Merge remote-tracking branches 'asoc/topic/intel', 'asoc/topic/kirkwood', 'asoc/topic...
[deliverable/linux.git] / drivers / usb / gadget / mv_udc_core.c
1 /*
2 * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
3 * Author: Chao Xie <chao.xie@marvell.com>
4 * Neil Zhang <zhangwm@marvell.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/timer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/moduleparam.h>
27 #include <linux/device.h>
28 #include <linux/usb/ch9.h>
29 #include <linux/usb/gadget.h>
30 #include <linux/usb/otg.h>
31 #include <linux/pm.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/platform_device.h>
35 #include <linux/clk.h>
36 #include <linux/platform_data/mv_usb.h>
37 #include <asm/unaligned.h>
38
39 #include "mv_udc.h"
40
41 #define DRIVER_DESC "Marvell PXA USB Device Controller driver"
42 #define DRIVER_VERSION "8 Nov 2010"
43
44 #define ep_dir(ep) (((ep)->ep_num == 0) ? \
45 ((ep)->udc->ep0_dir) : ((ep)->direction))
46
47 /* timeout value -- usec */
48 #define RESET_TIMEOUT 10000
49 #define FLUSH_TIMEOUT 10000
50 #define EPSTATUS_TIMEOUT 10000
51 #define PRIME_TIMEOUT 10000
52 #define READSAFE_TIMEOUT 1000
53
54 #define LOOPS_USEC_SHIFT 1
55 #define LOOPS_USEC (1 << LOOPS_USEC_SHIFT)
56 #define LOOPS(timeout) ((timeout) >> LOOPS_USEC_SHIFT)
57
58 static DECLARE_COMPLETION(release_done);
59
60 static const char driver_name[] = "mv_udc";
61 static const char driver_desc[] = DRIVER_DESC;
62
63 static void nuke(struct mv_ep *ep, int status);
64 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
65
66 /* for endpoint 0 operations */
67 static const struct usb_endpoint_descriptor mv_ep0_desc = {
68 .bLength = USB_DT_ENDPOINT_SIZE,
69 .bDescriptorType = USB_DT_ENDPOINT,
70 .bEndpointAddress = 0,
71 .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
72 .wMaxPacketSize = EP0_MAX_PKT_SIZE,
73 };
74
75 static void ep0_reset(struct mv_udc *udc)
76 {
77 struct mv_ep *ep;
78 u32 epctrlx;
79 int i = 0;
80
81 /* ep0 in and out */
82 for (i = 0; i < 2; i++) {
83 ep = &udc->eps[i];
84 ep->udc = udc;
85
86 /* ep0 dQH */
87 ep->dqh = &udc->ep_dqh[i];
88
89 /* configure ep0 endpoint capabilities in dQH */
90 ep->dqh->max_packet_length =
91 (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
92 | EP_QUEUE_HEAD_IOS;
93
94 ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
95
96 epctrlx = readl(&udc->op_regs->epctrlx[0]);
97 if (i) { /* TX */
98 epctrlx |= EPCTRL_TX_ENABLE
99 | (USB_ENDPOINT_XFER_CONTROL
100 << EPCTRL_TX_EP_TYPE_SHIFT);
101
102 } else { /* RX */
103 epctrlx |= EPCTRL_RX_ENABLE
104 | (USB_ENDPOINT_XFER_CONTROL
105 << EPCTRL_RX_EP_TYPE_SHIFT);
106 }
107
108 writel(epctrlx, &udc->op_regs->epctrlx[0]);
109 }
110 }
111
112 /* protocol ep0 stall, will automatically be cleared on new transaction */
113 static void ep0_stall(struct mv_udc *udc)
114 {
115 u32 epctrlx;
116
117 /* set TX and RX to stall */
118 epctrlx = readl(&udc->op_regs->epctrlx[0]);
119 epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
120 writel(epctrlx, &udc->op_regs->epctrlx[0]);
121
122 /* update ep0 state */
123 udc->ep0_state = WAIT_FOR_SETUP;
124 udc->ep0_dir = EP_DIR_OUT;
125 }
126
127 static int process_ep_req(struct mv_udc *udc, int index,
128 struct mv_req *curr_req)
129 {
130 struct mv_dtd *curr_dtd;
131 struct mv_dqh *curr_dqh;
132 int td_complete, actual, remaining_length;
133 int i, direction;
134 int retval = 0;
135 u32 errors;
136 u32 bit_pos;
137
138 curr_dqh = &udc->ep_dqh[index];
139 direction = index % 2;
140
141 curr_dtd = curr_req->head;
142 td_complete = 0;
143 actual = curr_req->req.length;
144
145 for (i = 0; i < curr_req->dtd_count; i++) {
146 if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
147 dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
148 udc->eps[index].name);
149 return 1;
150 }
151
152 errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
153 if (!errors) {
154 remaining_length =
155 (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
156 >> DTD_LENGTH_BIT_POS;
157 actual -= remaining_length;
158
159 if (remaining_length) {
160 if (direction) {
161 dev_dbg(&udc->dev->dev,
162 "TX dTD remains data\n");
163 retval = -EPROTO;
164 break;
165 } else
166 break;
167 }
168 } else {
169 dev_info(&udc->dev->dev,
170 "complete_tr error: ep=%d %s: error = 0x%x\n",
171 index >> 1, direction ? "SEND" : "RECV",
172 errors);
173 if (errors & DTD_STATUS_HALTED) {
174 /* Clear the errors and Halt condition */
175 curr_dqh->size_ioc_int_sts &= ~errors;
176 retval = -EPIPE;
177 } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
178 retval = -EPROTO;
179 } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
180 retval = -EILSEQ;
181 }
182 }
183 if (i != curr_req->dtd_count - 1)
184 curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
185 }
186 if (retval)
187 return retval;
188
189 if (direction == EP_DIR_OUT)
190 bit_pos = 1 << curr_req->ep->ep_num;
191 else
192 bit_pos = 1 << (16 + curr_req->ep->ep_num);
193
194 while ((curr_dqh->curr_dtd_ptr == curr_dtd->td_dma)) {
195 if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
196 while (readl(&udc->op_regs->epstatus) & bit_pos)
197 udelay(1);
198 break;
199 }
200 udelay(1);
201 }
202
203 curr_req->req.actual = actual;
204
205 return 0;
206 }
207
208 /*
209 * done() - retire a request; caller blocked irqs
210 * @status : request status to be set, only works when
211 * request is still in progress.
212 */
213 static void done(struct mv_ep *ep, struct mv_req *req, int status)
214 __releases(&ep->udc->lock)
215 __acquires(&ep->udc->lock)
216 {
217 struct mv_udc *udc = NULL;
218 unsigned char stopped = ep->stopped;
219 struct mv_dtd *curr_td, *next_td;
220 int j;
221
222 udc = (struct mv_udc *)ep->udc;
223 /* Removed the req from fsl_ep->queue */
224 list_del_init(&req->queue);
225
226 /* req.status should be set as -EINPROGRESS in ep_queue() */
227 if (req->req.status == -EINPROGRESS)
228 req->req.status = status;
229 else
230 status = req->req.status;
231
232 /* Free dtd for the request */
233 next_td = req->head;
234 for (j = 0; j < req->dtd_count; j++) {
235 curr_td = next_td;
236 if (j != req->dtd_count - 1)
237 next_td = curr_td->next_dtd_virt;
238 dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
239 }
240
241 usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
242
243 if (status && (status != -ESHUTDOWN))
244 dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
245 ep->ep.name, &req->req, status,
246 req->req.actual, req->req.length);
247
248 ep->stopped = 1;
249
250 spin_unlock(&ep->udc->lock);
251 /*
252 * complete() is from gadget layer,
253 * eg fsg->bulk_in_complete()
254 */
255 if (req->req.complete)
256 req->req.complete(&ep->ep, &req->req);
257
258 spin_lock(&ep->udc->lock);
259 ep->stopped = stopped;
260 }
261
262 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
263 {
264 struct mv_udc *udc;
265 struct mv_dqh *dqh;
266 u32 bit_pos, direction;
267 u32 usbcmd, epstatus;
268 unsigned int loops;
269 int retval = 0;
270
271 udc = ep->udc;
272 direction = ep_dir(ep);
273 dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
274 bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
275
276 /* check if the pipe is empty */
277 if (!(list_empty(&ep->queue))) {
278 struct mv_req *lastreq;
279 lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
280 lastreq->tail->dtd_next =
281 req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
282
283 wmb();
284
285 if (readl(&udc->op_regs->epprime) & bit_pos)
286 goto done;
287
288 loops = LOOPS(READSAFE_TIMEOUT);
289 while (1) {
290 /* start with setting the semaphores */
291 usbcmd = readl(&udc->op_regs->usbcmd);
292 usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
293 writel(usbcmd, &udc->op_regs->usbcmd);
294
295 /* read the endpoint status */
296 epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
297
298 /*
299 * Reread the ATDTW semaphore bit to check if it is
300 * cleared. When hardware see a hazard, it will clear
301 * the bit or else we remain set to 1 and we can
302 * proceed with priming of endpoint if not already
303 * primed.
304 */
305 if (readl(&udc->op_regs->usbcmd)
306 & USBCMD_ATDTW_TRIPWIRE_SET)
307 break;
308
309 loops--;
310 if (loops == 0) {
311 dev_err(&udc->dev->dev,
312 "Timeout for ATDTW_TRIPWIRE...\n");
313 retval = -ETIME;
314 goto done;
315 }
316 udelay(LOOPS_USEC);
317 }
318
319 /* Clear the semaphore */
320 usbcmd = readl(&udc->op_regs->usbcmd);
321 usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
322 writel(usbcmd, &udc->op_regs->usbcmd);
323
324 if (epstatus)
325 goto done;
326 }
327
328 /* Write dQH next pointer and terminate bit to 0 */
329 dqh->next_dtd_ptr = req->head->td_dma
330 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
331
332 /* clear active and halt bit, in case set from a previous error */
333 dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
334
335 /* Ensure that updates to the QH will occure before priming. */
336 wmb();
337
338 /* Prime the Endpoint */
339 writel(bit_pos, &udc->op_regs->epprime);
340
341 done:
342 return retval;
343 }
344
345 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
346 dma_addr_t *dma, int *is_last)
347 {
348 struct mv_dtd *dtd;
349 struct mv_udc *udc;
350 struct mv_dqh *dqh;
351 u32 temp, mult = 0;
352
353 /* how big will this transfer be? */
354 if (usb_endpoint_xfer_isoc(req->ep->ep.desc)) {
355 dqh = req->ep->dqh;
356 mult = (dqh->max_packet_length >> EP_QUEUE_HEAD_MULT_POS)
357 & 0x3;
358 *length = min(req->req.length - req->req.actual,
359 (unsigned)(mult * req->ep->ep.maxpacket));
360 } else
361 *length = min(req->req.length - req->req.actual,
362 (unsigned)EP_MAX_LENGTH_TRANSFER);
363
364 udc = req->ep->udc;
365
366 /*
367 * Be careful that no _GFP_HIGHMEM is set,
368 * or we can not use dma_to_virt
369 */
370 dtd = dma_pool_alloc(udc->dtd_pool, GFP_ATOMIC, dma);
371 if (dtd == NULL)
372 return dtd;
373
374 dtd->td_dma = *dma;
375 /* initialize buffer page pointers */
376 temp = (u32)(req->req.dma + req->req.actual);
377 dtd->buff_ptr0 = cpu_to_le32(temp);
378 temp &= ~0xFFF;
379 dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
380 dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
381 dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
382 dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
383
384 req->req.actual += *length;
385
386 /* zlp is needed if req->req.zero is set */
387 if (req->req.zero) {
388 if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
389 *is_last = 1;
390 else
391 *is_last = 0;
392 } else if (req->req.length == req->req.actual)
393 *is_last = 1;
394 else
395 *is_last = 0;
396
397 /* Fill in the transfer size; set active bit */
398 temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
399
400 /* Enable interrupt for the last dtd of a request */
401 if (*is_last && !req->req.no_interrupt)
402 temp |= DTD_IOC;
403
404 temp |= mult << 10;
405
406 dtd->size_ioc_sts = temp;
407
408 mb();
409
410 return dtd;
411 }
412
413 /* generate dTD linked list for a request */
414 static int req_to_dtd(struct mv_req *req)
415 {
416 unsigned count;
417 int is_last, is_first = 1;
418 struct mv_dtd *dtd, *last_dtd = NULL;
419 struct mv_udc *udc;
420 dma_addr_t dma;
421
422 udc = req->ep->udc;
423
424 do {
425 dtd = build_dtd(req, &count, &dma, &is_last);
426 if (dtd == NULL)
427 return -ENOMEM;
428
429 if (is_first) {
430 is_first = 0;
431 req->head = dtd;
432 } else {
433 last_dtd->dtd_next = dma;
434 last_dtd->next_dtd_virt = dtd;
435 }
436 last_dtd = dtd;
437 req->dtd_count++;
438 } while (!is_last);
439
440 /* set terminate bit to 1 for the last dTD */
441 dtd->dtd_next = DTD_NEXT_TERMINATE;
442
443 req->tail = dtd;
444
445 return 0;
446 }
447
448 static int mv_ep_enable(struct usb_ep *_ep,
449 const struct usb_endpoint_descriptor *desc)
450 {
451 struct mv_udc *udc;
452 struct mv_ep *ep;
453 struct mv_dqh *dqh;
454 u16 max = 0;
455 u32 bit_pos, epctrlx, direction;
456 unsigned char zlt = 0, ios = 0, mult = 0;
457 unsigned long flags;
458
459 ep = container_of(_ep, struct mv_ep, ep);
460 udc = ep->udc;
461
462 if (!_ep || !desc
463 || desc->bDescriptorType != USB_DT_ENDPOINT)
464 return -EINVAL;
465
466 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
467 return -ESHUTDOWN;
468
469 direction = ep_dir(ep);
470 max = usb_endpoint_maxp(desc);
471
472 /*
473 * disable HW zero length termination select
474 * driver handles zero length packet through req->req.zero
475 */
476 zlt = 1;
477
478 bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
479
480 /* Check if the Endpoint is Primed */
481 if ((readl(&udc->op_regs->epprime) & bit_pos)
482 || (readl(&udc->op_regs->epstatus) & bit_pos)) {
483 dev_info(&udc->dev->dev,
484 "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
485 " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
486 (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
487 (unsigned)readl(&udc->op_regs->epprime),
488 (unsigned)readl(&udc->op_regs->epstatus),
489 (unsigned)bit_pos);
490 goto en_done;
491 }
492 /* Set the max packet length, interrupt on Setup and Mult fields */
493 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
494 case USB_ENDPOINT_XFER_BULK:
495 zlt = 1;
496 mult = 0;
497 break;
498 case USB_ENDPOINT_XFER_CONTROL:
499 ios = 1;
500 case USB_ENDPOINT_XFER_INT:
501 mult = 0;
502 break;
503 case USB_ENDPOINT_XFER_ISOC:
504 /* Calculate transactions needed for high bandwidth iso */
505 mult = (unsigned char)(1 + ((max >> 11) & 0x03));
506 max = max & 0x7ff; /* bit 0~10 */
507 /* 3 transactions at most */
508 if (mult > 3)
509 goto en_done;
510 break;
511 default:
512 goto en_done;
513 }
514
515 spin_lock_irqsave(&udc->lock, flags);
516 /* Get the endpoint queue head address */
517 dqh = ep->dqh;
518 dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
519 | (mult << EP_QUEUE_HEAD_MULT_POS)
520 | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
521 | (ios ? EP_QUEUE_HEAD_IOS : 0);
522 dqh->next_dtd_ptr = 1;
523 dqh->size_ioc_int_sts = 0;
524
525 ep->ep.maxpacket = max;
526 ep->ep.desc = desc;
527 ep->stopped = 0;
528
529 /* Enable the endpoint for Rx or Tx and set the endpoint type */
530 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
531 if (direction == EP_DIR_IN) {
532 epctrlx &= ~EPCTRL_TX_ALL_MASK;
533 epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
534 | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
535 << EPCTRL_TX_EP_TYPE_SHIFT);
536 } else {
537 epctrlx &= ~EPCTRL_RX_ALL_MASK;
538 epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
539 | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
540 << EPCTRL_RX_EP_TYPE_SHIFT);
541 }
542 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
543
544 /*
545 * Implement Guideline (GL# USB-7) The unused endpoint type must
546 * be programmed to bulk.
547 */
548 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
549 if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
550 epctrlx |= (USB_ENDPOINT_XFER_BULK
551 << EPCTRL_RX_EP_TYPE_SHIFT);
552 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
553 }
554
555 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
556 if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
557 epctrlx |= (USB_ENDPOINT_XFER_BULK
558 << EPCTRL_TX_EP_TYPE_SHIFT);
559 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
560 }
561
562 spin_unlock_irqrestore(&udc->lock, flags);
563
564 return 0;
565 en_done:
566 return -EINVAL;
567 }
568
569 static int mv_ep_disable(struct usb_ep *_ep)
570 {
571 struct mv_udc *udc;
572 struct mv_ep *ep;
573 struct mv_dqh *dqh;
574 u32 bit_pos, epctrlx, direction;
575 unsigned long flags;
576
577 ep = container_of(_ep, struct mv_ep, ep);
578 if ((_ep == NULL) || !ep->ep.desc)
579 return -EINVAL;
580
581 udc = ep->udc;
582
583 /* Get the endpoint queue head address */
584 dqh = ep->dqh;
585
586 spin_lock_irqsave(&udc->lock, flags);
587
588 direction = ep_dir(ep);
589 bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
590
591 /* Reset the max packet length and the interrupt on Setup */
592 dqh->max_packet_length = 0;
593
594 /* Disable the endpoint for Rx or Tx and reset the endpoint type */
595 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
596 epctrlx &= ~((direction == EP_DIR_IN)
597 ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
598 : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
599 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
600
601 /* nuke all pending requests (does flush) */
602 nuke(ep, -ESHUTDOWN);
603
604 ep->ep.desc = NULL;
605 ep->stopped = 1;
606
607 spin_unlock_irqrestore(&udc->lock, flags);
608
609 return 0;
610 }
611
612 static struct usb_request *
613 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
614 {
615 struct mv_req *req = NULL;
616
617 req = kzalloc(sizeof *req, gfp_flags);
618 if (!req)
619 return NULL;
620
621 req->req.dma = DMA_ADDR_INVALID;
622 INIT_LIST_HEAD(&req->queue);
623
624 return &req->req;
625 }
626
627 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
628 {
629 struct mv_req *req = NULL;
630
631 req = container_of(_req, struct mv_req, req);
632
633 if (_req)
634 kfree(req);
635 }
636
637 static void mv_ep_fifo_flush(struct usb_ep *_ep)
638 {
639 struct mv_udc *udc;
640 u32 bit_pos, direction;
641 struct mv_ep *ep;
642 unsigned int loops;
643
644 if (!_ep)
645 return;
646
647 ep = container_of(_ep, struct mv_ep, ep);
648 if (!ep->ep.desc)
649 return;
650
651 udc = ep->udc;
652 direction = ep_dir(ep);
653
654 if (ep->ep_num == 0)
655 bit_pos = (1 << 16) | 1;
656 else if (direction == EP_DIR_OUT)
657 bit_pos = 1 << ep->ep_num;
658 else
659 bit_pos = 1 << (16 + ep->ep_num);
660
661 loops = LOOPS(EPSTATUS_TIMEOUT);
662 do {
663 unsigned int inter_loops;
664
665 if (loops == 0) {
666 dev_err(&udc->dev->dev,
667 "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
668 (unsigned)readl(&udc->op_regs->epstatus),
669 (unsigned)bit_pos);
670 return;
671 }
672 /* Write 1 to the Flush register */
673 writel(bit_pos, &udc->op_regs->epflush);
674
675 /* Wait until flushing completed */
676 inter_loops = LOOPS(FLUSH_TIMEOUT);
677 while (readl(&udc->op_regs->epflush)) {
678 /*
679 * ENDPTFLUSH bit should be cleared to indicate this
680 * operation is complete
681 */
682 if (inter_loops == 0) {
683 dev_err(&udc->dev->dev,
684 "TIMEOUT for ENDPTFLUSH=0x%x,"
685 "bit_pos=0x%x\n",
686 (unsigned)readl(&udc->op_regs->epflush),
687 (unsigned)bit_pos);
688 return;
689 }
690 inter_loops--;
691 udelay(LOOPS_USEC);
692 }
693 loops--;
694 } while (readl(&udc->op_regs->epstatus) & bit_pos);
695 }
696
697 /* queues (submits) an I/O request to an endpoint */
698 static int
699 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
700 {
701 struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
702 struct mv_req *req = container_of(_req, struct mv_req, req);
703 struct mv_udc *udc = ep->udc;
704 unsigned long flags;
705 int retval;
706
707 /* catch various bogus parameters */
708 if (!_req || !req->req.complete || !req->req.buf
709 || !list_empty(&req->queue)) {
710 dev_err(&udc->dev->dev, "%s, bad params", __func__);
711 return -EINVAL;
712 }
713 if (unlikely(!_ep || !ep->ep.desc)) {
714 dev_err(&udc->dev->dev, "%s, bad ep", __func__);
715 return -EINVAL;
716 }
717
718 udc = ep->udc;
719 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
720 return -ESHUTDOWN;
721
722 req->ep = ep;
723
724 /* map virtual address to hardware */
725 retval = usb_gadget_map_request(&udc->gadget, _req, ep_dir(ep));
726 if (retval)
727 return retval;
728
729 req->req.status = -EINPROGRESS;
730 req->req.actual = 0;
731 req->dtd_count = 0;
732
733 spin_lock_irqsave(&udc->lock, flags);
734
735 /* build dtds and push them to device queue */
736 if (!req_to_dtd(req)) {
737 retval = queue_dtd(ep, req);
738 if (retval) {
739 spin_unlock_irqrestore(&udc->lock, flags);
740 dev_err(&udc->dev->dev, "Failed to queue dtd\n");
741 goto err_unmap_dma;
742 }
743 } else {
744 spin_unlock_irqrestore(&udc->lock, flags);
745 dev_err(&udc->dev->dev, "Failed to dma_pool_alloc\n");
746 retval = -ENOMEM;
747 goto err_unmap_dma;
748 }
749
750 /* Update ep0 state */
751 if (ep->ep_num == 0)
752 udc->ep0_state = DATA_STATE_XMIT;
753
754 /* irq handler advances the queue */
755 list_add_tail(&req->queue, &ep->queue);
756 spin_unlock_irqrestore(&udc->lock, flags);
757
758 return 0;
759
760 err_unmap_dma:
761 usb_gadget_unmap_request(&udc->gadget, _req, ep_dir(ep));
762
763 return retval;
764 }
765
766 static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
767 {
768 struct mv_dqh *dqh = ep->dqh;
769 u32 bit_pos;
770
771 /* Write dQH next pointer and terminate bit to 0 */
772 dqh->next_dtd_ptr = req->head->td_dma
773 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
774
775 /* clear active and halt bit, in case set from a previous error */
776 dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
777
778 /* Ensure that updates to the QH will occure before priming. */
779 wmb();
780
781 bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
782
783 /* Prime the Endpoint */
784 writel(bit_pos, &ep->udc->op_regs->epprime);
785 }
786
787 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
788 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
789 {
790 struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
791 struct mv_req *req;
792 struct mv_udc *udc = ep->udc;
793 unsigned long flags;
794 int stopped, ret = 0;
795 u32 epctrlx;
796
797 if (!_ep || !_req)
798 return -EINVAL;
799
800 spin_lock_irqsave(&ep->udc->lock, flags);
801 stopped = ep->stopped;
802
803 /* Stop the ep before we deal with the queue */
804 ep->stopped = 1;
805 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
806 if (ep_dir(ep) == EP_DIR_IN)
807 epctrlx &= ~EPCTRL_TX_ENABLE;
808 else
809 epctrlx &= ~EPCTRL_RX_ENABLE;
810 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
811
812 /* make sure it's actually queued on this endpoint */
813 list_for_each_entry(req, &ep->queue, queue) {
814 if (&req->req == _req)
815 break;
816 }
817 if (&req->req != _req) {
818 ret = -EINVAL;
819 goto out;
820 }
821
822 /* The request is in progress, or completed but not dequeued */
823 if (ep->queue.next == &req->queue) {
824 _req->status = -ECONNRESET;
825 mv_ep_fifo_flush(_ep); /* flush current transfer */
826
827 /* The request isn't the last request in this ep queue */
828 if (req->queue.next != &ep->queue) {
829 struct mv_req *next_req;
830
831 next_req = list_entry(req->queue.next,
832 struct mv_req, queue);
833
834 /* Point the QH to the first TD of next request */
835 mv_prime_ep(ep, next_req);
836 } else {
837 struct mv_dqh *qh;
838
839 qh = ep->dqh;
840 qh->next_dtd_ptr = 1;
841 qh->size_ioc_int_sts = 0;
842 }
843
844 /* The request hasn't been processed, patch up the TD chain */
845 } else {
846 struct mv_req *prev_req;
847
848 prev_req = list_entry(req->queue.prev, struct mv_req, queue);
849 writel(readl(&req->tail->dtd_next),
850 &prev_req->tail->dtd_next);
851
852 }
853
854 done(ep, req, -ECONNRESET);
855
856 /* Enable EP */
857 out:
858 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
859 if (ep_dir(ep) == EP_DIR_IN)
860 epctrlx |= EPCTRL_TX_ENABLE;
861 else
862 epctrlx |= EPCTRL_RX_ENABLE;
863 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
864 ep->stopped = stopped;
865
866 spin_unlock_irqrestore(&ep->udc->lock, flags);
867 return ret;
868 }
869
870 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
871 {
872 u32 epctrlx;
873
874 epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
875
876 if (stall) {
877 if (direction == EP_DIR_IN)
878 epctrlx |= EPCTRL_TX_EP_STALL;
879 else
880 epctrlx |= EPCTRL_RX_EP_STALL;
881 } else {
882 if (direction == EP_DIR_IN) {
883 epctrlx &= ~EPCTRL_TX_EP_STALL;
884 epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
885 } else {
886 epctrlx &= ~EPCTRL_RX_EP_STALL;
887 epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
888 }
889 }
890 writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
891 }
892
893 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
894 {
895 u32 epctrlx;
896
897 epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
898
899 if (direction == EP_DIR_OUT)
900 return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
901 else
902 return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
903 }
904
905 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
906 {
907 struct mv_ep *ep;
908 unsigned long flags = 0;
909 int status = 0;
910 struct mv_udc *udc;
911
912 ep = container_of(_ep, struct mv_ep, ep);
913 udc = ep->udc;
914 if (!_ep || !ep->ep.desc) {
915 status = -EINVAL;
916 goto out;
917 }
918
919 if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
920 status = -EOPNOTSUPP;
921 goto out;
922 }
923
924 /*
925 * Attempt to halt IN ep will fail if any transfer requests
926 * are still queue
927 */
928 if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
929 status = -EAGAIN;
930 goto out;
931 }
932
933 spin_lock_irqsave(&ep->udc->lock, flags);
934 ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
935 if (halt && wedge)
936 ep->wedge = 1;
937 else if (!halt)
938 ep->wedge = 0;
939 spin_unlock_irqrestore(&ep->udc->lock, flags);
940
941 if (ep->ep_num == 0) {
942 udc->ep0_state = WAIT_FOR_SETUP;
943 udc->ep0_dir = EP_DIR_OUT;
944 }
945 out:
946 return status;
947 }
948
949 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
950 {
951 return mv_ep_set_halt_wedge(_ep, halt, 0);
952 }
953
954 static int mv_ep_set_wedge(struct usb_ep *_ep)
955 {
956 return mv_ep_set_halt_wedge(_ep, 1, 1);
957 }
958
959 static struct usb_ep_ops mv_ep_ops = {
960 .enable = mv_ep_enable,
961 .disable = mv_ep_disable,
962
963 .alloc_request = mv_alloc_request,
964 .free_request = mv_free_request,
965
966 .queue = mv_ep_queue,
967 .dequeue = mv_ep_dequeue,
968
969 .set_wedge = mv_ep_set_wedge,
970 .set_halt = mv_ep_set_halt,
971 .fifo_flush = mv_ep_fifo_flush, /* flush fifo */
972 };
973
974 static void udc_clock_enable(struct mv_udc *udc)
975 {
976 clk_prepare_enable(udc->clk);
977 }
978
979 static void udc_clock_disable(struct mv_udc *udc)
980 {
981 clk_disable_unprepare(udc->clk);
982 }
983
984 static void udc_stop(struct mv_udc *udc)
985 {
986 u32 tmp;
987
988 /* Disable interrupts */
989 tmp = readl(&udc->op_regs->usbintr);
990 tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
991 USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
992 writel(tmp, &udc->op_regs->usbintr);
993
994 udc->stopped = 1;
995
996 /* Reset the Run the bit in the command register to stop VUSB */
997 tmp = readl(&udc->op_regs->usbcmd);
998 tmp &= ~USBCMD_RUN_STOP;
999 writel(tmp, &udc->op_regs->usbcmd);
1000 }
1001
1002 static void udc_start(struct mv_udc *udc)
1003 {
1004 u32 usbintr;
1005
1006 usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
1007 | USBINTR_PORT_CHANGE_DETECT_EN
1008 | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
1009 /* Enable interrupts */
1010 writel(usbintr, &udc->op_regs->usbintr);
1011
1012 udc->stopped = 0;
1013
1014 /* Set the Run bit in the command register */
1015 writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
1016 }
1017
1018 static int udc_reset(struct mv_udc *udc)
1019 {
1020 unsigned int loops;
1021 u32 tmp, portsc;
1022
1023 /* Stop the controller */
1024 tmp = readl(&udc->op_regs->usbcmd);
1025 tmp &= ~USBCMD_RUN_STOP;
1026 writel(tmp, &udc->op_regs->usbcmd);
1027
1028 /* Reset the controller to get default values */
1029 writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1030
1031 /* wait for reset to complete */
1032 loops = LOOPS(RESET_TIMEOUT);
1033 while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1034 if (loops == 0) {
1035 dev_err(&udc->dev->dev,
1036 "Wait for RESET completed TIMEOUT\n");
1037 return -ETIMEDOUT;
1038 }
1039 loops--;
1040 udelay(LOOPS_USEC);
1041 }
1042
1043 /* set controller to device mode */
1044 tmp = readl(&udc->op_regs->usbmode);
1045 tmp |= USBMODE_CTRL_MODE_DEVICE;
1046
1047 /* turn setup lockout off, require setup tripwire in usbcmd */
1048 tmp |= USBMODE_SETUP_LOCK_OFF;
1049
1050 writel(tmp, &udc->op_regs->usbmode);
1051
1052 writel(0x0, &udc->op_regs->epsetupstat);
1053
1054 /* Configure the Endpoint List Address */
1055 writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1056 &udc->op_regs->eplistaddr);
1057
1058 portsc = readl(&udc->op_regs->portsc[0]);
1059 if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1060 portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1061
1062 if (udc->force_fs)
1063 portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1064 else
1065 portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1066
1067 writel(portsc, &udc->op_regs->portsc[0]);
1068
1069 tmp = readl(&udc->op_regs->epctrlx[0]);
1070 tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1071 writel(tmp, &udc->op_regs->epctrlx[0]);
1072
1073 return 0;
1074 }
1075
1076 static int mv_udc_enable_internal(struct mv_udc *udc)
1077 {
1078 int retval;
1079
1080 if (udc->active)
1081 return 0;
1082
1083 dev_dbg(&udc->dev->dev, "enable udc\n");
1084 udc_clock_enable(udc);
1085 if (udc->pdata->phy_init) {
1086 retval = udc->pdata->phy_init(udc->phy_regs);
1087 if (retval) {
1088 dev_err(&udc->dev->dev,
1089 "init phy error %d\n", retval);
1090 udc_clock_disable(udc);
1091 return retval;
1092 }
1093 }
1094 udc->active = 1;
1095
1096 return 0;
1097 }
1098
1099 static int mv_udc_enable(struct mv_udc *udc)
1100 {
1101 if (udc->clock_gating)
1102 return mv_udc_enable_internal(udc);
1103
1104 return 0;
1105 }
1106
1107 static void mv_udc_disable_internal(struct mv_udc *udc)
1108 {
1109 if (udc->active) {
1110 dev_dbg(&udc->dev->dev, "disable udc\n");
1111 if (udc->pdata->phy_deinit)
1112 udc->pdata->phy_deinit(udc->phy_regs);
1113 udc_clock_disable(udc);
1114 udc->active = 0;
1115 }
1116 }
1117
1118 static void mv_udc_disable(struct mv_udc *udc)
1119 {
1120 if (udc->clock_gating)
1121 mv_udc_disable_internal(udc);
1122 }
1123
1124 static int mv_udc_get_frame(struct usb_gadget *gadget)
1125 {
1126 struct mv_udc *udc;
1127 u16 retval;
1128
1129 if (!gadget)
1130 return -ENODEV;
1131
1132 udc = container_of(gadget, struct mv_udc, gadget);
1133
1134 retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1135
1136 return retval;
1137 }
1138
1139 /* Tries to wake up the host connected to this gadget */
1140 static int mv_udc_wakeup(struct usb_gadget *gadget)
1141 {
1142 struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1143 u32 portsc;
1144
1145 /* Remote wakeup feature not enabled by host */
1146 if (!udc->remote_wakeup)
1147 return -ENOTSUPP;
1148
1149 portsc = readl(&udc->op_regs->portsc);
1150 /* not suspended? */
1151 if (!(portsc & PORTSCX_PORT_SUSPEND))
1152 return 0;
1153 /* trigger force resume */
1154 portsc |= PORTSCX_PORT_FORCE_RESUME;
1155 writel(portsc, &udc->op_regs->portsc[0]);
1156 return 0;
1157 }
1158
1159 static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
1160 {
1161 struct mv_udc *udc;
1162 unsigned long flags;
1163 int retval = 0;
1164
1165 udc = container_of(gadget, struct mv_udc, gadget);
1166 spin_lock_irqsave(&udc->lock, flags);
1167
1168 udc->vbus_active = (is_active != 0);
1169
1170 dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1171 __func__, udc->softconnect, udc->vbus_active);
1172
1173 if (udc->driver && udc->softconnect && udc->vbus_active) {
1174 retval = mv_udc_enable(udc);
1175 if (retval == 0) {
1176 /* Clock is disabled, need re-init registers */
1177 udc_reset(udc);
1178 ep0_reset(udc);
1179 udc_start(udc);
1180 }
1181 } else if (udc->driver && udc->softconnect) {
1182 if (!udc->active)
1183 goto out;
1184
1185 /* stop all the transfer in queue*/
1186 stop_activity(udc, udc->driver);
1187 udc_stop(udc);
1188 mv_udc_disable(udc);
1189 }
1190
1191 out:
1192 spin_unlock_irqrestore(&udc->lock, flags);
1193 return retval;
1194 }
1195
1196 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1197 {
1198 struct mv_udc *udc;
1199 unsigned long flags;
1200 int retval = 0;
1201
1202 udc = container_of(gadget, struct mv_udc, gadget);
1203 spin_lock_irqsave(&udc->lock, flags);
1204
1205 udc->softconnect = (is_on != 0);
1206
1207 dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1208 __func__, udc->softconnect, udc->vbus_active);
1209
1210 if (udc->driver && udc->softconnect && udc->vbus_active) {
1211 retval = mv_udc_enable(udc);
1212 if (retval == 0) {
1213 /* Clock is disabled, need re-init registers */
1214 udc_reset(udc);
1215 ep0_reset(udc);
1216 udc_start(udc);
1217 }
1218 } else if (udc->driver && udc->vbus_active) {
1219 /* stop all the transfer in queue*/
1220 stop_activity(udc, udc->driver);
1221 udc_stop(udc);
1222 mv_udc_disable(udc);
1223 }
1224
1225 spin_unlock_irqrestore(&udc->lock, flags);
1226 return retval;
1227 }
1228
1229 static int mv_udc_start(struct usb_gadget *, struct usb_gadget_driver *);
1230 static int mv_udc_stop(struct usb_gadget *, struct usb_gadget_driver *);
1231 /* device controller usb_gadget_ops structure */
1232 static const struct usb_gadget_ops mv_ops = {
1233
1234 /* returns the current frame number */
1235 .get_frame = mv_udc_get_frame,
1236
1237 /* tries to wake up the host connected to this gadget */
1238 .wakeup = mv_udc_wakeup,
1239
1240 /* notify controller that VBUS is powered or not */
1241 .vbus_session = mv_udc_vbus_session,
1242
1243 /* D+ pullup, software-controlled connect/disconnect to USB host */
1244 .pullup = mv_udc_pullup,
1245 .udc_start = mv_udc_start,
1246 .udc_stop = mv_udc_stop,
1247 };
1248
1249 static int eps_init(struct mv_udc *udc)
1250 {
1251 struct mv_ep *ep;
1252 char name[14];
1253 int i;
1254
1255 /* initialize ep0 */
1256 ep = &udc->eps[0];
1257 ep->udc = udc;
1258 strncpy(ep->name, "ep0", sizeof(ep->name));
1259 ep->ep.name = ep->name;
1260 ep->ep.ops = &mv_ep_ops;
1261 ep->wedge = 0;
1262 ep->stopped = 0;
1263 usb_ep_set_maxpacket_limit(&ep->ep, EP0_MAX_PKT_SIZE);
1264 ep->ep_num = 0;
1265 ep->ep.desc = &mv_ep0_desc;
1266 INIT_LIST_HEAD(&ep->queue);
1267
1268 ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1269
1270 /* initialize other endpoints */
1271 for (i = 2; i < udc->max_eps * 2; i++) {
1272 ep = &udc->eps[i];
1273 if (i % 2) {
1274 snprintf(name, sizeof(name), "ep%din", i / 2);
1275 ep->direction = EP_DIR_IN;
1276 } else {
1277 snprintf(name, sizeof(name), "ep%dout", i / 2);
1278 ep->direction = EP_DIR_OUT;
1279 }
1280 ep->udc = udc;
1281 strncpy(ep->name, name, sizeof(ep->name));
1282 ep->ep.name = ep->name;
1283
1284 ep->ep.ops = &mv_ep_ops;
1285 ep->stopped = 0;
1286 usb_ep_set_maxpacket_limit(&ep->ep, (unsigned short) ~0);
1287 ep->ep_num = i / 2;
1288
1289 INIT_LIST_HEAD(&ep->queue);
1290 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1291
1292 ep->dqh = &udc->ep_dqh[i];
1293 }
1294
1295 return 0;
1296 }
1297
1298 /* delete all endpoint requests, called with spinlock held */
1299 static void nuke(struct mv_ep *ep, int status)
1300 {
1301 /* called with spinlock held */
1302 ep->stopped = 1;
1303
1304 /* endpoint fifo flush */
1305 mv_ep_fifo_flush(&ep->ep);
1306
1307 while (!list_empty(&ep->queue)) {
1308 struct mv_req *req = NULL;
1309 req = list_entry(ep->queue.next, struct mv_req, queue);
1310 done(ep, req, status);
1311 }
1312 }
1313
1314 /* stop all USB activities */
1315 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1316 {
1317 struct mv_ep *ep;
1318
1319 nuke(&udc->eps[0], -ESHUTDOWN);
1320
1321 list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1322 nuke(ep, -ESHUTDOWN);
1323 }
1324
1325 /* report disconnect; the driver is already quiesced */
1326 if (driver) {
1327 spin_unlock(&udc->lock);
1328 driver->disconnect(&udc->gadget);
1329 spin_lock(&udc->lock);
1330 }
1331 }
1332
1333 static int mv_udc_start(struct usb_gadget *gadget,
1334 struct usb_gadget_driver *driver)
1335 {
1336 struct mv_udc *udc;
1337 int retval = 0;
1338 unsigned long flags;
1339
1340 udc = container_of(gadget, struct mv_udc, gadget);
1341
1342 if (udc->driver)
1343 return -EBUSY;
1344
1345 spin_lock_irqsave(&udc->lock, flags);
1346
1347 /* hook up the driver ... */
1348 driver->driver.bus = NULL;
1349 udc->driver = driver;
1350
1351 udc->usb_state = USB_STATE_ATTACHED;
1352 udc->ep0_state = WAIT_FOR_SETUP;
1353 udc->ep0_dir = EP_DIR_OUT;
1354
1355 spin_unlock_irqrestore(&udc->lock, flags);
1356
1357 if (udc->transceiver) {
1358 retval = otg_set_peripheral(udc->transceiver->otg,
1359 &udc->gadget);
1360 if (retval) {
1361 dev_err(&udc->dev->dev,
1362 "unable to register peripheral to otg\n");
1363 udc->driver = NULL;
1364 return retval;
1365 }
1366 }
1367
1368 /* pullup is always on */
1369 mv_udc_pullup(&udc->gadget, 1);
1370
1371 /* When boot with cable attached, there will be no vbus irq occurred */
1372 if (udc->qwork)
1373 queue_work(udc->qwork, &udc->vbus_work);
1374
1375 return 0;
1376 }
1377
1378 static int mv_udc_stop(struct usb_gadget *gadget,
1379 struct usb_gadget_driver *driver)
1380 {
1381 struct mv_udc *udc;
1382 unsigned long flags;
1383
1384 udc = container_of(gadget, struct mv_udc, gadget);
1385
1386 spin_lock_irqsave(&udc->lock, flags);
1387
1388 mv_udc_enable(udc);
1389 udc_stop(udc);
1390
1391 /* stop all usb activities */
1392 udc->gadget.speed = USB_SPEED_UNKNOWN;
1393 stop_activity(udc, driver);
1394 mv_udc_disable(udc);
1395
1396 spin_unlock_irqrestore(&udc->lock, flags);
1397
1398 /* unbind gadget driver */
1399 udc->driver = NULL;
1400
1401 return 0;
1402 }
1403
1404 static void mv_set_ptc(struct mv_udc *udc, u32 mode)
1405 {
1406 u32 portsc;
1407
1408 portsc = readl(&udc->op_regs->portsc[0]);
1409 portsc |= mode << 16;
1410 writel(portsc, &udc->op_regs->portsc[0]);
1411 }
1412
1413 static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
1414 {
1415 struct mv_ep *mvep = container_of(ep, struct mv_ep, ep);
1416 struct mv_req *req = container_of(_req, struct mv_req, req);
1417 struct mv_udc *udc;
1418 unsigned long flags;
1419
1420 udc = mvep->udc;
1421
1422 dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
1423
1424 spin_lock_irqsave(&udc->lock, flags);
1425 if (req->test_mode) {
1426 mv_set_ptc(udc, req->test_mode);
1427 req->test_mode = 0;
1428 }
1429 spin_unlock_irqrestore(&udc->lock, flags);
1430 }
1431
1432 static int
1433 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1434 {
1435 int retval = 0;
1436 struct mv_req *req;
1437 struct mv_ep *ep;
1438
1439 ep = &udc->eps[0];
1440 udc->ep0_dir = direction;
1441 udc->ep0_state = WAIT_FOR_OUT_STATUS;
1442
1443 req = udc->status_req;
1444
1445 /* fill in the reqest structure */
1446 if (empty == false) {
1447 *((u16 *) req->req.buf) = cpu_to_le16(status);
1448 req->req.length = 2;
1449 } else
1450 req->req.length = 0;
1451
1452 req->ep = ep;
1453 req->req.status = -EINPROGRESS;
1454 req->req.actual = 0;
1455 if (udc->test_mode) {
1456 req->req.complete = prime_status_complete;
1457 req->test_mode = udc->test_mode;
1458 udc->test_mode = 0;
1459 } else
1460 req->req.complete = NULL;
1461 req->dtd_count = 0;
1462
1463 if (req->req.dma == DMA_ADDR_INVALID) {
1464 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
1465 req->req.buf, req->req.length,
1466 ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1467 req->mapped = 1;
1468 }
1469
1470 /* prime the data phase */
1471 if (!req_to_dtd(req)) {
1472 retval = queue_dtd(ep, req);
1473 if (retval) {
1474 dev_err(&udc->dev->dev,
1475 "Failed to queue dtd when prime status\n");
1476 goto out;
1477 }
1478 } else{ /* no mem */
1479 retval = -ENOMEM;
1480 dev_err(&udc->dev->dev,
1481 "Failed to dma_pool_alloc when prime status\n");
1482 goto out;
1483 }
1484
1485 list_add_tail(&req->queue, &ep->queue);
1486
1487 return 0;
1488 out:
1489 usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
1490
1491 return retval;
1492 }
1493
1494 static void mv_udc_testmode(struct mv_udc *udc, u16 index)
1495 {
1496 if (index <= TEST_FORCE_EN) {
1497 udc->test_mode = index;
1498 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1499 ep0_stall(udc);
1500 } else
1501 dev_err(&udc->dev->dev,
1502 "This test mode(%d) is not supported\n", index);
1503 }
1504
1505 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1506 {
1507 udc->dev_addr = (u8)setup->wValue;
1508
1509 /* update usb state */
1510 udc->usb_state = USB_STATE_ADDRESS;
1511
1512 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1513 ep0_stall(udc);
1514 }
1515
1516 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1517 struct usb_ctrlrequest *setup)
1518 {
1519 u16 status = 0;
1520 int retval;
1521
1522 if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1523 != (USB_DIR_IN | USB_TYPE_STANDARD))
1524 return;
1525
1526 if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1527 status = 1 << USB_DEVICE_SELF_POWERED;
1528 status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1529 } else if ((setup->bRequestType & USB_RECIP_MASK)
1530 == USB_RECIP_INTERFACE) {
1531 /* get interface status */
1532 status = 0;
1533 } else if ((setup->bRequestType & USB_RECIP_MASK)
1534 == USB_RECIP_ENDPOINT) {
1535 u8 ep_num, direction;
1536
1537 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1538 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1539 ? EP_DIR_IN : EP_DIR_OUT;
1540 status = ep_is_stall(udc, ep_num, direction)
1541 << USB_ENDPOINT_HALT;
1542 }
1543
1544 retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1545 if (retval)
1546 ep0_stall(udc);
1547 else
1548 udc->ep0_state = DATA_STATE_XMIT;
1549 }
1550
1551 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1552 {
1553 u8 ep_num;
1554 u8 direction;
1555 struct mv_ep *ep;
1556
1557 if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1558 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1559 switch (setup->wValue) {
1560 case USB_DEVICE_REMOTE_WAKEUP:
1561 udc->remote_wakeup = 0;
1562 break;
1563 default:
1564 goto out;
1565 }
1566 } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1567 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1568 switch (setup->wValue) {
1569 case USB_ENDPOINT_HALT:
1570 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1571 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1572 ? EP_DIR_IN : EP_DIR_OUT;
1573 if (setup->wValue != 0 || setup->wLength != 0
1574 || ep_num > udc->max_eps)
1575 goto out;
1576 ep = &udc->eps[ep_num * 2 + direction];
1577 if (ep->wedge == 1)
1578 break;
1579 spin_unlock(&udc->lock);
1580 ep_set_stall(udc, ep_num, direction, 0);
1581 spin_lock(&udc->lock);
1582 break;
1583 default:
1584 goto out;
1585 }
1586 } else
1587 goto out;
1588
1589 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1590 ep0_stall(udc);
1591 out:
1592 return;
1593 }
1594
1595 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1596 {
1597 u8 ep_num;
1598 u8 direction;
1599
1600 if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1601 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1602 switch (setup->wValue) {
1603 case USB_DEVICE_REMOTE_WAKEUP:
1604 udc->remote_wakeup = 1;
1605 break;
1606 case USB_DEVICE_TEST_MODE:
1607 if (setup->wIndex & 0xFF
1608 || udc->gadget.speed != USB_SPEED_HIGH)
1609 ep0_stall(udc);
1610
1611 if (udc->usb_state != USB_STATE_CONFIGURED
1612 && udc->usb_state != USB_STATE_ADDRESS
1613 && udc->usb_state != USB_STATE_DEFAULT)
1614 ep0_stall(udc);
1615
1616 mv_udc_testmode(udc, (setup->wIndex >> 8));
1617 goto out;
1618 default:
1619 goto out;
1620 }
1621 } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1622 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1623 switch (setup->wValue) {
1624 case USB_ENDPOINT_HALT:
1625 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1626 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1627 ? EP_DIR_IN : EP_DIR_OUT;
1628 if (setup->wValue != 0 || setup->wLength != 0
1629 || ep_num > udc->max_eps)
1630 goto out;
1631 spin_unlock(&udc->lock);
1632 ep_set_stall(udc, ep_num, direction, 1);
1633 spin_lock(&udc->lock);
1634 break;
1635 default:
1636 goto out;
1637 }
1638 } else
1639 goto out;
1640
1641 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1642 ep0_stall(udc);
1643 out:
1644 return;
1645 }
1646
1647 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1648 struct usb_ctrlrequest *setup)
1649 __releases(&ep->udc->lock)
1650 __acquires(&ep->udc->lock)
1651 {
1652 bool delegate = false;
1653
1654 nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1655
1656 dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1657 setup->bRequestType, setup->bRequest,
1658 setup->wValue, setup->wIndex, setup->wLength);
1659 /* We process some stardard setup requests here */
1660 if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1661 switch (setup->bRequest) {
1662 case USB_REQ_GET_STATUS:
1663 ch9getstatus(udc, ep_num, setup);
1664 break;
1665
1666 case USB_REQ_SET_ADDRESS:
1667 ch9setaddress(udc, setup);
1668 break;
1669
1670 case USB_REQ_CLEAR_FEATURE:
1671 ch9clearfeature(udc, setup);
1672 break;
1673
1674 case USB_REQ_SET_FEATURE:
1675 ch9setfeature(udc, setup);
1676 break;
1677
1678 default:
1679 delegate = true;
1680 }
1681 } else
1682 delegate = true;
1683
1684 /* delegate USB standard requests to the gadget driver */
1685 if (delegate == true) {
1686 /* USB requests handled by gadget */
1687 if (setup->wLength) {
1688 /* DATA phase from gadget, STATUS phase from udc */
1689 udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1690 ? EP_DIR_IN : EP_DIR_OUT;
1691 spin_unlock(&udc->lock);
1692 if (udc->driver->setup(&udc->gadget,
1693 &udc->local_setup_buff) < 0)
1694 ep0_stall(udc);
1695 spin_lock(&udc->lock);
1696 udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1697 ? DATA_STATE_XMIT : DATA_STATE_RECV;
1698 } else {
1699 /* no DATA phase, IN STATUS phase from gadget */
1700 udc->ep0_dir = EP_DIR_IN;
1701 spin_unlock(&udc->lock);
1702 if (udc->driver->setup(&udc->gadget,
1703 &udc->local_setup_buff) < 0)
1704 ep0_stall(udc);
1705 spin_lock(&udc->lock);
1706 udc->ep0_state = WAIT_FOR_OUT_STATUS;
1707 }
1708 }
1709 }
1710
1711 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
1712 static void ep0_req_complete(struct mv_udc *udc,
1713 struct mv_ep *ep0, struct mv_req *req)
1714 {
1715 u32 new_addr;
1716
1717 if (udc->usb_state == USB_STATE_ADDRESS) {
1718 /* set the new address */
1719 new_addr = (u32)udc->dev_addr;
1720 writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1721 &udc->op_regs->deviceaddr);
1722 }
1723
1724 done(ep0, req, 0);
1725
1726 switch (udc->ep0_state) {
1727 case DATA_STATE_XMIT:
1728 /* receive status phase */
1729 if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1730 ep0_stall(udc);
1731 break;
1732 case DATA_STATE_RECV:
1733 /* send status phase */
1734 if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1735 ep0_stall(udc);
1736 break;
1737 case WAIT_FOR_OUT_STATUS:
1738 udc->ep0_state = WAIT_FOR_SETUP;
1739 break;
1740 case WAIT_FOR_SETUP:
1741 dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1742 break;
1743 default:
1744 ep0_stall(udc);
1745 break;
1746 }
1747 }
1748
1749 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1750 {
1751 u32 temp;
1752 struct mv_dqh *dqh;
1753
1754 dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1755
1756 /* Clear bit in ENDPTSETUPSTAT */
1757 writel((1 << ep_num), &udc->op_regs->epsetupstat);
1758
1759 /* while a hazard exists when setup package arrives */
1760 do {
1761 /* Set Setup Tripwire */
1762 temp = readl(&udc->op_regs->usbcmd);
1763 writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1764
1765 /* Copy the setup packet to local buffer */
1766 memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1767 } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1768
1769 /* Clear Setup Tripwire */
1770 temp = readl(&udc->op_regs->usbcmd);
1771 writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1772 }
1773
1774 static void irq_process_tr_complete(struct mv_udc *udc)
1775 {
1776 u32 tmp, bit_pos;
1777 int i, ep_num = 0, direction = 0;
1778 struct mv_ep *curr_ep;
1779 struct mv_req *curr_req, *temp_req;
1780 int status;
1781
1782 /*
1783 * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1784 * because the setup packets are to be read ASAP
1785 */
1786
1787 /* Process all Setup packet received interrupts */
1788 tmp = readl(&udc->op_regs->epsetupstat);
1789
1790 if (tmp) {
1791 for (i = 0; i < udc->max_eps; i++) {
1792 if (tmp & (1 << i)) {
1793 get_setup_data(udc, i,
1794 (u8 *)(&udc->local_setup_buff));
1795 handle_setup_packet(udc, i,
1796 &udc->local_setup_buff);
1797 }
1798 }
1799 }
1800
1801 /* Don't clear the endpoint setup status register here.
1802 * It is cleared as a setup packet is read out of the buffer
1803 */
1804
1805 /* Process non-setup transaction complete interrupts */
1806 tmp = readl(&udc->op_regs->epcomplete);
1807
1808 if (!tmp)
1809 return;
1810
1811 writel(tmp, &udc->op_regs->epcomplete);
1812
1813 for (i = 0; i < udc->max_eps * 2; i++) {
1814 ep_num = i >> 1;
1815 direction = i % 2;
1816
1817 bit_pos = 1 << (ep_num + 16 * direction);
1818
1819 if (!(bit_pos & tmp))
1820 continue;
1821
1822 if (i == 1)
1823 curr_ep = &udc->eps[0];
1824 else
1825 curr_ep = &udc->eps[i];
1826 /* process the req queue until an uncomplete request */
1827 list_for_each_entry_safe(curr_req, temp_req,
1828 &curr_ep->queue, queue) {
1829 status = process_ep_req(udc, i, curr_req);
1830 if (status)
1831 break;
1832
1833 /* write back status to req */
1834 curr_req->req.status = status;
1835
1836 /* ep0 request completion */
1837 if (ep_num == 0) {
1838 ep0_req_complete(udc, curr_ep, curr_req);
1839 break;
1840 } else {
1841 done(curr_ep, curr_req, status);
1842 }
1843 }
1844 }
1845 }
1846
1847 static void irq_process_reset(struct mv_udc *udc)
1848 {
1849 u32 tmp;
1850 unsigned int loops;
1851
1852 udc->ep0_dir = EP_DIR_OUT;
1853 udc->ep0_state = WAIT_FOR_SETUP;
1854 udc->remote_wakeup = 0; /* default to 0 on reset */
1855
1856 /* The address bits are past bit 25-31. Set the address */
1857 tmp = readl(&udc->op_regs->deviceaddr);
1858 tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1859 writel(tmp, &udc->op_regs->deviceaddr);
1860
1861 /* Clear all the setup token semaphores */
1862 tmp = readl(&udc->op_regs->epsetupstat);
1863 writel(tmp, &udc->op_regs->epsetupstat);
1864
1865 /* Clear all the endpoint complete status bits */
1866 tmp = readl(&udc->op_regs->epcomplete);
1867 writel(tmp, &udc->op_regs->epcomplete);
1868
1869 /* wait until all endptprime bits cleared */
1870 loops = LOOPS(PRIME_TIMEOUT);
1871 while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1872 if (loops == 0) {
1873 dev_err(&udc->dev->dev,
1874 "Timeout for ENDPTPRIME = 0x%x\n",
1875 readl(&udc->op_regs->epprime));
1876 break;
1877 }
1878 loops--;
1879 udelay(LOOPS_USEC);
1880 }
1881
1882 /* Write 1s to the Flush register */
1883 writel((u32)~0, &udc->op_regs->epflush);
1884
1885 if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1886 dev_info(&udc->dev->dev, "usb bus reset\n");
1887 udc->usb_state = USB_STATE_DEFAULT;
1888 /* reset all the queues, stop all USB activities */
1889 stop_activity(udc, udc->driver);
1890 } else {
1891 dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1892 readl(&udc->op_regs->portsc));
1893
1894 /*
1895 * re-initialize
1896 * controller reset
1897 */
1898 udc_reset(udc);
1899
1900 /* reset all the queues, stop all USB activities */
1901 stop_activity(udc, udc->driver);
1902
1903 /* reset ep0 dQH and endptctrl */
1904 ep0_reset(udc);
1905
1906 /* enable interrupt and set controller to run state */
1907 udc_start(udc);
1908
1909 udc->usb_state = USB_STATE_ATTACHED;
1910 }
1911 }
1912
1913 static void handle_bus_resume(struct mv_udc *udc)
1914 {
1915 udc->usb_state = udc->resume_state;
1916 udc->resume_state = 0;
1917
1918 /* report resume to the driver */
1919 if (udc->driver) {
1920 if (udc->driver->resume) {
1921 spin_unlock(&udc->lock);
1922 udc->driver->resume(&udc->gadget);
1923 spin_lock(&udc->lock);
1924 }
1925 }
1926 }
1927
1928 static void irq_process_suspend(struct mv_udc *udc)
1929 {
1930 udc->resume_state = udc->usb_state;
1931 udc->usb_state = USB_STATE_SUSPENDED;
1932
1933 if (udc->driver->suspend) {
1934 spin_unlock(&udc->lock);
1935 udc->driver->suspend(&udc->gadget);
1936 spin_lock(&udc->lock);
1937 }
1938 }
1939
1940 static void irq_process_port_change(struct mv_udc *udc)
1941 {
1942 u32 portsc;
1943
1944 portsc = readl(&udc->op_regs->portsc[0]);
1945 if (!(portsc & PORTSCX_PORT_RESET)) {
1946 /* Get the speed */
1947 u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1948 switch (speed) {
1949 case PORTSCX_PORT_SPEED_HIGH:
1950 udc->gadget.speed = USB_SPEED_HIGH;
1951 break;
1952 case PORTSCX_PORT_SPEED_FULL:
1953 udc->gadget.speed = USB_SPEED_FULL;
1954 break;
1955 case PORTSCX_PORT_SPEED_LOW:
1956 udc->gadget.speed = USB_SPEED_LOW;
1957 break;
1958 default:
1959 udc->gadget.speed = USB_SPEED_UNKNOWN;
1960 break;
1961 }
1962 }
1963
1964 if (portsc & PORTSCX_PORT_SUSPEND) {
1965 udc->resume_state = udc->usb_state;
1966 udc->usb_state = USB_STATE_SUSPENDED;
1967 if (udc->driver->suspend) {
1968 spin_unlock(&udc->lock);
1969 udc->driver->suspend(&udc->gadget);
1970 spin_lock(&udc->lock);
1971 }
1972 }
1973
1974 if (!(portsc & PORTSCX_PORT_SUSPEND)
1975 && udc->usb_state == USB_STATE_SUSPENDED) {
1976 handle_bus_resume(udc);
1977 }
1978
1979 if (!udc->resume_state)
1980 udc->usb_state = USB_STATE_DEFAULT;
1981 }
1982
1983 static void irq_process_error(struct mv_udc *udc)
1984 {
1985 /* Increment the error count */
1986 udc->errors++;
1987 }
1988
1989 static irqreturn_t mv_udc_irq(int irq, void *dev)
1990 {
1991 struct mv_udc *udc = (struct mv_udc *)dev;
1992 u32 status, intr;
1993
1994 /* Disable ISR when stopped bit is set */
1995 if (udc->stopped)
1996 return IRQ_NONE;
1997
1998 spin_lock(&udc->lock);
1999
2000 status = readl(&udc->op_regs->usbsts);
2001 intr = readl(&udc->op_regs->usbintr);
2002 status &= intr;
2003
2004 if (status == 0) {
2005 spin_unlock(&udc->lock);
2006 return IRQ_NONE;
2007 }
2008
2009 /* Clear all the interrupts occurred */
2010 writel(status, &udc->op_regs->usbsts);
2011
2012 if (status & USBSTS_ERR)
2013 irq_process_error(udc);
2014
2015 if (status & USBSTS_RESET)
2016 irq_process_reset(udc);
2017
2018 if (status & USBSTS_PORT_CHANGE)
2019 irq_process_port_change(udc);
2020
2021 if (status & USBSTS_INT)
2022 irq_process_tr_complete(udc);
2023
2024 if (status & USBSTS_SUSPEND)
2025 irq_process_suspend(udc);
2026
2027 spin_unlock(&udc->lock);
2028
2029 return IRQ_HANDLED;
2030 }
2031
2032 static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
2033 {
2034 struct mv_udc *udc = (struct mv_udc *)dev;
2035
2036 /* polling VBUS and init phy may cause too much time*/
2037 if (udc->qwork)
2038 queue_work(udc->qwork, &udc->vbus_work);
2039
2040 return IRQ_HANDLED;
2041 }
2042
2043 static void mv_udc_vbus_work(struct work_struct *work)
2044 {
2045 struct mv_udc *udc;
2046 unsigned int vbus;
2047
2048 udc = container_of(work, struct mv_udc, vbus_work);
2049 if (!udc->pdata->vbus)
2050 return;
2051
2052 vbus = udc->pdata->vbus->poll();
2053 dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
2054
2055 if (vbus == VBUS_HIGH)
2056 mv_udc_vbus_session(&udc->gadget, 1);
2057 else if (vbus == VBUS_LOW)
2058 mv_udc_vbus_session(&udc->gadget, 0);
2059 }
2060
2061 /* release device structure */
2062 static void gadget_release(struct device *_dev)
2063 {
2064 struct mv_udc *udc;
2065
2066 udc = dev_get_drvdata(_dev);
2067
2068 complete(udc->done);
2069 }
2070
2071 static int mv_udc_remove(struct platform_device *pdev)
2072 {
2073 struct mv_udc *udc;
2074
2075 udc = platform_get_drvdata(pdev);
2076
2077 usb_del_gadget_udc(&udc->gadget);
2078
2079 if (udc->qwork) {
2080 flush_workqueue(udc->qwork);
2081 destroy_workqueue(udc->qwork);
2082 }
2083
2084 /* free memory allocated in probe */
2085 if (udc->dtd_pool)
2086 dma_pool_destroy(udc->dtd_pool);
2087
2088 if (udc->ep_dqh)
2089 dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2090 udc->ep_dqh, udc->ep_dqh_dma);
2091
2092 mv_udc_disable(udc);
2093
2094 /* free dev, wait for the release() finished */
2095 wait_for_completion(udc->done);
2096
2097 return 0;
2098 }
2099
2100 static int mv_udc_probe(struct platform_device *pdev)
2101 {
2102 struct mv_usb_platform_data *pdata = dev_get_platdata(&pdev->dev);
2103 struct mv_udc *udc;
2104 int retval = 0;
2105 struct resource *r;
2106 size_t size;
2107
2108 if (pdata == NULL) {
2109 dev_err(&pdev->dev, "missing platform_data\n");
2110 return -ENODEV;
2111 }
2112
2113 udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2114 if (udc == NULL) {
2115 dev_err(&pdev->dev, "failed to allocate memory for udc\n");
2116 return -ENOMEM;
2117 }
2118
2119 udc->done = &release_done;
2120 udc->pdata = dev_get_platdata(&pdev->dev);
2121 spin_lock_init(&udc->lock);
2122
2123 udc->dev = pdev;
2124
2125 if (pdata->mode == MV_USB_MODE_OTG) {
2126 udc->transceiver = devm_usb_get_phy(&pdev->dev,
2127 USB_PHY_TYPE_USB2);
2128 if (IS_ERR(udc->transceiver)) {
2129 retval = PTR_ERR(udc->transceiver);
2130
2131 if (retval == -ENXIO)
2132 return retval;
2133
2134 udc->transceiver = NULL;
2135 return -EPROBE_DEFER;
2136 }
2137 }
2138
2139 /* udc only have one sysclk. */
2140 udc->clk = devm_clk_get(&pdev->dev, NULL);
2141 if (IS_ERR(udc->clk))
2142 return PTR_ERR(udc->clk);
2143
2144 r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
2145 if (r == NULL) {
2146 dev_err(&pdev->dev, "no I/O memory resource defined\n");
2147 return -ENODEV;
2148 }
2149
2150 udc->cap_regs = (struct mv_cap_regs __iomem *)
2151 devm_ioremap(&pdev->dev, r->start, resource_size(r));
2152 if (udc->cap_regs == NULL) {
2153 dev_err(&pdev->dev, "failed to map I/O memory\n");
2154 return -EBUSY;
2155 }
2156
2157 r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
2158 if (r == NULL) {
2159 dev_err(&pdev->dev, "no phy I/O memory resource defined\n");
2160 return -ENODEV;
2161 }
2162
2163 udc->phy_regs = ioremap(r->start, resource_size(r));
2164 if (udc->phy_regs == NULL) {
2165 dev_err(&pdev->dev, "failed to map phy I/O memory\n");
2166 return -EBUSY;
2167 }
2168
2169 /* we will acces controller register, so enable the clk */
2170 retval = mv_udc_enable_internal(udc);
2171 if (retval)
2172 return retval;
2173
2174 udc->op_regs =
2175 (struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
2176 + (readl(&udc->cap_regs->caplength_hciversion)
2177 & CAPLENGTH_MASK));
2178 udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
2179
2180 /*
2181 * some platform will use usb to download image, it may not disconnect
2182 * usb gadget before loading kernel. So first stop udc here.
2183 */
2184 udc_stop(udc);
2185 writel(0xFFFFFFFF, &udc->op_regs->usbsts);
2186
2187 size = udc->max_eps * sizeof(struct mv_dqh) *2;
2188 size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
2189 udc->ep_dqh = dma_alloc_coherent(&pdev->dev, size,
2190 &udc->ep_dqh_dma, GFP_KERNEL);
2191
2192 if (udc->ep_dqh == NULL) {
2193 dev_err(&pdev->dev, "allocate dQH memory failed\n");
2194 retval = -ENOMEM;
2195 goto err_disable_clock;
2196 }
2197 udc->ep_dqh_size = size;
2198
2199 /* create dTD dma_pool resource */
2200 udc->dtd_pool = dma_pool_create("mv_dtd",
2201 &pdev->dev,
2202 sizeof(struct mv_dtd),
2203 DTD_ALIGNMENT,
2204 DMA_BOUNDARY);
2205
2206 if (!udc->dtd_pool) {
2207 retval = -ENOMEM;
2208 goto err_free_dma;
2209 }
2210
2211 size = udc->max_eps * sizeof(struct mv_ep) *2;
2212 udc->eps = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
2213 if (udc->eps == NULL) {
2214 dev_err(&pdev->dev, "allocate ep memory failed\n");
2215 retval = -ENOMEM;
2216 goto err_destroy_dma;
2217 }
2218
2219 /* initialize ep0 status request structure */
2220 udc->status_req = devm_kzalloc(&pdev->dev, sizeof(struct mv_req),
2221 GFP_KERNEL);
2222 if (!udc->status_req) {
2223 dev_err(&pdev->dev, "allocate status_req memory failed\n");
2224 retval = -ENOMEM;
2225 goto err_destroy_dma;
2226 }
2227 INIT_LIST_HEAD(&udc->status_req->queue);
2228
2229 /* allocate a small amount of memory to get valid address */
2230 udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2231 udc->status_req->req.dma = DMA_ADDR_INVALID;
2232
2233 udc->resume_state = USB_STATE_NOTATTACHED;
2234 udc->usb_state = USB_STATE_POWERED;
2235 udc->ep0_dir = EP_DIR_OUT;
2236 udc->remote_wakeup = 0;
2237
2238 r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2239 if (r == NULL) {
2240 dev_err(&pdev->dev, "no IRQ resource defined\n");
2241 retval = -ENODEV;
2242 goto err_destroy_dma;
2243 }
2244 udc->irq = r->start;
2245 if (devm_request_irq(&pdev->dev, udc->irq, mv_udc_irq,
2246 IRQF_SHARED, driver_name, udc)) {
2247 dev_err(&pdev->dev, "Request irq %d for UDC failed\n",
2248 udc->irq);
2249 retval = -ENODEV;
2250 goto err_destroy_dma;
2251 }
2252
2253 /* initialize gadget structure */
2254 udc->gadget.ops = &mv_ops; /* usb_gadget_ops */
2255 udc->gadget.ep0 = &udc->eps[0].ep; /* gadget ep0 */
2256 INIT_LIST_HEAD(&udc->gadget.ep_list); /* ep_list */
2257 udc->gadget.speed = USB_SPEED_UNKNOWN; /* speed */
2258 udc->gadget.max_speed = USB_SPEED_HIGH; /* support dual speed */
2259
2260 /* the "gadget" abstracts/virtualizes the controller */
2261 udc->gadget.name = driver_name; /* gadget name */
2262
2263 eps_init(udc);
2264
2265 /* VBUS detect: we can disable/enable clock on demand.*/
2266 if (udc->transceiver)
2267 udc->clock_gating = 1;
2268 else if (pdata->vbus) {
2269 udc->clock_gating = 1;
2270 retval = devm_request_threaded_irq(&pdev->dev,
2271 pdata->vbus->irq, NULL,
2272 mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
2273 if (retval) {
2274 dev_info(&pdev->dev,
2275 "Can not request irq for VBUS, "
2276 "disable clock gating\n");
2277 udc->clock_gating = 0;
2278 }
2279
2280 udc->qwork = create_singlethread_workqueue("mv_udc_queue");
2281 if (!udc->qwork) {
2282 dev_err(&pdev->dev, "cannot create workqueue\n");
2283 retval = -ENOMEM;
2284 goto err_destroy_dma;
2285 }
2286
2287 INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
2288 }
2289
2290 /*
2291 * When clock gating is supported, we can disable clk and phy.
2292 * If not, it means that VBUS detection is not supported, we
2293 * have to enable vbus active all the time to let controller work.
2294 */
2295 if (udc->clock_gating)
2296 mv_udc_disable_internal(udc);
2297 else
2298 udc->vbus_active = 1;
2299
2300 retval = usb_add_gadget_udc_release(&pdev->dev, &udc->gadget,
2301 gadget_release);
2302 if (retval)
2303 goto err_create_workqueue;
2304
2305 platform_set_drvdata(pdev, udc);
2306 dev_info(&pdev->dev, "successful probe UDC device %s clock gating.\n",
2307 udc->clock_gating ? "with" : "without");
2308
2309 return 0;
2310
2311 err_create_workqueue:
2312 destroy_workqueue(udc->qwork);
2313 err_destroy_dma:
2314 dma_pool_destroy(udc->dtd_pool);
2315 err_free_dma:
2316 dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2317 udc->ep_dqh, udc->ep_dqh_dma);
2318 err_disable_clock:
2319 mv_udc_disable_internal(udc);
2320
2321 return retval;
2322 }
2323
2324 #ifdef CONFIG_PM
2325 static int mv_udc_suspend(struct device *dev)
2326 {
2327 struct mv_udc *udc;
2328
2329 udc = dev_get_drvdata(dev);
2330
2331 /* if OTG is enabled, the following will be done in OTG driver*/
2332 if (udc->transceiver)
2333 return 0;
2334
2335 if (udc->pdata->vbus && udc->pdata->vbus->poll)
2336 if (udc->pdata->vbus->poll() == VBUS_HIGH) {
2337 dev_info(&udc->dev->dev, "USB cable is connected!\n");
2338 return -EAGAIN;
2339 }
2340
2341 /*
2342 * only cable is unplugged, udc can suspend.
2343 * So do not care about clock_gating == 1.
2344 */
2345 if (!udc->clock_gating) {
2346 udc_stop(udc);
2347
2348 spin_lock_irq(&udc->lock);
2349 /* stop all usb activities */
2350 stop_activity(udc, udc->driver);
2351 spin_unlock_irq(&udc->lock);
2352
2353 mv_udc_disable_internal(udc);
2354 }
2355
2356 return 0;
2357 }
2358
2359 static int mv_udc_resume(struct device *dev)
2360 {
2361 struct mv_udc *udc;
2362 int retval;
2363
2364 udc = dev_get_drvdata(dev);
2365
2366 /* if OTG is enabled, the following will be done in OTG driver*/
2367 if (udc->transceiver)
2368 return 0;
2369
2370 if (!udc->clock_gating) {
2371 retval = mv_udc_enable_internal(udc);
2372 if (retval)
2373 return retval;
2374
2375 if (udc->driver && udc->softconnect) {
2376 udc_reset(udc);
2377 ep0_reset(udc);
2378 udc_start(udc);
2379 }
2380 }
2381
2382 return 0;
2383 }
2384
2385 static const struct dev_pm_ops mv_udc_pm_ops = {
2386 .suspend = mv_udc_suspend,
2387 .resume = mv_udc_resume,
2388 };
2389 #endif
2390
2391 static void mv_udc_shutdown(struct platform_device *pdev)
2392 {
2393 struct mv_udc *udc;
2394 u32 mode;
2395
2396 udc = platform_get_drvdata(pdev);
2397 /* reset controller mode to IDLE */
2398 mv_udc_enable(udc);
2399 mode = readl(&udc->op_regs->usbmode);
2400 mode &= ~3;
2401 writel(mode, &udc->op_regs->usbmode);
2402 mv_udc_disable(udc);
2403 }
2404
2405 static struct platform_driver udc_driver = {
2406 .probe = mv_udc_probe,
2407 .remove = mv_udc_remove,
2408 .shutdown = mv_udc_shutdown,
2409 .driver = {
2410 .owner = THIS_MODULE,
2411 .name = "mv-udc",
2412 #ifdef CONFIG_PM
2413 .pm = &mv_udc_pm_ops,
2414 #endif
2415 },
2416 };
2417
2418 module_platform_driver(udc_driver);
2419 MODULE_ALIAS("platform:mv-udc");
2420 MODULE_DESCRIPTION(DRIVER_DESC);
2421 MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
2422 MODULE_VERSION(DRIVER_VERSION);
2423 MODULE_LICENSE("GPL");
This page took 0.118029 seconds and 5 git commands to generate.