Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / drivers / usb / gadget / inode.c
1 /*
2 * inode.c -- user mode filesystem api for usb gadget controllers
3 *
4 * Copyright (C) 2003-2004 David Brownell
5 * Copyright (C) 2003 Agilent Technologies
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22
23 /* #define VERBOSE_DEBUG */
24
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/fs.h>
28 #include <linux/pagemap.h>
29 #include <linux/uts.h>
30 #include <linux/wait.h>
31 #include <linux/compiler.h>
32 #include <asm/uaccess.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/poll.h>
36 #include <linux/smp_lock.h>
37
38 #include <linux/device.h>
39 #include <linux/moduleparam.h>
40
41 #include <linux/usb/gadgetfs.h>
42 #include <linux/usb/gadget.h>
43
44
45 /*
46 * The gadgetfs API maps each endpoint to a file descriptor so that you
47 * can use standard synchronous read/write calls for I/O. There's some
48 * O_NONBLOCK and O_ASYNC/FASYNC style i/o support. Example usermode
49 * drivers show how this works in practice. You can also use AIO to
50 * eliminate I/O gaps between requests, to help when streaming data.
51 *
52 * Key parts that must be USB-specific are protocols defining how the
53 * read/write operations relate to the hardware state machines. There
54 * are two types of files. One type is for the device, implementing ep0.
55 * The other type is for each IN or OUT endpoint. In both cases, the
56 * user mode driver must configure the hardware before using it.
57 *
58 * - First, dev_config() is called when /dev/gadget/$CHIP is configured
59 * (by writing configuration and device descriptors). Afterwards it
60 * may serve as a source of device events, used to handle all control
61 * requests other than basic enumeration.
62 *
63 * - Then, after a SET_CONFIGURATION control request, ep_config() is
64 * called when each /dev/gadget/ep* file is configured (by writing
65 * endpoint descriptors). Afterwards these files are used to write()
66 * IN data or to read() OUT data. To halt the endpoint, a "wrong
67 * direction" request is issued (like reading an IN endpoint).
68 *
69 * Unlike "usbfs" the only ioctl()s are for things that are rare, and maybe
70 * not possible on all hardware. For example, precise fault handling with
71 * respect to data left in endpoint fifos after aborted operations; or
72 * selective clearing of endpoint halts, to implement SET_INTERFACE.
73 */
74
75 #define DRIVER_DESC "USB Gadget filesystem"
76 #define DRIVER_VERSION "24 Aug 2004"
77
78 static const char driver_desc [] = DRIVER_DESC;
79 static const char shortname [] = "gadgetfs";
80
81 MODULE_DESCRIPTION (DRIVER_DESC);
82 MODULE_AUTHOR ("David Brownell");
83 MODULE_LICENSE ("GPL");
84
85
86 /*----------------------------------------------------------------------*/
87
88 #define GADGETFS_MAGIC 0xaee71ee7
89 #define DMA_ADDR_INVALID (~(dma_addr_t)0)
90
91 /* /dev/gadget/$CHIP represents ep0 and the whole device */
92 enum ep0_state {
93 /* DISBLED is the initial state.
94 */
95 STATE_DEV_DISABLED = 0,
96
97 /* Only one open() of /dev/gadget/$CHIP; only one file tracks
98 * ep0/device i/o modes and binding to the controller. Driver
99 * must always write descriptors to initialize the device, then
100 * the device becomes UNCONNECTED until enumeration.
101 */
102 STATE_DEV_OPENED,
103
104 /* From then on, ep0 fd is in either of two basic modes:
105 * - (UN)CONNECTED: read usb_gadgetfs_event(s) from it
106 * - SETUP: read/write will transfer control data and succeed;
107 * or if "wrong direction", performs protocol stall
108 */
109 STATE_DEV_UNCONNECTED,
110 STATE_DEV_CONNECTED,
111 STATE_DEV_SETUP,
112
113 /* UNBOUND means the driver closed ep0, so the device won't be
114 * accessible again (DEV_DISABLED) until all fds are closed.
115 */
116 STATE_DEV_UNBOUND,
117 };
118
119 /* enough for the whole queue: most events invalidate others */
120 #define N_EVENT 5
121
122 struct dev_data {
123 spinlock_t lock;
124 atomic_t count;
125 enum ep0_state state; /* P: lock */
126 struct usb_gadgetfs_event event [N_EVENT];
127 unsigned ev_next;
128 struct fasync_struct *fasync;
129 u8 current_config;
130
131 /* drivers reading ep0 MUST handle control requests (SETUP)
132 * reported that way; else the host will time out.
133 */
134 unsigned usermode_setup : 1,
135 setup_in : 1,
136 setup_can_stall : 1,
137 setup_out_ready : 1,
138 setup_out_error : 1,
139 setup_abort : 1;
140 unsigned setup_wLength;
141
142 /* the rest is basically write-once */
143 struct usb_config_descriptor *config, *hs_config;
144 struct usb_device_descriptor *dev;
145 struct usb_request *req;
146 struct usb_gadget *gadget;
147 struct list_head epfiles;
148 void *buf;
149 wait_queue_head_t wait;
150 struct super_block *sb;
151 struct dentry *dentry;
152
153 /* except this scratch i/o buffer for ep0 */
154 u8 rbuf [256];
155 };
156
157 static inline void get_dev (struct dev_data *data)
158 {
159 atomic_inc (&data->count);
160 }
161
162 static void put_dev (struct dev_data *data)
163 {
164 if (likely (!atomic_dec_and_test (&data->count)))
165 return;
166 /* needs no more cleanup */
167 BUG_ON (waitqueue_active (&data->wait));
168 kfree (data);
169 }
170
171 static struct dev_data *dev_new (void)
172 {
173 struct dev_data *dev;
174
175 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
176 if (!dev)
177 return NULL;
178 dev->state = STATE_DEV_DISABLED;
179 atomic_set (&dev->count, 1);
180 spin_lock_init (&dev->lock);
181 INIT_LIST_HEAD (&dev->epfiles);
182 init_waitqueue_head (&dev->wait);
183 return dev;
184 }
185
186 /*----------------------------------------------------------------------*/
187
188 /* other /dev/gadget/$ENDPOINT files represent endpoints */
189 enum ep_state {
190 STATE_EP_DISABLED = 0,
191 STATE_EP_READY,
192 STATE_EP_ENABLED,
193 STATE_EP_UNBOUND,
194 };
195
196 struct ep_data {
197 struct mutex lock;
198 enum ep_state state;
199 atomic_t count;
200 struct dev_data *dev;
201 /* must hold dev->lock before accessing ep or req */
202 struct usb_ep *ep;
203 struct usb_request *req;
204 ssize_t status;
205 char name [16];
206 struct usb_endpoint_descriptor desc, hs_desc;
207 struct list_head epfiles;
208 wait_queue_head_t wait;
209 struct dentry *dentry;
210 struct inode *inode;
211 };
212
213 static inline void get_ep (struct ep_data *data)
214 {
215 atomic_inc (&data->count);
216 }
217
218 static void put_ep (struct ep_data *data)
219 {
220 if (likely (!atomic_dec_and_test (&data->count)))
221 return;
222 put_dev (data->dev);
223 /* needs no more cleanup */
224 BUG_ON (!list_empty (&data->epfiles));
225 BUG_ON (waitqueue_active (&data->wait));
226 kfree (data);
227 }
228
229 /*----------------------------------------------------------------------*/
230
231 /* most "how to use the hardware" policy choices are in userspace:
232 * mapping endpoint roles (which the driver needs) to the capabilities
233 * which the usb controller has. most of those capabilities are exposed
234 * implicitly, starting with the driver name and then endpoint names.
235 */
236
237 static const char *CHIP;
238
239 /*----------------------------------------------------------------------*/
240
241 /* NOTE: don't use dev_printk calls before binding to the gadget
242 * at the end of ep0 configuration, or after unbind.
243 */
244
245 /* too wordy: dev_printk(level , &(d)->gadget->dev , fmt , ## args) */
246 #define xprintk(d,level,fmt,args...) \
247 printk(level "%s: " fmt , shortname , ## args)
248
249 #ifdef DEBUG
250 #define DBG(dev,fmt,args...) \
251 xprintk(dev , KERN_DEBUG , fmt , ## args)
252 #else
253 #define DBG(dev,fmt,args...) \
254 do { } while (0)
255 #endif /* DEBUG */
256
257 #ifdef VERBOSE_DEBUG
258 #define VDEBUG DBG
259 #else
260 #define VDEBUG(dev,fmt,args...) \
261 do { } while (0)
262 #endif /* DEBUG */
263
264 #define ERROR(dev,fmt,args...) \
265 xprintk(dev , KERN_ERR , fmt , ## args)
266 #define INFO(dev,fmt,args...) \
267 xprintk(dev , KERN_INFO , fmt , ## args)
268
269
270 /*----------------------------------------------------------------------*/
271
272 /* SYNCHRONOUS ENDPOINT OPERATIONS (bulk/intr/iso)
273 *
274 * After opening, configure non-control endpoints. Then use normal
275 * stream read() and write() requests; and maybe ioctl() to get more
276 * precise FIFO status when recovering from cancellation.
277 */
278
279 static void epio_complete (struct usb_ep *ep, struct usb_request *req)
280 {
281 struct ep_data *epdata = ep->driver_data;
282
283 if (!req->context)
284 return;
285 if (req->status)
286 epdata->status = req->status;
287 else
288 epdata->status = req->actual;
289 complete ((struct completion *)req->context);
290 }
291
292 /* tasklock endpoint, returning when it's connected.
293 * still need dev->lock to use epdata->ep.
294 */
295 static int
296 get_ready_ep (unsigned f_flags, struct ep_data *epdata)
297 {
298 int val;
299
300 if (f_flags & O_NONBLOCK) {
301 if (!mutex_trylock(&epdata->lock))
302 goto nonblock;
303 if (epdata->state != STATE_EP_ENABLED) {
304 mutex_unlock(&epdata->lock);
305 nonblock:
306 val = -EAGAIN;
307 } else
308 val = 0;
309 return val;
310 }
311
312 val = mutex_lock_interruptible(&epdata->lock);
313 if (val < 0)
314 return val;
315
316 switch (epdata->state) {
317 case STATE_EP_ENABLED:
318 break;
319 // case STATE_EP_DISABLED: /* "can't happen" */
320 // case STATE_EP_READY: /* "can't happen" */
321 default: /* error! */
322 pr_debug ("%s: ep %p not available, state %d\n",
323 shortname, epdata, epdata->state);
324 // FALLTHROUGH
325 case STATE_EP_UNBOUND: /* clean disconnect */
326 val = -ENODEV;
327 mutex_unlock(&epdata->lock);
328 }
329 return val;
330 }
331
332 static ssize_t
333 ep_io (struct ep_data *epdata, void *buf, unsigned len)
334 {
335 DECLARE_COMPLETION_ONSTACK (done);
336 int value;
337
338 spin_lock_irq (&epdata->dev->lock);
339 if (likely (epdata->ep != NULL)) {
340 struct usb_request *req = epdata->req;
341
342 req->context = &done;
343 req->complete = epio_complete;
344 req->buf = buf;
345 req->length = len;
346 value = usb_ep_queue (epdata->ep, req, GFP_ATOMIC);
347 } else
348 value = -ENODEV;
349 spin_unlock_irq (&epdata->dev->lock);
350
351 if (likely (value == 0)) {
352 value = wait_event_interruptible (done.wait, done.done);
353 if (value != 0) {
354 spin_lock_irq (&epdata->dev->lock);
355 if (likely (epdata->ep != NULL)) {
356 DBG (epdata->dev, "%s i/o interrupted\n",
357 epdata->name);
358 usb_ep_dequeue (epdata->ep, epdata->req);
359 spin_unlock_irq (&epdata->dev->lock);
360
361 wait_event (done.wait, done.done);
362 if (epdata->status == -ECONNRESET)
363 epdata->status = -EINTR;
364 } else {
365 spin_unlock_irq (&epdata->dev->lock);
366
367 DBG (epdata->dev, "endpoint gone\n");
368 epdata->status = -ENODEV;
369 }
370 }
371 return epdata->status;
372 }
373 return value;
374 }
375
376
377 /* handle a synchronous OUT bulk/intr/iso transfer */
378 static ssize_t
379 ep_read (struct file *fd, char __user *buf, size_t len, loff_t *ptr)
380 {
381 struct ep_data *data = fd->private_data;
382 void *kbuf;
383 ssize_t value;
384
385 if ((value = get_ready_ep (fd->f_flags, data)) < 0)
386 return value;
387
388 /* halt any endpoint by doing a "wrong direction" i/o call */
389 if (usb_endpoint_dir_in(&data->desc)) {
390 if (usb_endpoint_xfer_isoc(&data->desc))
391 return -EINVAL;
392 DBG (data->dev, "%s halt\n", data->name);
393 spin_lock_irq (&data->dev->lock);
394 if (likely (data->ep != NULL))
395 usb_ep_set_halt (data->ep);
396 spin_unlock_irq (&data->dev->lock);
397 mutex_unlock(&data->lock);
398 return -EBADMSG;
399 }
400
401 /* FIXME readahead for O_NONBLOCK and poll(); careful with ZLPs */
402
403 value = -ENOMEM;
404 kbuf = kmalloc (len, GFP_KERNEL);
405 if (unlikely (!kbuf))
406 goto free1;
407
408 value = ep_io (data, kbuf, len);
409 VDEBUG (data->dev, "%s read %zu OUT, status %d\n",
410 data->name, len, (int) value);
411 if (value >= 0 && copy_to_user (buf, kbuf, value))
412 value = -EFAULT;
413
414 free1:
415 mutex_unlock(&data->lock);
416 kfree (kbuf);
417 return value;
418 }
419
420 /* handle a synchronous IN bulk/intr/iso transfer */
421 static ssize_t
422 ep_write (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
423 {
424 struct ep_data *data = fd->private_data;
425 void *kbuf;
426 ssize_t value;
427
428 if ((value = get_ready_ep (fd->f_flags, data)) < 0)
429 return value;
430
431 /* halt any endpoint by doing a "wrong direction" i/o call */
432 if (!usb_endpoint_dir_in(&data->desc)) {
433 if (usb_endpoint_xfer_isoc(&data->desc))
434 return -EINVAL;
435 DBG (data->dev, "%s halt\n", data->name);
436 spin_lock_irq (&data->dev->lock);
437 if (likely (data->ep != NULL))
438 usb_ep_set_halt (data->ep);
439 spin_unlock_irq (&data->dev->lock);
440 mutex_unlock(&data->lock);
441 return -EBADMSG;
442 }
443
444 /* FIXME writebehind for O_NONBLOCK and poll(), qlen = 1 */
445
446 value = -ENOMEM;
447 kbuf = kmalloc (len, GFP_KERNEL);
448 if (!kbuf)
449 goto free1;
450 if (copy_from_user (kbuf, buf, len)) {
451 value = -EFAULT;
452 goto free1;
453 }
454
455 value = ep_io (data, kbuf, len);
456 VDEBUG (data->dev, "%s write %zu IN, status %d\n",
457 data->name, len, (int) value);
458 free1:
459 mutex_unlock(&data->lock);
460 kfree (kbuf);
461 return value;
462 }
463
464 static int
465 ep_release (struct inode *inode, struct file *fd)
466 {
467 struct ep_data *data = fd->private_data;
468 int value;
469
470 value = mutex_lock_interruptible(&data->lock);
471 if (value < 0)
472 return value;
473
474 /* clean up if this can be reopened */
475 if (data->state != STATE_EP_UNBOUND) {
476 data->state = STATE_EP_DISABLED;
477 data->desc.bDescriptorType = 0;
478 data->hs_desc.bDescriptorType = 0;
479 usb_ep_disable(data->ep);
480 }
481 mutex_unlock(&data->lock);
482 put_ep (data);
483 return 0;
484 }
485
486 static long ep_ioctl(struct file *fd, unsigned code, unsigned long value)
487 {
488 struct ep_data *data = fd->private_data;
489 int status;
490
491 if ((status = get_ready_ep (fd->f_flags, data)) < 0)
492 return status;
493
494 spin_lock_irq (&data->dev->lock);
495 if (likely (data->ep != NULL)) {
496 switch (code) {
497 case GADGETFS_FIFO_STATUS:
498 status = usb_ep_fifo_status (data->ep);
499 break;
500 case GADGETFS_FIFO_FLUSH:
501 usb_ep_fifo_flush (data->ep);
502 break;
503 case GADGETFS_CLEAR_HALT:
504 status = usb_ep_clear_halt (data->ep);
505 break;
506 default:
507 status = -ENOTTY;
508 }
509 } else
510 status = -ENODEV;
511 spin_unlock_irq (&data->dev->lock);
512 mutex_unlock(&data->lock);
513 return status;
514 }
515
516 /*----------------------------------------------------------------------*/
517
518 /* ASYNCHRONOUS ENDPOINT I/O OPERATIONS (bulk/intr/iso) */
519
520 struct kiocb_priv {
521 struct usb_request *req;
522 struct ep_data *epdata;
523 void *buf;
524 const struct iovec *iv;
525 unsigned long nr_segs;
526 unsigned actual;
527 };
528
529 static int ep_aio_cancel(struct kiocb *iocb, struct io_event *e)
530 {
531 struct kiocb_priv *priv = iocb->private;
532 struct ep_data *epdata;
533 int value;
534
535 local_irq_disable();
536 epdata = priv->epdata;
537 // spin_lock(&epdata->dev->lock);
538 kiocbSetCancelled(iocb);
539 if (likely(epdata && epdata->ep && priv->req))
540 value = usb_ep_dequeue (epdata->ep, priv->req);
541 else
542 value = -EINVAL;
543 // spin_unlock(&epdata->dev->lock);
544 local_irq_enable();
545
546 aio_put_req(iocb);
547 return value;
548 }
549
550 static ssize_t ep_aio_read_retry(struct kiocb *iocb)
551 {
552 struct kiocb_priv *priv = iocb->private;
553 ssize_t len, total;
554 void *to_copy;
555 int i;
556
557 /* we "retry" to get the right mm context for this: */
558
559 /* copy stuff into user buffers */
560 total = priv->actual;
561 len = 0;
562 to_copy = priv->buf;
563 for (i=0; i < priv->nr_segs; i++) {
564 ssize_t this = min((ssize_t)(priv->iv[i].iov_len), total);
565
566 if (copy_to_user(priv->iv[i].iov_base, to_copy, this)) {
567 if (len == 0)
568 len = -EFAULT;
569 break;
570 }
571
572 total -= this;
573 len += this;
574 to_copy += this;
575 if (total == 0)
576 break;
577 }
578 kfree(priv->buf);
579 kfree(priv);
580 return len;
581 }
582
583 static void ep_aio_complete(struct usb_ep *ep, struct usb_request *req)
584 {
585 struct kiocb *iocb = req->context;
586 struct kiocb_priv *priv = iocb->private;
587 struct ep_data *epdata = priv->epdata;
588
589 /* lock against disconnect (and ideally, cancel) */
590 spin_lock(&epdata->dev->lock);
591 priv->req = NULL;
592 priv->epdata = NULL;
593
594 /* if this was a write or a read returning no data then we
595 * don't need to copy anything to userspace, so we can
596 * complete the aio request immediately.
597 */
598 if (priv->iv == NULL || unlikely(req->actual == 0)) {
599 kfree(req->buf);
600 kfree(priv);
601 iocb->private = NULL;
602 /* aio_complete() reports bytes-transferred _and_ faults */
603 aio_complete(iocb, req->actual ? req->actual : req->status,
604 req->status);
605 } else {
606 /* retry() won't report both; so we hide some faults */
607 if (unlikely(0 != req->status))
608 DBG(epdata->dev, "%s fault %d len %d\n",
609 ep->name, req->status, req->actual);
610
611 priv->buf = req->buf;
612 priv->actual = req->actual;
613 kick_iocb(iocb);
614 }
615 spin_unlock(&epdata->dev->lock);
616
617 usb_ep_free_request(ep, req);
618 put_ep(epdata);
619 }
620
621 static ssize_t
622 ep_aio_rwtail(
623 struct kiocb *iocb,
624 char *buf,
625 size_t len,
626 struct ep_data *epdata,
627 const struct iovec *iv,
628 unsigned long nr_segs
629 )
630 {
631 struct kiocb_priv *priv;
632 struct usb_request *req;
633 ssize_t value;
634
635 priv = kmalloc(sizeof *priv, GFP_KERNEL);
636 if (!priv) {
637 value = -ENOMEM;
638 fail:
639 kfree(buf);
640 return value;
641 }
642 iocb->private = priv;
643 priv->iv = iv;
644 priv->nr_segs = nr_segs;
645
646 value = get_ready_ep(iocb->ki_filp->f_flags, epdata);
647 if (unlikely(value < 0)) {
648 kfree(priv);
649 goto fail;
650 }
651
652 iocb->ki_cancel = ep_aio_cancel;
653 get_ep(epdata);
654 priv->epdata = epdata;
655 priv->actual = 0;
656
657 /* each kiocb is coupled to one usb_request, but we can't
658 * allocate or submit those if the host disconnected.
659 */
660 spin_lock_irq(&epdata->dev->lock);
661 if (likely(epdata->ep)) {
662 req = usb_ep_alloc_request(epdata->ep, GFP_ATOMIC);
663 if (likely(req)) {
664 priv->req = req;
665 req->buf = buf;
666 req->length = len;
667 req->complete = ep_aio_complete;
668 req->context = iocb;
669 value = usb_ep_queue(epdata->ep, req, GFP_ATOMIC);
670 if (unlikely(0 != value))
671 usb_ep_free_request(epdata->ep, req);
672 } else
673 value = -EAGAIN;
674 } else
675 value = -ENODEV;
676 spin_unlock_irq(&epdata->dev->lock);
677
678 mutex_unlock(&epdata->lock);
679
680 if (unlikely(value)) {
681 kfree(priv);
682 put_ep(epdata);
683 } else
684 value = (iv ? -EIOCBRETRY : -EIOCBQUEUED);
685 return value;
686 }
687
688 static ssize_t
689 ep_aio_read(struct kiocb *iocb, const struct iovec *iov,
690 unsigned long nr_segs, loff_t o)
691 {
692 struct ep_data *epdata = iocb->ki_filp->private_data;
693 char *buf;
694
695 if (unlikely(usb_endpoint_dir_in(&epdata->desc)))
696 return -EINVAL;
697
698 buf = kmalloc(iocb->ki_left, GFP_KERNEL);
699 if (unlikely(!buf))
700 return -ENOMEM;
701
702 iocb->ki_retry = ep_aio_read_retry;
703 return ep_aio_rwtail(iocb, buf, iocb->ki_left, epdata, iov, nr_segs);
704 }
705
706 static ssize_t
707 ep_aio_write(struct kiocb *iocb, const struct iovec *iov,
708 unsigned long nr_segs, loff_t o)
709 {
710 struct ep_data *epdata = iocb->ki_filp->private_data;
711 char *buf;
712 size_t len = 0;
713 int i = 0;
714
715 if (unlikely(!usb_endpoint_dir_in(&epdata->desc)))
716 return -EINVAL;
717
718 buf = kmalloc(iocb->ki_left, GFP_KERNEL);
719 if (unlikely(!buf))
720 return -ENOMEM;
721
722 for (i=0; i < nr_segs; i++) {
723 if (unlikely(copy_from_user(&buf[len], iov[i].iov_base,
724 iov[i].iov_len) != 0)) {
725 kfree(buf);
726 return -EFAULT;
727 }
728 len += iov[i].iov_len;
729 }
730 return ep_aio_rwtail(iocb, buf, len, epdata, NULL, 0);
731 }
732
733 /*----------------------------------------------------------------------*/
734
735 /* used after endpoint configuration */
736 static const struct file_operations ep_io_operations = {
737 .owner = THIS_MODULE,
738 .llseek = no_llseek,
739
740 .read = ep_read,
741 .write = ep_write,
742 .unlocked_ioctl = ep_ioctl,
743 .release = ep_release,
744
745 .aio_read = ep_aio_read,
746 .aio_write = ep_aio_write,
747 };
748
749 /* ENDPOINT INITIALIZATION
750 *
751 * fd = open ("/dev/gadget/$ENDPOINT", O_RDWR)
752 * status = write (fd, descriptors, sizeof descriptors)
753 *
754 * That write establishes the endpoint configuration, configuring
755 * the controller to process bulk, interrupt, or isochronous transfers
756 * at the right maxpacket size, and so on.
757 *
758 * The descriptors are message type 1, identified by a host order u32
759 * at the beginning of what's written. Descriptor order is: full/low
760 * speed descriptor, then optional high speed descriptor.
761 */
762 static ssize_t
763 ep_config (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
764 {
765 struct ep_data *data = fd->private_data;
766 struct usb_ep *ep;
767 u32 tag;
768 int value, length = len;
769
770 value = mutex_lock_interruptible(&data->lock);
771 if (value < 0)
772 return value;
773
774 if (data->state != STATE_EP_READY) {
775 value = -EL2HLT;
776 goto fail;
777 }
778
779 value = len;
780 if (len < USB_DT_ENDPOINT_SIZE + 4)
781 goto fail0;
782
783 /* we might need to change message format someday */
784 if (copy_from_user (&tag, buf, 4)) {
785 goto fail1;
786 }
787 if (tag != 1) {
788 DBG(data->dev, "config %s, bad tag %d\n", data->name, tag);
789 goto fail0;
790 }
791 buf += 4;
792 len -= 4;
793
794 /* NOTE: audio endpoint extensions not accepted here;
795 * just don't include the extra bytes.
796 */
797
798 /* full/low speed descriptor, then high speed */
799 if (copy_from_user (&data->desc, buf, USB_DT_ENDPOINT_SIZE)) {
800 goto fail1;
801 }
802 if (data->desc.bLength != USB_DT_ENDPOINT_SIZE
803 || data->desc.bDescriptorType != USB_DT_ENDPOINT)
804 goto fail0;
805 if (len != USB_DT_ENDPOINT_SIZE) {
806 if (len != 2 * USB_DT_ENDPOINT_SIZE)
807 goto fail0;
808 if (copy_from_user (&data->hs_desc, buf + USB_DT_ENDPOINT_SIZE,
809 USB_DT_ENDPOINT_SIZE)) {
810 goto fail1;
811 }
812 if (data->hs_desc.bLength != USB_DT_ENDPOINT_SIZE
813 || data->hs_desc.bDescriptorType
814 != USB_DT_ENDPOINT) {
815 DBG(data->dev, "config %s, bad hs length or type\n",
816 data->name);
817 goto fail0;
818 }
819 }
820
821 spin_lock_irq (&data->dev->lock);
822 if (data->dev->state == STATE_DEV_UNBOUND) {
823 value = -ENOENT;
824 goto gone;
825 } else if ((ep = data->ep) == NULL) {
826 value = -ENODEV;
827 goto gone;
828 }
829 switch (data->dev->gadget->speed) {
830 case USB_SPEED_LOW:
831 case USB_SPEED_FULL:
832 value = usb_ep_enable (ep, &data->desc);
833 if (value == 0)
834 data->state = STATE_EP_ENABLED;
835 break;
836 #ifdef CONFIG_USB_GADGET_DUALSPEED
837 case USB_SPEED_HIGH:
838 /* fails if caller didn't provide that descriptor... */
839 value = usb_ep_enable (ep, &data->hs_desc);
840 if (value == 0)
841 data->state = STATE_EP_ENABLED;
842 break;
843 #endif
844 default:
845 DBG(data->dev, "unconnected, %s init abandoned\n",
846 data->name);
847 value = -EINVAL;
848 }
849 if (value == 0) {
850 fd->f_op = &ep_io_operations;
851 value = length;
852 }
853 gone:
854 spin_unlock_irq (&data->dev->lock);
855 if (value < 0) {
856 fail:
857 data->desc.bDescriptorType = 0;
858 data->hs_desc.bDescriptorType = 0;
859 }
860 mutex_unlock(&data->lock);
861 return value;
862 fail0:
863 value = -EINVAL;
864 goto fail;
865 fail1:
866 value = -EFAULT;
867 goto fail;
868 }
869
870 static int
871 ep_open (struct inode *inode, struct file *fd)
872 {
873 struct ep_data *data = inode->i_private;
874 int value = -EBUSY;
875
876 if (mutex_lock_interruptible(&data->lock) != 0)
877 return -EINTR;
878 spin_lock_irq (&data->dev->lock);
879 if (data->dev->state == STATE_DEV_UNBOUND)
880 value = -ENOENT;
881 else if (data->state == STATE_EP_DISABLED) {
882 value = 0;
883 data->state = STATE_EP_READY;
884 get_ep (data);
885 fd->private_data = data;
886 VDEBUG (data->dev, "%s ready\n", data->name);
887 } else
888 DBG (data->dev, "%s state %d\n",
889 data->name, data->state);
890 spin_unlock_irq (&data->dev->lock);
891 mutex_unlock(&data->lock);
892 return value;
893 }
894
895 /* used before endpoint configuration */
896 static const struct file_operations ep_config_operations = {
897 .owner = THIS_MODULE,
898 .llseek = no_llseek,
899
900 .open = ep_open,
901 .write = ep_config,
902 .release = ep_release,
903 };
904
905 /*----------------------------------------------------------------------*/
906
907 /* EP0 IMPLEMENTATION can be partly in userspace.
908 *
909 * Drivers that use this facility receive various events, including
910 * control requests the kernel doesn't handle. Drivers that don't
911 * use this facility may be too simple-minded for real applications.
912 */
913
914 static inline void ep0_readable (struct dev_data *dev)
915 {
916 wake_up (&dev->wait);
917 kill_fasync (&dev->fasync, SIGIO, POLL_IN);
918 }
919
920 static void clean_req (struct usb_ep *ep, struct usb_request *req)
921 {
922 struct dev_data *dev = ep->driver_data;
923
924 if (req->buf != dev->rbuf) {
925 kfree(req->buf);
926 req->buf = dev->rbuf;
927 req->dma = DMA_ADDR_INVALID;
928 }
929 req->complete = epio_complete;
930 dev->setup_out_ready = 0;
931 }
932
933 static void ep0_complete (struct usb_ep *ep, struct usb_request *req)
934 {
935 struct dev_data *dev = ep->driver_data;
936 unsigned long flags;
937 int free = 1;
938
939 /* for control OUT, data must still get to userspace */
940 spin_lock_irqsave(&dev->lock, flags);
941 if (!dev->setup_in) {
942 dev->setup_out_error = (req->status != 0);
943 if (!dev->setup_out_error)
944 free = 0;
945 dev->setup_out_ready = 1;
946 ep0_readable (dev);
947 }
948
949 /* clean up as appropriate */
950 if (free && req->buf != &dev->rbuf)
951 clean_req (ep, req);
952 req->complete = epio_complete;
953 spin_unlock_irqrestore(&dev->lock, flags);
954 }
955
956 static int setup_req (struct usb_ep *ep, struct usb_request *req, u16 len)
957 {
958 struct dev_data *dev = ep->driver_data;
959
960 if (dev->setup_out_ready) {
961 DBG (dev, "ep0 request busy!\n");
962 return -EBUSY;
963 }
964 if (len > sizeof (dev->rbuf))
965 req->buf = kmalloc(len, GFP_ATOMIC);
966 if (req->buf == NULL) {
967 req->buf = dev->rbuf;
968 return -ENOMEM;
969 }
970 req->complete = ep0_complete;
971 req->length = len;
972 req->zero = 0;
973 return 0;
974 }
975
976 static ssize_t
977 ep0_read (struct file *fd, char __user *buf, size_t len, loff_t *ptr)
978 {
979 struct dev_data *dev = fd->private_data;
980 ssize_t retval;
981 enum ep0_state state;
982
983 spin_lock_irq (&dev->lock);
984
985 /* report fd mode change before acting on it */
986 if (dev->setup_abort) {
987 dev->setup_abort = 0;
988 retval = -EIDRM;
989 goto done;
990 }
991
992 /* control DATA stage */
993 if ((state = dev->state) == STATE_DEV_SETUP) {
994
995 if (dev->setup_in) { /* stall IN */
996 VDEBUG(dev, "ep0in stall\n");
997 (void) usb_ep_set_halt (dev->gadget->ep0);
998 retval = -EL2HLT;
999 dev->state = STATE_DEV_CONNECTED;
1000
1001 } else if (len == 0) { /* ack SET_CONFIGURATION etc */
1002 struct usb_ep *ep = dev->gadget->ep0;
1003 struct usb_request *req = dev->req;
1004
1005 if ((retval = setup_req (ep, req, 0)) == 0)
1006 retval = usb_ep_queue (ep, req, GFP_ATOMIC);
1007 dev->state = STATE_DEV_CONNECTED;
1008
1009 /* assume that was SET_CONFIGURATION */
1010 if (dev->current_config) {
1011 unsigned power;
1012
1013 if (gadget_is_dualspeed(dev->gadget)
1014 && (dev->gadget->speed
1015 == USB_SPEED_HIGH))
1016 power = dev->hs_config->bMaxPower;
1017 else
1018 power = dev->config->bMaxPower;
1019 usb_gadget_vbus_draw(dev->gadget, 2 * power);
1020 }
1021
1022 } else { /* collect OUT data */
1023 if ((fd->f_flags & O_NONBLOCK) != 0
1024 && !dev->setup_out_ready) {
1025 retval = -EAGAIN;
1026 goto done;
1027 }
1028 spin_unlock_irq (&dev->lock);
1029 retval = wait_event_interruptible (dev->wait,
1030 dev->setup_out_ready != 0);
1031
1032 /* FIXME state could change from under us */
1033 spin_lock_irq (&dev->lock);
1034 if (retval)
1035 goto done;
1036
1037 if (dev->state != STATE_DEV_SETUP) {
1038 retval = -ECANCELED;
1039 goto done;
1040 }
1041 dev->state = STATE_DEV_CONNECTED;
1042
1043 if (dev->setup_out_error)
1044 retval = -EIO;
1045 else {
1046 len = min (len, (size_t)dev->req->actual);
1047 // FIXME don't call this with the spinlock held ...
1048 if (copy_to_user (buf, dev->req->buf, len))
1049 retval = -EFAULT;
1050 clean_req (dev->gadget->ep0, dev->req);
1051 /* NOTE userspace can't yet choose to stall */
1052 }
1053 }
1054 goto done;
1055 }
1056
1057 /* else normal: return event data */
1058 if (len < sizeof dev->event [0]) {
1059 retval = -EINVAL;
1060 goto done;
1061 }
1062 len -= len % sizeof (struct usb_gadgetfs_event);
1063 dev->usermode_setup = 1;
1064
1065 scan:
1066 /* return queued events right away */
1067 if (dev->ev_next != 0) {
1068 unsigned i, n;
1069
1070 n = len / sizeof (struct usb_gadgetfs_event);
1071 if (dev->ev_next < n)
1072 n = dev->ev_next;
1073
1074 /* ep0 i/o has special semantics during STATE_DEV_SETUP */
1075 for (i = 0; i < n; i++) {
1076 if (dev->event [i].type == GADGETFS_SETUP) {
1077 dev->state = STATE_DEV_SETUP;
1078 n = i + 1;
1079 break;
1080 }
1081 }
1082 spin_unlock_irq (&dev->lock);
1083 len = n * sizeof (struct usb_gadgetfs_event);
1084 if (copy_to_user (buf, &dev->event, len))
1085 retval = -EFAULT;
1086 else
1087 retval = len;
1088 if (len > 0) {
1089 /* NOTE this doesn't guard against broken drivers;
1090 * concurrent ep0 readers may lose events.
1091 */
1092 spin_lock_irq (&dev->lock);
1093 if (dev->ev_next > n) {
1094 memmove(&dev->event[0], &dev->event[n],
1095 sizeof (struct usb_gadgetfs_event)
1096 * (dev->ev_next - n));
1097 }
1098 dev->ev_next -= n;
1099 spin_unlock_irq (&dev->lock);
1100 }
1101 return retval;
1102 }
1103 if (fd->f_flags & O_NONBLOCK) {
1104 retval = -EAGAIN;
1105 goto done;
1106 }
1107
1108 switch (state) {
1109 default:
1110 DBG (dev, "fail %s, state %d\n", __func__, state);
1111 retval = -ESRCH;
1112 break;
1113 case STATE_DEV_UNCONNECTED:
1114 case STATE_DEV_CONNECTED:
1115 spin_unlock_irq (&dev->lock);
1116 DBG (dev, "%s wait\n", __func__);
1117
1118 /* wait for events */
1119 retval = wait_event_interruptible (dev->wait,
1120 dev->ev_next != 0);
1121 if (retval < 0)
1122 return retval;
1123 spin_lock_irq (&dev->lock);
1124 goto scan;
1125 }
1126
1127 done:
1128 spin_unlock_irq (&dev->lock);
1129 return retval;
1130 }
1131
1132 static struct usb_gadgetfs_event *
1133 next_event (struct dev_data *dev, enum usb_gadgetfs_event_type type)
1134 {
1135 struct usb_gadgetfs_event *event;
1136 unsigned i;
1137
1138 switch (type) {
1139 /* these events purge the queue */
1140 case GADGETFS_DISCONNECT:
1141 if (dev->state == STATE_DEV_SETUP)
1142 dev->setup_abort = 1;
1143 // FALL THROUGH
1144 case GADGETFS_CONNECT:
1145 dev->ev_next = 0;
1146 break;
1147 case GADGETFS_SETUP: /* previous request timed out */
1148 case GADGETFS_SUSPEND: /* same effect */
1149 /* these events can't be repeated */
1150 for (i = 0; i != dev->ev_next; i++) {
1151 if (dev->event [i].type != type)
1152 continue;
1153 DBG(dev, "discard old event[%d] %d\n", i, type);
1154 dev->ev_next--;
1155 if (i == dev->ev_next)
1156 break;
1157 /* indices start at zero, for simplicity */
1158 memmove (&dev->event [i], &dev->event [i + 1],
1159 sizeof (struct usb_gadgetfs_event)
1160 * (dev->ev_next - i));
1161 }
1162 break;
1163 default:
1164 BUG ();
1165 }
1166 VDEBUG(dev, "event[%d] = %d\n", dev->ev_next, type);
1167 event = &dev->event [dev->ev_next++];
1168 BUG_ON (dev->ev_next > N_EVENT);
1169 memset (event, 0, sizeof *event);
1170 event->type = type;
1171 return event;
1172 }
1173
1174 static ssize_t
1175 ep0_write (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1176 {
1177 struct dev_data *dev = fd->private_data;
1178 ssize_t retval = -ESRCH;
1179
1180 spin_lock_irq (&dev->lock);
1181
1182 /* report fd mode change before acting on it */
1183 if (dev->setup_abort) {
1184 dev->setup_abort = 0;
1185 retval = -EIDRM;
1186
1187 /* data and/or status stage for control request */
1188 } else if (dev->state == STATE_DEV_SETUP) {
1189
1190 /* IN DATA+STATUS caller makes len <= wLength */
1191 if (dev->setup_in) {
1192 retval = setup_req (dev->gadget->ep0, dev->req, len);
1193 if (retval == 0) {
1194 dev->state = STATE_DEV_CONNECTED;
1195 spin_unlock_irq (&dev->lock);
1196 if (copy_from_user (dev->req->buf, buf, len))
1197 retval = -EFAULT;
1198 else {
1199 if (len < dev->setup_wLength)
1200 dev->req->zero = 1;
1201 retval = usb_ep_queue (
1202 dev->gadget->ep0, dev->req,
1203 GFP_KERNEL);
1204 }
1205 if (retval < 0) {
1206 spin_lock_irq (&dev->lock);
1207 clean_req (dev->gadget->ep0, dev->req);
1208 spin_unlock_irq (&dev->lock);
1209 } else
1210 retval = len;
1211
1212 return retval;
1213 }
1214
1215 /* can stall some OUT transfers */
1216 } else if (dev->setup_can_stall) {
1217 VDEBUG(dev, "ep0out stall\n");
1218 (void) usb_ep_set_halt (dev->gadget->ep0);
1219 retval = -EL2HLT;
1220 dev->state = STATE_DEV_CONNECTED;
1221 } else {
1222 DBG(dev, "bogus ep0out stall!\n");
1223 }
1224 } else
1225 DBG (dev, "fail %s, state %d\n", __func__, dev->state);
1226
1227 spin_unlock_irq (&dev->lock);
1228 return retval;
1229 }
1230
1231 static int
1232 ep0_fasync (int f, struct file *fd, int on)
1233 {
1234 struct dev_data *dev = fd->private_data;
1235 // caller must F_SETOWN before signal delivery happens
1236 VDEBUG (dev, "%s %s\n", __func__, on ? "on" : "off");
1237 return fasync_helper (f, fd, on, &dev->fasync);
1238 }
1239
1240 static struct usb_gadget_driver gadgetfs_driver;
1241
1242 static int
1243 dev_release (struct inode *inode, struct file *fd)
1244 {
1245 struct dev_data *dev = fd->private_data;
1246
1247 /* closing ep0 === shutdown all */
1248
1249 usb_gadget_unregister_driver (&gadgetfs_driver);
1250
1251 /* at this point "good" hardware has disconnected the
1252 * device from USB; the host won't see it any more.
1253 * alternatively, all host requests will time out.
1254 */
1255
1256 kfree (dev->buf);
1257 dev->buf = NULL;
1258 put_dev (dev);
1259
1260 /* other endpoints were all decoupled from this device */
1261 spin_lock_irq(&dev->lock);
1262 dev->state = STATE_DEV_DISABLED;
1263 spin_unlock_irq(&dev->lock);
1264 return 0;
1265 }
1266
1267 static unsigned int
1268 ep0_poll (struct file *fd, poll_table *wait)
1269 {
1270 struct dev_data *dev = fd->private_data;
1271 int mask = 0;
1272
1273 poll_wait(fd, &dev->wait, wait);
1274
1275 spin_lock_irq (&dev->lock);
1276
1277 /* report fd mode change before acting on it */
1278 if (dev->setup_abort) {
1279 dev->setup_abort = 0;
1280 mask = POLLHUP;
1281 goto out;
1282 }
1283
1284 if (dev->state == STATE_DEV_SETUP) {
1285 if (dev->setup_in || dev->setup_can_stall)
1286 mask = POLLOUT;
1287 } else {
1288 if (dev->ev_next != 0)
1289 mask = POLLIN;
1290 }
1291 out:
1292 spin_unlock_irq(&dev->lock);
1293 return mask;
1294 }
1295
1296 static long dev_ioctl (struct file *fd, unsigned code, unsigned long value)
1297 {
1298 struct dev_data *dev = fd->private_data;
1299 struct usb_gadget *gadget = dev->gadget;
1300 long ret = -ENOTTY;
1301
1302 if (gadget->ops->ioctl)
1303 ret = gadget->ops->ioctl (gadget, code, value);
1304
1305 return ret;
1306 }
1307
1308 /* used after device configuration */
1309 static const struct file_operations ep0_io_operations = {
1310 .owner = THIS_MODULE,
1311 .llseek = no_llseek,
1312
1313 .read = ep0_read,
1314 .write = ep0_write,
1315 .fasync = ep0_fasync,
1316 .poll = ep0_poll,
1317 .unlocked_ioctl = dev_ioctl,
1318 .release = dev_release,
1319 };
1320
1321 /*----------------------------------------------------------------------*/
1322
1323 /* The in-kernel gadget driver handles most ep0 issues, in particular
1324 * enumerating the single configuration (as provided from user space).
1325 *
1326 * Unrecognized ep0 requests may be handled in user space.
1327 */
1328
1329 #ifdef CONFIG_USB_GADGET_DUALSPEED
1330 static void make_qualifier (struct dev_data *dev)
1331 {
1332 struct usb_qualifier_descriptor qual;
1333 struct usb_device_descriptor *desc;
1334
1335 qual.bLength = sizeof qual;
1336 qual.bDescriptorType = USB_DT_DEVICE_QUALIFIER;
1337 qual.bcdUSB = cpu_to_le16 (0x0200);
1338
1339 desc = dev->dev;
1340 qual.bDeviceClass = desc->bDeviceClass;
1341 qual.bDeviceSubClass = desc->bDeviceSubClass;
1342 qual.bDeviceProtocol = desc->bDeviceProtocol;
1343
1344 /* assumes ep0 uses the same value for both speeds ... */
1345 qual.bMaxPacketSize0 = desc->bMaxPacketSize0;
1346
1347 qual.bNumConfigurations = 1;
1348 qual.bRESERVED = 0;
1349
1350 memcpy (dev->rbuf, &qual, sizeof qual);
1351 }
1352 #endif
1353
1354 static int
1355 config_buf (struct dev_data *dev, u8 type, unsigned index)
1356 {
1357 int len;
1358 int hs = 0;
1359
1360 /* only one configuration */
1361 if (index > 0)
1362 return -EINVAL;
1363
1364 if (gadget_is_dualspeed(dev->gadget)) {
1365 hs = (dev->gadget->speed == USB_SPEED_HIGH);
1366 if (type == USB_DT_OTHER_SPEED_CONFIG)
1367 hs = !hs;
1368 }
1369 if (hs) {
1370 dev->req->buf = dev->hs_config;
1371 len = le16_to_cpu(dev->hs_config->wTotalLength);
1372 } else {
1373 dev->req->buf = dev->config;
1374 len = le16_to_cpu(dev->config->wTotalLength);
1375 }
1376 ((u8 *)dev->req->buf) [1] = type;
1377 return len;
1378 }
1379
1380 static int
1381 gadgetfs_setup (struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl)
1382 {
1383 struct dev_data *dev = get_gadget_data (gadget);
1384 struct usb_request *req = dev->req;
1385 int value = -EOPNOTSUPP;
1386 struct usb_gadgetfs_event *event;
1387 u16 w_value = le16_to_cpu(ctrl->wValue);
1388 u16 w_length = le16_to_cpu(ctrl->wLength);
1389
1390 spin_lock (&dev->lock);
1391 dev->setup_abort = 0;
1392 if (dev->state == STATE_DEV_UNCONNECTED) {
1393 if (gadget_is_dualspeed(gadget)
1394 && gadget->speed == USB_SPEED_HIGH
1395 && dev->hs_config == NULL) {
1396 spin_unlock(&dev->lock);
1397 ERROR (dev, "no high speed config??\n");
1398 return -EINVAL;
1399 }
1400
1401 dev->state = STATE_DEV_CONNECTED;
1402 dev->dev->bMaxPacketSize0 = gadget->ep0->maxpacket;
1403
1404 INFO (dev, "connected\n");
1405 event = next_event (dev, GADGETFS_CONNECT);
1406 event->u.speed = gadget->speed;
1407 ep0_readable (dev);
1408
1409 /* host may have given up waiting for response. we can miss control
1410 * requests handled lower down (device/endpoint status and features);
1411 * then ep0_{read,write} will report the wrong status. controller
1412 * driver will have aborted pending i/o.
1413 */
1414 } else if (dev->state == STATE_DEV_SETUP)
1415 dev->setup_abort = 1;
1416
1417 req->buf = dev->rbuf;
1418 req->dma = DMA_ADDR_INVALID;
1419 req->context = NULL;
1420 value = -EOPNOTSUPP;
1421 switch (ctrl->bRequest) {
1422
1423 case USB_REQ_GET_DESCRIPTOR:
1424 if (ctrl->bRequestType != USB_DIR_IN)
1425 goto unrecognized;
1426 switch (w_value >> 8) {
1427
1428 case USB_DT_DEVICE:
1429 value = min (w_length, (u16) sizeof *dev->dev);
1430 req->buf = dev->dev;
1431 break;
1432 #ifdef CONFIG_USB_GADGET_DUALSPEED
1433 case USB_DT_DEVICE_QUALIFIER:
1434 if (!dev->hs_config)
1435 break;
1436 value = min (w_length, (u16)
1437 sizeof (struct usb_qualifier_descriptor));
1438 make_qualifier (dev);
1439 break;
1440 case USB_DT_OTHER_SPEED_CONFIG:
1441 // FALLTHROUGH
1442 #endif
1443 case USB_DT_CONFIG:
1444 value = config_buf (dev,
1445 w_value >> 8,
1446 w_value & 0xff);
1447 if (value >= 0)
1448 value = min (w_length, (u16) value);
1449 break;
1450 case USB_DT_STRING:
1451 goto unrecognized;
1452
1453 default: // all others are errors
1454 break;
1455 }
1456 break;
1457
1458 /* currently one config, two speeds */
1459 case USB_REQ_SET_CONFIGURATION:
1460 if (ctrl->bRequestType != 0)
1461 goto unrecognized;
1462 if (0 == (u8) w_value) {
1463 value = 0;
1464 dev->current_config = 0;
1465 usb_gadget_vbus_draw(gadget, 8 /* mA */ );
1466 // user mode expected to disable endpoints
1467 } else {
1468 u8 config, power;
1469
1470 if (gadget_is_dualspeed(gadget)
1471 && gadget->speed == USB_SPEED_HIGH) {
1472 config = dev->hs_config->bConfigurationValue;
1473 power = dev->hs_config->bMaxPower;
1474 } else {
1475 config = dev->config->bConfigurationValue;
1476 power = dev->config->bMaxPower;
1477 }
1478
1479 if (config == (u8) w_value) {
1480 value = 0;
1481 dev->current_config = config;
1482 usb_gadget_vbus_draw(gadget, 2 * power);
1483 }
1484 }
1485
1486 /* report SET_CONFIGURATION like any other control request,
1487 * except that usermode may not stall this. the next
1488 * request mustn't be allowed start until this finishes:
1489 * endpoints and threads set up, etc.
1490 *
1491 * NOTE: older PXA hardware (before PXA 255: without UDCCFR)
1492 * has bad/racey automagic that prevents synchronizing here.
1493 * even kernel mode drivers often miss them.
1494 */
1495 if (value == 0) {
1496 INFO (dev, "configuration #%d\n", dev->current_config);
1497 if (dev->usermode_setup) {
1498 dev->setup_can_stall = 0;
1499 goto delegate;
1500 }
1501 }
1502 break;
1503
1504 #ifndef CONFIG_USB_GADGET_PXA25X
1505 /* PXA automagically handles this request too */
1506 case USB_REQ_GET_CONFIGURATION:
1507 if (ctrl->bRequestType != 0x80)
1508 goto unrecognized;
1509 *(u8 *)req->buf = dev->current_config;
1510 value = min (w_length, (u16) 1);
1511 break;
1512 #endif
1513
1514 default:
1515 unrecognized:
1516 VDEBUG (dev, "%s req%02x.%02x v%04x i%04x l%d\n",
1517 dev->usermode_setup ? "delegate" : "fail",
1518 ctrl->bRequestType, ctrl->bRequest,
1519 w_value, le16_to_cpu(ctrl->wIndex), w_length);
1520
1521 /* if there's an ep0 reader, don't stall */
1522 if (dev->usermode_setup) {
1523 dev->setup_can_stall = 1;
1524 delegate:
1525 dev->setup_in = (ctrl->bRequestType & USB_DIR_IN)
1526 ? 1 : 0;
1527 dev->setup_wLength = w_length;
1528 dev->setup_out_ready = 0;
1529 dev->setup_out_error = 0;
1530 value = 0;
1531
1532 /* read DATA stage for OUT right away */
1533 if (unlikely (!dev->setup_in && w_length)) {
1534 value = setup_req (gadget->ep0, dev->req,
1535 w_length);
1536 if (value < 0)
1537 break;
1538 value = usb_ep_queue (gadget->ep0, dev->req,
1539 GFP_ATOMIC);
1540 if (value < 0) {
1541 clean_req (gadget->ep0, dev->req);
1542 break;
1543 }
1544
1545 /* we can't currently stall these */
1546 dev->setup_can_stall = 0;
1547 }
1548
1549 /* state changes when reader collects event */
1550 event = next_event (dev, GADGETFS_SETUP);
1551 event->u.setup = *ctrl;
1552 ep0_readable (dev);
1553 spin_unlock (&dev->lock);
1554 return 0;
1555 }
1556 }
1557
1558 /* proceed with data transfer and status phases? */
1559 if (value >= 0 && dev->state != STATE_DEV_SETUP) {
1560 req->length = value;
1561 req->zero = value < w_length;
1562 value = usb_ep_queue (gadget->ep0, req, GFP_ATOMIC);
1563 if (value < 0) {
1564 DBG (dev, "ep_queue --> %d\n", value);
1565 req->status = 0;
1566 }
1567 }
1568
1569 /* device stalls when value < 0 */
1570 spin_unlock (&dev->lock);
1571 return value;
1572 }
1573
1574 static void destroy_ep_files (struct dev_data *dev)
1575 {
1576 struct list_head *entry, *tmp;
1577
1578 DBG (dev, "%s %d\n", __func__, dev->state);
1579
1580 /* dev->state must prevent interference */
1581 restart:
1582 spin_lock_irq (&dev->lock);
1583 list_for_each_safe (entry, tmp, &dev->epfiles) {
1584 struct ep_data *ep;
1585 struct inode *parent;
1586 struct dentry *dentry;
1587
1588 /* break link to FS */
1589 ep = list_entry (entry, struct ep_data, epfiles);
1590 list_del_init (&ep->epfiles);
1591 dentry = ep->dentry;
1592 ep->dentry = NULL;
1593 parent = dentry->d_parent->d_inode;
1594
1595 /* break link to controller */
1596 if (ep->state == STATE_EP_ENABLED)
1597 (void) usb_ep_disable (ep->ep);
1598 ep->state = STATE_EP_UNBOUND;
1599 usb_ep_free_request (ep->ep, ep->req);
1600 ep->ep = NULL;
1601 wake_up (&ep->wait);
1602 put_ep (ep);
1603
1604 spin_unlock_irq (&dev->lock);
1605
1606 /* break link to dcache */
1607 mutex_lock (&parent->i_mutex);
1608 d_delete (dentry);
1609 dput (dentry);
1610 mutex_unlock (&parent->i_mutex);
1611
1612 /* fds may still be open */
1613 goto restart;
1614 }
1615 spin_unlock_irq (&dev->lock);
1616 }
1617
1618
1619 static struct inode *
1620 gadgetfs_create_file (struct super_block *sb, char const *name,
1621 void *data, const struct file_operations *fops,
1622 struct dentry **dentry_p);
1623
1624 static int activate_ep_files (struct dev_data *dev)
1625 {
1626 struct usb_ep *ep;
1627 struct ep_data *data;
1628
1629 gadget_for_each_ep (ep, dev->gadget) {
1630
1631 data = kzalloc(sizeof(*data), GFP_KERNEL);
1632 if (!data)
1633 goto enomem0;
1634 data->state = STATE_EP_DISABLED;
1635 mutex_init(&data->lock);
1636 init_waitqueue_head (&data->wait);
1637
1638 strncpy (data->name, ep->name, sizeof (data->name) - 1);
1639 atomic_set (&data->count, 1);
1640 data->dev = dev;
1641 get_dev (dev);
1642
1643 data->ep = ep;
1644 ep->driver_data = data;
1645
1646 data->req = usb_ep_alloc_request (ep, GFP_KERNEL);
1647 if (!data->req)
1648 goto enomem1;
1649
1650 data->inode = gadgetfs_create_file (dev->sb, data->name,
1651 data, &ep_config_operations,
1652 &data->dentry);
1653 if (!data->inode)
1654 goto enomem2;
1655 list_add_tail (&data->epfiles, &dev->epfiles);
1656 }
1657 return 0;
1658
1659 enomem2:
1660 usb_ep_free_request (ep, data->req);
1661 enomem1:
1662 put_dev (dev);
1663 kfree (data);
1664 enomem0:
1665 DBG (dev, "%s enomem\n", __func__);
1666 destroy_ep_files (dev);
1667 return -ENOMEM;
1668 }
1669
1670 static void
1671 gadgetfs_unbind (struct usb_gadget *gadget)
1672 {
1673 struct dev_data *dev = get_gadget_data (gadget);
1674
1675 DBG (dev, "%s\n", __func__);
1676
1677 spin_lock_irq (&dev->lock);
1678 dev->state = STATE_DEV_UNBOUND;
1679 spin_unlock_irq (&dev->lock);
1680
1681 destroy_ep_files (dev);
1682 gadget->ep0->driver_data = NULL;
1683 set_gadget_data (gadget, NULL);
1684
1685 /* we've already been disconnected ... no i/o is active */
1686 if (dev->req)
1687 usb_ep_free_request (gadget->ep0, dev->req);
1688 DBG (dev, "%s done\n", __func__);
1689 put_dev (dev);
1690 }
1691
1692 static struct dev_data *the_device;
1693
1694 static int
1695 gadgetfs_bind (struct usb_gadget *gadget)
1696 {
1697 struct dev_data *dev = the_device;
1698
1699 if (!dev)
1700 return -ESRCH;
1701 if (0 != strcmp (CHIP, gadget->name)) {
1702 pr_err("%s expected %s controller not %s\n",
1703 shortname, CHIP, gadget->name);
1704 return -ENODEV;
1705 }
1706
1707 set_gadget_data (gadget, dev);
1708 dev->gadget = gadget;
1709 gadget->ep0->driver_data = dev;
1710 dev->dev->bMaxPacketSize0 = gadget->ep0->maxpacket;
1711
1712 /* preallocate control response and buffer */
1713 dev->req = usb_ep_alloc_request (gadget->ep0, GFP_KERNEL);
1714 if (!dev->req)
1715 goto enomem;
1716 dev->req->context = NULL;
1717 dev->req->complete = epio_complete;
1718
1719 if (activate_ep_files (dev) < 0)
1720 goto enomem;
1721
1722 INFO (dev, "bound to %s driver\n", gadget->name);
1723 spin_lock_irq(&dev->lock);
1724 dev->state = STATE_DEV_UNCONNECTED;
1725 spin_unlock_irq(&dev->lock);
1726 get_dev (dev);
1727 return 0;
1728
1729 enomem:
1730 gadgetfs_unbind (gadget);
1731 return -ENOMEM;
1732 }
1733
1734 static void
1735 gadgetfs_disconnect (struct usb_gadget *gadget)
1736 {
1737 struct dev_data *dev = get_gadget_data (gadget);
1738
1739 spin_lock (&dev->lock);
1740 if (dev->state == STATE_DEV_UNCONNECTED)
1741 goto exit;
1742 dev->state = STATE_DEV_UNCONNECTED;
1743
1744 INFO (dev, "disconnected\n");
1745 next_event (dev, GADGETFS_DISCONNECT);
1746 ep0_readable (dev);
1747 exit:
1748 spin_unlock (&dev->lock);
1749 }
1750
1751 static void
1752 gadgetfs_suspend (struct usb_gadget *gadget)
1753 {
1754 struct dev_data *dev = get_gadget_data (gadget);
1755
1756 INFO (dev, "suspended from state %d\n", dev->state);
1757 spin_lock (&dev->lock);
1758 switch (dev->state) {
1759 case STATE_DEV_SETUP: // VERY odd... host died??
1760 case STATE_DEV_CONNECTED:
1761 case STATE_DEV_UNCONNECTED:
1762 next_event (dev, GADGETFS_SUSPEND);
1763 ep0_readable (dev);
1764 /* FALLTHROUGH */
1765 default:
1766 break;
1767 }
1768 spin_unlock (&dev->lock);
1769 }
1770
1771 static struct usb_gadget_driver gadgetfs_driver = {
1772 #ifdef CONFIG_USB_GADGET_DUALSPEED
1773 .speed = USB_SPEED_HIGH,
1774 #else
1775 .speed = USB_SPEED_FULL,
1776 #endif
1777 .function = (char *) driver_desc,
1778 .bind = gadgetfs_bind,
1779 .unbind = gadgetfs_unbind,
1780 .setup = gadgetfs_setup,
1781 .disconnect = gadgetfs_disconnect,
1782 .suspend = gadgetfs_suspend,
1783
1784 .driver = {
1785 .name = (char *) shortname,
1786 },
1787 };
1788
1789 /*----------------------------------------------------------------------*/
1790
1791 static void gadgetfs_nop(struct usb_gadget *arg) { }
1792
1793 static int gadgetfs_probe (struct usb_gadget *gadget)
1794 {
1795 CHIP = gadget->name;
1796 return -EISNAM;
1797 }
1798
1799 static struct usb_gadget_driver probe_driver = {
1800 .speed = USB_SPEED_HIGH,
1801 .bind = gadgetfs_probe,
1802 .unbind = gadgetfs_nop,
1803 .setup = (void *)gadgetfs_nop,
1804 .disconnect = gadgetfs_nop,
1805 .driver = {
1806 .name = "nop",
1807 },
1808 };
1809
1810
1811 /* DEVICE INITIALIZATION
1812 *
1813 * fd = open ("/dev/gadget/$CHIP", O_RDWR)
1814 * status = write (fd, descriptors, sizeof descriptors)
1815 *
1816 * That write establishes the device configuration, so the kernel can
1817 * bind to the controller ... guaranteeing it can handle enumeration
1818 * at all necessary speeds. Descriptor order is:
1819 *
1820 * . message tag (u32, host order) ... for now, must be zero; it
1821 * would change to support features like multi-config devices
1822 * . full/low speed config ... all wTotalLength bytes (with interface,
1823 * class, altsetting, endpoint, and other descriptors)
1824 * . high speed config ... all descriptors, for high speed operation;
1825 * this one's optional except for high-speed hardware
1826 * . device descriptor
1827 *
1828 * Endpoints are not yet enabled. Drivers must wait until device
1829 * configuration and interface altsetting changes create
1830 * the need to configure (or unconfigure) them.
1831 *
1832 * After initialization, the device stays active for as long as that
1833 * $CHIP file is open. Events must then be read from that descriptor,
1834 * such as configuration notifications.
1835 */
1836
1837 static int is_valid_config (struct usb_config_descriptor *config)
1838 {
1839 return config->bDescriptorType == USB_DT_CONFIG
1840 && config->bLength == USB_DT_CONFIG_SIZE
1841 && config->bConfigurationValue != 0
1842 && (config->bmAttributes & USB_CONFIG_ATT_ONE) != 0
1843 && (config->bmAttributes & USB_CONFIG_ATT_WAKEUP) == 0;
1844 /* FIXME if gadget->is_otg, _must_ include an otg descriptor */
1845 /* FIXME check lengths: walk to end */
1846 }
1847
1848 static ssize_t
1849 dev_config (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1850 {
1851 struct dev_data *dev = fd->private_data;
1852 ssize_t value = len, length = len;
1853 unsigned total;
1854 u32 tag;
1855 char *kbuf;
1856
1857 if (len < (USB_DT_CONFIG_SIZE + USB_DT_DEVICE_SIZE + 4))
1858 return -EINVAL;
1859
1860 /* we might need to change message format someday */
1861 if (copy_from_user (&tag, buf, 4))
1862 return -EFAULT;
1863 if (tag != 0)
1864 return -EINVAL;
1865 buf += 4;
1866 length -= 4;
1867
1868 kbuf = memdup_user(buf, length);
1869 if (IS_ERR(kbuf))
1870 return PTR_ERR(kbuf);
1871
1872 spin_lock_irq (&dev->lock);
1873 value = -EINVAL;
1874 if (dev->buf)
1875 goto fail;
1876 dev->buf = kbuf;
1877
1878 /* full or low speed config */
1879 dev->config = (void *) kbuf;
1880 total = le16_to_cpu(dev->config->wTotalLength);
1881 if (!is_valid_config (dev->config) || total >= length)
1882 goto fail;
1883 kbuf += total;
1884 length -= total;
1885
1886 /* optional high speed config */
1887 if (kbuf [1] == USB_DT_CONFIG) {
1888 dev->hs_config = (void *) kbuf;
1889 total = le16_to_cpu(dev->hs_config->wTotalLength);
1890 if (!is_valid_config (dev->hs_config) || total >= length)
1891 goto fail;
1892 kbuf += total;
1893 length -= total;
1894 }
1895
1896 /* could support multiple configs, using another encoding! */
1897
1898 /* device descriptor (tweaked for paranoia) */
1899 if (length != USB_DT_DEVICE_SIZE)
1900 goto fail;
1901 dev->dev = (void *)kbuf;
1902 if (dev->dev->bLength != USB_DT_DEVICE_SIZE
1903 || dev->dev->bDescriptorType != USB_DT_DEVICE
1904 || dev->dev->bNumConfigurations != 1)
1905 goto fail;
1906 dev->dev->bNumConfigurations = 1;
1907 dev->dev->bcdUSB = cpu_to_le16 (0x0200);
1908
1909 /* triggers gadgetfs_bind(); then we can enumerate. */
1910 spin_unlock_irq (&dev->lock);
1911 value = usb_gadget_register_driver (&gadgetfs_driver);
1912 if (value != 0) {
1913 kfree (dev->buf);
1914 dev->buf = NULL;
1915 } else {
1916 /* at this point "good" hardware has for the first time
1917 * let the USB the host see us. alternatively, if users
1918 * unplug/replug that will clear all the error state.
1919 *
1920 * note: everything running before here was guaranteed
1921 * to choke driver model style diagnostics. from here
1922 * on, they can work ... except in cleanup paths that
1923 * kick in after the ep0 descriptor is closed.
1924 */
1925 fd->f_op = &ep0_io_operations;
1926 value = len;
1927 }
1928 return value;
1929
1930 fail:
1931 spin_unlock_irq (&dev->lock);
1932 pr_debug ("%s: %s fail %Zd, %p\n", shortname, __func__, value, dev);
1933 kfree (dev->buf);
1934 dev->buf = NULL;
1935 return value;
1936 }
1937
1938 static int
1939 dev_open (struct inode *inode, struct file *fd)
1940 {
1941 struct dev_data *dev = inode->i_private;
1942 int value = -EBUSY;
1943
1944 spin_lock_irq(&dev->lock);
1945 if (dev->state == STATE_DEV_DISABLED) {
1946 dev->ev_next = 0;
1947 dev->state = STATE_DEV_OPENED;
1948 fd->private_data = dev;
1949 get_dev (dev);
1950 value = 0;
1951 }
1952 spin_unlock_irq(&dev->lock);
1953 return value;
1954 }
1955
1956 static const struct file_operations dev_init_operations = {
1957 .owner = THIS_MODULE,
1958 .llseek = no_llseek,
1959
1960 .open = dev_open,
1961 .write = dev_config,
1962 .fasync = ep0_fasync,
1963 .unlocked_ioctl = dev_ioctl,
1964 .release = dev_release,
1965 };
1966
1967 /*----------------------------------------------------------------------*/
1968
1969 /* FILESYSTEM AND SUPERBLOCK OPERATIONS
1970 *
1971 * Mounting the filesystem creates a controller file, used first for
1972 * device configuration then later for event monitoring.
1973 */
1974
1975
1976 /* FIXME PAM etc could set this security policy without mount options
1977 * if epfiles inherited ownership and permissons from ep0 ...
1978 */
1979
1980 static unsigned default_uid;
1981 static unsigned default_gid;
1982 static unsigned default_perm = S_IRUSR | S_IWUSR;
1983
1984 module_param (default_uid, uint, 0644);
1985 module_param (default_gid, uint, 0644);
1986 module_param (default_perm, uint, 0644);
1987
1988
1989 static struct inode *
1990 gadgetfs_make_inode (struct super_block *sb,
1991 void *data, const struct file_operations *fops,
1992 int mode)
1993 {
1994 struct inode *inode = new_inode (sb);
1995
1996 if (inode) {
1997 inode->i_mode = mode;
1998 inode->i_uid = default_uid;
1999 inode->i_gid = default_gid;
2000 inode->i_atime = inode->i_mtime = inode->i_ctime
2001 = CURRENT_TIME;
2002 inode->i_private = data;
2003 inode->i_fop = fops;
2004 }
2005 return inode;
2006 }
2007
2008 /* creates in fs root directory, so non-renamable and non-linkable.
2009 * so inode and dentry are paired, until device reconfig.
2010 */
2011 static struct inode *
2012 gadgetfs_create_file (struct super_block *sb, char const *name,
2013 void *data, const struct file_operations *fops,
2014 struct dentry **dentry_p)
2015 {
2016 struct dentry *dentry;
2017 struct inode *inode;
2018
2019 dentry = d_alloc_name(sb->s_root, name);
2020 if (!dentry)
2021 return NULL;
2022
2023 inode = gadgetfs_make_inode (sb, data, fops,
2024 S_IFREG | (default_perm & S_IRWXUGO));
2025 if (!inode) {
2026 dput(dentry);
2027 return NULL;
2028 }
2029 d_add (dentry, inode);
2030 *dentry_p = dentry;
2031 return inode;
2032 }
2033
2034 static const struct super_operations gadget_fs_operations = {
2035 .statfs = simple_statfs,
2036 .drop_inode = generic_delete_inode,
2037 };
2038
2039 static int
2040 gadgetfs_fill_super (struct super_block *sb, void *opts, int silent)
2041 {
2042 struct inode *inode;
2043 struct dentry *d;
2044 struct dev_data *dev;
2045
2046 if (the_device)
2047 return -ESRCH;
2048
2049 /* fake probe to determine $CHIP */
2050 (void) usb_gadget_register_driver (&probe_driver);
2051 if (!CHIP)
2052 return -ENODEV;
2053
2054 /* superblock */
2055 sb->s_blocksize = PAGE_CACHE_SIZE;
2056 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2057 sb->s_magic = GADGETFS_MAGIC;
2058 sb->s_op = &gadget_fs_operations;
2059 sb->s_time_gran = 1;
2060
2061 /* root inode */
2062 inode = gadgetfs_make_inode (sb,
2063 NULL, &simple_dir_operations,
2064 S_IFDIR | S_IRUGO | S_IXUGO);
2065 if (!inode)
2066 goto enomem0;
2067 inode->i_op = &simple_dir_inode_operations;
2068 if (!(d = d_alloc_root (inode)))
2069 goto enomem1;
2070 sb->s_root = d;
2071
2072 /* the ep0 file is named after the controller we expect;
2073 * user mode code can use it for sanity checks, like we do.
2074 */
2075 dev = dev_new ();
2076 if (!dev)
2077 goto enomem2;
2078
2079 dev->sb = sb;
2080 if (!gadgetfs_create_file (sb, CHIP,
2081 dev, &dev_init_operations,
2082 &dev->dentry))
2083 goto enomem3;
2084
2085 /* other endpoint files are available after hardware setup,
2086 * from binding to a controller.
2087 */
2088 the_device = dev;
2089 return 0;
2090
2091 enomem3:
2092 put_dev (dev);
2093 enomem2:
2094 dput (d);
2095 enomem1:
2096 iput (inode);
2097 enomem0:
2098 return -ENOMEM;
2099 }
2100
2101 /* "mount -t gadgetfs path /dev/gadget" ends up here */
2102 static int
2103 gadgetfs_get_sb (struct file_system_type *t, int flags,
2104 const char *path, void *opts, struct vfsmount *mnt)
2105 {
2106 return get_sb_single (t, flags, opts, gadgetfs_fill_super, mnt);
2107 }
2108
2109 static void
2110 gadgetfs_kill_sb (struct super_block *sb)
2111 {
2112 kill_litter_super (sb);
2113 if (the_device) {
2114 put_dev (the_device);
2115 the_device = NULL;
2116 }
2117 }
2118
2119 /*----------------------------------------------------------------------*/
2120
2121 static struct file_system_type gadgetfs_type = {
2122 .owner = THIS_MODULE,
2123 .name = shortname,
2124 .get_sb = gadgetfs_get_sb,
2125 .kill_sb = gadgetfs_kill_sb,
2126 };
2127
2128 /*----------------------------------------------------------------------*/
2129
2130 static int __init init (void)
2131 {
2132 int status;
2133
2134 status = register_filesystem (&gadgetfs_type);
2135 if (status == 0)
2136 pr_info ("%s: %s, version " DRIVER_VERSION "\n",
2137 shortname, driver_desc);
2138 return status;
2139 }
2140 module_init (init);
2141
2142 static void __exit cleanup (void)
2143 {
2144 pr_debug ("unregister %s\n", shortname);
2145 unregister_filesystem (&gadgetfs_type);
2146 }
2147 module_exit (cleanup);
2148
This page took 0.077164 seconds and 6 git commands to generate.