79d9f3bf5cf7ef25de17a073c64392fc2b6176ab
[deliverable/linux.git] / drivers / usb / dwc2 / gadget.c
1 /**
2 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * Copyright 2008 Openmoko, Inc.
6 * Copyright 2008 Simtec Electronics
7 * Ben Dooks <ben@simtec.co.uk>
8 * http://armlinux.simtec.co.uk/
9 *
10 * S3C USB2.0 High-speed / OtG driver
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/mutex.h>
24 #include <linux/seq_file.h>
25 #include <linux/delay.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/clk.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/of_platform.h>
31 #include <linux/phy/phy.h>
32
33 #include <linux/usb/ch9.h>
34 #include <linux/usb/gadget.h>
35 #include <linux/usb/phy.h>
36 #include <linux/platform_data/s3c-hsotg.h>
37
38 #include "core.h"
39 #include "hw.h"
40
41 /* conversion functions */
42 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
43 {
44 return container_of(req, struct dwc2_hsotg_req, req);
45 }
46
47 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
48 {
49 return container_of(ep, struct dwc2_hsotg_ep, ep);
50 }
51
52 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
53 {
54 return container_of(gadget, struct dwc2_hsotg, gadget);
55 }
56
57 static inline void __orr32(void __iomem *ptr, u32 val)
58 {
59 dwc2_writel(dwc2_readl(ptr) | val, ptr);
60 }
61
62 static inline void __bic32(void __iomem *ptr, u32 val)
63 {
64 dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
65 }
66
67 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
68 u32 ep_index, u32 dir_in)
69 {
70 if (dir_in)
71 return hsotg->eps_in[ep_index];
72 else
73 return hsotg->eps_out[ep_index];
74 }
75
76 /* forward declaration of functions */
77 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
78
79 /**
80 * using_dma - return the DMA status of the driver.
81 * @hsotg: The driver state.
82 *
83 * Return true if we're using DMA.
84 *
85 * Currently, we have the DMA support code worked into everywhere
86 * that needs it, but the AMBA DMA implementation in the hardware can
87 * only DMA from 32bit aligned addresses. This means that gadgets such
88 * as the CDC Ethernet cannot work as they often pass packets which are
89 * not 32bit aligned.
90 *
91 * Unfortunately the choice to use DMA or not is global to the controller
92 * and seems to be only settable when the controller is being put through
93 * a core reset. This means we either need to fix the gadgets to take
94 * account of DMA alignment, or add bounce buffers (yuerk).
95 *
96 * g_using_dma is set depending on dts flag.
97 */
98 static inline bool using_dma(struct dwc2_hsotg *hsotg)
99 {
100 return hsotg->g_using_dma;
101 }
102
103 /**
104 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
105 * @hsotg: The device state
106 * @ints: A bitmask of the interrupts to enable
107 */
108 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
109 {
110 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
111 u32 new_gsintmsk;
112
113 new_gsintmsk = gsintmsk | ints;
114
115 if (new_gsintmsk != gsintmsk) {
116 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
117 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
118 }
119 }
120
121 /**
122 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
123 * @hsotg: The device state
124 * @ints: A bitmask of the interrupts to enable
125 */
126 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
127 {
128 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
129 u32 new_gsintmsk;
130
131 new_gsintmsk = gsintmsk & ~ints;
132
133 if (new_gsintmsk != gsintmsk)
134 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
135 }
136
137 /**
138 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
139 * @hsotg: The device state
140 * @ep: The endpoint index
141 * @dir_in: True if direction is in.
142 * @en: The enable value, true to enable
143 *
144 * Set or clear the mask for an individual endpoint's interrupt
145 * request.
146 */
147 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
148 unsigned int ep, unsigned int dir_in,
149 unsigned int en)
150 {
151 unsigned long flags;
152 u32 bit = 1 << ep;
153 u32 daint;
154
155 if (!dir_in)
156 bit <<= 16;
157
158 local_irq_save(flags);
159 daint = dwc2_readl(hsotg->regs + DAINTMSK);
160 if (en)
161 daint |= bit;
162 else
163 daint &= ~bit;
164 dwc2_writel(daint, hsotg->regs + DAINTMSK);
165 local_irq_restore(flags);
166 }
167
168 /**
169 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
170 * @hsotg: The device instance.
171 */
172 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
173 {
174 unsigned int ep;
175 unsigned int addr;
176 int timeout;
177 u32 val;
178
179 /* Reset fifo map if not correctly cleared during previous session */
180 WARN_ON(hsotg->fifo_map);
181 hsotg->fifo_map = 0;
182
183 /* set RX/NPTX FIFO sizes */
184 dwc2_writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
185 dwc2_writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
186 (hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
187 hsotg->regs + GNPTXFSIZ);
188
189 /*
190 * arange all the rest of the TX FIFOs, as some versions of this
191 * block have overlapping default addresses. This also ensures
192 * that if the settings have been changed, then they are set to
193 * known values.
194 */
195
196 /* start at the end of the GNPTXFSIZ, rounded up */
197 addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
198
199 /*
200 * Configure fifos sizes from provided configuration and assign
201 * them to endpoints dynamically according to maxpacket size value of
202 * given endpoint.
203 */
204 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
205 if (!hsotg->g_tx_fifo_sz[ep])
206 continue;
207 val = addr;
208 val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
209 WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
210 "insufficient fifo memory");
211 addr += hsotg->g_tx_fifo_sz[ep];
212
213 dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
214 }
215
216 /*
217 * according to p428 of the design guide, we need to ensure that
218 * all fifos are flushed before continuing
219 */
220
221 dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
222 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
223
224 /* wait until the fifos are both flushed */
225 timeout = 100;
226 while (1) {
227 val = dwc2_readl(hsotg->regs + GRSTCTL);
228
229 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
230 break;
231
232 if (--timeout == 0) {
233 dev_err(hsotg->dev,
234 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
235 __func__, val);
236 break;
237 }
238
239 udelay(1);
240 }
241
242 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
243 }
244
245 /**
246 * @ep: USB endpoint to allocate request for.
247 * @flags: Allocation flags
248 *
249 * Allocate a new USB request structure appropriate for the specified endpoint
250 */
251 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
252 gfp_t flags)
253 {
254 struct dwc2_hsotg_req *req;
255
256 req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
257 if (!req)
258 return NULL;
259
260 INIT_LIST_HEAD(&req->queue);
261
262 return &req->req;
263 }
264
265 /**
266 * is_ep_periodic - return true if the endpoint is in periodic mode.
267 * @hs_ep: The endpoint to query.
268 *
269 * Returns true if the endpoint is in periodic mode, meaning it is being
270 * used for an Interrupt or ISO transfer.
271 */
272 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
273 {
274 return hs_ep->periodic;
275 }
276
277 /**
278 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
279 * @hsotg: The device state.
280 * @hs_ep: The endpoint for the request
281 * @hs_req: The request being processed.
282 *
283 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
284 * of a request to ensure the buffer is ready for access by the caller.
285 */
286 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
287 struct dwc2_hsotg_ep *hs_ep,
288 struct dwc2_hsotg_req *hs_req)
289 {
290 struct usb_request *req = &hs_req->req;
291
292 /* ignore this if we're not moving any data */
293 if (hs_req->req.length == 0)
294 return;
295
296 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
297 }
298
299 /**
300 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
301 * @hsotg: The controller state.
302 * @hs_ep: The endpoint we're going to write for.
303 * @hs_req: The request to write data for.
304 *
305 * This is called when the TxFIFO has some space in it to hold a new
306 * transmission and we have something to give it. The actual setup of
307 * the data size is done elsewhere, so all we have to do is to actually
308 * write the data.
309 *
310 * The return value is zero if there is more space (or nothing was done)
311 * otherwise -ENOSPC is returned if the FIFO space was used up.
312 *
313 * This routine is only needed for PIO
314 */
315 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
316 struct dwc2_hsotg_ep *hs_ep,
317 struct dwc2_hsotg_req *hs_req)
318 {
319 bool periodic = is_ep_periodic(hs_ep);
320 u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
321 int buf_pos = hs_req->req.actual;
322 int to_write = hs_ep->size_loaded;
323 void *data;
324 int can_write;
325 int pkt_round;
326 int max_transfer;
327
328 to_write -= (buf_pos - hs_ep->last_load);
329
330 /* if there's nothing to write, get out early */
331 if (to_write == 0)
332 return 0;
333
334 if (periodic && !hsotg->dedicated_fifos) {
335 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
336 int size_left;
337 int size_done;
338
339 /*
340 * work out how much data was loaded so we can calculate
341 * how much data is left in the fifo.
342 */
343
344 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
345
346 /*
347 * if shared fifo, we cannot write anything until the
348 * previous data has been completely sent.
349 */
350 if (hs_ep->fifo_load != 0) {
351 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
352 return -ENOSPC;
353 }
354
355 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
356 __func__, size_left,
357 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
358
359 /* how much of the data has moved */
360 size_done = hs_ep->size_loaded - size_left;
361
362 /* how much data is left in the fifo */
363 can_write = hs_ep->fifo_load - size_done;
364 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
365 __func__, can_write);
366
367 can_write = hs_ep->fifo_size - can_write;
368 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
369 __func__, can_write);
370
371 if (can_write <= 0) {
372 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
373 return -ENOSPC;
374 }
375 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
376 can_write = dwc2_readl(hsotg->regs + DTXFSTS(hs_ep->index));
377
378 can_write &= 0xffff;
379 can_write *= 4;
380 } else {
381 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
382 dev_dbg(hsotg->dev,
383 "%s: no queue slots available (0x%08x)\n",
384 __func__, gnptxsts);
385
386 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
387 return -ENOSPC;
388 }
389
390 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
391 can_write *= 4; /* fifo size is in 32bit quantities. */
392 }
393
394 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
395
396 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
397 __func__, gnptxsts, can_write, to_write, max_transfer);
398
399 /*
400 * limit to 512 bytes of data, it seems at least on the non-periodic
401 * FIFO, requests of >512 cause the endpoint to get stuck with a
402 * fragment of the end of the transfer in it.
403 */
404 if (can_write > 512 && !periodic)
405 can_write = 512;
406
407 /*
408 * limit the write to one max-packet size worth of data, but allow
409 * the transfer to return that it did not run out of fifo space
410 * doing it.
411 */
412 if (to_write > max_transfer) {
413 to_write = max_transfer;
414
415 /* it's needed only when we do not use dedicated fifos */
416 if (!hsotg->dedicated_fifos)
417 dwc2_hsotg_en_gsint(hsotg,
418 periodic ? GINTSTS_PTXFEMP :
419 GINTSTS_NPTXFEMP);
420 }
421
422 /* see if we can write data */
423
424 if (to_write > can_write) {
425 to_write = can_write;
426 pkt_round = to_write % max_transfer;
427
428 /*
429 * Round the write down to an
430 * exact number of packets.
431 *
432 * Note, we do not currently check to see if we can ever
433 * write a full packet or not to the FIFO.
434 */
435
436 if (pkt_round)
437 to_write -= pkt_round;
438
439 /*
440 * enable correct FIFO interrupt to alert us when there
441 * is more room left.
442 */
443
444 /* it's needed only when we do not use dedicated fifos */
445 if (!hsotg->dedicated_fifos)
446 dwc2_hsotg_en_gsint(hsotg,
447 periodic ? GINTSTS_PTXFEMP :
448 GINTSTS_NPTXFEMP);
449 }
450
451 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
452 to_write, hs_req->req.length, can_write, buf_pos);
453
454 if (to_write <= 0)
455 return -ENOSPC;
456
457 hs_req->req.actual = buf_pos + to_write;
458 hs_ep->total_data += to_write;
459
460 if (periodic)
461 hs_ep->fifo_load += to_write;
462
463 to_write = DIV_ROUND_UP(to_write, 4);
464 data = hs_req->req.buf + buf_pos;
465
466 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
467
468 return (to_write >= can_write) ? -ENOSPC : 0;
469 }
470
471 /**
472 * get_ep_limit - get the maximum data legnth for this endpoint
473 * @hs_ep: The endpoint
474 *
475 * Return the maximum data that can be queued in one go on a given endpoint
476 * so that transfers that are too long can be split.
477 */
478 static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
479 {
480 int index = hs_ep->index;
481 unsigned maxsize;
482 unsigned maxpkt;
483
484 if (index != 0) {
485 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
486 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
487 } else {
488 maxsize = 64+64;
489 if (hs_ep->dir_in)
490 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
491 else
492 maxpkt = 2;
493 }
494
495 /* we made the constant loading easier above by using +1 */
496 maxpkt--;
497 maxsize--;
498
499 /*
500 * constrain by packet count if maxpkts*pktsize is greater
501 * than the length register size.
502 */
503
504 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
505 maxsize = maxpkt * hs_ep->ep.maxpacket;
506
507 return maxsize;
508 }
509
510 /**
511 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
512 * @hsotg: The controller state.
513 * @hs_ep: The endpoint to process a request for
514 * @hs_req: The request to start.
515 * @continuing: True if we are doing more for the current request.
516 *
517 * Start the given request running by setting the endpoint registers
518 * appropriately, and writing any data to the FIFOs.
519 */
520 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
521 struct dwc2_hsotg_ep *hs_ep,
522 struct dwc2_hsotg_req *hs_req,
523 bool continuing)
524 {
525 struct usb_request *ureq = &hs_req->req;
526 int index = hs_ep->index;
527 int dir_in = hs_ep->dir_in;
528 u32 epctrl_reg;
529 u32 epsize_reg;
530 u32 epsize;
531 u32 ctrl;
532 unsigned length;
533 unsigned packets;
534 unsigned maxreq;
535
536 if (index != 0) {
537 if (hs_ep->req && !continuing) {
538 dev_err(hsotg->dev, "%s: active request\n", __func__);
539 WARN_ON(1);
540 return;
541 } else if (hs_ep->req != hs_req && continuing) {
542 dev_err(hsotg->dev,
543 "%s: continue different req\n", __func__);
544 WARN_ON(1);
545 return;
546 }
547 }
548
549 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
550 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
551
552 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
553 __func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
554 hs_ep->dir_in ? "in" : "out");
555
556 /* If endpoint is stalled, we will restart request later */
557 ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
558
559 if (index && ctrl & DXEPCTL_STALL) {
560 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
561 return;
562 }
563
564 length = ureq->length - ureq->actual;
565 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
566 ureq->length, ureq->actual);
567
568 maxreq = get_ep_limit(hs_ep);
569 if (length > maxreq) {
570 int round = maxreq % hs_ep->ep.maxpacket;
571
572 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
573 __func__, length, maxreq, round);
574
575 /* round down to multiple of packets */
576 if (round)
577 maxreq -= round;
578
579 length = maxreq;
580 }
581
582 if (length)
583 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
584 else
585 packets = 1; /* send one packet if length is zero. */
586
587 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
588 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
589 return;
590 }
591
592 if (dir_in && index != 0)
593 if (hs_ep->isochronous)
594 epsize = DXEPTSIZ_MC(packets);
595 else
596 epsize = DXEPTSIZ_MC(1);
597 else
598 epsize = 0;
599
600 /*
601 * zero length packet should be programmed on its own and should not
602 * be counted in DIEPTSIZ.PktCnt with other packets.
603 */
604 if (dir_in && ureq->zero && !continuing) {
605 /* Test if zlp is actually required. */
606 if ((ureq->length >= hs_ep->ep.maxpacket) &&
607 !(ureq->length % hs_ep->ep.maxpacket))
608 hs_ep->send_zlp = 1;
609 }
610
611 epsize |= DXEPTSIZ_PKTCNT(packets);
612 epsize |= DXEPTSIZ_XFERSIZE(length);
613
614 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
615 __func__, packets, length, ureq->length, epsize, epsize_reg);
616
617 /* store the request as the current one we're doing */
618 hs_ep->req = hs_req;
619
620 /* write size / packets */
621 dwc2_writel(epsize, hsotg->regs + epsize_reg);
622
623 if (using_dma(hsotg) && !continuing) {
624 unsigned int dma_reg;
625
626 /*
627 * write DMA address to control register, buffer already
628 * synced by dwc2_hsotg_ep_queue().
629 */
630
631 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
632 dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
633
634 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
635 __func__, &ureq->dma, dma_reg);
636 }
637
638 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
639 ctrl |= DXEPCTL_USBACTEP;
640
641 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
642
643 /* For Setup request do not clear NAK */
644 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
645 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
646
647 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
648 dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
649
650 /*
651 * set these, it seems that DMA support increments past the end
652 * of the packet buffer so we need to calculate the length from
653 * this information.
654 */
655 hs_ep->size_loaded = length;
656 hs_ep->last_load = ureq->actual;
657
658 if (dir_in && !using_dma(hsotg)) {
659 /* set these anyway, we may need them for non-periodic in */
660 hs_ep->fifo_load = 0;
661
662 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
663 }
664
665 /*
666 * clear the INTknTXFEmpMsk when we start request, more as a aide
667 * to debugging to see what is going on.
668 */
669 if (dir_in)
670 dwc2_writel(DIEPMSK_INTKNTXFEMPMSK,
671 hsotg->regs + DIEPINT(index));
672
673 /*
674 * Note, trying to clear the NAK here causes problems with transmit
675 * on the S3C6400 ending up with the TXFIFO becoming full.
676 */
677
678 /* check ep is enabled */
679 if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
680 dev_dbg(hsotg->dev,
681 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
682 index, dwc2_readl(hsotg->regs + epctrl_reg));
683
684 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
685 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
686
687 /* enable ep interrupts */
688 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
689 }
690
691 /**
692 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
693 * @hsotg: The device state.
694 * @hs_ep: The endpoint the request is on.
695 * @req: The request being processed.
696 *
697 * We've been asked to queue a request, so ensure that the memory buffer
698 * is correctly setup for DMA. If we've been passed an extant DMA address
699 * then ensure the buffer has been synced to memory. If our buffer has no
700 * DMA memory, then we map the memory and mark our request to allow us to
701 * cleanup on completion.
702 */
703 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
704 struct dwc2_hsotg_ep *hs_ep,
705 struct usb_request *req)
706 {
707 struct dwc2_hsotg_req *hs_req = our_req(req);
708 int ret;
709
710 /* if the length is zero, ignore the DMA data */
711 if (hs_req->req.length == 0)
712 return 0;
713
714 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
715 if (ret)
716 goto dma_error;
717
718 return 0;
719
720 dma_error:
721 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
722 __func__, req->buf, req->length);
723
724 return -EIO;
725 }
726
727 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
728 struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
729 {
730 void *req_buf = hs_req->req.buf;
731
732 /* If dma is not being used or buffer is aligned */
733 if (!using_dma(hsotg) || !((long)req_buf & 3))
734 return 0;
735
736 WARN_ON(hs_req->saved_req_buf);
737
738 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
739 hs_ep->ep.name, req_buf, hs_req->req.length);
740
741 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
742 if (!hs_req->req.buf) {
743 hs_req->req.buf = req_buf;
744 dev_err(hsotg->dev,
745 "%s: unable to allocate memory for bounce buffer\n",
746 __func__);
747 return -ENOMEM;
748 }
749
750 /* Save actual buffer */
751 hs_req->saved_req_buf = req_buf;
752
753 if (hs_ep->dir_in)
754 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
755 return 0;
756 }
757
758 static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
759 struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
760 {
761 /* If dma is not being used or buffer was aligned */
762 if (!using_dma(hsotg) || !hs_req->saved_req_buf)
763 return;
764
765 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
766 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
767
768 /* Copy data from bounce buffer on successful out transfer */
769 if (!hs_ep->dir_in && !hs_req->req.status)
770 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
771 hs_req->req.actual);
772
773 /* Free bounce buffer */
774 kfree(hs_req->req.buf);
775
776 hs_req->req.buf = hs_req->saved_req_buf;
777 hs_req->saved_req_buf = NULL;
778 }
779
780 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
781 gfp_t gfp_flags)
782 {
783 struct dwc2_hsotg_req *hs_req = our_req(req);
784 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
785 struct dwc2_hsotg *hs = hs_ep->parent;
786 bool first;
787 int ret;
788
789 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
790 ep->name, req, req->length, req->buf, req->no_interrupt,
791 req->zero, req->short_not_ok);
792
793 /* Prevent new request submission when controller is suspended */
794 if (hs->lx_state == DWC2_L2) {
795 dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
796 __func__);
797 return -EAGAIN;
798 }
799
800 /* initialise status of the request */
801 INIT_LIST_HEAD(&hs_req->queue);
802 req->actual = 0;
803 req->status = -EINPROGRESS;
804
805 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
806 if (ret)
807 return ret;
808
809 /* if we're using DMA, sync the buffers as necessary */
810 if (using_dma(hs)) {
811 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
812 if (ret)
813 return ret;
814 }
815
816 first = list_empty(&hs_ep->queue);
817 list_add_tail(&hs_req->queue, &hs_ep->queue);
818
819 if (first)
820 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
821
822 return 0;
823 }
824
825 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
826 gfp_t gfp_flags)
827 {
828 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
829 struct dwc2_hsotg *hs = hs_ep->parent;
830 unsigned long flags = 0;
831 int ret = 0;
832
833 spin_lock_irqsave(&hs->lock, flags);
834 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
835 spin_unlock_irqrestore(&hs->lock, flags);
836
837 return ret;
838 }
839
840 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
841 struct usb_request *req)
842 {
843 struct dwc2_hsotg_req *hs_req = our_req(req);
844
845 kfree(hs_req);
846 }
847
848 /**
849 * dwc2_hsotg_complete_oursetup - setup completion callback
850 * @ep: The endpoint the request was on.
851 * @req: The request completed.
852 *
853 * Called on completion of any requests the driver itself
854 * submitted that need cleaning up.
855 */
856 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
857 struct usb_request *req)
858 {
859 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
860 struct dwc2_hsotg *hsotg = hs_ep->parent;
861
862 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
863
864 dwc2_hsotg_ep_free_request(ep, req);
865 }
866
867 /**
868 * ep_from_windex - convert control wIndex value to endpoint
869 * @hsotg: The driver state.
870 * @windex: The control request wIndex field (in host order).
871 *
872 * Convert the given wIndex into a pointer to an driver endpoint
873 * structure, or return NULL if it is not a valid endpoint.
874 */
875 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
876 u32 windex)
877 {
878 struct dwc2_hsotg_ep *ep;
879 int dir = (windex & USB_DIR_IN) ? 1 : 0;
880 int idx = windex & 0x7F;
881
882 if (windex >= 0x100)
883 return NULL;
884
885 if (idx > hsotg->num_of_eps)
886 return NULL;
887
888 ep = index_to_ep(hsotg, idx, dir);
889
890 if (idx && ep->dir_in != dir)
891 return NULL;
892
893 return ep;
894 }
895
896 /**
897 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
898 * @hsotg: The driver state.
899 * @testmode: requested usb test mode
900 * Enable usb Test Mode requested by the Host.
901 */
902 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
903 {
904 int dctl = dwc2_readl(hsotg->regs + DCTL);
905
906 dctl &= ~DCTL_TSTCTL_MASK;
907 switch (testmode) {
908 case TEST_J:
909 case TEST_K:
910 case TEST_SE0_NAK:
911 case TEST_PACKET:
912 case TEST_FORCE_EN:
913 dctl |= testmode << DCTL_TSTCTL_SHIFT;
914 break;
915 default:
916 return -EINVAL;
917 }
918 dwc2_writel(dctl, hsotg->regs + DCTL);
919 return 0;
920 }
921
922 /**
923 * dwc2_hsotg_send_reply - send reply to control request
924 * @hsotg: The device state
925 * @ep: Endpoint 0
926 * @buff: Buffer for request
927 * @length: Length of reply.
928 *
929 * Create a request and queue it on the given endpoint. This is useful as
930 * an internal method of sending replies to certain control requests, etc.
931 */
932 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
933 struct dwc2_hsotg_ep *ep,
934 void *buff,
935 int length)
936 {
937 struct usb_request *req;
938 int ret;
939
940 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
941
942 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
943 hsotg->ep0_reply = req;
944 if (!req) {
945 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
946 return -ENOMEM;
947 }
948
949 req->buf = hsotg->ep0_buff;
950 req->length = length;
951 /*
952 * zero flag is for sending zlp in DATA IN stage. It has no impact on
953 * STATUS stage.
954 */
955 req->zero = 0;
956 req->complete = dwc2_hsotg_complete_oursetup;
957
958 if (length)
959 memcpy(req->buf, buff, length);
960
961 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
962 if (ret) {
963 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
964 return ret;
965 }
966
967 return 0;
968 }
969
970 /**
971 * dwc2_hsotg_process_req_status - process request GET_STATUS
972 * @hsotg: The device state
973 * @ctrl: USB control request
974 */
975 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
976 struct usb_ctrlrequest *ctrl)
977 {
978 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
979 struct dwc2_hsotg_ep *ep;
980 __le16 reply;
981 int ret;
982
983 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
984
985 if (!ep0->dir_in) {
986 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
987 return -EINVAL;
988 }
989
990 switch (ctrl->bRequestType & USB_RECIP_MASK) {
991 case USB_RECIP_DEVICE:
992 reply = cpu_to_le16(0); /* bit 0 => self powered,
993 * bit 1 => remote wakeup */
994 break;
995
996 case USB_RECIP_INTERFACE:
997 /* currently, the data result should be zero */
998 reply = cpu_to_le16(0);
999 break;
1000
1001 case USB_RECIP_ENDPOINT:
1002 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1003 if (!ep)
1004 return -ENOENT;
1005
1006 reply = cpu_to_le16(ep->halted ? 1 : 0);
1007 break;
1008
1009 default:
1010 return 0;
1011 }
1012
1013 if (le16_to_cpu(ctrl->wLength) != 2)
1014 return -EINVAL;
1015
1016 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1017 if (ret) {
1018 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1019 return ret;
1020 }
1021
1022 return 1;
1023 }
1024
1025 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1026
1027 /**
1028 * get_ep_head - return the first request on the endpoint
1029 * @hs_ep: The controller endpoint to get
1030 *
1031 * Get the first request on the endpoint.
1032 */
1033 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1034 {
1035 if (list_empty(&hs_ep->queue))
1036 return NULL;
1037
1038 return list_first_entry(&hs_ep->queue, struct dwc2_hsotg_req, queue);
1039 }
1040
1041 /**
1042 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1043 * @hsotg: The device state
1044 * @ctrl: USB control request
1045 */
1046 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1047 struct usb_ctrlrequest *ctrl)
1048 {
1049 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1050 struct dwc2_hsotg_req *hs_req;
1051 bool restart;
1052 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1053 struct dwc2_hsotg_ep *ep;
1054 int ret;
1055 bool halted;
1056 u32 recip;
1057 u32 wValue;
1058 u32 wIndex;
1059
1060 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1061 __func__, set ? "SET" : "CLEAR");
1062
1063 wValue = le16_to_cpu(ctrl->wValue);
1064 wIndex = le16_to_cpu(ctrl->wIndex);
1065 recip = ctrl->bRequestType & USB_RECIP_MASK;
1066
1067 switch (recip) {
1068 case USB_RECIP_DEVICE:
1069 switch (wValue) {
1070 case USB_DEVICE_TEST_MODE:
1071 if ((wIndex & 0xff) != 0)
1072 return -EINVAL;
1073 if (!set)
1074 return -EINVAL;
1075
1076 hsotg->test_mode = wIndex >> 8;
1077 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1078 if (ret) {
1079 dev_err(hsotg->dev,
1080 "%s: failed to send reply\n", __func__);
1081 return ret;
1082 }
1083 break;
1084 default:
1085 return -ENOENT;
1086 }
1087 break;
1088
1089 case USB_RECIP_ENDPOINT:
1090 ep = ep_from_windex(hsotg, wIndex);
1091 if (!ep) {
1092 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1093 __func__, wIndex);
1094 return -ENOENT;
1095 }
1096
1097 switch (wValue) {
1098 case USB_ENDPOINT_HALT:
1099 halted = ep->halted;
1100
1101 dwc2_hsotg_ep_sethalt(&ep->ep, set);
1102
1103 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1104 if (ret) {
1105 dev_err(hsotg->dev,
1106 "%s: failed to send reply\n", __func__);
1107 return ret;
1108 }
1109
1110 /*
1111 * we have to complete all requests for ep if it was
1112 * halted, and the halt was cleared by CLEAR_FEATURE
1113 */
1114
1115 if (!set && halted) {
1116 /*
1117 * If we have request in progress,
1118 * then complete it
1119 */
1120 if (ep->req) {
1121 hs_req = ep->req;
1122 ep->req = NULL;
1123 list_del_init(&hs_req->queue);
1124 if (hs_req->req.complete) {
1125 spin_unlock(&hsotg->lock);
1126 usb_gadget_giveback_request(
1127 &ep->ep, &hs_req->req);
1128 spin_lock(&hsotg->lock);
1129 }
1130 }
1131
1132 /* If we have pending request, then start it */
1133 if (!ep->req) {
1134 restart = !list_empty(&ep->queue);
1135 if (restart) {
1136 hs_req = get_ep_head(ep);
1137 dwc2_hsotg_start_req(hsotg, ep,
1138 hs_req, false);
1139 }
1140 }
1141 }
1142
1143 break;
1144
1145 default:
1146 return -ENOENT;
1147 }
1148 break;
1149 default:
1150 return -ENOENT;
1151 }
1152 return 1;
1153 }
1154
1155 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1156
1157 /**
1158 * dwc2_hsotg_stall_ep0 - stall ep0
1159 * @hsotg: The device state
1160 *
1161 * Set stall for ep0 as response for setup request.
1162 */
1163 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1164 {
1165 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1166 u32 reg;
1167 u32 ctrl;
1168
1169 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1170 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1171
1172 /*
1173 * DxEPCTL_Stall will be cleared by EP once it has
1174 * taken effect, so no need to clear later.
1175 */
1176
1177 ctrl = dwc2_readl(hsotg->regs + reg);
1178 ctrl |= DXEPCTL_STALL;
1179 ctrl |= DXEPCTL_CNAK;
1180 dwc2_writel(ctrl, hsotg->regs + reg);
1181
1182 dev_dbg(hsotg->dev,
1183 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1184 ctrl, reg, dwc2_readl(hsotg->regs + reg));
1185
1186 /*
1187 * complete won't be called, so we enqueue
1188 * setup request here
1189 */
1190 dwc2_hsotg_enqueue_setup(hsotg);
1191 }
1192
1193 /**
1194 * dwc2_hsotg_process_control - process a control request
1195 * @hsotg: The device state
1196 * @ctrl: The control request received
1197 *
1198 * The controller has received the SETUP phase of a control request, and
1199 * needs to work out what to do next (and whether to pass it on to the
1200 * gadget driver).
1201 */
1202 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1203 struct usb_ctrlrequest *ctrl)
1204 {
1205 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1206 int ret = 0;
1207 u32 dcfg;
1208
1209 dev_dbg(hsotg->dev,
1210 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1211 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1212 ctrl->wIndex, ctrl->wLength);
1213
1214 if (ctrl->wLength == 0) {
1215 ep0->dir_in = 1;
1216 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1217 } else if (ctrl->bRequestType & USB_DIR_IN) {
1218 ep0->dir_in = 1;
1219 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1220 } else {
1221 ep0->dir_in = 0;
1222 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1223 }
1224
1225 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1226 switch (ctrl->bRequest) {
1227 case USB_REQ_SET_ADDRESS:
1228 hsotg->connected = 1;
1229 dcfg = dwc2_readl(hsotg->regs + DCFG);
1230 dcfg &= ~DCFG_DEVADDR_MASK;
1231 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1232 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1233 dwc2_writel(dcfg, hsotg->regs + DCFG);
1234
1235 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1236
1237 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1238 return;
1239
1240 case USB_REQ_GET_STATUS:
1241 ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1242 break;
1243
1244 case USB_REQ_CLEAR_FEATURE:
1245 case USB_REQ_SET_FEATURE:
1246 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1247 break;
1248 }
1249 }
1250
1251 /* as a fallback, try delivering it to the driver to deal with */
1252
1253 if (ret == 0 && hsotg->driver) {
1254 spin_unlock(&hsotg->lock);
1255 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1256 spin_lock(&hsotg->lock);
1257 if (ret < 0)
1258 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1259 }
1260
1261 /*
1262 * the request is either unhandlable, or is not formatted correctly
1263 * so respond with a STALL for the status stage to indicate failure.
1264 */
1265
1266 if (ret < 0)
1267 dwc2_hsotg_stall_ep0(hsotg);
1268 }
1269
1270 /**
1271 * dwc2_hsotg_complete_setup - completion of a setup transfer
1272 * @ep: The endpoint the request was on.
1273 * @req: The request completed.
1274 *
1275 * Called on completion of any requests the driver itself submitted for
1276 * EP0 setup packets
1277 */
1278 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1279 struct usb_request *req)
1280 {
1281 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1282 struct dwc2_hsotg *hsotg = hs_ep->parent;
1283
1284 if (req->status < 0) {
1285 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1286 return;
1287 }
1288
1289 spin_lock(&hsotg->lock);
1290 if (req->actual == 0)
1291 dwc2_hsotg_enqueue_setup(hsotg);
1292 else
1293 dwc2_hsotg_process_control(hsotg, req->buf);
1294 spin_unlock(&hsotg->lock);
1295 }
1296
1297 /**
1298 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1299 * @hsotg: The device state.
1300 *
1301 * Enqueue a request on EP0 if necessary to received any SETUP packets
1302 * received from the host.
1303 */
1304 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1305 {
1306 struct usb_request *req = hsotg->ctrl_req;
1307 struct dwc2_hsotg_req *hs_req = our_req(req);
1308 int ret;
1309
1310 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1311
1312 req->zero = 0;
1313 req->length = 8;
1314 req->buf = hsotg->ctrl_buff;
1315 req->complete = dwc2_hsotg_complete_setup;
1316
1317 if (!list_empty(&hs_req->queue)) {
1318 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1319 return;
1320 }
1321
1322 hsotg->eps_out[0]->dir_in = 0;
1323 hsotg->eps_out[0]->send_zlp = 0;
1324 hsotg->ep0_state = DWC2_EP0_SETUP;
1325
1326 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1327 if (ret < 0) {
1328 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1329 /*
1330 * Don't think there's much we can do other than watch the
1331 * driver fail.
1332 */
1333 }
1334 }
1335
1336 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1337 struct dwc2_hsotg_ep *hs_ep)
1338 {
1339 u32 ctrl;
1340 u8 index = hs_ep->index;
1341 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1342 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1343
1344 if (hs_ep->dir_in)
1345 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1346 index);
1347 else
1348 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1349 index);
1350
1351 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1352 DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1353 epsiz_reg);
1354
1355 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1356 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1357 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1358 ctrl |= DXEPCTL_USBACTEP;
1359 dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1360 }
1361
1362 /**
1363 * dwc2_hsotg_complete_request - complete a request given to us
1364 * @hsotg: The device state.
1365 * @hs_ep: The endpoint the request was on.
1366 * @hs_req: The request to complete.
1367 * @result: The result code (0 => Ok, otherwise errno)
1368 *
1369 * The given request has finished, so call the necessary completion
1370 * if it has one and then look to see if we can start a new request
1371 * on the endpoint.
1372 *
1373 * Note, expects the ep to already be locked as appropriate.
1374 */
1375 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1376 struct dwc2_hsotg_ep *hs_ep,
1377 struct dwc2_hsotg_req *hs_req,
1378 int result)
1379 {
1380 bool restart;
1381
1382 if (!hs_req) {
1383 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1384 return;
1385 }
1386
1387 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1388 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1389
1390 /*
1391 * only replace the status if we've not already set an error
1392 * from a previous transaction
1393 */
1394
1395 if (hs_req->req.status == -EINPROGRESS)
1396 hs_req->req.status = result;
1397
1398 if (using_dma(hsotg))
1399 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1400
1401 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1402
1403 hs_ep->req = NULL;
1404 list_del_init(&hs_req->queue);
1405
1406 /*
1407 * call the complete request with the locks off, just in case the
1408 * request tries to queue more work for this endpoint.
1409 */
1410
1411 if (hs_req->req.complete) {
1412 spin_unlock(&hsotg->lock);
1413 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1414 spin_lock(&hsotg->lock);
1415 }
1416
1417 /*
1418 * Look to see if there is anything else to do. Note, the completion
1419 * of the previous request may have caused a new request to be started
1420 * so be careful when doing this.
1421 */
1422
1423 if (!hs_ep->req && result >= 0) {
1424 restart = !list_empty(&hs_ep->queue);
1425 if (restart) {
1426 hs_req = get_ep_head(hs_ep);
1427 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1428 }
1429 }
1430 }
1431
1432 /**
1433 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1434 * @hsotg: The device state.
1435 * @ep_idx: The endpoint index for the data
1436 * @size: The size of data in the fifo, in bytes
1437 *
1438 * The FIFO status shows there is data to read from the FIFO for a given
1439 * endpoint, so sort out whether we need to read the data into a request
1440 * that has been made for that endpoint.
1441 */
1442 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1443 {
1444 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1445 struct dwc2_hsotg_req *hs_req = hs_ep->req;
1446 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1447 int to_read;
1448 int max_req;
1449 int read_ptr;
1450
1451
1452 if (!hs_req) {
1453 u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1454 int ptr;
1455
1456 dev_dbg(hsotg->dev,
1457 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1458 __func__, size, ep_idx, epctl);
1459
1460 /* dump the data from the FIFO, we've nothing we can do */
1461 for (ptr = 0; ptr < size; ptr += 4)
1462 (void)dwc2_readl(fifo);
1463
1464 return;
1465 }
1466
1467 to_read = size;
1468 read_ptr = hs_req->req.actual;
1469 max_req = hs_req->req.length - read_ptr;
1470
1471 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1472 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1473
1474 if (to_read > max_req) {
1475 /*
1476 * more data appeared than we where willing
1477 * to deal with in this request.
1478 */
1479
1480 /* currently we don't deal this */
1481 WARN_ON_ONCE(1);
1482 }
1483
1484 hs_ep->total_data += to_read;
1485 hs_req->req.actual += to_read;
1486 to_read = DIV_ROUND_UP(to_read, 4);
1487
1488 /*
1489 * note, we might over-write the buffer end by 3 bytes depending on
1490 * alignment of the data.
1491 */
1492 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1493 }
1494
1495 /**
1496 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1497 * @hsotg: The device instance
1498 * @dir_in: If IN zlp
1499 *
1500 * Generate a zero-length IN packet request for terminating a SETUP
1501 * transaction.
1502 *
1503 * Note, since we don't write any data to the TxFIFO, then it is
1504 * currently believed that we do not need to wait for any space in
1505 * the TxFIFO.
1506 */
1507 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1508 {
1509 /* eps_out[0] is used in both directions */
1510 hsotg->eps_out[0]->dir_in = dir_in;
1511 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1512
1513 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1514 }
1515
1516 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
1517 u32 epctl_reg)
1518 {
1519 u32 ctrl;
1520
1521 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1522 if (ctrl & DXEPCTL_EOFRNUM)
1523 ctrl |= DXEPCTL_SETEVENFR;
1524 else
1525 ctrl |= DXEPCTL_SETODDFR;
1526 dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1527 }
1528
1529 /**
1530 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1531 * @hsotg: The device instance
1532 * @epnum: The endpoint received from
1533 *
1534 * The RXFIFO has delivered an OutDone event, which means that the data
1535 * transfer for an OUT endpoint has been completed, either by a short
1536 * packet or by the finish of a transfer.
1537 */
1538 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1539 {
1540 u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1541 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1542 struct dwc2_hsotg_req *hs_req = hs_ep->req;
1543 struct usb_request *req = &hs_req->req;
1544 unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1545 int result = 0;
1546
1547 if (!hs_req) {
1548 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1549 return;
1550 }
1551
1552 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
1553 dev_dbg(hsotg->dev, "zlp packet received\n");
1554 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1555 dwc2_hsotg_enqueue_setup(hsotg);
1556 return;
1557 }
1558
1559 if (using_dma(hsotg)) {
1560 unsigned size_done;
1561
1562 /*
1563 * Calculate the size of the transfer by checking how much
1564 * is left in the endpoint size register and then working it
1565 * out from the amount we loaded for the transfer.
1566 *
1567 * We need to do this as DMA pointers are always 32bit aligned
1568 * so may overshoot/undershoot the transfer.
1569 */
1570
1571 size_done = hs_ep->size_loaded - size_left;
1572 size_done += hs_ep->last_load;
1573
1574 req->actual = size_done;
1575 }
1576
1577 /* if there is more request to do, schedule new transfer */
1578 if (req->actual < req->length && size_left == 0) {
1579 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1580 return;
1581 }
1582
1583 if (req->actual < req->length && req->short_not_ok) {
1584 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1585 __func__, req->actual, req->length);
1586
1587 /*
1588 * todo - what should we return here? there's no one else
1589 * even bothering to check the status.
1590 */
1591 }
1592
1593 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
1594 /* Move to STATUS IN */
1595 dwc2_hsotg_ep0_zlp(hsotg, true);
1596 return;
1597 }
1598
1599 /*
1600 * Slave mode OUT transfers do not go through XferComplete so
1601 * adjust the ISOC parity here.
1602 */
1603 if (!using_dma(hsotg)) {
1604 hs_ep->has_correct_parity = 1;
1605 if (hs_ep->isochronous && hs_ep->interval == 1)
1606 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
1607 }
1608
1609 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1610 }
1611
1612 /**
1613 * dwc2_hsotg_read_frameno - read current frame number
1614 * @hsotg: The device instance
1615 *
1616 * Return the current frame number
1617 */
1618 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1619 {
1620 u32 dsts;
1621
1622 dsts = dwc2_readl(hsotg->regs + DSTS);
1623 dsts &= DSTS_SOFFN_MASK;
1624 dsts >>= DSTS_SOFFN_SHIFT;
1625
1626 return dsts;
1627 }
1628
1629 /**
1630 * dwc2_hsotg_handle_rx - RX FIFO has data
1631 * @hsotg: The device instance
1632 *
1633 * The IRQ handler has detected that the RX FIFO has some data in it
1634 * that requires processing, so find out what is in there and do the
1635 * appropriate read.
1636 *
1637 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1638 * chunks, so if you have x packets received on an endpoint you'll get x
1639 * FIFO events delivered, each with a packet's worth of data in it.
1640 *
1641 * When using DMA, we should not be processing events from the RXFIFO
1642 * as the actual data should be sent to the memory directly and we turn
1643 * on the completion interrupts to get notifications of transfer completion.
1644 */
1645 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1646 {
1647 u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1648 u32 epnum, status, size;
1649
1650 WARN_ON(using_dma(hsotg));
1651
1652 epnum = grxstsr & GRXSTS_EPNUM_MASK;
1653 status = grxstsr & GRXSTS_PKTSTS_MASK;
1654
1655 size = grxstsr & GRXSTS_BYTECNT_MASK;
1656 size >>= GRXSTS_BYTECNT_SHIFT;
1657
1658 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1659 __func__, grxstsr, size, epnum);
1660
1661 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1662 case GRXSTS_PKTSTS_GLOBALOUTNAK:
1663 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1664 break;
1665
1666 case GRXSTS_PKTSTS_OUTDONE:
1667 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1668 dwc2_hsotg_read_frameno(hsotg));
1669
1670 if (!using_dma(hsotg))
1671 dwc2_hsotg_handle_outdone(hsotg, epnum);
1672 break;
1673
1674 case GRXSTS_PKTSTS_SETUPDONE:
1675 dev_dbg(hsotg->dev,
1676 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1677 dwc2_hsotg_read_frameno(hsotg),
1678 dwc2_readl(hsotg->regs + DOEPCTL(0)));
1679 /*
1680 * Call dwc2_hsotg_handle_outdone here if it was not called from
1681 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
1682 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
1683 */
1684 if (hsotg->ep0_state == DWC2_EP0_SETUP)
1685 dwc2_hsotg_handle_outdone(hsotg, epnum);
1686 break;
1687
1688 case GRXSTS_PKTSTS_OUTRX:
1689 dwc2_hsotg_rx_data(hsotg, epnum, size);
1690 break;
1691
1692 case GRXSTS_PKTSTS_SETUPRX:
1693 dev_dbg(hsotg->dev,
1694 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1695 dwc2_hsotg_read_frameno(hsotg),
1696 dwc2_readl(hsotg->regs + DOEPCTL(0)));
1697
1698 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
1699
1700 dwc2_hsotg_rx_data(hsotg, epnum, size);
1701 break;
1702
1703 default:
1704 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1705 __func__, grxstsr);
1706
1707 dwc2_hsotg_dump(hsotg);
1708 break;
1709 }
1710 }
1711
1712 /**
1713 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1714 * @mps: The maximum packet size in bytes.
1715 */
1716 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1717 {
1718 switch (mps) {
1719 case 64:
1720 return D0EPCTL_MPS_64;
1721 case 32:
1722 return D0EPCTL_MPS_32;
1723 case 16:
1724 return D0EPCTL_MPS_16;
1725 case 8:
1726 return D0EPCTL_MPS_8;
1727 }
1728
1729 /* bad max packet size, warn and return invalid result */
1730 WARN_ON(1);
1731 return (u32)-1;
1732 }
1733
1734 /**
1735 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1736 * @hsotg: The driver state.
1737 * @ep: The index number of the endpoint
1738 * @mps: The maximum packet size in bytes
1739 *
1740 * Configure the maximum packet size for the given endpoint, updating
1741 * the hardware control registers to reflect this.
1742 */
1743 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1744 unsigned int ep, unsigned int mps, unsigned int dir_in)
1745 {
1746 struct dwc2_hsotg_ep *hs_ep;
1747 void __iomem *regs = hsotg->regs;
1748 u32 mpsval;
1749 u32 mcval;
1750 u32 reg;
1751
1752 hs_ep = index_to_ep(hsotg, ep, dir_in);
1753 if (!hs_ep)
1754 return;
1755
1756 if (ep == 0) {
1757 /* EP0 is a special case */
1758 mpsval = dwc2_hsotg_ep0_mps(mps);
1759 if (mpsval > 3)
1760 goto bad_mps;
1761 hs_ep->ep.maxpacket = mps;
1762 hs_ep->mc = 1;
1763 } else {
1764 mpsval = mps & DXEPCTL_MPS_MASK;
1765 if (mpsval > 1024)
1766 goto bad_mps;
1767 mcval = ((mps >> 11) & 0x3) + 1;
1768 hs_ep->mc = mcval;
1769 if (mcval > 3)
1770 goto bad_mps;
1771 hs_ep->ep.maxpacket = mpsval;
1772 }
1773
1774 if (dir_in) {
1775 reg = dwc2_readl(regs + DIEPCTL(ep));
1776 reg &= ~DXEPCTL_MPS_MASK;
1777 reg |= mpsval;
1778 dwc2_writel(reg, regs + DIEPCTL(ep));
1779 } else {
1780 reg = dwc2_readl(regs + DOEPCTL(ep));
1781 reg &= ~DXEPCTL_MPS_MASK;
1782 reg |= mpsval;
1783 dwc2_writel(reg, regs + DOEPCTL(ep));
1784 }
1785
1786 return;
1787
1788 bad_mps:
1789 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1790 }
1791
1792 /**
1793 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1794 * @hsotg: The driver state
1795 * @idx: The index for the endpoint (0..15)
1796 */
1797 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1798 {
1799 int timeout;
1800 int val;
1801
1802 dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1803 hsotg->regs + GRSTCTL);
1804
1805 /* wait until the fifo is flushed */
1806 timeout = 100;
1807
1808 while (1) {
1809 val = dwc2_readl(hsotg->regs + GRSTCTL);
1810
1811 if ((val & (GRSTCTL_TXFFLSH)) == 0)
1812 break;
1813
1814 if (--timeout == 0) {
1815 dev_err(hsotg->dev,
1816 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1817 __func__, val);
1818 break;
1819 }
1820
1821 udelay(1);
1822 }
1823 }
1824
1825 /**
1826 * dwc2_hsotg_trytx - check to see if anything needs transmitting
1827 * @hsotg: The driver state
1828 * @hs_ep: The driver endpoint to check.
1829 *
1830 * Check to see if there is a request that has data to send, and if so
1831 * make an attempt to write data into the FIFO.
1832 */
1833 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
1834 struct dwc2_hsotg_ep *hs_ep)
1835 {
1836 struct dwc2_hsotg_req *hs_req = hs_ep->req;
1837
1838 if (!hs_ep->dir_in || !hs_req) {
1839 /**
1840 * if request is not enqueued, we disable interrupts
1841 * for endpoints, excepting ep0
1842 */
1843 if (hs_ep->index != 0)
1844 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1845 hs_ep->dir_in, 0);
1846 return 0;
1847 }
1848
1849 if (hs_req->req.actual < hs_req->req.length) {
1850 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1851 hs_ep->index);
1852 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1853 }
1854
1855 return 0;
1856 }
1857
1858 /**
1859 * dwc2_hsotg_complete_in - complete IN transfer
1860 * @hsotg: The device state.
1861 * @hs_ep: The endpoint that has just completed.
1862 *
1863 * An IN transfer has been completed, update the transfer's state and then
1864 * call the relevant completion routines.
1865 */
1866 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1867 struct dwc2_hsotg_ep *hs_ep)
1868 {
1869 struct dwc2_hsotg_req *hs_req = hs_ep->req;
1870 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1871 int size_left, size_done;
1872
1873 if (!hs_req) {
1874 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1875 return;
1876 }
1877
1878 /* Finish ZLP handling for IN EP0 transactions */
1879 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
1880 dev_dbg(hsotg->dev, "zlp packet sent\n");
1881 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1882 if (hsotg->test_mode) {
1883 int ret;
1884
1885 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1886 if (ret < 0) {
1887 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
1888 hsotg->test_mode);
1889 dwc2_hsotg_stall_ep0(hsotg);
1890 return;
1891 }
1892 }
1893 dwc2_hsotg_enqueue_setup(hsotg);
1894 return;
1895 }
1896
1897 /*
1898 * Calculate the size of the transfer by checking how much is left
1899 * in the endpoint size register and then working it out from
1900 * the amount we loaded for the transfer.
1901 *
1902 * We do this even for DMA, as the transfer may have incremented
1903 * past the end of the buffer (DMA transfers are always 32bit
1904 * aligned).
1905 */
1906
1907 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1908
1909 size_done = hs_ep->size_loaded - size_left;
1910 size_done += hs_ep->last_load;
1911
1912 if (hs_req->req.actual != size_done)
1913 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1914 __func__, hs_req->req.actual, size_done);
1915
1916 hs_req->req.actual = size_done;
1917 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1918 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1919
1920 if (!size_left && hs_req->req.actual < hs_req->req.length) {
1921 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1922 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1923 return;
1924 }
1925
1926 /* Zlp for all endpoints, for ep0 only in DATA IN stage */
1927 if (hs_ep->send_zlp) {
1928 dwc2_hsotg_program_zlp(hsotg, hs_ep);
1929 hs_ep->send_zlp = 0;
1930 /* transfer will be completed on next complete interrupt */
1931 return;
1932 }
1933
1934 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
1935 /* Move to STATUS OUT */
1936 dwc2_hsotg_ep0_zlp(hsotg, false);
1937 return;
1938 }
1939
1940 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1941 }
1942
1943 /**
1944 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
1945 * @hsotg: The driver state
1946 * @idx: The index for the endpoint (0..15)
1947 * @dir_in: Set if this is an IN endpoint
1948 *
1949 * Process and clear any interrupt pending for an individual endpoint
1950 */
1951 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1952 int dir_in)
1953 {
1954 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1955 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1956 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1957 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1958 u32 ints;
1959 u32 ctrl;
1960
1961 ints = dwc2_readl(hsotg->regs + epint_reg);
1962 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1963
1964 /* Clear endpoint interrupts */
1965 dwc2_writel(ints, hsotg->regs + epint_reg);
1966
1967 if (!hs_ep) {
1968 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
1969 __func__, idx, dir_in ? "in" : "out");
1970 return;
1971 }
1972
1973 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1974 __func__, idx, dir_in ? "in" : "out", ints);
1975
1976 /* Don't process XferCompl interrupt if it is a setup packet */
1977 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
1978 ints &= ~DXEPINT_XFERCOMPL;
1979
1980 if (ints & DXEPINT_XFERCOMPL) {
1981 hs_ep->has_correct_parity = 1;
1982 if (hs_ep->isochronous && hs_ep->interval == 1)
1983 dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
1984
1985 dev_dbg(hsotg->dev,
1986 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1987 __func__, dwc2_readl(hsotg->regs + epctl_reg),
1988 dwc2_readl(hsotg->regs + epsiz_reg));
1989
1990 /*
1991 * we get OutDone from the FIFO, so we only need to look
1992 * at completing IN requests here
1993 */
1994 if (dir_in) {
1995 dwc2_hsotg_complete_in(hsotg, hs_ep);
1996
1997 if (idx == 0 && !hs_ep->req)
1998 dwc2_hsotg_enqueue_setup(hsotg);
1999 } else if (using_dma(hsotg)) {
2000 /*
2001 * We're using DMA, we need to fire an OutDone here
2002 * as we ignore the RXFIFO.
2003 */
2004
2005 dwc2_hsotg_handle_outdone(hsotg, idx);
2006 }
2007 }
2008
2009 if (ints & DXEPINT_EPDISBLD) {
2010 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2011
2012 if (dir_in) {
2013 int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2014
2015 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2016
2017 if ((epctl & DXEPCTL_STALL) &&
2018 (epctl & DXEPCTL_EPTYPE_BULK)) {
2019 int dctl = dwc2_readl(hsotg->regs + DCTL);
2020
2021 dctl |= DCTL_CGNPINNAK;
2022 dwc2_writel(dctl, hsotg->regs + DCTL);
2023 }
2024 }
2025 }
2026
2027 if (ints & DXEPINT_AHBERR)
2028 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2029
2030 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
2031 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
2032
2033 if (using_dma(hsotg) && idx == 0) {
2034 /*
2035 * this is the notification we've received a
2036 * setup packet. In non-DMA mode we'd get this
2037 * from the RXFIFO, instead we need to process
2038 * the setup here.
2039 */
2040
2041 if (dir_in)
2042 WARN_ON_ONCE(1);
2043 else
2044 dwc2_hsotg_handle_outdone(hsotg, 0);
2045 }
2046 }
2047
2048 if (ints & DXEPINT_BACK2BACKSETUP)
2049 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2050
2051 if (dir_in && !hs_ep->isochronous) {
2052 /* not sure if this is important, but we'll clear it anyway */
2053 if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2054 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2055 __func__, idx);
2056 }
2057
2058 /* this probably means something bad is happening */
2059 if (ints & DIEPMSK_INTKNEPMISMSK) {
2060 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2061 __func__, idx);
2062 }
2063
2064 /* FIFO has space or is empty (see GAHBCFG) */
2065 if (hsotg->dedicated_fifos &&
2066 ints & DIEPMSK_TXFIFOEMPTY) {
2067 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2068 __func__, idx);
2069 if (!using_dma(hsotg))
2070 dwc2_hsotg_trytx(hsotg, hs_ep);
2071 }
2072 }
2073 }
2074
2075 /**
2076 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2077 * @hsotg: The device state.
2078 *
2079 * Handle updating the device settings after the enumeration phase has
2080 * been completed.
2081 */
2082 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2083 {
2084 u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2085 int ep0_mps = 0, ep_mps = 8;
2086
2087 /*
2088 * This should signal the finish of the enumeration phase
2089 * of the USB handshaking, so we should now know what rate
2090 * we connected at.
2091 */
2092
2093 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2094
2095 /*
2096 * note, since we're limited by the size of transfer on EP0, and
2097 * it seems IN transfers must be a even number of packets we do
2098 * not advertise a 64byte MPS on EP0.
2099 */
2100
2101 /* catch both EnumSpd_FS and EnumSpd_FS48 */
2102 switch (dsts & DSTS_ENUMSPD_MASK) {
2103 case DSTS_ENUMSPD_FS:
2104 case DSTS_ENUMSPD_FS48:
2105 hsotg->gadget.speed = USB_SPEED_FULL;
2106 ep0_mps = EP0_MPS_LIMIT;
2107 ep_mps = 1023;
2108 break;
2109
2110 case DSTS_ENUMSPD_HS:
2111 hsotg->gadget.speed = USB_SPEED_HIGH;
2112 ep0_mps = EP0_MPS_LIMIT;
2113 ep_mps = 1024;
2114 break;
2115
2116 case DSTS_ENUMSPD_LS:
2117 hsotg->gadget.speed = USB_SPEED_LOW;
2118 /*
2119 * note, we don't actually support LS in this driver at the
2120 * moment, and the documentation seems to imply that it isn't
2121 * supported by the PHYs on some of the devices.
2122 */
2123 break;
2124 }
2125 dev_info(hsotg->dev, "new device is %s\n",
2126 usb_speed_string(hsotg->gadget.speed));
2127
2128 /*
2129 * we should now know the maximum packet size for an
2130 * endpoint, so set the endpoints to a default value.
2131 */
2132
2133 if (ep0_mps) {
2134 int i;
2135 /* Initialize ep0 for both in and out directions */
2136 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
2137 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2138 for (i = 1; i < hsotg->num_of_eps; i++) {
2139 if (hsotg->eps_in[i])
2140 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
2141 if (hsotg->eps_out[i])
2142 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
2143 }
2144 }
2145
2146 /* ensure after enumeration our EP0 is active */
2147
2148 dwc2_hsotg_enqueue_setup(hsotg);
2149
2150 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2151 dwc2_readl(hsotg->regs + DIEPCTL0),
2152 dwc2_readl(hsotg->regs + DOEPCTL0));
2153 }
2154
2155 /**
2156 * kill_all_requests - remove all requests from the endpoint's queue
2157 * @hsotg: The device state.
2158 * @ep: The endpoint the requests may be on.
2159 * @result: The result code to use.
2160 *
2161 * Go through the requests on the given endpoint and mark them
2162 * completed with the given result code.
2163 */
2164 static void kill_all_requests(struct dwc2_hsotg *hsotg,
2165 struct dwc2_hsotg_ep *ep,
2166 int result)
2167 {
2168 struct dwc2_hsotg_req *req, *treq;
2169 unsigned size;
2170
2171 ep->req = NULL;
2172
2173 list_for_each_entry_safe(req, treq, &ep->queue, queue)
2174 dwc2_hsotg_complete_request(hsotg, ep, req,
2175 result);
2176
2177 if (!hsotg->dedicated_fifos)
2178 return;
2179 size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2180 if (size < ep->fifo_size)
2181 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2182 }
2183
2184 /**
2185 * dwc2_hsotg_disconnect - disconnect service
2186 * @hsotg: The device state.
2187 *
2188 * The device has been disconnected. Remove all current
2189 * transactions and signal the gadget driver that this
2190 * has happened.
2191 */
2192 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2193 {
2194 unsigned ep;
2195
2196 if (!hsotg->connected)
2197 return;
2198
2199 hsotg->connected = 0;
2200 hsotg->test_mode = 0;
2201
2202 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
2203 if (hsotg->eps_in[ep])
2204 kill_all_requests(hsotg, hsotg->eps_in[ep],
2205 -ESHUTDOWN);
2206 if (hsotg->eps_out[ep])
2207 kill_all_requests(hsotg, hsotg->eps_out[ep],
2208 -ESHUTDOWN);
2209 }
2210
2211 call_gadget(hsotg, disconnect);
2212 hsotg->lx_state = DWC2_L3;
2213 }
2214
2215 /**
2216 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2217 * @hsotg: The device state:
2218 * @periodic: True if this is a periodic FIFO interrupt
2219 */
2220 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2221 {
2222 struct dwc2_hsotg_ep *ep;
2223 int epno, ret;
2224
2225 /* look through for any more data to transmit */
2226 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2227 ep = index_to_ep(hsotg, epno, 1);
2228
2229 if (!ep)
2230 continue;
2231
2232 if (!ep->dir_in)
2233 continue;
2234
2235 if ((periodic && !ep->periodic) ||
2236 (!periodic && ep->periodic))
2237 continue;
2238
2239 ret = dwc2_hsotg_trytx(hsotg, ep);
2240 if (ret < 0)
2241 break;
2242 }
2243 }
2244
2245 /* IRQ flags which will trigger a retry around the IRQ loop */
2246 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2247 GINTSTS_PTXFEMP | \
2248 GINTSTS_RXFLVL)
2249
2250 /**
2251 * dwc2_hsotg_corereset - issue softreset to the core
2252 * @hsotg: The device state
2253 *
2254 * Issue a soft reset to the core, and await the core finishing it.
2255 */
2256 static int dwc2_hsotg_corereset(struct dwc2_hsotg *hsotg)
2257 {
2258 int timeout;
2259 u32 grstctl;
2260
2261 dev_dbg(hsotg->dev, "resetting core\n");
2262
2263 /* issue soft reset */
2264 dwc2_writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2265
2266 timeout = 10000;
2267 do {
2268 grstctl = dwc2_readl(hsotg->regs + GRSTCTL);
2269 } while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2270
2271 if (grstctl & GRSTCTL_CSFTRST) {
2272 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2273 return -EINVAL;
2274 }
2275
2276 timeout = 10000;
2277
2278 while (1) {
2279 u32 grstctl = dwc2_readl(hsotg->regs + GRSTCTL);
2280
2281 if (timeout-- < 0) {
2282 dev_info(hsotg->dev,
2283 "%s: reset failed, GRSTCTL=%08x\n",
2284 __func__, grstctl);
2285 return -ETIMEDOUT;
2286 }
2287
2288 if (!(grstctl & GRSTCTL_AHBIDLE))
2289 continue;
2290
2291 break; /* reset done */
2292 }
2293
2294 dev_dbg(hsotg->dev, "reset successful\n");
2295 return 0;
2296 }
2297
2298 /**
2299 * dwc2_hsotg_core_init - issue softreset to the core
2300 * @hsotg: The device state
2301 *
2302 * Issue a soft reset to the core, and await the core finishing it.
2303 */
2304 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2305 bool is_usb_reset)
2306 {
2307 u32 intmsk;
2308 u32 val;
2309
2310 /* Kill any ep0 requests as controller will be reinitialized */
2311 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
2312
2313 if (!is_usb_reset)
2314 if (dwc2_hsotg_corereset(hsotg))
2315 return;
2316
2317 /*
2318 * we must now enable ep0 ready for host detection and then
2319 * set configuration.
2320 */
2321
2322 /* set the PLL on, remove the HNP/SRP and set the PHY */
2323 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2324 dwc2_writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2325 (val << GUSBCFG_USBTRDTIM_SHIFT), hsotg->regs + GUSBCFG);
2326
2327 dwc2_hsotg_init_fifo(hsotg);
2328
2329 if (!is_usb_reset)
2330 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2331
2332 dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS, hsotg->regs + DCFG);
2333
2334 /* Clear any pending OTG interrupts */
2335 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2336
2337 /* Clear any pending interrupts */
2338 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2339 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2340 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2341 GINTSTS_USBRST | GINTSTS_RESETDET |
2342 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2343 GINTSTS_USBSUSP | GINTSTS_WKUPINT |
2344 GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
2345
2346 if (hsotg->core_params->external_id_pin_ctl <= 0)
2347 intmsk |= GINTSTS_CONIDSTSCHNG;
2348
2349 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2350
2351 if (using_dma(hsotg))
2352 dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2353 (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2354 hsotg->regs + GAHBCFG);
2355 else
2356 dwc2_writel(((hsotg->dedicated_fifos) ?
2357 (GAHBCFG_NP_TXF_EMP_LVL |
2358 GAHBCFG_P_TXF_EMP_LVL) : 0) |
2359 GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
2360
2361 /*
2362 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2363 * when we have no data to transfer. Otherwise we get being flooded by
2364 * interrupts.
2365 */
2366
2367 dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2368 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2369 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2370 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2371 DIEPMSK_INTKNEPMISMSK,
2372 hsotg->regs + DIEPMSK);
2373
2374 /*
2375 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2376 * DMA mode we may need this.
2377 */
2378 dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2379 DIEPMSK_TIMEOUTMSK) : 0) |
2380 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2381 DOEPMSK_SETUPMSK,
2382 hsotg->regs + DOEPMSK);
2383
2384 dwc2_writel(0, hsotg->regs + DAINTMSK);
2385
2386 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2387 dwc2_readl(hsotg->regs + DIEPCTL0),
2388 dwc2_readl(hsotg->regs + DOEPCTL0));
2389
2390 /* enable in and out endpoint interrupts */
2391 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2392
2393 /*
2394 * Enable the RXFIFO when in slave mode, as this is how we collect
2395 * the data. In DMA mode, we get events from the FIFO but also
2396 * things we cannot process, so do not use it.
2397 */
2398 if (!using_dma(hsotg))
2399 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2400
2401 /* Enable interrupts for EP0 in and out */
2402 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2403 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2404
2405 if (!is_usb_reset) {
2406 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2407 udelay(10); /* see openiboot */
2408 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2409 }
2410
2411 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2412
2413 /*
2414 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2415 * writing to the EPCTL register..
2416 */
2417
2418 /* set to read 1 8byte packet */
2419 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2420 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2421
2422 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2423 DXEPCTL_CNAK | DXEPCTL_EPENA |
2424 DXEPCTL_USBACTEP,
2425 hsotg->regs + DOEPCTL0);
2426
2427 /* enable, but don't activate EP0in */
2428 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2429 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2430
2431 dwc2_hsotg_enqueue_setup(hsotg);
2432
2433 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2434 dwc2_readl(hsotg->regs + DIEPCTL0),
2435 dwc2_readl(hsotg->regs + DOEPCTL0));
2436
2437 /* clear global NAKs */
2438 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
2439 if (!is_usb_reset)
2440 val |= DCTL_SFTDISCON;
2441 __orr32(hsotg->regs + DCTL, val);
2442
2443 /* must be at-least 3ms to allow bus to see disconnect */
2444 mdelay(3);
2445
2446 hsotg->lx_state = DWC2_L0;
2447 }
2448
2449 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2450 {
2451 /* set the soft-disconnect bit */
2452 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2453 }
2454
2455 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2456 {
2457 /* remove the soft-disconnect and let's go */
2458 __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2459 }
2460
2461 /**
2462 * dwc2_hsotg_irq - handle device interrupt
2463 * @irq: The IRQ number triggered
2464 * @pw: The pw value when registered the handler.
2465 */
2466 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2467 {
2468 struct dwc2_hsotg *hsotg = pw;
2469 int retry_count = 8;
2470 u32 gintsts;
2471 u32 gintmsk;
2472
2473 spin_lock(&hsotg->lock);
2474 irq_retry:
2475 gintsts = dwc2_readl(hsotg->regs + GINTSTS);
2476 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2477
2478 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2479 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2480
2481 gintsts &= gintmsk;
2482
2483 if (gintsts & GINTSTS_RESETDET) {
2484 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
2485
2486 dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
2487
2488 /* This event must be used only if controller is suspended */
2489 if (hsotg->lx_state == DWC2_L2) {
2490 dwc2_exit_hibernation(hsotg, true);
2491 hsotg->lx_state = DWC2_L0;
2492 }
2493 }
2494
2495 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
2496
2497 u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
2498 u32 connected = hsotg->connected;
2499
2500 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2501 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2502 dwc2_readl(hsotg->regs + GNPTXSTS));
2503
2504 dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2505
2506 /* Report disconnection if it is not already done. */
2507 dwc2_hsotg_disconnect(hsotg);
2508
2509 if (usb_status & GOTGCTL_BSESVLD && connected)
2510 dwc2_hsotg_core_init_disconnected(hsotg, true);
2511 }
2512
2513 if (gintsts & GINTSTS_ENUMDONE) {
2514 dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2515
2516 dwc2_hsotg_irq_enumdone(hsotg);
2517 }
2518
2519 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2520 u32 daint = dwc2_readl(hsotg->regs + DAINT);
2521 u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2522 u32 daint_out, daint_in;
2523 int ep;
2524
2525 daint &= daintmsk;
2526 daint_out = daint >> DAINT_OUTEP_SHIFT;
2527 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2528
2529 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2530
2531 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
2532 ep++, daint_out >>= 1) {
2533 if (daint_out & 1)
2534 dwc2_hsotg_epint(hsotg, ep, 0);
2535 }
2536
2537 for (ep = 0; ep < hsotg->num_of_eps && daint_in;
2538 ep++, daint_in >>= 1) {
2539 if (daint_in & 1)
2540 dwc2_hsotg_epint(hsotg, ep, 1);
2541 }
2542 }
2543
2544 /* check both FIFOs */
2545
2546 if (gintsts & GINTSTS_NPTXFEMP) {
2547 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2548
2549 /*
2550 * Disable the interrupt to stop it happening again
2551 * unless one of these endpoint routines decides that
2552 * it needs re-enabling
2553 */
2554
2555 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2556 dwc2_hsotg_irq_fifoempty(hsotg, false);
2557 }
2558
2559 if (gintsts & GINTSTS_PTXFEMP) {
2560 dev_dbg(hsotg->dev, "PTxFEmp\n");
2561
2562 /* See note in GINTSTS_NPTxFEmp */
2563
2564 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2565 dwc2_hsotg_irq_fifoempty(hsotg, true);
2566 }
2567
2568 if (gintsts & GINTSTS_RXFLVL) {
2569 /*
2570 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2571 * we need to retry dwc2_hsotg_handle_rx if this is still
2572 * set.
2573 */
2574
2575 dwc2_hsotg_handle_rx(hsotg);
2576 }
2577
2578 if (gintsts & GINTSTS_ERLYSUSP) {
2579 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2580 dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2581 }
2582
2583 /*
2584 * these next two seem to crop-up occasionally causing the core
2585 * to shutdown the USB transfer, so try clearing them and logging
2586 * the occurrence.
2587 */
2588
2589 if (gintsts & GINTSTS_GOUTNAKEFF) {
2590 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2591
2592 dwc2_writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2593
2594 dwc2_hsotg_dump(hsotg);
2595 }
2596
2597 if (gintsts & GINTSTS_GINNAKEFF) {
2598 dev_info(hsotg->dev, "GINNakEff triggered\n");
2599
2600 dwc2_writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2601
2602 dwc2_hsotg_dump(hsotg);
2603 }
2604
2605 if (gintsts & GINTSTS_INCOMPL_SOIN) {
2606 u32 idx, epctl_reg;
2607 struct dwc2_hsotg_ep *hs_ep;
2608
2609 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOIN\n", __func__);
2610 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
2611 hs_ep = hsotg->eps_in[idx];
2612
2613 if (!hs_ep->isochronous || hs_ep->has_correct_parity)
2614 continue;
2615
2616 epctl_reg = DIEPCTL(idx);
2617 dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
2618 }
2619 dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
2620 }
2621
2622 if (gintsts & GINTSTS_INCOMPL_SOOUT) {
2623 u32 idx, epctl_reg;
2624 struct dwc2_hsotg_ep *hs_ep;
2625
2626 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
2627 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
2628 hs_ep = hsotg->eps_out[idx];
2629
2630 if (!hs_ep->isochronous || hs_ep->has_correct_parity)
2631 continue;
2632
2633 epctl_reg = DOEPCTL(idx);
2634 dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
2635 }
2636 dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
2637 }
2638
2639 /*
2640 * if we've had fifo events, we should try and go around the
2641 * loop again to see if there's any point in returning yet.
2642 */
2643
2644 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2645 goto irq_retry;
2646
2647 spin_unlock(&hsotg->lock);
2648
2649 return IRQ_HANDLED;
2650 }
2651
2652 /**
2653 * dwc2_hsotg_ep_enable - enable the given endpoint
2654 * @ep: The USB endpint to configure
2655 * @desc: The USB endpoint descriptor to configure with.
2656 *
2657 * This is called from the USB gadget code's usb_ep_enable().
2658 */
2659 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2660 const struct usb_endpoint_descriptor *desc)
2661 {
2662 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2663 struct dwc2_hsotg *hsotg = hs_ep->parent;
2664 unsigned long flags;
2665 unsigned int index = hs_ep->index;
2666 u32 epctrl_reg;
2667 u32 epctrl;
2668 u32 mps;
2669 unsigned int dir_in;
2670 unsigned int i, val, size;
2671 int ret = 0;
2672
2673 dev_dbg(hsotg->dev,
2674 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2675 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2676 desc->wMaxPacketSize, desc->bInterval);
2677
2678 /* not to be called for EP0 */
2679 WARN_ON(index == 0);
2680
2681 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2682 if (dir_in != hs_ep->dir_in) {
2683 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2684 return -EINVAL;
2685 }
2686
2687 mps = usb_endpoint_maxp(desc);
2688
2689 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2690
2691 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2692 epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2693
2694 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2695 __func__, epctrl, epctrl_reg);
2696
2697 spin_lock_irqsave(&hsotg->lock, flags);
2698
2699 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2700 epctrl |= DXEPCTL_MPS(mps);
2701
2702 /*
2703 * mark the endpoint as active, otherwise the core may ignore
2704 * transactions entirely for this endpoint
2705 */
2706 epctrl |= DXEPCTL_USBACTEP;
2707
2708 /*
2709 * set the NAK status on the endpoint, otherwise we might try and
2710 * do something with data that we've yet got a request to process
2711 * since the RXFIFO will take data for an endpoint even if the
2712 * size register hasn't been set.
2713 */
2714
2715 epctrl |= DXEPCTL_SNAK;
2716
2717 /* update the endpoint state */
2718 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2719
2720 /* default, set to non-periodic */
2721 hs_ep->isochronous = 0;
2722 hs_ep->periodic = 0;
2723 hs_ep->halted = 0;
2724 hs_ep->interval = desc->bInterval;
2725 hs_ep->has_correct_parity = 0;
2726
2727 if (hs_ep->interval > 1 && hs_ep->mc > 1)
2728 dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2729
2730 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2731 case USB_ENDPOINT_XFER_ISOC:
2732 epctrl |= DXEPCTL_EPTYPE_ISO;
2733 epctrl |= DXEPCTL_SETEVENFR;
2734 hs_ep->isochronous = 1;
2735 if (dir_in)
2736 hs_ep->periodic = 1;
2737 break;
2738
2739 case USB_ENDPOINT_XFER_BULK:
2740 epctrl |= DXEPCTL_EPTYPE_BULK;
2741 break;
2742
2743 case USB_ENDPOINT_XFER_INT:
2744 if (dir_in)
2745 hs_ep->periodic = 1;
2746
2747 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2748 break;
2749
2750 case USB_ENDPOINT_XFER_CONTROL:
2751 epctrl |= DXEPCTL_EPTYPE_CONTROL;
2752 break;
2753 }
2754
2755 /* If fifo is already allocated for this ep */
2756 if (hs_ep->fifo_index) {
2757 size = hs_ep->ep.maxpacket * hs_ep->mc;
2758 /* If bigger fifo is required deallocate current one */
2759 if (size > hs_ep->fifo_size) {
2760 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
2761 hs_ep->fifo_index = 0;
2762 hs_ep->fifo_size = 0;
2763 }
2764 }
2765
2766 /*
2767 * if the hardware has dedicated fifos, we must give each IN EP
2768 * a unique tx-fifo even if it is non-periodic.
2769 */
2770 if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2771 u32 fifo_index = 0;
2772 u32 fifo_size = UINT_MAX;
2773 size = hs_ep->ep.maxpacket*hs_ep->mc;
2774 for (i = 1; i < hsotg->num_of_eps; ++i) {
2775 if (hsotg->fifo_map & (1<<i))
2776 continue;
2777 val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
2778 val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
2779 if (val < size)
2780 continue;
2781 /* Search for smallest acceptable fifo */
2782 if (val < fifo_size) {
2783 fifo_size = val;
2784 fifo_index = i;
2785 }
2786 }
2787 if (!fifo_index) {
2788 dev_err(hsotg->dev,
2789 "%s: No suitable fifo found\n", __func__);
2790 ret = -ENOMEM;
2791 goto error;
2792 }
2793 hsotg->fifo_map |= 1 << fifo_index;
2794 epctrl |= DXEPCTL_TXFNUM(fifo_index);
2795 hs_ep->fifo_index = fifo_index;
2796 hs_ep->fifo_size = fifo_size;
2797 }
2798
2799 /* for non control endpoints, set PID to D0 */
2800 if (index)
2801 epctrl |= DXEPCTL_SETD0PID;
2802
2803 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2804 __func__, epctrl);
2805
2806 dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
2807 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2808 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
2809
2810 /* enable the endpoint interrupt */
2811 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2812
2813 error:
2814 spin_unlock_irqrestore(&hsotg->lock, flags);
2815 return ret;
2816 }
2817
2818 /**
2819 * dwc2_hsotg_ep_disable - disable given endpoint
2820 * @ep: The endpoint to disable.
2821 */
2822 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
2823 {
2824 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2825 struct dwc2_hsotg *hsotg = hs_ep->parent;
2826 int dir_in = hs_ep->dir_in;
2827 int index = hs_ep->index;
2828 unsigned long flags;
2829 u32 epctrl_reg;
2830 u32 ctrl;
2831
2832 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2833
2834 if (ep == &hsotg->eps_out[0]->ep) {
2835 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2836 return -EINVAL;
2837 }
2838
2839 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2840
2841 spin_lock_irqsave(&hsotg->lock, flags);
2842
2843 hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
2844 hs_ep->fifo_index = 0;
2845 hs_ep->fifo_size = 0;
2846
2847 ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2848 ctrl &= ~DXEPCTL_EPENA;
2849 ctrl &= ~DXEPCTL_USBACTEP;
2850 ctrl |= DXEPCTL_SNAK;
2851
2852 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2853 dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
2854
2855 /* disable endpoint interrupts */
2856 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2857
2858 /* terminate all requests with shutdown */
2859 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
2860
2861 spin_unlock_irqrestore(&hsotg->lock, flags);
2862 return 0;
2863 }
2864
2865 /**
2866 * on_list - check request is on the given endpoint
2867 * @ep: The endpoint to check.
2868 * @test: The request to test if it is on the endpoint.
2869 */
2870 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
2871 {
2872 struct dwc2_hsotg_req *req, *treq;
2873
2874 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2875 if (req == test)
2876 return true;
2877 }
2878
2879 return false;
2880 }
2881
2882 static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
2883 u32 bit, u32 timeout)
2884 {
2885 u32 i;
2886
2887 for (i = 0; i < timeout; i++) {
2888 if (dwc2_readl(hs_otg->regs + reg) & bit)
2889 return 0;
2890 udelay(1);
2891 }
2892
2893 return -ETIMEDOUT;
2894 }
2895
2896 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2897 struct dwc2_hsotg_ep *hs_ep)
2898 {
2899 u32 epctrl_reg;
2900 u32 epint_reg;
2901
2902 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
2903 DOEPCTL(hs_ep->index);
2904 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
2905 DOEPINT(hs_ep->index);
2906
2907 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
2908 hs_ep->name);
2909 if (hs_ep->dir_in) {
2910 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
2911 /* Wait for Nak effect */
2912 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
2913 DXEPINT_INEPNAKEFF, 100))
2914 dev_warn(hsotg->dev,
2915 "%s: timeout DIEPINT.NAKEFF\n", __func__);
2916 } else {
2917 /* Clear any pending nak effect interrupt */
2918 dwc2_writel(GINTSTS_GINNAKEFF, hsotg->regs + GINTSTS);
2919
2920 __orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
2921
2922 /* Wait for global nak to take effect */
2923 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
2924 GINTSTS_GINNAKEFF, 100))
2925 dev_warn(hsotg->dev,
2926 "%s: timeout GINTSTS.GINNAKEFF\n", __func__);
2927 }
2928
2929 /* Disable ep */
2930 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
2931
2932 /* Wait for ep to be disabled */
2933 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
2934 dev_warn(hsotg->dev,
2935 "%s: timeout DOEPCTL.EPDisable\n", __func__);
2936
2937 if (hs_ep->dir_in) {
2938 if (hsotg->dedicated_fifos) {
2939 dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
2940 GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
2941 /* Wait for fifo flush */
2942 if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
2943 GRSTCTL_TXFFLSH, 100))
2944 dev_warn(hsotg->dev,
2945 "%s: timeout flushing fifos\n",
2946 __func__);
2947 }
2948 /* TODO: Flush shared tx fifo */
2949 } else {
2950 /* Remove global NAKs */
2951 __bic32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
2952 }
2953 }
2954
2955 /**
2956 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
2957 * @ep: The endpoint to dequeue.
2958 * @req: The request to be removed from a queue.
2959 */
2960 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2961 {
2962 struct dwc2_hsotg_req *hs_req = our_req(req);
2963 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2964 struct dwc2_hsotg *hs = hs_ep->parent;
2965 unsigned long flags;
2966
2967 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2968
2969 spin_lock_irqsave(&hs->lock, flags);
2970
2971 if (!on_list(hs_ep, hs_req)) {
2972 spin_unlock_irqrestore(&hs->lock, flags);
2973 return -EINVAL;
2974 }
2975
2976 /* Dequeue already started request */
2977 if (req == &hs_ep->req->req)
2978 dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
2979
2980 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2981 spin_unlock_irqrestore(&hs->lock, flags);
2982
2983 return 0;
2984 }
2985
2986 /**
2987 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
2988 * @ep: The endpoint to set halt.
2989 * @value: Set or unset the halt.
2990 */
2991 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2992 {
2993 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2994 struct dwc2_hsotg *hs = hs_ep->parent;
2995 int index = hs_ep->index;
2996 u32 epreg;
2997 u32 epctl;
2998 u32 xfertype;
2999
3000 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
3001
3002 if (index == 0) {
3003 if (value)
3004 dwc2_hsotg_stall_ep0(hs);
3005 else
3006 dev_warn(hs->dev,
3007 "%s: can't clear halt on ep0\n", __func__);
3008 return 0;
3009 }
3010
3011 if (hs_ep->dir_in) {
3012 epreg = DIEPCTL(index);
3013 epctl = dwc2_readl(hs->regs + epreg);
3014
3015 if (value) {
3016 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
3017 if (epctl & DXEPCTL_EPENA)
3018 epctl |= DXEPCTL_EPDIS;
3019 } else {
3020 epctl &= ~DXEPCTL_STALL;
3021 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
3022 if (xfertype == DXEPCTL_EPTYPE_BULK ||
3023 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
3024 epctl |= DXEPCTL_SETD0PID;
3025 }
3026 dwc2_writel(epctl, hs->regs + epreg);
3027 } else {
3028
3029 epreg = DOEPCTL(index);
3030 epctl = dwc2_readl(hs->regs + epreg);
3031
3032 if (value)
3033 epctl |= DXEPCTL_STALL;
3034 else {
3035 epctl &= ~DXEPCTL_STALL;
3036 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
3037 if (xfertype == DXEPCTL_EPTYPE_BULK ||
3038 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
3039 epctl |= DXEPCTL_SETD0PID;
3040 }
3041 dwc2_writel(epctl, hs->regs + epreg);
3042 }
3043
3044 hs_ep->halted = value;
3045
3046 return 0;
3047 }
3048
3049 /**
3050 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3051 * @ep: The endpoint to set halt.
3052 * @value: Set or unset the halt.
3053 */
3054 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3055 {
3056 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3057 struct dwc2_hsotg *hs = hs_ep->parent;
3058 unsigned long flags = 0;
3059 int ret = 0;
3060
3061 spin_lock_irqsave(&hs->lock, flags);
3062 ret = dwc2_hsotg_ep_sethalt(ep, value);
3063 spin_unlock_irqrestore(&hs->lock, flags);
3064
3065 return ret;
3066 }
3067
3068 static struct usb_ep_ops dwc2_hsotg_ep_ops = {
3069 .enable = dwc2_hsotg_ep_enable,
3070 .disable = dwc2_hsotg_ep_disable,
3071 .alloc_request = dwc2_hsotg_ep_alloc_request,
3072 .free_request = dwc2_hsotg_ep_free_request,
3073 .queue = dwc2_hsotg_ep_queue_lock,
3074 .dequeue = dwc2_hsotg_ep_dequeue,
3075 .set_halt = dwc2_hsotg_ep_sethalt_lock,
3076 /* note, don't believe we have any call for the fifo routines */
3077 };
3078
3079 /**
3080 * dwc2_hsotg_phy_enable - enable platform phy dev
3081 * @hsotg: The driver state
3082 *
3083 * A wrapper for platform code responsible for controlling
3084 * low-level USB code
3085 */
3086 static void dwc2_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
3087 {
3088 struct platform_device *pdev = to_platform_device(hsotg->dev);
3089
3090 dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
3091
3092 if (hsotg->uphy)
3093 usb_phy_init(hsotg->uphy);
3094 else if (hsotg->plat && hsotg->plat->phy_init)
3095 hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
3096 else {
3097 phy_init(hsotg->phy);
3098 phy_power_on(hsotg->phy);
3099 }
3100 }
3101
3102 /**
3103 * dwc2_hsotg_phy_disable - disable platform phy dev
3104 * @hsotg: The driver state
3105 *
3106 * A wrapper for platform code responsible for controlling
3107 * low-level USB code
3108 */
3109 static void dwc2_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
3110 {
3111 struct platform_device *pdev = to_platform_device(hsotg->dev);
3112
3113 if (hsotg->uphy)
3114 usb_phy_shutdown(hsotg->uphy);
3115 else if (hsotg->plat && hsotg->plat->phy_exit)
3116 hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
3117 else {
3118 phy_power_off(hsotg->phy);
3119 phy_exit(hsotg->phy);
3120 }
3121 }
3122
3123 /**
3124 * dwc2_hsotg_init - initalize the usb core
3125 * @hsotg: The driver state
3126 */
3127 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3128 {
3129 u32 trdtim;
3130 /* unmask subset of endpoint interrupts */
3131
3132 dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
3133 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
3134 hsotg->regs + DIEPMSK);
3135
3136 dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
3137 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
3138 hsotg->regs + DOEPMSK);
3139
3140 dwc2_writel(0, hsotg->regs + DAINTMSK);
3141
3142 /* Be in disconnected state until gadget is registered */
3143 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3144
3145 /* setup fifos */
3146
3147 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3148 dwc2_readl(hsotg->regs + GRXFSIZ),
3149 dwc2_readl(hsotg->regs + GNPTXFSIZ));
3150
3151 dwc2_hsotg_init_fifo(hsotg);
3152
3153 /* set the PLL on, remove the HNP/SRP and set the PHY */
3154 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3155 dwc2_writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3156 (trdtim << GUSBCFG_USBTRDTIM_SHIFT),
3157 hsotg->regs + GUSBCFG);
3158
3159 if (using_dma(hsotg))
3160 __orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3161 }
3162
3163 /**
3164 * dwc2_hsotg_udc_start - prepare the udc for work
3165 * @gadget: The usb gadget state
3166 * @driver: The usb gadget driver
3167 *
3168 * Perform initialization to prepare udc device and driver
3169 * to work.
3170 */
3171 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3172 struct usb_gadget_driver *driver)
3173 {
3174 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3175 unsigned long flags;
3176 int ret;
3177
3178 if (!hsotg) {
3179 pr_err("%s: called with no device\n", __func__);
3180 return -ENODEV;
3181 }
3182
3183 if (!driver) {
3184 dev_err(hsotg->dev, "%s: no driver\n", __func__);
3185 return -EINVAL;
3186 }
3187
3188 if (driver->max_speed < USB_SPEED_FULL)
3189 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
3190
3191 if (!driver->setup) {
3192 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
3193 return -EINVAL;
3194 }
3195
3196 WARN_ON(hsotg->driver);
3197
3198 driver->driver.bus = NULL;
3199 hsotg->driver = driver;
3200 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3201 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3202
3203 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3204 hsotg->supplies);
3205 if (ret) {
3206 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3207 goto err;
3208 }
3209
3210 dwc2_hsotg_phy_enable(hsotg);
3211 if (!IS_ERR_OR_NULL(hsotg->uphy))
3212 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3213
3214 spin_lock_irqsave(&hsotg->lock, flags);
3215 dwc2_hsotg_init(hsotg);
3216 dwc2_hsotg_core_init_disconnected(hsotg, false);
3217 hsotg->enabled = 0;
3218 spin_unlock_irqrestore(&hsotg->lock, flags);
3219
3220 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3221
3222 return 0;
3223
3224 err:
3225 hsotg->driver = NULL;
3226 return ret;
3227 }
3228
3229 /**
3230 * dwc2_hsotg_udc_stop - stop the udc
3231 * @gadget: The usb gadget state
3232 * @driver: The usb gadget driver
3233 *
3234 * Stop udc hw block and stay tunned for future transmissions
3235 */
3236 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3237 {
3238 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3239 unsigned long flags = 0;
3240 int ep;
3241
3242 if (!hsotg)
3243 return -ENODEV;
3244
3245 /* all endpoints should be shutdown */
3246 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3247 if (hsotg->eps_in[ep])
3248 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3249 if (hsotg->eps_out[ep])
3250 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3251 }
3252
3253 spin_lock_irqsave(&hsotg->lock, flags);
3254
3255 hsotg->driver = NULL;
3256 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3257 hsotg->enabled = 0;
3258
3259 spin_unlock_irqrestore(&hsotg->lock, flags);
3260
3261 if (!IS_ERR_OR_NULL(hsotg->uphy))
3262 otg_set_peripheral(hsotg->uphy->otg, NULL);
3263 dwc2_hsotg_phy_disable(hsotg);
3264
3265 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3266
3267 return 0;
3268 }
3269
3270 /**
3271 * dwc2_hsotg_gadget_getframe - read the frame number
3272 * @gadget: The usb gadget state
3273 *
3274 * Read the {micro} frame number
3275 */
3276 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3277 {
3278 return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3279 }
3280
3281 /**
3282 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3283 * @gadget: The usb gadget state
3284 * @is_on: Current state of the USB PHY
3285 *
3286 * Connect/Disconnect the USB PHY pullup
3287 */
3288 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3289 {
3290 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3291 unsigned long flags = 0;
3292
3293 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
3294 hsotg->op_state);
3295
3296 /* Don't modify pullup state while in host mode */
3297 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
3298 hsotg->enabled = is_on;
3299 return 0;
3300 }
3301
3302 spin_lock_irqsave(&hsotg->lock, flags);
3303 if (is_on) {
3304 hsotg->enabled = 1;
3305 dwc2_hsotg_core_init_disconnected(hsotg, false);
3306 dwc2_hsotg_core_connect(hsotg);
3307 } else {
3308 dwc2_hsotg_core_disconnect(hsotg);
3309 dwc2_hsotg_disconnect(hsotg);
3310 hsotg->enabled = 0;
3311 }
3312
3313 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3314 spin_unlock_irqrestore(&hsotg->lock, flags);
3315
3316 return 0;
3317 }
3318
3319 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3320 {
3321 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3322 unsigned long flags;
3323
3324 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
3325 spin_lock_irqsave(&hsotg->lock, flags);
3326
3327 /*
3328 * If controller is hibernated, it must exit from hibernation
3329 * before being initialized / de-initialized
3330 */
3331 if (hsotg->lx_state == DWC2_L2)
3332 dwc2_exit_hibernation(hsotg, false);
3333
3334 if (is_active) {
3335 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3336
3337 dwc2_hsotg_core_init_disconnected(hsotg, false);
3338 if (hsotg->enabled)
3339 dwc2_hsotg_core_connect(hsotg);
3340 } else {
3341 dwc2_hsotg_core_disconnect(hsotg);
3342 dwc2_hsotg_disconnect(hsotg);
3343 }
3344
3345 spin_unlock_irqrestore(&hsotg->lock, flags);
3346 return 0;
3347 }
3348
3349 /**
3350 * dwc2_hsotg_vbus_draw - report bMaxPower field
3351 * @gadget: The usb gadget state
3352 * @mA: Amount of current
3353 *
3354 * Report how much power the device may consume to the phy.
3355 */
3356 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3357 {
3358 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3359
3360 if (IS_ERR_OR_NULL(hsotg->uphy))
3361 return -ENOTSUPP;
3362 return usb_phy_set_power(hsotg->uphy, mA);
3363 }
3364
3365 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
3366 .get_frame = dwc2_hsotg_gadget_getframe,
3367 .udc_start = dwc2_hsotg_udc_start,
3368 .udc_stop = dwc2_hsotg_udc_stop,
3369 .pullup = dwc2_hsotg_pullup,
3370 .vbus_session = dwc2_hsotg_vbus_session,
3371 .vbus_draw = dwc2_hsotg_vbus_draw,
3372 };
3373
3374 /**
3375 * dwc2_hsotg_initep - initialise a single endpoint
3376 * @hsotg: The device state.
3377 * @hs_ep: The endpoint to be initialised.
3378 * @epnum: The endpoint number
3379 *
3380 * Initialise the given endpoint (as part of the probe and device state
3381 * creation) to give to the gadget driver. Setup the endpoint name, any
3382 * direction information and other state that may be required.
3383 */
3384 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
3385 struct dwc2_hsotg_ep *hs_ep,
3386 int epnum,
3387 bool dir_in)
3388 {
3389 char *dir;
3390
3391 if (epnum == 0)
3392 dir = "";
3393 else if (dir_in)
3394 dir = "in";
3395 else
3396 dir = "out";
3397
3398 hs_ep->dir_in = dir_in;
3399 hs_ep->index = epnum;
3400
3401 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3402
3403 INIT_LIST_HEAD(&hs_ep->queue);
3404 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3405
3406 /* add to the list of endpoints known by the gadget driver */
3407 if (epnum)
3408 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3409
3410 hs_ep->parent = hsotg;
3411 hs_ep->ep.name = hs_ep->name;
3412 usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3413 hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3414
3415 if (epnum == 0) {
3416 hs_ep->ep.caps.type_control = true;
3417 } else {
3418 hs_ep->ep.caps.type_iso = true;
3419 hs_ep->ep.caps.type_bulk = true;
3420 hs_ep->ep.caps.type_int = true;
3421 }
3422
3423 if (dir_in)
3424 hs_ep->ep.caps.dir_in = true;
3425 else
3426 hs_ep->ep.caps.dir_out = true;
3427
3428 /*
3429 * if we're using dma, we need to set the next-endpoint pointer
3430 * to be something valid.
3431 */
3432
3433 if (using_dma(hsotg)) {
3434 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3435 if (dir_in)
3436 dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3437 else
3438 dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3439 }
3440 }
3441
3442 /**
3443 * dwc2_hsotg_hw_cfg - read HW configuration registers
3444 * @param: The device state
3445 *
3446 * Read the USB core HW configuration registers
3447 */
3448 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3449 {
3450 u32 cfg;
3451 u32 ep_type;
3452 u32 i;
3453
3454 /* check hardware configuration */
3455
3456 cfg = dwc2_readl(hsotg->regs + GHWCFG2);
3457 hsotg->num_of_eps = (cfg >> GHWCFG2_NUM_DEV_EP_SHIFT) & 0xF;
3458 /* Add ep0 */
3459 hsotg->num_of_eps++;
3460
3461 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3462 GFP_KERNEL);
3463 if (!hsotg->eps_in[0])
3464 return -ENOMEM;
3465 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
3466 hsotg->eps_out[0] = hsotg->eps_in[0];
3467
3468 cfg = dwc2_readl(hsotg->regs + GHWCFG1);
3469 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3470 ep_type = cfg & 3;
3471 /* Direction in or both */
3472 if (!(ep_type & 2)) {
3473 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3474 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3475 if (!hsotg->eps_in[i])
3476 return -ENOMEM;
3477 }
3478 /* Direction out or both */
3479 if (!(ep_type & 1)) {
3480 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3481 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3482 if (!hsotg->eps_out[i])
3483 return -ENOMEM;
3484 }
3485 }
3486
3487 cfg = dwc2_readl(hsotg->regs + GHWCFG3);
3488 hsotg->fifo_mem = (cfg >> GHWCFG3_DFIFO_DEPTH_SHIFT);
3489
3490 cfg = dwc2_readl(hsotg->regs + GHWCFG4);
3491 hsotg->dedicated_fifos = (cfg >> GHWCFG4_DED_FIFO_SHIFT) & 1;
3492
3493 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
3494 hsotg->num_of_eps,
3495 hsotg->dedicated_fifos ? "dedicated" : "shared",
3496 hsotg->fifo_mem);
3497 return 0;
3498 }
3499
3500 /**
3501 * dwc2_hsotg_dump - dump state of the udc
3502 * @param: The device state
3503 */
3504 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3505 {
3506 #ifdef DEBUG
3507 struct device *dev = hsotg->dev;
3508 void __iomem *regs = hsotg->regs;
3509 u32 val;
3510 int idx;
3511
3512 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3513 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
3514 dwc2_readl(regs + DIEPMSK));
3515
3516 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3517 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3518
3519 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3520 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3521
3522 /* show periodic fifo settings */
3523
3524 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3525 val = dwc2_readl(regs + DPTXFSIZN(idx));
3526 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3527 val >> FIFOSIZE_DEPTH_SHIFT,
3528 val & FIFOSIZE_STARTADDR_MASK);
3529 }
3530
3531 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3532 dev_info(dev,
3533 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3534 dwc2_readl(regs + DIEPCTL(idx)),
3535 dwc2_readl(regs + DIEPTSIZ(idx)),
3536 dwc2_readl(regs + DIEPDMA(idx)));
3537
3538 val = dwc2_readl(regs + DOEPCTL(idx));
3539 dev_info(dev,
3540 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3541 idx, dwc2_readl(regs + DOEPCTL(idx)),
3542 dwc2_readl(regs + DOEPTSIZ(idx)),
3543 dwc2_readl(regs + DOEPDMA(idx)));
3544
3545 }
3546
3547 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3548 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
3549 #endif
3550 }
3551
3552 #ifdef CONFIG_OF
3553 static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3554 {
3555 struct device_node *np = hsotg->dev->of_node;
3556 u32 len = 0;
3557 u32 i = 0;
3558
3559 /* Enable dma if requested in device tree */
3560 hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3561
3562 /*
3563 * Register TX periodic fifo size per endpoint.
3564 * EP0 is excluded since it has no fifo configuration.
3565 */
3566 if (!of_find_property(np, "g-tx-fifo-size", &len))
3567 goto rx_fifo;
3568
3569 len /= sizeof(u32);
3570
3571 /* Read tx fifo sizes other than ep0 */
3572 if (of_property_read_u32_array(np, "g-tx-fifo-size",
3573 &hsotg->g_tx_fifo_sz[1], len))
3574 goto rx_fifo;
3575
3576 /* Add ep0 */
3577 len++;
3578
3579 /* Make remaining TX fifos unavailable */
3580 if (len < MAX_EPS_CHANNELS) {
3581 for (i = len; i < MAX_EPS_CHANNELS; i++)
3582 hsotg->g_tx_fifo_sz[i] = 0;
3583 }
3584
3585 rx_fifo:
3586 /* Register RX fifo size */
3587 of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);
3588
3589 /* Register NPTX fifo size */
3590 of_property_read_u32(np, "g-np-tx-fifo-size",
3591 &hsotg->g_np_g_tx_fifo_sz);
3592 }
3593 #else
3594 static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3595 #endif
3596
3597 /**
3598 * dwc2_gadget_init - init function for gadget
3599 * @dwc2: The data structure for the DWC2 driver.
3600 * @irq: The IRQ number for the controller.
3601 */
3602 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3603 {
3604 struct device *dev = hsotg->dev;
3605 struct dwc2_hsotg_plat *plat = dev->platform_data;
3606 int epnum;
3607 int ret;
3608 int i;
3609 u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3610
3611 /* Set default UTMI width */
3612 hsotg->phyif = GUSBCFG_PHYIF16;
3613
3614 /* Initialize to legacy fifo configuration values */
3615 hsotg->g_rx_fifo_sz = 2048;
3616 hsotg->g_np_g_tx_fifo_sz = 1024;
3617 memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
3618 /* Device tree specific probe */
3619 dwc2_hsotg_of_probe(hsotg);
3620 /* Dump fifo information */
3621 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
3622 hsotg->g_np_g_tx_fifo_sz);
3623 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
3624 for (i = 0; i < MAX_EPS_CHANNELS; i++)
3625 dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
3626 hsotg->g_tx_fifo_sz[i]);
3627 /*
3628 * If platform probe couldn't find a generic PHY or an old style
3629 * USB PHY, fall back to pdata
3630 */
3631 if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
3632 plat = dev_get_platdata(dev);
3633 if (!plat) {
3634 dev_err(dev,
3635 "no platform data or transceiver defined\n");
3636 return -EPROBE_DEFER;
3637 }
3638 hsotg->plat = plat;
3639 } else if (hsotg->phy) {
3640 /*
3641 * If using the generic PHY framework, check if the PHY bus
3642 * width is 8-bit and set the phyif appropriately.
3643 */
3644 if (phy_get_bus_width(hsotg->phy) == 8)
3645 hsotg->phyif = GUSBCFG_PHYIF8;
3646 }
3647
3648 hsotg->clk = devm_clk_get(dev, "otg");
3649 if (IS_ERR(hsotg->clk)) {
3650 hsotg->clk = NULL;
3651 dev_dbg(dev, "cannot get otg clock\n");
3652 }
3653
3654 hsotg->gadget.max_speed = USB_SPEED_HIGH;
3655 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3656 hsotg->gadget.name = dev_name(dev);
3657 if (hsotg->dr_mode == USB_DR_MODE_OTG)
3658 hsotg->gadget.is_otg = 1;
3659 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
3660 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3661
3662 /* reset the system */
3663
3664 ret = clk_prepare_enable(hsotg->clk);
3665 if (ret) {
3666 dev_err(dev, "failed to enable otg clk\n");
3667 goto err_clk;
3668 }
3669
3670
3671 /* regulators */
3672
3673 for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3674 hsotg->supplies[i].supply = dwc2_hsotg_supply_names[i];
3675
3676 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3677 hsotg->supplies);
3678 if (ret) {
3679 dev_err(dev, "failed to request supplies: %d\n", ret);
3680 goto err_clk;
3681 }
3682
3683 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3684 hsotg->supplies);
3685
3686 if (ret) {
3687 dev_err(dev, "failed to enable supplies: %d\n", ret);
3688 goto err_clk;
3689 }
3690
3691 /* usb phy enable */
3692 dwc2_hsotg_phy_enable(hsotg);
3693
3694 /*
3695 * Force Device mode before initialization.
3696 * This allows correctly configuring fifo for device mode.
3697 */
3698 __bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEHOSTMODE);
3699 __orr32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);
3700
3701 /*
3702 * According to Synopsys databook, this sleep is needed for the force
3703 * device mode to take effect.
3704 */
3705 msleep(25);
3706
3707 dwc2_hsotg_corereset(hsotg);
3708 ret = dwc2_hsotg_hw_cfg(hsotg);
3709 if (ret) {
3710 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3711 goto err_clk;
3712 }
3713
3714 dwc2_hsotg_init(hsotg);
3715
3716 /* Switch back to default configuration */
3717 __bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);
3718
3719 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
3720 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3721 if (!hsotg->ctrl_buff) {
3722 dev_err(dev, "failed to allocate ctrl request buff\n");
3723 ret = -ENOMEM;
3724 goto err_supplies;
3725 }
3726
3727 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
3728 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3729 if (!hsotg->ep0_buff) {
3730 dev_err(dev, "failed to allocate ctrl reply buff\n");
3731 ret = -ENOMEM;
3732 goto err_supplies;
3733 }
3734
3735 ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3736 dev_name(hsotg->dev), hsotg);
3737 if (ret < 0) {
3738 dwc2_hsotg_phy_disable(hsotg);
3739 clk_disable_unprepare(hsotg->clk);
3740 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3741 hsotg->supplies);
3742 dev_err(dev, "cannot claim IRQ for gadget\n");
3743 goto err_supplies;
3744 }
3745
3746 /* hsotg->num_of_eps holds number of EPs other than ep0 */
3747
3748 if (hsotg->num_of_eps == 0) {
3749 dev_err(dev, "wrong number of EPs (zero)\n");
3750 ret = -EINVAL;
3751 goto err_supplies;
3752 }
3753
3754 /* setup endpoint information */
3755
3756 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3757 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3758
3759 /* allocate EP0 request */
3760
3761 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3762 GFP_KERNEL);
3763 if (!hsotg->ctrl_req) {
3764 dev_err(dev, "failed to allocate ctrl req\n");
3765 ret = -ENOMEM;
3766 goto err_supplies;
3767 }
3768
3769 /* initialise the endpoints now the core has been initialised */
3770 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
3771 if (hsotg->eps_in[epnum])
3772 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3773 epnum, 1);
3774 if (hsotg->eps_out[epnum])
3775 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3776 epnum, 0);
3777 }
3778
3779 /* disable power and clock */
3780 dwc2_hsotg_phy_disable(hsotg);
3781
3782 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3783 hsotg->supplies);
3784 if (ret) {
3785 dev_err(dev, "failed to disable supplies: %d\n", ret);
3786 goto err_supplies;
3787 }
3788
3789 ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3790 if (ret)
3791 goto err_supplies;
3792
3793 dwc2_hsotg_dump(hsotg);
3794
3795 return 0;
3796
3797 err_supplies:
3798 dwc2_hsotg_phy_disable(hsotg);
3799 err_clk:
3800 clk_disable_unprepare(hsotg->clk);
3801
3802 return ret;
3803 }
3804
3805 /**
3806 * dwc2_hsotg_remove - remove function for hsotg driver
3807 * @pdev: The platform information for the driver
3808 */
3809 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3810 {
3811 usb_del_gadget_udc(&hsotg->gadget);
3812 clk_disable_unprepare(hsotg->clk);
3813
3814 return 0;
3815 }
3816
3817 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3818 {
3819 unsigned long flags;
3820 int ret = 0;
3821
3822 if (hsotg->lx_state != DWC2_L0)
3823 return ret;
3824
3825 if (hsotg->driver) {
3826 int ep;
3827
3828 dev_info(hsotg->dev, "suspending usb gadget %s\n",
3829 hsotg->driver->driver.name);
3830
3831 spin_lock_irqsave(&hsotg->lock, flags);
3832 if (hsotg->enabled)
3833 dwc2_hsotg_core_disconnect(hsotg);
3834 dwc2_hsotg_disconnect(hsotg);
3835 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3836 spin_unlock_irqrestore(&hsotg->lock, flags);
3837
3838 dwc2_hsotg_phy_disable(hsotg);
3839
3840 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3841 if (hsotg->eps_in[ep])
3842 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3843 if (hsotg->eps_out[ep])
3844 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3845 }
3846
3847 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3848 hsotg->supplies);
3849 clk_disable(hsotg->clk);
3850 }
3851
3852 return ret;
3853 }
3854
3855 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
3856 {
3857 unsigned long flags;
3858 int ret = 0;
3859
3860 if (hsotg->lx_state == DWC2_L2)
3861 return ret;
3862
3863 if (hsotg->driver) {
3864 dev_info(hsotg->dev, "resuming usb gadget %s\n",
3865 hsotg->driver->driver.name);
3866
3867 clk_enable(hsotg->clk);
3868 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3869 hsotg->supplies);
3870
3871 dwc2_hsotg_phy_enable(hsotg);
3872
3873 spin_lock_irqsave(&hsotg->lock, flags);
3874 dwc2_hsotg_core_init_disconnected(hsotg, false);
3875 if (hsotg->enabled)
3876 dwc2_hsotg_core_connect(hsotg);
3877 spin_unlock_irqrestore(&hsotg->lock, flags);
3878 }
3879
3880 return ret;
3881 }
This page took 0.10643 seconds and 4 git commands to generate.