Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal
[deliverable/linux.git] / drivers / usb / gadget / Kconfig
1 #
2 # USB Gadget support on a system involves
3 # (a) a peripheral controller, and
4 # (b) the gadget driver using it.
5 #
6 # NOTE: Gadget support ** DOES NOT ** depend on host-side CONFIG_USB !!
7 #
8 # - Host systems (like PCs) need CONFIG_USB (with "A" jacks).
9 # - Peripherals (like PDAs) need CONFIG_USB_GADGET (with "B" jacks).
10 # - Some systems have both kinds of controllers.
11 #
12 # With help from a special transceiver and a "Mini-AB" jack, systems with
13 # both kinds of controller can also support "USB On-the-Go" (CONFIG_USB_OTG).
14 #
15
16 menuconfig USB_GADGET
17 tristate "USB Gadget Support"
18 select NLS
19 help
20 USB is a master/slave protocol, organized with one master
21 host (such as a PC) controlling up to 127 peripheral devices.
22 The USB hardware is asymmetric, which makes it easier to set up:
23 you can't connect a "to-the-host" connector to a peripheral.
24
25 Linux can run in the host, or in the peripheral. In both cases
26 you need a low level bus controller driver, and some software
27 talking to it. Peripheral controllers are often discrete silicon,
28 or are integrated with the CPU in a microcontroller. The more
29 familiar host side controllers have names like "EHCI", "OHCI",
30 or "UHCI", and are usually integrated into southbridges on PC
31 motherboards.
32
33 Enable this configuration option if you want to run Linux inside
34 a USB peripheral device. Configure one hardware driver for your
35 peripheral/device side bus controller, and a "gadget driver" for
36 your peripheral protocol. (If you use modular gadget drivers,
37 you may configure more than one.)
38
39 If in doubt, say "N" and don't enable these drivers; most people
40 don't have this kind of hardware (except maybe inside Linux PDAs).
41
42 For more information, see <http://www.linux-usb.org/gadget> and
43 the kernel DocBook documentation for this API.
44
45 if USB_GADGET
46
47 config USB_GADGET_DEBUG
48 boolean "Debugging messages (DEVELOPMENT)"
49 depends on DEBUG_KERNEL
50 help
51 Many controller and gadget drivers will print some debugging
52 messages if you use this option to ask for those messages.
53
54 Avoid enabling these messages, even if you're actively
55 debugging such a driver. Many drivers will emit so many
56 messages that the driver timings are affected, which will
57 either create new failure modes or remove the one you're
58 trying to track down. Never enable these messages for a
59 production build.
60
61 config USB_GADGET_DEBUG_FILES
62 boolean "Debugging information files (DEVELOPMENT)"
63 depends on PROC_FS
64 help
65 Some of the drivers in the "gadget" framework can expose
66 debugging information in files such as /proc/driver/udc
67 (for a peripheral controller). The information in these
68 files may help when you're troubleshooting or bringing up a
69 driver on a new board. Enable these files by choosing "Y"
70 here. If in doubt, or to conserve kernel memory, say "N".
71
72 config USB_GADGET_DEBUG_FS
73 boolean "Debugging information files in debugfs (DEVELOPMENT)"
74 depends on DEBUG_FS
75 help
76 Some of the drivers in the "gadget" framework can expose
77 debugging information in files under /sys/kernel/debug/.
78 The information in these files may help when you're
79 troubleshooting or bringing up a driver on a new board.
80 Enable these files by choosing "Y" here. If in doubt, or
81 to conserve kernel memory, say "N".
82
83 config USB_GADGET_VBUS_DRAW
84 int "Maximum VBUS Power usage (2-500 mA)"
85 range 2 500
86 default 2
87 help
88 Some devices need to draw power from USB when they are
89 configured, perhaps to operate circuitry or to recharge
90 batteries. This is in addition to any local power supply,
91 such as an AC adapter or batteries.
92
93 Enter the maximum power your device draws through USB, in
94 milliAmperes. The permitted range of values is 2 - 500 mA;
95 0 mA would be legal, but can make some hosts misbehave.
96
97 This value will be used except for system-specific gadget
98 drivers that have more specific information.
99
100 config USB_GADGET_STORAGE_NUM_BUFFERS
101 int "Number of storage pipeline buffers"
102 range 2 4
103 default 2
104 help
105 Usually 2 buffers are enough to establish a good buffering
106 pipeline. The number may be increased in order to compensate
107 for a bursty VFS behaviour. For instance there may be CPU wake up
108 latencies that makes the VFS to appear bursty in a system with
109 an CPU on-demand governor. Especially if DMA is doing IO to
110 offload the CPU. In this case the CPU will go into power
111 save often and spin up occasionally to move data within VFS.
112 If selecting USB_GADGET_DEBUG_FILES this value may be set by
113 a module parameter as well.
114 If unsure, say 2.
115
116 #
117 # USB Peripheral Controller Support
118 #
119 # The order here is alphabetical, except that integrated controllers go
120 # before discrete ones so they will be the initial/default value:
121 # - integrated/SOC controllers first
122 # - licensed IP used in both SOC and discrete versions
123 # - discrete ones (including all PCI-only controllers)
124 # - debug/dummy gadget+hcd is last.
125 #
126 menu "USB Peripheral Controller"
127
128 #
129 # Integrated controllers
130 #
131
132 config USB_AT91
133 tristate "Atmel AT91 USB Device Port"
134 depends on ARCH_AT91
135 help
136 Many Atmel AT91 processors (such as the AT91RM2000) have a
137 full speed USB Device Port with support for five configurable
138 endpoints (plus endpoint zero).
139
140 Say "y" to link the driver statically, or "m" to build a
141 dynamically linked module called "at91_udc" and force all
142 gadget drivers to also be dynamically linked.
143
144 config USB_LPC32XX
145 tristate "LPC32XX USB Peripheral Controller"
146 depends on ARCH_LPC32XX
147 select USB_ISP1301
148 help
149 This option selects the USB device controller in the LPC32xx SoC.
150
151 Say "y" to link the driver statically, or "m" to build a
152 dynamically linked module called "lpc32xx_udc" and force all
153 gadget drivers to also be dynamically linked.
154
155 config USB_ATMEL_USBA
156 tristate "Atmel USBA"
157 depends on AVR32 || ARCH_AT91SAM9RL || ARCH_AT91SAM9G45
158 help
159 USBA is the integrated high-speed USB Device controller on
160 the AT32AP700x, some AT91SAM9 and AT91CAP9 processors from Atmel.
161
162 config USB_BCM63XX_UDC
163 tristate "Broadcom BCM63xx Peripheral Controller"
164 depends on BCM63XX
165 help
166 Many Broadcom BCM63xx chipsets (such as the BCM6328) have a
167 high speed USB Device Port with support for four fixed endpoints
168 (plus endpoint zero).
169
170 Say "y" to link the driver statically, or "m" to build a
171 dynamically linked module called "bcm63xx_udc".
172
173 config USB_FSL_USB2
174 tristate "Freescale Highspeed USB DR Peripheral Controller"
175 depends on FSL_SOC || ARCH_MXC
176 select USB_FSL_MPH_DR_OF if OF
177 help
178 Some of Freescale PowerPC and i.MX processors have a High Speed
179 Dual-Role(DR) USB controller, which supports device mode.
180
181 The number of programmable endpoints is different through
182 SOC revisions.
183
184 Say "y" to link the driver statically, or "m" to build a
185 dynamically linked module called "fsl_usb2_udc" and force
186 all gadget drivers to also be dynamically linked.
187
188 config USB_FUSB300
189 tristate "Faraday FUSB300 USB Peripheral Controller"
190 depends on !PHYS_ADDR_T_64BIT
191 help
192 Faraday usb device controller FUSB300 driver
193
194 config USB_OMAP
195 tristate "OMAP USB Device Controller"
196 depends on ARCH_OMAP1
197 select ISP1301_OMAP if MACH_OMAP_H2 || MACH_OMAP_H3 || MACH_OMAP_H4_OTG
198 select USB_OTG_UTILS if ARCH_OMAP
199 help
200 Many Texas Instruments OMAP processors have flexible full
201 speed USB device controllers, with support for up to 30
202 endpoints (plus endpoint zero). This driver supports the
203 controller in the OMAP 1611, and should work with controllers
204 in other OMAP processors too, given minor tweaks.
205
206 Say "y" to link the driver statically, or "m" to build a
207 dynamically linked module called "omap_udc" and force all
208 gadget drivers to also be dynamically linked.
209
210 config USB_PXA25X
211 tristate "PXA 25x or IXP 4xx"
212 depends on (ARCH_PXA && PXA25x) || ARCH_IXP4XX
213 select USB_OTG_UTILS
214 help
215 Intel's PXA 25x series XScale ARM-5TE processors include
216 an integrated full speed USB 1.1 device controller. The
217 controller in the IXP 4xx series is register-compatible.
218
219 It has fifteen fixed-function endpoints, as well as endpoint
220 zero (for control transfers).
221
222 Say "y" to link the driver statically, or "m" to build a
223 dynamically linked module called "pxa25x_udc" and force all
224 gadget drivers to also be dynamically linked.
225
226 # if there's only one gadget driver, using only two bulk endpoints,
227 # don't waste memory for the other endpoints
228 config USB_PXA25X_SMALL
229 depends on USB_PXA25X
230 bool
231 default n if USB_ETH_RNDIS
232 default y if USB_ZERO
233 default y if USB_ETH
234 default y if USB_G_SERIAL
235
236 config USB_R8A66597
237 tristate "Renesas R8A66597 USB Peripheral Controller"
238 help
239 R8A66597 is a discrete USB host and peripheral controller chip that
240 supports both full and high speed USB 2.0 data transfers.
241 It has nine configurable endpoints, and endpoint zero.
242
243 Say "y" to link the driver statically, or "m" to build a
244 dynamically linked module called "r8a66597_udc" and force all
245 gadget drivers to also be dynamically linked.
246
247 config USB_RENESAS_USBHS_UDC
248 tristate 'Renesas USBHS controller'
249 depends on USB_RENESAS_USBHS
250 help
251 Renesas USBHS is a discrete USB host and peripheral controller chip
252 that supports both full and high speed USB 2.0 data transfers.
253 It has nine or more configurable endpoints, and endpoint zero.
254
255 Say "y" to link the driver statically, or "m" to build a
256 dynamically linked module called "renesas_usbhs" and force all
257 gadget drivers to also be dynamically linked.
258
259 config USB_PXA27X
260 tristate "PXA 27x"
261 depends on ARCH_PXA && (PXA27x || PXA3xx)
262 select USB_OTG_UTILS
263 help
264 Intel's PXA 27x series XScale ARM v5TE processors include
265 an integrated full speed USB 1.1 device controller.
266
267 It has up to 23 endpoints, as well as endpoint zero (for
268 control transfers).
269
270 Say "y" to link the driver statically, or "m" to build a
271 dynamically linked module called "pxa27x_udc" and force all
272 gadget drivers to also be dynamically linked.
273
274 config USB_S3C_HSOTG
275 tristate "S3C HS/OtG USB Device controller"
276 depends on S3C_DEV_USB_HSOTG
277 help
278 The Samsung S3C64XX USB2.0 high-speed gadget controller
279 integrated into the S3C64XX series SoC.
280
281 config USB_IMX
282 tristate "Freescale i.MX1 USB Peripheral Controller"
283 depends on ARCH_MXC
284 depends on BROKEN
285 help
286 Freescale's i.MX1 includes an integrated full speed
287 USB 1.1 device controller.
288
289 It has Six fixed-function endpoints, as well as endpoint
290 zero (for control transfers).
291
292 Say "y" to link the driver statically, or "m" to build a
293 dynamically linked module called "imx_udc" and force all
294 gadget drivers to also be dynamically linked.
295
296 config USB_S3C2410
297 tristate "S3C2410 USB Device Controller"
298 depends on ARCH_S3C24XX
299 help
300 Samsung's S3C2410 is an ARM-4 processor with an integrated
301 full speed USB 1.1 device controller. It has 4 configurable
302 endpoints, as well as endpoint zero (for control transfers).
303
304 This driver has been tested on the S3C2410, S3C2412, and
305 S3C2440 processors.
306
307 config USB_S3C2410_DEBUG
308 boolean "S3C2410 udc debug messages"
309 depends on USB_S3C2410
310
311 config USB_S3C_HSUDC
312 tristate "S3C2416, S3C2443 and S3C2450 USB Device Controller"
313 depends on ARCH_S3C24XX
314 help
315 Samsung's S3C2416, S3C2443 and S3C2450 is an ARM9 based SoC
316 integrated with dual speed USB 2.0 device controller. It has
317 8 endpoints, as well as endpoint zero.
318
319 This driver has been tested on S3C2416 and S3C2450 processors.
320
321 config USB_MV_UDC
322 tristate "Marvell USB2.0 Device Controller"
323 depends on GENERIC_HARDIRQS
324 help
325 Marvell Socs (including PXA and MMP series) include a high speed
326 USB2.0 OTG controller, which can be configured as high speed or
327 full speed USB peripheral.
328
329 config USB_MV_U3D
330 tristate "MARVELL PXA2128 USB 3.0 controller"
331 depends on CPU_MMP3
332 select USB_GADGET_DUALSPEED
333 select USB_GADGET_SUPERSPEED
334 help
335 MARVELL PXA2128 Processor series include a super speed USB3.0 device
336 controller, which support super speed USB peripheral.
337
338 #
339 # Controllers available in both integrated and discrete versions
340 #
341
342 # musb builds in ../musb along with host support
343 config USB_GADGET_MUSB_HDRC
344 tristate "Inventra HDRC USB Peripheral (TI, ADI, ...)"
345 depends on USB_MUSB_HDRC
346 help
347 This OTG-capable silicon IP is used in dual designs including
348 the TI DaVinci, OMAP 243x, OMAP 343x, TUSB 6010, and ADI Blackfin
349
350 config USB_M66592
351 tristate "Renesas M66592 USB Peripheral Controller"
352 help
353 M66592 is a discrete USB peripheral controller chip that
354 supports both full and high speed USB 2.0 data transfers.
355 It has seven configurable endpoints, and endpoint zero.
356
357 Say "y" to link the driver statically, or "m" to build a
358 dynamically linked module called "m66592_udc" and force all
359 gadget drivers to also be dynamically linked.
360
361 #
362 # Controllers available only in discrete form (and all PCI controllers)
363 #
364
365 config USB_AMD5536UDC
366 tristate "AMD5536 UDC"
367 depends on PCI
368 help
369 The AMD5536 UDC is part of the AMD Geode CS5536, an x86 southbridge.
370 It is a USB Highspeed DMA capable USB device controller. Beside ep0
371 it provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
372 The UDC port supports OTG operation, and may be used as a host port
373 if it's not being used to implement peripheral or OTG roles.
374
375 Say "y" to link the driver statically, or "m" to build a
376 dynamically linked module called "amd5536udc" and force all
377 gadget drivers to also be dynamically linked.
378
379 config USB_FSL_QE
380 tristate "Freescale QE/CPM USB Device Controller"
381 depends on FSL_SOC && (QUICC_ENGINE || CPM)
382 help
383 Some of Freescale PowerPC processors have a Full Speed
384 QE/CPM2 USB controller, which support device mode with 4
385 programmable endpoints. This driver supports the
386 controller in the MPC8360 and MPC8272, and should work with
387 controllers having QE or CPM2, given minor tweaks.
388
389 Set CONFIG_USB_GADGET to "m" to build this driver as a
390 dynamically linked module called "fsl_qe_udc".
391
392 config USB_NET2272
393 tristate "PLX NET2272"
394 help
395 PLX NET2272 is a USB peripheral controller which supports
396 both full and high speed USB 2.0 data transfers.
397
398 It has three configurable endpoints, as well as endpoint zero
399 (for control transfer).
400 Say "y" to link the driver statically, or "m" to build a
401 dynamically linked module called "net2272" and force all
402 gadget drivers to also be dynamically linked.
403
404 config USB_NET2272_DMA
405 boolean "Support external DMA controller"
406 depends on USB_NET2272
407 help
408 The NET2272 part can optionally support an external DMA
409 controller, but your board has to have support in the
410 driver itself.
411
412 If unsure, say "N" here. The driver works fine in PIO mode.
413
414 config USB_NET2280
415 tristate "NetChip 228x"
416 depends on PCI
417 help
418 NetChip 2280 / 2282 is a PCI based USB peripheral controller which
419 supports both full and high speed USB 2.0 data transfers.
420
421 It has six configurable endpoints, as well as endpoint zero
422 (for control transfers) and several endpoints with dedicated
423 functions.
424
425 Say "y" to link the driver statically, or "m" to build a
426 dynamically linked module called "net2280" and force all
427 gadget drivers to also be dynamically linked.
428
429 config USB_GOKU
430 tristate "Toshiba TC86C001 'Goku-S'"
431 depends on PCI
432 help
433 The Toshiba TC86C001 is a PCI device which includes controllers
434 for full speed USB devices, IDE, I2C, SIO, plus a USB host (OHCI).
435
436 The device controller has three configurable (bulk or interrupt)
437 endpoints, plus endpoint zero (for control transfers).
438
439 Say "y" to link the driver statically, or "m" to build a
440 dynamically linked module called "goku_udc" and to force all
441 gadget drivers to also be dynamically linked.
442
443 config USB_EG20T
444 tristate "Intel EG20T PCH/LAPIS Semiconductor IOH(ML7213/ML7831) UDC"
445 depends on PCI && GENERIC_HARDIRQS
446 help
447 This is a USB device driver for EG20T PCH.
448 EG20T PCH is the platform controller hub that is used in Intel's
449 general embedded platform. EG20T PCH has USB device interface.
450 Using this interface, it is able to access system devices connected
451 to USB device.
452 This driver enables USB device function.
453 USB device is a USB peripheral controller which
454 supports both full and high speed USB 2.0 data transfers.
455 This driver supports both control transfer and bulk transfer modes.
456 This driver dose not support interrupt transfer or isochronous
457 transfer modes.
458
459 This driver also can be used for LAPIS Semiconductor's ML7213 which is
460 for IVI(In-Vehicle Infotainment) use.
461 ML7831 is for general purpose use.
462 ML7213/ML7831 is companion chip for Intel Atom E6xx series.
463 ML7213/ML7831 is completely compatible for Intel EG20T PCH.
464
465 #
466 # LAST -- dummy/emulated controller
467 #
468
469 config USB_DUMMY_HCD
470 tristate "Dummy HCD (DEVELOPMENT)"
471 depends on USB=y || (USB=m && USB_GADGET=m)
472 help
473 This host controller driver emulates USB, looping all data transfer
474 requests back to a USB "gadget driver" in the same host. The host
475 side is the master; the gadget side is the slave. Gadget drivers
476 can be high, full, or low speed; and they have access to endpoints
477 like those from NET2280, PXA2xx, or SA1100 hardware.
478
479 This may help in some stages of creating a driver to embed in a
480 Linux device, since it lets you debug several parts of the gadget
481 driver without its hardware or drivers being involved.
482
483 Since such a gadget side driver needs to interoperate with a host
484 side Linux-USB device driver, this may help to debug both sides
485 of a USB protocol stack.
486
487 Say "y" to link the driver statically, or "m" to build a
488 dynamically linked module called "dummy_hcd" and force all
489 gadget drivers to also be dynamically linked.
490
491 # NOTE: Please keep dummy_hcd LAST so that "real hardware" appears
492 # first and will be selected by default.
493
494 endmenu
495
496 #
497 # USB Gadget Drivers
498 #
499
500 # composite based drivers
501 config USB_LIBCOMPOSITE
502 tristate
503 depends on USB_GADGET
504
505 config USB_F_ACM
506 tristate
507
508 config USB_F_SS_LB
509 tristate
510
511 config USB_U_SERIAL
512 tristate
513
514 choice
515 tristate "USB Gadget Drivers"
516 default USB_ETH
517 help
518 A Linux "Gadget Driver" talks to the USB Peripheral Controller
519 driver through the abstract "gadget" API. Some other operating
520 systems call these "client" drivers, of which "class drivers"
521 are a subset (implementing a USB device class specification).
522 A gadget driver implements one or more USB functions using
523 the peripheral hardware.
524
525 Gadget drivers are hardware-neutral, or "platform independent",
526 except that they sometimes must understand quirks or limitations
527 of the particular controllers they work with. For example, when
528 a controller doesn't support alternate configurations or provide
529 enough of the right types of endpoints, the gadget driver might
530 not be able work with that controller, or might need to implement
531 a less common variant of a device class protocol.
532
533 # this first set of drivers all depend on bulk-capable hardware.
534
535 config USB_ZERO
536 tristate "Gadget Zero (DEVELOPMENT)"
537 select USB_LIBCOMPOSITE
538 select USB_F_SS_LB
539 help
540 Gadget Zero is a two-configuration device. It either sinks and
541 sources bulk data; or it loops back a configurable number of
542 transfers. It also implements control requests, for "chapter 9"
543 conformance. The driver needs only two bulk-capable endpoints, so
544 it can work on top of most device-side usb controllers. It's
545 useful for testing, and is also a working example showing how
546 USB "gadget drivers" can be written.
547
548 Make this be the first driver you try using on top of any new
549 USB peripheral controller driver. Then you can use host-side
550 test software, like the "usbtest" driver, to put your hardware
551 and its driver through a basic set of functional tests.
552
553 Gadget Zero also works with the host-side "usb-skeleton" driver,
554 and with many kinds of host-side test software. You may need
555 to tweak product and vendor IDs before host software knows about
556 this device, and arrange to select an appropriate configuration.
557
558 Say "y" to link the driver statically, or "m" to build a
559 dynamically linked module called "g_zero".
560
561 config USB_ZERO_HNPTEST
562 boolean "HNP Test Device"
563 depends on USB_ZERO && USB_OTG
564 help
565 You can configure this device to enumerate using the device
566 identifiers of the USB-OTG test device. That means that when
567 this gadget connects to another OTG device, with this one using
568 the "B-Peripheral" role, that device will use HNP to let this
569 one serve as the USB host instead (in the "B-Host" role).
570
571 config USB_AUDIO
572 tristate "Audio Gadget"
573 depends on SND
574 select USB_LIBCOMPOSITE
575 select SND_PCM
576 help
577 This Gadget Audio driver is compatible with USB Audio Class
578 specification 2.0. It implements 1 AudioControl interface,
579 1 AudioStreaming Interface each for USB-OUT and USB-IN.
580 Number of channels, sample rate and sample size can be
581 specified as module parameters.
582 This driver doesn't expect any real Audio codec to be present
583 on the device - the audio streams are simply sinked to and
584 sourced from a virtual ALSA sound card created. The user-space
585 application may choose to do whatever it wants with the data
586 received from the USB Host and choose to provide whatever it
587 wants as audio data to the USB Host.
588
589 Say "y" to link the driver statically, or "m" to build a
590 dynamically linked module called "g_audio".
591
592 config GADGET_UAC1
593 bool "UAC 1.0 (Legacy)"
594 depends on USB_AUDIO
595 help
596 If you instead want older UAC Spec-1.0 driver that also has audio
597 paths hardwired to the Audio codec chip on-board and doesn't work
598 without one.
599
600 config USB_ETH
601 tristate "Ethernet Gadget (with CDC Ethernet support)"
602 depends on NET
603 select USB_LIBCOMPOSITE
604 select CRC32
605 help
606 This driver implements Ethernet style communication, in one of
607 several ways:
608
609 - The "Communication Device Class" (CDC) Ethernet Control Model.
610 That protocol is often avoided with pure Ethernet adapters, in
611 favor of simpler vendor-specific hardware, but is widely
612 supported by firmware for smart network devices.
613
614 - On hardware can't implement that protocol, a simple CDC subset
615 is used, placing fewer demands on USB.
616
617 - CDC Ethernet Emulation Model (EEM) is a newer standard that has
618 a simpler interface that can be used by more USB hardware.
619
620 RNDIS support is an additional option, more demanding than than
621 subset.
622
623 Within the USB device, this gadget driver exposes a network device
624 "usbX", where X depends on what other networking devices you have.
625 Treat it like a two-node Ethernet link: host, and gadget.
626
627 The Linux-USB host-side "usbnet" driver interoperates with this
628 driver, so that deep I/O queues can be supported. On 2.4 kernels,
629 use "CDCEther" instead, if you're using the CDC option. That CDC
630 mode should also interoperate with standard CDC Ethernet class
631 drivers on other host operating systems.
632
633 Say "y" to link the driver statically, or "m" to build a
634 dynamically linked module called "g_ether".
635
636 config USB_ETH_RNDIS
637 bool "RNDIS support"
638 depends on USB_ETH
639 select USB_LIBCOMPOSITE
640 default y
641 help
642 Microsoft Windows XP bundles the "Remote NDIS" (RNDIS) protocol,
643 and Microsoft provides redistributable binary RNDIS drivers for
644 older versions of Windows.
645
646 If you say "y" here, the Ethernet gadget driver will try to provide
647 a second device configuration, supporting RNDIS to talk to such
648 Microsoft USB hosts.
649
650 To make MS-Windows work with this, use Documentation/usb/linux.inf
651 as the "driver info file". For versions of MS-Windows older than
652 XP, you'll need to download drivers from Microsoft's website; a URL
653 is given in comments found in that info file.
654
655 config USB_ETH_EEM
656 bool "Ethernet Emulation Model (EEM) support"
657 depends on USB_ETH
658 select USB_LIBCOMPOSITE
659 default n
660 help
661 CDC EEM is a newer USB standard that is somewhat simpler than CDC ECM
662 and therefore can be supported by more hardware. Technically ECM and
663 EEM are designed for different applications. The ECM model extends
664 the network interface to the target (e.g. a USB cable modem), and the
665 EEM model is for mobile devices to communicate with hosts using
666 ethernet over USB. For Linux gadgets, however, the interface with
667 the host is the same (a usbX device), so the differences are minimal.
668
669 If you say "y" here, the Ethernet gadget driver will use the EEM
670 protocol rather than ECM. If unsure, say "n".
671
672 config USB_G_NCM
673 tristate "Network Control Model (NCM) support"
674 depends on NET
675 select USB_LIBCOMPOSITE
676 select CRC32
677 help
678 This driver implements USB CDC NCM subclass standard. NCM is
679 an advanced protocol for Ethernet encapsulation, allows grouping
680 of several ethernet frames into one USB transfer and different
681 alignment possibilities.
682
683 Say "y" to link the driver statically, or "m" to build a
684 dynamically linked module called "g_ncm".
685
686 config USB_GADGETFS
687 tristate "Gadget Filesystem"
688 help
689 This driver provides a filesystem based API that lets user mode
690 programs implement a single-configuration USB device, including
691 endpoint I/O and control requests that don't relate to enumeration.
692 All endpoints, transfer speeds, and transfer types supported by
693 the hardware are available, through read() and write() calls.
694
695 Say "y" to link the driver statically, or "m" to build a
696 dynamically linked module called "gadgetfs".
697
698 config USB_FUNCTIONFS
699 tristate "Function Filesystem"
700 select USB_LIBCOMPOSITE
701 select USB_FUNCTIONFS_GENERIC if !(USB_FUNCTIONFS_ETH || USB_FUNCTIONFS_RNDIS)
702 help
703 The Function Filesystem (FunctionFS) lets one create USB
704 composite functions in user space in the same way GadgetFS
705 lets one create USB gadgets in user space. This allows creation
706 of composite gadgets such that some of the functions are
707 implemented in kernel space (for instance Ethernet, serial or
708 mass storage) and other are implemented in user space.
709
710 If you say "y" or "m" here you will be able what kind of
711 configurations the gadget will provide.
712
713 Say "y" to link the driver statically, or "m" to build
714 a dynamically linked module called "g_ffs".
715
716 config USB_FUNCTIONFS_ETH
717 bool "Include configuration with CDC ECM (Ethernet)"
718 depends on USB_FUNCTIONFS && NET
719 help
720 Include a configuration with CDC ECM function (Ethernet) and the
721 Function Filesystem.
722
723 config USB_FUNCTIONFS_RNDIS
724 bool "Include configuration with RNDIS (Ethernet)"
725 depends on USB_FUNCTIONFS && NET
726 help
727 Include a configuration with RNDIS function (Ethernet) and the Filesystem.
728
729 config USB_FUNCTIONFS_GENERIC
730 bool "Include 'pure' configuration"
731 depends on USB_FUNCTIONFS
732 help
733 Include a configuration with the Function Filesystem alone with
734 no Ethernet interface.
735
736 config USB_MASS_STORAGE
737 tristate "Mass Storage Gadget"
738 depends on BLOCK
739 select USB_LIBCOMPOSITE
740 help
741 The Mass Storage Gadget acts as a USB Mass Storage disk drive.
742 As its storage repository it can use a regular file or a block
743 device (in much the same way as the "loop" device driver),
744 specified as a module parameter or sysfs option.
745
746 This driver is a replacement for now removed File-backed
747 Storage Gadget (g_file_storage).
748
749 Say "y" to link the driver statically, or "m" to build
750 a dynamically linked module called "g_mass_storage".
751
752 config USB_GADGET_TARGET
753 tristate "USB Gadget Target Fabric Module"
754 depends on TARGET_CORE
755 select USB_LIBCOMPOSITE
756 help
757 This fabric is an USB gadget. Two USB protocols are supported that is
758 BBB or BOT (Bulk Only Transport) and UAS (USB Attached SCSI). BOT is
759 advertised on alternative interface 0 (primary) and UAS is on
760 alternative interface 1. Both protocols can work on USB2.0 and USB3.0.
761 UAS utilizes the USB 3.0 feature called streams support.
762
763 config USB_G_SERIAL
764 tristate "Serial Gadget (with CDC ACM and CDC OBEX support)"
765 depends on TTY
766 select USB_U_SERIAL
767 select USB_F_ACM
768 select USB_LIBCOMPOSITE
769 help
770 The Serial Gadget talks to the Linux-USB generic serial driver.
771 This driver supports a CDC-ACM module option, which can be used
772 to interoperate with MS-Windows hosts or with the Linux-USB
773 "cdc-acm" driver.
774
775 This driver also supports a CDC-OBEX option. You will need a
776 user space OBEX server talking to /dev/ttyGS*, since the kernel
777 itself doesn't implement the OBEX protocol.
778
779 Say "y" to link the driver statically, or "m" to build a
780 dynamically linked module called "g_serial".
781
782 For more information, see Documentation/usb/gadget_serial.txt
783 which includes instructions and a "driver info file" needed to
784 make MS-Windows work with CDC ACM.
785
786 config USB_MIDI_GADGET
787 tristate "MIDI Gadget"
788 depends on SND
789 select USB_LIBCOMPOSITE
790 select SND_RAWMIDI
791 help
792 The MIDI Gadget acts as a USB Audio device, with one MIDI
793 input and one MIDI output. These MIDI jacks appear as
794 a sound "card" in the ALSA sound system. Other MIDI
795 connections can then be made on the gadget system, using
796 ALSA's aconnect utility etc.
797
798 Say "y" to link the driver statically, or "m" to build a
799 dynamically linked module called "g_midi".
800
801 config USB_G_PRINTER
802 tristate "Printer Gadget"
803 select USB_LIBCOMPOSITE
804 help
805 The Printer Gadget channels data between the USB host and a
806 userspace program driving the print engine. The user space
807 program reads and writes the device file /dev/g_printer to
808 receive or send printer data. It can use ioctl calls to
809 the device file to get or set printer status.
810
811 Say "y" to link the driver statically, or "m" to build a
812 dynamically linked module called "g_printer".
813
814 For more information, see Documentation/usb/gadget_printer.txt
815 which includes sample code for accessing the device file.
816
817 if TTY
818
819 config USB_CDC_COMPOSITE
820 tristate "CDC Composite Device (Ethernet and ACM)"
821 depends on NET
822 select USB_LIBCOMPOSITE
823 select USB_U_SERIAL
824 select USB_F_ACM
825 help
826 This driver provides two functions in one configuration:
827 a CDC Ethernet (ECM) link, and a CDC ACM (serial port) link.
828
829 This driver requires four bulk and two interrupt endpoints,
830 plus the ability to handle altsettings. Not all peripheral
831 controllers are that capable.
832
833 Say "y" to link the driver statically, or "m" to build a
834 dynamically linked module.
835
836 config USB_G_NOKIA
837 tristate "Nokia composite gadget"
838 depends on PHONET
839 select USB_LIBCOMPOSITE
840 select USB_U_SERIAL
841 help
842 The Nokia composite gadget provides support for acm, obex
843 and phonet in only one composite gadget driver.
844
845 It's only really useful for N900 hardware. If you're building
846 a kernel for N900, say Y or M here. If unsure, say N.
847
848 config USB_G_ACM_MS
849 tristate "CDC Composite Device (ACM and mass storage)"
850 depends on BLOCK
851 select USB_LIBCOMPOSITE
852 select USB_U_SERIAL
853 select USB_F_ACM
854 help
855 This driver provides two functions in one configuration:
856 a mass storage, and a CDC ACM (serial port) link.
857
858 Say "y" to link the driver statically, or "m" to build a
859 dynamically linked module called "g_acm_ms".
860
861 config USB_G_MULTI
862 tristate "Multifunction Composite Gadget"
863 depends on BLOCK && NET
864 select USB_G_MULTI_CDC if !USB_G_MULTI_RNDIS
865 select USB_LIBCOMPOSITE
866 select USB_U_SERIAL
867 select USB_F_ACM
868 help
869 The Multifunction Composite Gadget provides Ethernet (RNDIS
870 and/or CDC Ethernet), mass storage and ACM serial link
871 interfaces.
872
873 You will be asked to choose which of the two configurations is
874 to be available in the gadget. At least one configuration must
875 be chosen to make the gadget usable. Selecting more than one
876 configuration will prevent Windows from automatically detecting
877 the gadget as a composite gadget, so an INF file will be needed to
878 use the gadget.
879
880 Say "y" to link the driver statically, or "m" to build a
881 dynamically linked module called "g_multi".
882
883 config USB_G_MULTI_RNDIS
884 bool "RNDIS + CDC Serial + Storage configuration"
885 depends on USB_G_MULTI
886 default y
887 help
888 This option enables a configuration with RNDIS, CDC Serial and
889 Mass Storage functions available in the Multifunction Composite
890 Gadget. This is the configuration dedicated for Windows since RNDIS
891 is Microsoft's protocol.
892
893 If unsure, say "y".
894
895 config USB_G_MULTI_CDC
896 bool "CDC Ethernet + CDC Serial + Storage configuration"
897 depends on USB_G_MULTI
898 default n
899 help
900 This option enables a configuration with CDC Ethernet (ECM), CDC
901 Serial and Mass Storage functions available in the Multifunction
902 Composite Gadget.
903
904 If unsure, say "y".
905
906 endif # TTY
907
908 config USB_G_HID
909 tristate "HID Gadget"
910 select USB_LIBCOMPOSITE
911 help
912 The HID gadget driver provides generic emulation of USB
913 Human Interface Devices (HID).
914
915 For more information, see Documentation/usb/gadget_hid.txt which
916 includes sample code for accessing the device files.
917
918 Say "y" to link the driver statically, or "m" to build a
919 dynamically linked module called "g_hid".
920
921 # Standalone / single function gadgets
922 config USB_G_DBGP
923 tristate "EHCI Debug Device Gadget"
924 depends on TTY
925 select USB_LIBCOMPOSITE
926 help
927 This gadget emulates an EHCI Debug device. This is useful when you want
928 to interact with an EHCI Debug Port.
929
930 Say "y" to link the driver statically, or "m" to build a
931 dynamically linked module called "g_dbgp".
932
933 if USB_G_DBGP
934 choice
935 prompt "EHCI Debug Device mode"
936 default USB_G_DBGP_SERIAL
937
938 config USB_G_DBGP_PRINTK
939 depends on USB_G_DBGP
940 bool "printk"
941 help
942 Directly printk() received data. No interaction.
943
944 config USB_G_DBGP_SERIAL
945 depends on USB_G_DBGP
946 select USB_U_SERIAL
947 bool "serial"
948 help
949 Userland can interact using /dev/ttyGSxxx.
950 endchoice
951 endif
952
953 # put drivers that need isochronous transfer support (for audio
954 # or video class gadget drivers), or specific hardware, here.
955 config USB_G_WEBCAM
956 tristate "USB Webcam Gadget"
957 depends on VIDEO_DEV
958 select USB_LIBCOMPOSITE
959 help
960 The Webcam Gadget acts as a composite USB Audio and Video Class
961 device. It provides a userspace API to process UVC control requests
962 and stream video data to the host.
963
964 Say "y" to link the driver statically, or "m" to build a
965 dynamically linked module called "g_webcam".
966
967 endchoice
968
969 endif # USB_GADGET
This page took 0.081312 seconds and 5 git commands to generate.