293a30d78d24cbcbf77cb824978c07babf3b5c88
[deliverable/linux.git] / drivers / usb / core / message.c
1 /*
2 * message.c - synchronous message handling
3 */
4
5 #include <linux/pci.h> /* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/device.h>
14 #include <linux/scatterlist.h>
15 #include <linux/usb/quirks.h>
16 #include <asm/byteorder.h>
17
18 #include "hcd.h" /* for usbcore internals */
19 #include "usb.h"
20
21 static void cancel_async_set_config(struct usb_device *udev);
22
23 struct api_context {
24 struct completion done;
25 int status;
26 };
27
28 static void usb_api_blocking_completion(struct urb *urb)
29 {
30 struct api_context *ctx = urb->context;
31
32 ctx->status = urb->status;
33 complete(&ctx->done);
34 }
35
36
37 /*
38 * Starts urb and waits for completion or timeout. Note that this call
39 * is NOT interruptible. Many device driver i/o requests should be
40 * interruptible and therefore these drivers should implement their
41 * own interruptible routines.
42 */
43 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
44 {
45 struct api_context ctx;
46 unsigned long expire;
47 int retval;
48
49 init_completion(&ctx.done);
50 urb->context = &ctx;
51 urb->actual_length = 0;
52 retval = usb_submit_urb(urb, GFP_NOIO);
53 if (unlikely(retval))
54 goto out;
55
56 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
57 if (!wait_for_completion_timeout(&ctx.done, expire)) {
58 usb_kill_urb(urb);
59 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
60
61 dev_dbg(&urb->dev->dev,
62 "%s timed out on ep%d%s len=%u/%u\n",
63 current->comm,
64 usb_endpoint_num(&urb->ep->desc),
65 usb_urb_dir_in(urb) ? "in" : "out",
66 urb->actual_length,
67 urb->transfer_buffer_length);
68 } else
69 retval = ctx.status;
70 out:
71 if (actual_length)
72 *actual_length = urb->actual_length;
73
74 usb_free_urb(urb);
75 return retval;
76 }
77
78 /*-------------------------------------------------------------------*/
79 /* returns status (negative) or length (positive) */
80 static int usb_internal_control_msg(struct usb_device *usb_dev,
81 unsigned int pipe,
82 struct usb_ctrlrequest *cmd,
83 void *data, int len, int timeout)
84 {
85 struct urb *urb;
86 int retv;
87 int length;
88
89 urb = usb_alloc_urb(0, GFP_NOIO);
90 if (!urb)
91 return -ENOMEM;
92
93 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
94 len, usb_api_blocking_completion, NULL);
95
96 retv = usb_start_wait_urb(urb, timeout, &length);
97 if (retv < 0)
98 return retv;
99 else
100 return length;
101 }
102
103 /**
104 * usb_control_msg - Builds a control urb, sends it off and waits for completion
105 * @dev: pointer to the usb device to send the message to
106 * @pipe: endpoint "pipe" to send the message to
107 * @request: USB message request value
108 * @requesttype: USB message request type value
109 * @value: USB message value
110 * @index: USB message index value
111 * @data: pointer to the data to send
112 * @size: length in bytes of the data to send
113 * @timeout: time in msecs to wait for the message to complete before timing
114 * out (if 0 the wait is forever)
115 *
116 * Context: !in_interrupt ()
117 *
118 * This function sends a simple control message to a specified endpoint and
119 * waits for the message to complete, or timeout.
120 *
121 * If successful, it returns the number of bytes transferred, otherwise a
122 * negative error number.
123 *
124 * Don't use this function from within an interrupt context, like a bottom half
125 * handler. If you need an asynchronous message, or need to send a message
126 * from within interrupt context, use usb_submit_urb().
127 * If a thread in your driver uses this call, make sure your disconnect()
128 * method can wait for it to complete. Since you don't have a handle on the
129 * URB used, you can't cancel the request.
130 */
131 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
132 __u8 requesttype, __u16 value, __u16 index, void *data,
133 __u16 size, int timeout)
134 {
135 struct usb_ctrlrequest *dr;
136 int ret;
137
138 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
139 if (!dr)
140 return -ENOMEM;
141
142 dr->bRequestType = requesttype;
143 dr->bRequest = request;
144 dr->wValue = cpu_to_le16(value);
145 dr->wIndex = cpu_to_le16(index);
146 dr->wLength = cpu_to_le16(size);
147
148 /* dbg("usb_control_msg"); */
149
150 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
151
152 kfree(dr);
153
154 return ret;
155 }
156 EXPORT_SYMBOL_GPL(usb_control_msg);
157
158 /**
159 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
160 * @usb_dev: pointer to the usb device to send the message to
161 * @pipe: endpoint "pipe" to send the message to
162 * @data: pointer to the data to send
163 * @len: length in bytes of the data to send
164 * @actual_length: pointer to a location to put the actual length transferred
165 * in bytes
166 * @timeout: time in msecs to wait for the message to complete before
167 * timing out (if 0 the wait is forever)
168 *
169 * Context: !in_interrupt ()
170 *
171 * This function sends a simple interrupt message to a specified endpoint and
172 * waits for the message to complete, or timeout.
173 *
174 * If successful, it returns 0, otherwise a negative error number. The number
175 * of actual bytes transferred will be stored in the actual_length paramater.
176 *
177 * Don't use this function from within an interrupt context, like a bottom half
178 * handler. If you need an asynchronous message, or need to send a message
179 * from within interrupt context, use usb_submit_urb() If a thread in your
180 * driver uses this call, make sure your disconnect() method can wait for it to
181 * complete. Since you don't have a handle on the URB used, you can't cancel
182 * the request.
183 */
184 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
185 void *data, int len, int *actual_length, int timeout)
186 {
187 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
188 }
189 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
190
191 /**
192 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
193 * @usb_dev: pointer to the usb device to send the message to
194 * @pipe: endpoint "pipe" to send the message to
195 * @data: pointer to the data to send
196 * @len: length in bytes of the data to send
197 * @actual_length: pointer to a location to put the actual length transferred
198 * in bytes
199 * @timeout: time in msecs to wait for the message to complete before
200 * timing out (if 0 the wait is forever)
201 *
202 * Context: !in_interrupt ()
203 *
204 * This function sends a simple bulk message to a specified endpoint
205 * and waits for the message to complete, or timeout.
206 *
207 * If successful, it returns 0, otherwise a negative error number. The number
208 * of actual bytes transferred will be stored in the actual_length paramater.
209 *
210 * Don't use this function from within an interrupt context, like a bottom half
211 * handler. If you need an asynchronous message, or need to send a message
212 * from within interrupt context, use usb_submit_urb() If a thread in your
213 * driver uses this call, make sure your disconnect() method can wait for it to
214 * complete. Since you don't have a handle on the URB used, you can't cancel
215 * the request.
216 *
217 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
218 * users are forced to abuse this routine by using it to submit URBs for
219 * interrupt endpoints. We will take the liberty of creating an interrupt URB
220 * (with the default interval) if the target is an interrupt endpoint.
221 */
222 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
223 void *data, int len, int *actual_length, int timeout)
224 {
225 struct urb *urb;
226 struct usb_host_endpoint *ep;
227
228 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
229 [usb_pipeendpoint(pipe)];
230 if (!ep || len < 0)
231 return -EINVAL;
232
233 urb = usb_alloc_urb(0, GFP_KERNEL);
234 if (!urb)
235 return -ENOMEM;
236
237 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
238 USB_ENDPOINT_XFER_INT) {
239 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
240 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
241 usb_api_blocking_completion, NULL,
242 ep->desc.bInterval);
243 } else
244 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
245 usb_api_blocking_completion, NULL);
246
247 return usb_start_wait_urb(urb, timeout, actual_length);
248 }
249 EXPORT_SYMBOL_GPL(usb_bulk_msg);
250
251 /*-------------------------------------------------------------------*/
252
253 static void sg_clean(struct usb_sg_request *io)
254 {
255 if (io->urbs) {
256 while (io->entries--)
257 usb_free_urb(io->urbs [io->entries]);
258 kfree(io->urbs);
259 io->urbs = NULL;
260 }
261 if (io->dev->dev.dma_mask != NULL)
262 usb_buffer_unmap_sg(io->dev, usb_pipein(io->pipe),
263 io->sg, io->nents);
264 io->dev = NULL;
265 }
266
267 static void sg_complete(struct urb *urb)
268 {
269 struct usb_sg_request *io = urb->context;
270 int status = urb->status;
271
272 spin_lock(&io->lock);
273
274 /* In 2.5 we require hcds' endpoint queues not to progress after fault
275 * reports, until the completion callback (this!) returns. That lets
276 * device driver code (like this routine) unlink queued urbs first,
277 * if it needs to, since the HC won't work on them at all. So it's
278 * not possible for page N+1 to overwrite page N, and so on.
279 *
280 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
281 * complete before the HCD can get requests away from hardware,
282 * though never during cleanup after a hard fault.
283 */
284 if (io->status
285 && (io->status != -ECONNRESET
286 || status != -ECONNRESET)
287 && urb->actual_length) {
288 dev_err(io->dev->bus->controller,
289 "dev %s ep%d%s scatterlist error %d/%d\n",
290 io->dev->devpath,
291 usb_endpoint_num(&urb->ep->desc),
292 usb_urb_dir_in(urb) ? "in" : "out",
293 status, io->status);
294 /* BUG (); */
295 }
296
297 if (io->status == 0 && status && status != -ECONNRESET) {
298 int i, found, retval;
299
300 io->status = status;
301
302 /* the previous urbs, and this one, completed already.
303 * unlink pending urbs so they won't rx/tx bad data.
304 * careful: unlink can sometimes be synchronous...
305 */
306 spin_unlock(&io->lock);
307 for (i = 0, found = 0; i < io->entries; i++) {
308 if (!io->urbs [i] || !io->urbs [i]->dev)
309 continue;
310 if (found) {
311 retval = usb_unlink_urb(io->urbs [i]);
312 if (retval != -EINPROGRESS &&
313 retval != -ENODEV &&
314 retval != -EBUSY)
315 dev_err(&io->dev->dev,
316 "%s, unlink --> %d\n",
317 __func__, retval);
318 } else if (urb == io->urbs [i])
319 found = 1;
320 }
321 spin_lock(&io->lock);
322 }
323 urb->dev = NULL;
324
325 /* on the last completion, signal usb_sg_wait() */
326 io->bytes += urb->actual_length;
327 io->count--;
328 if (!io->count)
329 complete(&io->complete);
330
331 spin_unlock(&io->lock);
332 }
333
334
335 /**
336 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
337 * @io: request block being initialized. until usb_sg_wait() returns,
338 * treat this as a pointer to an opaque block of memory,
339 * @dev: the usb device that will send or receive the data
340 * @pipe: endpoint "pipe" used to transfer the data
341 * @period: polling rate for interrupt endpoints, in frames or
342 * (for high speed endpoints) microframes; ignored for bulk
343 * @sg: scatterlist entries
344 * @nents: how many entries in the scatterlist
345 * @length: how many bytes to send from the scatterlist, or zero to
346 * send every byte identified in the list.
347 * @mem_flags: SLAB_* flags affecting memory allocations in this call
348 *
349 * Returns zero for success, else a negative errno value. This initializes a
350 * scatter/gather request, allocating resources such as I/O mappings and urb
351 * memory (except maybe memory used by USB controller drivers).
352 *
353 * The request must be issued using usb_sg_wait(), which waits for the I/O to
354 * complete (or to be canceled) and then cleans up all resources allocated by
355 * usb_sg_init().
356 *
357 * The request may be canceled with usb_sg_cancel(), either before or after
358 * usb_sg_wait() is called.
359 */
360 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
361 unsigned pipe, unsigned period, struct scatterlist *sg,
362 int nents, size_t length, gfp_t mem_flags)
363 {
364 int i;
365 int urb_flags;
366 int dma;
367
368 if (!io || !dev || !sg
369 || usb_pipecontrol(pipe)
370 || usb_pipeisoc(pipe)
371 || nents <= 0)
372 return -EINVAL;
373
374 spin_lock_init(&io->lock);
375 io->dev = dev;
376 io->pipe = pipe;
377 io->sg = sg;
378 io->nents = nents;
379
380 /* not all host controllers use DMA (like the mainstream pci ones);
381 * they can use PIO (sl811) or be software over another transport.
382 */
383 dma = (dev->dev.dma_mask != NULL);
384 if (dma)
385 io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe),
386 sg, nents);
387 else
388 io->entries = nents;
389
390 /* initialize all the urbs we'll use */
391 if (io->entries <= 0)
392 return io->entries;
393
394 io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
395 if (!io->urbs)
396 goto nomem;
397
398 urb_flags = URB_NO_INTERRUPT;
399 if (dma)
400 urb_flags |= URB_NO_TRANSFER_DMA_MAP;
401 if (usb_pipein(pipe))
402 urb_flags |= URB_SHORT_NOT_OK;
403
404 for_each_sg(sg, sg, io->entries, i) {
405 unsigned len;
406
407 io->urbs[i] = usb_alloc_urb(0, mem_flags);
408 if (!io->urbs[i]) {
409 io->entries = i;
410 goto nomem;
411 }
412
413 io->urbs[i]->dev = NULL;
414 io->urbs[i]->pipe = pipe;
415 io->urbs[i]->interval = period;
416 io->urbs[i]->transfer_flags = urb_flags;
417
418 io->urbs[i]->complete = sg_complete;
419 io->urbs[i]->context = io;
420
421 /*
422 * Some systems need to revert to PIO when DMA is temporarily
423 * unavailable. For their sakes, both transfer_buffer and
424 * transfer_dma are set when possible. However this can only
425 * work on systems without:
426 *
427 * - HIGHMEM, since DMA buffers located in high memory are
428 * not directly addressable by the CPU for PIO;
429 *
430 * - IOMMU, since dma_map_sg() is allowed to use an IOMMU to
431 * make virtually discontiguous buffers be "dma-contiguous"
432 * so that PIO and DMA need diferent numbers of URBs.
433 *
434 * So when HIGHMEM or IOMMU are in use, transfer_buffer is NULL
435 * to prevent stale pointers and to help spot bugs.
436 */
437 if (dma) {
438 io->urbs[i]->transfer_dma = sg_dma_address(sg);
439 len = sg_dma_len(sg);
440 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_GART_IOMMU)
441 io->urbs[i]->transfer_buffer = NULL;
442 #else
443 io->urbs[i]->transfer_buffer = sg_virt(sg);
444 #endif
445 } else {
446 /* hc may use _only_ transfer_buffer */
447 io->urbs[i]->transfer_buffer = sg_virt(sg);
448 len = sg->length;
449 }
450
451 if (length) {
452 len = min_t(unsigned, len, length);
453 length -= len;
454 if (length == 0)
455 io->entries = i + 1;
456 }
457 io->urbs[i]->transfer_buffer_length = len;
458 }
459 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
460
461 /* transaction state */
462 io->count = io->entries;
463 io->status = 0;
464 io->bytes = 0;
465 init_completion(&io->complete);
466 return 0;
467
468 nomem:
469 sg_clean(io);
470 return -ENOMEM;
471 }
472 EXPORT_SYMBOL_GPL(usb_sg_init);
473
474 /**
475 * usb_sg_wait - synchronously execute scatter/gather request
476 * @io: request block handle, as initialized with usb_sg_init().
477 * some fields become accessible when this call returns.
478 * Context: !in_interrupt ()
479 *
480 * This function blocks until the specified I/O operation completes. It
481 * leverages the grouping of the related I/O requests to get good transfer
482 * rates, by queueing the requests. At higher speeds, such queuing can
483 * significantly improve USB throughput.
484 *
485 * There are three kinds of completion for this function.
486 * (1) success, where io->status is zero. The number of io->bytes
487 * transferred is as requested.
488 * (2) error, where io->status is a negative errno value. The number
489 * of io->bytes transferred before the error is usually less
490 * than requested, and can be nonzero.
491 * (3) cancellation, a type of error with status -ECONNRESET that
492 * is initiated by usb_sg_cancel().
493 *
494 * When this function returns, all memory allocated through usb_sg_init() or
495 * this call will have been freed. The request block parameter may still be
496 * passed to usb_sg_cancel(), or it may be freed. It could also be
497 * reinitialized and then reused.
498 *
499 * Data Transfer Rates:
500 *
501 * Bulk transfers are valid for full or high speed endpoints.
502 * The best full speed data rate is 19 packets of 64 bytes each
503 * per frame, or 1216 bytes per millisecond.
504 * The best high speed data rate is 13 packets of 512 bytes each
505 * per microframe, or 52 KBytes per millisecond.
506 *
507 * The reason to use interrupt transfers through this API would most likely
508 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
509 * could be transferred. That capability is less useful for low or full
510 * speed interrupt endpoints, which allow at most one packet per millisecond,
511 * of at most 8 or 64 bytes (respectively).
512 */
513 void usb_sg_wait(struct usb_sg_request *io)
514 {
515 int i;
516 int entries = io->entries;
517
518 /* queue the urbs. */
519 spin_lock_irq(&io->lock);
520 i = 0;
521 while (i < entries && !io->status) {
522 int retval;
523
524 io->urbs[i]->dev = io->dev;
525 retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
526
527 /* after we submit, let completions or cancelations fire;
528 * we handshake using io->status.
529 */
530 spin_unlock_irq(&io->lock);
531 switch (retval) {
532 /* maybe we retrying will recover */
533 case -ENXIO: /* hc didn't queue this one */
534 case -EAGAIN:
535 case -ENOMEM:
536 io->urbs[i]->dev = NULL;
537 retval = 0;
538 yield();
539 break;
540
541 /* no error? continue immediately.
542 *
543 * NOTE: to work better with UHCI (4K I/O buffer may
544 * need 3K of TDs) it may be good to limit how many
545 * URBs are queued at once; N milliseconds?
546 */
547 case 0:
548 ++i;
549 cpu_relax();
550 break;
551
552 /* fail any uncompleted urbs */
553 default:
554 io->urbs[i]->dev = NULL;
555 io->urbs[i]->status = retval;
556 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
557 __func__, retval);
558 usb_sg_cancel(io);
559 }
560 spin_lock_irq(&io->lock);
561 if (retval && (io->status == 0 || io->status == -ECONNRESET))
562 io->status = retval;
563 }
564 io->count -= entries - i;
565 if (io->count == 0)
566 complete(&io->complete);
567 spin_unlock_irq(&io->lock);
568
569 /* OK, yes, this could be packaged as non-blocking.
570 * So could the submit loop above ... but it's easier to
571 * solve neither problem than to solve both!
572 */
573 wait_for_completion(&io->complete);
574
575 sg_clean(io);
576 }
577 EXPORT_SYMBOL_GPL(usb_sg_wait);
578
579 /**
580 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
581 * @io: request block, initialized with usb_sg_init()
582 *
583 * This stops a request after it has been started by usb_sg_wait().
584 * It can also prevents one initialized by usb_sg_init() from starting,
585 * so that call just frees resources allocated to the request.
586 */
587 void usb_sg_cancel(struct usb_sg_request *io)
588 {
589 unsigned long flags;
590
591 spin_lock_irqsave(&io->lock, flags);
592
593 /* shut everything down, if it didn't already */
594 if (!io->status) {
595 int i;
596
597 io->status = -ECONNRESET;
598 spin_unlock(&io->lock);
599 for (i = 0; i < io->entries; i++) {
600 int retval;
601
602 if (!io->urbs [i]->dev)
603 continue;
604 retval = usb_unlink_urb(io->urbs [i]);
605 if (retval != -EINPROGRESS && retval != -EBUSY)
606 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
607 __func__, retval);
608 }
609 spin_lock(&io->lock);
610 }
611 spin_unlock_irqrestore(&io->lock, flags);
612 }
613 EXPORT_SYMBOL_GPL(usb_sg_cancel);
614
615 /*-------------------------------------------------------------------*/
616
617 /**
618 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
619 * @dev: the device whose descriptor is being retrieved
620 * @type: the descriptor type (USB_DT_*)
621 * @index: the number of the descriptor
622 * @buf: where to put the descriptor
623 * @size: how big is "buf"?
624 * Context: !in_interrupt ()
625 *
626 * Gets a USB descriptor. Convenience functions exist to simplify
627 * getting some types of descriptors. Use
628 * usb_get_string() or usb_string() for USB_DT_STRING.
629 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
630 * are part of the device structure.
631 * In addition to a number of USB-standard descriptors, some
632 * devices also use class-specific or vendor-specific descriptors.
633 *
634 * This call is synchronous, and may not be used in an interrupt context.
635 *
636 * Returns the number of bytes received on success, or else the status code
637 * returned by the underlying usb_control_msg() call.
638 */
639 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
640 unsigned char index, void *buf, int size)
641 {
642 int i;
643 int result;
644
645 memset(buf, 0, size); /* Make sure we parse really received data */
646
647 for (i = 0; i < 3; ++i) {
648 /* retry on length 0 or error; some devices are flakey */
649 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
650 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
651 (type << 8) + index, 0, buf, size,
652 USB_CTRL_GET_TIMEOUT);
653 if (result <= 0 && result != -ETIMEDOUT)
654 continue;
655 if (result > 1 && ((u8 *)buf)[1] != type) {
656 result = -ENODATA;
657 continue;
658 }
659 break;
660 }
661 return result;
662 }
663 EXPORT_SYMBOL_GPL(usb_get_descriptor);
664
665 /**
666 * usb_get_string - gets a string descriptor
667 * @dev: the device whose string descriptor is being retrieved
668 * @langid: code for language chosen (from string descriptor zero)
669 * @index: the number of the descriptor
670 * @buf: where to put the string
671 * @size: how big is "buf"?
672 * Context: !in_interrupt ()
673 *
674 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
675 * in little-endian byte order).
676 * The usb_string() function will often be a convenient way to turn
677 * these strings into kernel-printable form.
678 *
679 * Strings may be referenced in device, configuration, interface, or other
680 * descriptors, and could also be used in vendor-specific ways.
681 *
682 * This call is synchronous, and may not be used in an interrupt context.
683 *
684 * Returns the number of bytes received on success, or else the status code
685 * returned by the underlying usb_control_msg() call.
686 */
687 static int usb_get_string(struct usb_device *dev, unsigned short langid,
688 unsigned char index, void *buf, int size)
689 {
690 int i;
691 int result;
692
693 for (i = 0; i < 3; ++i) {
694 /* retry on length 0 or stall; some devices are flakey */
695 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
696 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
697 (USB_DT_STRING << 8) + index, langid, buf, size,
698 USB_CTRL_GET_TIMEOUT);
699 if (result == 0 || result == -EPIPE)
700 continue;
701 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
702 result = -ENODATA;
703 continue;
704 }
705 break;
706 }
707 return result;
708 }
709
710 static void usb_try_string_workarounds(unsigned char *buf, int *length)
711 {
712 int newlength, oldlength = *length;
713
714 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
715 if (!isprint(buf[newlength]) || buf[newlength + 1])
716 break;
717
718 if (newlength > 2) {
719 buf[0] = newlength;
720 *length = newlength;
721 }
722 }
723
724 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
725 unsigned int index, unsigned char *buf)
726 {
727 int rc;
728
729 /* Try to read the string descriptor by asking for the maximum
730 * possible number of bytes */
731 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
732 rc = -EIO;
733 else
734 rc = usb_get_string(dev, langid, index, buf, 255);
735
736 /* If that failed try to read the descriptor length, then
737 * ask for just that many bytes */
738 if (rc < 2) {
739 rc = usb_get_string(dev, langid, index, buf, 2);
740 if (rc == 2)
741 rc = usb_get_string(dev, langid, index, buf, buf[0]);
742 }
743
744 if (rc >= 2) {
745 if (!buf[0] && !buf[1])
746 usb_try_string_workarounds(buf, &rc);
747
748 /* There might be extra junk at the end of the descriptor */
749 if (buf[0] < rc)
750 rc = buf[0];
751
752 rc = rc - (rc & 1); /* force a multiple of two */
753 }
754
755 if (rc < 2)
756 rc = (rc < 0 ? rc : -EINVAL);
757
758 return rc;
759 }
760
761 /**
762 * usb_string - returns ISO 8859-1 version of a string descriptor
763 * @dev: the device whose string descriptor is being retrieved
764 * @index: the number of the descriptor
765 * @buf: where to put the string
766 * @size: how big is "buf"?
767 * Context: !in_interrupt ()
768 *
769 * This converts the UTF-16LE encoded strings returned by devices, from
770 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
771 * that are more usable in most kernel contexts. Note that all characters
772 * in the chosen descriptor that can't be encoded using ISO-8859-1
773 * are converted to the question mark ("?") character, and this function
774 * chooses strings in the first language supported by the device.
775 *
776 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
777 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
778 * and is appropriate for use many uses of English and several other
779 * Western European languages. (But it doesn't include the "Euro" symbol.)
780 *
781 * This call is synchronous, and may not be used in an interrupt context.
782 *
783 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
784 */
785 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
786 {
787 unsigned char *tbuf;
788 int err;
789 unsigned int u, idx;
790
791 if (dev->state == USB_STATE_SUSPENDED)
792 return -EHOSTUNREACH;
793 if (size <= 0 || !buf || !index)
794 return -EINVAL;
795 buf[0] = 0;
796 tbuf = kmalloc(256, GFP_NOIO);
797 if (!tbuf)
798 return -ENOMEM;
799
800 /* get langid for strings if it's not yet known */
801 if (!dev->have_langid) {
802 err = usb_string_sub(dev, 0, 0, tbuf);
803 if (err < 0) {
804 dev_err(&dev->dev,
805 "string descriptor 0 read error: %d\n",
806 err);
807 goto errout;
808 } else if (err < 4) {
809 dev_err(&dev->dev, "string descriptor 0 too short\n");
810 err = -EINVAL;
811 goto errout;
812 } else {
813 dev->have_langid = 1;
814 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
815 /* always use the first langid listed */
816 dev_dbg(&dev->dev, "default language 0x%04x\n",
817 dev->string_langid);
818 }
819 }
820
821 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
822 if (err < 0)
823 goto errout;
824
825 size--; /* leave room for trailing NULL char in output buffer */
826 for (idx = 0, u = 2; u < err; u += 2) {
827 if (idx >= size)
828 break;
829 if (tbuf[u+1]) /* high byte */
830 buf[idx++] = '?'; /* non ISO-8859-1 character */
831 else
832 buf[idx++] = tbuf[u];
833 }
834 buf[idx] = 0;
835 err = idx;
836
837 if (tbuf[1] != USB_DT_STRING)
838 dev_dbg(&dev->dev,
839 "wrong descriptor type %02x for string %d (\"%s\")\n",
840 tbuf[1], index, buf);
841
842 errout:
843 kfree(tbuf);
844 return err;
845 }
846 EXPORT_SYMBOL_GPL(usb_string);
847
848 /**
849 * usb_cache_string - read a string descriptor and cache it for later use
850 * @udev: the device whose string descriptor is being read
851 * @index: the descriptor index
852 *
853 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
854 * or NULL if the index is 0 or the string could not be read.
855 */
856 char *usb_cache_string(struct usb_device *udev, int index)
857 {
858 char *buf;
859 char *smallbuf = NULL;
860 int len;
861
862 if (index <= 0)
863 return NULL;
864
865 buf = kmalloc(256, GFP_KERNEL);
866 if (buf) {
867 len = usb_string(udev, index, buf, 256);
868 if (len > 0) {
869 smallbuf = kmalloc(++len, GFP_KERNEL);
870 if (!smallbuf)
871 return buf;
872 memcpy(smallbuf, buf, len);
873 }
874 kfree(buf);
875 }
876 return smallbuf;
877 }
878
879 /*
880 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
881 * @dev: the device whose device descriptor is being updated
882 * @size: how much of the descriptor to read
883 * Context: !in_interrupt ()
884 *
885 * Updates the copy of the device descriptor stored in the device structure,
886 * which dedicates space for this purpose.
887 *
888 * Not exported, only for use by the core. If drivers really want to read
889 * the device descriptor directly, they can call usb_get_descriptor() with
890 * type = USB_DT_DEVICE and index = 0.
891 *
892 * This call is synchronous, and may not be used in an interrupt context.
893 *
894 * Returns the number of bytes received on success, or else the status code
895 * returned by the underlying usb_control_msg() call.
896 */
897 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
898 {
899 struct usb_device_descriptor *desc;
900 int ret;
901
902 if (size > sizeof(*desc))
903 return -EINVAL;
904 desc = kmalloc(sizeof(*desc), GFP_NOIO);
905 if (!desc)
906 return -ENOMEM;
907
908 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
909 if (ret >= 0)
910 memcpy(&dev->descriptor, desc, size);
911 kfree(desc);
912 return ret;
913 }
914
915 /**
916 * usb_get_status - issues a GET_STATUS call
917 * @dev: the device whose status is being checked
918 * @type: USB_RECIP_*; for device, interface, or endpoint
919 * @target: zero (for device), else interface or endpoint number
920 * @data: pointer to two bytes of bitmap data
921 * Context: !in_interrupt ()
922 *
923 * Returns device, interface, or endpoint status. Normally only of
924 * interest to see if the device is self powered, or has enabled the
925 * remote wakeup facility; or whether a bulk or interrupt endpoint
926 * is halted ("stalled").
927 *
928 * Bits in these status bitmaps are set using the SET_FEATURE request,
929 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
930 * function should be used to clear halt ("stall") status.
931 *
932 * This call is synchronous, and may not be used in an interrupt context.
933 *
934 * Returns the number of bytes received on success, or else the status code
935 * returned by the underlying usb_control_msg() call.
936 */
937 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
938 {
939 int ret;
940 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
941
942 if (!status)
943 return -ENOMEM;
944
945 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
946 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
947 sizeof(*status), USB_CTRL_GET_TIMEOUT);
948
949 *(u16 *)data = *status;
950 kfree(status);
951 return ret;
952 }
953 EXPORT_SYMBOL_GPL(usb_get_status);
954
955 /**
956 * usb_clear_halt - tells device to clear endpoint halt/stall condition
957 * @dev: device whose endpoint is halted
958 * @pipe: endpoint "pipe" being cleared
959 * Context: !in_interrupt ()
960 *
961 * This is used to clear halt conditions for bulk and interrupt endpoints,
962 * as reported by URB completion status. Endpoints that are halted are
963 * sometimes referred to as being "stalled". Such endpoints are unable
964 * to transmit or receive data until the halt status is cleared. Any URBs
965 * queued for such an endpoint should normally be unlinked by the driver
966 * before clearing the halt condition, as described in sections 5.7.5
967 * and 5.8.5 of the USB 2.0 spec.
968 *
969 * Note that control and isochronous endpoints don't halt, although control
970 * endpoints report "protocol stall" (for unsupported requests) using the
971 * same status code used to report a true stall.
972 *
973 * This call is synchronous, and may not be used in an interrupt context.
974 *
975 * Returns zero on success, or else the status code returned by the
976 * underlying usb_control_msg() call.
977 */
978 int usb_clear_halt(struct usb_device *dev, int pipe)
979 {
980 int result;
981 int endp = usb_pipeendpoint(pipe);
982
983 if (usb_pipein(pipe))
984 endp |= USB_DIR_IN;
985
986 /* we don't care if it wasn't halted first. in fact some devices
987 * (like some ibmcam model 1 units) seem to expect hosts to make
988 * this request for iso endpoints, which can't halt!
989 */
990 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
991 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
992 USB_ENDPOINT_HALT, endp, NULL, 0,
993 USB_CTRL_SET_TIMEOUT);
994
995 /* don't un-halt or force to DATA0 except on success */
996 if (result < 0)
997 return result;
998
999 /* NOTE: seems like Microsoft and Apple don't bother verifying
1000 * the clear "took", so some devices could lock up if you check...
1001 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1002 *
1003 * NOTE: make sure the logic here doesn't diverge much from
1004 * the copy in usb-storage, for as long as we need two copies.
1005 */
1006
1007 /* toggle was reset by the clear */
1008 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
1009
1010 return 0;
1011 }
1012 EXPORT_SYMBOL_GPL(usb_clear_halt);
1013
1014 static int create_intf_ep_devs(struct usb_interface *intf)
1015 {
1016 struct usb_device *udev = interface_to_usbdev(intf);
1017 struct usb_host_interface *alt = intf->cur_altsetting;
1018 int i;
1019
1020 if (intf->ep_devs_created || intf->unregistering)
1021 return 0;
1022
1023 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1024 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1025 intf->ep_devs_created = 1;
1026 return 0;
1027 }
1028
1029 static void remove_intf_ep_devs(struct usb_interface *intf)
1030 {
1031 struct usb_host_interface *alt = intf->cur_altsetting;
1032 int i;
1033
1034 if (!intf->ep_devs_created)
1035 return;
1036
1037 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1038 usb_remove_ep_devs(&alt->endpoint[i]);
1039 intf->ep_devs_created = 0;
1040 }
1041
1042 /**
1043 * usb_disable_endpoint -- Disable an endpoint by address
1044 * @dev: the device whose endpoint is being disabled
1045 * @epaddr: the endpoint's address. Endpoint number for output,
1046 * endpoint number + USB_DIR_IN for input
1047 * @reset_hardware: flag to erase any endpoint state stored in the
1048 * controller hardware
1049 *
1050 * Disables the endpoint for URB submission and nukes all pending URBs.
1051 * If @reset_hardware is set then also deallocates hcd/hardware state
1052 * for the endpoint.
1053 */
1054 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1055 bool reset_hardware)
1056 {
1057 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1058 struct usb_host_endpoint *ep;
1059
1060 if (!dev)
1061 return;
1062
1063 if (usb_endpoint_out(epaddr)) {
1064 ep = dev->ep_out[epnum];
1065 if (reset_hardware)
1066 dev->ep_out[epnum] = NULL;
1067 } else {
1068 ep = dev->ep_in[epnum];
1069 if (reset_hardware)
1070 dev->ep_in[epnum] = NULL;
1071 }
1072 if (ep) {
1073 ep->enabled = 0;
1074 usb_hcd_flush_endpoint(dev, ep);
1075 if (reset_hardware)
1076 usb_hcd_disable_endpoint(dev, ep);
1077 }
1078 }
1079
1080 /**
1081 * usb_disable_interface -- Disable all endpoints for an interface
1082 * @dev: the device whose interface is being disabled
1083 * @intf: pointer to the interface descriptor
1084 * @reset_hardware: flag to erase any endpoint state stored in the
1085 * controller hardware
1086 *
1087 * Disables all the endpoints for the interface's current altsetting.
1088 */
1089 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1090 bool reset_hardware)
1091 {
1092 struct usb_host_interface *alt = intf->cur_altsetting;
1093 int i;
1094
1095 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1096 usb_disable_endpoint(dev,
1097 alt->endpoint[i].desc.bEndpointAddress,
1098 reset_hardware);
1099 }
1100 }
1101
1102 /**
1103 * usb_disable_device - Disable all the endpoints for a USB device
1104 * @dev: the device whose endpoints are being disabled
1105 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1106 *
1107 * Disables all the device's endpoints, potentially including endpoint 0.
1108 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1109 * pending urbs) and usbcore state for the interfaces, so that usbcore
1110 * must usb_set_configuration() before any interfaces could be used.
1111 */
1112 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1113 {
1114 int i;
1115
1116 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1117 skip_ep0 ? "non-ep0" : "all");
1118 for (i = skip_ep0; i < 16; ++i) {
1119 usb_disable_endpoint(dev, i, true);
1120 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1121 }
1122 dev->toggle[0] = dev->toggle[1] = 0;
1123
1124 /* getting rid of interfaces will disconnect
1125 * any drivers bound to them (a key side effect)
1126 */
1127 if (dev->actconfig) {
1128 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1129 struct usb_interface *interface;
1130
1131 /* remove this interface if it has been registered */
1132 interface = dev->actconfig->interface[i];
1133 if (!device_is_registered(&interface->dev))
1134 continue;
1135 dev_dbg(&dev->dev, "unregistering interface %s\n",
1136 dev_name(&interface->dev));
1137 interface->unregistering = 1;
1138 remove_intf_ep_devs(interface);
1139 device_del(&interface->dev);
1140 }
1141
1142 /* Now that the interfaces are unbound, nobody should
1143 * try to access them.
1144 */
1145 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1146 put_device(&dev->actconfig->interface[i]->dev);
1147 dev->actconfig->interface[i] = NULL;
1148 }
1149 dev->actconfig = NULL;
1150 if (dev->state == USB_STATE_CONFIGURED)
1151 usb_set_device_state(dev, USB_STATE_ADDRESS);
1152 }
1153 }
1154
1155 /**
1156 * usb_enable_endpoint - Enable an endpoint for USB communications
1157 * @dev: the device whose interface is being enabled
1158 * @ep: the endpoint
1159 * @reset_toggle: flag to set the endpoint's toggle back to 0
1160 *
1161 * Resets the endpoint toggle if asked, and sets dev->ep_{in,out} pointers.
1162 * For control endpoints, both the input and output sides are handled.
1163 */
1164 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1165 bool reset_toggle)
1166 {
1167 int epnum = usb_endpoint_num(&ep->desc);
1168 int is_out = usb_endpoint_dir_out(&ep->desc);
1169 int is_control = usb_endpoint_xfer_control(&ep->desc);
1170
1171 if (is_out || is_control) {
1172 if (reset_toggle)
1173 usb_settoggle(dev, epnum, 1, 0);
1174 dev->ep_out[epnum] = ep;
1175 }
1176 if (!is_out || is_control) {
1177 if (reset_toggle)
1178 usb_settoggle(dev, epnum, 0, 0);
1179 dev->ep_in[epnum] = ep;
1180 }
1181 ep->enabled = 1;
1182 }
1183
1184 /**
1185 * usb_enable_interface - Enable all the endpoints for an interface
1186 * @dev: the device whose interface is being enabled
1187 * @intf: pointer to the interface descriptor
1188 * @reset_toggles: flag to set the endpoints' toggles back to 0
1189 *
1190 * Enables all the endpoints for the interface's current altsetting.
1191 */
1192 void usb_enable_interface(struct usb_device *dev,
1193 struct usb_interface *intf, bool reset_toggles)
1194 {
1195 struct usb_host_interface *alt = intf->cur_altsetting;
1196 int i;
1197
1198 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1199 usb_enable_endpoint(dev, &alt->endpoint[i], reset_toggles);
1200 }
1201
1202 /**
1203 * usb_set_interface - Makes a particular alternate setting be current
1204 * @dev: the device whose interface is being updated
1205 * @interface: the interface being updated
1206 * @alternate: the setting being chosen.
1207 * Context: !in_interrupt ()
1208 *
1209 * This is used to enable data transfers on interfaces that may not
1210 * be enabled by default. Not all devices support such configurability.
1211 * Only the driver bound to an interface may change its setting.
1212 *
1213 * Within any given configuration, each interface may have several
1214 * alternative settings. These are often used to control levels of
1215 * bandwidth consumption. For example, the default setting for a high
1216 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1217 * while interrupt transfers of up to 3KBytes per microframe are legal.
1218 * Also, isochronous endpoints may never be part of an
1219 * interface's default setting. To access such bandwidth, alternate
1220 * interface settings must be made current.
1221 *
1222 * Note that in the Linux USB subsystem, bandwidth associated with
1223 * an endpoint in a given alternate setting is not reserved until an URB
1224 * is submitted that needs that bandwidth. Some other operating systems
1225 * allocate bandwidth early, when a configuration is chosen.
1226 *
1227 * This call is synchronous, and may not be used in an interrupt context.
1228 * Also, drivers must not change altsettings while urbs are scheduled for
1229 * endpoints in that interface; all such urbs must first be completed
1230 * (perhaps forced by unlinking).
1231 *
1232 * Returns zero on success, or else the status code returned by the
1233 * underlying usb_control_msg() call.
1234 */
1235 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1236 {
1237 struct usb_interface *iface;
1238 struct usb_host_interface *alt;
1239 int ret;
1240 int manual = 0;
1241 unsigned int epaddr;
1242 unsigned int pipe;
1243
1244 if (dev->state == USB_STATE_SUSPENDED)
1245 return -EHOSTUNREACH;
1246
1247 iface = usb_ifnum_to_if(dev, interface);
1248 if (!iface) {
1249 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1250 interface);
1251 return -EINVAL;
1252 }
1253
1254 alt = usb_altnum_to_altsetting(iface, alternate);
1255 if (!alt) {
1256 dev_warn(&dev->dev, "selecting invalid altsetting %d",
1257 alternate);
1258 return -EINVAL;
1259 }
1260
1261 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1262 ret = -EPIPE;
1263 else
1264 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1265 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1266 alternate, interface, NULL, 0, 5000);
1267
1268 /* 9.4.10 says devices don't need this and are free to STALL the
1269 * request if the interface only has one alternate setting.
1270 */
1271 if (ret == -EPIPE && iface->num_altsetting == 1) {
1272 dev_dbg(&dev->dev,
1273 "manual set_interface for iface %d, alt %d\n",
1274 interface, alternate);
1275 manual = 1;
1276 } else if (ret < 0)
1277 return ret;
1278
1279 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1280 * when they implement async or easily-killable versions of this or
1281 * other "should-be-internal" functions (like clear_halt).
1282 * should hcd+usbcore postprocess control requests?
1283 */
1284
1285 /* prevent submissions using previous endpoint settings */
1286 if (iface->cur_altsetting != alt) {
1287 remove_intf_ep_devs(iface);
1288 usb_remove_sysfs_intf_files(iface);
1289 }
1290 usb_disable_interface(dev, iface, true);
1291
1292 iface->cur_altsetting = alt;
1293
1294 /* If the interface only has one altsetting and the device didn't
1295 * accept the request, we attempt to carry out the equivalent action
1296 * by manually clearing the HALT feature for each endpoint in the
1297 * new altsetting.
1298 */
1299 if (manual) {
1300 int i;
1301
1302 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1303 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1304 pipe = __create_pipe(dev,
1305 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1306 (usb_endpoint_out(epaddr) ?
1307 USB_DIR_OUT : USB_DIR_IN);
1308
1309 usb_clear_halt(dev, pipe);
1310 }
1311 }
1312
1313 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1314 *
1315 * Note:
1316 * Despite EP0 is always present in all interfaces/AS, the list of
1317 * endpoints from the descriptor does not contain EP0. Due to its
1318 * omnipresence one might expect EP0 being considered "affected" by
1319 * any SetInterface request and hence assume toggles need to be reset.
1320 * However, EP0 toggles are re-synced for every individual transfer
1321 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1322 * (Likewise, EP0 never "halts" on well designed devices.)
1323 */
1324 usb_enable_interface(dev, iface, true);
1325 if (device_is_registered(&iface->dev)) {
1326 usb_create_sysfs_intf_files(iface);
1327 create_intf_ep_devs(iface);
1328 }
1329 return 0;
1330 }
1331 EXPORT_SYMBOL_GPL(usb_set_interface);
1332
1333 /**
1334 * usb_reset_configuration - lightweight device reset
1335 * @dev: the device whose configuration is being reset
1336 *
1337 * This issues a standard SET_CONFIGURATION request to the device using
1338 * the current configuration. The effect is to reset most USB-related
1339 * state in the device, including interface altsettings (reset to zero),
1340 * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1341 * endpoints). Other usbcore state is unchanged, including bindings of
1342 * usb device drivers to interfaces.
1343 *
1344 * Because this affects multiple interfaces, avoid using this with composite
1345 * (multi-interface) devices. Instead, the driver for each interface may
1346 * use usb_set_interface() on the interfaces it claims. Be careful though;
1347 * some devices don't support the SET_INTERFACE request, and others won't
1348 * reset all the interface state (notably data toggles). Resetting the whole
1349 * configuration would affect other drivers' interfaces.
1350 *
1351 * The caller must own the device lock.
1352 *
1353 * Returns zero on success, else a negative error code.
1354 */
1355 int usb_reset_configuration(struct usb_device *dev)
1356 {
1357 int i, retval;
1358 struct usb_host_config *config;
1359
1360 if (dev->state == USB_STATE_SUSPENDED)
1361 return -EHOSTUNREACH;
1362
1363 /* caller must have locked the device and must own
1364 * the usb bus readlock (so driver bindings are stable);
1365 * calls during probe() are fine
1366 */
1367
1368 for (i = 1; i < 16; ++i) {
1369 usb_disable_endpoint(dev, i, true);
1370 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1371 }
1372
1373 config = dev->actconfig;
1374 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1375 USB_REQ_SET_CONFIGURATION, 0,
1376 config->desc.bConfigurationValue, 0,
1377 NULL, 0, USB_CTRL_SET_TIMEOUT);
1378 if (retval < 0)
1379 return retval;
1380
1381 dev->toggle[0] = dev->toggle[1] = 0;
1382
1383 /* re-init hc/hcd interface/endpoint state */
1384 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1385 struct usb_interface *intf = config->interface[i];
1386 struct usb_host_interface *alt;
1387
1388 alt = usb_altnum_to_altsetting(intf, 0);
1389
1390 /* No altsetting 0? We'll assume the first altsetting.
1391 * We could use a GetInterface call, but if a device is
1392 * so non-compliant that it doesn't have altsetting 0
1393 * then I wouldn't trust its reply anyway.
1394 */
1395 if (!alt)
1396 alt = &intf->altsetting[0];
1397
1398 if (alt != intf->cur_altsetting) {
1399 remove_intf_ep_devs(intf);
1400 usb_remove_sysfs_intf_files(intf);
1401 }
1402 intf->cur_altsetting = alt;
1403 usb_enable_interface(dev, intf, true);
1404 if (device_is_registered(&intf->dev)) {
1405 usb_create_sysfs_intf_files(intf);
1406 create_intf_ep_devs(intf);
1407 }
1408 }
1409 return 0;
1410 }
1411 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1412
1413 static void usb_release_interface(struct device *dev)
1414 {
1415 struct usb_interface *intf = to_usb_interface(dev);
1416 struct usb_interface_cache *intfc =
1417 altsetting_to_usb_interface_cache(intf->altsetting);
1418
1419 kref_put(&intfc->ref, usb_release_interface_cache);
1420 kfree(intf);
1421 }
1422
1423 #ifdef CONFIG_HOTPLUG
1424 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1425 {
1426 struct usb_device *usb_dev;
1427 struct usb_interface *intf;
1428 struct usb_host_interface *alt;
1429
1430 intf = to_usb_interface(dev);
1431 usb_dev = interface_to_usbdev(intf);
1432 alt = intf->cur_altsetting;
1433
1434 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1435 alt->desc.bInterfaceClass,
1436 alt->desc.bInterfaceSubClass,
1437 alt->desc.bInterfaceProtocol))
1438 return -ENOMEM;
1439
1440 if (add_uevent_var(env,
1441 "MODALIAS=usb:"
1442 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1443 le16_to_cpu(usb_dev->descriptor.idVendor),
1444 le16_to_cpu(usb_dev->descriptor.idProduct),
1445 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1446 usb_dev->descriptor.bDeviceClass,
1447 usb_dev->descriptor.bDeviceSubClass,
1448 usb_dev->descriptor.bDeviceProtocol,
1449 alt->desc.bInterfaceClass,
1450 alt->desc.bInterfaceSubClass,
1451 alt->desc.bInterfaceProtocol))
1452 return -ENOMEM;
1453
1454 return 0;
1455 }
1456
1457 #else
1458
1459 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1460 {
1461 return -ENODEV;
1462 }
1463 #endif /* CONFIG_HOTPLUG */
1464
1465 struct device_type usb_if_device_type = {
1466 .name = "usb_interface",
1467 .release = usb_release_interface,
1468 .uevent = usb_if_uevent,
1469 };
1470
1471 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1472 struct usb_host_config *config,
1473 u8 inum)
1474 {
1475 struct usb_interface_assoc_descriptor *retval = NULL;
1476 struct usb_interface_assoc_descriptor *intf_assoc;
1477 int first_intf;
1478 int last_intf;
1479 int i;
1480
1481 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1482 intf_assoc = config->intf_assoc[i];
1483 if (intf_assoc->bInterfaceCount == 0)
1484 continue;
1485
1486 first_intf = intf_assoc->bFirstInterface;
1487 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1488 if (inum >= first_intf && inum <= last_intf) {
1489 if (!retval)
1490 retval = intf_assoc;
1491 else
1492 dev_err(&dev->dev, "Interface #%d referenced"
1493 " by multiple IADs\n", inum);
1494 }
1495 }
1496
1497 return retval;
1498 }
1499
1500
1501 /*
1502 * Internal function to queue a device reset
1503 *
1504 * This is initialized into the workstruct in 'struct
1505 * usb_device->reset_ws' that is launched by
1506 * message.c:usb_set_configuration() when initializing each 'struct
1507 * usb_interface'.
1508 *
1509 * It is safe to get the USB device without reference counts because
1510 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1511 * this function will be ran only if @iface is alive (and before
1512 * freeing it any scheduled instances of it will have been cancelled).
1513 *
1514 * We need to set a flag (usb_dev->reset_running) because when we call
1515 * the reset, the interfaces might be unbound. The current interface
1516 * cannot try to remove the queued work as it would cause a deadlock
1517 * (you cannot remove your work from within your executing
1518 * workqueue). This flag lets it know, so that
1519 * usb_cancel_queued_reset() doesn't try to do it.
1520 *
1521 * See usb_queue_reset_device() for more details
1522 */
1523 void __usb_queue_reset_device(struct work_struct *ws)
1524 {
1525 int rc;
1526 struct usb_interface *iface =
1527 container_of(ws, struct usb_interface, reset_ws);
1528 struct usb_device *udev = interface_to_usbdev(iface);
1529
1530 rc = usb_lock_device_for_reset(udev, iface);
1531 if (rc >= 0) {
1532 iface->reset_running = 1;
1533 usb_reset_device(udev);
1534 iface->reset_running = 0;
1535 usb_unlock_device(udev);
1536 }
1537 }
1538
1539
1540 /*
1541 * usb_set_configuration - Makes a particular device setting be current
1542 * @dev: the device whose configuration is being updated
1543 * @configuration: the configuration being chosen.
1544 * Context: !in_interrupt(), caller owns the device lock
1545 *
1546 * This is used to enable non-default device modes. Not all devices
1547 * use this kind of configurability; many devices only have one
1548 * configuration.
1549 *
1550 * @configuration is the value of the configuration to be installed.
1551 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1552 * must be non-zero; a value of zero indicates that the device in
1553 * unconfigured. However some devices erroneously use 0 as one of their
1554 * configuration values. To help manage such devices, this routine will
1555 * accept @configuration = -1 as indicating the device should be put in
1556 * an unconfigured state.
1557 *
1558 * USB device configurations may affect Linux interoperability,
1559 * power consumption and the functionality available. For example,
1560 * the default configuration is limited to using 100mA of bus power,
1561 * so that when certain device functionality requires more power,
1562 * and the device is bus powered, that functionality should be in some
1563 * non-default device configuration. Other device modes may also be
1564 * reflected as configuration options, such as whether two ISDN
1565 * channels are available independently; and choosing between open
1566 * standard device protocols (like CDC) or proprietary ones.
1567 *
1568 * Note that a non-authorized device (dev->authorized == 0) will only
1569 * be put in unconfigured mode.
1570 *
1571 * Note that USB has an additional level of device configurability,
1572 * associated with interfaces. That configurability is accessed using
1573 * usb_set_interface().
1574 *
1575 * This call is synchronous. The calling context must be able to sleep,
1576 * must own the device lock, and must not hold the driver model's USB
1577 * bus mutex; usb interface driver probe() methods cannot use this routine.
1578 *
1579 * Returns zero on success, or else the status code returned by the
1580 * underlying call that failed. On successful completion, each interface
1581 * in the original device configuration has been destroyed, and each one
1582 * in the new configuration has been probed by all relevant usb device
1583 * drivers currently known to the kernel.
1584 */
1585 int usb_set_configuration(struct usb_device *dev, int configuration)
1586 {
1587 int i, ret;
1588 struct usb_host_config *cp = NULL;
1589 struct usb_interface **new_interfaces = NULL;
1590 int n, nintf;
1591
1592 if (dev->authorized == 0 || configuration == -1)
1593 configuration = 0;
1594 else {
1595 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1596 if (dev->config[i].desc.bConfigurationValue ==
1597 configuration) {
1598 cp = &dev->config[i];
1599 break;
1600 }
1601 }
1602 }
1603 if ((!cp && configuration != 0))
1604 return -EINVAL;
1605
1606 /* The USB spec says configuration 0 means unconfigured.
1607 * But if a device includes a configuration numbered 0,
1608 * we will accept it as a correctly configured state.
1609 * Use -1 if you really want to unconfigure the device.
1610 */
1611 if (cp && configuration == 0)
1612 dev_warn(&dev->dev, "config 0 descriptor??\n");
1613
1614 /* Allocate memory for new interfaces before doing anything else,
1615 * so that if we run out then nothing will have changed. */
1616 n = nintf = 0;
1617 if (cp) {
1618 nintf = cp->desc.bNumInterfaces;
1619 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1620 GFP_KERNEL);
1621 if (!new_interfaces) {
1622 dev_err(&dev->dev, "Out of memory\n");
1623 return -ENOMEM;
1624 }
1625
1626 for (; n < nintf; ++n) {
1627 new_interfaces[n] = kzalloc(
1628 sizeof(struct usb_interface),
1629 GFP_KERNEL);
1630 if (!new_interfaces[n]) {
1631 dev_err(&dev->dev, "Out of memory\n");
1632 ret = -ENOMEM;
1633 free_interfaces:
1634 while (--n >= 0)
1635 kfree(new_interfaces[n]);
1636 kfree(new_interfaces);
1637 return ret;
1638 }
1639 }
1640
1641 i = dev->bus_mA - cp->desc.bMaxPower * 2;
1642 if (i < 0)
1643 dev_warn(&dev->dev, "new config #%d exceeds power "
1644 "limit by %dmA\n",
1645 configuration, -i);
1646 }
1647
1648 /* Wake up the device so we can send it the Set-Config request */
1649 ret = usb_autoresume_device(dev);
1650 if (ret)
1651 goto free_interfaces;
1652
1653 /* if it's already configured, clear out old state first.
1654 * getting rid of old interfaces means unbinding their drivers.
1655 */
1656 if (dev->state != USB_STATE_ADDRESS)
1657 usb_disable_device(dev, 1); /* Skip ep0 */
1658
1659 /* Get rid of pending async Set-Config requests for this device */
1660 cancel_async_set_config(dev);
1661
1662 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1663 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1664 NULL, 0, USB_CTRL_SET_TIMEOUT);
1665 if (ret < 0) {
1666 /* All the old state is gone, so what else can we do?
1667 * The device is probably useless now anyway.
1668 */
1669 cp = NULL;
1670 }
1671
1672 dev->actconfig = cp;
1673 if (!cp) {
1674 usb_set_device_state(dev, USB_STATE_ADDRESS);
1675 usb_autosuspend_device(dev);
1676 goto free_interfaces;
1677 }
1678 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1679
1680 /* Initialize the new interface structures and the
1681 * hc/hcd/usbcore interface/endpoint state.
1682 */
1683 for (i = 0; i < nintf; ++i) {
1684 struct usb_interface_cache *intfc;
1685 struct usb_interface *intf;
1686 struct usb_host_interface *alt;
1687
1688 cp->interface[i] = intf = new_interfaces[i];
1689 intfc = cp->intf_cache[i];
1690 intf->altsetting = intfc->altsetting;
1691 intf->num_altsetting = intfc->num_altsetting;
1692 intf->intf_assoc = find_iad(dev, cp, i);
1693 kref_get(&intfc->ref);
1694
1695 alt = usb_altnum_to_altsetting(intf, 0);
1696
1697 /* No altsetting 0? We'll assume the first altsetting.
1698 * We could use a GetInterface call, but if a device is
1699 * so non-compliant that it doesn't have altsetting 0
1700 * then I wouldn't trust its reply anyway.
1701 */
1702 if (!alt)
1703 alt = &intf->altsetting[0];
1704
1705 intf->cur_altsetting = alt;
1706 usb_enable_interface(dev, intf, true);
1707 intf->dev.parent = &dev->dev;
1708 intf->dev.driver = NULL;
1709 intf->dev.bus = &usb_bus_type;
1710 intf->dev.type = &usb_if_device_type;
1711 intf->dev.groups = usb_interface_groups;
1712 intf->dev.dma_mask = dev->dev.dma_mask;
1713 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1714 device_initialize(&intf->dev);
1715 mark_quiesced(intf);
1716 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1717 dev->bus->busnum, dev->devpath,
1718 configuration, alt->desc.bInterfaceNumber);
1719 }
1720 kfree(new_interfaces);
1721
1722 if (cp->string == NULL &&
1723 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1724 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1725
1726 /* Now that all the interfaces are set up, register them
1727 * to trigger binding of drivers to interfaces. probe()
1728 * routines may install different altsettings and may
1729 * claim() any interfaces not yet bound. Many class drivers
1730 * need that: CDC, audio, video, etc.
1731 */
1732 for (i = 0; i < nintf; ++i) {
1733 struct usb_interface *intf = cp->interface[i];
1734
1735 dev_dbg(&dev->dev,
1736 "adding %s (config #%d, interface %d)\n",
1737 dev_name(&intf->dev), configuration,
1738 intf->cur_altsetting->desc.bInterfaceNumber);
1739 ret = device_add(&intf->dev);
1740 if (ret != 0) {
1741 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1742 dev_name(&intf->dev), ret);
1743 continue;
1744 }
1745 create_intf_ep_devs(intf);
1746 }
1747
1748 usb_autosuspend_device(dev);
1749 return 0;
1750 }
1751
1752 static LIST_HEAD(set_config_list);
1753 static DEFINE_SPINLOCK(set_config_lock);
1754
1755 struct set_config_request {
1756 struct usb_device *udev;
1757 int config;
1758 struct work_struct work;
1759 struct list_head node;
1760 };
1761
1762 /* Worker routine for usb_driver_set_configuration() */
1763 static void driver_set_config_work(struct work_struct *work)
1764 {
1765 struct set_config_request *req =
1766 container_of(work, struct set_config_request, work);
1767 struct usb_device *udev = req->udev;
1768
1769 usb_lock_device(udev);
1770 spin_lock(&set_config_lock);
1771 list_del(&req->node);
1772 spin_unlock(&set_config_lock);
1773
1774 if (req->config >= -1) /* Is req still valid? */
1775 usb_set_configuration(udev, req->config);
1776 usb_unlock_device(udev);
1777 usb_put_dev(udev);
1778 kfree(req);
1779 }
1780
1781 /* Cancel pending Set-Config requests for a device whose configuration
1782 * was just changed
1783 */
1784 static void cancel_async_set_config(struct usb_device *udev)
1785 {
1786 struct set_config_request *req;
1787
1788 spin_lock(&set_config_lock);
1789 list_for_each_entry(req, &set_config_list, node) {
1790 if (req->udev == udev)
1791 req->config = -999; /* Mark as cancelled */
1792 }
1793 spin_unlock(&set_config_lock);
1794 }
1795
1796 /**
1797 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1798 * @udev: the device whose configuration is being updated
1799 * @config: the configuration being chosen.
1800 * Context: In process context, must be able to sleep
1801 *
1802 * Device interface drivers are not allowed to change device configurations.
1803 * This is because changing configurations will destroy the interface the
1804 * driver is bound to and create new ones; it would be like a floppy-disk
1805 * driver telling the computer to replace the floppy-disk drive with a
1806 * tape drive!
1807 *
1808 * Still, in certain specialized circumstances the need may arise. This
1809 * routine gets around the normal restrictions by using a work thread to
1810 * submit the change-config request.
1811 *
1812 * Returns 0 if the request was succesfully queued, error code otherwise.
1813 * The caller has no way to know whether the queued request will eventually
1814 * succeed.
1815 */
1816 int usb_driver_set_configuration(struct usb_device *udev, int config)
1817 {
1818 struct set_config_request *req;
1819
1820 req = kmalloc(sizeof(*req), GFP_KERNEL);
1821 if (!req)
1822 return -ENOMEM;
1823 req->udev = udev;
1824 req->config = config;
1825 INIT_WORK(&req->work, driver_set_config_work);
1826
1827 spin_lock(&set_config_lock);
1828 list_add(&req->node, &set_config_list);
1829 spin_unlock(&set_config_lock);
1830
1831 usb_get_dev(udev);
1832 schedule_work(&req->work);
1833 return 0;
1834 }
1835 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
This page took 0.0652 seconds and 4 git commands to generate.