USB: make hcd.h public (drivers dependency)
[deliverable/linux.git] / drivers / usb / core / usb.c
1 /*
2 * drivers/usb/core/usb.c
3 *
4 * (C) Copyright Linus Torvalds 1999
5 * (C) Copyright Johannes Erdfelt 1999-2001
6 * (C) Copyright Andreas Gal 1999
7 * (C) Copyright Gregory P. Smith 1999
8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9 * (C) Copyright Randy Dunlap 2000
10 * (C) Copyright David Brownell 2000-2004
11 * (C) Copyright Yggdrasil Computing, Inc. 2000
12 * (usb_device_id matching changes by Adam J. Richter)
13 * (C) Copyright Greg Kroah-Hartman 2002-2003
14 *
15 * NOTE! This is not actually a driver at all, rather this is
16 * just a collection of helper routines that implement the
17 * generic USB things that the real drivers can use..
18 *
19 * Think of this as a "USB library" rather than anything else.
20 * It should be considered a slave, with no callbacks. Callbacks
21 * are evil.
22 */
23
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h> /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/mutex.h>
37 #include <linux/workqueue.h>
38 #include <linux/debugfs.h>
39
40 #include <asm/io.h>
41 #include <linux/scatterlist.h>
42 #include <linux/mm.h>
43 #include <linux/dma-mapping.h>
44
45 #include "usb.h"
46
47
48 const char *usbcore_name = "usbcore";
49
50 static int nousb; /* Disable USB when built into kernel image */
51
52 #ifdef CONFIG_USB_SUSPEND
53 static int usb_autosuspend_delay = 2; /* Default delay value,
54 * in seconds */
55 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
56 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
57
58 #else
59 #define usb_autosuspend_delay 0
60 #endif
61
62
63 /**
64 * usb_find_alt_setting() - Given a configuration, find the alternate setting
65 * for the given interface.
66 * @config: the configuration to search (not necessarily the current config).
67 * @iface_num: interface number to search in
68 * @alt_num: alternate interface setting number to search for.
69 *
70 * Search the configuration's interface cache for the given alt setting.
71 */
72 struct usb_host_interface *usb_find_alt_setting(
73 struct usb_host_config *config,
74 unsigned int iface_num,
75 unsigned int alt_num)
76 {
77 struct usb_interface_cache *intf_cache = NULL;
78 int i;
79
80 for (i = 0; i < config->desc.bNumInterfaces; i++) {
81 if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
82 == iface_num) {
83 intf_cache = config->intf_cache[i];
84 break;
85 }
86 }
87 if (!intf_cache)
88 return NULL;
89 for (i = 0; i < intf_cache->num_altsetting; i++)
90 if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
91 return &intf_cache->altsetting[i];
92
93 printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
94 "config %u\n", alt_num, iface_num,
95 config->desc.bConfigurationValue);
96 return NULL;
97 }
98 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
99
100 /**
101 * usb_ifnum_to_if - get the interface object with a given interface number
102 * @dev: the device whose current configuration is considered
103 * @ifnum: the desired interface
104 *
105 * This walks the device descriptor for the currently active configuration
106 * and returns a pointer to the interface with that particular interface
107 * number, or null.
108 *
109 * Note that configuration descriptors are not required to assign interface
110 * numbers sequentially, so that it would be incorrect to assume that
111 * the first interface in that descriptor corresponds to interface zero.
112 * This routine helps device drivers avoid such mistakes.
113 * However, you should make sure that you do the right thing with any
114 * alternate settings available for this interfaces.
115 *
116 * Don't call this function unless you are bound to one of the interfaces
117 * on this device or you have locked the device!
118 */
119 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
120 unsigned ifnum)
121 {
122 struct usb_host_config *config = dev->actconfig;
123 int i;
124
125 if (!config)
126 return NULL;
127 for (i = 0; i < config->desc.bNumInterfaces; i++)
128 if (config->interface[i]->altsetting[0]
129 .desc.bInterfaceNumber == ifnum)
130 return config->interface[i];
131
132 return NULL;
133 }
134 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
135
136 /**
137 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
138 * @intf: the interface containing the altsetting in question
139 * @altnum: the desired alternate setting number
140 *
141 * This searches the altsetting array of the specified interface for
142 * an entry with the correct bAlternateSetting value and returns a pointer
143 * to that entry, or null.
144 *
145 * Note that altsettings need not be stored sequentially by number, so
146 * it would be incorrect to assume that the first altsetting entry in
147 * the array corresponds to altsetting zero. This routine helps device
148 * drivers avoid such mistakes.
149 *
150 * Don't call this function unless you are bound to the intf interface
151 * or you have locked the device!
152 */
153 struct usb_host_interface *usb_altnum_to_altsetting(
154 const struct usb_interface *intf,
155 unsigned int altnum)
156 {
157 int i;
158
159 for (i = 0; i < intf->num_altsetting; i++) {
160 if (intf->altsetting[i].desc.bAlternateSetting == altnum)
161 return &intf->altsetting[i];
162 }
163 return NULL;
164 }
165 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
166
167 struct find_interface_arg {
168 int minor;
169 struct device_driver *drv;
170 };
171
172 static int __find_interface(struct device *dev, void *data)
173 {
174 struct find_interface_arg *arg = data;
175 struct usb_interface *intf;
176
177 if (!is_usb_interface(dev))
178 return 0;
179
180 if (dev->driver != arg->drv)
181 return 0;
182 intf = to_usb_interface(dev);
183 return intf->minor == arg->minor;
184 }
185
186 /**
187 * usb_find_interface - find usb_interface pointer for driver and device
188 * @drv: the driver whose current configuration is considered
189 * @minor: the minor number of the desired device
190 *
191 * This walks the bus device list and returns a pointer to the interface
192 * with the matching minor and driver. Note, this only works for devices
193 * that share the USB major number.
194 */
195 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
196 {
197 struct find_interface_arg argb;
198 struct device *dev;
199
200 argb.minor = minor;
201 argb.drv = &drv->drvwrap.driver;
202
203 dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
204
205 /* Drop reference count from bus_find_device */
206 put_device(dev);
207
208 return dev ? to_usb_interface(dev) : NULL;
209 }
210 EXPORT_SYMBOL_GPL(usb_find_interface);
211
212 /**
213 * usb_release_dev - free a usb device structure when all users of it are finished.
214 * @dev: device that's been disconnected
215 *
216 * Will be called only by the device core when all users of this usb device are
217 * done.
218 */
219 static void usb_release_dev(struct device *dev)
220 {
221 struct usb_device *udev;
222 struct usb_hcd *hcd;
223
224 udev = to_usb_device(dev);
225 hcd = bus_to_hcd(udev->bus);
226
227 usb_destroy_configuration(udev);
228 usb_put_hcd(hcd);
229 kfree(udev->product);
230 kfree(udev->manufacturer);
231 kfree(udev->serial);
232 kfree(udev);
233 }
234
235 #ifdef CONFIG_HOTPLUG
236 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
237 {
238 struct usb_device *usb_dev;
239
240 usb_dev = to_usb_device(dev);
241
242 if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
243 return -ENOMEM;
244
245 if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
246 return -ENOMEM;
247
248 return 0;
249 }
250
251 #else
252
253 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
254 {
255 return -ENODEV;
256 }
257 #endif /* CONFIG_HOTPLUG */
258
259 #ifdef CONFIG_PM
260
261 /* USB device Power-Management thunks.
262 * There's no need to distinguish here between quiescing a USB device
263 * and powering it down; the generic_suspend() routine takes care of
264 * it by skipping the usb_port_suspend() call for a quiesce. And for
265 * USB interfaces there's no difference at all.
266 */
267
268 static int usb_dev_prepare(struct device *dev)
269 {
270 return 0; /* Implement eventually? */
271 }
272
273 static void usb_dev_complete(struct device *dev)
274 {
275 /* Currently used only for rebinding interfaces */
276 usb_resume(dev, PMSG_ON); /* FIXME: change to PMSG_COMPLETE */
277 }
278
279 static int usb_dev_suspend(struct device *dev)
280 {
281 return usb_suspend(dev, PMSG_SUSPEND);
282 }
283
284 static int usb_dev_resume(struct device *dev)
285 {
286 return usb_resume(dev, PMSG_RESUME);
287 }
288
289 static int usb_dev_freeze(struct device *dev)
290 {
291 return usb_suspend(dev, PMSG_FREEZE);
292 }
293
294 static int usb_dev_thaw(struct device *dev)
295 {
296 return usb_resume(dev, PMSG_THAW);
297 }
298
299 static int usb_dev_poweroff(struct device *dev)
300 {
301 return usb_suspend(dev, PMSG_HIBERNATE);
302 }
303
304 static int usb_dev_restore(struct device *dev)
305 {
306 return usb_resume(dev, PMSG_RESTORE);
307 }
308
309 static const struct dev_pm_ops usb_device_pm_ops = {
310 .prepare = usb_dev_prepare,
311 .complete = usb_dev_complete,
312 .suspend = usb_dev_suspend,
313 .resume = usb_dev_resume,
314 .freeze = usb_dev_freeze,
315 .thaw = usb_dev_thaw,
316 .poweroff = usb_dev_poweroff,
317 .restore = usb_dev_restore,
318 };
319
320 #else
321
322 #define usb_device_pm_ops (*(struct dev_pm_ops *) NULL)
323
324 #endif /* CONFIG_PM */
325
326
327 static char *usb_devnode(struct device *dev, mode_t *mode)
328 {
329 struct usb_device *usb_dev;
330
331 usb_dev = to_usb_device(dev);
332 return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
333 usb_dev->bus->busnum, usb_dev->devnum);
334 }
335
336 struct device_type usb_device_type = {
337 .name = "usb_device",
338 .release = usb_release_dev,
339 .uevent = usb_dev_uevent,
340 .devnode = usb_devnode,
341 .pm = &usb_device_pm_ops,
342 };
343
344
345 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
346 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
347 {
348 struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
349 return hcd->wireless;
350 }
351
352
353 /**
354 * usb_alloc_dev - usb device constructor (usbcore-internal)
355 * @parent: hub to which device is connected; null to allocate a root hub
356 * @bus: bus used to access the device
357 * @port1: one-based index of port; ignored for root hubs
358 * Context: !in_interrupt()
359 *
360 * Only hub drivers (including virtual root hub drivers for host
361 * controllers) should ever call this.
362 *
363 * This call may not be used in a non-sleeping context.
364 */
365 struct usb_device *usb_alloc_dev(struct usb_device *parent,
366 struct usb_bus *bus, unsigned port1)
367 {
368 struct usb_device *dev;
369 struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self);
370 unsigned root_hub = 0;
371
372 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
373 if (!dev)
374 return NULL;
375
376 if (!usb_get_hcd(bus_to_hcd(bus))) {
377 kfree(dev);
378 return NULL;
379 }
380 /* Root hubs aren't true devices, so don't allocate HCD resources */
381 if (usb_hcd->driver->alloc_dev && parent &&
382 !usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
383 usb_put_hcd(bus_to_hcd(bus));
384 kfree(dev);
385 return NULL;
386 }
387
388 device_initialize(&dev->dev);
389 dev->dev.bus = &usb_bus_type;
390 dev->dev.type = &usb_device_type;
391 dev->dev.groups = usb_device_groups;
392 dev->dev.dma_mask = bus->controller->dma_mask;
393 set_dev_node(&dev->dev, dev_to_node(bus->controller));
394 dev->state = USB_STATE_ATTACHED;
395 atomic_set(&dev->urbnum, 0);
396
397 INIT_LIST_HEAD(&dev->ep0.urb_list);
398 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
399 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
400 /* ep0 maxpacket comes later, from device descriptor */
401 usb_enable_endpoint(dev, &dev->ep0, false);
402 dev->can_submit = 1;
403
404 /* Save readable and stable topology id, distinguishing devices
405 * by location for diagnostics, tools, driver model, etc. The
406 * string is a path along hub ports, from the root. Each device's
407 * dev->devpath will be stable until USB is re-cabled, and hubs
408 * are often labeled with these port numbers. The name isn't
409 * as stable: bus->busnum changes easily from modprobe order,
410 * cardbus or pci hotplugging, and so on.
411 */
412 if (unlikely(!parent)) {
413 dev->devpath[0] = '0';
414 dev->route = 0;
415
416 dev->dev.parent = bus->controller;
417 dev_set_name(&dev->dev, "usb%d", bus->busnum);
418 root_hub = 1;
419 } else {
420 /* match any labeling on the hubs; it's one-based */
421 if (parent->devpath[0] == '0') {
422 snprintf(dev->devpath, sizeof dev->devpath,
423 "%d", port1);
424 /* Root ports are not counted in route string */
425 dev->route = 0;
426 } else {
427 snprintf(dev->devpath, sizeof dev->devpath,
428 "%s.%d", parent->devpath, port1);
429 /* Route string assumes hubs have less than 16 ports */
430 if (port1 < 15)
431 dev->route = parent->route +
432 (port1 << ((parent->level - 1)*4));
433 else
434 dev->route = parent->route +
435 (15 << ((parent->level - 1)*4));
436 }
437
438 dev->dev.parent = &parent->dev;
439 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
440
441 /* hub driver sets up TT records */
442 }
443
444 dev->portnum = port1;
445 dev->bus = bus;
446 dev->parent = parent;
447 INIT_LIST_HEAD(&dev->filelist);
448
449 #ifdef CONFIG_PM
450 dev->autosuspend_delay = usb_autosuspend_delay * HZ;
451 dev->connect_time = jiffies;
452 dev->active_duration = -jiffies;
453 #endif
454 if (root_hub) /* Root hub always ok [and always wired] */
455 dev->authorized = 1;
456 else {
457 dev->authorized = usb_hcd->authorized_default;
458 dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
459 }
460 return dev;
461 }
462
463 /**
464 * usb_get_dev - increments the reference count of the usb device structure
465 * @dev: the device being referenced
466 *
467 * Each live reference to a device should be refcounted.
468 *
469 * Drivers for USB interfaces should normally record such references in
470 * their probe() methods, when they bind to an interface, and release
471 * them by calling usb_put_dev(), in their disconnect() methods.
472 *
473 * A pointer to the device with the incremented reference counter is returned.
474 */
475 struct usb_device *usb_get_dev(struct usb_device *dev)
476 {
477 if (dev)
478 get_device(&dev->dev);
479 return dev;
480 }
481 EXPORT_SYMBOL_GPL(usb_get_dev);
482
483 /**
484 * usb_put_dev - release a use of the usb device structure
485 * @dev: device that's been disconnected
486 *
487 * Must be called when a user of a device is finished with it. When the last
488 * user of the device calls this function, the memory of the device is freed.
489 */
490 void usb_put_dev(struct usb_device *dev)
491 {
492 if (dev)
493 put_device(&dev->dev);
494 }
495 EXPORT_SYMBOL_GPL(usb_put_dev);
496
497 /**
498 * usb_get_intf - increments the reference count of the usb interface structure
499 * @intf: the interface being referenced
500 *
501 * Each live reference to a interface must be refcounted.
502 *
503 * Drivers for USB interfaces should normally record such references in
504 * their probe() methods, when they bind to an interface, and release
505 * them by calling usb_put_intf(), in their disconnect() methods.
506 *
507 * A pointer to the interface with the incremented reference counter is
508 * returned.
509 */
510 struct usb_interface *usb_get_intf(struct usb_interface *intf)
511 {
512 if (intf)
513 get_device(&intf->dev);
514 return intf;
515 }
516 EXPORT_SYMBOL_GPL(usb_get_intf);
517
518 /**
519 * usb_put_intf - release a use of the usb interface structure
520 * @intf: interface that's been decremented
521 *
522 * Must be called when a user of an interface is finished with it. When the
523 * last user of the interface calls this function, the memory of the interface
524 * is freed.
525 */
526 void usb_put_intf(struct usb_interface *intf)
527 {
528 if (intf)
529 put_device(&intf->dev);
530 }
531 EXPORT_SYMBOL_GPL(usb_put_intf);
532
533 /* USB device locking
534 *
535 * USB devices and interfaces are locked using the semaphore in their
536 * embedded struct device. The hub driver guarantees that whenever a
537 * device is connected or disconnected, drivers are called with the
538 * USB device locked as well as their particular interface.
539 *
540 * Complications arise when several devices are to be locked at the same
541 * time. Only hub-aware drivers that are part of usbcore ever have to
542 * do this; nobody else needs to worry about it. The rule for locking
543 * is simple:
544 *
545 * When locking both a device and its parent, always lock the
546 * the parent first.
547 */
548
549 /**
550 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
551 * @udev: device that's being locked
552 * @iface: interface bound to the driver making the request (optional)
553 *
554 * Attempts to acquire the device lock, but fails if the device is
555 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
556 * is neither BINDING nor BOUND. Rather than sleeping to wait for the
557 * lock, the routine polls repeatedly. This is to prevent deadlock with
558 * disconnect; in some drivers (such as usb-storage) the disconnect()
559 * or suspend() method will block waiting for a device reset to complete.
560 *
561 * Returns a negative error code for failure, otherwise 0.
562 */
563 int usb_lock_device_for_reset(struct usb_device *udev,
564 const struct usb_interface *iface)
565 {
566 unsigned long jiffies_expire = jiffies + HZ;
567
568 if (udev->state == USB_STATE_NOTATTACHED)
569 return -ENODEV;
570 if (udev->state == USB_STATE_SUSPENDED)
571 return -EHOSTUNREACH;
572 if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
573 iface->condition == USB_INTERFACE_UNBOUND))
574 return -EINTR;
575
576 while (usb_trylock_device(udev) != 0) {
577
578 /* If we can't acquire the lock after waiting one second,
579 * we're probably deadlocked */
580 if (time_after(jiffies, jiffies_expire))
581 return -EBUSY;
582
583 msleep(15);
584 if (udev->state == USB_STATE_NOTATTACHED)
585 return -ENODEV;
586 if (udev->state == USB_STATE_SUSPENDED)
587 return -EHOSTUNREACH;
588 if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
589 iface->condition == USB_INTERFACE_UNBOUND))
590 return -EINTR;
591 }
592 return 0;
593 }
594 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
595
596 static struct usb_device *match_device(struct usb_device *dev,
597 u16 vendor_id, u16 product_id)
598 {
599 struct usb_device *ret_dev = NULL;
600 int child;
601
602 dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
603 le16_to_cpu(dev->descriptor.idVendor),
604 le16_to_cpu(dev->descriptor.idProduct));
605
606 /* see if this device matches */
607 if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
608 (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
609 dev_dbg(&dev->dev, "matched this device!\n");
610 ret_dev = usb_get_dev(dev);
611 goto exit;
612 }
613
614 /* look through all of the children of this device */
615 for (child = 0; child < dev->maxchild; ++child) {
616 if (dev->children[child]) {
617 usb_lock_device(dev->children[child]);
618 ret_dev = match_device(dev->children[child],
619 vendor_id, product_id);
620 usb_unlock_device(dev->children[child]);
621 if (ret_dev)
622 goto exit;
623 }
624 }
625 exit:
626 return ret_dev;
627 }
628
629 /**
630 * usb_find_device - find a specific usb device in the system
631 * @vendor_id: the vendor id of the device to find
632 * @product_id: the product id of the device to find
633 *
634 * Returns a pointer to a struct usb_device if such a specified usb
635 * device is present in the system currently. The usage count of the
636 * device will be incremented if a device is found. Make sure to call
637 * usb_put_dev() when the caller is finished with the device.
638 *
639 * If a device with the specified vendor and product id is not found,
640 * NULL is returned.
641 */
642 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
643 {
644 struct list_head *buslist;
645 struct usb_bus *bus;
646 struct usb_device *dev = NULL;
647
648 mutex_lock(&usb_bus_list_lock);
649 for (buslist = usb_bus_list.next;
650 buslist != &usb_bus_list;
651 buslist = buslist->next) {
652 bus = container_of(buslist, struct usb_bus, bus_list);
653 if (!bus->root_hub)
654 continue;
655 usb_lock_device(bus->root_hub);
656 dev = match_device(bus->root_hub, vendor_id, product_id);
657 usb_unlock_device(bus->root_hub);
658 if (dev)
659 goto exit;
660 }
661 exit:
662 mutex_unlock(&usb_bus_list_lock);
663 return dev;
664 }
665
666 /**
667 * usb_get_current_frame_number - return current bus frame number
668 * @dev: the device whose bus is being queried
669 *
670 * Returns the current frame number for the USB host controller
671 * used with the given USB device. This can be used when scheduling
672 * isochronous requests.
673 *
674 * Note that different kinds of host controller have different
675 * "scheduling horizons". While one type might support scheduling only
676 * 32 frames into the future, others could support scheduling up to
677 * 1024 frames into the future.
678 */
679 int usb_get_current_frame_number(struct usb_device *dev)
680 {
681 return usb_hcd_get_frame_number(dev);
682 }
683 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
684
685 /*-------------------------------------------------------------------*/
686 /*
687 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
688 * extra field of the interface and endpoint descriptor structs.
689 */
690
691 int __usb_get_extra_descriptor(char *buffer, unsigned size,
692 unsigned char type, void **ptr)
693 {
694 struct usb_descriptor_header *header;
695
696 while (size >= sizeof(struct usb_descriptor_header)) {
697 header = (struct usb_descriptor_header *)buffer;
698
699 if (header->bLength < 2) {
700 printk(KERN_ERR
701 "%s: bogus descriptor, type %d length %d\n",
702 usbcore_name,
703 header->bDescriptorType,
704 header->bLength);
705 return -1;
706 }
707
708 if (header->bDescriptorType == type) {
709 *ptr = header;
710 return 0;
711 }
712
713 buffer += header->bLength;
714 size -= header->bLength;
715 }
716 return -1;
717 }
718 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
719
720 /**
721 * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
722 * @dev: device the buffer will be used with
723 * @size: requested buffer size
724 * @mem_flags: affect whether allocation may block
725 * @dma: used to return DMA address of buffer
726 *
727 * Return value is either null (indicating no buffer could be allocated), or
728 * the cpu-space pointer to a buffer that may be used to perform DMA to the
729 * specified device. Such cpu-space buffers are returned along with the DMA
730 * address (through the pointer provided).
731 *
732 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
733 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
734 * hardware during URB completion/resubmit. The implementation varies between
735 * platforms, depending on details of how DMA will work to this device.
736 * Using these buffers also eliminates cacheline sharing problems on
737 * architectures where CPU caches are not DMA-coherent. On systems without
738 * bus-snooping caches, these buffers are uncached.
739 *
740 * When the buffer is no longer used, free it with usb_free_coherent().
741 */
742 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
743 dma_addr_t *dma)
744 {
745 if (!dev || !dev->bus)
746 return NULL;
747 return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
748 }
749 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
750
751 /**
752 * usb_free_coherent - free memory allocated with usb_alloc_coherent()
753 * @dev: device the buffer was used with
754 * @size: requested buffer size
755 * @addr: CPU address of buffer
756 * @dma: DMA address of buffer
757 *
758 * This reclaims an I/O buffer, letting it be reused. The memory must have
759 * been allocated using usb_alloc_coherent(), and the parameters must match
760 * those provided in that allocation request.
761 */
762 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
763 dma_addr_t dma)
764 {
765 if (!dev || !dev->bus)
766 return;
767 if (!addr)
768 return;
769 hcd_buffer_free(dev->bus, size, addr, dma);
770 }
771 EXPORT_SYMBOL_GPL(usb_free_coherent);
772
773 /**
774 * usb_buffer_map - create DMA mapping(s) for an urb
775 * @urb: urb whose transfer_buffer/setup_packet will be mapped
776 *
777 * Return value is either null (indicating no buffer could be mapped), or
778 * the parameter. URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
779 * added to urb->transfer_flags if the operation succeeds. If the device
780 * is connected to this system through a non-DMA controller, this operation
781 * always succeeds.
782 *
783 * This call would normally be used for an urb which is reused, perhaps
784 * as the target of a large periodic transfer, with usb_buffer_dmasync()
785 * calls to synchronize memory and dma state.
786 *
787 * Reverse the effect of this call with usb_buffer_unmap().
788 */
789 #if 0
790 struct urb *usb_buffer_map(struct urb *urb)
791 {
792 struct usb_bus *bus;
793 struct device *controller;
794
795 if (!urb
796 || !urb->dev
797 || !(bus = urb->dev->bus)
798 || !(controller = bus->controller))
799 return NULL;
800
801 if (controller->dma_mask) {
802 urb->transfer_dma = dma_map_single(controller,
803 urb->transfer_buffer, urb->transfer_buffer_length,
804 usb_pipein(urb->pipe)
805 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
806 if (usb_pipecontrol(urb->pipe))
807 urb->setup_dma = dma_map_single(controller,
808 urb->setup_packet,
809 sizeof(struct usb_ctrlrequest),
810 DMA_TO_DEVICE);
811 /* FIXME generic api broken like pci, can't report errors */
812 /* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
813 } else
814 urb->transfer_dma = ~0;
815 urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
816 | URB_NO_SETUP_DMA_MAP);
817 return urb;
818 }
819 EXPORT_SYMBOL_GPL(usb_buffer_map);
820 #endif /* 0 */
821
822 /* XXX DISABLED, no users currently. If you wish to re-enable this
823 * XXX please determine whether the sync is to transfer ownership of
824 * XXX the buffer from device to cpu or vice verse, and thusly use the
825 * XXX appropriate _for_{cpu,device}() method. -DaveM
826 */
827 #if 0
828
829 /**
830 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
831 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
832 */
833 void usb_buffer_dmasync(struct urb *urb)
834 {
835 struct usb_bus *bus;
836 struct device *controller;
837
838 if (!urb
839 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
840 || !urb->dev
841 || !(bus = urb->dev->bus)
842 || !(controller = bus->controller))
843 return;
844
845 if (controller->dma_mask) {
846 dma_sync_single_for_cpu(controller,
847 urb->transfer_dma, urb->transfer_buffer_length,
848 usb_pipein(urb->pipe)
849 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
850 if (usb_pipecontrol(urb->pipe))
851 dma_sync_single_for_cpu(controller,
852 urb->setup_dma,
853 sizeof(struct usb_ctrlrequest),
854 DMA_TO_DEVICE);
855 }
856 }
857 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
858 #endif
859
860 /**
861 * usb_buffer_unmap - free DMA mapping(s) for an urb
862 * @urb: urb whose transfer_buffer will be unmapped
863 *
864 * Reverses the effect of usb_buffer_map().
865 */
866 #if 0
867 void usb_buffer_unmap(struct urb *urb)
868 {
869 struct usb_bus *bus;
870 struct device *controller;
871
872 if (!urb
873 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
874 || !urb->dev
875 || !(bus = urb->dev->bus)
876 || !(controller = bus->controller))
877 return;
878
879 if (controller->dma_mask) {
880 dma_unmap_single(controller,
881 urb->transfer_dma, urb->transfer_buffer_length,
882 usb_pipein(urb->pipe)
883 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
884 if (usb_pipecontrol(urb->pipe))
885 dma_unmap_single(controller,
886 urb->setup_dma,
887 sizeof(struct usb_ctrlrequest),
888 DMA_TO_DEVICE);
889 }
890 urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
891 | URB_NO_SETUP_DMA_MAP);
892 }
893 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
894 #endif /* 0 */
895
896 /**
897 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
898 * @dev: device to which the scatterlist will be mapped
899 * @is_in: mapping transfer direction
900 * @sg: the scatterlist to map
901 * @nents: the number of entries in the scatterlist
902 *
903 * Return value is either < 0 (indicating no buffers could be mapped), or
904 * the number of DMA mapping array entries in the scatterlist.
905 *
906 * The caller is responsible for placing the resulting DMA addresses from
907 * the scatterlist into URB transfer buffer pointers, and for setting the
908 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
909 *
910 * Top I/O rates come from queuing URBs, instead of waiting for each one
911 * to complete before starting the next I/O. This is particularly easy
912 * to do with scatterlists. Just allocate and submit one URB for each DMA
913 * mapping entry returned, stopping on the first error or when all succeed.
914 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
915 *
916 * This call would normally be used when translating scatterlist requests,
917 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
918 * may be able to coalesce mappings for improved I/O efficiency.
919 *
920 * Reverse the effect of this call with usb_buffer_unmap_sg().
921 */
922 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
923 struct scatterlist *sg, int nents)
924 {
925 struct usb_bus *bus;
926 struct device *controller;
927
928 if (!dev
929 || !(bus = dev->bus)
930 || !(controller = bus->controller)
931 || !controller->dma_mask)
932 return -EINVAL;
933
934 /* FIXME generic api broken like pci, can't report errors */
935 return dma_map_sg(controller, sg, nents,
936 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
937 }
938 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
939
940 /* XXX DISABLED, no users currently. If you wish to re-enable this
941 * XXX please determine whether the sync is to transfer ownership of
942 * XXX the buffer from device to cpu or vice verse, and thusly use the
943 * XXX appropriate _for_{cpu,device}() method. -DaveM
944 */
945 #if 0
946
947 /**
948 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
949 * @dev: device to which the scatterlist will be mapped
950 * @is_in: mapping transfer direction
951 * @sg: the scatterlist to synchronize
952 * @n_hw_ents: the positive return value from usb_buffer_map_sg
953 *
954 * Use this when you are re-using a scatterlist's data buffers for
955 * another USB request.
956 */
957 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
958 struct scatterlist *sg, int n_hw_ents)
959 {
960 struct usb_bus *bus;
961 struct device *controller;
962
963 if (!dev
964 || !(bus = dev->bus)
965 || !(controller = bus->controller)
966 || !controller->dma_mask)
967 return;
968
969 dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
970 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
971 }
972 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
973 #endif
974
975 /**
976 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
977 * @dev: device to which the scatterlist will be mapped
978 * @is_in: mapping transfer direction
979 * @sg: the scatterlist to unmap
980 * @n_hw_ents: the positive return value from usb_buffer_map_sg
981 *
982 * Reverses the effect of usb_buffer_map_sg().
983 */
984 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
985 struct scatterlist *sg, int n_hw_ents)
986 {
987 struct usb_bus *bus;
988 struct device *controller;
989
990 if (!dev
991 || !(bus = dev->bus)
992 || !(controller = bus->controller)
993 || !controller->dma_mask)
994 return;
995
996 dma_unmap_sg(controller, sg, n_hw_ents,
997 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
998 }
999 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
1000
1001 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
1002 #ifdef MODULE
1003 module_param(nousb, bool, 0444);
1004 #else
1005 core_param(nousb, nousb, bool, 0444);
1006 #endif
1007
1008 /*
1009 * for external read access to <nousb>
1010 */
1011 int usb_disabled(void)
1012 {
1013 return nousb;
1014 }
1015 EXPORT_SYMBOL_GPL(usb_disabled);
1016
1017 /*
1018 * Notifications of device and interface registration
1019 */
1020 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1021 void *data)
1022 {
1023 struct device *dev = data;
1024
1025 switch (action) {
1026 case BUS_NOTIFY_ADD_DEVICE:
1027 if (dev->type == &usb_device_type)
1028 (void) usb_create_sysfs_dev_files(to_usb_device(dev));
1029 else if (dev->type == &usb_if_device_type)
1030 (void) usb_create_sysfs_intf_files(
1031 to_usb_interface(dev));
1032 break;
1033
1034 case BUS_NOTIFY_DEL_DEVICE:
1035 if (dev->type == &usb_device_type)
1036 usb_remove_sysfs_dev_files(to_usb_device(dev));
1037 else if (dev->type == &usb_if_device_type)
1038 usb_remove_sysfs_intf_files(to_usb_interface(dev));
1039 break;
1040 }
1041 return 0;
1042 }
1043
1044 static struct notifier_block usb_bus_nb = {
1045 .notifier_call = usb_bus_notify,
1046 };
1047
1048 struct dentry *usb_debug_root;
1049 EXPORT_SYMBOL_GPL(usb_debug_root);
1050
1051 static struct dentry *usb_debug_devices;
1052
1053 static int usb_debugfs_init(void)
1054 {
1055 usb_debug_root = debugfs_create_dir("usb", NULL);
1056 if (!usb_debug_root)
1057 return -ENOENT;
1058
1059 usb_debug_devices = debugfs_create_file("devices", 0444,
1060 usb_debug_root, NULL,
1061 &usbfs_devices_fops);
1062 if (!usb_debug_devices) {
1063 debugfs_remove(usb_debug_root);
1064 usb_debug_root = NULL;
1065 return -ENOENT;
1066 }
1067
1068 return 0;
1069 }
1070
1071 static void usb_debugfs_cleanup(void)
1072 {
1073 debugfs_remove(usb_debug_devices);
1074 debugfs_remove(usb_debug_root);
1075 }
1076
1077 /*
1078 * Init
1079 */
1080 static int __init usb_init(void)
1081 {
1082 int retval;
1083 if (nousb) {
1084 pr_info("%s: USB support disabled\n", usbcore_name);
1085 return 0;
1086 }
1087
1088 retval = usb_debugfs_init();
1089 if (retval)
1090 goto out;
1091
1092 retval = bus_register(&usb_bus_type);
1093 if (retval)
1094 goto bus_register_failed;
1095 retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1096 if (retval)
1097 goto bus_notifier_failed;
1098 retval = usb_major_init();
1099 if (retval)
1100 goto major_init_failed;
1101 retval = usb_register(&usbfs_driver);
1102 if (retval)
1103 goto driver_register_failed;
1104 retval = usb_devio_init();
1105 if (retval)
1106 goto usb_devio_init_failed;
1107 retval = usbfs_init();
1108 if (retval)
1109 goto fs_init_failed;
1110 retval = usb_hub_init();
1111 if (retval)
1112 goto hub_init_failed;
1113 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1114 if (!retval)
1115 goto out;
1116
1117 usb_hub_cleanup();
1118 hub_init_failed:
1119 usbfs_cleanup();
1120 fs_init_failed:
1121 usb_devio_cleanup();
1122 usb_devio_init_failed:
1123 usb_deregister(&usbfs_driver);
1124 driver_register_failed:
1125 usb_major_cleanup();
1126 major_init_failed:
1127 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1128 bus_notifier_failed:
1129 bus_unregister(&usb_bus_type);
1130 bus_register_failed:
1131 usb_debugfs_cleanup();
1132 out:
1133 return retval;
1134 }
1135
1136 /*
1137 * Cleanup
1138 */
1139 static void __exit usb_exit(void)
1140 {
1141 /* This will matter if shutdown/reboot does exitcalls. */
1142 if (nousb)
1143 return;
1144
1145 usb_deregister_device_driver(&usb_generic_driver);
1146 usb_major_cleanup();
1147 usbfs_cleanup();
1148 usb_deregister(&usbfs_driver);
1149 usb_devio_cleanup();
1150 usb_hub_cleanup();
1151 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1152 bus_unregister(&usb_bus_type);
1153 usb_debugfs_cleanup();
1154 }
1155
1156 subsys_initcall(usb_init);
1157 module_exit(usb_exit);
1158 MODULE_LICENSE("GPL");
This page took 0.066561 seconds and 5 git commands to generate.