Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/davej/cpufreq
[deliverable/linux.git] / drivers / usb / core / usb.c
1 /*
2 * drivers/usb/core/usb.c
3 *
4 * (C) Copyright Linus Torvalds 1999
5 * (C) Copyright Johannes Erdfelt 1999-2001
6 * (C) Copyright Andreas Gal 1999
7 * (C) Copyright Gregory P. Smith 1999
8 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9 * (C) Copyright Randy Dunlap 2000
10 * (C) Copyright David Brownell 2000-2004
11 * (C) Copyright Yggdrasil Computing, Inc. 2000
12 * (usb_device_id matching changes by Adam J. Richter)
13 * (C) Copyright Greg Kroah-Hartman 2002-2003
14 *
15 * NOTE! This is not actually a driver at all, rather this is
16 * just a collection of helper routines that implement the
17 * generic USB things that the real drivers can use..
18 *
19 * Think of this as a "USB library" rather than anything else.
20 * It should be considered a slave, with no callbacks. Callbacks
21 * are evil.
22 */
23
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h> /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/mutex.h>
36 #include <linux/workqueue.h>
37 #include <linux/debugfs.h>
38
39 #include <asm/io.h>
40 #include <linux/scatterlist.h>
41 #include <linux/mm.h>
42 #include <linux/dma-mapping.h>
43
44 #include "hcd.h"
45 #include "usb.h"
46
47
48 const char *usbcore_name = "usbcore";
49
50 static int nousb; /* Disable USB when built into kernel image */
51
52 /* Workqueue for autosuspend and for remote wakeup of root hubs */
53 struct workqueue_struct *ksuspend_usb_wq;
54
55 #ifdef CONFIG_USB_SUSPEND
56 static int usb_autosuspend_delay = 2; /* Default delay value,
57 * in seconds */
58 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
59 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
60
61 #else
62 #define usb_autosuspend_delay 0
63 #endif
64
65
66 /**
67 * usb_ifnum_to_if - get the interface object with a given interface number
68 * @dev: the device whose current configuration is considered
69 * @ifnum: the desired interface
70 *
71 * This walks the device descriptor for the currently active configuration
72 * and returns a pointer to the interface with that particular interface
73 * number, or null.
74 *
75 * Note that configuration descriptors are not required to assign interface
76 * numbers sequentially, so that it would be incorrect to assume that
77 * the first interface in that descriptor corresponds to interface zero.
78 * This routine helps device drivers avoid such mistakes.
79 * However, you should make sure that you do the right thing with any
80 * alternate settings available for this interfaces.
81 *
82 * Don't call this function unless you are bound to one of the interfaces
83 * on this device or you have locked the device!
84 */
85 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
86 unsigned ifnum)
87 {
88 struct usb_host_config *config = dev->actconfig;
89 int i;
90
91 if (!config)
92 return NULL;
93 for (i = 0; i < config->desc.bNumInterfaces; i++)
94 if (config->interface[i]->altsetting[0]
95 .desc.bInterfaceNumber == ifnum)
96 return config->interface[i];
97
98 return NULL;
99 }
100 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
101
102 /**
103 * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
104 * @intf: the interface containing the altsetting in question
105 * @altnum: the desired alternate setting number
106 *
107 * This searches the altsetting array of the specified interface for
108 * an entry with the correct bAlternateSetting value and returns a pointer
109 * to that entry, or null.
110 *
111 * Note that altsettings need not be stored sequentially by number, so
112 * it would be incorrect to assume that the first altsetting entry in
113 * the array corresponds to altsetting zero. This routine helps device
114 * drivers avoid such mistakes.
115 *
116 * Don't call this function unless you are bound to the intf interface
117 * or you have locked the device!
118 */
119 struct usb_host_interface *usb_altnum_to_altsetting(
120 const struct usb_interface *intf,
121 unsigned int altnum)
122 {
123 int i;
124
125 for (i = 0; i < intf->num_altsetting; i++) {
126 if (intf->altsetting[i].desc.bAlternateSetting == altnum)
127 return &intf->altsetting[i];
128 }
129 return NULL;
130 }
131 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
132
133 struct find_interface_arg {
134 int minor;
135 struct usb_interface *interface;
136 };
137
138 static int __find_interface(struct device *dev, void *data)
139 {
140 struct find_interface_arg *arg = data;
141 struct usb_interface *intf;
142
143 if (!is_usb_interface(dev))
144 return 0;
145
146 intf = to_usb_interface(dev);
147 if (intf->minor != -1 && intf->minor == arg->minor) {
148 arg->interface = intf;
149 return 1;
150 }
151 return 0;
152 }
153
154 /**
155 * usb_find_interface - find usb_interface pointer for driver and device
156 * @drv: the driver whose current configuration is considered
157 * @minor: the minor number of the desired device
158 *
159 * This walks the driver device list and returns a pointer to the interface
160 * with the matching minor. Note, this only works for devices that share the
161 * USB major number.
162 */
163 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
164 {
165 struct find_interface_arg argb;
166 int retval;
167
168 argb.minor = minor;
169 argb.interface = NULL;
170 /* eat the error, it will be in argb.interface */
171 retval = driver_for_each_device(&drv->drvwrap.driver, NULL, &argb,
172 __find_interface);
173 return argb.interface;
174 }
175 EXPORT_SYMBOL_GPL(usb_find_interface);
176
177 /**
178 * usb_release_dev - free a usb device structure when all users of it are finished.
179 * @dev: device that's been disconnected
180 *
181 * Will be called only by the device core when all users of this usb device are
182 * done.
183 */
184 static void usb_release_dev(struct device *dev)
185 {
186 struct usb_device *udev;
187 struct usb_hcd *hcd;
188
189 udev = to_usb_device(dev);
190 hcd = bus_to_hcd(udev->bus);
191
192 usb_destroy_configuration(udev);
193 /* Root hubs aren't real devices, so don't free HCD resources */
194 if (hcd->driver->free_dev && udev->parent)
195 hcd->driver->free_dev(hcd, udev);
196 usb_put_hcd(hcd);
197 kfree(udev->product);
198 kfree(udev->manufacturer);
199 kfree(udev->serial);
200 kfree(udev);
201 }
202
203 #ifdef CONFIG_HOTPLUG
204 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
205 {
206 struct usb_device *usb_dev;
207
208 usb_dev = to_usb_device(dev);
209
210 if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
211 return -ENOMEM;
212
213 if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
214 return -ENOMEM;
215
216 return 0;
217 }
218
219 #else
220
221 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
222 {
223 return -ENODEV;
224 }
225 #endif /* CONFIG_HOTPLUG */
226
227 #ifdef CONFIG_PM
228
229 static int ksuspend_usb_init(void)
230 {
231 /* This workqueue is supposed to be both freezable and
232 * singlethreaded. Its job doesn't justify running on more
233 * than one CPU.
234 */
235 ksuspend_usb_wq = create_freezeable_workqueue("ksuspend_usbd");
236 if (!ksuspend_usb_wq)
237 return -ENOMEM;
238 return 0;
239 }
240
241 static void ksuspend_usb_cleanup(void)
242 {
243 destroy_workqueue(ksuspend_usb_wq);
244 }
245
246 /* USB device Power-Management thunks.
247 * There's no need to distinguish here between quiescing a USB device
248 * and powering it down; the generic_suspend() routine takes care of
249 * it by skipping the usb_port_suspend() call for a quiesce. And for
250 * USB interfaces there's no difference at all.
251 */
252
253 static int usb_dev_prepare(struct device *dev)
254 {
255 return 0; /* Implement eventually? */
256 }
257
258 static void usb_dev_complete(struct device *dev)
259 {
260 /* Currently used only for rebinding interfaces */
261 usb_resume(dev, PMSG_RESUME); /* Message event is meaningless */
262 }
263
264 static int usb_dev_suspend(struct device *dev)
265 {
266 return usb_suspend(dev, PMSG_SUSPEND);
267 }
268
269 static int usb_dev_resume(struct device *dev)
270 {
271 return usb_resume(dev, PMSG_RESUME);
272 }
273
274 static int usb_dev_freeze(struct device *dev)
275 {
276 return usb_suspend(dev, PMSG_FREEZE);
277 }
278
279 static int usb_dev_thaw(struct device *dev)
280 {
281 return usb_resume(dev, PMSG_THAW);
282 }
283
284 static int usb_dev_poweroff(struct device *dev)
285 {
286 return usb_suspend(dev, PMSG_HIBERNATE);
287 }
288
289 static int usb_dev_restore(struct device *dev)
290 {
291 return usb_resume(dev, PMSG_RESTORE);
292 }
293
294 static struct dev_pm_ops usb_device_pm_ops = {
295 .prepare = usb_dev_prepare,
296 .complete = usb_dev_complete,
297 .suspend = usb_dev_suspend,
298 .resume = usb_dev_resume,
299 .freeze = usb_dev_freeze,
300 .thaw = usb_dev_thaw,
301 .poweroff = usb_dev_poweroff,
302 .restore = usb_dev_restore,
303 };
304
305 #else
306
307 #define ksuspend_usb_init() 0
308 #define ksuspend_usb_cleanup() do {} while (0)
309 #define usb_device_pm_ops (*(struct dev_pm_ops *)0)
310
311 #endif /* CONFIG_PM */
312
313
314 static char *usb_nodename(struct device *dev)
315 {
316 struct usb_device *usb_dev;
317
318 usb_dev = to_usb_device(dev);
319 return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
320 usb_dev->bus->busnum, usb_dev->devnum);
321 }
322
323 struct device_type usb_device_type = {
324 .name = "usb_device",
325 .release = usb_release_dev,
326 .uevent = usb_dev_uevent,
327 .nodename = usb_nodename,
328 .pm = &usb_device_pm_ops,
329 };
330
331
332 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
333 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
334 {
335 struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
336 return hcd->wireless;
337 }
338
339
340 /**
341 * usb_alloc_dev - usb device constructor (usbcore-internal)
342 * @parent: hub to which device is connected; null to allocate a root hub
343 * @bus: bus used to access the device
344 * @port1: one-based index of port; ignored for root hubs
345 * Context: !in_interrupt()
346 *
347 * Only hub drivers (including virtual root hub drivers for host
348 * controllers) should ever call this.
349 *
350 * This call may not be used in a non-sleeping context.
351 */
352 struct usb_device *usb_alloc_dev(struct usb_device *parent,
353 struct usb_bus *bus, unsigned port1)
354 {
355 struct usb_device *dev;
356 struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self);
357 unsigned root_hub = 0;
358
359 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
360 if (!dev)
361 return NULL;
362
363 if (!usb_get_hcd(bus_to_hcd(bus))) {
364 kfree(dev);
365 return NULL;
366 }
367 /* Root hubs aren't true devices, so don't allocate HCD resources */
368 if (usb_hcd->driver->alloc_dev && parent &&
369 !usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
370 usb_put_hcd(bus_to_hcd(bus));
371 kfree(dev);
372 return NULL;
373 }
374
375 device_initialize(&dev->dev);
376 dev->dev.bus = &usb_bus_type;
377 dev->dev.type = &usb_device_type;
378 dev->dev.groups = usb_device_groups;
379 dev->dev.dma_mask = bus->controller->dma_mask;
380 set_dev_node(&dev->dev, dev_to_node(bus->controller));
381 dev->state = USB_STATE_ATTACHED;
382 atomic_set(&dev->urbnum, 0);
383
384 INIT_LIST_HEAD(&dev->ep0.urb_list);
385 dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
386 dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
387 /* ep0 maxpacket comes later, from device descriptor */
388 usb_enable_endpoint(dev, &dev->ep0, false);
389 dev->can_submit = 1;
390
391 /* Save readable and stable topology id, distinguishing devices
392 * by location for diagnostics, tools, driver model, etc. The
393 * string is a path along hub ports, from the root. Each device's
394 * dev->devpath will be stable until USB is re-cabled, and hubs
395 * are often labeled with these port numbers. The name isn't
396 * as stable: bus->busnum changes easily from modprobe order,
397 * cardbus or pci hotplugging, and so on.
398 */
399 if (unlikely(!parent)) {
400 dev->devpath[0] = '0';
401 dev->route = 0;
402
403 dev->dev.parent = bus->controller;
404 dev_set_name(&dev->dev, "usb%d", bus->busnum);
405 root_hub = 1;
406 } else {
407 /* match any labeling on the hubs; it's one-based */
408 if (parent->devpath[0] == '0') {
409 snprintf(dev->devpath, sizeof dev->devpath,
410 "%d", port1);
411 /* Root ports are not counted in route string */
412 dev->route = 0;
413 } else {
414 snprintf(dev->devpath, sizeof dev->devpath,
415 "%s.%d", parent->devpath, port1);
416 dev->route = parent->route +
417 (port1 << ((parent->level - 1)*4));
418 }
419
420 dev->dev.parent = &parent->dev;
421 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
422
423 /* hub driver sets up TT records */
424 }
425
426 dev->portnum = port1;
427 dev->bus = bus;
428 dev->parent = parent;
429 INIT_LIST_HEAD(&dev->filelist);
430
431 #ifdef CONFIG_PM
432 mutex_init(&dev->pm_mutex);
433 INIT_DELAYED_WORK(&dev->autosuspend, usb_autosuspend_work);
434 INIT_WORK(&dev->autoresume, usb_autoresume_work);
435 dev->autosuspend_delay = usb_autosuspend_delay * HZ;
436 dev->connect_time = jiffies;
437 dev->active_duration = -jiffies;
438 #endif
439 if (root_hub) /* Root hub always ok [and always wired] */
440 dev->authorized = 1;
441 else {
442 dev->authorized = usb_hcd->authorized_default;
443 dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
444 }
445 return dev;
446 }
447
448 /**
449 * usb_get_dev - increments the reference count of the usb device structure
450 * @dev: the device being referenced
451 *
452 * Each live reference to a device should be refcounted.
453 *
454 * Drivers for USB interfaces should normally record such references in
455 * their probe() methods, when they bind to an interface, and release
456 * them by calling usb_put_dev(), in their disconnect() methods.
457 *
458 * A pointer to the device with the incremented reference counter is returned.
459 */
460 struct usb_device *usb_get_dev(struct usb_device *dev)
461 {
462 if (dev)
463 get_device(&dev->dev);
464 return dev;
465 }
466 EXPORT_SYMBOL_GPL(usb_get_dev);
467
468 /**
469 * usb_put_dev - release a use of the usb device structure
470 * @dev: device that's been disconnected
471 *
472 * Must be called when a user of a device is finished with it. When the last
473 * user of the device calls this function, the memory of the device is freed.
474 */
475 void usb_put_dev(struct usb_device *dev)
476 {
477 if (dev)
478 put_device(&dev->dev);
479 }
480 EXPORT_SYMBOL_GPL(usb_put_dev);
481
482 /**
483 * usb_get_intf - increments the reference count of the usb interface structure
484 * @intf: the interface being referenced
485 *
486 * Each live reference to a interface must be refcounted.
487 *
488 * Drivers for USB interfaces should normally record such references in
489 * their probe() methods, when they bind to an interface, and release
490 * them by calling usb_put_intf(), in their disconnect() methods.
491 *
492 * A pointer to the interface with the incremented reference counter is
493 * returned.
494 */
495 struct usb_interface *usb_get_intf(struct usb_interface *intf)
496 {
497 if (intf)
498 get_device(&intf->dev);
499 return intf;
500 }
501 EXPORT_SYMBOL_GPL(usb_get_intf);
502
503 /**
504 * usb_put_intf - release a use of the usb interface structure
505 * @intf: interface that's been decremented
506 *
507 * Must be called when a user of an interface is finished with it. When the
508 * last user of the interface calls this function, the memory of the interface
509 * is freed.
510 */
511 void usb_put_intf(struct usb_interface *intf)
512 {
513 if (intf)
514 put_device(&intf->dev);
515 }
516 EXPORT_SYMBOL_GPL(usb_put_intf);
517
518 /* USB device locking
519 *
520 * USB devices and interfaces are locked using the semaphore in their
521 * embedded struct device. The hub driver guarantees that whenever a
522 * device is connected or disconnected, drivers are called with the
523 * USB device locked as well as their particular interface.
524 *
525 * Complications arise when several devices are to be locked at the same
526 * time. Only hub-aware drivers that are part of usbcore ever have to
527 * do this; nobody else needs to worry about it. The rule for locking
528 * is simple:
529 *
530 * When locking both a device and its parent, always lock the
531 * the parent first.
532 */
533
534 /**
535 * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
536 * @udev: device that's being locked
537 * @iface: interface bound to the driver making the request (optional)
538 *
539 * Attempts to acquire the device lock, but fails if the device is
540 * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
541 * is neither BINDING nor BOUND. Rather than sleeping to wait for the
542 * lock, the routine polls repeatedly. This is to prevent deadlock with
543 * disconnect; in some drivers (such as usb-storage) the disconnect()
544 * or suspend() method will block waiting for a device reset to complete.
545 *
546 * Returns a negative error code for failure, otherwise 0.
547 */
548 int usb_lock_device_for_reset(struct usb_device *udev,
549 const struct usb_interface *iface)
550 {
551 unsigned long jiffies_expire = jiffies + HZ;
552
553 if (udev->state == USB_STATE_NOTATTACHED)
554 return -ENODEV;
555 if (udev->state == USB_STATE_SUSPENDED)
556 return -EHOSTUNREACH;
557 if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
558 iface->condition == USB_INTERFACE_UNBOUND))
559 return -EINTR;
560
561 while (usb_trylock_device(udev) != 0) {
562
563 /* If we can't acquire the lock after waiting one second,
564 * we're probably deadlocked */
565 if (time_after(jiffies, jiffies_expire))
566 return -EBUSY;
567
568 msleep(15);
569 if (udev->state == USB_STATE_NOTATTACHED)
570 return -ENODEV;
571 if (udev->state == USB_STATE_SUSPENDED)
572 return -EHOSTUNREACH;
573 if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
574 iface->condition == USB_INTERFACE_UNBOUND))
575 return -EINTR;
576 }
577 return 0;
578 }
579 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
580
581 static struct usb_device *match_device(struct usb_device *dev,
582 u16 vendor_id, u16 product_id)
583 {
584 struct usb_device *ret_dev = NULL;
585 int child;
586
587 dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
588 le16_to_cpu(dev->descriptor.idVendor),
589 le16_to_cpu(dev->descriptor.idProduct));
590
591 /* see if this device matches */
592 if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
593 (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
594 dev_dbg(&dev->dev, "matched this device!\n");
595 ret_dev = usb_get_dev(dev);
596 goto exit;
597 }
598
599 /* look through all of the children of this device */
600 for (child = 0; child < dev->maxchild; ++child) {
601 if (dev->children[child]) {
602 usb_lock_device(dev->children[child]);
603 ret_dev = match_device(dev->children[child],
604 vendor_id, product_id);
605 usb_unlock_device(dev->children[child]);
606 if (ret_dev)
607 goto exit;
608 }
609 }
610 exit:
611 return ret_dev;
612 }
613
614 /**
615 * usb_find_device - find a specific usb device in the system
616 * @vendor_id: the vendor id of the device to find
617 * @product_id: the product id of the device to find
618 *
619 * Returns a pointer to a struct usb_device if such a specified usb
620 * device is present in the system currently. The usage count of the
621 * device will be incremented if a device is found. Make sure to call
622 * usb_put_dev() when the caller is finished with the device.
623 *
624 * If a device with the specified vendor and product id is not found,
625 * NULL is returned.
626 */
627 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
628 {
629 struct list_head *buslist;
630 struct usb_bus *bus;
631 struct usb_device *dev = NULL;
632
633 mutex_lock(&usb_bus_list_lock);
634 for (buslist = usb_bus_list.next;
635 buslist != &usb_bus_list;
636 buslist = buslist->next) {
637 bus = container_of(buslist, struct usb_bus, bus_list);
638 if (!bus->root_hub)
639 continue;
640 usb_lock_device(bus->root_hub);
641 dev = match_device(bus->root_hub, vendor_id, product_id);
642 usb_unlock_device(bus->root_hub);
643 if (dev)
644 goto exit;
645 }
646 exit:
647 mutex_unlock(&usb_bus_list_lock);
648 return dev;
649 }
650
651 /**
652 * usb_get_current_frame_number - return current bus frame number
653 * @dev: the device whose bus is being queried
654 *
655 * Returns the current frame number for the USB host controller
656 * used with the given USB device. This can be used when scheduling
657 * isochronous requests.
658 *
659 * Note that different kinds of host controller have different
660 * "scheduling horizons". While one type might support scheduling only
661 * 32 frames into the future, others could support scheduling up to
662 * 1024 frames into the future.
663 */
664 int usb_get_current_frame_number(struct usb_device *dev)
665 {
666 return usb_hcd_get_frame_number(dev);
667 }
668 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
669
670 /*-------------------------------------------------------------------*/
671 /*
672 * __usb_get_extra_descriptor() finds a descriptor of specific type in the
673 * extra field of the interface and endpoint descriptor structs.
674 */
675
676 int __usb_get_extra_descriptor(char *buffer, unsigned size,
677 unsigned char type, void **ptr)
678 {
679 struct usb_descriptor_header *header;
680
681 while (size >= sizeof(struct usb_descriptor_header)) {
682 header = (struct usb_descriptor_header *)buffer;
683
684 if (header->bLength < 2) {
685 printk(KERN_ERR
686 "%s: bogus descriptor, type %d length %d\n",
687 usbcore_name,
688 header->bDescriptorType,
689 header->bLength);
690 return -1;
691 }
692
693 if (header->bDescriptorType == type) {
694 *ptr = header;
695 return 0;
696 }
697
698 buffer += header->bLength;
699 size -= header->bLength;
700 }
701 return -1;
702 }
703 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
704
705 /**
706 * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
707 * @dev: device the buffer will be used with
708 * @size: requested buffer size
709 * @mem_flags: affect whether allocation may block
710 * @dma: used to return DMA address of buffer
711 *
712 * Return value is either null (indicating no buffer could be allocated), or
713 * the cpu-space pointer to a buffer that may be used to perform DMA to the
714 * specified device. Such cpu-space buffers are returned along with the DMA
715 * address (through the pointer provided).
716 *
717 * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
718 * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
719 * hardware during URB completion/resubmit. The implementation varies between
720 * platforms, depending on details of how DMA will work to this device.
721 * Using these buffers also eliminates cacheline sharing problems on
722 * architectures where CPU caches are not DMA-coherent. On systems without
723 * bus-snooping caches, these buffers are uncached.
724 *
725 * When the buffer is no longer used, free it with usb_buffer_free().
726 */
727 void *usb_buffer_alloc(struct usb_device *dev, size_t size, gfp_t mem_flags,
728 dma_addr_t *dma)
729 {
730 if (!dev || !dev->bus)
731 return NULL;
732 return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
733 }
734 EXPORT_SYMBOL_GPL(usb_buffer_alloc);
735
736 /**
737 * usb_buffer_free - free memory allocated with usb_buffer_alloc()
738 * @dev: device the buffer was used with
739 * @size: requested buffer size
740 * @addr: CPU address of buffer
741 * @dma: DMA address of buffer
742 *
743 * This reclaims an I/O buffer, letting it be reused. The memory must have
744 * been allocated using usb_buffer_alloc(), and the parameters must match
745 * those provided in that allocation request.
746 */
747 void usb_buffer_free(struct usb_device *dev, size_t size, void *addr,
748 dma_addr_t dma)
749 {
750 if (!dev || !dev->bus)
751 return;
752 if (!addr)
753 return;
754 hcd_buffer_free(dev->bus, size, addr, dma);
755 }
756 EXPORT_SYMBOL_GPL(usb_buffer_free);
757
758 /**
759 * usb_buffer_map - create DMA mapping(s) for an urb
760 * @urb: urb whose transfer_buffer/setup_packet will be mapped
761 *
762 * Return value is either null (indicating no buffer could be mapped), or
763 * the parameter. URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
764 * added to urb->transfer_flags if the operation succeeds. If the device
765 * is connected to this system through a non-DMA controller, this operation
766 * always succeeds.
767 *
768 * This call would normally be used for an urb which is reused, perhaps
769 * as the target of a large periodic transfer, with usb_buffer_dmasync()
770 * calls to synchronize memory and dma state.
771 *
772 * Reverse the effect of this call with usb_buffer_unmap().
773 */
774 #if 0
775 struct urb *usb_buffer_map(struct urb *urb)
776 {
777 struct usb_bus *bus;
778 struct device *controller;
779
780 if (!urb
781 || !urb->dev
782 || !(bus = urb->dev->bus)
783 || !(controller = bus->controller))
784 return NULL;
785
786 if (controller->dma_mask) {
787 urb->transfer_dma = dma_map_single(controller,
788 urb->transfer_buffer, urb->transfer_buffer_length,
789 usb_pipein(urb->pipe)
790 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
791 if (usb_pipecontrol(urb->pipe))
792 urb->setup_dma = dma_map_single(controller,
793 urb->setup_packet,
794 sizeof(struct usb_ctrlrequest),
795 DMA_TO_DEVICE);
796 /* FIXME generic api broken like pci, can't report errors */
797 /* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
798 } else
799 urb->transfer_dma = ~0;
800 urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
801 | URB_NO_SETUP_DMA_MAP);
802 return urb;
803 }
804 EXPORT_SYMBOL_GPL(usb_buffer_map);
805 #endif /* 0 */
806
807 /* XXX DISABLED, no users currently. If you wish to re-enable this
808 * XXX please determine whether the sync is to transfer ownership of
809 * XXX the buffer from device to cpu or vice verse, and thusly use the
810 * XXX appropriate _for_{cpu,device}() method. -DaveM
811 */
812 #if 0
813
814 /**
815 * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
816 * @urb: urb whose transfer_buffer/setup_packet will be synchronized
817 */
818 void usb_buffer_dmasync(struct urb *urb)
819 {
820 struct usb_bus *bus;
821 struct device *controller;
822
823 if (!urb
824 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
825 || !urb->dev
826 || !(bus = urb->dev->bus)
827 || !(controller = bus->controller))
828 return;
829
830 if (controller->dma_mask) {
831 dma_sync_single_for_cpu(controller,
832 urb->transfer_dma, urb->transfer_buffer_length,
833 usb_pipein(urb->pipe)
834 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
835 if (usb_pipecontrol(urb->pipe))
836 dma_sync_single_for_cpu(controller,
837 urb->setup_dma,
838 sizeof(struct usb_ctrlrequest),
839 DMA_TO_DEVICE);
840 }
841 }
842 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
843 #endif
844
845 /**
846 * usb_buffer_unmap - free DMA mapping(s) for an urb
847 * @urb: urb whose transfer_buffer will be unmapped
848 *
849 * Reverses the effect of usb_buffer_map().
850 */
851 #if 0
852 void usb_buffer_unmap(struct urb *urb)
853 {
854 struct usb_bus *bus;
855 struct device *controller;
856
857 if (!urb
858 || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
859 || !urb->dev
860 || !(bus = urb->dev->bus)
861 || !(controller = bus->controller))
862 return;
863
864 if (controller->dma_mask) {
865 dma_unmap_single(controller,
866 urb->transfer_dma, urb->transfer_buffer_length,
867 usb_pipein(urb->pipe)
868 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
869 if (usb_pipecontrol(urb->pipe))
870 dma_unmap_single(controller,
871 urb->setup_dma,
872 sizeof(struct usb_ctrlrequest),
873 DMA_TO_DEVICE);
874 }
875 urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
876 | URB_NO_SETUP_DMA_MAP);
877 }
878 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
879 #endif /* 0 */
880
881 /**
882 * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
883 * @dev: device to which the scatterlist will be mapped
884 * @is_in: mapping transfer direction
885 * @sg: the scatterlist to map
886 * @nents: the number of entries in the scatterlist
887 *
888 * Return value is either < 0 (indicating no buffers could be mapped), or
889 * the number of DMA mapping array entries in the scatterlist.
890 *
891 * The caller is responsible for placing the resulting DMA addresses from
892 * the scatterlist into URB transfer buffer pointers, and for setting the
893 * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
894 *
895 * Top I/O rates come from queuing URBs, instead of waiting for each one
896 * to complete before starting the next I/O. This is particularly easy
897 * to do with scatterlists. Just allocate and submit one URB for each DMA
898 * mapping entry returned, stopping on the first error or when all succeed.
899 * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
900 *
901 * This call would normally be used when translating scatterlist requests,
902 * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
903 * may be able to coalesce mappings for improved I/O efficiency.
904 *
905 * Reverse the effect of this call with usb_buffer_unmap_sg().
906 */
907 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
908 struct scatterlist *sg, int nents)
909 {
910 struct usb_bus *bus;
911 struct device *controller;
912
913 if (!dev
914 || !(bus = dev->bus)
915 || !(controller = bus->controller)
916 || !controller->dma_mask)
917 return -1;
918
919 /* FIXME generic api broken like pci, can't report errors */
920 return dma_map_sg(controller, sg, nents,
921 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
922 }
923 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
924
925 /* XXX DISABLED, no users currently. If you wish to re-enable this
926 * XXX please determine whether the sync is to transfer ownership of
927 * XXX the buffer from device to cpu or vice verse, and thusly use the
928 * XXX appropriate _for_{cpu,device}() method. -DaveM
929 */
930 #if 0
931
932 /**
933 * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
934 * @dev: device to which the scatterlist will be mapped
935 * @is_in: mapping transfer direction
936 * @sg: the scatterlist to synchronize
937 * @n_hw_ents: the positive return value from usb_buffer_map_sg
938 *
939 * Use this when you are re-using a scatterlist's data buffers for
940 * another USB request.
941 */
942 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
943 struct scatterlist *sg, int n_hw_ents)
944 {
945 struct usb_bus *bus;
946 struct device *controller;
947
948 if (!dev
949 || !(bus = dev->bus)
950 || !(controller = bus->controller)
951 || !controller->dma_mask)
952 return;
953
954 dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
955 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
956 }
957 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
958 #endif
959
960 /**
961 * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
962 * @dev: device to which the scatterlist will be mapped
963 * @is_in: mapping transfer direction
964 * @sg: the scatterlist to unmap
965 * @n_hw_ents: the positive return value from usb_buffer_map_sg
966 *
967 * Reverses the effect of usb_buffer_map_sg().
968 */
969 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
970 struct scatterlist *sg, int n_hw_ents)
971 {
972 struct usb_bus *bus;
973 struct device *controller;
974
975 if (!dev
976 || !(bus = dev->bus)
977 || !(controller = bus->controller)
978 || !controller->dma_mask)
979 return;
980
981 dma_unmap_sg(controller, sg, n_hw_ents,
982 is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
983 }
984 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
985
986 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
987 #ifdef MODULE
988 module_param(nousb, bool, 0444);
989 #else
990 core_param(nousb, nousb, bool, 0444);
991 #endif
992
993 /*
994 * for external read access to <nousb>
995 */
996 int usb_disabled(void)
997 {
998 return nousb;
999 }
1000 EXPORT_SYMBOL_GPL(usb_disabled);
1001
1002 /*
1003 * Notifications of device and interface registration
1004 */
1005 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1006 void *data)
1007 {
1008 struct device *dev = data;
1009
1010 switch (action) {
1011 case BUS_NOTIFY_ADD_DEVICE:
1012 if (dev->type == &usb_device_type)
1013 (void) usb_create_sysfs_dev_files(to_usb_device(dev));
1014 else if (dev->type == &usb_if_device_type)
1015 (void) usb_create_sysfs_intf_files(
1016 to_usb_interface(dev));
1017 break;
1018
1019 case BUS_NOTIFY_DEL_DEVICE:
1020 if (dev->type == &usb_device_type)
1021 usb_remove_sysfs_dev_files(to_usb_device(dev));
1022 else if (dev->type == &usb_if_device_type)
1023 usb_remove_sysfs_intf_files(to_usb_interface(dev));
1024 break;
1025 }
1026 return 0;
1027 }
1028
1029 static struct notifier_block usb_bus_nb = {
1030 .notifier_call = usb_bus_notify,
1031 };
1032
1033 struct dentry *usb_debug_root;
1034 EXPORT_SYMBOL_GPL(usb_debug_root);
1035
1036 struct dentry *usb_debug_devices;
1037
1038 static int usb_debugfs_init(void)
1039 {
1040 usb_debug_root = debugfs_create_dir("usb", NULL);
1041 if (!usb_debug_root)
1042 return -ENOENT;
1043
1044 usb_debug_devices = debugfs_create_file("devices", 0444,
1045 usb_debug_root, NULL,
1046 &usbfs_devices_fops);
1047 if (!usb_debug_devices) {
1048 debugfs_remove(usb_debug_root);
1049 usb_debug_root = NULL;
1050 return -ENOENT;
1051 }
1052
1053 return 0;
1054 }
1055
1056 static void usb_debugfs_cleanup(void)
1057 {
1058 debugfs_remove(usb_debug_devices);
1059 debugfs_remove(usb_debug_root);
1060 }
1061
1062 /*
1063 * Init
1064 */
1065 static int __init usb_init(void)
1066 {
1067 int retval;
1068 if (nousb) {
1069 pr_info("%s: USB support disabled\n", usbcore_name);
1070 return 0;
1071 }
1072
1073 retval = usb_debugfs_init();
1074 if (retval)
1075 goto out;
1076
1077 retval = ksuspend_usb_init();
1078 if (retval)
1079 goto out;
1080 retval = bus_register(&usb_bus_type);
1081 if (retval)
1082 goto bus_register_failed;
1083 retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1084 if (retval)
1085 goto bus_notifier_failed;
1086 retval = usb_major_init();
1087 if (retval)
1088 goto major_init_failed;
1089 retval = usb_register(&usbfs_driver);
1090 if (retval)
1091 goto driver_register_failed;
1092 retval = usb_devio_init();
1093 if (retval)
1094 goto usb_devio_init_failed;
1095 retval = usbfs_init();
1096 if (retval)
1097 goto fs_init_failed;
1098 retval = usb_hub_init();
1099 if (retval)
1100 goto hub_init_failed;
1101 retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1102 if (!retval)
1103 goto out;
1104
1105 usb_hub_cleanup();
1106 hub_init_failed:
1107 usbfs_cleanup();
1108 fs_init_failed:
1109 usb_devio_cleanup();
1110 usb_devio_init_failed:
1111 usb_deregister(&usbfs_driver);
1112 driver_register_failed:
1113 usb_major_cleanup();
1114 major_init_failed:
1115 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1116 bus_notifier_failed:
1117 bus_unregister(&usb_bus_type);
1118 bus_register_failed:
1119 ksuspend_usb_cleanup();
1120 out:
1121 return retval;
1122 }
1123
1124 /*
1125 * Cleanup
1126 */
1127 static void __exit usb_exit(void)
1128 {
1129 /* This will matter if shutdown/reboot does exitcalls. */
1130 if (nousb)
1131 return;
1132
1133 usb_deregister_device_driver(&usb_generic_driver);
1134 usb_major_cleanup();
1135 usbfs_cleanup();
1136 usb_deregister(&usbfs_driver);
1137 usb_devio_cleanup();
1138 usb_hub_cleanup();
1139 bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1140 bus_unregister(&usb_bus_type);
1141 ksuspend_usb_cleanup();
1142 usb_debugfs_cleanup();
1143 }
1144
1145 subsys_initcall(usb_init);
1146 module_exit(usb_exit);
1147 MODULE_LICENSE("GPL");
This page took 0.068569 seconds and 6 git commands to generate.