WorkStruct: make allyesconfig
[deliverable/linux.git] / drivers / usb / core / usb.c
1 /*
2 * drivers/usb/core/usb.c
3 *
4 * (C) Copyright Linus Torvalds 1999
5 * (C) Copyright Johannes Erdfelt 1999-2001
6 * (C) Copyright Andreas Gal 1999
7 * (C) Copyright Gregory P. Smith 1999
8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9 * (C) Copyright Randy Dunlap 2000
10 * (C) Copyright David Brownell 2000-2004
11 * (C) Copyright Yggdrasil Computing, Inc. 2000
12 * (usb_device_id matching changes by Adam J. Richter)
13 * (C) Copyright Greg Kroah-Hartman 2002-2003
14 *
15 * NOTE! This is not actually a driver at all, rather this is
16 * just a collection of helper routines that implement the
17 * generic USB things that the real drivers can use..
18 *
19 * Think of this as a "USB library" rather than anything else.
20 * It should be considered a slave, with no callbacks. Callbacks
21 * are evil.
22 */
23
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/bitops.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h> /* for in_interrupt() */
29 #include <linux/kmod.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/errno.h>
33 #include <linux/smp_lock.h>
34 #include <linux/usb.h>
35 #include <linux/mutex.h>
36 #include <linux/workqueue.h>
37
38 #include <asm/io.h>
39 #include <asm/scatterlist.h>
40 #include <linux/mm.h>
41 #include <linux/dma-mapping.h>
42
43 #include "hcd.h"
44 #include "usb.h"
45
46
47 const char *usbcore_name = "usbcore";
48
49 static int nousb; /* Disable USB when built into kernel image */
50
51 struct workqueue_struct *ksuspend_usb_wq; /* For autosuspend */
52
53
54 /**
55 * usb_ifnum_to_if - get the interface object with a given interface number
56 * @dev: the device whose current configuration is considered
57 * @ifnum: the desired interface
58 *
59 * This walks the device descriptor for the currently active configuration
60 * and returns a pointer to the interface with that particular interface
61 * number, or null.
62 *
63 * Note that configuration descriptors are not required to assign interface
64 * numbers sequentially, so that it would be incorrect to assume that
65 * the first interface in that descriptor corresponds to interface zero.
66 * This routine helps device drivers avoid such mistakes.
67 * However, you should make sure that you do the right thing with any
68 * alternate settings available for this interfaces.
69 *
70 * Don't call this function unless you are bound to one of the interfaces
71 * on this device or you have locked the device!
72 */
73 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
74 unsigned ifnum)
75 {
76 struct usb_host_config *config = dev->actconfig;
77 int i;
78
79 if (!config)
80 return NULL;
81 for (i = 0; i < config->desc.bNumInterfaces; i++)
82 if (config->interface[i]->altsetting[0]
83 .desc.bInterfaceNumber == ifnum)
84 return config->interface[i];
85
86 return NULL;
87 }
88
89 /**
90 * usb_altnum_to_altsetting - get the altsetting structure with a given
91 * alternate setting number.
92 * @intf: the interface containing the altsetting in question
93 * @altnum: the desired alternate setting number
94 *
95 * This searches the altsetting array of the specified interface for
96 * an entry with the correct bAlternateSetting value and returns a pointer
97 * to that entry, or null.
98 *
99 * Note that altsettings need not be stored sequentially by number, so
100 * it would be incorrect to assume that the first altsetting entry in
101 * the array corresponds to altsetting zero. This routine helps device
102 * drivers avoid such mistakes.
103 *
104 * Don't call this function unless you are bound to the intf interface
105 * or you have locked the device!
106 */
107 struct usb_host_interface *usb_altnum_to_altsetting(const struct usb_interface *intf,
108 unsigned int altnum)
109 {
110 int i;
111
112 for (i = 0; i < intf->num_altsetting; i++) {
113 if (intf->altsetting[i].desc.bAlternateSetting == altnum)
114 return &intf->altsetting[i];
115 }
116 return NULL;
117 }
118
119 struct find_interface_arg {
120 int minor;
121 struct usb_interface *interface;
122 };
123
124 static int __find_interface(struct device * dev, void * data)
125 {
126 struct find_interface_arg *arg = data;
127 struct usb_interface *intf;
128
129 /* can't look at usb devices, only interfaces */
130 if (is_usb_device(dev))
131 return 0;
132
133 intf = to_usb_interface(dev);
134 if (intf->minor != -1 && intf->minor == arg->minor) {
135 arg->interface = intf;
136 return 1;
137 }
138 return 0;
139 }
140
141 /**
142 * usb_find_interface - find usb_interface pointer for driver and device
143 * @drv: the driver whose current configuration is considered
144 * @minor: the minor number of the desired device
145 *
146 * This walks the driver device list and returns a pointer to the interface
147 * with the matching minor. Note, this only works for devices that share the
148 * USB major number.
149 */
150 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
151 {
152 struct find_interface_arg argb;
153 int retval;
154
155 argb.minor = minor;
156 argb.interface = NULL;
157 /* eat the error, it will be in argb.interface */
158 retval = driver_for_each_device(&drv->drvwrap.driver, NULL, &argb,
159 __find_interface);
160 return argb.interface;
161 }
162
163 /**
164 * usb_release_dev - free a usb device structure when all users of it are finished.
165 * @dev: device that's been disconnected
166 *
167 * Will be called only by the device core when all users of this usb device are
168 * done.
169 */
170 static void usb_release_dev(struct device *dev)
171 {
172 struct usb_device *udev;
173
174 udev = to_usb_device(dev);
175
176 #ifdef CONFIG_USB_SUSPEND
177 cancel_delayed_work(&udev->autosuspend);
178 flush_workqueue(ksuspend_usb_wq);
179 #endif
180 usb_destroy_configuration(udev);
181 usb_put_hcd(bus_to_hcd(udev->bus));
182 kfree(udev->product);
183 kfree(udev->manufacturer);
184 kfree(udev->serial);
185 kfree(udev);
186 }
187
188 #ifdef CONFIG_PM
189
190 static int ksuspend_usb_init(void)
191 {
192 ksuspend_usb_wq = create_singlethread_workqueue("ksuspend_usbd");
193 if (!ksuspend_usb_wq)
194 return -ENOMEM;
195 return 0;
196 }
197
198 static void ksuspend_usb_cleanup(void)
199 {
200 destroy_workqueue(ksuspend_usb_wq);
201 }
202
203 #else
204
205 #define ksuspend_usb_init() 0
206 #define ksuspend_usb_cleanup() do {} while (0)
207
208 #endif
209
210 #ifdef CONFIG_USB_SUSPEND
211
212 /* usb_autosuspend_work - callback routine to autosuspend a USB device */
213 static void usb_autosuspend_work(struct work_struct *work)
214 {
215 struct usb_device *udev =
216 container_of(work, struct usb_device, autosuspend.work);
217
218 usb_pm_lock(udev);
219 udev->auto_pm = 1;
220 usb_suspend_both(udev, PMSG_SUSPEND);
221 usb_pm_unlock(udev);
222 }
223
224 #else
225
226 static void usb_autosuspend_work(struct work_struct *work)
227 {}
228
229 #endif
230
231 /**
232 * usb_alloc_dev - usb device constructor (usbcore-internal)
233 * @parent: hub to which device is connected; null to allocate a root hub
234 * @bus: bus used to access the device
235 * @port1: one-based index of port; ignored for root hubs
236 * Context: !in_interrupt ()
237 *
238 * Only hub drivers (including virtual root hub drivers for host
239 * controllers) should ever call this.
240 *
241 * This call may not be used in a non-sleeping context.
242 */
243 struct usb_device *
244 usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
245 {
246 struct usb_device *dev;
247
248 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
249 if (!dev)
250 return NULL;
251
252 if (!usb_get_hcd(bus_to_hcd(bus))) {
253 kfree(dev);
254 return NULL;
255 }
256
257 device_initialize(&dev->dev);
258 dev->dev.bus = &usb_bus_type;
259 dev->dev.dma_mask = bus->controller->dma_mask;
260 dev->dev.release = usb_release_dev;
261 dev->state = USB_STATE_ATTACHED;
262
263 /* This magic assignment distinguishes devices from interfaces */
264 dev->dev.platform_data = &usb_generic_driver;
265
266 INIT_LIST_HEAD(&dev->ep0.urb_list);
267 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
268 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
269 /* ep0 maxpacket comes later, from device descriptor */
270 dev->ep_in[0] = dev->ep_out[0] = &dev->ep0;
271
272 /* Save readable and stable topology id, distinguishing devices
273 * by location for diagnostics, tools, driver model, etc. The
274 * string is a path along hub ports, from the root. Each device's
275 * dev->devpath will be stable until USB is re-cabled, and hubs
276 * are often labeled with these port numbers. The bus_id isn't
277 * as stable: bus->busnum changes easily from modprobe order,
278 * cardbus or pci hotplugging, and so on.
279 */
280 if (unlikely (!parent)) {
281 dev->devpath [0] = '0';
282
283 dev->dev.parent = bus->controller;
284 sprintf (&dev->dev.bus_id[0], "usb%d", bus->busnum);
285 } else {
286 /* match any labeling on the hubs; it's one-based */
287 if (parent->devpath [0] == '0')
288 snprintf (dev->devpath, sizeof dev->devpath,
289 "%d", port1);
290 else
291 snprintf (dev->devpath, sizeof dev->devpath,
292 "%s.%d", parent->devpath, port1);
293
294 dev->dev.parent = &parent->dev;
295 sprintf (&dev->dev.bus_id[0], "%d-%s",
296 bus->busnum, dev->devpath);
297
298 /* hub driver sets up TT records */
299 }
300
301 dev->portnum = port1;
302 dev->bus = bus;
303 dev->parent = parent;
304 INIT_LIST_HEAD(&dev->filelist);
305
306 #ifdef CONFIG_PM
307 mutex_init(&dev->pm_mutex);
308 INIT_DELAYED_WORK(&dev->autosuspend, usb_autosuspend_work);
309 #endif
310 return dev;
311 }
312
313 /**
314 * usb_get_dev - increments the reference count of the usb device structure
315 * @dev: the device being referenced
316 *
317 * Each live reference to a device should be refcounted.
318 *
319 * Drivers for USB interfaces should normally record such references in
320 * their probe() methods, when they bind to an interface, and release
321 * them by calling usb_put_dev(), in their disconnect() methods.
322 *
323 * A pointer to the device with the incremented reference counter is returned.
324 */
325 struct usb_device *usb_get_dev(struct usb_device *dev)
326 {
327 if (dev)
328 get_device(&dev->dev);
329 return dev;
330 }
331
332 /**
333 * usb_put_dev - release a use of the usb device structure
334 * @dev: device that's been disconnected
335 *
336 * Must be called when a user of a device is finished with it. When the last
337 * user of the device calls this function, the memory of the device is freed.
338 */
339 void usb_put_dev(struct usb_device *dev)
340 {
341 if (dev)
342 put_device(&dev->dev);
343 }
344
345 /**
346 * usb_get_intf - increments the reference count of the usb interface structure
347 * @intf: the interface being referenced
348 *
349 * Each live reference to a interface must be refcounted.
350 *
351 * Drivers for USB interfaces should normally record such references in
352 * their probe() methods, when they bind to an interface, and release
353 * them by calling usb_put_intf(), in their disconnect() methods.
354 *
355 * A pointer to the interface with the incremented reference counter is
356 * returned.
357 */
358 struct usb_interface *usb_get_intf(struct usb_interface *intf)
359 {
360 if (intf)
361 get_device(&intf->dev);
362 return intf;
363 }
364
365 /**
366 * usb_put_intf - release a use of the usb interface structure
367 * @intf: interface that's been decremented
368 *
369 * Must be called when a user of an interface is finished with it. When the
370 * last user of the interface calls this function, the memory of the interface
371 * is freed.
372 */
373 void usb_put_intf(struct usb_interface *intf)
374 {
375 if (intf)
376 put_device(&intf->dev);
377 }
378
379
380 /* USB device locking
381 *
382 * USB devices and interfaces are locked using the semaphore in their
383 * embedded struct device. The hub driver guarantees that whenever a
384 * device is connected or disconnected, drivers are called with the
385 * USB device locked as well as their particular interface.
386 *
387 * Complications arise when several devices are to be locked at the same
388 * time. Only hub-aware drivers that are part of usbcore ever have to
389 * do this; nobody else needs to worry about it. The rule for locking
390 * is simple:
391 *
392 * When locking both a device and its parent, always lock the
393 * the parent first.
394 */
395
396 /**
397 * usb_lock_device_for_reset - cautiously acquire the lock for a
398 * usb device structure
399 * @udev: device that's being locked
400 * @iface: interface bound to the driver making the request (optional)
401 *
402 * Attempts to acquire the device lock, but fails if the device is
403 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
404 * is neither BINDING nor BOUND. Rather than sleeping to wait for the
405 * lock, the routine polls repeatedly. This is to prevent deadlock with
406 * disconnect; in some drivers (such as usb-storage) the disconnect()
407 * or suspend() method will block waiting for a device reset to complete.
408 *
409 * Returns a negative error code for failure, otherwise 1 or 0 to indicate
410 * that the device will or will not have to be unlocked. (0 can be
411 * returned when an interface is given and is BINDING, because in that
412 * case the driver already owns the device lock.)
413 */
414 int usb_lock_device_for_reset(struct usb_device *udev,
415 const struct usb_interface *iface)
416 {
417 unsigned long jiffies_expire = jiffies + HZ;
418
419 if (udev->state == USB_STATE_NOTATTACHED)
420 return -ENODEV;
421 if (udev->state == USB_STATE_SUSPENDED)
422 return -EHOSTUNREACH;
423 if (iface) {
424 switch (iface->condition) {
425 case USB_INTERFACE_BINDING:
426 return 0;
427 case USB_INTERFACE_BOUND:
428 break;
429 default:
430 return -EINTR;
431 }
432 }
433
434 while (usb_trylock_device(udev) != 0) {
435
436 /* If we can't acquire the lock after waiting one second,
437 * we're probably deadlocked */
438 if (time_after(jiffies, jiffies_expire))
439 return -EBUSY;
440
441 msleep(15);
442 if (udev->state == USB_STATE_NOTATTACHED)
443 return -ENODEV;
444 if (udev->state == USB_STATE_SUSPENDED)
445 return -EHOSTUNREACH;
446 if (iface && iface->condition != USB_INTERFACE_BOUND)
447 return -EINTR;
448 }
449 return 1;
450 }
451
452
453 static struct usb_device *match_device(struct usb_device *dev,
454 u16 vendor_id, u16 product_id)
455 {
456 struct usb_device *ret_dev = NULL;
457 int child;
458
459 dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
460 le16_to_cpu(dev->descriptor.idVendor),
461 le16_to_cpu(dev->descriptor.idProduct));
462
463 /* see if this device matches */
464 if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
465 (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
466 dev_dbg (&dev->dev, "matched this device!\n");
467 ret_dev = usb_get_dev(dev);
468 goto exit;
469 }
470
471 /* look through all of the children of this device */
472 for (child = 0; child < dev->maxchild; ++child) {
473 if (dev->children[child]) {
474 usb_lock_device(dev->children[child]);
475 ret_dev = match_device(dev->children[child],
476 vendor_id, product_id);
477 usb_unlock_device(dev->children[child]);
478 if (ret_dev)
479 goto exit;
480 }
481 }
482 exit:
483 return ret_dev;
484 }
485
486 /**
487 * usb_find_device - find a specific usb device in the system
488 * @vendor_id: the vendor id of the device to find
489 * @product_id: the product id of the device to find
490 *
491 * Returns a pointer to a struct usb_device if such a specified usb
492 * device is present in the system currently. The usage count of the
493 * device will be incremented if a device is found. Make sure to call
494 * usb_put_dev() when the caller is finished with the device.
495 *
496 * If a device with the specified vendor and product id is not found,
497 * NULL is returned.
498 */
499 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
500 {
501 struct list_head *buslist;
502 struct usb_bus *bus;
503 struct usb_device *dev = NULL;
504
505 mutex_lock(&usb_bus_list_lock);
506 for (buslist = usb_bus_list.next;
507 buslist != &usb_bus_list;
508 buslist = buslist->next) {
509 bus = container_of(buslist, struct usb_bus, bus_list);
510 if (!bus->root_hub)
511 continue;
512 usb_lock_device(bus->root_hub);
513 dev = match_device(bus->root_hub, vendor_id, product_id);
514 usb_unlock_device(bus->root_hub);
515 if (dev)
516 goto exit;
517 }
518 exit:
519 mutex_unlock(&usb_bus_list_lock);
520 return dev;
521 }
522
523 /**
524 * usb_get_current_frame_number - return current bus frame number
525 * @dev: the device whose bus is being queried
526 *
527 * Returns the current frame number for the USB host controller
528 * used with the given USB device. This can be used when scheduling
529 * isochronous requests.
530 *
531 * Note that different kinds of host controller have different
532 * "scheduling horizons". While one type might support scheduling only
533 * 32 frames into the future, others could support scheduling up to
534 * 1024 frames into the future.
535 */
536 int usb_get_current_frame_number(struct usb_device *dev)
537 {
538 return usb_hcd_get_frame_number (dev);
539 }
540
541 /**
542 * usb_endpoint_dir_in - check if the endpoint has IN direction
543 * @epd: endpoint to be checked
544 *
545 * Returns true if the endpoint is of type IN, otherwise it returns false.
546 */
547 int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
548 {
549 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
550 }
551
552 /**
553 * usb_endpoint_dir_out - check if the endpoint has OUT direction
554 * @epd: endpoint to be checked
555 *
556 * Returns true if the endpoint is of type OUT, otherwise it returns false.
557 */
558 int usb_endpoint_dir_out(const struct usb_endpoint_descriptor *epd)
559 {
560 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
561 }
562
563 /**
564 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
565 * @epd: endpoint to be checked
566 *
567 * Returns true if the endpoint is of type bulk, otherwise it returns false.
568 */
569 int usb_endpoint_xfer_bulk(const struct usb_endpoint_descriptor *epd)
570 {
571 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
572 USB_ENDPOINT_XFER_BULK);
573 }
574
575 /**
576 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
577 * @epd: endpoint to be checked
578 *
579 * Returns true if the endpoint is of type interrupt, otherwise it returns
580 * false.
581 */
582 int usb_endpoint_xfer_int(const struct usb_endpoint_descriptor *epd)
583 {
584 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
585 USB_ENDPOINT_XFER_INT);
586 }
587
588 /**
589 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
590 * @epd: endpoint to be checked
591 *
592 * Returns true if the endpoint is of type isochronous, otherwise it returns
593 * false.
594 */
595 int usb_endpoint_xfer_isoc(const struct usb_endpoint_descriptor *epd)
596 {
597 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
598 USB_ENDPOINT_XFER_ISOC);
599 }
600
601 /**
602 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
603 * @epd: endpoint to be checked
604 *
605 * Returns true if the endpoint has bulk transfer type and IN direction,
606 * otherwise it returns false.
607 */
608 int usb_endpoint_is_bulk_in(const struct usb_endpoint_descriptor *epd)
609 {
610 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
611 }
612
613 /**
614 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
615 * @epd: endpoint to be checked
616 *
617 * Returns true if the endpoint has bulk transfer type and OUT direction,
618 * otherwise it returns false.
619 */
620 int usb_endpoint_is_bulk_out(const struct usb_endpoint_descriptor *epd)
621 {
622 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
623 }
624
625 /**
626 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
627 * @epd: endpoint to be checked
628 *
629 * Returns true if the endpoint has interrupt transfer type and IN direction,
630 * otherwise it returns false.
631 */
632 int usb_endpoint_is_int_in(const struct usb_endpoint_descriptor *epd)
633 {
634 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
635 }
636
637 /**
638 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
639 * @epd: endpoint to be checked
640 *
641 * Returns true if the endpoint has interrupt transfer type and OUT direction,
642 * otherwise it returns false.
643 */
644 int usb_endpoint_is_int_out(const struct usb_endpoint_descriptor *epd)
645 {
646 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
647 }
648
649 /**
650 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
651 * @epd: endpoint to be checked
652 *
653 * Returns true if the endpoint has isochronous transfer type and IN direction,
654 * otherwise it returns false.
655 */
656 int usb_endpoint_is_isoc_in(const struct usb_endpoint_descriptor *epd)
657 {
658 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
659 }
660
661 /**
662 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
663 * @epd: endpoint to be checked
664 *
665 * Returns true if the endpoint has isochronous transfer type and OUT direction,
666 * otherwise it returns false.
667 */
668 int usb_endpoint_is_isoc_out(const struct usb_endpoint_descriptor *epd)
669 {
670 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
671 }
672
673 /*-------------------------------------------------------------------*/
674 /*
675 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
676 * extra field of the interface and endpoint descriptor structs.
677 */
678
679 int __usb_get_extra_descriptor(char *buffer, unsigned size,
680 unsigned char type, void **ptr)
681 {
682 struct usb_descriptor_header *header;
683
684 while (size >= sizeof(struct usb_descriptor_header)) {
685 header = (struct usb_descriptor_header *)buffer;
686
687 if (header->bLength < 2) {
688 printk(KERN_ERR
689 "%s: bogus descriptor, type %d length %d\n",
690 usbcore_name,
691 header->bDescriptorType,
692 header->bLength);
693 return -1;
694 }
695
696 if (header->bDescriptorType == type) {
697 *ptr = header;
698 return 0;
699 }
700
701 buffer += header->bLength;
702 size -= header->bLength;
703 }
704 return -1;
705 }
706
707 /**
708 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
709 * @dev: device the buffer will be used with
710 * @size: requested buffer size
711 * @mem_flags: affect whether allocation may block
712 * @dma: used to return DMA address of buffer
713 *
714 * Return value is either null (indicating no buffer could be allocated), or
715 * the cpu-space pointer to a buffer that may be used to perform DMA to the
716 * specified device. Such cpu-space buffers are returned along with the DMA
717 * address (through the pointer provided).
718 *
719 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
720 * to avoid behaviors like using "DMA bounce buffers", or tying down I/O
721 * mapping hardware for long idle periods. The implementation varies between
722 * platforms, depending on details of how DMA will work to this device.
723 * Using these buffers also helps prevent cacheline sharing problems on
724 * architectures where CPU caches are not DMA-coherent.
725 *
726 * When the buffer is no longer used, free it with usb_buffer_free().
727 */
728 void *usb_buffer_alloc (
729 struct usb_device *dev,
730 size_t size,
731 gfp_t mem_flags,
732 dma_addr_t *dma
733 )
734 {
735 if (!dev || !dev->bus)
736 return NULL;
737 return hcd_buffer_alloc (dev->bus, size, mem_flags, dma);
738 }
739
740 /**
741 * usb_buffer_free - free memory allocated with usb_buffer_alloc()
742 * @dev: device the buffer was used with
743 * @size: requested buffer size
744 * @addr: CPU address of buffer
745 * @dma: DMA address of buffer
746 *
747 * This reclaims an I/O buffer, letting it be reused. The memory must have
748 * been allocated using usb_buffer_alloc(), and the parameters must match
749 * those provided in that allocation request.
750 */
751 void usb_buffer_free (
752 struct usb_device *dev,
753 size_t size,
754 void *addr,
755 dma_addr_t dma
756 )
757 {
758 if (!dev || !dev->bus)
759 return;
760 if (!addr)
761 return;
762 hcd_buffer_free (dev->bus, size, addr, dma);
763 }
764
765 /**
766 * usb_buffer_map - create DMA mapping(s) for an urb
767 * @urb: urb whose transfer_buffer/setup_packet will be mapped
768 *
769 * Return value is either null (indicating no buffer could be mapped), or
770 * the parameter. URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
771 * added to urb->transfer_flags if the operation succeeds. If the device
772 * is connected to this system through a non-DMA controller, this operation
773 * always succeeds.
774 *
775 * This call would normally be used for an urb which is reused, perhaps
776 * as the target of a large periodic transfer, with usb_buffer_dmasync()
777 * calls to synchronize memory and dma state.
778 *
779 * Reverse the effect of this call with usb_buffer_unmap().
780 */
781 #if 0
782 struct urb *usb_buffer_map (struct urb *urb)
783 {
784 struct usb_bus *bus;
785 struct device *controller;
786
787 if (!urb
788 || !urb->dev
789 || !(bus = urb->dev->bus)
790 || !(controller = bus->controller))
791 return NULL;
792
793 if (controller->dma_mask) {
794 urb->transfer_dma = dma_map_single (controller,
795 urb->transfer_buffer, urb->transfer_buffer_length,
796 usb_pipein (urb->pipe)
797 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
798 if (usb_pipecontrol (urb->pipe))
799 urb->setup_dma = dma_map_single (controller,
800 urb->setup_packet,
801 sizeof (struct usb_ctrlrequest),
802 DMA_TO_DEVICE);
803 // FIXME generic api broken like pci, can't report errors
804 // if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
805 } else
806 urb->transfer_dma = ~0;
807 urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
808 | URB_NO_SETUP_DMA_MAP);
809 return urb;
810 }
811 #endif /* 0 */
812
813 /* XXX DISABLED, no users currently. If you wish to re-enable this
814 * XXX please determine whether the sync is to transfer ownership of
815 * XXX the buffer from device to cpu or vice verse, and thusly use the
816 * XXX appropriate _for_{cpu,device}() method. -DaveM
817 */
818 #if 0
819
820 /**
821 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
822 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
823 */
824 void usb_buffer_dmasync (struct urb *urb)
825 {
826 struct usb_bus *bus;
827 struct device *controller;
828
829 if (!urb
830 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
831 || !urb->dev
832 || !(bus = urb->dev->bus)
833 || !(controller = bus->controller))
834 return;
835
836 if (controller->dma_mask) {
837 dma_sync_single (controller,
838 urb->transfer_dma, urb->transfer_buffer_length,
839 usb_pipein (urb->pipe)
840 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
841 if (usb_pipecontrol (urb->pipe))
842 dma_sync_single (controller,
843 urb->setup_dma,
844 sizeof (struct usb_ctrlrequest),
845 DMA_TO_DEVICE);
846 }
847 }
848 #endif
849
850 /**
851 * usb_buffer_unmap - free DMA mapping(s) for an urb
852 * @urb: urb whose transfer_buffer will be unmapped
853 *
854 * Reverses the effect of usb_buffer_map().
855 */
856 #if 0
857 void usb_buffer_unmap (struct urb *urb)
858 {
859 struct usb_bus *bus;
860 struct device *controller;
861
862 if (!urb
863 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
864 || !urb->dev
865 || !(bus = urb->dev->bus)
866 || !(controller = bus->controller))
867 return;
868
869 if (controller->dma_mask) {
870 dma_unmap_single (controller,
871 urb->transfer_dma, urb->transfer_buffer_length,
872 usb_pipein (urb->pipe)
873 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
874 if (usb_pipecontrol (urb->pipe))
875 dma_unmap_single (controller,
876 urb->setup_dma,
877 sizeof (struct usb_ctrlrequest),
878 DMA_TO_DEVICE);
879 }
880 urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
881 | URB_NO_SETUP_DMA_MAP);
882 }
883 #endif /* 0 */
884
885 /**
886 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
887 * @dev: device to which the scatterlist will be mapped
888 * @pipe: endpoint defining the mapping direction
889 * @sg: the scatterlist to map
890 * @nents: the number of entries in the scatterlist
891 *
892 * Return value is either < 0 (indicating no buffers could be mapped), or
893 * the number of DMA mapping array entries in the scatterlist.
894 *
895 * The caller is responsible for placing the resulting DMA addresses from
896 * the scatterlist into URB transfer buffer pointers, and for setting the
897 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
898 *
899 * Top I/O rates come from queuing URBs, instead of waiting for each one
900 * to complete before starting the next I/O. This is particularly easy
901 * to do with scatterlists. Just allocate and submit one URB for each DMA
902 * mapping entry returned, stopping on the first error or when all succeed.
903 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
904 *
905 * This call would normally be used when translating scatterlist requests,
906 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
907 * may be able to coalesce mappings for improved I/O efficiency.
908 *
909 * Reverse the effect of this call with usb_buffer_unmap_sg().
910 */
911 int usb_buffer_map_sg(const struct usb_device *dev, unsigned pipe,
912 struct scatterlist *sg, int nents)
913 {
914 struct usb_bus *bus;
915 struct device *controller;
916
917 if (!dev
918 || usb_pipecontrol (pipe)
919 || !(bus = dev->bus)
920 || !(controller = bus->controller)
921 || !controller->dma_mask)
922 return -1;
923
924 // FIXME generic api broken like pci, can't report errors
925 return dma_map_sg (controller, sg, nents,
926 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
927 }
928
929 /* XXX DISABLED, no users currently. If you wish to re-enable this
930 * XXX please determine whether the sync is to transfer ownership of
931 * XXX the buffer from device to cpu or vice verse, and thusly use the
932 * XXX appropriate _for_{cpu,device}() method. -DaveM
933 */
934 #if 0
935
936 /**
937 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
938 * @dev: device to which the scatterlist will be mapped
939 * @pipe: endpoint defining the mapping direction
940 * @sg: the scatterlist to synchronize
941 * @n_hw_ents: the positive return value from usb_buffer_map_sg
942 *
943 * Use this when you are re-using a scatterlist's data buffers for
944 * another USB request.
945 */
946 void usb_buffer_dmasync_sg(const struct usb_device *dev, unsigned pipe,
947 struct scatterlist *sg, int n_hw_ents)
948 {
949 struct usb_bus *bus;
950 struct device *controller;
951
952 if (!dev
953 || !(bus = dev->bus)
954 || !(controller = bus->controller)
955 || !controller->dma_mask)
956 return;
957
958 dma_sync_sg (controller, sg, n_hw_ents,
959 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
960 }
961 #endif
962
963 /**
964 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
965 * @dev: device to which the scatterlist will be mapped
966 * @pipe: endpoint defining the mapping direction
967 * @sg: the scatterlist to unmap
968 * @n_hw_ents: the positive return value from usb_buffer_map_sg
969 *
970 * Reverses the effect of usb_buffer_map_sg().
971 */
972 void usb_buffer_unmap_sg(const struct usb_device *dev, unsigned pipe,
973 struct scatterlist *sg, int n_hw_ents)
974 {
975 struct usb_bus *bus;
976 struct device *controller;
977
978 if (!dev
979 || !(bus = dev->bus)
980 || !(controller = bus->controller)
981 || !controller->dma_mask)
982 return;
983
984 dma_unmap_sg (controller, sg, n_hw_ents,
985 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
986 }
987
988 /* format to disable USB on kernel command line is: nousb */
989 __module_param_call("", nousb, param_set_bool, param_get_bool, &nousb, 0444);
990
991 /*
992 * for external read access to <nousb>
993 */
994 int usb_disabled(void)
995 {
996 return nousb;
997 }
998
999 /*
1000 * Init
1001 */
1002 static int __init usb_init(void)
1003 {
1004 int retval;
1005 if (nousb) {
1006 pr_info ("%s: USB support disabled\n", usbcore_name);
1007 return 0;
1008 }
1009
1010 retval = ksuspend_usb_init();
1011 if (retval)
1012 goto out;
1013 retval = bus_register(&usb_bus_type);
1014 if (retval)
1015 goto bus_register_failed;
1016 retval = usb_host_init();
1017 if (retval)
1018 goto host_init_failed;
1019 retval = usb_major_init();
1020 if (retval)
1021 goto major_init_failed;
1022 retval = usb_register(&usbfs_driver);
1023 if (retval)
1024 goto driver_register_failed;
1025 retval = usbdev_init();
1026 if (retval)
1027 goto usbdevice_init_failed;
1028 retval = usbfs_init();
1029 if (retval)
1030 goto fs_init_failed;
1031 retval = usb_hub_init();
1032 if (retval)
1033 goto hub_init_failed;
1034 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1035 if (!retval)
1036 goto out;
1037
1038 usb_hub_cleanup();
1039 hub_init_failed:
1040 usbfs_cleanup();
1041 fs_init_failed:
1042 usbdev_cleanup();
1043 usbdevice_init_failed:
1044 usb_deregister(&usbfs_driver);
1045 driver_register_failed:
1046 usb_major_cleanup();
1047 major_init_failed:
1048 usb_host_cleanup();
1049 host_init_failed:
1050 bus_unregister(&usb_bus_type);
1051 bus_register_failed:
1052 ksuspend_usb_cleanup();
1053 out:
1054 return retval;
1055 }
1056
1057 /*
1058 * Cleanup
1059 */
1060 static void __exit usb_exit(void)
1061 {
1062 /* This will matter if shutdown/reboot does exitcalls. */
1063 if (nousb)
1064 return;
1065
1066 usb_deregister_device_driver(&usb_generic_driver);
1067 usb_major_cleanup();
1068 usbfs_cleanup();
1069 usb_deregister(&usbfs_driver);
1070 usbdev_cleanup();
1071 usb_hub_cleanup();
1072 usb_host_cleanup();
1073 bus_unregister(&usb_bus_type);
1074 ksuspend_usb_cleanup();
1075 }
1076
1077 subsys_initcall(usb_init);
1078 module_exit(usb_exit);
1079
1080 /*
1081 * USB may be built into the kernel or be built as modules.
1082 * These symbols are exported for device (or host controller)
1083 * driver modules to use.
1084 */
1085
1086 EXPORT_SYMBOL(usb_disabled);
1087
1088 EXPORT_SYMBOL_GPL(usb_get_intf);
1089 EXPORT_SYMBOL_GPL(usb_put_intf);
1090
1091 EXPORT_SYMBOL(usb_put_dev);
1092 EXPORT_SYMBOL(usb_get_dev);
1093 EXPORT_SYMBOL(usb_hub_tt_clear_buffer);
1094
1095 EXPORT_SYMBOL(usb_lock_device_for_reset);
1096
1097 EXPORT_SYMBOL(usb_find_interface);
1098 EXPORT_SYMBOL(usb_ifnum_to_if);
1099 EXPORT_SYMBOL(usb_altnum_to_altsetting);
1100
1101 EXPORT_SYMBOL(__usb_get_extra_descriptor);
1102
1103 EXPORT_SYMBOL(usb_find_device);
1104 EXPORT_SYMBOL(usb_get_current_frame_number);
1105
1106 EXPORT_SYMBOL_GPL(usb_endpoint_dir_in);
1107 EXPORT_SYMBOL_GPL(usb_endpoint_dir_out);
1108 EXPORT_SYMBOL_GPL(usb_endpoint_xfer_bulk);
1109 EXPORT_SYMBOL_GPL(usb_endpoint_xfer_int);
1110 EXPORT_SYMBOL_GPL(usb_endpoint_xfer_isoc);
1111 EXPORT_SYMBOL_GPL(usb_endpoint_is_bulk_in);
1112 EXPORT_SYMBOL_GPL(usb_endpoint_is_bulk_out);
1113 EXPORT_SYMBOL_GPL(usb_endpoint_is_int_in);
1114 EXPORT_SYMBOL_GPL(usb_endpoint_is_int_out);
1115 EXPORT_SYMBOL_GPL(usb_endpoint_is_isoc_in);
1116 EXPORT_SYMBOL_GPL(usb_endpoint_is_isoc_out);
1117
1118 EXPORT_SYMBOL (usb_buffer_alloc);
1119 EXPORT_SYMBOL (usb_buffer_free);
1120
1121 #if 0
1122 EXPORT_SYMBOL (usb_buffer_map);
1123 EXPORT_SYMBOL (usb_buffer_dmasync);
1124 EXPORT_SYMBOL (usb_buffer_unmap);
1125 #endif
1126
1127 EXPORT_SYMBOL (usb_buffer_map_sg);
1128 #if 0
1129 EXPORT_SYMBOL (usb_buffer_dmasync_sg);
1130 #endif
1131 EXPORT_SYMBOL (usb_buffer_unmap_sg);
1132
1133 MODULE_LICENSE("GPL");
This page took 0.052864 seconds and 5 git commands to generate.