treewide: Fix typo in Documentation/DocBook
[deliverable/linux.git] / drivers / usb / core / message.c
1 /*
2 * message.c - synchronous message handling
3 */
4
5 #include <linux/pci.h> /* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/nls.h>
14 #include <linux/device.h>
15 #include <linux/scatterlist.h>
16 #include <linux/usb/quirks.h>
17 #include <linux/usb/hcd.h> /* for usbcore internals */
18 #include <asm/byteorder.h>
19
20 #include "usb.h"
21
22 static void cancel_async_set_config(struct usb_device *udev);
23
24 struct api_context {
25 struct completion done;
26 int status;
27 };
28
29 static void usb_api_blocking_completion(struct urb *urb)
30 {
31 struct api_context *ctx = urb->context;
32
33 ctx->status = urb->status;
34 complete(&ctx->done);
35 }
36
37
38 /*
39 * Starts urb and waits for completion or timeout. Note that this call
40 * is NOT interruptible. Many device driver i/o requests should be
41 * interruptible and therefore these drivers should implement their
42 * own interruptible routines.
43 */
44 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
45 {
46 struct api_context ctx;
47 unsigned long expire;
48 int retval;
49
50 init_completion(&ctx.done);
51 urb->context = &ctx;
52 urb->actual_length = 0;
53 retval = usb_submit_urb(urb, GFP_NOIO);
54 if (unlikely(retval))
55 goto out;
56
57 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
58 if (!wait_for_completion_timeout(&ctx.done, expire)) {
59 usb_kill_urb(urb);
60 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
61
62 dev_dbg(&urb->dev->dev,
63 "%s timed out on ep%d%s len=%u/%u\n",
64 current->comm,
65 usb_endpoint_num(&urb->ep->desc),
66 usb_urb_dir_in(urb) ? "in" : "out",
67 urb->actual_length,
68 urb->transfer_buffer_length);
69 } else
70 retval = ctx.status;
71 out:
72 if (actual_length)
73 *actual_length = urb->actual_length;
74
75 usb_free_urb(urb);
76 return retval;
77 }
78
79 /*-------------------------------------------------------------------*/
80 /* returns status (negative) or length (positive) */
81 static int usb_internal_control_msg(struct usb_device *usb_dev,
82 unsigned int pipe,
83 struct usb_ctrlrequest *cmd,
84 void *data, int len, int timeout)
85 {
86 struct urb *urb;
87 int retv;
88 int length;
89
90 urb = usb_alloc_urb(0, GFP_NOIO);
91 if (!urb)
92 return -ENOMEM;
93
94 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
95 len, usb_api_blocking_completion, NULL);
96
97 retv = usb_start_wait_urb(urb, timeout, &length);
98 if (retv < 0)
99 return retv;
100 else
101 return length;
102 }
103
104 /**
105 * usb_control_msg - Builds a control urb, sends it off and waits for completion
106 * @dev: pointer to the usb device to send the message to
107 * @pipe: endpoint "pipe" to send the message to
108 * @request: USB message request value
109 * @requesttype: USB message request type value
110 * @value: USB message value
111 * @index: USB message index value
112 * @data: pointer to the data to send
113 * @size: length in bytes of the data to send
114 * @timeout: time in msecs to wait for the message to complete before timing
115 * out (if 0 the wait is forever)
116 *
117 * Context: !in_interrupt ()
118 *
119 * This function sends a simple control message to a specified endpoint and
120 * waits for the message to complete, or timeout.
121 *
122 * Don't use this function from within an interrupt context, like a bottom half
123 * handler. If you need an asynchronous message, or need to send a message
124 * from within interrupt context, use usb_submit_urb().
125 * If a thread in your driver uses this call, make sure your disconnect()
126 * method can wait for it to complete. Since you don't have a handle on the
127 * URB used, you can't cancel the request.
128 *
129 * Return: If successful, the number of bytes transferred. Otherwise, a negative
130 * error number.
131 */
132 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
133 __u8 requesttype, __u16 value, __u16 index, void *data,
134 __u16 size, int timeout)
135 {
136 struct usb_ctrlrequest *dr;
137 int ret;
138
139 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
140 if (!dr)
141 return -ENOMEM;
142
143 dr->bRequestType = requesttype;
144 dr->bRequest = request;
145 dr->wValue = cpu_to_le16(value);
146 dr->wIndex = cpu_to_le16(index);
147 dr->wLength = cpu_to_le16(size);
148
149 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
150
151 kfree(dr);
152
153 return ret;
154 }
155 EXPORT_SYMBOL_GPL(usb_control_msg);
156
157 /**
158 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
159 * @usb_dev: pointer to the usb device to send the message to
160 * @pipe: endpoint "pipe" to send the message to
161 * @data: pointer to the data to send
162 * @len: length in bytes of the data to send
163 * @actual_length: pointer to a location to put the actual length transferred
164 * in bytes
165 * @timeout: time in msecs to wait for the message to complete before
166 * timing out (if 0 the wait is forever)
167 *
168 * Context: !in_interrupt ()
169 *
170 * This function sends a simple interrupt message to a specified endpoint and
171 * waits for the message to complete, or timeout.
172 *
173 * Don't use this function from within an interrupt context, like a bottom half
174 * handler. If you need an asynchronous message, or need to send a message
175 * from within interrupt context, use usb_submit_urb() If a thread in your
176 * driver uses this call, make sure your disconnect() method can wait for it to
177 * complete. Since you don't have a handle on the URB used, you can't cancel
178 * the request.
179 *
180 * Return:
181 * If successful, 0. Otherwise a negative error number. The number of actual
182 * bytes transferred will be stored in the @actual_length parameter.
183 */
184 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
185 void *data, int len, int *actual_length, int timeout)
186 {
187 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
188 }
189 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
190
191 /**
192 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
193 * @usb_dev: pointer to the usb device to send the message to
194 * @pipe: endpoint "pipe" to send the message to
195 * @data: pointer to the data to send
196 * @len: length in bytes of the data to send
197 * @actual_length: pointer to a location to put the actual length transferred
198 * in bytes
199 * @timeout: time in msecs to wait for the message to complete before
200 * timing out (if 0 the wait is forever)
201 *
202 * Context: !in_interrupt ()
203 *
204 * This function sends a simple bulk message to a specified endpoint
205 * and waits for the message to complete, or timeout.
206 *
207 * Don't use this function from within an interrupt context, like a bottom half
208 * handler. If you need an asynchronous message, or need to send a message
209 * from within interrupt context, use usb_submit_urb() If a thread in your
210 * driver uses this call, make sure your disconnect() method can wait for it to
211 * complete. Since you don't have a handle on the URB used, you can't cancel
212 * the request.
213 *
214 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
215 * users are forced to abuse this routine by using it to submit URBs for
216 * interrupt endpoints. We will take the liberty of creating an interrupt URB
217 * (with the default interval) if the target is an interrupt endpoint.
218 *
219 * Return:
220 * If successful, 0. Otherwise a negative error number. The number of actual
221 * bytes transferred will be stored in the @actual_length paramater.
222 *
223 */
224 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
225 void *data, int len, int *actual_length, int timeout)
226 {
227 struct urb *urb;
228 struct usb_host_endpoint *ep;
229
230 ep = usb_pipe_endpoint(usb_dev, pipe);
231 if (!ep || len < 0)
232 return -EINVAL;
233
234 urb = usb_alloc_urb(0, GFP_KERNEL);
235 if (!urb)
236 return -ENOMEM;
237
238 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
239 USB_ENDPOINT_XFER_INT) {
240 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
241 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
242 usb_api_blocking_completion, NULL,
243 ep->desc.bInterval);
244 } else
245 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
246 usb_api_blocking_completion, NULL);
247
248 return usb_start_wait_urb(urb, timeout, actual_length);
249 }
250 EXPORT_SYMBOL_GPL(usb_bulk_msg);
251
252 /*-------------------------------------------------------------------*/
253
254 static void sg_clean(struct usb_sg_request *io)
255 {
256 if (io->urbs) {
257 while (io->entries--)
258 usb_free_urb(io->urbs[io->entries]);
259 kfree(io->urbs);
260 io->urbs = NULL;
261 }
262 io->dev = NULL;
263 }
264
265 static void sg_complete(struct urb *urb)
266 {
267 struct usb_sg_request *io = urb->context;
268 int status = urb->status;
269
270 spin_lock(&io->lock);
271
272 /* In 2.5 we require hcds' endpoint queues not to progress after fault
273 * reports, until the completion callback (this!) returns. That lets
274 * device driver code (like this routine) unlink queued urbs first,
275 * if it needs to, since the HC won't work on them at all. So it's
276 * not possible for page N+1 to overwrite page N, and so on.
277 *
278 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
279 * complete before the HCD can get requests away from hardware,
280 * though never during cleanup after a hard fault.
281 */
282 if (io->status
283 && (io->status != -ECONNRESET
284 || status != -ECONNRESET)
285 && urb->actual_length) {
286 dev_err(io->dev->bus->controller,
287 "dev %s ep%d%s scatterlist error %d/%d\n",
288 io->dev->devpath,
289 usb_endpoint_num(&urb->ep->desc),
290 usb_urb_dir_in(urb) ? "in" : "out",
291 status, io->status);
292 /* BUG (); */
293 }
294
295 if (io->status == 0 && status && status != -ECONNRESET) {
296 int i, found, retval;
297
298 io->status = status;
299
300 /* the previous urbs, and this one, completed already.
301 * unlink pending urbs so they won't rx/tx bad data.
302 * careful: unlink can sometimes be synchronous...
303 */
304 spin_unlock(&io->lock);
305 for (i = 0, found = 0; i < io->entries; i++) {
306 if (!io->urbs[i] || !io->urbs[i]->dev)
307 continue;
308 if (found) {
309 retval = usb_unlink_urb(io->urbs[i]);
310 if (retval != -EINPROGRESS &&
311 retval != -ENODEV &&
312 retval != -EBUSY &&
313 retval != -EIDRM)
314 dev_err(&io->dev->dev,
315 "%s, unlink --> %d\n",
316 __func__, retval);
317 } else if (urb == io->urbs[i])
318 found = 1;
319 }
320 spin_lock(&io->lock);
321 }
322
323 /* on the last completion, signal usb_sg_wait() */
324 io->bytes += urb->actual_length;
325 io->count--;
326 if (!io->count)
327 complete(&io->complete);
328
329 spin_unlock(&io->lock);
330 }
331
332
333 /**
334 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
335 * @io: request block being initialized. until usb_sg_wait() returns,
336 * treat this as a pointer to an opaque block of memory,
337 * @dev: the usb device that will send or receive the data
338 * @pipe: endpoint "pipe" used to transfer the data
339 * @period: polling rate for interrupt endpoints, in frames or
340 * (for high speed endpoints) microframes; ignored for bulk
341 * @sg: scatterlist entries
342 * @nents: how many entries in the scatterlist
343 * @length: how many bytes to send from the scatterlist, or zero to
344 * send every byte identified in the list.
345 * @mem_flags: SLAB_* flags affecting memory allocations in this call
346 *
347 * This initializes a scatter/gather request, allocating resources such as
348 * I/O mappings and urb memory (except maybe memory used by USB controller
349 * drivers).
350 *
351 * The request must be issued using usb_sg_wait(), which waits for the I/O to
352 * complete (or to be canceled) and then cleans up all resources allocated by
353 * usb_sg_init().
354 *
355 * The request may be canceled with usb_sg_cancel(), either before or after
356 * usb_sg_wait() is called.
357 *
358 * Return: Zero for success, else a negative errno value.
359 */
360 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
361 unsigned pipe, unsigned period, struct scatterlist *sg,
362 int nents, size_t length, gfp_t mem_flags)
363 {
364 int i;
365 int urb_flags;
366 int use_sg;
367
368 if (!io || !dev || !sg
369 || usb_pipecontrol(pipe)
370 || usb_pipeisoc(pipe)
371 || nents <= 0)
372 return -EINVAL;
373
374 spin_lock_init(&io->lock);
375 io->dev = dev;
376 io->pipe = pipe;
377
378 if (dev->bus->sg_tablesize > 0) {
379 use_sg = true;
380 io->entries = 1;
381 } else {
382 use_sg = false;
383 io->entries = nents;
384 }
385
386 /* initialize all the urbs we'll use */
387 io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
388 if (!io->urbs)
389 goto nomem;
390
391 urb_flags = URB_NO_INTERRUPT;
392 if (usb_pipein(pipe))
393 urb_flags |= URB_SHORT_NOT_OK;
394
395 for_each_sg(sg, sg, io->entries, i) {
396 struct urb *urb;
397 unsigned len;
398
399 urb = usb_alloc_urb(0, mem_flags);
400 if (!urb) {
401 io->entries = i;
402 goto nomem;
403 }
404 io->urbs[i] = urb;
405
406 urb->dev = NULL;
407 urb->pipe = pipe;
408 urb->interval = period;
409 urb->transfer_flags = urb_flags;
410 urb->complete = sg_complete;
411 urb->context = io;
412 urb->sg = sg;
413
414 if (use_sg) {
415 /* There is no single transfer buffer */
416 urb->transfer_buffer = NULL;
417 urb->num_sgs = nents;
418
419 /* A length of zero means transfer the whole sg list */
420 len = length;
421 if (len == 0) {
422 struct scatterlist *sg2;
423 int j;
424
425 for_each_sg(sg, sg2, nents, j)
426 len += sg2->length;
427 }
428 } else {
429 /*
430 * Some systems can't use DMA; they use PIO instead.
431 * For their sakes, transfer_buffer is set whenever
432 * possible.
433 */
434 if (!PageHighMem(sg_page(sg)))
435 urb->transfer_buffer = sg_virt(sg);
436 else
437 urb->transfer_buffer = NULL;
438
439 len = sg->length;
440 if (length) {
441 len = min_t(size_t, len, length);
442 length -= len;
443 if (length == 0)
444 io->entries = i + 1;
445 }
446 }
447 urb->transfer_buffer_length = len;
448 }
449 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
450
451 /* transaction state */
452 io->count = io->entries;
453 io->status = 0;
454 io->bytes = 0;
455 init_completion(&io->complete);
456 return 0;
457
458 nomem:
459 sg_clean(io);
460 return -ENOMEM;
461 }
462 EXPORT_SYMBOL_GPL(usb_sg_init);
463
464 /**
465 * usb_sg_wait - synchronously execute scatter/gather request
466 * @io: request block handle, as initialized with usb_sg_init().
467 * some fields become accessible when this call returns.
468 * Context: !in_interrupt ()
469 *
470 * This function blocks until the specified I/O operation completes. It
471 * leverages the grouping of the related I/O requests to get good transfer
472 * rates, by queueing the requests. At higher speeds, such queuing can
473 * significantly improve USB throughput.
474 *
475 * There are three kinds of completion for this function.
476 * (1) success, where io->status is zero. The number of io->bytes
477 * transferred is as requested.
478 * (2) error, where io->status is a negative errno value. The number
479 * of io->bytes transferred before the error is usually less
480 * than requested, and can be nonzero.
481 * (3) cancellation, a type of error with status -ECONNRESET that
482 * is initiated by usb_sg_cancel().
483 *
484 * When this function returns, all memory allocated through usb_sg_init() or
485 * this call will have been freed. The request block parameter may still be
486 * passed to usb_sg_cancel(), or it may be freed. It could also be
487 * reinitialized and then reused.
488 *
489 * Data Transfer Rates:
490 *
491 * Bulk transfers are valid for full or high speed endpoints.
492 * The best full speed data rate is 19 packets of 64 bytes each
493 * per frame, or 1216 bytes per millisecond.
494 * The best high speed data rate is 13 packets of 512 bytes each
495 * per microframe, or 52 KBytes per millisecond.
496 *
497 * The reason to use interrupt transfers through this API would most likely
498 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
499 * could be transferred. That capability is less useful for low or full
500 * speed interrupt endpoints, which allow at most one packet per millisecond,
501 * of at most 8 or 64 bytes (respectively).
502 *
503 * It is not necessary to call this function to reserve bandwidth for devices
504 * under an xHCI host controller, as the bandwidth is reserved when the
505 * configuration or interface alt setting is selected.
506 */
507 void usb_sg_wait(struct usb_sg_request *io)
508 {
509 int i;
510 int entries = io->entries;
511
512 /* queue the urbs. */
513 spin_lock_irq(&io->lock);
514 i = 0;
515 while (i < entries && !io->status) {
516 int retval;
517
518 io->urbs[i]->dev = io->dev;
519 retval = usb_submit_urb(io->urbs[i], GFP_ATOMIC);
520
521 /* after we submit, let completions or cancelations fire;
522 * we handshake using io->status.
523 */
524 spin_unlock_irq(&io->lock);
525 switch (retval) {
526 /* maybe we retrying will recover */
527 case -ENXIO: /* hc didn't queue this one */
528 case -EAGAIN:
529 case -ENOMEM:
530 retval = 0;
531 yield();
532 break;
533
534 /* no error? continue immediately.
535 *
536 * NOTE: to work better with UHCI (4K I/O buffer may
537 * need 3K of TDs) it may be good to limit how many
538 * URBs are queued at once; N milliseconds?
539 */
540 case 0:
541 ++i;
542 cpu_relax();
543 break;
544
545 /* fail any uncompleted urbs */
546 default:
547 io->urbs[i]->status = retval;
548 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
549 __func__, retval);
550 usb_sg_cancel(io);
551 }
552 spin_lock_irq(&io->lock);
553 if (retval && (io->status == 0 || io->status == -ECONNRESET))
554 io->status = retval;
555 }
556 io->count -= entries - i;
557 if (io->count == 0)
558 complete(&io->complete);
559 spin_unlock_irq(&io->lock);
560
561 /* OK, yes, this could be packaged as non-blocking.
562 * So could the submit loop above ... but it's easier to
563 * solve neither problem than to solve both!
564 */
565 wait_for_completion(&io->complete);
566
567 sg_clean(io);
568 }
569 EXPORT_SYMBOL_GPL(usb_sg_wait);
570
571 /**
572 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
573 * @io: request block, initialized with usb_sg_init()
574 *
575 * This stops a request after it has been started by usb_sg_wait().
576 * It can also prevents one initialized by usb_sg_init() from starting,
577 * so that call just frees resources allocated to the request.
578 */
579 void usb_sg_cancel(struct usb_sg_request *io)
580 {
581 unsigned long flags;
582
583 spin_lock_irqsave(&io->lock, flags);
584
585 /* shut everything down, if it didn't already */
586 if (!io->status) {
587 int i;
588
589 io->status = -ECONNRESET;
590 spin_unlock(&io->lock);
591 for (i = 0; i < io->entries; i++) {
592 int retval;
593
594 if (!io->urbs[i]->dev)
595 continue;
596 retval = usb_unlink_urb(io->urbs[i]);
597 if (retval != -EINPROGRESS
598 && retval != -ENODEV
599 && retval != -EBUSY
600 && retval != -EIDRM)
601 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
602 __func__, retval);
603 }
604 spin_lock(&io->lock);
605 }
606 spin_unlock_irqrestore(&io->lock, flags);
607 }
608 EXPORT_SYMBOL_GPL(usb_sg_cancel);
609
610 /*-------------------------------------------------------------------*/
611
612 /**
613 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
614 * @dev: the device whose descriptor is being retrieved
615 * @type: the descriptor type (USB_DT_*)
616 * @index: the number of the descriptor
617 * @buf: where to put the descriptor
618 * @size: how big is "buf"?
619 * Context: !in_interrupt ()
620 *
621 * Gets a USB descriptor. Convenience functions exist to simplify
622 * getting some types of descriptors. Use
623 * usb_get_string() or usb_string() for USB_DT_STRING.
624 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
625 * are part of the device structure.
626 * In addition to a number of USB-standard descriptors, some
627 * devices also use class-specific or vendor-specific descriptors.
628 *
629 * This call is synchronous, and may not be used in an interrupt context.
630 *
631 * Return: The number of bytes received on success, or else the status code
632 * returned by the underlying usb_control_msg() call.
633 */
634 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
635 unsigned char index, void *buf, int size)
636 {
637 int i;
638 int result;
639
640 memset(buf, 0, size); /* Make sure we parse really received data */
641
642 for (i = 0; i < 3; ++i) {
643 /* retry on length 0 or error; some devices are flakey */
644 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
645 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
646 (type << 8) + index, 0, buf, size,
647 USB_CTRL_GET_TIMEOUT);
648 if (result <= 0 && result != -ETIMEDOUT)
649 continue;
650 if (result > 1 && ((u8 *)buf)[1] != type) {
651 result = -ENODATA;
652 continue;
653 }
654 break;
655 }
656 return result;
657 }
658 EXPORT_SYMBOL_GPL(usb_get_descriptor);
659
660 /**
661 * usb_get_string - gets a string descriptor
662 * @dev: the device whose string descriptor is being retrieved
663 * @langid: code for language chosen (from string descriptor zero)
664 * @index: the number of the descriptor
665 * @buf: where to put the string
666 * @size: how big is "buf"?
667 * Context: !in_interrupt ()
668 *
669 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
670 * in little-endian byte order).
671 * The usb_string() function will often be a convenient way to turn
672 * these strings into kernel-printable form.
673 *
674 * Strings may be referenced in device, configuration, interface, or other
675 * descriptors, and could also be used in vendor-specific ways.
676 *
677 * This call is synchronous, and may not be used in an interrupt context.
678 *
679 * Return: The number of bytes received on success, or else the status code
680 * returned by the underlying usb_control_msg() call.
681 */
682 static int usb_get_string(struct usb_device *dev, unsigned short langid,
683 unsigned char index, void *buf, int size)
684 {
685 int i;
686 int result;
687
688 for (i = 0; i < 3; ++i) {
689 /* retry on length 0 or stall; some devices are flakey */
690 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
691 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
692 (USB_DT_STRING << 8) + index, langid, buf, size,
693 USB_CTRL_GET_TIMEOUT);
694 if (result == 0 || result == -EPIPE)
695 continue;
696 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
697 result = -ENODATA;
698 continue;
699 }
700 break;
701 }
702 return result;
703 }
704
705 static void usb_try_string_workarounds(unsigned char *buf, int *length)
706 {
707 int newlength, oldlength = *length;
708
709 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
710 if (!isprint(buf[newlength]) || buf[newlength + 1])
711 break;
712
713 if (newlength > 2) {
714 buf[0] = newlength;
715 *length = newlength;
716 }
717 }
718
719 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
720 unsigned int index, unsigned char *buf)
721 {
722 int rc;
723
724 /* Try to read the string descriptor by asking for the maximum
725 * possible number of bytes */
726 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
727 rc = -EIO;
728 else
729 rc = usb_get_string(dev, langid, index, buf, 255);
730
731 /* If that failed try to read the descriptor length, then
732 * ask for just that many bytes */
733 if (rc < 2) {
734 rc = usb_get_string(dev, langid, index, buf, 2);
735 if (rc == 2)
736 rc = usb_get_string(dev, langid, index, buf, buf[0]);
737 }
738
739 if (rc >= 2) {
740 if (!buf[0] && !buf[1])
741 usb_try_string_workarounds(buf, &rc);
742
743 /* There might be extra junk at the end of the descriptor */
744 if (buf[0] < rc)
745 rc = buf[0];
746
747 rc = rc - (rc & 1); /* force a multiple of two */
748 }
749
750 if (rc < 2)
751 rc = (rc < 0 ? rc : -EINVAL);
752
753 return rc;
754 }
755
756 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
757 {
758 int err;
759
760 if (dev->have_langid)
761 return 0;
762
763 if (dev->string_langid < 0)
764 return -EPIPE;
765
766 err = usb_string_sub(dev, 0, 0, tbuf);
767
768 /* If the string was reported but is malformed, default to english
769 * (0x0409) */
770 if (err == -ENODATA || (err > 0 && err < 4)) {
771 dev->string_langid = 0x0409;
772 dev->have_langid = 1;
773 dev_err(&dev->dev,
774 "string descriptor 0 malformed (err = %d), "
775 "defaulting to 0x%04x\n",
776 err, dev->string_langid);
777 return 0;
778 }
779
780 /* In case of all other errors, we assume the device is not able to
781 * deal with strings at all. Set string_langid to -1 in order to
782 * prevent any string to be retrieved from the device */
783 if (err < 0) {
784 dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
785 err);
786 dev->string_langid = -1;
787 return -EPIPE;
788 }
789
790 /* always use the first langid listed */
791 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
792 dev->have_langid = 1;
793 dev_dbg(&dev->dev, "default language 0x%04x\n",
794 dev->string_langid);
795 return 0;
796 }
797
798 /**
799 * usb_string - returns UTF-8 version of a string descriptor
800 * @dev: the device whose string descriptor is being retrieved
801 * @index: the number of the descriptor
802 * @buf: where to put the string
803 * @size: how big is "buf"?
804 * Context: !in_interrupt ()
805 *
806 * This converts the UTF-16LE encoded strings returned by devices, from
807 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
808 * that are more usable in most kernel contexts. Note that this function
809 * chooses strings in the first language supported by the device.
810 *
811 * This call is synchronous, and may not be used in an interrupt context.
812 *
813 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
814 */
815 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
816 {
817 unsigned char *tbuf;
818 int err;
819
820 if (dev->state == USB_STATE_SUSPENDED)
821 return -EHOSTUNREACH;
822 if (size <= 0 || !buf || !index)
823 return -EINVAL;
824 buf[0] = 0;
825 tbuf = kmalloc(256, GFP_NOIO);
826 if (!tbuf)
827 return -ENOMEM;
828
829 err = usb_get_langid(dev, tbuf);
830 if (err < 0)
831 goto errout;
832
833 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
834 if (err < 0)
835 goto errout;
836
837 size--; /* leave room for trailing NULL char in output buffer */
838 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
839 UTF16_LITTLE_ENDIAN, buf, size);
840 buf[err] = 0;
841
842 if (tbuf[1] != USB_DT_STRING)
843 dev_dbg(&dev->dev,
844 "wrong descriptor type %02x for string %d (\"%s\")\n",
845 tbuf[1], index, buf);
846
847 errout:
848 kfree(tbuf);
849 return err;
850 }
851 EXPORT_SYMBOL_GPL(usb_string);
852
853 /* one UTF-8-encoded 16-bit character has at most three bytes */
854 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
855
856 /**
857 * usb_cache_string - read a string descriptor and cache it for later use
858 * @udev: the device whose string descriptor is being read
859 * @index: the descriptor index
860 *
861 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
862 * or %NULL if the index is 0 or the string could not be read.
863 */
864 char *usb_cache_string(struct usb_device *udev, int index)
865 {
866 char *buf;
867 char *smallbuf = NULL;
868 int len;
869
870 if (index <= 0)
871 return NULL;
872
873 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
874 if (buf) {
875 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
876 if (len > 0) {
877 smallbuf = kmalloc(++len, GFP_NOIO);
878 if (!smallbuf)
879 return buf;
880 memcpy(smallbuf, buf, len);
881 }
882 kfree(buf);
883 }
884 return smallbuf;
885 }
886
887 /*
888 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
889 * @dev: the device whose device descriptor is being updated
890 * @size: how much of the descriptor to read
891 * Context: !in_interrupt ()
892 *
893 * Updates the copy of the device descriptor stored in the device structure,
894 * which dedicates space for this purpose.
895 *
896 * Not exported, only for use by the core. If drivers really want to read
897 * the device descriptor directly, they can call usb_get_descriptor() with
898 * type = USB_DT_DEVICE and index = 0.
899 *
900 * This call is synchronous, and may not be used in an interrupt context.
901 *
902 * Return: The number of bytes received on success, or else the status code
903 * returned by the underlying usb_control_msg() call.
904 */
905 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
906 {
907 struct usb_device_descriptor *desc;
908 int ret;
909
910 if (size > sizeof(*desc))
911 return -EINVAL;
912 desc = kmalloc(sizeof(*desc), GFP_NOIO);
913 if (!desc)
914 return -ENOMEM;
915
916 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
917 if (ret >= 0)
918 memcpy(&dev->descriptor, desc, size);
919 kfree(desc);
920 return ret;
921 }
922
923 /**
924 * usb_get_status - issues a GET_STATUS call
925 * @dev: the device whose status is being checked
926 * @type: USB_RECIP_*; for device, interface, or endpoint
927 * @target: zero (for device), else interface or endpoint number
928 * @data: pointer to two bytes of bitmap data
929 * Context: !in_interrupt ()
930 *
931 * Returns device, interface, or endpoint status. Normally only of
932 * interest to see if the device is self powered, or has enabled the
933 * remote wakeup facility; or whether a bulk or interrupt endpoint
934 * is halted ("stalled").
935 *
936 * Bits in these status bitmaps are set using the SET_FEATURE request,
937 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
938 * function should be used to clear halt ("stall") status.
939 *
940 * This call is synchronous, and may not be used in an interrupt context.
941 *
942 * Returns 0 and the status value in *@data (in host byte order) on success,
943 * or else the status code from the underlying usb_control_msg() call.
944 */
945 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
946 {
947 int ret;
948 __le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
949
950 if (!status)
951 return -ENOMEM;
952
953 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
954 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
955 sizeof(*status), USB_CTRL_GET_TIMEOUT);
956
957 if (ret == 2) {
958 *(u16 *) data = le16_to_cpu(*status);
959 ret = 0;
960 } else if (ret >= 0) {
961 ret = -EIO;
962 }
963 kfree(status);
964 return ret;
965 }
966 EXPORT_SYMBOL_GPL(usb_get_status);
967
968 /**
969 * usb_clear_halt - tells device to clear endpoint halt/stall condition
970 * @dev: device whose endpoint is halted
971 * @pipe: endpoint "pipe" being cleared
972 * Context: !in_interrupt ()
973 *
974 * This is used to clear halt conditions for bulk and interrupt endpoints,
975 * as reported by URB completion status. Endpoints that are halted are
976 * sometimes referred to as being "stalled". Such endpoints are unable
977 * to transmit or receive data until the halt status is cleared. Any URBs
978 * queued for such an endpoint should normally be unlinked by the driver
979 * before clearing the halt condition, as described in sections 5.7.5
980 * and 5.8.5 of the USB 2.0 spec.
981 *
982 * Note that control and isochronous endpoints don't halt, although control
983 * endpoints report "protocol stall" (for unsupported requests) using the
984 * same status code used to report a true stall.
985 *
986 * This call is synchronous, and may not be used in an interrupt context.
987 *
988 * Return: Zero on success, or else the status code returned by the
989 * underlying usb_control_msg() call.
990 */
991 int usb_clear_halt(struct usb_device *dev, int pipe)
992 {
993 int result;
994 int endp = usb_pipeendpoint(pipe);
995
996 if (usb_pipein(pipe))
997 endp |= USB_DIR_IN;
998
999 /* we don't care if it wasn't halted first. in fact some devices
1000 * (like some ibmcam model 1 units) seem to expect hosts to make
1001 * this request for iso endpoints, which can't halt!
1002 */
1003 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1004 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1005 USB_ENDPOINT_HALT, endp, NULL, 0,
1006 USB_CTRL_SET_TIMEOUT);
1007
1008 /* don't un-halt or force to DATA0 except on success */
1009 if (result < 0)
1010 return result;
1011
1012 /* NOTE: seems like Microsoft and Apple don't bother verifying
1013 * the clear "took", so some devices could lock up if you check...
1014 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1015 *
1016 * NOTE: make sure the logic here doesn't diverge much from
1017 * the copy in usb-storage, for as long as we need two copies.
1018 */
1019
1020 usb_reset_endpoint(dev, endp);
1021
1022 return 0;
1023 }
1024 EXPORT_SYMBOL_GPL(usb_clear_halt);
1025
1026 static int create_intf_ep_devs(struct usb_interface *intf)
1027 {
1028 struct usb_device *udev = interface_to_usbdev(intf);
1029 struct usb_host_interface *alt = intf->cur_altsetting;
1030 int i;
1031
1032 if (intf->ep_devs_created || intf->unregistering)
1033 return 0;
1034
1035 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1036 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1037 intf->ep_devs_created = 1;
1038 return 0;
1039 }
1040
1041 static void remove_intf_ep_devs(struct usb_interface *intf)
1042 {
1043 struct usb_host_interface *alt = intf->cur_altsetting;
1044 int i;
1045
1046 if (!intf->ep_devs_created)
1047 return;
1048
1049 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1050 usb_remove_ep_devs(&alt->endpoint[i]);
1051 intf->ep_devs_created = 0;
1052 }
1053
1054 /**
1055 * usb_disable_endpoint -- Disable an endpoint by address
1056 * @dev: the device whose endpoint is being disabled
1057 * @epaddr: the endpoint's address. Endpoint number for output,
1058 * endpoint number + USB_DIR_IN for input
1059 * @reset_hardware: flag to erase any endpoint state stored in the
1060 * controller hardware
1061 *
1062 * Disables the endpoint for URB submission and nukes all pending URBs.
1063 * If @reset_hardware is set then also deallocates hcd/hardware state
1064 * for the endpoint.
1065 */
1066 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1067 bool reset_hardware)
1068 {
1069 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1070 struct usb_host_endpoint *ep;
1071
1072 if (!dev)
1073 return;
1074
1075 if (usb_endpoint_out(epaddr)) {
1076 ep = dev->ep_out[epnum];
1077 if (reset_hardware)
1078 dev->ep_out[epnum] = NULL;
1079 } else {
1080 ep = dev->ep_in[epnum];
1081 if (reset_hardware)
1082 dev->ep_in[epnum] = NULL;
1083 }
1084 if (ep) {
1085 ep->enabled = 0;
1086 usb_hcd_flush_endpoint(dev, ep);
1087 if (reset_hardware)
1088 usb_hcd_disable_endpoint(dev, ep);
1089 }
1090 }
1091
1092 /**
1093 * usb_reset_endpoint - Reset an endpoint's state.
1094 * @dev: the device whose endpoint is to be reset
1095 * @epaddr: the endpoint's address. Endpoint number for output,
1096 * endpoint number + USB_DIR_IN for input
1097 *
1098 * Resets any host-side endpoint state such as the toggle bit,
1099 * sequence number or current window.
1100 */
1101 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1102 {
1103 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1104 struct usb_host_endpoint *ep;
1105
1106 if (usb_endpoint_out(epaddr))
1107 ep = dev->ep_out[epnum];
1108 else
1109 ep = dev->ep_in[epnum];
1110 if (ep)
1111 usb_hcd_reset_endpoint(dev, ep);
1112 }
1113 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1114
1115
1116 /**
1117 * usb_disable_interface -- Disable all endpoints for an interface
1118 * @dev: the device whose interface is being disabled
1119 * @intf: pointer to the interface descriptor
1120 * @reset_hardware: flag to erase any endpoint state stored in the
1121 * controller hardware
1122 *
1123 * Disables all the endpoints for the interface's current altsetting.
1124 */
1125 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1126 bool reset_hardware)
1127 {
1128 struct usb_host_interface *alt = intf->cur_altsetting;
1129 int i;
1130
1131 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1132 usb_disable_endpoint(dev,
1133 alt->endpoint[i].desc.bEndpointAddress,
1134 reset_hardware);
1135 }
1136 }
1137
1138 /**
1139 * usb_disable_device - Disable all the endpoints for a USB device
1140 * @dev: the device whose endpoints are being disabled
1141 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1142 *
1143 * Disables all the device's endpoints, potentially including endpoint 0.
1144 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1145 * pending urbs) and usbcore state for the interfaces, so that usbcore
1146 * must usb_set_configuration() before any interfaces could be used.
1147 */
1148 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1149 {
1150 int i;
1151 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1152
1153 /* getting rid of interfaces will disconnect
1154 * any drivers bound to them (a key side effect)
1155 */
1156 if (dev->actconfig) {
1157 /*
1158 * FIXME: In order to avoid self-deadlock involving the
1159 * bandwidth_mutex, we have to mark all the interfaces
1160 * before unregistering any of them.
1161 */
1162 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1163 dev->actconfig->interface[i]->unregistering = 1;
1164
1165 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1166 struct usb_interface *interface;
1167
1168 /* remove this interface if it has been registered */
1169 interface = dev->actconfig->interface[i];
1170 if (!device_is_registered(&interface->dev))
1171 continue;
1172 dev_dbg(&dev->dev, "unregistering interface %s\n",
1173 dev_name(&interface->dev));
1174 remove_intf_ep_devs(interface);
1175 device_del(&interface->dev);
1176 }
1177
1178 /* Now that the interfaces are unbound, nobody should
1179 * try to access them.
1180 */
1181 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1182 put_device(&dev->actconfig->interface[i]->dev);
1183 dev->actconfig->interface[i] = NULL;
1184 }
1185
1186 if (dev->usb2_hw_lpm_enabled == 1)
1187 usb_set_usb2_hardware_lpm(dev, 0);
1188 usb_unlocked_disable_lpm(dev);
1189 usb_disable_ltm(dev);
1190
1191 dev->actconfig = NULL;
1192 if (dev->state == USB_STATE_CONFIGURED)
1193 usb_set_device_state(dev, USB_STATE_ADDRESS);
1194 }
1195
1196 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1197 skip_ep0 ? "non-ep0" : "all");
1198 if (hcd->driver->check_bandwidth) {
1199 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1200 for (i = skip_ep0; i < 16; ++i) {
1201 usb_disable_endpoint(dev, i, false);
1202 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1203 }
1204 /* Remove endpoints from the host controller internal state */
1205 mutex_lock(hcd->bandwidth_mutex);
1206 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1207 mutex_unlock(hcd->bandwidth_mutex);
1208 /* Second pass: remove endpoint pointers */
1209 }
1210 for (i = skip_ep0; i < 16; ++i) {
1211 usb_disable_endpoint(dev, i, true);
1212 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1213 }
1214 }
1215
1216 /**
1217 * usb_enable_endpoint - Enable an endpoint for USB communications
1218 * @dev: the device whose interface is being enabled
1219 * @ep: the endpoint
1220 * @reset_ep: flag to reset the endpoint state
1221 *
1222 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1223 * For control endpoints, both the input and output sides are handled.
1224 */
1225 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1226 bool reset_ep)
1227 {
1228 int epnum = usb_endpoint_num(&ep->desc);
1229 int is_out = usb_endpoint_dir_out(&ep->desc);
1230 int is_control = usb_endpoint_xfer_control(&ep->desc);
1231
1232 if (reset_ep)
1233 usb_hcd_reset_endpoint(dev, ep);
1234 if (is_out || is_control)
1235 dev->ep_out[epnum] = ep;
1236 if (!is_out || is_control)
1237 dev->ep_in[epnum] = ep;
1238 ep->enabled = 1;
1239 }
1240
1241 /**
1242 * usb_enable_interface - Enable all the endpoints for an interface
1243 * @dev: the device whose interface is being enabled
1244 * @intf: pointer to the interface descriptor
1245 * @reset_eps: flag to reset the endpoints' state
1246 *
1247 * Enables all the endpoints for the interface's current altsetting.
1248 */
1249 void usb_enable_interface(struct usb_device *dev,
1250 struct usb_interface *intf, bool reset_eps)
1251 {
1252 struct usb_host_interface *alt = intf->cur_altsetting;
1253 int i;
1254
1255 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1256 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1257 }
1258
1259 /**
1260 * usb_set_interface - Makes a particular alternate setting be current
1261 * @dev: the device whose interface is being updated
1262 * @interface: the interface being updated
1263 * @alternate: the setting being chosen.
1264 * Context: !in_interrupt ()
1265 *
1266 * This is used to enable data transfers on interfaces that may not
1267 * be enabled by default. Not all devices support such configurability.
1268 * Only the driver bound to an interface may change its setting.
1269 *
1270 * Within any given configuration, each interface may have several
1271 * alternative settings. These are often used to control levels of
1272 * bandwidth consumption. For example, the default setting for a high
1273 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1274 * while interrupt transfers of up to 3KBytes per microframe are legal.
1275 * Also, isochronous endpoints may never be part of an
1276 * interface's default setting. To access such bandwidth, alternate
1277 * interface settings must be made current.
1278 *
1279 * Note that in the Linux USB subsystem, bandwidth associated with
1280 * an endpoint in a given alternate setting is not reserved until an URB
1281 * is submitted that needs that bandwidth. Some other operating systems
1282 * allocate bandwidth early, when a configuration is chosen.
1283 *
1284 * This call is synchronous, and may not be used in an interrupt context.
1285 * Also, drivers must not change altsettings while urbs are scheduled for
1286 * endpoints in that interface; all such urbs must first be completed
1287 * (perhaps forced by unlinking).
1288 *
1289 * Return: Zero on success, or else the status code returned by the
1290 * underlying usb_control_msg() call.
1291 */
1292 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1293 {
1294 struct usb_interface *iface;
1295 struct usb_host_interface *alt;
1296 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1297 int ret;
1298 int manual = 0;
1299 unsigned int epaddr;
1300 unsigned int pipe;
1301
1302 if (dev->state == USB_STATE_SUSPENDED)
1303 return -EHOSTUNREACH;
1304
1305 iface = usb_ifnum_to_if(dev, interface);
1306 if (!iface) {
1307 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1308 interface);
1309 return -EINVAL;
1310 }
1311 if (iface->unregistering)
1312 return -ENODEV;
1313
1314 alt = usb_altnum_to_altsetting(iface, alternate);
1315 if (!alt) {
1316 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1317 alternate);
1318 return -EINVAL;
1319 }
1320
1321 /* Make sure we have enough bandwidth for this alternate interface.
1322 * Remove the current alt setting and add the new alt setting.
1323 */
1324 mutex_lock(hcd->bandwidth_mutex);
1325 /* Disable LPM, and re-enable it once the new alt setting is installed,
1326 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1327 */
1328 if (usb_disable_lpm(dev)) {
1329 dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1330 mutex_unlock(hcd->bandwidth_mutex);
1331 return -ENOMEM;
1332 }
1333 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1334 if (ret < 0) {
1335 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1336 alternate);
1337 usb_enable_lpm(dev);
1338 mutex_unlock(hcd->bandwidth_mutex);
1339 return ret;
1340 }
1341
1342 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1343 ret = -EPIPE;
1344 else
1345 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1346 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1347 alternate, interface, NULL, 0, 5000);
1348
1349 /* 9.4.10 says devices don't need this and are free to STALL the
1350 * request if the interface only has one alternate setting.
1351 */
1352 if (ret == -EPIPE && iface->num_altsetting == 1) {
1353 dev_dbg(&dev->dev,
1354 "manual set_interface for iface %d, alt %d\n",
1355 interface, alternate);
1356 manual = 1;
1357 } else if (ret < 0) {
1358 /* Re-instate the old alt setting */
1359 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1360 usb_enable_lpm(dev);
1361 mutex_unlock(hcd->bandwidth_mutex);
1362 return ret;
1363 }
1364 mutex_unlock(hcd->bandwidth_mutex);
1365
1366 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1367 * when they implement async or easily-killable versions of this or
1368 * other "should-be-internal" functions (like clear_halt).
1369 * should hcd+usbcore postprocess control requests?
1370 */
1371
1372 /* prevent submissions using previous endpoint settings */
1373 if (iface->cur_altsetting != alt) {
1374 remove_intf_ep_devs(iface);
1375 usb_remove_sysfs_intf_files(iface);
1376 }
1377 usb_disable_interface(dev, iface, true);
1378
1379 iface->cur_altsetting = alt;
1380
1381 /* Now that the interface is installed, re-enable LPM. */
1382 usb_unlocked_enable_lpm(dev);
1383
1384 /* If the interface only has one altsetting and the device didn't
1385 * accept the request, we attempt to carry out the equivalent action
1386 * by manually clearing the HALT feature for each endpoint in the
1387 * new altsetting.
1388 */
1389 if (manual) {
1390 int i;
1391
1392 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1393 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1394 pipe = __create_pipe(dev,
1395 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1396 (usb_endpoint_out(epaddr) ?
1397 USB_DIR_OUT : USB_DIR_IN);
1398
1399 usb_clear_halt(dev, pipe);
1400 }
1401 }
1402
1403 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1404 *
1405 * Note:
1406 * Despite EP0 is always present in all interfaces/AS, the list of
1407 * endpoints from the descriptor does not contain EP0. Due to its
1408 * omnipresence one might expect EP0 being considered "affected" by
1409 * any SetInterface request and hence assume toggles need to be reset.
1410 * However, EP0 toggles are re-synced for every individual transfer
1411 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1412 * (Likewise, EP0 never "halts" on well designed devices.)
1413 */
1414 usb_enable_interface(dev, iface, true);
1415 if (device_is_registered(&iface->dev)) {
1416 usb_create_sysfs_intf_files(iface);
1417 create_intf_ep_devs(iface);
1418 }
1419 return 0;
1420 }
1421 EXPORT_SYMBOL_GPL(usb_set_interface);
1422
1423 /**
1424 * usb_reset_configuration - lightweight device reset
1425 * @dev: the device whose configuration is being reset
1426 *
1427 * This issues a standard SET_CONFIGURATION request to the device using
1428 * the current configuration. The effect is to reset most USB-related
1429 * state in the device, including interface altsettings (reset to zero),
1430 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1431 * endpoints). Other usbcore state is unchanged, including bindings of
1432 * usb device drivers to interfaces.
1433 *
1434 * Because this affects multiple interfaces, avoid using this with composite
1435 * (multi-interface) devices. Instead, the driver for each interface may
1436 * use usb_set_interface() on the interfaces it claims. Be careful though;
1437 * some devices don't support the SET_INTERFACE request, and others won't
1438 * reset all the interface state (notably endpoint state). Resetting the whole
1439 * configuration would affect other drivers' interfaces.
1440 *
1441 * The caller must own the device lock.
1442 *
1443 * Return: Zero on success, else a negative error code.
1444 */
1445 int usb_reset_configuration(struct usb_device *dev)
1446 {
1447 int i, retval;
1448 struct usb_host_config *config;
1449 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1450
1451 if (dev->state == USB_STATE_SUSPENDED)
1452 return -EHOSTUNREACH;
1453
1454 /* caller must have locked the device and must own
1455 * the usb bus readlock (so driver bindings are stable);
1456 * calls during probe() are fine
1457 */
1458
1459 for (i = 1; i < 16; ++i) {
1460 usb_disable_endpoint(dev, i, true);
1461 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1462 }
1463
1464 config = dev->actconfig;
1465 retval = 0;
1466 mutex_lock(hcd->bandwidth_mutex);
1467 /* Disable LPM, and re-enable it once the configuration is reset, so
1468 * that the xHCI driver can recalculate the U1/U2 timeouts.
1469 */
1470 if (usb_disable_lpm(dev)) {
1471 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1472 mutex_unlock(hcd->bandwidth_mutex);
1473 return -ENOMEM;
1474 }
1475 /* Make sure we have enough bandwidth for each alternate setting 0 */
1476 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1477 struct usb_interface *intf = config->interface[i];
1478 struct usb_host_interface *alt;
1479
1480 alt = usb_altnum_to_altsetting(intf, 0);
1481 if (!alt)
1482 alt = &intf->altsetting[0];
1483 if (alt != intf->cur_altsetting)
1484 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1485 intf->cur_altsetting, alt);
1486 if (retval < 0)
1487 break;
1488 }
1489 /* If not, reinstate the old alternate settings */
1490 if (retval < 0) {
1491 reset_old_alts:
1492 for (i--; i >= 0; i--) {
1493 struct usb_interface *intf = config->interface[i];
1494 struct usb_host_interface *alt;
1495
1496 alt = usb_altnum_to_altsetting(intf, 0);
1497 if (!alt)
1498 alt = &intf->altsetting[0];
1499 if (alt != intf->cur_altsetting)
1500 usb_hcd_alloc_bandwidth(dev, NULL,
1501 alt, intf->cur_altsetting);
1502 }
1503 usb_enable_lpm(dev);
1504 mutex_unlock(hcd->bandwidth_mutex);
1505 return retval;
1506 }
1507 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1508 USB_REQ_SET_CONFIGURATION, 0,
1509 config->desc.bConfigurationValue, 0,
1510 NULL, 0, USB_CTRL_SET_TIMEOUT);
1511 if (retval < 0)
1512 goto reset_old_alts;
1513 mutex_unlock(hcd->bandwidth_mutex);
1514
1515 /* re-init hc/hcd interface/endpoint state */
1516 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1517 struct usb_interface *intf = config->interface[i];
1518 struct usb_host_interface *alt;
1519
1520 alt = usb_altnum_to_altsetting(intf, 0);
1521
1522 /* No altsetting 0? We'll assume the first altsetting.
1523 * We could use a GetInterface call, but if a device is
1524 * so non-compliant that it doesn't have altsetting 0
1525 * then I wouldn't trust its reply anyway.
1526 */
1527 if (!alt)
1528 alt = &intf->altsetting[0];
1529
1530 if (alt != intf->cur_altsetting) {
1531 remove_intf_ep_devs(intf);
1532 usb_remove_sysfs_intf_files(intf);
1533 }
1534 intf->cur_altsetting = alt;
1535 usb_enable_interface(dev, intf, true);
1536 if (device_is_registered(&intf->dev)) {
1537 usb_create_sysfs_intf_files(intf);
1538 create_intf_ep_devs(intf);
1539 }
1540 }
1541 /* Now that the interfaces are installed, re-enable LPM. */
1542 usb_unlocked_enable_lpm(dev);
1543 return 0;
1544 }
1545 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1546
1547 static void usb_release_interface(struct device *dev)
1548 {
1549 struct usb_interface *intf = to_usb_interface(dev);
1550 struct usb_interface_cache *intfc =
1551 altsetting_to_usb_interface_cache(intf->altsetting);
1552
1553 kref_put(&intfc->ref, usb_release_interface_cache);
1554 kfree(intf);
1555 }
1556
1557 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1558 {
1559 struct usb_device *usb_dev;
1560 struct usb_interface *intf;
1561 struct usb_host_interface *alt;
1562
1563 intf = to_usb_interface(dev);
1564 usb_dev = interface_to_usbdev(intf);
1565 alt = intf->cur_altsetting;
1566
1567 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1568 alt->desc.bInterfaceClass,
1569 alt->desc.bInterfaceSubClass,
1570 alt->desc.bInterfaceProtocol))
1571 return -ENOMEM;
1572
1573 if (add_uevent_var(env,
1574 "MODALIAS=usb:"
1575 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1576 le16_to_cpu(usb_dev->descriptor.idVendor),
1577 le16_to_cpu(usb_dev->descriptor.idProduct),
1578 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1579 usb_dev->descriptor.bDeviceClass,
1580 usb_dev->descriptor.bDeviceSubClass,
1581 usb_dev->descriptor.bDeviceProtocol,
1582 alt->desc.bInterfaceClass,
1583 alt->desc.bInterfaceSubClass,
1584 alt->desc.bInterfaceProtocol,
1585 alt->desc.bInterfaceNumber))
1586 return -ENOMEM;
1587
1588 return 0;
1589 }
1590
1591 struct device_type usb_if_device_type = {
1592 .name = "usb_interface",
1593 .release = usb_release_interface,
1594 .uevent = usb_if_uevent,
1595 };
1596
1597 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1598 struct usb_host_config *config,
1599 u8 inum)
1600 {
1601 struct usb_interface_assoc_descriptor *retval = NULL;
1602 struct usb_interface_assoc_descriptor *intf_assoc;
1603 int first_intf;
1604 int last_intf;
1605 int i;
1606
1607 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1608 intf_assoc = config->intf_assoc[i];
1609 if (intf_assoc->bInterfaceCount == 0)
1610 continue;
1611
1612 first_intf = intf_assoc->bFirstInterface;
1613 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1614 if (inum >= first_intf && inum <= last_intf) {
1615 if (!retval)
1616 retval = intf_assoc;
1617 else
1618 dev_err(&dev->dev, "Interface #%d referenced"
1619 " by multiple IADs\n", inum);
1620 }
1621 }
1622
1623 return retval;
1624 }
1625
1626
1627 /*
1628 * Internal function to queue a device reset
1629 *
1630 * This is initialized into the workstruct in 'struct
1631 * usb_device->reset_ws' that is launched by
1632 * message.c:usb_set_configuration() when initializing each 'struct
1633 * usb_interface'.
1634 *
1635 * It is safe to get the USB device without reference counts because
1636 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1637 * this function will be ran only if @iface is alive (and before
1638 * freeing it any scheduled instances of it will have been cancelled).
1639 *
1640 * We need to set a flag (usb_dev->reset_running) because when we call
1641 * the reset, the interfaces might be unbound. The current interface
1642 * cannot try to remove the queued work as it would cause a deadlock
1643 * (you cannot remove your work from within your executing
1644 * workqueue). This flag lets it know, so that
1645 * usb_cancel_queued_reset() doesn't try to do it.
1646 *
1647 * See usb_queue_reset_device() for more details
1648 */
1649 static void __usb_queue_reset_device(struct work_struct *ws)
1650 {
1651 int rc;
1652 struct usb_interface *iface =
1653 container_of(ws, struct usb_interface, reset_ws);
1654 struct usb_device *udev = interface_to_usbdev(iface);
1655
1656 rc = usb_lock_device_for_reset(udev, iface);
1657 if (rc >= 0) {
1658 iface->reset_running = 1;
1659 usb_reset_device(udev);
1660 iface->reset_running = 0;
1661 usb_unlock_device(udev);
1662 }
1663 }
1664
1665
1666 /*
1667 * usb_set_configuration - Makes a particular device setting be current
1668 * @dev: the device whose configuration is being updated
1669 * @configuration: the configuration being chosen.
1670 * Context: !in_interrupt(), caller owns the device lock
1671 *
1672 * This is used to enable non-default device modes. Not all devices
1673 * use this kind of configurability; many devices only have one
1674 * configuration.
1675 *
1676 * @configuration is the value of the configuration to be installed.
1677 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1678 * must be non-zero; a value of zero indicates that the device in
1679 * unconfigured. However some devices erroneously use 0 as one of their
1680 * configuration values. To help manage such devices, this routine will
1681 * accept @configuration = -1 as indicating the device should be put in
1682 * an unconfigured state.
1683 *
1684 * USB device configurations may affect Linux interoperability,
1685 * power consumption and the functionality available. For example,
1686 * the default configuration is limited to using 100mA of bus power,
1687 * so that when certain device functionality requires more power,
1688 * and the device is bus powered, that functionality should be in some
1689 * non-default device configuration. Other device modes may also be
1690 * reflected as configuration options, such as whether two ISDN
1691 * channels are available independently; and choosing between open
1692 * standard device protocols (like CDC) or proprietary ones.
1693 *
1694 * Note that a non-authorized device (dev->authorized == 0) will only
1695 * be put in unconfigured mode.
1696 *
1697 * Note that USB has an additional level of device configurability,
1698 * associated with interfaces. That configurability is accessed using
1699 * usb_set_interface().
1700 *
1701 * This call is synchronous. The calling context must be able to sleep,
1702 * must own the device lock, and must not hold the driver model's USB
1703 * bus mutex; usb interface driver probe() methods cannot use this routine.
1704 *
1705 * Returns zero on success, or else the status code returned by the
1706 * underlying call that failed. On successful completion, each interface
1707 * in the original device configuration has been destroyed, and each one
1708 * in the new configuration has been probed by all relevant usb device
1709 * drivers currently known to the kernel.
1710 */
1711 int usb_set_configuration(struct usb_device *dev, int configuration)
1712 {
1713 int i, ret;
1714 struct usb_host_config *cp = NULL;
1715 struct usb_interface **new_interfaces = NULL;
1716 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1717 int n, nintf;
1718
1719 if (dev->authorized == 0 || configuration == -1)
1720 configuration = 0;
1721 else {
1722 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1723 if (dev->config[i].desc.bConfigurationValue ==
1724 configuration) {
1725 cp = &dev->config[i];
1726 break;
1727 }
1728 }
1729 }
1730 if ((!cp && configuration != 0))
1731 return -EINVAL;
1732
1733 /* The USB spec says configuration 0 means unconfigured.
1734 * But if a device includes a configuration numbered 0,
1735 * we will accept it as a correctly configured state.
1736 * Use -1 if you really want to unconfigure the device.
1737 */
1738 if (cp && configuration == 0)
1739 dev_warn(&dev->dev, "config 0 descriptor??\n");
1740
1741 /* Allocate memory for new interfaces before doing anything else,
1742 * so that if we run out then nothing will have changed. */
1743 n = nintf = 0;
1744 if (cp) {
1745 nintf = cp->desc.bNumInterfaces;
1746 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1747 GFP_NOIO);
1748 if (!new_interfaces) {
1749 dev_err(&dev->dev, "Out of memory\n");
1750 return -ENOMEM;
1751 }
1752
1753 for (; n < nintf; ++n) {
1754 new_interfaces[n] = kzalloc(
1755 sizeof(struct usb_interface),
1756 GFP_NOIO);
1757 if (!new_interfaces[n]) {
1758 dev_err(&dev->dev, "Out of memory\n");
1759 ret = -ENOMEM;
1760 free_interfaces:
1761 while (--n >= 0)
1762 kfree(new_interfaces[n]);
1763 kfree(new_interfaces);
1764 return ret;
1765 }
1766 }
1767
1768 i = dev->bus_mA - usb_get_max_power(dev, cp);
1769 if (i < 0)
1770 dev_warn(&dev->dev, "new config #%d exceeds power "
1771 "limit by %dmA\n",
1772 configuration, -i);
1773 }
1774
1775 /* Wake up the device so we can send it the Set-Config request */
1776 ret = usb_autoresume_device(dev);
1777 if (ret)
1778 goto free_interfaces;
1779
1780 /* if it's already configured, clear out old state first.
1781 * getting rid of old interfaces means unbinding their drivers.
1782 */
1783 if (dev->state != USB_STATE_ADDRESS)
1784 usb_disable_device(dev, 1); /* Skip ep0 */
1785
1786 /* Get rid of pending async Set-Config requests for this device */
1787 cancel_async_set_config(dev);
1788
1789 /* Make sure we have bandwidth (and available HCD resources) for this
1790 * configuration. Remove endpoints from the schedule if we're dropping
1791 * this configuration to set configuration 0. After this point, the
1792 * host controller will not allow submissions to dropped endpoints. If
1793 * this call fails, the device state is unchanged.
1794 */
1795 mutex_lock(hcd->bandwidth_mutex);
1796 /* Disable LPM, and re-enable it once the new configuration is
1797 * installed, so that the xHCI driver can recalculate the U1/U2
1798 * timeouts.
1799 */
1800 if (dev->actconfig && usb_disable_lpm(dev)) {
1801 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1802 mutex_unlock(hcd->bandwidth_mutex);
1803 ret = -ENOMEM;
1804 goto free_interfaces;
1805 }
1806 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1807 if (ret < 0) {
1808 if (dev->actconfig)
1809 usb_enable_lpm(dev);
1810 mutex_unlock(hcd->bandwidth_mutex);
1811 usb_autosuspend_device(dev);
1812 goto free_interfaces;
1813 }
1814
1815 /*
1816 * Initialize the new interface structures and the
1817 * hc/hcd/usbcore interface/endpoint state.
1818 */
1819 for (i = 0; i < nintf; ++i) {
1820 struct usb_interface_cache *intfc;
1821 struct usb_interface *intf;
1822 struct usb_host_interface *alt;
1823
1824 cp->interface[i] = intf = new_interfaces[i];
1825 intfc = cp->intf_cache[i];
1826 intf->altsetting = intfc->altsetting;
1827 intf->num_altsetting = intfc->num_altsetting;
1828 kref_get(&intfc->ref);
1829
1830 alt = usb_altnum_to_altsetting(intf, 0);
1831
1832 /* No altsetting 0? We'll assume the first altsetting.
1833 * We could use a GetInterface call, but if a device is
1834 * so non-compliant that it doesn't have altsetting 0
1835 * then I wouldn't trust its reply anyway.
1836 */
1837 if (!alt)
1838 alt = &intf->altsetting[0];
1839
1840 intf->intf_assoc =
1841 find_iad(dev, cp, alt->desc.bInterfaceNumber);
1842 intf->cur_altsetting = alt;
1843 usb_enable_interface(dev, intf, true);
1844 intf->dev.parent = &dev->dev;
1845 intf->dev.driver = NULL;
1846 intf->dev.bus = &usb_bus_type;
1847 intf->dev.type = &usb_if_device_type;
1848 intf->dev.groups = usb_interface_groups;
1849 intf->dev.dma_mask = dev->dev.dma_mask;
1850 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1851 intf->minor = -1;
1852 device_initialize(&intf->dev);
1853 pm_runtime_no_callbacks(&intf->dev);
1854 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1855 dev->bus->busnum, dev->devpath,
1856 configuration, alt->desc.bInterfaceNumber);
1857 }
1858 kfree(new_interfaces);
1859
1860 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1861 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1862 NULL, 0, USB_CTRL_SET_TIMEOUT);
1863 if (ret < 0 && cp) {
1864 /*
1865 * All the old state is gone, so what else can we do?
1866 * The device is probably useless now anyway.
1867 */
1868 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1869 for (i = 0; i < nintf; ++i) {
1870 usb_disable_interface(dev, cp->interface[i], true);
1871 put_device(&cp->interface[i]->dev);
1872 cp->interface[i] = NULL;
1873 }
1874 cp = NULL;
1875 }
1876
1877 dev->actconfig = cp;
1878 mutex_unlock(hcd->bandwidth_mutex);
1879
1880 if (!cp) {
1881 usb_set_device_state(dev, USB_STATE_ADDRESS);
1882
1883 /* Leave LPM disabled while the device is unconfigured. */
1884 usb_autosuspend_device(dev);
1885 return ret;
1886 }
1887 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1888
1889 if (cp->string == NULL &&
1890 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1891 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1892
1893 /* Now that the interfaces are installed, re-enable LPM. */
1894 usb_unlocked_enable_lpm(dev);
1895 /* Enable LTM if it was turned off by usb_disable_device. */
1896 usb_enable_ltm(dev);
1897
1898 /* Now that all the interfaces are set up, register them
1899 * to trigger binding of drivers to interfaces. probe()
1900 * routines may install different altsettings and may
1901 * claim() any interfaces not yet bound. Many class drivers
1902 * need that: CDC, audio, video, etc.
1903 */
1904 for (i = 0; i < nintf; ++i) {
1905 struct usb_interface *intf = cp->interface[i];
1906
1907 dev_dbg(&dev->dev,
1908 "adding %s (config #%d, interface %d)\n",
1909 dev_name(&intf->dev), configuration,
1910 intf->cur_altsetting->desc.bInterfaceNumber);
1911 device_enable_async_suspend(&intf->dev);
1912 ret = device_add(&intf->dev);
1913 if (ret != 0) {
1914 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1915 dev_name(&intf->dev), ret);
1916 continue;
1917 }
1918 create_intf_ep_devs(intf);
1919 }
1920
1921 usb_autosuspend_device(dev);
1922 return 0;
1923 }
1924
1925 static LIST_HEAD(set_config_list);
1926 static DEFINE_SPINLOCK(set_config_lock);
1927
1928 struct set_config_request {
1929 struct usb_device *udev;
1930 int config;
1931 struct work_struct work;
1932 struct list_head node;
1933 };
1934
1935 /* Worker routine for usb_driver_set_configuration() */
1936 static void driver_set_config_work(struct work_struct *work)
1937 {
1938 struct set_config_request *req =
1939 container_of(work, struct set_config_request, work);
1940 struct usb_device *udev = req->udev;
1941
1942 usb_lock_device(udev);
1943 spin_lock(&set_config_lock);
1944 list_del(&req->node);
1945 spin_unlock(&set_config_lock);
1946
1947 if (req->config >= -1) /* Is req still valid? */
1948 usb_set_configuration(udev, req->config);
1949 usb_unlock_device(udev);
1950 usb_put_dev(udev);
1951 kfree(req);
1952 }
1953
1954 /* Cancel pending Set-Config requests for a device whose configuration
1955 * was just changed
1956 */
1957 static void cancel_async_set_config(struct usb_device *udev)
1958 {
1959 struct set_config_request *req;
1960
1961 spin_lock(&set_config_lock);
1962 list_for_each_entry(req, &set_config_list, node) {
1963 if (req->udev == udev)
1964 req->config = -999; /* Mark as cancelled */
1965 }
1966 spin_unlock(&set_config_lock);
1967 }
1968
1969 /**
1970 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1971 * @udev: the device whose configuration is being updated
1972 * @config: the configuration being chosen.
1973 * Context: In process context, must be able to sleep
1974 *
1975 * Device interface drivers are not allowed to change device configurations.
1976 * This is because changing configurations will destroy the interface the
1977 * driver is bound to and create new ones; it would be like a floppy-disk
1978 * driver telling the computer to replace the floppy-disk drive with a
1979 * tape drive!
1980 *
1981 * Still, in certain specialized circumstances the need may arise. This
1982 * routine gets around the normal restrictions by using a work thread to
1983 * submit the change-config request.
1984 *
1985 * Return: 0 if the request was successfully queued, error code otherwise.
1986 * The caller has no way to know whether the queued request will eventually
1987 * succeed.
1988 */
1989 int usb_driver_set_configuration(struct usb_device *udev, int config)
1990 {
1991 struct set_config_request *req;
1992
1993 req = kmalloc(sizeof(*req), GFP_KERNEL);
1994 if (!req)
1995 return -ENOMEM;
1996 req->udev = udev;
1997 req->config = config;
1998 INIT_WORK(&req->work, driver_set_config_work);
1999
2000 spin_lock(&set_config_lock);
2001 list_add(&req->node, &set_config_list);
2002 spin_unlock(&set_config_lock);
2003
2004 usb_get_dev(udev);
2005 schedule_work(&req->work);
2006 return 0;
2007 }
2008 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
This page took 0.072426 seconds and 5 git commands to generate.