usbcore: make usb_generic a usb_device_driver
[deliverable/linux.git] / drivers / usb / core / usb.c
1 /*
2 * drivers/usb/usb.c
3 *
4 * (C) Copyright Linus Torvalds 1999
5 * (C) Copyright Johannes Erdfelt 1999-2001
6 * (C) Copyright Andreas Gal 1999
7 * (C) Copyright Gregory P. Smith 1999
8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9 * (C) Copyright Randy Dunlap 2000
10 * (C) Copyright David Brownell 2000-2004
11 * (C) Copyright Yggdrasil Computing, Inc. 2000
12 * (usb_device_id matching changes by Adam J. Richter)
13 * (C) Copyright Greg Kroah-Hartman 2002-2003
14 *
15 * NOTE! This is not actually a driver at all, rather this is
16 * just a collection of helper routines that implement the
17 * generic USB things that the real drivers can use..
18 *
19 * Think of this as a "USB library" rather than anything else.
20 * It should be considered a slave, with no callbacks. Callbacks
21 * are evil.
22 */
23
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/bitops.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h> /* for in_interrupt() */
29 #include <linux/kmod.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/errno.h>
33 #include <linux/smp_lock.h>
34 #include <linux/usb.h>
35 #include <linux/mutex.h>
36
37 #include <asm/io.h>
38 #include <asm/scatterlist.h>
39 #include <linux/mm.h>
40 #include <linux/dma-mapping.h>
41
42 #include "hcd.h"
43 #include "usb.h"
44
45
46 const char *usbcore_name = "usbcore";
47
48 static int nousb; /* Disable USB when built into kernel image */
49
50
51 /**
52 * usb_ifnum_to_if - get the interface object with a given interface number
53 * @dev: the device whose current configuration is considered
54 * @ifnum: the desired interface
55 *
56 * This walks the device descriptor for the currently active configuration
57 * and returns a pointer to the interface with that particular interface
58 * number, or null.
59 *
60 * Note that configuration descriptors are not required to assign interface
61 * numbers sequentially, so that it would be incorrect to assume that
62 * the first interface in that descriptor corresponds to interface zero.
63 * This routine helps device drivers avoid such mistakes.
64 * However, you should make sure that you do the right thing with any
65 * alternate settings available for this interfaces.
66 *
67 * Don't call this function unless you are bound to one of the interfaces
68 * on this device or you have locked the device!
69 */
70 struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, unsigned ifnum)
71 {
72 struct usb_host_config *config = dev->actconfig;
73 int i;
74
75 if (!config)
76 return NULL;
77 for (i = 0; i < config->desc.bNumInterfaces; i++)
78 if (config->interface[i]->altsetting[0]
79 .desc.bInterfaceNumber == ifnum)
80 return config->interface[i];
81
82 return NULL;
83 }
84
85 /**
86 * usb_altnum_to_altsetting - get the altsetting structure with a given
87 * alternate setting number.
88 * @intf: the interface containing the altsetting in question
89 * @altnum: the desired alternate setting number
90 *
91 * This searches the altsetting array of the specified interface for
92 * an entry with the correct bAlternateSetting value and returns a pointer
93 * to that entry, or null.
94 *
95 * Note that altsettings need not be stored sequentially by number, so
96 * it would be incorrect to assume that the first altsetting entry in
97 * the array corresponds to altsetting zero. This routine helps device
98 * drivers avoid such mistakes.
99 *
100 * Don't call this function unless you are bound to the intf interface
101 * or you have locked the device!
102 */
103 struct usb_host_interface *usb_altnum_to_altsetting(struct usb_interface *intf,
104 unsigned int altnum)
105 {
106 int i;
107
108 for (i = 0; i < intf->num_altsetting; i++) {
109 if (intf->altsetting[i].desc.bAlternateSetting == altnum)
110 return &intf->altsetting[i];
111 }
112 return NULL;
113 }
114
115 struct find_interface_arg {
116 int minor;
117 struct usb_interface *interface;
118 };
119
120 static int __find_interface(struct device * dev, void * data)
121 {
122 struct find_interface_arg *arg = data;
123 struct usb_interface *intf;
124
125 /* can't look at usb devices, only interfaces */
126 if (is_usb_device(dev))
127 return 0;
128
129 intf = to_usb_interface(dev);
130 if (intf->minor != -1 && intf->minor == arg->minor) {
131 arg->interface = intf;
132 return 1;
133 }
134 return 0;
135 }
136
137 /**
138 * usb_find_interface - find usb_interface pointer for driver and device
139 * @drv: the driver whose current configuration is considered
140 * @minor: the minor number of the desired device
141 *
142 * This walks the driver device list and returns a pointer to the interface
143 * with the matching minor. Note, this only works for devices that share the
144 * USB major number.
145 */
146 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
147 {
148 struct find_interface_arg argb;
149
150 argb.minor = minor;
151 argb.interface = NULL;
152 driver_for_each_device(&drv->drvwrap.driver, NULL, &argb,
153 __find_interface);
154 return argb.interface;
155 }
156
157 /**
158 * usb_release_dev - free a usb device structure when all users of it are finished.
159 * @dev: device that's been disconnected
160 *
161 * Will be called only by the device core when all users of this usb device are
162 * done.
163 */
164 static void usb_release_dev(struct device *dev)
165 {
166 struct usb_device *udev;
167
168 udev = to_usb_device(dev);
169
170 usb_destroy_configuration(udev);
171 usb_bus_put(udev->bus);
172 kfree(udev->product);
173 kfree(udev->manufacturer);
174 kfree(udev->serial);
175 kfree(udev);
176 }
177
178 /**
179 * usb_alloc_dev - usb device constructor (usbcore-internal)
180 * @parent: hub to which device is connected; null to allocate a root hub
181 * @bus: bus used to access the device
182 * @port1: one-based index of port; ignored for root hubs
183 * Context: !in_interrupt ()
184 *
185 * Only hub drivers (including virtual root hub drivers for host
186 * controllers) should ever call this.
187 *
188 * This call may not be used in a non-sleeping context.
189 */
190 struct usb_device *
191 usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
192 {
193 struct usb_device *dev;
194
195 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
196 if (!dev)
197 return NULL;
198
199 bus = usb_bus_get(bus);
200 if (!bus) {
201 kfree(dev);
202 return NULL;
203 }
204
205 device_initialize(&dev->dev);
206 dev->dev.bus = &usb_bus_type;
207 dev->dev.dma_mask = bus->controller->dma_mask;
208 dev->dev.release = usb_release_dev;
209 dev->state = USB_STATE_ATTACHED;
210
211 /* This magic assignment distinguishes devices from interfaces */
212 dev->dev.platform_data = &usb_generic_driver;
213
214 INIT_LIST_HEAD(&dev->ep0.urb_list);
215 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
216 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
217 /* ep0 maxpacket comes later, from device descriptor */
218 dev->ep_in[0] = dev->ep_out[0] = &dev->ep0;
219
220 /* Save readable and stable topology id, distinguishing devices
221 * by location for diagnostics, tools, driver model, etc. The
222 * string is a path along hub ports, from the root. Each device's
223 * dev->devpath will be stable until USB is re-cabled, and hubs
224 * are often labeled with these port numbers. The bus_id isn't
225 * as stable: bus->busnum changes easily from modprobe order,
226 * cardbus or pci hotplugging, and so on.
227 */
228 if (unlikely (!parent)) {
229 dev->devpath [0] = '0';
230
231 dev->dev.parent = bus->controller;
232 sprintf (&dev->dev.bus_id[0], "usb%d", bus->busnum);
233 } else {
234 /* match any labeling on the hubs; it's one-based */
235 if (parent->devpath [0] == '0')
236 snprintf (dev->devpath, sizeof dev->devpath,
237 "%d", port1);
238 else
239 snprintf (dev->devpath, sizeof dev->devpath,
240 "%s.%d", parent->devpath, port1);
241
242 dev->dev.parent = &parent->dev;
243 sprintf (&dev->dev.bus_id[0], "%d-%s",
244 bus->busnum, dev->devpath);
245
246 /* hub driver sets up TT records */
247 }
248
249 dev->portnum = port1;
250 dev->bus = bus;
251 dev->parent = parent;
252 INIT_LIST_HEAD(&dev->filelist);
253
254 return dev;
255 }
256
257 /**
258 * usb_get_dev - increments the reference count of the usb device structure
259 * @dev: the device being referenced
260 *
261 * Each live reference to a device should be refcounted.
262 *
263 * Drivers for USB interfaces should normally record such references in
264 * their probe() methods, when they bind to an interface, and release
265 * them by calling usb_put_dev(), in their disconnect() methods.
266 *
267 * A pointer to the device with the incremented reference counter is returned.
268 */
269 struct usb_device *usb_get_dev(struct usb_device *dev)
270 {
271 if (dev)
272 get_device(&dev->dev);
273 return dev;
274 }
275
276 /**
277 * usb_put_dev - release a use of the usb device structure
278 * @dev: device that's been disconnected
279 *
280 * Must be called when a user of a device is finished with it. When the last
281 * user of the device calls this function, the memory of the device is freed.
282 */
283 void usb_put_dev(struct usb_device *dev)
284 {
285 if (dev)
286 put_device(&dev->dev);
287 }
288
289 /**
290 * usb_get_intf - increments the reference count of the usb interface structure
291 * @intf: the interface being referenced
292 *
293 * Each live reference to a interface must be refcounted.
294 *
295 * Drivers for USB interfaces should normally record such references in
296 * their probe() methods, when they bind to an interface, and release
297 * them by calling usb_put_intf(), in their disconnect() methods.
298 *
299 * A pointer to the interface with the incremented reference counter is
300 * returned.
301 */
302 struct usb_interface *usb_get_intf(struct usb_interface *intf)
303 {
304 if (intf)
305 get_device(&intf->dev);
306 return intf;
307 }
308
309 /**
310 * usb_put_intf - release a use of the usb interface structure
311 * @intf: interface that's been decremented
312 *
313 * Must be called when a user of an interface is finished with it. When the
314 * last user of the interface calls this function, the memory of the interface
315 * is freed.
316 */
317 void usb_put_intf(struct usb_interface *intf)
318 {
319 if (intf)
320 put_device(&intf->dev);
321 }
322
323
324 /* USB device locking
325 *
326 * USB devices and interfaces are locked using the semaphore in their
327 * embedded struct device. The hub driver guarantees that whenever a
328 * device is connected or disconnected, drivers are called with the
329 * USB device locked as well as their particular interface.
330 *
331 * Complications arise when several devices are to be locked at the same
332 * time. Only hub-aware drivers that are part of usbcore ever have to
333 * do this; nobody else needs to worry about it. The rule for locking
334 * is simple:
335 *
336 * When locking both a device and its parent, always lock the
337 * the parent first.
338 */
339
340 /**
341 * usb_lock_device_for_reset - cautiously acquire the lock for a
342 * usb device structure
343 * @udev: device that's being locked
344 * @iface: interface bound to the driver making the request (optional)
345 *
346 * Attempts to acquire the device lock, but fails if the device is
347 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
348 * is neither BINDING nor BOUND. Rather than sleeping to wait for the
349 * lock, the routine polls repeatedly. This is to prevent deadlock with
350 * disconnect; in some drivers (such as usb-storage) the disconnect()
351 * or suspend() method will block waiting for a device reset to complete.
352 *
353 * Returns a negative error code for failure, otherwise 1 or 0 to indicate
354 * that the device will or will not have to be unlocked. (0 can be
355 * returned when an interface is given and is BINDING, because in that
356 * case the driver already owns the device lock.)
357 */
358 int usb_lock_device_for_reset(struct usb_device *udev,
359 struct usb_interface *iface)
360 {
361 unsigned long jiffies_expire = jiffies + HZ;
362
363 if (udev->state == USB_STATE_NOTATTACHED)
364 return -ENODEV;
365 if (udev->state == USB_STATE_SUSPENDED)
366 return -EHOSTUNREACH;
367 if (iface) {
368 switch (iface->condition) {
369 case USB_INTERFACE_BINDING:
370 return 0;
371 case USB_INTERFACE_BOUND:
372 break;
373 default:
374 return -EINTR;
375 }
376 }
377
378 while (usb_trylock_device(udev) != 0) {
379
380 /* If we can't acquire the lock after waiting one second,
381 * we're probably deadlocked */
382 if (time_after(jiffies, jiffies_expire))
383 return -EBUSY;
384
385 msleep(15);
386 if (udev->state == USB_STATE_NOTATTACHED)
387 return -ENODEV;
388 if (udev->state == USB_STATE_SUSPENDED)
389 return -EHOSTUNREACH;
390 if (iface && iface->condition != USB_INTERFACE_BOUND)
391 return -EINTR;
392 }
393 return 1;
394 }
395
396
397 static struct usb_device *match_device(struct usb_device *dev,
398 u16 vendor_id, u16 product_id)
399 {
400 struct usb_device *ret_dev = NULL;
401 int child;
402
403 dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
404 le16_to_cpu(dev->descriptor.idVendor),
405 le16_to_cpu(dev->descriptor.idProduct));
406
407 /* see if this device matches */
408 if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
409 (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
410 dev_dbg (&dev->dev, "matched this device!\n");
411 ret_dev = usb_get_dev(dev);
412 goto exit;
413 }
414
415 /* look through all of the children of this device */
416 for (child = 0; child < dev->maxchild; ++child) {
417 if (dev->children[child]) {
418 usb_lock_device(dev->children[child]);
419 ret_dev = match_device(dev->children[child],
420 vendor_id, product_id);
421 usb_unlock_device(dev->children[child]);
422 if (ret_dev)
423 goto exit;
424 }
425 }
426 exit:
427 return ret_dev;
428 }
429
430 /**
431 * usb_find_device - find a specific usb device in the system
432 * @vendor_id: the vendor id of the device to find
433 * @product_id: the product id of the device to find
434 *
435 * Returns a pointer to a struct usb_device if such a specified usb
436 * device is present in the system currently. The usage count of the
437 * device will be incremented if a device is found. Make sure to call
438 * usb_put_dev() when the caller is finished with the device.
439 *
440 * If a device with the specified vendor and product id is not found,
441 * NULL is returned.
442 */
443 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
444 {
445 struct list_head *buslist;
446 struct usb_bus *bus;
447 struct usb_device *dev = NULL;
448
449 mutex_lock(&usb_bus_list_lock);
450 for (buslist = usb_bus_list.next;
451 buslist != &usb_bus_list;
452 buslist = buslist->next) {
453 bus = container_of(buslist, struct usb_bus, bus_list);
454 if (!bus->root_hub)
455 continue;
456 usb_lock_device(bus->root_hub);
457 dev = match_device(bus->root_hub, vendor_id, product_id);
458 usb_unlock_device(bus->root_hub);
459 if (dev)
460 goto exit;
461 }
462 exit:
463 mutex_unlock(&usb_bus_list_lock);
464 return dev;
465 }
466
467 /**
468 * usb_get_current_frame_number - return current bus frame number
469 * @dev: the device whose bus is being queried
470 *
471 * Returns the current frame number for the USB host controller
472 * used with the given USB device. This can be used when scheduling
473 * isochronous requests.
474 *
475 * Note that different kinds of host controller have different
476 * "scheduling horizons". While one type might support scheduling only
477 * 32 frames into the future, others could support scheduling up to
478 * 1024 frames into the future.
479 */
480 int usb_get_current_frame_number(struct usb_device *dev)
481 {
482 return dev->bus->op->get_frame_number (dev);
483 }
484
485 /*-------------------------------------------------------------------*/
486 /*
487 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
488 * extra field of the interface and endpoint descriptor structs.
489 */
490
491 int __usb_get_extra_descriptor(char *buffer, unsigned size,
492 unsigned char type, void **ptr)
493 {
494 struct usb_descriptor_header *header;
495
496 while (size >= sizeof(struct usb_descriptor_header)) {
497 header = (struct usb_descriptor_header *)buffer;
498
499 if (header->bLength < 2) {
500 printk(KERN_ERR
501 "%s: bogus descriptor, type %d length %d\n",
502 usbcore_name,
503 header->bDescriptorType,
504 header->bLength);
505 return -1;
506 }
507
508 if (header->bDescriptorType == type) {
509 *ptr = header;
510 return 0;
511 }
512
513 buffer += header->bLength;
514 size -= header->bLength;
515 }
516 return -1;
517 }
518
519 /**
520 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
521 * @dev: device the buffer will be used with
522 * @size: requested buffer size
523 * @mem_flags: affect whether allocation may block
524 * @dma: used to return DMA address of buffer
525 *
526 * Return value is either null (indicating no buffer could be allocated), or
527 * the cpu-space pointer to a buffer that may be used to perform DMA to the
528 * specified device. Such cpu-space buffers are returned along with the DMA
529 * address (through the pointer provided).
530 *
531 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
532 * to avoid behaviors like using "DMA bounce buffers", or tying down I/O
533 * mapping hardware for long idle periods. The implementation varies between
534 * platforms, depending on details of how DMA will work to this device.
535 * Using these buffers also helps prevent cacheline sharing problems on
536 * architectures where CPU caches are not DMA-coherent.
537 *
538 * When the buffer is no longer used, free it with usb_buffer_free().
539 */
540 void *usb_buffer_alloc (
541 struct usb_device *dev,
542 size_t size,
543 gfp_t mem_flags,
544 dma_addr_t *dma
545 )
546 {
547 if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_alloc)
548 return NULL;
549 return dev->bus->op->buffer_alloc (dev->bus, size, mem_flags, dma);
550 }
551
552 /**
553 * usb_buffer_free - free memory allocated with usb_buffer_alloc()
554 * @dev: device the buffer was used with
555 * @size: requested buffer size
556 * @addr: CPU address of buffer
557 * @dma: DMA address of buffer
558 *
559 * This reclaims an I/O buffer, letting it be reused. The memory must have
560 * been allocated using usb_buffer_alloc(), and the parameters must match
561 * those provided in that allocation request.
562 */
563 void usb_buffer_free (
564 struct usb_device *dev,
565 size_t size,
566 void *addr,
567 dma_addr_t dma
568 )
569 {
570 if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_free)
571 return;
572 if (!addr)
573 return;
574 dev->bus->op->buffer_free (dev->bus, size, addr, dma);
575 }
576
577 /**
578 * usb_buffer_map - create DMA mapping(s) for an urb
579 * @urb: urb whose transfer_buffer/setup_packet will be mapped
580 *
581 * Return value is either null (indicating no buffer could be mapped), or
582 * the parameter. URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
583 * added to urb->transfer_flags if the operation succeeds. If the device
584 * is connected to this system through a non-DMA controller, this operation
585 * always succeeds.
586 *
587 * This call would normally be used for an urb which is reused, perhaps
588 * as the target of a large periodic transfer, with usb_buffer_dmasync()
589 * calls to synchronize memory and dma state.
590 *
591 * Reverse the effect of this call with usb_buffer_unmap().
592 */
593 #if 0
594 struct urb *usb_buffer_map (struct urb *urb)
595 {
596 struct usb_bus *bus;
597 struct device *controller;
598
599 if (!urb
600 || !urb->dev
601 || !(bus = urb->dev->bus)
602 || !(controller = bus->controller))
603 return NULL;
604
605 if (controller->dma_mask) {
606 urb->transfer_dma = dma_map_single (controller,
607 urb->transfer_buffer, urb->transfer_buffer_length,
608 usb_pipein (urb->pipe)
609 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
610 if (usb_pipecontrol (urb->pipe))
611 urb->setup_dma = dma_map_single (controller,
612 urb->setup_packet,
613 sizeof (struct usb_ctrlrequest),
614 DMA_TO_DEVICE);
615 // FIXME generic api broken like pci, can't report errors
616 // if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
617 } else
618 urb->transfer_dma = ~0;
619 urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
620 | URB_NO_SETUP_DMA_MAP);
621 return urb;
622 }
623 #endif /* 0 */
624
625 /* XXX DISABLED, no users currently. If you wish to re-enable this
626 * XXX please determine whether the sync is to transfer ownership of
627 * XXX the buffer from device to cpu or vice verse, and thusly use the
628 * XXX appropriate _for_{cpu,device}() method. -DaveM
629 */
630 #if 0
631
632 /**
633 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
634 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
635 */
636 void usb_buffer_dmasync (struct urb *urb)
637 {
638 struct usb_bus *bus;
639 struct device *controller;
640
641 if (!urb
642 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
643 || !urb->dev
644 || !(bus = urb->dev->bus)
645 || !(controller = bus->controller))
646 return;
647
648 if (controller->dma_mask) {
649 dma_sync_single (controller,
650 urb->transfer_dma, urb->transfer_buffer_length,
651 usb_pipein (urb->pipe)
652 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
653 if (usb_pipecontrol (urb->pipe))
654 dma_sync_single (controller,
655 urb->setup_dma,
656 sizeof (struct usb_ctrlrequest),
657 DMA_TO_DEVICE);
658 }
659 }
660 #endif
661
662 /**
663 * usb_buffer_unmap - free DMA mapping(s) for an urb
664 * @urb: urb whose transfer_buffer will be unmapped
665 *
666 * Reverses the effect of usb_buffer_map().
667 */
668 #if 0
669 void usb_buffer_unmap (struct urb *urb)
670 {
671 struct usb_bus *bus;
672 struct device *controller;
673
674 if (!urb
675 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
676 || !urb->dev
677 || !(bus = urb->dev->bus)
678 || !(controller = bus->controller))
679 return;
680
681 if (controller->dma_mask) {
682 dma_unmap_single (controller,
683 urb->transfer_dma, urb->transfer_buffer_length,
684 usb_pipein (urb->pipe)
685 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
686 if (usb_pipecontrol (urb->pipe))
687 dma_unmap_single (controller,
688 urb->setup_dma,
689 sizeof (struct usb_ctrlrequest),
690 DMA_TO_DEVICE);
691 }
692 urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
693 | URB_NO_SETUP_DMA_MAP);
694 }
695 #endif /* 0 */
696
697 /**
698 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
699 * @dev: device to which the scatterlist will be mapped
700 * @pipe: endpoint defining the mapping direction
701 * @sg: the scatterlist to map
702 * @nents: the number of entries in the scatterlist
703 *
704 * Return value is either < 0 (indicating no buffers could be mapped), or
705 * the number of DMA mapping array entries in the scatterlist.
706 *
707 * The caller is responsible for placing the resulting DMA addresses from
708 * the scatterlist into URB transfer buffer pointers, and for setting the
709 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
710 *
711 * Top I/O rates come from queuing URBs, instead of waiting for each one
712 * to complete before starting the next I/O. This is particularly easy
713 * to do with scatterlists. Just allocate and submit one URB for each DMA
714 * mapping entry returned, stopping on the first error or when all succeed.
715 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
716 *
717 * This call would normally be used when translating scatterlist requests,
718 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
719 * may be able to coalesce mappings for improved I/O efficiency.
720 *
721 * Reverse the effect of this call with usb_buffer_unmap_sg().
722 */
723 int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
724 struct scatterlist *sg, int nents)
725 {
726 struct usb_bus *bus;
727 struct device *controller;
728
729 if (!dev
730 || usb_pipecontrol (pipe)
731 || !(bus = dev->bus)
732 || !(controller = bus->controller)
733 || !controller->dma_mask)
734 return -1;
735
736 // FIXME generic api broken like pci, can't report errors
737 return dma_map_sg (controller, sg, nents,
738 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
739 }
740
741 /* XXX DISABLED, no users currently. If you wish to re-enable this
742 * XXX please determine whether the sync is to transfer ownership of
743 * XXX the buffer from device to cpu or vice verse, and thusly use the
744 * XXX appropriate _for_{cpu,device}() method. -DaveM
745 */
746 #if 0
747
748 /**
749 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
750 * @dev: device to which the scatterlist will be mapped
751 * @pipe: endpoint defining the mapping direction
752 * @sg: the scatterlist to synchronize
753 * @n_hw_ents: the positive return value from usb_buffer_map_sg
754 *
755 * Use this when you are re-using a scatterlist's data buffers for
756 * another USB request.
757 */
758 void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
759 struct scatterlist *sg, int n_hw_ents)
760 {
761 struct usb_bus *bus;
762 struct device *controller;
763
764 if (!dev
765 || !(bus = dev->bus)
766 || !(controller = bus->controller)
767 || !controller->dma_mask)
768 return;
769
770 dma_sync_sg (controller, sg, n_hw_ents,
771 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
772 }
773 #endif
774
775 /**
776 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
777 * @dev: device to which the scatterlist will be mapped
778 * @pipe: endpoint defining the mapping direction
779 * @sg: the scatterlist to unmap
780 * @n_hw_ents: the positive return value from usb_buffer_map_sg
781 *
782 * Reverses the effect of usb_buffer_map_sg().
783 */
784 void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
785 struct scatterlist *sg, int n_hw_ents)
786 {
787 struct usb_bus *bus;
788 struct device *controller;
789
790 if (!dev
791 || !(bus = dev->bus)
792 || !(controller = bus->controller)
793 || !controller->dma_mask)
794 return;
795
796 dma_unmap_sg (controller, sg, n_hw_ents,
797 usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
798 }
799
800 /* format to disable USB on kernel command line is: nousb */
801 __module_param_call("", nousb, param_set_bool, param_get_bool, &nousb, 0444);
802
803 /*
804 * for external read access to <nousb>
805 */
806 int usb_disabled(void)
807 {
808 return nousb;
809 }
810
811 /*
812 * Init
813 */
814 static int __init usb_init(void)
815 {
816 int retval;
817 if (nousb) {
818 pr_info ("%s: USB support disabled\n", usbcore_name);
819 return 0;
820 }
821
822 retval = bus_register(&usb_bus_type);
823 if (retval)
824 goto out;
825 retval = usb_host_init();
826 if (retval)
827 goto host_init_failed;
828 retval = usb_major_init();
829 if (retval)
830 goto major_init_failed;
831 retval = usb_register(&usbfs_driver);
832 if (retval)
833 goto driver_register_failed;
834 retval = usbdev_init();
835 if (retval)
836 goto usbdevice_init_failed;
837 retval = usbfs_init();
838 if (retval)
839 goto fs_init_failed;
840 retval = usb_hub_init();
841 if (retval)
842 goto hub_init_failed;
843 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
844 if (!retval)
845 goto out;
846
847 usb_hub_cleanup();
848 hub_init_failed:
849 usbfs_cleanup();
850 fs_init_failed:
851 usbdev_cleanup();
852 usbdevice_init_failed:
853 usb_deregister(&usbfs_driver);
854 driver_register_failed:
855 usb_major_cleanup();
856 major_init_failed:
857 usb_host_cleanup();
858 host_init_failed:
859 bus_unregister(&usb_bus_type);
860 out:
861 return retval;
862 }
863
864 /*
865 * Cleanup
866 */
867 static void __exit usb_exit(void)
868 {
869 /* This will matter if shutdown/reboot does exitcalls. */
870 if (nousb)
871 return;
872
873 usb_deregister_device_driver(&usb_generic_driver);
874 usb_major_cleanup();
875 usbfs_cleanup();
876 usb_deregister(&usbfs_driver);
877 usbdev_cleanup();
878 usb_hub_cleanup();
879 usb_host_cleanup();
880 bus_unregister(&usb_bus_type);
881 }
882
883 subsys_initcall(usb_init);
884 module_exit(usb_exit);
885
886 /*
887 * USB may be built into the kernel or be built as modules.
888 * These symbols are exported for device (or host controller)
889 * driver modules to use.
890 */
891
892 EXPORT_SYMBOL(usb_disabled);
893
894 EXPORT_SYMBOL_GPL(usb_get_intf);
895 EXPORT_SYMBOL_GPL(usb_put_intf);
896
897 EXPORT_SYMBOL(usb_put_dev);
898 EXPORT_SYMBOL(usb_get_dev);
899 EXPORT_SYMBOL(usb_hub_tt_clear_buffer);
900
901 EXPORT_SYMBOL(usb_lock_device_for_reset);
902
903 EXPORT_SYMBOL(usb_find_interface);
904 EXPORT_SYMBOL(usb_ifnum_to_if);
905 EXPORT_SYMBOL(usb_altnum_to_altsetting);
906
907 EXPORT_SYMBOL(__usb_get_extra_descriptor);
908
909 EXPORT_SYMBOL(usb_find_device);
910 EXPORT_SYMBOL(usb_get_current_frame_number);
911
912 EXPORT_SYMBOL (usb_buffer_alloc);
913 EXPORT_SYMBOL (usb_buffer_free);
914
915 #if 0
916 EXPORT_SYMBOL (usb_buffer_map);
917 EXPORT_SYMBOL (usb_buffer_dmasync);
918 EXPORT_SYMBOL (usb_buffer_unmap);
919 #endif
920
921 EXPORT_SYMBOL (usb_buffer_map_sg);
922 #if 0
923 EXPORT_SYMBOL (usb_buffer_dmasync_sg);
924 #endif
925 EXPORT_SYMBOL (usb_buffer_unmap_sg);
926
927 MODULE_LICENSE("GPL");
This page took 0.048516 seconds and 6 git commands to generate.