
2014 int usb_mon_register (struct usb_mon_operations *ops)
2015 {
2016
2017 if (mon_ops)
2018 return -EBUSY;
2019
2020 mon_ops = ops;
2021 mb();
2022 return 0;
2023 }
2024 EXPORT_SYMBOL_GPL (usb_mon_register);
2025
2026 void usb_mon_deregister (void)
2027 {
2028
2029 if (mon_ops == NULL) {
2030 printk(KERN_ERR "USB: monitor was not registered\n");
2031 return;
2032 }
2033 mon_ops = NULL;
2034 mb();
2035 }
2036 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2037
2038 #endif /* CONFIG_USB_MON */
This page took 0.101169 seconds and 5 git commands to generate.