usb: dwc2: rename all s3c_* to dwc2_*
[deliverable/linux.git] / drivers / usb / dwc2 / gadget.c
1 /**
2 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * Copyright 2008 Openmoko, Inc.
6 * Copyright 2008 Simtec Electronics
7 * Ben Dooks <ben@simtec.co.uk>
8 * http://armlinux.simtec.co.uk/
9 *
10 * S3C USB2.0 High-speed / OtG driver
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/mutex.h>
24 #include <linux/seq_file.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/clk.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/of_platform.h>
31 #include <linux/phy/phy.h>
32
33 #include <linux/usb/ch9.h>
34 #include <linux/usb/gadget.h>
35 #include <linux/usb/phy.h>
36 #include <linux/platform_data/s3c-hsotg.h>
37
38 #include "core.h"
39 #include "hw.h"
40
41 /* conversion functions */
42 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
43 {
44 return container_of(req, struct dwc2_hsotg_req, req);
45 }
46
47 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
48 {
49 return container_of(ep, struct dwc2_hsotg_ep, ep);
50 }
51
52 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
53 {
54 return container_of(gadget, struct dwc2_hsotg, gadget);
55 }
56
57 static inline void __orr32(void __iomem *ptr, u32 val)
58 {
59 writel(readl(ptr) | val, ptr);
60 }
61
62 static inline void __bic32(void __iomem *ptr, u32 val)
63 {
64 writel(readl(ptr) & ~val, ptr);
65 }
66
67 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
68 u32 ep_index, u32 dir_in)
69 {
70 if (dir_in)
71 return hsotg->eps_in[ep_index];
72 else
73 return hsotg->eps_out[ep_index];
74 }
75
76 /* forward declaration of functions */
77 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
78
79 /**
80 * using_dma - return the DMA status of the driver.
81 * @hsotg: The driver state.
82 *
83 * Return true if we're using DMA.
84 *
85 * Currently, we have the DMA support code worked into everywhere
86 * that needs it, but the AMBA DMA implementation in the hardware can
87 * only DMA from 32bit aligned addresses. This means that gadgets such
88 * as the CDC Ethernet cannot work as they often pass packets which are
89 * not 32bit aligned.
90 *
91 * Unfortunately the choice to use DMA or not is global to the controller
92 * and seems to be only settable when the controller is being put through
93 * a core reset. This means we either need to fix the gadgets to take
94 * account of DMA alignment, or add bounce buffers (yuerk).
95 *
96 * g_using_dma is set depending on dts flag.
97 */
98 static inline bool using_dma(struct dwc2_hsotg *hsotg)
99 {
100 return hsotg->g_using_dma;
101 }
102
103 /**
104 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
105 * @hsotg: The device state
106 * @ints: A bitmask of the interrupts to enable
107 */
108 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
109 {
110 u32 gsintmsk = readl(hsotg->regs + GINTMSK);
111 u32 new_gsintmsk;
112
113 new_gsintmsk = gsintmsk | ints;
114
115 if (new_gsintmsk != gsintmsk) {
116 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
117 writel(new_gsintmsk, hsotg->regs + GINTMSK);
118 }
119 }
120
121 /**
122 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
123 * @hsotg: The device state
124 * @ints: A bitmask of the interrupts to enable
125 */
126 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
127 {
128 u32 gsintmsk = readl(hsotg->regs + GINTMSK);
129 u32 new_gsintmsk;
130
131 new_gsintmsk = gsintmsk & ~ints;
132
133 if (new_gsintmsk != gsintmsk)
134 writel(new_gsintmsk, hsotg->regs + GINTMSK);
135 }
136
137 /**
138 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
139 * @hsotg: The device state
140 * @ep: The endpoint index
141 * @dir_in: True if direction is in.
142 * @en: The enable value, true to enable
143 *
144 * Set or clear the mask for an individual endpoint's interrupt
145 * request.
146 */
147 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
148 unsigned int ep, unsigned int dir_in,
149 unsigned int en)
150 {
151 unsigned long flags;
152 u32 bit = 1 << ep;
153 u32 daint;
154
155 if (!dir_in)
156 bit <<= 16;
157
158 local_irq_save(flags);
159 daint = readl(hsotg->regs + DAINTMSK);
160 if (en)
161 daint |= bit;
162 else
163 daint &= ~bit;
164 writel(daint, hsotg->regs + DAINTMSK);
165 local_irq_restore(flags);
166 }
167
168 /**
169 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
170 * @hsotg: The device instance.
171 */
172 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
173 {
174 unsigned int ep;
175 unsigned int addr;
176 int timeout;
177 u32 val;
178
179 /* Reset fifo map if not correctly cleared during previous session */
180 WARN_ON(hsotg->fifo_map);
181 hsotg->fifo_map = 0;
182
183 /* set RX/NPTX FIFO sizes */
184 writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
185 writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
186 (hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
187 hsotg->regs + GNPTXFSIZ);
188
189 /*
190 * arange all the rest of the TX FIFOs, as some versions of this
191 * block have overlapping default addresses. This also ensures
192 * that if the settings have been changed, then they are set to
193 * known values.
194 */
195
196 /* start at the end of the GNPTXFSIZ, rounded up */
197 addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
198
199 /*
200 * Configure fifos sizes from provided configuration and assign
201 * them to endpoints dynamically according to maxpacket size value of
202 * given endpoint.
203 */
204 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
205 if (!hsotg->g_tx_fifo_sz[ep])
206 continue;
207 val = addr;
208 val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
209 WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
210 "insufficient fifo memory");
211 addr += hsotg->g_tx_fifo_sz[ep];
212
213 writel(val, hsotg->regs + DPTXFSIZN(ep));
214 }
215
216 /*
217 * according to p428 of the design guide, we need to ensure that
218 * all fifos are flushed before continuing
219 */
220
221 writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
222 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
223
224 /* wait until the fifos are both flushed */
225 timeout = 100;
226 while (1) {
227 val = readl(hsotg->regs + GRSTCTL);
228
229 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
230 break;
231
232 if (--timeout == 0) {
233 dev_err(hsotg->dev,
234 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
235 __func__, val);
236 break;
237 }
238
239 udelay(1);
240 }
241
242 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
243 }
244
245 /**
246 * @ep: USB endpoint to allocate request for.
247 * @flags: Allocation flags
248 *
249 * Allocate a new USB request structure appropriate for the specified endpoint
250 */
251 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
252 gfp_t flags)
253 {
254 struct dwc2_hsotg_req *req;
255
256 req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
257 if (!req)
258 return NULL;
259
260 INIT_LIST_HEAD(&req->queue);
261
262 return &req->req;
263 }
264
265 /**
266 * is_ep_periodic - return true if the endpoint is in periodic mode.
267 * @hs_ep: The endpoint to query.
268 *
269 * Returns true if the endpoint is in periodic mode, meaning it is being
270 * used for an Interrupt or ISO transfer.
271 */
272 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
273 {
274 return hs_ep->periodic;
275 }
276
277 /**
278 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
279 * @hsotg: The device state.
280 * @hs_ep: The endpoint for the request
281 * @hs_req: The request being processed.
282 *
283 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
284 * of a request to ensure the buffer is ready for access by the caller.
285 */
286 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
287 struct dwc2_hsotg_ep *hs_ep,
288 struct dwc2_hsotg_req *hs_req)
289 {
290 struct usb_request *req = &hs_req->req;
291
292 /* ignore this if we're not moving any data */
293 if (hs_req->req.length == 0)
294 return;
295
296 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
297 }
298
299 /**
300 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
301 * @hsotg: The controller state.
302 * @hs_ep: The endpoint we're going to write for.
303 * @hs_req: The request to write data for.
304 *
305 * This is called when the TxFIFO has some space in it to hold a new
306 * transmission and we have something to give it. The actual setup of
307 * the data size is done elsewhere, so all we have to do is to actually
308 * write the data.
309 *
310 * The return value is zero if there is more space (or nothing was done)
311 * otherwise -ENOSPC is returned if the FIFO space was used up.
312 *
313 * This routine is only needed for PIO
314 */
315 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
316 struct dwc2_hsotg_ep *hs_ep,
317 struct dwc2_hsotg_req *hs_req)
318 {
319 bool periodic = is_ep_periodic(hs_ep);
320 u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
321 int buf_pos = hs_req->req.actual;
322 int to_write = hs_ep->size_loaded;
323 void *data;
324 int can_write;
325 int pkt_round;
326 int max_transfer;
327
328 to_write -= (buf_pos - hs_ep->last_load);
329
330 /* if there's nothing to write, get out early */
331 if (to_write == 0)
332 return 0;
333
334 if (periodic && !hsotg->dedicated_fifos) {
335 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
336 int size_left;
337 int size_done;
338
339 /*
340 * work out how much data was loaded so we can calculate
341 * how much data is left in the fifo.
342 */
343
344 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
345
346 /*
347 * if shared fifo, we cannot write anything until the
348 * previous data has been completely sent.
349 */
350 if (hs_ep->fifo_load != 0) {
351 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
352 return -ENOSPC;
353 }
354
355 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
356 __func__, size_left,
357 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
358
359 /* how much of the data has moved */
360 size_done = hs_ep->size_loaded - size_left;
361
362 /* how much data is left in the fifo */
363 can_write = hs_ep->fifo_load - size_done;
364 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
365 __func__, can_write);
366
367 can_write = hs_ep->fifo_size - can_write;
368 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
369 __func__, can_write);
370
371 if (can_write <= 0) {
372 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
373 return -ENOSPC;
374 }
375 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
376 can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
377
378 can_write &= 0xffff;
379 can_write *= 4;
380 } else {
381 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
382 dev_dbg(hsotg->dev,
383 "%s: no queue slots available (0x%08x)\n",
384 __func__, gnptxsts);
385
386 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
387 return -ENOSPC;
388 }
389
390 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
391 can_write *= 4; /* fifo size is in 32bit quantities. */
392 }
393
394 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
395
396 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
397 __func__, gnptxsts, can_write, to_write, max_transfer);
398
399 /*
400 * limit to 512 bytes of data, it seems at least on the non-periodic
401 * FIFO, requests of >512 cause the endpoint to get stuck with a
402 * fragment of the end of the transfer in it.
403 */
404 if (can_write > 512 && !periodic)
405 can_write = 512;
406
407 /*
408 * limit the write to one max-packet size worth of data, but allow
409 * the transfer to return that it did not run out of fifo space
410 * doing it.
411 */
412 if (to_write > max_transfer) {
413 to_write = max_transfer;
414
415 /* it's needed only when we do not use dedicated fifos */
416 if (!hsotg->dedicated_fifos)
417 dwc2_hsotg_en_gsint(hsotg,
418 periodic ? GINTSTS_PTXFEMP :
419 GINTSTS_NPTXFEMP);
420 }
421
422 /* see if we can write data */
423
424 if (to_write > can_write) {
425 to_write = can_write;
426 pkt_round = to_write % max_transfer;
427
428 /*
429 * Round the write down to an
430 * exact number of packets.
431 *
432 * Note, we do not currently check to see if we can ever
433 * write a full packet or not to the FIFO.
434 */
435
436 if (pkt_round)
437 to_write -= pkt_round;
438
439 /*
440 * enable correct FIFO interrupt to alert us when there
441 * is more room left.
442 */
443
444 /* it's needed only when we do not use dedicated fifos */
445 if (!hsotg->dedicated_fifos)
446 dwc2_hsotg_en_gsint(hsotg,
447 periodic ? GINTSTS_PTXFEMP :
448 GINTSTS_NPTXFEMP);
449 }
450
451 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
452 to_write, hs_req->req.length, can_write, buf_pos);
453
454 if (to_write <= 0)
455 return -ENOSPC;
456
457 hs_req->req.actual = buf_pos + to_write;
458 hs_ep->total_data += to_write;
459
460 if (periodic)
461 hs_ep->fifo_load += to_write;
462
463 to_write = DIV_ROUND_UP(to_write, 4);
464 data = hs_req->req.buf + buf_pos;
465
466 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
467
468 return (to_write >= can_write) ? -ENOSPC : 0;
469 }
470
471 /**
472 * get_ep_limit - get the maximum data legnth for this endpoint
473 * @hs_ep: The endpoint
474 *
475 * Return the maximum data that can be queued in one go on a given endpoint
476 * so that transfers that are too long can be split.
477 */
478 static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
479 {
480 int index = hs_ep->index;
481 unsigned maxsize;
482 unsigned maxpkt;
483
484 if (index != 0) {
485 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
486 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
487 } else {
488 maxsize = 64+64;
489 if (hs_ep->dir_in)
490 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
491 else
492 maxpkt = 2;
493 }
494
495 /* we made the constant loading easier above by using +1 */
496 maxpkt--;
497 maxsize--;
498
499 /*
500 * constrain by packet count if maxpkts*pktsize is greater
501 * than the length register size.
502 */
503
504 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
505 maxsize = maxpkt * hs_ep->ep.maxpacket;
506
507 return maxsize;
508 }
509
510 /**
511 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
512 * @hsotg: The controller state.
513 * @hs_ep: The endpoint to process a request for
514 * @hs_req: The request to start.
515 * @continuing: True if we are doing more for the current request.
516 *
517 * Start the given request running by setting the endpoint registers
518 * appropriately, and writing any data to the FIFOs.
519 */
520 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
521 struct dwc2_hsotg_ep *hs_ep,
522 struct dwc2_hsotg_req *hs_req,
523 bool continuing)
524 {
525 struct usb_request *ureq = &hs_req->req;
526 int index = hs_ep->index;
527 int dir_in = hs_ep->dir_in;
528 u32 epctrl_reg;
529 u32 epsize_reg;
530 u32 epsize;
531 u32 ctrl;
532 unsigned length;
533 unsigned packets;
534 unsigned maxreq;
535
536 if (index != 0) {
537 if (hs_ep->req && !continuing) {
538 dev_err(hsotg->dev, "%s: active request\n", __func__);
539 WARN_ON(1);
540 return;
541 } else if (hs_ep->req != hs_req && continuing) {
542 dev_err(hsotg->dev,
543 "%s: continue different req\n", __func__);
544 WARN_ON(1);
545 return;
546 }
547 }
548
549 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
550 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
551
552 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
553 __func__, readl(hsotg->regs + epctrl_reg), index,
554 hs_ep->dir_in ? "in" : "out");
555
556 /* If endpoint is stalled, we will restart request later */
557 ctrl = readl(hsotg->regs + epctrl_reg);
558
559 if (ctrl & DXEPCTL_STALL) {
560 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
561 return;
562 }
563
564 length = ureq->length - ureq->actual;
565 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
566 ureq->length, ureq->actual);
567
568 maxreq = get_ep_limit(hs_ep);
569 if (length > maxreq) {
570 int round = maxreq % hs_ep->ep.maxpacket;
571
572 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
573 __func__, length, maxreq, round);
574
575 /* round down to multiple of packets */
576 if (round)
577 maxreq -= round;
578
579 length = maxreq;
580 }
581
582 if (length)
583 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
584 else
585 packets = 1; /* send one packet if length is zero. */
586
587 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
588 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
589 return;
590 }
591
592 if (dir_in && index != 0)
593 if (hs_ep->isochronous)
594 epsize = DXEPTSIZ_MC(packets);
595 else
596 epsize = DXEPTSIZ_MC(1);
597 else
598 epsize = 0;
599
600 /*
601 * zero length packet should be programmed on its own and should not
602 * be counted in DIEPTSIZ.PktCnt with other packets.
603 */
604 if (dir_in && ureq->zero && !continuing) {
605 /* Test if zlp is actually required. */
606 if ((ureq->length >= hs_ep->ep.maxpacket) &&
607 !(ureq->length % hs_ep->ep.maxpacket))
608 hs_ep->send_zlp = 1;
609 }
610
611 epsize |= DXEPTSIZ_PKTCNT(packets);
612 epsize |= DXEPTSIZ_XFERSIZE(length);
613
614 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
615 __func__, packets, length, ureq->length, epsize, epsize_reg);
616
617 /* store the request as the current one we're doing */
618 hs_ep->req = hs_req;
619
620 /* write size / packets */
621 writel(epsize, hsotg->regs + epsize_reg);
622
623 if (using_dma(hsotg) && !continuing) {
624 unsigned int dma_reg;
625
626 /*
627 * write DMA address to control register, buffer already
628 * synced by dwc2_hsotg_ep_queue().
629 */
630
631 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
632 writel(ureq->dma, hsotg->regs + dma_reg);
633
634 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
635 __func__, &ureq->dma, dma_reg);
636 }
637
638 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
639 ctrl |= DXEPCTL_USBACTEP;
640
641 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
642
643 /* For Setup request do not clear NAK */
644 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
645 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
646
647 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
648 writel(ctrl, hsotg->regs + epctrl_reg);
649
650 /*
651 * set these, it seems that DMA support increments past the end
652 * of the packet buffer so we need to calculate the length from
653 * this information.
654 */
655 hs_ep->size_loaded = length;
656 hs_ep->last_load = ureq->actual;
657
658 if (dir_in && !using_dma(hsotg)) {
659 /* set these anyway, we may need them for non-periodic in */
660 hs_ep->fifo_load = 0;
661
662 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
663 }
664
665 /*
666 * clear the INTknTXFEmpMsk when we start request, more as a aide
667 * to debugging to see what is going on.
668 */
669 if (dir_in)
670 writel(DIEPMSK_INTKNTXFEMPMSK,
671 hsotg->regs + DIEPINT(index));
672
673 /*
674 * Note, trying to clear the NAK here causes problems with transmit
675 * on the S3C6400 ending up with the TXFIFO becoming full.
676 */
677
678 /* check ep is enabled */
679 if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
680 dev_dbg(hsotg->dev,
681 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
682 index, readl(hsotg->regs + epctrl_reg));
683
684 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
685 __func__, readl(hsotg->regs + epctrl_reg));
686
687 /* enable ep interrupts */
688 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
689 }
690
691 /**
692 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
693 * @hsotg: The device state.
694 * @hs_ep: The endpoint the request is on.
695 * @req: The request being processed.
696 *
697 * We've been asked to queue a request, so ensure that the memory buffer
698 * is correctly setup for DMA. If we've been passed an extant DMA address
699 * then ensure the buffer has been synced to memory. If our buffer has no
700 * DMA memory, then we map the memory and mark our request to allow us to
701 * cleanup on completion.
702 */
703 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
704 struct dwc2_hsotg_ep *hs_ep,
705 struct usb_request *req)
706 {
707 struct dwc2_hsotg_req *hs_req = our_req(req);
708 int ret;
709
710 /* if the length is zero, ignore the DMA data */
711 if (hs_req->req.length == 0)
712 return 0;
713
714 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
715 if (ret)
716 goto dma_error;
717
718 return 0;
719
720 dma_error:
721 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
722 __func__, req->buf, req->length);
723
724 return -EIO;
725 }
726
727 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
728 struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
729 {
730 void *req_buf = hs_req->req.buf;
731
732 /* If dma is not being used or buffer is aligned */
733 if (!using_dma(hsotg) || !((long)req_buf & 3))
734 return 0;
735
736 WARN_ON(hs_req->saved_req_buf);
737
738 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
739 hs_ep->ep.name, req_buf, hs_req->req.length);
740
741 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
742 if (!hs_req->req.buf) {
743 hs_req->req.buf = req_buf;
744 dev_err(hsotg->dev,
745 "%s: unable to allocate memory for bounce buffer\n",
746 __func__);
747 return -ENOMEM;
748 }
749
750 /* Save actual buffer */
751 hs_req->saved_req_buf = req_buf;
752
753 if (hs_ep->dir_in)
754 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
755 return 0;
756 }
757
758 static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
759 struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
760 {
761 /* If dma is not being used or buffer was aligned */
762 if (!using_dma(hsotg) || !hs_req->saved_req_buf)
763 return;
764
765 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
766 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
767
768 /* Copy data from bounce buffer on successful out transfer */
769 if (!hs_ep->dir_in && !hs_req->req.status)
770 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
771 hs_req->req.actual);
772
773 /* Free bounce buffer */
774 kfree(hs_req->req.buf);
775
776 hs_req->req.buf = hs_req->saved_req_buf;
777 hs_req->saved_req_buf = NULL;
778 }
779
780 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
781 gfp_t gfp_flags)
782 {
783 struct dwc2_hsotg_req *hs_req = our_req(req);
784 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
785 struct dwc2_hsotg *hs = hs_ep->parent;
786 bool first;
787 int ret;
788
789 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
790 ep->name, req, req->length, req->buf, req->no_interrupt,
791 req->zero, req->short_not_ok);
792
793 /* Prevent new request submission when controller is suspended */
794 if (hs->lx_state == DWC2_L2) {
795 dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
796 __func__);
797 return -EAGAIN;
798 }
799
800 /* initialise status of the request */
801 INIT_LIST_HEAD(&hs_req->queue);
802 req->actual = 0;
803 req->status = -EINPROGRESS;
804
805 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
806 if (ret)
807 return ret;
808
809 /* if we're using DMA, sync the buffers as necessary */
810 if (using_dma(hs)) {
811 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
812 if (ret)
813 return ret;
814 }
815
816 first = list_empty(&hs_ep->queue);
817 list_add_tail(&hs_req->queue, &hs_ep->queue);
818
819 if (first)
820 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
821
822 return 0;
823 }
824
825 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
826 gfp_t gfp_flags)
827 {
828 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
829 struct dwc2_hsotg *hs = hs_ep->parent;
830 unsigned long flags = 0;
831 int ret = 0;
832
833 spin_lock_irqsave(&hs->lock, flags);
834 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
835 spin_unlock_irqrestore(&hs->lock, flags);
836
837 return ret;
838 }
839
840 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
841 struct usb_request *req)
842 {
843 struct dwc2_hsotg_req *hs_req = our_req(req);
844
845 kfree(hs_req);
846 }
847
848 /**
849 * dwc2_hsotg_complete_oursetup - setup completion callback
850 * @ep: The endpoint the request was on.
851 * @req: The request completed.
852 *
853 * Called on completion of any requests the driver itself
854 * submitted that need cleaning up.
855 */
856 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
857 struct usb_request *req)
858 {
859 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
860 struct dwc2_hsotg *hsotg = hs_ep->parent;
861
862 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
863
864 dwc2_hsotg_ep_free_request(ep, req);
865 }
866
867 /**
868 * ep_from_windex - convert control wIndex value to endpoint
869 * @hsotg: The driver state.
870 * @windex: The control request wIndex field (in host order).
871 *
872 * Convert the given wIndex into a pointer to an driver endpoint
873 * structure, or return NULL if it is not a valid endpoint.
874 */
875 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
876 u32 windex)
877 {
878 struct dwc2_hsotg_ep *ep;
879 int dir = (windex & USB_DIR_IN) ? 1 : 0;
880 int idx = windex & 0x7F;
881
882 if (windex >= 0x100)
883 return NULL;
884
885 if (idx > hsotg->num_of_eps)
886 return NULL;
887
888 ep = index_to_ep(hsotg, idx, dir);
889
890 if (idx && ep->dir_in != dir)
891 return NULL;
892
893 return ep;
894 }
895
896 /**
897 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
898 * @hsotg: The driver state.
899 * @testmode: requested usb test mode
900 * Enable usb Test Mode requested by the Host.
901 */
902 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
903 {
904 int dctl = readl(hsotg->regs + DCTL);
905
906 dctl &= ~DCTL_TSTCTL_MASK;
907 switch (testmode) {
908 case TEST_J:
909 case TEST_K:
910 case TEST_SE0_NAK:
911 case TEST_PACKET:
912 case TEST_FORCE_EN:
913 dctl |= testmode << DCTL_TSTCTL_SHIFT;
914 break;
915 default:
916 return -EINVAL;
917 }
918 writel(dctl, hsotg->regs + DCTL);
919 return 0;
920 }
921
922 /**
923 * dwc2_hsotg_send_reply - send reply to control request
924 * @hsotg: The device state
925 * @ep: Endpoint 0
926 * @buff: Buffer for request
927 * @length: Length of reply.
928 *
929 * Create a request and queue it on the given endpoint. This is useful as
930 * an internal method of sending replies to certain control requests, etc.
931 */
932 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
933 struct dwc2_hsotg_ep *ep,
934 void *buff,
935 int length)
936 {
937 struct usb_request *req;
938 int ret;
939
940 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
941
942 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
943 hsotg->ep0_reply = req;
944 if (!req) {
945 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
946 return -ENOMEM;
947 }
948
949 req->buf = hsotg->ep0_buff;
950 req->length = length;
951 /*
952 * zero flag is for sending zlp in DATA IN stage. It has no impact on
953 * STATUS stage.
954 */
955 req->zero = 0;
956 req->complete = dwc2_hsotg_complete_oursetup;
957
958 if (length)
959 memcpy(req->buf, buff, length);
960
961 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
962 if (ret) {
963 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
964 return ret;
965 }
966
967 return 0;
968 }
969
970 /**
971 * dwc2_hsotg_process_req_status - process request GET_STATUS
972 * @hsotg: The device state
973 * @ctrl: USB control request
974 */
975 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
976 struct usb_ctrlrequest *ctrl)
977 {
978 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
979 struct dwc2_hsotg_ep *ep;
980 __le16 reply;
981 int ret;
982
983 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
984
985 if (!ep0->dir_in) {
986 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
987 return -EINVAL;
988 }
989
990 switch (ctrl->bRequestType & USB_RECIP_MASK) {
991 case USB_RECIP_DEVICE:
992 reply = cpu_to_le16(0); /* bit 0 => self powered,
993 * bit 1 => remote wakeup */
994 break;
995
996 case USB_RECIP_INTERFACE:
997 /* currently, the data result should be zero */
998 reply = cpu_to_le16(0);
999 break;
1000
1001 case USB_RECIP_ENDPOINT:
1002 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1003 if (!ep)
1004 return -ENOENT;
1005
1006 reply = cpu_to_le16(ep->halted ? 1 : 0);
1007 break;
1008
1009 default:
1010 return 0;
1011 }
1012
1013 if (le16_to_cpu(ctrl->wLength) != 2)
1014 return -EINVAL;
1015
1016 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1017 if (ret) {
1018 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1019 return ret;
1020 }
1021
1022 return 1;
1023 }
1024
1025 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1026
1027 /**
1028 * get_ep_head - return the first request on the endpoint
1029 * @hs_ep: The controller endpoint to get
1030 *
1031 * Get the first request on the endpoint.
1032 */
1033 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1034 {
1035 if (list_empty(&hs_ep->queue))
1036 return NULL;
1037
1038 return list_first_entry(&hs_ep->queue, struct dwc2_hsotg_req, queue);
1039 }
1040
1041 /**
1042 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1043 * @hsotg: The device state
1044 * @ctrl: USB control request
1045 */
1046 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1047 struct usb_ctrlrequest *ctrl)
1048 {
1049 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1050 struct dwc2_hsotg_req *hs_req;
1051 bool restart;
1052 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1053 struct dwc2_hsotg_ep *ep;
1054 int ret;
1055 bool halted;
1056 u32 recip;
1057 u32 wValue;
1058 u32 wIndex;
1059
1060 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1061 __func__, set ? "SET" : "CLEAR");
1062
1063 wValue = le16_to_cpu(ctrl->wValue);
1064 wIndex = le16_to_cpu(ctrl->wIndex);
1065 recip = ctrl->bRequestType & USB_RECIP_MASK;
1066
1067 switch (recip) {
1068 case USB_RECIP_DEVICE:
1069 switch (wValue) {
1070 case USB_DEVICE_TEST_MODE:
1071 if ((wIndex & 0xff) != 0)
1072 return -EINVAL;
1073 if (!set)
1074 return -EINVAL;
1075
1076 hsotg->test_mode = wIndex >> 8;
1077 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1078 if (ret) {
1079 dev_err(hsotg->dev,
1080 "%s: failed to send reply\n", __func__);
1081 return ret;
1082 }
1083 break;
1084 default:
1085 return -ENOENT;
1086 }
1087 break;
1088
1089 case USB_RECIP_ENDPOINT:
1090 ep = ep_from_windex(hsotg, wIndex);
1091 if (!ep) {
1092 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1093 __func__, wIndex);
1094 return -ENOENT;
1095 }
1096
1097 switch (wValue) {
1098 case USB_ENDPOINT_HALT:
1099 halted = ep->halted;
1100
1101 dwc2_hsotg_ep_sethalt(&ep->ep, set);
1102
1103 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1104 if (ret) {
1105 dev_err(hsotg->dev,
1106 "%s: failed to send reply\n", __func__);
1107 return ret;
1108 }
1109
1110 /*
1111 * we have to complete all requests for ep if it was
1112 * halted, and the halt was cleared by CLEAR_FEATURE
1113 */
1114
1115 if (!set && halted) {
1116 /*
1117 * If we have request in progress,
1118 * then complete it
1119 */
1120 if (ep->req) {
1121 hs_req = ep->req;
1122 ep->req = NULL;
1123 list_del_init(&hs_req->queue);
1124 if (hs_req->req.complete) {
1125 spin_unlock(&hsotg->lock);
1126 usb_gadget_giveback_request(
1127 &ep->ep, &hs_req->req);
1128 spin_lock(&hsotg->lock);
1129 }
1130 }
1131
1132 /* If we have pending request, then start it */
1133 if (!ep->req) {
1134 restart = !list_empty(&ep->queue);
1135 if (restart) {
1136 hs_req = get_ep_head(ep);
1137 dwc2_hsotg_start_req(hsotg, ep,
1138 hs_req, false);
1139 }
1140 }
1141 }
1142
1143 break;
1144
1145 default:
1146 return -ENOENT;
1147 }
1148 break;
1149 default:
1150 return -ENOENT;
1151 }
1152 return 1;
1153 }
1154
1155 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1156
1157 /**
1158 * dwc2_hsotg_stall_ep0 - stall ep0
1159 * @hsotg: The device state
1160 *
1161 * Set stall for ep0 as response for setup request.
1162 */
1163 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1164 {
1165 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1166 u32 reg;
1167 u32 ctrl;
1168
1169 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1170 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1171
1172 /*
1173 * DxEPCTL_Stall will be cleared by EP once it has
1174 * taken effect, so no need to clear later.
1175 */
1176
1177 ctrl = readl(hsotg->regs + reg);
1178 ctrl |= DXEPCTL_STALL;
1179 ctrl |= DXEPCTL_CNAK;
1180 writel(ctrl, hsotg->regs + reg);
1181
1182 dev_dbg(hsotg->dev,
1183 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1184 ctrl, reg, readl(hsotg->regs + reg));
1185
1186 /*
1187 * complete won't be called, so we enqueue
1188 * setup request here
1189 */
1190 dwc2_hsotg_enqueue_setup(hsotg);
1191 }
1192
1193 /**
1194 * dwc2_hsotg_process_control - process a control request
1195 * @hsotg: The device state
1196 * @ctrl: The control request received
1197 *
1198 * The controller has received the SETUP phase of a control request, and
1199 * needs to work out what to do next (and whether to pass it on to the
1200 * gadget driver).
1201 */
1202 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1203 struct usb_ctrlrequest *ctrl)
1204 {
1205 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1206 int ret = 0;
1207 u32 dcfg;
1208
1209 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1210 ctrl->bRequest, ctrl->bRequestType,
1211 ctrl->wValue, ctrl->wLength);
1212
1213 if (ctrl->wLength == 0) {
1214 ep0->dir_in = 1;
1215 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1216 } else if (ctrl->bRequestType & USB_DIR_IN) {
1217 ep0->dir_in = 1;
1218 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1219 } else {
1220 ep0->dir_in = 0;
1221 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1222 }
1223
1224 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1225 switch (ctrl->bRequest) {
1226 case USB_REQ_SET_ADDRESS:
1227 hsotg->connected = 1;
1228 dcfg = readl(hsotg->regs + DCFG);
1229 dcfg &= ~DCFG_DEVADDR_MASK;
1230 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1231 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1232 writel(dcfg, hsotg->regs + DCFG);
1233
1234 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1235
1236 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1237 return;
1238
1239 case USB_REQ_GET_STATUS:
1240 ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1241 break;
1242
1243 case USB_REQ_CLEAR_FEATURE:
1244 case USB_REQ_SET_FEATURE:
1245 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1246 break;
1247 }
1248 }
1249
1250 /* as a fallback, try delivering it to the driver to deal with */
1251
1252 if (ret == 0 && hsotg->driver) {
1253 spin_unlock(&hsotg->lock);
1254 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1255 spin_lock(&hsotg->lock);
1256 if (ret < 0)
1257 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1258 }
1259
1260 /*
1261 * the request is either unhandlable, or is not formatted correctly
1262 * so respond with a STALL for the status stage to indicate failure.
1263 */
1264
1265 if (ret < 0)
1266 dwc2_hsotg_stall_ep0(hsotg);
1267 }
1268
1269 /**
1270 * dwc2_hsotg_complete_setup - completion of a setup transfer
1271 * @ep: The endpoint the request was on.
1272 * @req: The request completed.
1273 *
1274 * Called on completion of any requests the driver itself submitted for
1275 * EP0 setup packets
1276 */
1277 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1278 struct usb_request *req)
1279 {
1280 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1281 struct dwc2_hsotg *hsotg = hs_ep->parent;
1282
1283 if (req->status < 0) {
1284 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1285 return;
1286 }
1287
1288 spin_lock(&hsotg->lock);
1289 if (req->actual == 0)
1290 dwc2_hsotg_enqueue_setup(hsotg);
1291 else
1292 dwc2_hsotg_process_control(hsotg, req->buf);
1293 spin_unlock(&hsotg->lock);
1294 }
1295
1296 /**
1297 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1298 * @hsotg: The device state.
1299 *
1300 * Enqueue a request on EP0 if necessary to received any SETUP packets
1301 * received from the host.
1302 */
1303 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1304 {
1305 struct usb_request *req = hsotg->ctrl_req;
1306 struct dwc2_hsotg_req *hs_req = our_req(req);
1307 int ret;
1308
1309 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1310
1311 req->zero = 0;
1312 req->length = 8;
1313 req->buf = hsotg->ctrl_buff;
1314 req->complete = dwc2_hsotg_complete_setup;
1315
1316 if (!list_empty(&hs_req->queue)) {
1317 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1318 return;
1319 }
1320
1321 hsotg->eps_out[0]->dir_in = 0;
1322 hsotg->eps_out[0]->send_zlp = 0;
1323 hsotg->ep0_state = DWC2_EP0_SETUP;
1324
1325 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1326 if (ret < 0) {
1327 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1328 /*
1329 * Don't think there's much we can do other than watch the
1330 * driver fail.
1331 */
1332 }
1333 }
1334
1335 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1336 struct dwc2_hsotg_ep *hs_ep)
1337 {
1338 u32 ctrl;
1339 u8 index = hs_ep->index;
1340 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1341 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1342
1343 if (hs_ep->dir_in)
1344 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1345 index);
1346 else
1347 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1348 index);
1349
1350 writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1351 DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1352 epsiz_reg);
1353
1354 ctrl = readl(hsotg->regs + epctl_reg);
1355 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1356 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1357 ctrl |= DXEPCTL_USBACTEP;
1358 writel(ctrl, hsotg->regs + epctl_reg);
1359 }
1360
1361 /**
1362 * dwc2_hsotg_complete_request - complete a request given to us
1363 * @hsotg: The device state.
1364 * @hs_ep: The endpoint the request was on.
1365 * @hs_req: The request to complete.
1366 * @result: The result code (0 => Ok, otherwise errno)
1367 *
1368 * The given request has finished, so call the necessary completion
1369 * if it has one and then look to see if we can start a new request
1370 * on the endpoint.
1371 *
1372 * Note, expects the ep to already be locked as appropriate.
1373 */
1374 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1375 struct dwc2_hsotg_ep *hs_ep,
1376 struct dwc2_hsotg_req *hs_req,
1377 int result)
1378 {
1379 bool restart;
1380
1381 if (!hs_req) {
1382 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1383 return;
1384 }
1385
1386 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1387 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1388
1389 /*
1390 * only replace the status if we've not already set an error
1391 * from a previous transaction
1392 */
1393
1394 if (hs_req->req.status == -EINPROGRESS)
1395 hs_req->req.status = result;
1396
1397 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1398
1399 hs_ep->req = NULL;
1400 list_del_init(&hs_req->queue);
1401
1402 if (using_dma(hsotg))
1403 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1404
1405 /*
1406 * call the complete request with the locks off, just in case the
1407 * request tries to queue more work for this endpoint.
1408 */
1409
1410 if (hs_req->req.complete) {
1411 spin_unlock(&hsotg->lock);
1412 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1413 spin_lock(&hsotg->lock);
1414 }
1415
1416 /*
1417 * Look to see if there is anything else to do. Note, the completion
1418 * of the previous request may have caused a new request to be started
1419 * so be careful when doing this.
1420 */
1421
1422 if (!hs_ep->req && result >= 0) {
1423 restart = !list_empty(&hs_ep->queue);
1424 if (restart) {
1425 hs_req = get_ep_head(hs_ep);
1426 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1427 }
1428 }
1429 }
1430
1431 /**
1432 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1433 * @hsotg: The device state.
1434 * @ep_idx: The endpoint index for the data
1435 * @size: The size of data in the fifo, in bytes
1436 *
1437 * The FIFO status shows there is data to read from the FIFO for a given
1438 * endpoint, so sort out whether we need to read the data into a request
1439 * that has been made for that endpoint.
1440 */
1441 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1442 {
1443 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1444 struct dwc2_hsotg_req *hs_req = hs_ep->req;
1445 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1446 int to_read;
1447 int max_req;
1448 int read_ptr;
1449
1450
1451 if (!hs_req) {
1452 u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1453 int ptr;
1454
1455 dev_dbg(hsotg->dev,
1456 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1457 __func__, size, ep_idx, epctl);
1458
1459 /* dump the data from the FIFO, we've nothing we can do */
1460 for (ptr = 0; ptr < size; ptr += 4)
1461 (void)readl(fifo);
1462
1463 return;
1464 }
1465
1466 to_read = size;
1467 read_ptr = hs_req->req.actual;
1468 max_req = hs_req->req.length - read_ptr;
1469
1470 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1471 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1472
1473 if (to_read > max_req) {
1474 /*
1475 * more data appeared than we where willing
1476 * to deal with in this request.
1477 */
1478
1479 /* currently we don't deal this */
1480 WARN_ON_ONCE(1);
1481 }
1482
1483 hs_ep->total_data += to_read;
1484 hs_req->req.actual += to_read;
1485 to_read = DIV_ROUND_UP(to_read, 4);
1486
1487 /*
1488 * note, we might over-write the buffer end by 3 bytes depending on
1489 * alignment of the data.
1490 */
1491 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1492 }
1493
1494 /**
1495 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1496 * @hsotg: The device instance
1497 * @dir_in: If IN zlp
1498 *
1499 * Generate a zero-length IN packet request for terminating a SETUP
1500 * transaction.
1501 *
1502 * Note, since we don't write any data to the TxFIFO, then it is
1503 * currently believed that we do not need to wait for any space in
1504 * the TxFIFO.
1505 */
1506 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1507 {
1508 /* eps_out[0] is used in both directions */
1509 hsotg->eps_out[0]->dir_in = dir_in;
1510 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1511
1512 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1513 }
1514
1515 /**
1516 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1517 * @hsotg: The device instance
1518 * @epnum: The endpoint received from
1519 *
1520 * The RXFIFO has delivered an OutDone event, which means that the data
1521 * transfer for an OUT endpoint has been completed, either by a short
1522 * packet or by the finish of a transfer.
1523 */
1524 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1525 {
1526 u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1527 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1528 struct dwc2_hsotg_req *hs_req = hs_ep->req;
1529 struct usb_request *req = &hs_req->req;
1530 unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1531 int result = 0;
1532
1533 if (!hs_req) {
1534 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1535 return;
1536 }
1537
1538 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
1539 dev_dbg(hsotg->dev, "zlp packet received\n");
1540 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1541 dwc2_hsotg_enqueue_setup(hsotg);
1542 return;
1543 }
1544
1545 if (using_dma(hsotg)) {
1546 unsigned size_done;
1547
1548 /*
1549 * Calculate the size of the transfer by checking how much
1550 * is left in the endpoint size register and then working it
1551 * out from the amount we loaded for the transfer.
1552 *
1553 * We need to do this as DMA pointers are always 32bit aligned
1554 * so may overshoot/undershoot the transfer.
1555 */
1556
1557 size_done = hs_ep->size_loaded - size_left;
1558 size_done += hs_ep->last_load;
1559
1560 req->actual = size_done;
1561 }
1562
1563 /* if there is more request to do, schedule new transfer */
1564 if (req->actual < req->length && size_left == 0) {
1565 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1566 return;
1567 }
1568
1569 if (req->actual < req->length && req->short_not_ok) {
1570 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1571 __func__, req->actual, req->length);
1572
1573 /*
1574 * todo - what should we return here? there's no one else
1575 * even bothering to check the status.
1576 */
1577 }
1578
1579 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
1580 /* Move to STATUS IN */
1581 dwc2_hsotg_ep0_zlp(hsotg, true);
1582 return;
1583 }
1584
1585 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1586 }
1587
1588 /**
1589 * dwc2_hsotg_read_frameno - read current frame number
1590 * @hsotg: The device instance
1591 *
1592 * Return the current frame number
1593 */
1594 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1595 {
1596 u32 dsts;
1597
1598 dsts = readl(hsotg->regs + DSTS);
1599 dsts &= DSTS_SOFFN_MASK;
1600 dsts >>= DSTS_SOFFN_SHIFT;
1601
1602 return dsts;
1603 }
1604
1605 /**
1606 * dwc2_hsotg_handle_rx - RX FIFO has data
1607 * @hsotg: The device instance
1608 *
1609 * The IRQ handler has detected that the RX FIFO has some data in it
1610 * that requires processing, so find out what is in there and do the
1611 * appropriate read.
1612 *
1613 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1614 * chunks, so if you have x packets received on an endpoint you'll get x
1615 * FIFO events delivered, each with a packet's worth of data in it.
1616 *
1617 * When using DMA, we should not be processing events from the RXFIFO
1618 * as the actual data should be sent to the memory directly and we turn
1619 * on the completion interrupts to get notifications of transfer completion.
1620 */
1621 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1622 {
1623 u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1624 u32 epnum, status, size;
1625
1626 WARN_ON(using_dma(hsotg));
1627
1628 epnum = grxstsr & GRXSTS_EPNUM_MASK;
1629 status = grxstsr & GRXSTS_PKTSTS_MASK;
1630
1631 size = grxstsr & GRXSTS_BYTECNT_MASK;
1632 size >>= GRXSTS_BYTECNT_SHIFT;
1633
1634 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1635 __func__, grxstsr, size, epnum);
1636
1637 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1638 case GRXSTS_PKTSTS_GLOBALOUTNAK:
1639 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1640 break;
1641
1642 case GRXSTS_PKTSTS_OUTDONE:
1643 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1644 dwc2_hsotg_read_frameno(hsotg));
1645
1646 if (!using_dma(hsotg))
1647 dwc2_hsotg_handle_outdone(hsotg, epnum);
1648 break;
1649
1650 case GRXSTS_PKTSTS_SETUPDONE:
1651 dev_dbg(hsotg->dev,
1652 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1653 dwc2_hsotg_read_frameno(hsotg),
1654 readl(hsotg->regs + DOEPCTL(0)));
1655 /*
1656 * Call dwc2_hsotg_handle_outdone here if it was not called from
1657 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
1658 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
1659 */
1660 if (hsotg->ep0_state == DWC2_EP0_SETUP)
1661 dwc2_hsotg_handle_outdone(hsotg, epnum);
1662 break;
1663
1664 case GRXSTS_PKTSTS_OUTRX:
1665 dwc2_hsotg_rx_data(hsotg, epnum, size);
1666 break;
1667
1668 case GRXSTS_PKTSTS_SETUPRX:
1669 dev_dbg(hsotg->dev,
1670 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1671 dwc2_hsotg_read_frameno(hsotg),
1672 readl(hsotg->regs + DOEPCTL(0)));
1673
1674 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
1675
1676 dwc2_hsotg_rx_data(hsotg, epnum, size);
1677 break;
1678
1679 default:
1680 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1681 __func__, grxstsr);
1682
1683 dwc2_hsotg_dump(hsotg);
1684 break;
1685 }
1686 }
1687
1688 /**
1689 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1690 * @mps: The maximum packet size in bytes.
1691 */
1692 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1693 {
1694 switch (mps) {
1695 case 64:
1696 return D0EPCTL_MPS_64;
1697 case 32:
1698 return D0EPCTL_MPS_32;
1699 case 16:
1700 return D0EPCTL_MPS_16;
1701 case 8:
1702 return D0EPCTL_MPS_8;
1703 }
1704
1705 /* bad max packet size, warn and return invalid result */
1706 WARN_ON(1);
1707 return (u32)-1;
1708 }
1709
1710 /**
1711 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1712 * @hsotg: The driver state.
1713 * @ep: The index number of the endpoint
1714 * @mps: The maximum packet size in bytes
1715 *
1716 * Configure the maximum packet size for the given endpoint, updating
1717 * the hardware control registers to reflect this.
1718 */
1719 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1720 unsigned int ep, unsigned int mps, unsigned int dir_in)
1721 {
1722 struct dwc2_hsotg_ep *hs_ep;
1723 void __iomem *regs = hsotg->regs;
1724 u32 mpsval;
1725 u32 mcval;
1726 u32 reg;
1727
1728 hs_ep = index_to_ep(hsotg, ep, dir_in);
1729 if (!hs_ep)
1730 return;
1731
1732 if (ep == 0) {
1733 /* EP0 is a special case */
1734 mpsval = dwc2_hsotg_ep0_mps(mps);
1735 if (mpsval > 3)
1736 goto bad_mps;
1737 hs_ep->ep.maxpacket = mps;
1738 hs_ep->mc = 1;
1739 } else {
1740 mpsval = mps & DXEPCTL_MPS_MASK;
1741 if (mpsval > 1024)
1742 goto bad_mps;
1743 mcval = ((mps >> 11) & 0x3) + 1;
1744 hs_ep->mc = mcval;
1745 if (mcval > 3)
1746 goto bad_mps;
1747 hs_ep->ep.maxpacket = mpsval;
1748 }
1749
1750 if (dir_in) {
1751 reg = readl(regs + DIEPCTL(ep));
1752 reg &= ~DXEPCTL_MPS_MASK;
1753 reg |= mpsval;
1754 writel(reg, regs + DIEPCTL(ep));
1755 } else {
1756 reg = readl(regs + DOEPCTL(ep));
1757 reg &= ~DXEPCTL_MPS_MASK;
1758 reg |= mpsval;
1759 writel(reg, regs + DOEPCTL(ep));
1760 }
1761
1762 return;
1763
1764 bad_mps:
1765 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1766 }
1767
1768 /**
1769 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1770 * @hsotg: The driver state
1771 * @idx: The index for the endpoint (0..15)
1772 */
1773 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1774 {
1775 int timeout;
1776 int val;
1777
1778 writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1779 hsotg->regs + GRSTCTL);
1780
1781 /* wait until the fifo is flushed */
1782 timeout = 100;
1783
1784 while (1) {
1785 val = readl(hsotg->regs + GRSTCTL);
1786
1787 if ((val & (GRSTCTL_TXFFLSH)) == 0)
1788 break;
1789
1790 if (--timeout == 0) {
1791 dev_err(hsotg->dev,
1792 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1793 __func__, val);
1794 break;
1795 }
1796
1797 udelay(1);
1798 }
1799 }
1800
1801 /**
1802 * dwc2_hsotg_trytx - check to see if anything needs transmitting
1803 * @hsotg: The driver state
1804 * @hs_ep: The driver endpoint to check.
1805 *
1806 * Check to see if there is a request that has data to send, and if so
1807 * make an attempt to write data into the FIFO.
1808 */
1809 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
1810 struct dwc2_hsotg_ep *hs_ep)
1811 {
1812 struct dwc2_hsotg_req *hs_req = hs_ep->req;
1813
1814 if (!hs_ep->dir_in || !hs_req) {
1815 /**
1816 * if request is not enqueued, we disable interrupts
1817 * for endpoints, excepting ep0
1818 */
1819 if (hs_ep->index != 0)
1820 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1821 hs_ep->dir_in, 0);
1822 return 0;
1823 }
1824
1825 if (hs_req->req.actual < hs_req->req.length) {
1826 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1827 hs_ep->index);
1828 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1829 }
1830
1831 return 0;
1832 }
1833
1834 /**
1835 * dwc2_hsotg_complete_in - complete IN transfer
1836 * @hsotg: The device state.
1837 * @hs_ep: The endpoint that has just completed.
1838 *
1839 * An IN transfer has been completed, update the transfer's state and then
1840 * call the relevant completion routines.
1841 */
1842 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1843 struct dwc2_hsotg_ep *hs_ep)
1844 {
1845 struct dwc2_hsotg_req *hs_req = hs_ep->req;
1846 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1847 int size_left, size_done;
1848
1849 if (!hs_req) {
1850 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1851 return;
1852 }
1853
1854 /* Finish ZLP handling for IN EP0 transactions */
1855 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
1856 dev_dbg(hsotg->dev, "zlp packet sent\n");
1857 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1858 if (hsotg->test_mode) {
1859 int ret;
1860
1861 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1862 if (ret < 0) {
1863 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
1864 hsotg->test_mode);
1865 dwc2_hsotg_stall_ep0(hsotg);
1866 return;
1867 }
1868 }
1869 dwc2_hsotg_enqueue_setup(hsotg);
1870 return;
1871 }
1872
1873 /*
1874 * Calculate the size of the transfer by checking how much is left
1875 * in the endpoint size register and then working it out from
1876 * the amount we loaded for the transfer.
1877 *
1878 * We do this even for DMA, as the transfer may have incremented
1879 * past the end of the buffer (DMA transfers are always 32bit
1880 * aligned).
1881 */
1882
1883 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1884
1885 size_done = hs_ep->size_loaded - size_left;
1886 size_done += hs_ep->last_load;
1887
1888 if (hs_req->req.actual != size_done)
1889 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1890 __func__, hs_req->req.actual, size_done);
1891
1892 hs_req->req.actual = size_done;
1893 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1894 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1895
1896 if (!size_left && hs_req->req.actual < hs_req->req.length) {
1897 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1898 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1899 return;
1900 }
1901
1902 /* Zlp for all endpoints, for ep0 only in DATA IN stage */
1903 if (hs_ep->send_zlp) {
1904 dwc2_hsotg_program_zlp(hsotg, hs_ep);
1905 hs_ep->send_zlp = 0;
1906 /* transfer will be completed on next complete interrupt */
1907 return;
1908 }
1909
1910 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
1911 /* Move to STATUS OUT */
1912 dwc2_hsotg_ep0_zlp(hsotg, false);
1913 return;
1914 }
1915
1916 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1917 }
1918
1919 /**
1920 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
1921 * @hsotg: The driver state
1922 * @idx: The index for the endpoint (0..15)
1923 * @dir_in: Set if this is an IN endpoint
1924 *
1925 * Process and clear any interrupt pending for an individual endpoint
1926 */
1927 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1928 int dir_in)
1929 {
1930 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1931 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1932 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1933 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1934 u32 ints;
1935 u32 ctrl;
1936
1937 ints = readl(hsotg->regs + epint_reg);
1938 ctrl = readl(hsotg->regs + epctl_reg);
1939
1940 /* Clear endpoint interrupts */
1941 writel(ints, hsotg->regs + epint_reg);
1942
1943 if (!hs_ep) {
1944 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
1945 __func__, idx, dir_in ? "in" : "out");
1946 return;
1947 }
1948
1949 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1950 __func__, idx, dir_in ? "in" : "out", ints);
1951
1952 /* Don't process XferCompl interrupt if it is a setup packet */
1953 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
1954 ints &= ~DXEPINT_XFERCOMPL;
1955
1956 if (ints & DXEPINT_XFERCOMPL) {
1957 if (hs_ep->isochronous && hs_ep->interval == 1) {
1958 if (ctrl & DXEPCTL_EOFRNUM)
1959 ctrl |= DXEPCTL_SETEVENFR;
1960 else
1961 ctrl |= DXEPCTL_SETODDFR;
1962 writel(ctrl, hsotg->regs + epctl_reg);
1963 }
1964
1965 dev_dbg(hsotg->dev,
1966 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1967 __func__, readl(hsotg->regs + epctl_reg),
1968 readl(hsotg->regs + epsiz_reg));
1969
1970 /*
1971 * we get OutDone from the FIFO, so we only need to look
1972 * at completing IN requests here
1973 */
1974 if (dir_in) {
1975 dwc2_hsotg_complete_in(hsotg, hs_ep);
1976
1977 if (idx == 0 && !hs_ep->req)
1978 dwc2_hsotg_enqueue_setup(hsotg);
1979 } else if (using_dma(hsotg)) {
1980 /*
1981 * We're using DMA, we need to fire an OutDone here
1982 * as we ignore the RXFIFO.
1983 */
1984
1985 dwc2_hsotg_handle_outdone(hsotg, idx);
1986 }
1987 }
1988
1989 if (ints & DXEPINT_EPDISBLD) {
1990 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1991
1992 if (dir_in) {
1993 int epctl = readl(hsotg->regs + epctl_reg);
1994
1995 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1996
1997 if ((epctl & DXEPCTL_STALL) &&
1998 (epctl & DXEPCTL_EPTYPE_BULK)) {
1999 int dctl = readl(hsotg->regs + DCTL);
2000
2001 dctl |= DCTL_CGNPINNAK;
2002 writel(dctl, hsotg->regs + DCTL);
2003 }
2004 }
2005 }
2006
2007 if (ints & DXEPINT_AHBERR)
2008 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2009
2010 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
2011 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
2012
2013 if (using_dma(hsotg) && idx == 0) {
2014 /*
2015 * this is the notification we've received a
2016 * setup packet. In non-DMA mode we'd get this
2017 * from the RXFIFO, instead we need to process
2018 * the setup here.
2019 */
2020
2021 if (dir_in)
2022 WARN_ON_ONCE(1);
2023 else
2024 dwc2_hsotg_handle_outdone(hsotg, 0);
2025 }
2026 }
2027
2028 if (ints & DXEPINT_BACK2BACKSETUP)
2029 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2030
2031 if (dir_in && !hs_ep->isochronous) {
2032 /* not sure if this is important, but we'll clear it anyway */
2033 if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2034 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2035 __func__, idx);
2036 }
2037
2038 /* this probably means something bad is happening */
2039 if (ints & DIEPMSK_INTKNEPMISMSK) {
2040 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2041 __func__, idx);
2042 }
2043
2044 /* FIFO has space or is empty (see GAHBCFG) */
2045 if (hsotg->dedicated_fifos &&
2046 ints & DIEPMSK_TXFIFOEMPTY) {
2047 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2048 __func__, idx);
2049 if (!using_dma(hsotg))
2050 dwc2_hsotg_trytx(hsotg, hs_ep);
2051 }
2052 }
2053 }
2054
2055 /**
2056 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2057 * @hsotg: The device state.
2058 *
2059 * Handle updating the device settings after the enumeration phase has
2060 * been completed.
2061 */
2062 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2063 {
2064 u32 dsts = readl(hsotg->regs + DSTS);
2065 int ep0_mps = 0, ep_mps = 8;
2066
2067 /*
2068 * This should signal the finish of the enumeration phase
2069 * of the USB handshaking, so we should now know what rate
2070 * we connected at.
2071 */
2072
2073 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2074
2075 /*
2076 * note, since we're limited by the size of transfer on EP0, and
2077 * it seems IN transfers must be a even number of packets we do
2078 * not advertise a 64byte MPS on EP0.
2079 */
2080
2081 /* catch both EnumSpd_FS and EnumSpd_FS48 */
2082 switch (dsts & DSTS_ENUMSPD_MASK) {
2083 case DSTS_ENUMSPD_FS:
2084 case DSTS_ENUMSPD_FS48:
2085 hsotg->gadget.speed = USB_SPEED_FULL;
2086 ep0_mps = EP0_MPS_LIMIT;
2087 ep_mps = 1023;
2088 break;
2089
2090 case DSTS_ENUMSPD_HS:
2091 hsotg->gadget.speed = USB_SPEED_HIGH;
2092 ep0_mps = EP0_MPS_LIMIT;
2093 ep_mps = 1024;
2094 break;
2095
2096 case DSTS_ENUMSPD_LS:
2097 hsotg->gadget.speed = USB_SPEED_LOW;
2098 /*
2099 * note, we don't actually support LS in this driver at the
2100 * moment, and the documentation seems to imply that it isn't
2101 * supported by the PHYs on some of the devices.
2102 */
2103 break;
2104 }
2105 dev_info(hsotg->dev, "new device is %s\n",
2106 usb_speed_string(hsotg->gadget.speed));
2107
2108 /*
2109 * we should now know the maximum packet size for an
2110 * endpoint, so set the endpoints to a default value.
2111 */
2112
2113 if (ep0_mps) {
2114 int i;
2115 /* Initialize ep0 for both in and out directions */
2116 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
2117 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2118 for (i = 1; i < hsotg->num_of_eps; i++) {
2119 if (hsotg->eps_in[i])
2120 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
2121 if (hsotg->eps_out[i])
2122 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
2123 }
2124 }
2125
2126 /* ensure after enumeration our EP0 is active */
2127
2128 dwc2_hsotg_enqueue_setup(hsotg);
2129
2130 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2131 readl(hsotg->regs + DIEPCTL0),
2132 readl(hsotg->regs + DOEPCTL0));
2133 }
2134
2135 /**
2136 * kill_all_requests - remove all requests from the endpoint's queue
2137 * @hsotg: The device state.
2138 * @ep: The endpoint the requests may be on.
2139 * @result: The result code to use.
2140 *
2141 * Go through the requests on the given endpoint and mark them
2142 * completed with the given result code.
2143 */
2144 static void kill_all_requests(struct dwc2_hsotg *hsotg,
2145 struct dwc2_hsotg_ep *ep,
2146 int result)
2147 {
2148 struct dwc2_hsotg_req *req, *treq;
2149 unsigned size;
2150
2151 ep->req = NULL;
2152
2153 list_for_each_entry_safe(req, treq, &ep->queue, queue)
2154 dwc2_hsotg_complete_request(hsotg, ep, req,
2155 result);
2156
2157 if (!hsotg->dedicated_fifos)
2158 return;
2159 size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2160 if (size < ep->fifo_size)
2161 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2162 }
2163
2164 /**
2165 * dwc2_hsotg_disconnect - disconnect service
2166 * @hsotg: The device state.
2167 *
2168 * The device has been disconnected. Remove all current
2169 * transactions and signal the gadget driver that this
2170 * has happened.
2171 */
2172 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2173 {
2174 unsigned ep;
2175
2176 if (!hsotg->connected)
2177 return;
2178
2179 hsotg->connected = 0;
2180 hsotg->test_mode = 0;
2181
2182 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
2183 if (hsotg->eps_in[ep])
2184 kill_all_requests(hsotg, hsotg->eps_in[ep],
2185 -ESHUTDOWN);
2186 if (hsotg->eps_out[ep])
2187 kill_all_requests(hsotg, hsotg->eps_out[ep],
2188 -ESHUTDOWN);
2189 }
2190
2191 call_gadget(hsotg, disconnect);
2192 }
2193
2194 /**
2195 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2196 * @hsotg: The device state:
2197 * @periodic: True if this is a periodic FIFO interrupt
2198 */
2199 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2200 {
2201 struct dwc2_hsotg_ep *ep;
2202 int epno, ret;
2203
2204 /* look through for any more data to transmit */
2205 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2206 ep = index_to_ep(hsotg, epno, 1);
2207
2208 if (!ep)
2209 continue;
2210
2211 if (!ep->dir_in)
2212 continue;
2213
2214 if ((periodic && !ep->periodic) ||
2215 (!periodic && ep->periodic))
2216 continue;
2217
2218 ret = dwc2_hsotg_trytx(hsotg, ep);
2219 if (ret < 0)
2220 break;
2221 }
2222 }
2223
2224 /* IRQ flags which will trigger a retry around the IRQ loop */
2225 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2226 GINTSTS_PTXFEMP | \
2227 GINTSTS_RXFLVL)
2228
2229 /**
2230 * dwc2_hsotg_corereset - issue softreset to the core
2231 * @hsotg: The device state
2232 *
2233 * Issue a soft reset to the core, and await the core finishing it.
2234 */
2235 static int dwc2_hsotg_corereset(struct dwc2_hsotg *hsotg)
2236 {
2237 int timeout;
2238 u32 grstctl;
2239
2240 dev_dbg(hsotg->dev, "resetting core\n");
2241
2242 /* issue soft reset */
2243 writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2244
2245 timeout = 10000;
2246 do {
2247 grstctl = readl(hsotg->regs + GRSTCTL);
2248 } while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2249
2250 if (grstctl & GRSTCTL_CSFTRST) {
2251 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2252 return -EINVAL;
2253 }
2254
2255 timeout = 10000;
2256
2257 while (1) {
2258 u32 grstctl = readl(hsotg->regs + GRSTCTL);
2259
2260 if (timeout-- < 0) {
2261 dev_info(hsotg->dev,
2262 "%s: reset failed, GRSTCTL=%08x\n",
2263 __func__, grstctl);
2264 return -ETIMEDOUT;
2265 }
2266
2267 if (!(grstctl & GRSTCTL_AHBIDLE))
2268 continue;
2269
2270 break; /* reset done */
2271 }
2272
2273 dev_dbg(hsotg->dev, "reset successful\n");
2274 return 0;
2275 }
2276
2277 /**
2278 * dwc2_hsotg_core_init - issue softreset to the core
2279 * @hsotg: The device state
2280 *
2281 * Issue a soft reset to the core, and await the core finishing it.
2282 */
2283 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2284 bool is_usb_reset)
2285 {
2286 u32 val;
2287
2288 if (!is_usb_reset)
2289 dwc2_hsotg_corereset(hsotg);
2290
2291 /*
2292 * we must now enable ep0 ready for host detection and then
2293 * set configuration.
2294 */
2295
2296 /* set the PLL on, remove the HNP/SRP and set the PHY */
2297 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2298 writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2299 (val << GUSBCFG_USBTRDTIM_SHIFT), hsotg->regs + GUSBCFG);
2300
2301 dwc2_hsotg_init_fifo(hsotg);
2302
2303 if (!is_usb_reset)
2304 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2305
2306 writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS, hsotg->regs + DCFG);
2307
2308 /* Clear any pending OTG interrupts */
2309 writel(0xffffffff, hsotg->regs + GOTGINT);
2310
2311 /* Clear any pending interrupts */
2312 writel(0xffffffff, hsotg->regs + GINTSTS);
2313
2314 writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2315 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2316 GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
2317 GINTSTS_RESETDET | GINTSTS_ENUMDONE |
2318 GINTSTS_OTGINT | GINTSTS_USBSUSP |
2319 GINTSTS_WKUPINT,
2320 hsotg->regs + GINTMSK);
2321
2322 if (using_dma(hsotg))
2323 writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2324 (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2325 hsotg->regs + GAHBCFG);
2326 else
2327 writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
2328 GAHBCFG_P_TXF_EMP_LVL) : 0) |
2329 GAHBCFG_GLBL_INTR_EN,
2330 hsotg->regs + GAHBCFG);
2331
2332 /*
2333 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2334 * when we have no data to transfer. Otherwise we get being flooded by
2335 * interrupts.
2336 */
2337
2338 writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2339 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2340 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2341 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2342 DIEPMSK_INTKNEPMISMSK,
2343 hsotg->regs + DIEPMSK);
2344
2345 /*
2346 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2347 * DMA mode we may need this.
2348 */
2349 writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2350 DIEPMSK_TIMEOUTMSK) : 0) |
2351 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2352 DOEPMSK_SETUPMSK,
2353 hsotg->regs + DOEPMSK);
2354
2355 writel(0, hsotg->regs + DAINTMSK);
2356
2357 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2358 readl(hsotg->regs + DIEPCTL0),
2359 readl(hsotg->regs + DOEPCTL0));
2360
2361 /* enable in and out endpoint interrupts */
2362 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2363
2364 /*
2365 * Enable the RXFIFO when in slave mode, as this is how we collect
2366 * the data. In DMA mode, we get events from the FIFO but also
2367 * things we cannot process, so do not use it.
2368 */
2369 if (!using_dma(hsotg))
2370 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2371
2372 /* Enable interrupts for EP0 in and out */
2373 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2374 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2375
2376 if (!is_usb_reset) {
2377 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2378 udelay(10); /* see openiboot */
2379 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2380 }
2381
2382 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2383
2384 /*
2385 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2386 * writing to the EPCTL register..
2387 */
2388
2389 /* set to read 1 8byte packet */
2390 writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2391 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2392
2393 writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2394 DXEPCTL_CNAK | DXEPCTL_EPENA |
2395 DXEPCTL_USBACTEP,
2396 hsotg->regs + DOEPCTL0);
2397
2398 /* enable, but don't activate EP0in */
2399 writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2400 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2401
2402 dwc2_hsotg_enqueue_setup(hsotg);
2403
2404 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2405 readl(hsotg->regs + DIEPCTL0),
2406 readl(hsotg->regs + DOEPCTL0));
2407
2408 /* clear global NAKs */
2409 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
2410 if (!is_usb_reset)
2411 val |= DCTL_SFTDISCON;
2412 __orr32(hsotg->regs + DCTL, val);
2413
2414 /* must be at-least 3ms to allow bus to see disconnect */
2415 mdelay(3);
2416
2417 hsotg->last_rst = jiffies;
2418 }
2419
2420 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2421 {
2422 /* set the soft-disconnect bit */
2423 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2424 }
2425
2426 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2427 {
2428 /* remove the soft-disconnect and let's go */
2429 __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2430 }
2431
2432 /**
2433 * dwc2_hsotg_irq - handle device interrupt
2434 * @irq: The IRQ number triggered
2435 * @pw: The pw value when registered the handler.
2436 */
2437 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2438 {
2439 struct dwc2_hsotg *hsotg = pw;
2440 int retry_count = 8;
2441 u32 gintsts;
2442 u32 gintmsk;
2443
2444 spin_lock(&hsotg->lock);
2445 irq_retry:
2446 gintsts = readl(hsotg->regs + GINTSTS);
2447 gintmsk = readl(hsotg->regs + GINTMSK);
2448
2449 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2450 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2451
2452 gintsts &= gintmsk;
2453
2454 if (gintsts & GINTSTS_ENUMDONE) {
2455 writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2456
2457 dwc2_hsotg_irq_enumdone(hsotg);
2458 }
2459
2460 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2461 u32 daint = readl(hsotg->regs + DAINT);
2462 u32 daintmsk = readl(hsotg->regs + DAINTMSK);
2463 u32 daint_out, daint_in;
2464 int ep;
2465
2466 daint &= daintmsk;
2467 daint_out = daint >> DAINT_OUTEP_SHIFT;
2468 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2469
2470 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2471
2472 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
2473 ep++, daint_out >>= 1) {
2474 if (daint_out & 1)
2475 dwc2_hsotg_epint(hsotg, ep, 0);
2476 }
2477
2478 for (ep = 0; ep < hsotg->num_of_eps && daint_in;
2479 ep++, daint_in >>= 1) {
2480 if (daint_in & 1)
2481 dwc2_hsotg_epint(hsotg, ep, 1);
2482 }
2483 }
2484
2485 if (gintsts & GINTSTS_RESETDET) {
2486 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
2487
2488 writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
2489
2490 /* This event must be used only if controller is suspended */
2491 if (hsotg->lx_state == DWC2_L2) {
2492 dwc2_exit_hibernation(hsotg, true);
2493 hsotg->lx_state = DWC2_L0;
2494 }
2495 }
2496
2497 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
2498
2499 u32 usb_status = readl(hsotg->regs + GOTGCTL);
2500
2501 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2502 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2503 readl(hsotg->regs + GNPTXSTS));
2504
2505 writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2506
2507 /* Report disconnection if it is not already done. */
2508 dwc2_hsotg_disconnect(hsotg);
2509
2510 if (usb_status & GOTGCTL_BSESVLD) {
2511 if (time_after(jiffies, hsotg->last_rst +
2512 msecs_to_jiffies(200))) {
2513
2514 kill_all_requests(hsotg, hsotg->eps_out[0],
2515 -ECONNRESET);
2516
2517 hsotg->lx_state = DWC2_L0;
2518 dwc2_hsotg_core_init_disconnected(hsotg, true);
2519 }
2520 }
2521 }
2522
2523 /* check both FIFOs */
2524
2525 if (gintsts & GINTSTS_NPTXFEMP) {
2526 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2527
2528 /*
2529 * Disable the interrupt to stop it happening again
2530 * unless one of these endpoint routines decides that
2531 * it needs re-enabling
2532 */
2533
2534 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2535 dwc2_hsotg_irq_fifoempty(hsotg, false);
2536 }
2537
2538 if (gintsts & GINTSTS_PTXFEMP) {
2539 dev_dbg(hsotg->dev, "PTxFEmp\n");
2540
2541 /* See note in GINTSTS_NPTxFEmp */
2542
2543 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2544 dwc2_hsotg_irq_fifoempty(hsotg, true);
2545 }
2546
2547 if (gintsts & GINTSTS_RXFLVL) {
2548 /*
2549 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2550 * we need to retry dwc2_hsotg_handle_rx if this is still
2551 * set.
2552 */
2553
2554 dwc2_hsotg_handle_rx(hsotg);
2555 }
2556
2557 if (gintsts & GINTSTS_ERLYSUSP) {
2558 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2559 writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2560 }
2561
2562 /*
2563 * these next two seem to crop-up occasionally causing the core
2564 * to shutdown the USB transfer, so try clearing them and logging
2565 * the occurrence.
2566 */
2567
2568 if (gintsts & GINTSTS_GOUTNAKEFF) {
2569 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2570
2571 writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2572
2573 dwc2_hsotg_dump(hsotg);
2574 }
2575
2576 if (gintsts & GINTSTS_GINNAKEFF) {
2577 dev_info(hsotg->dev, "GINNakEff triggered\n");
2578
2579 writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2580
2581 dwc2_hsotg_dump(hsotg);
2582 }
2583
2584 /*
2585 * if we've had fifo events, we should try and go around the
2586 * loop again to see if there's any point in returning yet.
2587 */
2588
2589 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2590 goto irq_retry;
2591
2592 spin_unlock(&hsotg->lock);
2593
2594 return IRQ_HANDLED;
2595 }
2596
2597 /**
2598 * dwc2_hsotg_ep_enable - enable the given endpoint
2599 * @ep: The USB endpint to configure
2600 * @desc: The USB endpoint descriptor to configure with.
2601 *
2602 * This is called from the USB gadget code's usb_ep_enable().
2603 */
2604 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2605 const struct usb_endpoint_descriptor *desc)
2606 {
2607 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2608 struct dwc2_hsotg *hsotg = hs_ep->parent;
2609 unsigned long flags;
2610 unsigned int index = hs_ep->index;
2611 u32 epctrl_reg;
2612 u32 epctrl;
2613 u32 mps;
2614 unsigned int dir_in;
2615 unsigned int i, val, size;
2616 int ret = 0;
2617
2618 dev_dbg(hsotg->dev,
2619 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2620 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2621 desc->wMaxPacketSize, desc->bInterval);
2622
2623 /* not to be called for EP0 */
2624 WARN_ON(index == 0);
2625
2626 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2627 if (dir_in != hs_ep->dir_in) {
2628 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2629 return -EINVAL;
2630 }
2631
2632 mps = usb_endpoint_maxp(desc);
2633
2634 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2635
2636 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2637 epctrl = readl(hsotg->regs + epctrl_reg);
2638
2639 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2640 __func__, epctrl, epctrl_reg);
2641
2642 spin_lock_irqsave(&hsotg->lock, flags);
2643
2644 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2645 epctrl |= DXEPCTL_MPS(mps);
2646
2647 /*
2648 * mark the endpoint as active, otherwise the core may ignore
2649 * transactions entirely for this endpoint
2650 */
2651 epctrl |= DXEPCTL_USBACTEP;
2652
2653 /*
2654 * set the NAK status on the endpoint, otherwise we might try and
2655 * do something with data that we've yet got a request to process
2656 * since the RXFIFO will take data for an endpoint even if the
2657 * size register hasn't been set.
2658 */
2659
2660 epctrl |= DXEPCTL_SNAK;
2661
2662 /* update the endpoint state */
2663 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2664
2665 /* default, set to non-periodic */
2666 hs_ep->isochronous = 0;
2667 hs_ep->periodic = 0;
2668 hs_ep->halted = 0;
2669 hs_ep->interval = desc->bInterval;
2670
2671 if (hs_ep->interval > 1 && hs_ep->mc > 1)
2672 dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2673
2674 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2675 case USB_ENDPOINT_XFER_ISOC:
2676 epctrl |= DXEPCTL_EPTYPE_ISO;
2677 epctrl |= DXEPCTL_SETEVENFR;
2678 hs_ep->isochronous = 1;
2679 if (dir_in)
2680 hs_ep->periodic = 1;
2681 break;
2682
2683 case USB_ENDPOINT_XFER_BULK:
2684 epctrl |= DXEPCTL_EPTYPE_BULK;
2685 break;
2686
2687 case USB_ENDPOINT_XFER_INT:
2688 if (dir_in)
2689 hs_ep->periodic = 1;
2690
2691 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2692 break;
2693
2694 case USB_ENDPOINT_XFER_CONTROL:
2695 epctrl |= DXEPCTL_EPTYPE_CONTROL;
2696 break;
2697 }
2698
2699 /* If fifo is already allocated for this ep */
2700 if (hs_ep->fifo_index) {
2701 size = hs_ep->ep.maxpacket * hs_ep->mc;
2702 /* If bigger fifo is required deallocate current one */
2703 if (size > hs_ep->fifo_size) {
2704 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
2705 hs_ep->fifo_index = 0;
2706 hs_ep->fifo_size = 0;
2707 }
2708 }
2709
2710 /*
2711 * if the hardware has dedicated fifos, we must give each IN EP
2712 * a unique tx-fifo even if it is non-periodic.
2713 */
2714 if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2715 u32 fifo_index = 0;
2716 u32 fifo_size = UINT_MAX;
2717 size = hs_ep->ep.maxpacket*hs_ep->mc;
2718 for (i = 1; i < hsotg->num_of_eps; ++i) {
2719 if (hsotg->fifo_map & (1<<i))
2720 continue;
2721 val = readl(hsotg->regs + DPTXFSIZN(i));
2722 val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
2723 if (val < size)
2724 continue;
2725 /* Search for smallest acceptable fifo */
2726 if (val < fifo_size) {
2727 fifo_size = val;
2728 fifo_index = i;
2729 }
2730 }
2731 if (!fifo_index) {
2732 dev_err(hsotg->dev,
2733 "%s: No suitable fifo found\n", __func__);
2734 ret = -ENOMEM;
2735 goto error;
2736 }
2737 hsotg->fifo_map |= 1 << fifo_index;
2738 epctrl |= DXEPCTL_TXFNUM(fifo_index);
2739 hs_ep->fifo_index = fifo_index;
2740 hs_ep->fifo_size = fifo_size;
2741 }
2742
2743 /* for non control endpoints, set PID to D0 */
2744 if (index)
2745 epctrl |= DXEPCTL_SETD0PID;
2746
2747 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2748 __func__, epctrl);
2749
2750 writel(epctrl, hsotg->regs + epctrl_reg);
2751 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2752 __func__, readl(hsotg->regs + epctrl_reg));
2753
2754 /* enable the endpoint interrupt */
2755 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2756
2757 error:
2758 spin_unlock_irqrestore(&hsotg->lock, flags);
2759 return ret;
2760 }
2761
2762 /**
2763 * dwc2_hsotg_ep_disable - disable given endpoint
2764 * @ep: The endpoint to disable.
2765 */
2766 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
2767 {
2768 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2769 struct dwc2_hsotg *hsotg = hs_ep->parent;
2770 int dir_in = hs_ep->dir_in;
2771 int index = hs_ep->index;
2772 unsigned long flags;
2773 u32 epctrl_reg;
2774 u32 ctrl;
2775
2776 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2777
2778 if (ep == &hsotg->eps_out[0]->ep) {
2779 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2780 return -EINVAL;
2781 }
2782
2783 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2784
2785 spin_lock_irqsave(&hsotg->lock, flags);
2786
2787 hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
2788 hs_ep->fifo_index = 0;
2789 hs_ep->fifo_size = 0;
2790
2791 ctrl = readl(hsotg->regs + epctrl_reg);
2792 ctrl &= ~DXEPCTL_EPENA;
2793 ctrl &= ~DXEPCTL_USBACTEP;
2794 ctrl |= DXEPCTL_SNAK;
2795
2796 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2797 writel(ctrl, hsotg->regs + epctrl_reg);
2798
2799 /* disable endpoint interrupts */
2800 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2801
2802 /* terminate all requests with shutdown */
2803 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
2804
2805 spin_unlock_irqrestore(&hsotg->lock, flags);
2806 return 0;
2807 }
2808
2809 /**
2810 * on_list - check request is on the given endpoint
2811 * @ep: The endpoint to check.
2812 * @test: The request to test if it is on the endpoint.
2813 */
2814 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
2815 {
2816 struct dwc2_hsotg_req *req, *treq;
2817
2818 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2819 if (req == test)
2820 return true;
2821 }
2822
2823 return false;
2824 }
2825
2826 /**
2827 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
2828 * @ep: The endpoint to dequeue.
2829 * @req: The request to be removed from a queue.
2830 */
2831 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2832 {
2833 struct dwc2_hsotg_req *hs_req = our_req(req);
2834 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2835 struct dwc2_hsotg *hs = hs_ep->parent;
2836 unsigned long flags;
2837
2838 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2839
2840 spin_lock_irqsave(&hs->lock, flags);
2841
2842 if (!on_list(hs_ep, hs_req)) {
2843 spin_unlock_irqrestore(&hs->lock, flags);
2844 return -EINVAL;
2845 }
2846
2847 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2848 spin_unlock_irqrestore(&hs->lock, flags);
2849
2850 return 0;
2851 }
2852
2853 /**
2854 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
2855 * @ep: The endpoint to set halt.
2856 * @value: Set or unset the halt.
2857 */
2858 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2859 {
2860 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2861 struct dwc2_hsotg *hs = hs_ep->parent;
2862 int index = hs_ep->index;
2863 u32 epreg;
2864 u32 epctl;
2865 u32 xfertype;
2866
2867 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2868
2869 if (index == 0) {
2870 if (value)
2871 dwc2_hsotg_stall_ep0(hs);
2872 else
2873 dev_warn(hs->dev,
2874 "%s: can't clear halt on ep0\n", __func__);
2875 return 0;
2876 }
2877
2878 if (hs_ep->dir_in) {
2879 epreg = DIEPCTL(index);
2880 epctl = readl(hs->regs + epreg);
2881
2882 if (value) {
2883 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
2884 if (epctl & DXEPCTL_EPENA)
2885 epctl |= DXEPCTL_EPDIS;
2886 } else {
2887 epctl &= ~DXEPCTL_STALL;
2888 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2889 if (xfertype == DXEPCTL_EPTYPE_BULK ||
2890 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2891 epctl |= DXEPCTL_SETD0PID;
2892 }
2893 writel(epctl, hs->regs + epreg);
2894 } else {
2895
2896 epreg = DOEPCTL(index);
2897 epctl = readl(hs->regs + epreg);
2898
2899 if (value)
2900 epctl |= DXEPCTL_STALL;
2901 else {
2902 epctl &= ~DXEPCTL_STALL;
2903 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2904 if (xfertype == DXEPCTL_EPTYPE_BULK ||
2905 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2906 epctl |= DXEPCTL_SETD0PID;
2907 }
2908 writel(epctl, hs->regs + epreg);
2909 }
2910
2911 hs_ep->halted = value;
2912
2913 return 0;
2914 }
2915
2916 /**
2917 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2918 * @ep: The endpoint to set halt.
2919 * @value: Set or unset the halt.
2920 */
2921 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2922 {
2923 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2924 struct dwc2_hsotg *hs = hs_ep->parent;
2925 unsigned long flags = 0;
2926 int ret = 0;
2927
2928 spin_lock_irqsave(&hs->lock, flags);
2929 ret = dwc2_hsotg_ep_sethalt(ep, value);
2930 spin_unlock_irqrestore(&hs->lock, flags);
2931
2932 return ret;
2933 }
2934
2935 static struct usb_ep_ops dwc2_hsotg_ep_ops = {
2936 .enable = dwc2_hsotg_ep_enable,
2937 .disable = dwc2_hsotg_ep_disable,
2938 .alloc_request = dwc2_hsotg_ep_alloc_request,
2939 .free_request = dwc2_hsotg_ep_free_request,
2940 .queue = dwc2_hsotg_ep_queue_lock,
2941 .dequeue = dwc2_hsotg_ep_dequeue,
2942 .set_halt = dwc2_hsotg_ep_sethalt_lock,
2943 /* note, don't believe we have any call for the fifo routines */
2944 };
2945
2946 /**
2947 * dwc2_hsotg_phy_enable - enable platform phy dev
2948 * @hsotg: The driver state
2949 *
2950 * A wrapper for platform code responsible for controlling
2951 * low-level USB code
2952 */
2953 static void dwc2_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2954 {
2955 struct platform_device *pdev = to_platform_device(hsotg->dev);
2956
2957 dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2958
2959 if (hsotg->uphy)
2960 usb_phy_init(hsotg->uphy);
2961 else if (hsotg->plat && hsotg->plat->phy_init)
2962 hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2963 else {
2964 phy_init(hsotg->phy);
2965 phy_power_on(hsotg->phy);
2966 }
2967 }
2968
2969 /**
2970 * dwc2_hsotg_phy_disable - disable platform phy dev
2971 * @hsotg: The driver state
2972 *
2973 * A wrapper for platform code responsible for controlling
2974 * low-level USB code
2975 */
2976 static void dwc2_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2977 {
2978 struct platform_device *pdev = to_platform_device(hsotg->dev);
2979
2980 if (hsotg->uphy)
2981 usb_phy_shutdown(hsotg->uphy);
2982 else if (hsotg->plat && hsotg->plat->phy_exit)
2983 hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2984 else {
2985 phy_power_off(hsotg->phy);
2986 phy_exit(hsotg->phy);
2987 }
2988 }
2989
2990 /**
2991 * dwc2_hsotg_init - initalize the usb core
2992 * @hsotg: The driver state
2993 */
2994 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
2995 {
2996 u32 trdtim;
2997 /* unmask subset of endpoint interrupts */
2998
2999 writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
3000 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
3001 hsotg->regs + DIEPMSK);
3002
3003 writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
3004 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
3005 hsotg->regs + DOEPMSK);
3006
3007 writel(0, hsotg->regs + DAINTMSK);
3008
3009 /* Be in disconnected state until gadget is registered */
3010 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3011
3012 /* setup fifos */
3013
3014 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3015 readl(hsotg->regs + GRXFSIZ),
3016 readl(hsotg->regs + GNPTXFSIZ));
3017
3018 dwc2_hsotg_init_fifo(hsotg);
3019
3020 /* set the PLL on, remove the HNP/SRP and set the PHY */
3021 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3022 writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3023 (trdtim << GUSBCFG_USBTRDTIM_SHIFT),
3024 hsotg->regs + GUSBCFG);
3025
3026 if (using_dma(hsotg))
3027 __orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3028 }
3029
3030 /**
3031 * dwc2_hsotg_udc_start - prepare the udc for work
3032 * @gadget: The usb gadget state
3033 * @driver: The usb gadget driver
3034 *
3035 * Perform initialization to prepare udc device and driver
3036 * to work.
3037 */
3038 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3039 struct usb_gadget_driver *driver)
3040 {
3041 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3042 unsigned long flags;
3043 int ret;
3044
3045 if (!hsotg) {
3046 pr_err("%s: called with no device\n", __func__);
3047 return -ENODEV;
3048 }
3049
3050 if (!driver) {
3051 dev_err(hsotg->dev, "%s: no driver\n", __func__);
3052 return -EINVAL;
3053 }
3054
3055 if (driver->max_speed < USB_SPEED_FULL)
3056 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
3057
3058 if (!driver->setup) {
3059 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
3060 return -EINVAL;
3061 }
3062
3063 mutex_lock(&hsotg->init_mutex);
3064 WARN_ON(hsotg->driver);
3065
3066 driver->driver.bus = NULL;
3067 hsotg->driver = driver;
3068 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3069 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3070
3071 clk_enable(hsotg->clk);
3072
3073 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3074 hsotg->supplies);
3075 if (ret) {
3076 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3077 goto err;
3078 }
3079
3080 dwc2_hsotg_phy_enable(hsotg);
3081 if (!IS_ERR_OR_NULL(hsotg->uphy))
3082 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3083
3084 spin_lock_irqsave(&hsotg->lock, flags);
3085 dwc2_hsotg_init(hsotg);
3086 dwc2_hsotg_core_init_disconnected(hsotg, false);
3087 hsotg->enabled = 0;
3088 spin_unlock_irqrestore(&hsotg->lock, flags);
3089
3090 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3091
3092 mutex_unlock(&hsotg->init_mutex);
3093
3094 return 0;
3095
3096 err:
3097 mutex_unlock(&hsotg->init_mutex);
3098 hsotg->driver = NULL;
3099 return ret;
3100 }
3101
3102 /**
3103 * dwc2_hsotg_udc_stop - stop the udc
3104 * @gadget: The usb gadget state
3105 * @driver: The usb gadget driver
3106 *
3107 * Stop udc hw block and stay tunned for future transmissions
3108 */
3109 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3110 {
3111 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3112 unsigned long flags = 0;
3113 int ep;
3114
3115 if (!hsotg)
3116 return -ENODEV;
3117
3118 mutex_lock(&hsotg->init_mutex);
3119
3120 /* all endpoints should be shutdown */
3121 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3122 if (hsotg->eps_in[ep])
3123 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3124 if (hsotg->eps_out[ep])
3125 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3126 }
3127
3128 spin_lock_irqsave(&hsotg->lock, flags);
3129
3130 hsotg->driver = NULL;
3131 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3132 hsotg->enabled = 0;
3133
3134 spin_unlock_irqrestore(&hsotg->lock, flags);
3135
3136 if (!IS_ERR_OR_NULL(hsotg->uphy))
3137 otg_set_peripheral(hsotg->uphy->otg, NULL);
3138 dwc2_hsotg_phy_disable(hsotg);
3139
3140 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3141
3142 clk_disable(hsotg->clk);
3143
3144 mutex_unlock(&hsotg->init_mutex);
3145
3146 return 0;
3147 }
3148
3149 /**
3150 * dwc2_hsotg_gadget_getframe - read the frame number
3151 * @gadget: The usb gadget state
3152 *
3153 * Read the {micro} frame number
3154 */
3155 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3156 {
3157 return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3158 }
3159
3160 /**
3161 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3162 * @gadget: The usb gadget state
3163 * @is_on: Current state of the USB PHY
3164 *
3165 * Connect/Disconnect the USB PHY pullup
3166 */
3167 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3168 {
3169 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3170 unsigned long flags = 0;
3171
3172 dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
3173
3174 mutex_lock(&hsotg->init_mutex);
3175 spin_lock_irqsave(&hsotg->lock, flags);
3176 if (is_on) {
3177 clk_enable(hsotg->clk);
3178 hsotg->enabled = 1;
3179 dwc2_hsotg_core_init_disconnected(hsotg, false);
3180 dwc2_hsotg_core_connect(hsotg);
3181 } else {
3182 dwc2_hsotg_core_disconnect(hsotg);
3183 dwc2_hsotg_disconnect(hsotg);
3184 hsotg->enabled = 0;
3185 clk_disable(hsotg->clk);
3186 }
3187
3188 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3189 spin_unlock_irqrestore(&hsotg->lock, flags);
3190 mutex_unlock(&hsotg->init_mutex);
3191
3192 return 0;
3193 }
3194
3195 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3196 {
3197 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3198 unsigned long flags;
3199
3200 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
3201 spin_lock_irqsave(&hsotg->lock, flags);
3202
3203 if (is_active) {
3204 /*
3205 * If controller is hibernated, it must exit from hibernation
3206 * before being initialized
3207 */
3208 if (hsotg->lx_state == DWC2_L2) {
3209 dwc2_exit_hibernation(hsotg, false);
3210 hsotg->lx_state = DWC2_L0;
3211 }
3212 /* Kill any ep0 requests as controller will be reinitialized */
3213 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3214 dwc2_hsotg_core_init_disconnected(hsotg, false);
3215 if (hsotg->enabled)
3216 dwc2_hsotg_core_connect(hsotg);
3217 } else {
3218 dwc2_hsotg_core_disconnect(hsotg);
3219 dwc2_hsotg_disconnect(hsotg);
3220 }
3221
3222 spin_unlock_irqrestore(&hsotg->lock, flags);
3223 return 0;
3224 }
3225
3226 /**
3227 * dwc2_hsotg_vbus_draw - report bMaxPower field
3228 * @gadget: The usb gadget state
3229 * @mA: Amount of current
3230 *
3231 * Report how much power the device may consume to the phy.
3232 */
3233 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3234 {
3235 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3236
3237 if (IS_ERR_OR_NULL(hsotg->uphy))
3238 return -ENOTSUPP;
3239 return usb_phy_set_power(hsotg->uphy, mA);
3240 }
3241
3242 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
3243 .get_frame = dwc2_hsotg_gadget_getframe,
3244 .udc_start = dwc2_hsotg_udc_start,
3245 .udc_stop = dwc2_hsotg_udc_stop,
3246 .pullup = dwc2_hsotg_pullup,
3247 .vbus_session = dwc2_hsotg_vbus_session,
3248 .vbus_draw = dwc2_hsotg_vbus_draw,
3249 };
3250
3251 /**
3252 * dwc2_hsotg_initep - initialise a single endpoint
3253 * @hsotg: The device state.
3254 * @hs_ep: The endpoint to be initialised.
3255 * @epnum: The endpoint number
3256 *
3257 * Initialise the given endpoint (as part of the probe and device state
3258 * creation) to give to the gadget driver. Setup the endpoint name, any
3259 * direction information and other state that may be required.
3260 */
3261 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
3262 struct dwc2_hsotg_ep *hs_ep,
3263 int epnum,
3264 bool dir_in)
3265 {
3266 char *dir;
3267
3268 if (epnum == 0)
3269 dir = "";
3270 else if (dir_in)
3271 dir = "in";
3272 else
3273 dir = "out";
3274
3275 hs_ep->dir_in = dir_in;
3276 hs_ep->index = epnum;
3277
3278 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3279
3280 INIT_LIST_HEAD(&hs_ep->queue);
3281 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3282
3283 /* add to the list of endpoints known by the gadget driver */
3284 if (epnum)
3285 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3286
3287 hs_ep->parent = hsotg;
3288 hs_ep->ep.name = hs_ep->name;
3289 usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3290 hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3291
3292 if (epnum == 0) {
3293 hs_ep->ep.caps.type_control = true;
3294 } else {
3295 hs_ep->ep.caps.type_iso = true;
3296 hs_ep->ep.caps.type_bulk = true;
3297 hs_ep->ep.caps.type_int = true;
3298 }
3299
3300 if (dir_in)
3301 hs_ep->ep.caps.dir_in = true;
3302 else
3303 hs_ep->ep.caps.dir_out = true;
3304
3305 /*
3306 * if we're using dma, we need to set the next-endpoint pointer
3307 * to be something valid.
3308 */
3309
3310 if (using_dma(hsotg)) {
3311 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3312 if (dir_in)
3313 writel(next, hsotg->regs + DIEPCTL(epnum));
3314 else
3315 writel(next, hsotg->regs + DOEPCTL(epnum));
3316 }
3317 }
3318
3319 /**
3320 * dwc2_hsotg_hw_cfg - read HW configuration registers
3321 * @param: The device state
3322 *
3323 * Read the USB core HW configuration registers
3324 */
3325 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3326 {
3327 u32 cfg;
3328 u32 ep_type;
3329 u32 i;
3330
3331 /* check hardware configuration */
3332
3333 cfg = readl(hsotg->regs + GHWCFG2);
3334 hsotg->num_of_eps = (cfg >> GHWCFG2_NUM_DEV_EP_SHIFT) & 0xF;
3335 /* Add ep0 */
3336 hsotg->num_of_eps++;
3337
3338 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3339 GFP_KERNEL);
3340 if (!hsotg->eps_in[0])
3341 return -ENOMEM;
3342 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
3343 hsotg->eps_out[0] = hsotg->eps_in[0];
3344
3345 cfg = readl(hsotg->regs + GHWCFG1);
3346 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3347 ep_type = cfg & 3;
3348 /* Direction in or both */
3349 if (!(ep_type & 2)) {
3350 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3351 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3352 if (!hsotg->eps_in[i])
3353 return -ENOMEM;
3354 }
3355 /* Direction out or both */
3356 if (!(ep_type & 1)) {
3357 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3358 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3359 if (!hsotg->eps_out[i])
3360 return -ENOMEM;
3361 }
3362 }
3363
3364 cfg = readl(hsotg->regs + GHWCFG3);
3365 hsotg->fifo_mem = (cfg >> GHWCFG3_DFIFO_DEPTH_SHIFT);
3366
3367 cfg = readl(hsotg->regs + GHWCFG4);
3368 hsotg->dedicated_fifos = (cfg >> GHWCFG4_DED_FIFO_SHIFT) & 1;
3369
3370 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
3371 hsotg->num_of_eps,
3372 hsotg->dedicated_fifos ? "dedicated" : "shared",
3373 hsotg->fifo_mem);
3374 return 0;
3375 }
3376
3377 /**
3378 * dwc2_hsotg_dump - dump state of the udc
3379 * @param: The device state
3380 */
3381 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3382 {
3383 #ifdef DEBUG
3384 struct device *dev = hsotg->dev;
3385 void __iomem *regs = hsotg->regs;
3386 u32 val;
3387 int idx;
3388
3389 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3390 readl(regs + DCFG), readl(regs + DCTL),
3391 readl(regs + DIEPMSK));
3392
3393 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3394 readl(regs + GAHBCFG), readl(regs + GHWCFG1));
3395
3396 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3397 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3398
3399 /* show periodic fifo settings */
3400
3401 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3402 val = readl(regs + DPTXFSIZN(idx));
3403 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3404 val >> FIFOSIZE_DEPTH_SHIFT,
3405 val & FIFOSIZE_STARTADDR_MASK);
3406 }
3407
3408 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3409 dev_info(dev,
3410 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3411 readl(regs + DIEPCTL(idx)),
3412 readl(regs + DIEPTSIZ(idx)),
3413 readl(regs + DIEPDMA(idx)));
3414
3415 val = readl(regs + DOEPCTL(idx));
3416 dev_info(dev,
3417 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3418 idx, readl(regs + DOEPCTL(idx)),
3419 readl(regs + DOEPTSIZ(idx)),
3420 readl(regs + DOEPDMA(idx)));
3421
3422 }
3423
3424 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3425 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
3426 #endif
3427 }
3428
3429 #ifdef CONFIG_OF
3430 static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3431 {
3432 struct device_node *np = hsotg->dev->of_node;
3433 u32 len = 0;
3434 u32 i = 0;
3435
3436 /* Enable dma if requested in device tree */
3437 hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3438
3439 /*
3440 * Register TX periodic fifo size per endpoint.
3441 * EP0 is excluded since it has no fifo configuration.
3442 */
3443 if (!of_find_property(np, "g-tx-fifo-size", &len))
3444 goto rx_fifo;
3445
3446 len /= sizeof(u32);
3447
3448 /* Read tx fifo sizes other than ep0 */
3449 if (of_property_read_u32_array(np, "g-tx-fifo-size",
3450 &hsotg->g_tx_fifo_sz[1], len))
3451 goto rx_fifo;
3452
3453 /* Add ep0 */
3454 len++;
3455
3456 /* Make remaining TX fifos unavailable */
3457 if (len < MAX_EPS_CHANNELS) {
3458 for (i = len; i < MAX_EPS_CHANNELS; i++)
3459 hsotg->g_tx_fifo_sz[i] = 0;
3460 }
3461
3462 rx_fifo:
3463 /* Register RX fifo size */
3464 of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);
3465
3466 /* Register NPTX fifo size */
3467 of_property_read_u32(np, "g-np-tx-fifo-size",
3468 &hsotg->g_np_g_tx_fifo_sz);
3469 }
3470 #else
3471 static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3472 #endif
3473
3474 /**
3475 * dwc2_gadget_init - init function for gadget
3476 * @dwc2: The data structure for the DWC2 driver.
3477 * @irq: The IRQ number for the controller.
3478 */
3479 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3480 {
3481 struct device *dev = hsotg->dev;
3482 struct dwc2_hsotg_plat *plat = dev->platform_data;
3483 int epnum;
3484 int ret;
3485 int i;
3486 u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3487
3488 /* Set default UTMI width */
3489 hsotg->phyif = GUSBCFG_PHYIF16;
3490
3491 dwc2_hsotg_of_probe(hsotg);
3492
3493 /* Initialize to legacy fifo configuration values */
3494 hsotg->g_rx_fifo_sz = 2048;
3495 hsotg->g_np_g_tx_fifo_sz = 1024;
3496 memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
3497 /* Device tree specific probe */
3498 dwc2_hsotg_of_probe(hsotg);
3499 /* Dump fifo information */
3500 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
3501 hsotg->g_np_g_tx_fifo_sz);
3502 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
3503 for (i = 0; i < MAX_EPS_CHANNELS; i++)
3504 dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
3505 hsotg->g_tx_fifo_sz[i]);
3506 /*
3507 * If platform probe couldn't find a generic PHY or an old style
3508 * USB PHY, fall back to pdata
3509 */
3510 if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
3511 plat = dev_get_platdata(dev);
3512 if (!plat) {
3513 dev_err(dev,
3514 "no platform data or transceiver defined\n");
3515 return -EPROBE_DEFER;
3516 }
3517 hsotg->plat = plat;
3518 } else if (hsotg->phy) {
3519 /*
3520 * If using the generic PHY framework, check if the PHY bus
3521 * width is 8-bit and set the phyif appropriately.
3522 */
3523 if (phy_get_bus_width(hsotg->phy) == 8)
3524 hsotg->phyif = GUSBCFG_PHYIF8;
3525 }
3526
3527 hsotg->clk = devm_clk_get(dev, "otg");
3528 if (IS_ERR(hsotg->clk)) {
3529 hsotg->clk = NULL;
3530 dev_dbg(dev, "cannot get otg clock\n");
3531 }
3532
3533 hsotg->gadget.max_speed = USB_SPEED_HIGH;
3534 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3535 hsotg->gadget.name = dev_name(dev);
3536 if (hsotg->dr_mode == USB_DR_MODE_OTG)
3537 hsotg->gadget.is_otg = 1;
3538
3539 /* reset the system */
3540
3541 ret = clk_prepare_enable(hsotg->clk);
3542 if (ret) {
3543 dev_err(dev, "failed to enable otg clk\n");
3544 goto err_clk;
3545 }
3546
3547
3548 /* regulators */
3549
3550 for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3551 hsotg->supplies[i].supply = dwc2_hsotg_supply_names[i];
3552
3553 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3554 hsotg->supplies);
3555 if (ret) {
3556 dev_err(dev, "failed to request supplies: %d\n", ret);
3557 goto err_clk;
3558 }
3559
3560 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3561 hsotg->supplies);
3562
3563 if (ret) {
3564 dev_err(dev, "failed to enable supplies: %d\n", ret);
3565 goto err_clk;
3566 }
3567
3568 /* usb phy enable */
3569 dwc2_hsotg_phy_enable(hsotg);
3570
3571 /*
3572 * Force Device mode before initialization.
3573 * This allows correctly configuring fifo for device mode.
3574 */
3575 __bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEHOSTMODE);
3576 __orr32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);
3577
3578 /*
3579 * According to Synopsys databook, this sleep is needed for the force
3580 * device mode to take effect.
3581 */
3582 msleep(25);
3583
3584 dwc2_hsotg_corereset(hsotg);
3585 ret = dwc2_hsotg_hw_cfg(hsotg);
3586 if (ret) {
3587 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3588 goto err_clk;
3589 }
3590
3591 dwc2_hsotg_init(hsotg);
3592
3593 /* Switch back to default configuration */
3594 __bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);
3595
3596 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
3597 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3598 if (!hsotg->ctrl_buff) {
3599 dev_err(dev, "failed to allocate ctrl request buff\n");
3600 ret = -ENOMEM;
3601 goto err_supplies;
3602 }
3603
3604 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
3605 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3606 if (!hsotg->ep0_buff) {
3607 dev_err(dev, "failed to allocate ctrl reply buff\n");
3608 ret = -ENOMEM;
3609 goto err_supplies;
3610 }
3611
3612 ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3613 dev_name(hsotg->dev), hsotg);
3614 if (ret < 0) {
3615 dwc2_hsotg_phy_disable(hsotg);
3616 clk_disable_unprepare(hsotg->clk);
3617 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3618 hsotg->supplies);
3619 dev_err(dev, "cannot claim IRQ for gadget\n");
3620 goto err_supplies;
3621 }
3622
3623 /* hsotg->num_of_eps holds number of EPs other than ep0 */
3624
3625 if (hsotg->num_of_eps == 0) {
3626 dev_err(dev, "wrong number of EPs (zero)\n");
3627 ret = -EINVAL;
3628 goto err_supplies;
3629 }
3630
3631 /* setup endpoint information */
3632
3633 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3634 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3635
3636 /* allocate EP0 request */
3637
3638 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3639 GFP_KERNEL);
3640 if (!hsotg->ctrl_req) {
3641 dev_err(dev, "failed to allocate ctrl req\n");
3642 ret = -ENOMEM;
3643 goto err_supplies;
3644 }
3645
3646 /* initialise the endpoints now the core has been initialised */
3647 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
3648 if (hsotg->eps_in[epnum])
3649 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3650 epnum, 1);
3651 if (hsotg->eps_out[epnum])
3652 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3653 epnum, 0);
3654 }
3655
3656 /* disable power and clock */
3657 dwc2_hsotg_phy_disable(hsotg);
3658
3659 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3660 hsotg->supplies);
3661 if (ret) {
3662 dev_err(dev, "failed to disable supplies: %d\n", ret);
3663 goto err_supplies;
3664 }
3665
3666 ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3667 if (ret)
3668 goto err_supplies;
3669
3670 dwc2_hsotg_dump(hsotg);
3671
3672 return 0;
3673
3674 err_supplies:
3675 dwc2_hsotg_phy_disable(hsotg);
3676 err_clk:
3677 clk_disable_unprepare(hsotg->clk);
3678
3679 return ret;
3680 }
3681
3682 /**
3683 * dwc2_hsotg_remove - remove function for hsotg driver
3684 * @pdev: The platform information for the driver
3685 */
3686 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3687 {
3688 usb_del_gadget_udc(&hsotg->gadget);
3689 clk_disable_unprepare(hsotg->clk);
3690
3691 return 0;
3692 }
3693
3694 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3695 {
3696 unsigned long flags;
3697 int ret = 0;
3698
3699 if (hsotg->lx_state != DWC2_L0)
3700 return ret;
3701
3702 mutex_lock(&hsotg->init_mutex);
3703
3704 if (hsotg->driver) {
3705 int ep;
3706
3707 dev_info(hsotg->dev, "suspending usb gadget %s\n",
3708 hsotg->driver->driver.name);
3709
3710 spin_lock_irqsave(&hsotg->lock, flags);
3711 if (hsotg->enabled)
3712 dwc2_hsotg_core_disconnect(hsotg);
3713 dwc2_hsotg_disconnect(hsotg);
3714 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3715 spin_unlock_irqrestore(&hsotg->lock, flags);
3716
3717 dwc2_hsotg_phy_disable(hsotg);
3718
3719 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3720 if (hsotg->eps_in[ep])
3721 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3722 if (hsotg->eps_out[ep])
3723 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3724 }
3725
3726 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3727 hsotg->supplies);
3728 clk_disable(hsotg->clk);
3729 }
3730
3731 mutex_unlock(&hsotg->init_mutex);
3732
3733 return ret;
3734 }
3735
3736 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
3737 {
3738 unsigned long flags;
3739 int ret = 0;
3740
3741 if (hsotg->lx_state == DWC2_L2)
3742 return ret;
3743
3744 mutex_lock(&hsotg->init_mutex);
3745
3746 if (hsotg->driver) {
3747 dev_info(hsotg->dev, "resuming usb gadget %s\n",
3748 hsotg->driver->driver.name);
3749
3750 clk_enable(hsotg->clk);
3751 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3752 hsotg->supplies);
3753
3754 dwc2_hsotg_phy_enable(hsotg);
3755
3756 spin_lock_irqsave(&hsotg->lock, flags);
3757 dwc2_hsotg_core_init_disconnected(hsotg, false);
3758 if (hsotg->enabled)
3759 dwc2_hsotg_core_connect(hsotg);
3760 spin_unlock_irqrestore(&hsotg->lock, flags);
3761 }
3762 mutex_unlock(&hsotg->init_mutex);
3763
3764 return ret;
3765 }
This page took 0.135842 seconds and 5 git commands to generate.