usb: gadget: s3c-hsotg: fix "halted" property updating
[deliverable/linux.git] / drivers / usb / gadget / s3c-hsotg.c
1 /**
2 * linux/drivers/usb/gadget/s3c-hsotg.c
3 *
4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com
6 *
7 * Copyright 2008 Openmoko, Inc.
8 * Copyright 2008 Simtec Electronics
9 * Ben Dooks <ben@simtec.co.uk>
10 * http://armlinux.simtec.co.uk/
11 *
12 * S3C USB2.0 High-speed / OtG driver
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/interrupt.h>
23 #include <linux/platform_device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/delay.h>
28 #include <linux/io.h>
29 #include <linux/slab.h>
30 #include <linux/clk.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/of_platform.h>
33
34 #include <linux/usb/ch9.h>
35 #include <linux/usb/gadget.h>
36 #include <linux/usb/phy.h>
37 #include <linux/platform_data/s3c-hsotg.h>
38
39 #include <mach/map.h>
40
41 #include "s3c-hsotg.h"
42
43 static const char * const s3c_hsotg_supply_names[] = {
44 "vusb_d", /* digital USB supply, 1.2V */
45 "vusb_a", /* analog USB supply, 1.1V */
46 };
47
48 /*
49 * EP0_MPS_LIMIT
50 *
51 * Unfortunately there seems to be a limit of the amount of data that can
52 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
53 * packets (which practically means 1 packet and 63 bytes of data) when the
54 * MPS is set to 64.
55 *
56 * This means if we are wanting to move >127 bytes of data, we need to
57 * split the transactions up, but just doing one packet at a time does
58 * not work (this may be an implicit DATA0 PID on first packet of the
59 * transaction) and doing 2 packets is outside the controller's limits.
60 *
61 * If we try to lower the MPS size for EP0, then no transfers work properly
62 * for EP0, and the system will fail basic enumeration. As no cause for this
63 * has currently been found, we cannot support any large IN transfers for
64 * EP0.
65 */
66 #define EP0_MPS_LIMIT 64
67
68 struct s3c_hsotg;
69 struct s3c_hsotg_req;
70
71 /**
72 * struct s3c_hsotg_ep - driver endpoint definition.
73 * @ep: The gadget layer representation of the endpoint.
74 * @name: The driver generated name for the endpoint.
75 * @queue: Queue of requests for this endpoint.
76 * @parent: Reference back to the parent device structure.
77 * @req: The current request that the endpoint is processing. This is
78 * used to indicate an request has been loaded onto the endpoint
79 * and has yet to be completed (maybe due to data move, or simply
80 * awaiting an ack from the core all the data has been completed).
81 * @debugfs: File entry for debugfs file for this endpoint.
82 * @lock: State lock to protect contents of endpoint.
83 * @dir_in: Set to true if this endpoint is of the IN direction, which
84 * means that it is sending data to the Host.
85 * @index: The index for the endpoint registers.
86 * @mc: Multi Count - number of transactions per microframe
87 * @interval - Interval for periodic endpoints
88 * @name: The name array passed to the USB core.
89 * @halted: Set if the endpoint has been halted.
90 * @periodic: Set if this is a periodic ep, such as Interrupt
91 * @isochronous: Set if this is a isochronous ep
92 * @sent_zlp: Set if we've sent a zero-length packet.
93 * @total_data: The total number of data bytes done.
94 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
95 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
96 * @last_load: The offset of data for the last start of request.
97 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
98 *
99 * This is the driver's state for each registered enpoint, allowing it
100 * to keep track of transactions that need doing. Each endpoint has a
101 * lock to protect the state, to try and avoid using an overall lock
102 * for the host controller as much as possible.
103 *
104 * For periodic IN endpoints, we have fifo_size and fifo_load to try
105 * and keep track of the amount of data in the periodic FIFO for each
106 * of these as we don't have a status register that tells us how much
107 * is in each of them. (note, this may actually be useless information
108 * as in shared-fifo mode periodic in acts like a single-frame packet
109 * buffer than a fifo)
110 */
111 struct s3c_hsotg_ep {
112 struct usb_ep ep;
113 struct list_head queue;
114 struct s3c_hsotg *parent;
115 struct s3c_hsotg_req *req;
116 struct dentry *debugfs;
117
118
119 unsigned long total_data;
120 unsigned int size_loaded;
121 unsigned int last_load;
122 unsigned int fifo_load;
123 unsigned short fifo_size;
124
125 unsigned char dir_in;
126 unsigned char index;
127 unsigned char mc;
128 unsigned char interval;
129
130 unsigned int halted:1;
131 unsigned int periodic:1;
132 unsigned int isochronous:1;
133 unsigned int sent_zlp:1;
134
135 char name[10];
136 };
137
138 /**
139 * struct s3c_hsotg - driver state.
140 * @dev: The parent device supplied to the probe function
141 * @driver: USB gadget driver
142 * @phy: The otg phy transceiver structure for phy control.
143 * @plat: The platform specific configuration data. This can be removed once
144 * all SoCs support usb transceiver.
145 * @regs: The memory area mapped for accessing registers.
146 * @irq: The IRQ number we are using
147 * @supplies: Definition of USB power supplies
148 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
149 * @num_of_eps: Number of available EPs (excluding EP0)
150 * @debug_root: root directrory for debugfs.
151 * @debug_file: main status file for debugfs.
152 * @debug_fifo: FIFO status file for debugfs.
153 * @ep0_reply: Request used for ep0 reply.
154 * @ep0_buff: Buffer for EP0 reply data, if needed.
155 * @ctrl_buff: Buffer for EP0 control requests.
156 * @ctrl_req: Request for EP0 control packets.
157 * @setup: NAK management for EP0 SETUP
158 * @last_rst: Time of last reset
159 * @eps: The endpoints being supplied to the gadget framework
160 */
161 struct s3c_hsotg {
162 struct device *dev;
163 struct usb_gadget_driver *driver;
164 struct usb_phy *phy;
165 struct s3c_hsotg_plat *plat;
166
167 spinlock_t lock;
168
169 void __iomem *regs;
170 int irq;
171 struct clk *clk;
172
173 struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsotg_supply_names)];
174
175 unsigned int dedicated_fifos:1;
176 unsigned char num_of_eps;
177
178 struct dentry *debug_root;
179 struct dentry *debug_file;
180 struct dentry *debug_fifo;
181
182 struct usb_request *ep0_reply;
183 struct usb_request *ctrl_req;
184 u8 ep0_buff[8];
185 u8 ctrl_buff[8];
186
187 struct usb_gadget gadget;
188 unsigned int setup;
189 unsigned long last_rst;
190 struct s3c_hsotg_ep *eps;
191 };
192
193 /**
194 * struct s3c_hsotg_req - data transfer request
195 * @req: The USB gadget request
196 * @queue: The list of requests for the endpoint this is queued for.
197 * @in_progress: Has already had size/packets written to core
198 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
199 */
200 struct s3c_hsotg_req {
201 struct usb_request req;
202 struct list_head queue;
203 unsigned char in_progress;
204 unsigned char mapped;
205 };
206
207 /* conversion functions */
208 static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
209 {
210 return container_of(req, struct s3c_hsotg_req, req);
211 }
212
213 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
214 {
215 return container_of(ep, struct s3c_hsotg_ep, ep);
216 }
217
218 static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
219 {
220 return container_of(gadget, struct s3c_hsotg, gadget);
221 }
222
223 static inline void __orr32(void __iomem *ptr, u32 val)
224 {
225 writel(readl(ptr) | val, ptr);
226 }
227
228 static inline void __bic32(void __iomem *ptr, u32 val)
229 {
230 writel(readl(ptr) & ~val, ptr);
231 }
232
233 /* forward decleration of functions */
234 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
235
236 /**
237 * using_dma - return the DMA status of the driver.
238 * @hsotg: The driver state.
239 *
240 * Return true if we're using DMA.
241 *
242 * Currently, we have the DMA support code worked into everywhere
243 * that needs it, but the AMBA DMA implementation in the hardware can
244 * only DMA from 32bit aligned addresses. This means that gadgets such
245 * as the CDC Ethernet cannot work as they often pass packets which are
246 * not 32bit aligned.
247 *
248 * Unfortunately the choice to use DMA or not is global to the controller
249 * and seems to be only settable when the controller is being put through
250 * a core reset. This means we either need to fix the gadgets to take
251 * account of DMA alignment, or add bounce buffers (yuerk).
252 *
253 * Until this issue is sorted out, we always return 'false'.
254 */
255 static inline bool using_dma(struct s3c_hsotg *hsotg)
256 {
257 return false; /* support is not complete */
258 }
259
260 /**
261 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
262 * @hsotg: The device state
263 * @ints: A bitmask of the interrupts to enable
264 */
265 static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
266 {
267 u32 gsintmsk = readl(hsotg->regs + GINTMSK);
268 u32 new_gsintmsk;
269
270 new_gsintmsk = gsintmsk | ints;
271
272 if (new_gsintmsk != gsintmsk) {
273 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
274 writel(new_gsintmsk, hsotg->regs + GINTMSK);
275 }
276 }
277
278 /**
279 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
280 * @hsotg: The device state
281 * @ints: A bitmask of the interrupts to enable
282 */
283 static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
284 {
285 u32 gsintmsk = readl(hsotg->regs + GINTMSK);
286 u32 new_gsintmsk;
287
288 new_gsintmsk = gsintmsk & ~ints;
289
290 if (new_gsintmsk != gsintmsk)
291 writel(new_gsintmsk, hsotg->regs + GINTMSK);
292 }
293
294 /**
295 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
296 * @hsotg: The device state
297 * @ep: The endpoint index
298 * @dir_in: True if direction is in.
299 * @en: The enable value, true to enable
300 *
301 * Set or clear the mask for an individual endpoint's interrupt
302 * request.
303 */
304 static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
305 unsigned int ep, unsigned int dir_in,
306 unsigned int en)
307 {
308 unsigned long flags;
309 u32 bit = 1 << ep;
310 u32 daint;
311
312 if (!dir_in)
313 bit <<= 16;
314
315 local_irq_save(flags);
316 daint = readl(hsotg->regs + DAINTMSK);
317 if (en)
318 daint |= bit;
319 else
320 daint &= ~bit;
321 writel(daint, hsotg->regs + DAINTMSK);
322 local_irq_restore(flags);
323 }
324
325 /**
326 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
327 * @hsotg: The device instance.
328 */
329 static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
330 {
331 unsigned int ep;
332 unsigned int addr;
333 unsigned int size;
334 int timeout;
335 u32 val;
336
337 /* set FIFO sizes to 2048/1024 */
338
339 writel(2048, hsotg->regs + GRXFSIZ);
340 writel(GNPTXFSIZ_NPTxFStAddr(2048) |
341 GNPTXFSIZ_NPTxFDep(1024),
342 hsotg->regs + GNPTXFSIZ);
343
344 /*
345 * arange all the rest of the TX FIFOs, as some versions of this
346 * block have overlapping default addresses. This also ensures
347 * that if the settings have been changed, then they are set to
348 * known values.
349 */
350
351 /* start at the end of the GNPTXFSIZ, rounded up */
352 addr = 2048 + 1024;
353 size = 768;
354
355 /*
356 * currently we allocate TX FIFOs for all possible endpoints,
357 * and assume that they are all the same size.
358 */
359
360 for (ep = 1; ep <= 15; ep++) {
361 val = addr;
362 val |= size << DPTXFSIZn_DPTxFSize_SHIFT;
363 addr += size;
364
365 writel(val, hsotg->regs + DPTXFSIZn(ep));
366 }
367
368 /*
369 * according to p428 of the design guide, we need to ensure that
370 * all fifos are flushed before continuing
371 */
372
373 writel(GRSTCTL_TxFNum(0x10) | GRSTCTL_TxFFlsh |
374 GRSTCTL_RxFFlsh, hsotg->regs + GRSTCTL);
375
376 /* wait until the fifos are both flushed */
377 timeout = 100;
378 while (1) {
379 val = readl(hsotg->regs + GRSTCTL);
380
381 if ((val & (GRSTCTL_TxFFlsh | GRSTCTL_RxFFlsh)) == 0)
382 break;
383
384 if (--timeout == 0) {
385 dev_err(hsotg->dev,
386 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
387 __func__, val);
388 }
389
390 udelay(1);
391 }
392
393 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
394 }
395
396 /**
397 * @ep: USB endpoint to allocate request for.
398 * @flags: Allocation flags
399 *
400 * Allocate a new USB request structure appropriate for the specified endpoint
401 */
402 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
403 gfp_t flags)
404 {
405 struct s3c_hsotg_req *req;
406
407 req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
408 if (!req)
409 return NULL;
410
411 INIT_LIST_HEAD(&req->queue);
412
413 return &req->req;
414 }
415
416 /**
417 * is_ep_periodic - return true if the endpoint is in periodic mode.
418 * @hs_ep: The endpoint to query.
419 *
420 * Returns true if the endpoint is in periodic mode, meaning it is being
421 * used for an Interrupt or ISO transfer.
422 */
423 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
424 {
425 return hs_ep->periodic;
426 }
427
428 /**
429 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
430 * @hsotg: The device state.
431 * @hs_ep: The endpoint for the request
432 * @hs_req: The request being processed.
433 *
434 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
435 * of a request to ensure the buffer is ready for access by the caller.
436 */
437 static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
438 struct s3c_hsotg_ep *hs_ep,
439 struct s3c_hsotg_req *hs_req)
440 {
441 struct usb_request *req = &hs_req->req;
442
443 /* ignore this if we're not moving any data */
444 if (hs_req->req.length == 0)
445 return;
446
447 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
448 }
449
450 /**
451 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
452 * @hsotg: The controller state.
453 * @hs_ep: The endpoint we're going to write for.
454 * @hs_req: The request to write data for.
455 *
456 * This is called when the TxFIFO has some space in it to hold a new
457 * transmission and we have something to give it. The actual setup of
458 * the data size is done elsewhere, so all we have to do is to actually
459 * write the data.
460 *
461 * The return value is zero if there is more space (or nothing was done)
462 * otherwise -ENOSPC is returned if the FIFO space was used up.
463 *
464 * This routine is only needed for PIO
465 */
466 static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
467 struct s3c_hsotg_ep *hs_ep,
468 struct s3c_hsotg_req *hs_req)
469 {
470 bool periodic = is_ep_periodic(hs_ep);
471 u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
472 int buf_pos = hs_req->req.actual;
473 int to_write = hs_ep->size_loaded;
474 void *data;
475 int can_write;
476 int pkt_round;
477 int max_transfer;
478
479 to_write -= (buf_pos - hs_ep->last_load);
480
481 /* if there's nothing to write, get out early */
482 if (to_write == 0)
483 return 0;
484
485 if (periodic && !hsotg->dedicated_fifos) {
486 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
487 int size_left;
488 int size_done;
489
490 /*
491 * work out how much data was loaded so we can calculate
492 * how much data is left in the fifo.
493 */
494
495 size_left = DxEPTSIZ_XferSize_GET(epsize);
496
497 /*
498 * if shared fifo, we cannot write anything until the
499 * previous data has been completely sent.
500 */
501 if (hs_ep->fifo_load != 0) {
502 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
503 return -ENOSPC;
504 }
505
506 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
507 __func__, size_left,
508 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
509
510 /* how much of the data has moved */
511 size_done = hs_ep->size_loaded - size_left;
512
513 /* how much data is left in the fifo */
514 can_write = hs_ep->fifo_load - size_done;
515 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
516 __func__, can_write);
517
518 can_write = hs_ep->fifo_size - can_write;
519 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
520 __func__, can_write);
521
522 if (can_write <= 0) {
523 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
524 return -ENOSPC;
525 }
526 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
527 can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
528
529 can_write &= 0xffff;
530 can_write *= 4;
531 } else {
532 if (GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
533 dev_dbg(hsotg->dev,
534 "%s: no queue slots available (0x%08x)\n",
535 __func__, gnptxsts);
536
537 s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTxFEmp);
538 return -ENOSPC;
539 }
540
541 can_write = GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
542 can_write *= 4; /* fifo size is in 32bit quantities. */
543 }
544
545 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
546
547 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
548 __func__, gnptxsts, can_write, to_write, max_transfer);
549
550 /*
551 * limit to 512 bytes of data, it seems at least on the non-periodic
552 * FIFO, requests of >512 cause the endpoint to get stuck with a
553 * fragment of the end of the transfer in it.
554 */
555 if (can_write > 512)
556 can_write = 512;
557
558 /*
559 * limit the write to one max-packet size worth of data, but allow
560 * the transfer to return that it did not run out of fifo space
561 * doing it.
562 */
563 if (to_write > max_transfer) {
564 to_write = max_transfer;
565
566 /* it's needed only when we do not use dedicated fifos */
567 if (!hsotg->dedicated_fifos)
568 s3c_hsotg_en_gsint(hsotg,
569 periodic ? GINTSTS_PTxFEmp :
570 GINTSTS_NPTxFEmp);
571 }
572
573 /* see if we can write data */
574
575 if (to_write > can_write) {
576 to_write = can_write;
577 pkt_round = to_write % max_transfer;
578
579 /*
580 * Round the write down to an
581 * exact number of packets.
582 *
583 * Note, we do not currently check to see if we can ever
584 * write a full packet or not to the FIFO.
585 */
586
587 if (pkt_round)
588 to_write -= pkt_round;
589
590 /*
591 * enable correct FIFO interrupt to alert us when there
592 * is more room left.
593 */
594
595 /* it's needed only when we do not use dedicated fifos */
596 if (!hsotg->dedicated_fifos)
597 s3c_hsotg_en_gsint(hsotg,
598 periodic ? GINTSTS_PTxFEmp :
599 GINTSTS_NPTxFEmp);
600 }
601
602 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
603 to_write, hs_req->req.length, can_write, buf_pos);
604
605 if (to_write <= 0)
606 return -ENOSPC;
607
608 hs_req->req.actual = buf_pos + to_write;
609 hs_ep->total_data += to_write;
610
611 if (periodic)
612 hs_ep->fifo_load += to_write;
613
614 to_write = DIV_ROUND_UP(to_write, 4);
615 data = hs_req->req.buf + buf_pos;
616
617 writesl(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
618
619 return (to_write >= can_write) ? -ENOSPC : 0;
620 }
621
622 /**
623 * get_ep_limit - get the maximum data legnth for this endpoint
624 * @hs_ep: The endpoint
625 *
626 * Return the maximum data that can be queued in one go on a given endpoint
627 * so that transfers that are too long can be split.
628 */
629 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
630 {
631 int index = hs_ep->index;
632 unsigned maxsize;
633 unsigned maxpkt;
634
635 if (index != 0) {
636 maxsize = DxEPTSIZ_XferSize_LIMIT + 1;
637 maxpkt = DxEPTSIZ_PktCnt_LIMIT + 1;
638 } else {
639 maxsize = 64+64;
640 if (hs_ep->dir_in)
641 maxpkt = DIEPTSIZ0_PktCnt_LIMIT + 1;
642 else
643 maxpkt = 2;
644 }
645
646 /* we made the constant loading easier above by using +1 */
647 maxpkt--;
648 maxsize--;
649
650 /*
651 * constrain by packet count if maxpkts*pktsize is greater
652 * than the length register size.
653 */
654
655 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
656 maxsize = maxpkt * hs_ep->ep.maxpacket;
657
658 return maxsize;
659 }
660
661 /**
662 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
663 * @hsotg: The controller state.
664 * @hs_ep: The endpoint to process a request for
665 * @hs_req: The request to start.
666 * @continuing: True if we are doing more for the current request.
667 *
668 * Start the given request running by setting the endpoint registers
669 * appropriately, and writing any data to the FIFOs.
670 */
671 static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
672 struct s3c_hsotg_ep *hs_ep,
673 struct s3c_hsotg_req *hs_req,
674 bool continuing)
675 {
676 struct usb_request *ureq = &hs_req->req;
677 int index = hs_ep->index;
678 int dir_in = hs_ep->dir_in;
679 u32 epctrl_reg;
680 u32 epsize_reg;
681 u32 epsize;
682 u32 ctrl;
683 unsigned length;
684 unsigned packets;
685 unsigned maxreq;
686
687 if (index != 0) {
688 if (hs_ep->req && !continuing) {
689 dev_err(hsotg->dev, "%s: active request\n", __func__);
690 WARN_ON(1);
691 return;
692 } else if (hs_ep->req != hs_req && continuing) {
693 dev_err(hsotg->dev,
694 "%s: continue different req\n", __func__);
695 WARN_ON(1);
696 return;
697 }
698 }
699
700 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
701 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
702
703 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
704 __func__, readl(hsotg->regs + epctrl_reg), index,
705 hs_ep->dir_in ? "in" : "out");
706
707 /* If endpoint is stalled, we will restart request later */
708 ctrl = readl(hsotg->regs + epctrl_reg);
709
710 if (ctrl & DxEPCTL_Stall) {
711 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
712 return;
713 }
714
715 length = ureq->length - ureq->actual;
716 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
717 ureq->length, ureq->actual);
718 if (0)
719 dev_dbg(hsotg->dev,
720 "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
721 ureq->buf, length, ureq->dma,
722 ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
723
724 maxreq = get_ep_limit(hs_ep);
725 if (length > maxreq) {
726 int round = maxreq % hs_ep->ep.maxpacket;
727
728 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
729 __func__, length, maxreq, round);
730
731 /* round down to multiple of packets */
732 if (round)
733 maxreq -= round;
734
735 length = maxreq;
736 }
737
738 if (length)
739 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
740 else
741 packets = 1; /* send one packet if length is zero. */
742
743 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
744 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
745 return;
746 }
747
748 if (dir_in && index != 0)
749 if (hs_ep->isochronous)
750 epsize = DxEPTSIZ_MC(packets);
751 else
752 epsize = DxEPTSIZ_MC(1);
753 else
754 epsize = 0;
755
756 if (index != 0 && ureq->zero) {
757 /*
758 * test for the packets being exactly right for the
759 * transfer
760 */
761
762 if (length == (packets * hs_ep->ep.maxpacket))
763 packets++;
764 }
765
766 epsize |= DxEPTSIZ_PktCnt(packets);
767 epsize |= DxEPTSIZ_XferSize(length);
768
769 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
770 __func__, packets, length, ureq->length, epsize, epsize_reg);
771
772 /* store the request as the current one we're doing */
773 hs_ep->req = hs_req;
774
775 /* write size / packets */
776 writel(epsize, hsotg->regs + epsize_reg);
777
778 if (using_dma(hsotg) && !continuing) {
779 unsigned int dma_reg;
780
781 /*
782 * write DMA address to control register, buffer already
783 * synced by s3c_hsotg_ep_queue().
784 */
785
786 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
787 writel(ureq->dma, hsotg->regs + dma_reg);
788
789 dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
790 __func__, ureq->dma, dma_reg);
791 }
792
793 ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
794 ctrl |= DxEPCTL_USBActEp;
795
796 dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);
797
798 /* For Setup request do not clear NAK */
799 if (hsotg->setup && index == 0)
800 hsotg->setup = 0;
801 else
802 ctrl |= DxEPCTL_CNAK; /* clear NAK set by core */
803
804
805 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
806 writel(ctrl, hsotg->regs + epctrl_reg);
807
808 /*
809 * set these, it seems that DMA support increments past the end
810 * of the packet buffer so we need to calculate the length from
811 * this information.
812 */
813 hs_ep->size_loaded = length;
814 hs_ep->last_load = ureq->actual;
815
816 if (dir_in && !using_dma(hsotg)) {
817 /* set these anyway, we may need them for non-periodic in */
818 hs_ep->fifo_load = 0;
819
820 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
821 }
822
823 /*
824 * clear the INTknTXFEmpMsk when we start request, more as a aide
825 * to debugging to see what is going on.
826 */
827 if (dir_in)
828 writel(DIEPMSK_INTknTXFEmpMsk,
829 hsotg->regs + DIEPINT(index));
830
831 /*
832 * Note, trying to clear the NAK here causes problems with transmit
833 * on the S3C6400 ending up with the TXFIFO becoming full.
834 */
835
836 /* check ep is enabled */
837 if (!(readl(hsotg->regs + epctrl_reg) & DxEPCTL_EPEna))
838 dev_warn(hsotg->dev,
839 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
840 index, readl(hsotg->regs + epctrl_reg));
841
842 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
843 __func__, readl(hsotg->regs + epctrl_reg));
844
845 /* enable ep interrupts */
846 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
847 }
848
849 /**
850 * s3c_hsotg_map_dma - map the DMA memory being used for the request
851 * @hsotg: The device state.
852 * @hs_ep: The endpoint the request is on.
853 * @req: The request being processed.
854 *
855 * We've been asked to queue a request, so ensure that the memory buffer
856 * is correctly setup for DMA. If we've been passed an extant DMA address
857 * then ensure the buffer has been synced to memory. If our buffer has no
858 * DMA memory, then we map the memory and mark our request to allow us to
859 * cleanup on completion.
860 */
861 static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
862 struct s3c_hsotg_ep *hs_ep,
863 struct usb_request *req)
864 {
865 struct s3c_hsotg_req *hs_req = our_req(req);
866 int ret;
867
868 /* if the length is zero, ignore the DMA data */
869 if (hs_req->req.length == 0)
870 return 0;
871
872 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
873 if (ret)
874 goto dma_error;
875
876 return 0;
877
878 dma_error:
879 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
880 __func__, req->buf, req->length);
881
882 return -EIO;
883 }
884
885 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
886 gfp_t gfp_flags)
887 {
888 struct s3c_hsotg_req *hs_req = our_req(req);
889 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
890 struct s3c_hsotg *hs = hs_ep->parent;
891 bool first;
892
893 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
894 ep->name, req, req->length, req->buf, req->no_interrupt,
895 req->zero, req->short_not_ok);
896
897 /* initialise status of the request */
898 INIT_LIST_HEAD(&hs_req->queue);
899 req->actual = 0;
900 req->status = -EINPROGRESS;
901
902 /* if we're using DMA, sync the buffers as necessary */
903 if (using_dma(hs)) {
904 int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
905 if (ret)
906 return ret;
907 }
908
909 first = list_empty(&hs_ep->queue);
910 list_add_tail(&hs_req->queue, &hs_ep->queue);
911
912 if (first)
913 s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
914
915 return 0;
916 }
917
918 static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
919 gfp_t gfp_flags)
920 {
921 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
922 struct s3c_hsotg *hs = hs_ep->parent;
923 unsigned long flags = 0;
924 int ret = 0;
925
926 spin_lock_irqsave(&hs->lock, flags);
927 ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
928 spin_unlock_irqrestore(&hs->lock, flags);
929
930 return ret;
931 }
932
933 static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
934 struct usb_request *req)
935 {
936 struct s3c_hsotg_req *hs_req = our_req(req);
937
938 kfree(hs_req);
939 }
940
941 /**
942 * s3c_hsotg_complete_oursetup - setup completion callback
943 * @ep: The endpoint the request was on.
944 * @req: The request completed.
945 *
946 * Called on completion of any requests the driver itself
947 * submitted that need cleaning up.
948 */
949 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
950 struct usb_request *req)
951 {
952 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
953 struct s3c_hsotg *hsotg = hs_ep->parent;
954
955 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
956
957 s3c_hsotg_ep_free_request(ep, req);
958 }
959
960 /**
961 * ep_from_windex - convert control wIndex value to endpoint
962 * @hsotg: The driver state.
963 * @windex: The control request wIndex field (in host order).
964 *
965 * Convert the given wIndex into a pointer to an driver endpoint
966 * structure, or return NULL if it is not a valid endpoint.
967 */
968 static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
969 u32 windex)
970 {
971 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
972 int dir = (windex & USB_DIR_IN) ? 1 : 0;
973 int idx = windex & 0x7F;
974
975 if (windex >= 0x100)
976 return NULL;
977
978 if (idx > hsotg->num_of_eps)
979 return NULL;
980
981 if (idx && ep->dir_in != dir)
982 return NULL;
983
984 return ep;
985 }
986
987 /**
988 * s3c_hsotg_send_reply - send reply to control request
989 * @hsotg: The device state
990 * @ep: Endpoint 0
991 * @buff: Buffer for request
992 * @length: Length of reply.
993 *
994 * Create a request and queue it on the given endpoint. This is useful as
995 * an internal method of sending replies to certain control requests, etc.
996 */
997 static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
998 struct s3c_hsotg_ep *ep,
999 void *buff,
1000 int length)
1001 {
1002 struct usb_request *req;
1003 int ret;
1004
1005 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1006
1007 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1008 hsotg->ep0_reply = req;
1009 if (!req) {
1010 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1011 return -ENOMEM;
1012 }
1013
1014 req->buf = hsotg->ep0_buff;
1015 req->length = length;
1016 req->zero = 1; /* always do zero-length final transfer */
1017 req->complete = s3c_hsotg_complete_oursetup;
1018
1019 if (length)
1020 memcpy(req->buf, buff, length);
1021 else
1022 ep->sent_zlp = 1;
1023
1024 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1025 if (ret) {
1026 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1027 return ret;
1028 }
1029
1030 return 0;
1031 }
1032
1033 /**
1034 * s3c_hsotg_process_req_status - process request GET_STATUS
1035 * @hsotg: The device state
1036 * @ctrl: USB control request
1037 */
1038 static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
1039 struct usb_ctrlrequest *ctrl)
1040 {
1041 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1042 struct s3c_hsotg_ep *ep;
1043 __le16 reply;
1044 int ret;
1045
1046 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1047
1048 if (!ep0->dir_in) {
1049 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1050 return -EINVAL;
1051 }
1052
1053 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1054 case USB_RECIP_DEVICE:
1055 reply = cpu_to_le16(0); /* bit 0 => self powered,
1056 * bit 1 => remote wakeup */
1057 break;
1058
1059 case USB_RECIP_INTERFACE:
1060 /* currently, the data result should be zero */
1061 reply = cpu_to_le16(0);
1062 break;
1063
1064 case USB_RECIP_ENDPOINT:
1065 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1066 if (!ep)
1067 return -ENOENT;
1068
1069 reply = cpu_to_le16(ep->halted ? 1 : 0);
1070 break;
1071
1072 default:
1073 return 0;
1074 }
1075
1076 if (le16_to_cpu(ctrl->wLength) != 2)
1077 return -EINVAL;
1078
1079 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1080 if (ret) {
1081 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1082 return ret;
1083 }
1084
1085 return 1;
1086 }
1087
1088 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1089
1090 /**
1091 * get_ep_head - return the first request on the endpoint
1092 * @hs_ep: The controller endpoint to get
1093 *
1094 * Get the first request on the endpoint.
1095 */
1096 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1097 {
1098 if (list_empty(&hs_ep->queue))
1099 return NULL;
1100
1101 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1102 }
1103
1104 /**
1105 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1106 * @hsotg: The device state
1107 * @ctrl: USB control request
1108 */
1109 static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
1110 struct usb_ctrlrequest *ctrl)
1111 {
1112 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1113 struct s3c_hsotg_req *hs_req;
1114 bool restart;
1115 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1116 struct s3c_hsotg_ep *ep;
1117 int ret;
1118
1119 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1120 __func__, set ? "SET" : "CLEAR");
1121
1122 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
1123 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1124 if (!ep) {
1125 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1126 __func__, le16_to_cpu(ctrl->wIndex));
1127 return -ENOENT;
1128 }
1129
1130 switch (le16_to_cpu(ctrl->wValue)) {
1131 case USB_ENDPOINT_HALT:
1132 s3c_hsotg_ep_sethalt(&ep->ep, set);
1133
1134 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1135 if (ret) {
1136 dev_err(hsotg->dev,
1137 "%s: failed to send reply\n", __func__);
1138 return ret;
1139 }
1140
1141 if (!set) {
1142 /*
1143 * If we have request in progress,
1144 * then complete it
1145 */
1146 if (ep->req) {
1147 hs_req = ep->req;
1148 ep->req = NULL;
1149 list_del_init(&hs_req->queue);
1150 hs_req->req.complete(&ep->ep,
1151 &hs_req->req);
1152 }
1153
1154 /* If we have pending request, then start it */
1155 restart = !list_empty(&ep->queue);
1156 if (restart) {
1157 hs_req = get_ep_head(ep);
1158 s3c_hsotg_start_req(hsotg, ep,
1159 hs_req, false);
1160 }
1161 }
1162
1163 break;
1164
1165 default:
1166 return -ENOENT;
1167 }
1168 } else
1169 return -ENOENT; /* currently only deal with endpoint */
1170
1171 return 1;
1172 }
1173
1174 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1175
1176 /**
1177 * s3c_hsotg_process_control - process a control request
1178 * @hsotg: The device state
1179 * @ctrl: The control request received
1180 *
1181 * The controller has received the SETUP phase of a control request, and
1182 * needs to work out what to do next (and whether to pass it on to the
1183 * gadget driver).
1184 */
1185 static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1186 struct usb_ctrlrequest *ctrl)
1187 {
1188 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1189 int ret = 0;
1190 u32 dcfg;
1191
1192 ep0->sent_zlp = 0;
1193
1194 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1195 ctrl->bRequest, ctrl->bRequestType,
1196 ctrl->wValue, ctrl->wLength);
1197
1198 /*
1199 * record the direction of the request, for later use when enquing
1200 * packets onto EP0.
1201 */
1202
1203 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1204 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1205
1206 /*
1207 * if we've no data with this request, then the last part of the
1208 * transaction is going to implicitly be IN.
1209 */
1210 if (ctrl->wLength == 0)
1211 ep0->dir_in = 1;
1212
1213 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1214 switch (ctrl->bRequest) {
1215 case USB_REQ_SET_ADDRESS:
1216 dcfg = readl(hsotg->regs + DCFG);
1217 dcfg &= ~DCFG_DevAddr_MASK;
1218 dcfg |= ctrl->wValue << DCFG_DevAddr_SHIFT;
1219 writel(dcfg, hsotg->regs + DCFG);
1220
1221 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1222
1223 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1224 return;
1225
1226 case USB_REQ_GET_STATUS:
1227 ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1228 break;
1229
1230 case USB_REQ_CLEAR_FEATURE:
1231 case USB_REQ_SET_FEATURE:
1232 ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1233 break;
1234 }
1235 }
1236
1237 /* as a fallback, try delivering it to the driver to deal with */
1238
1239 if (ret == 0 && hsotg->driver) {
1240 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1241 if (ret < 0)
1242 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1243 }
1244
1245 /*
1246 * the request is either unhandlable, or is not formatted correctly
1247 * so respond with a STALL for the status stage to indicate failure.
1248 */
1249
1250 if (ret < 0) {
1251 u32 reg;
1252 u32 ctrl;
1253
1254 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1255 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1256
1257 /*
1258 * DxEPCTL_Stall will be cleared by EP once it has
1259 * taken effect, so no need to clear later.
1260 */
1261
1262 ctrl = readl(hsotg->regs + reg);
1263 ctrl |= DxEPCTL_Stall;
1264 ctrl |= DxEPCTL_CNAK;
1265 writel(ctrl, hsotg->regs + reg);
1266
1267 dev_dbg(hsotg->dev,
1268 "written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1269 ctrl, reg, readl(hsotg->regs + reg));
1270
1271 /*
1272 * don't believe we need to anything more to get the EP
1273 * to reply with a STALL packet
1274 */
1275
1276 /*
1277 * complete won't be called, so we enqueue
1278 * setup request here
1279 */
1280 s3c_hsotg_enqueue_setup(hsotg);
1281 }
1282 }
1283
1284 /**
1285 * s3c_hsotg_complete_setup - completion of a setup transfer
1286 * @ep: The endpoint the request was on.
1287 * @req: The request completed.
1288 *
1289 * Called on completion of any requests the driver itself submitted for
1290 * EP0 setup packets
1291 */
1292 static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1293 struct usb_request *req)
1294 {
1295 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1296 struct s3c_hsotg *hsotg = hs_ep->parent;
1297
1298 if (req->status < 0) {
1299 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1300 return;
1301 }
1302
1303 if (req->actual == 0)
1304 s3c_hsotg_enqueue_setup(hsotg);
1305 else
1306 s3c_hsotg_process_control(hsotg, req->buf);
1307 }
1308
1309 /**
1310 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1311 * @hsotg: The device state.
1312 *
1313 * Enqueue a request on EP0 if necessary to received any SETUP packets
1314 * received from the host.
1315 */
1316 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1317 {
1318 struct usb_request *req = hsotg->ctrl_req;
1319 struct s3c_hsotg_req *hs_req = our_req(req);
1320 int ret;
1321
1322 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1323
1324 req->zero = 0;
1325 req->length = 8;
1326 req->buf = hsotg->ctrl_buff;
1327 req->complete = s3c_hsotg_complete_setup;
1328
1329 if (!list_empty(&hs_req->queue)) {
1330 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1331 return;
1332 }
1333
1334 hsotg->eps[0].dir_in = 0;
1335
1336 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1337 if (ret < 0) {
1338 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1339 /*
1340 * Don't think there's much we can do other than watch the
1341 * driver fail.
1342 */
1343 }
1344 }
1345
1346 /**
1347 * s3c_hsotg_complete_request - complete a request given to us
1348 * @hsotg: The device state.
1349 * @hs_ep: The endpoint the request was on.
1350 * @hs_req: The request to complete.
1351 * @result: The result code (0 => Ok, otherwise errno)
1352 *
1353 * The given request has finished, so call the necessary completion
1354 * if it has one and then look to see if we can start a new request
1355 * on the endpoint.
1356 *
1357 * Note, expects the ep to already be locked as appropriate.
1358 */
1359 static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1360 struct s3c_hsotg_ep *hs_ep,
1361 struct s3c_hsotg_req *hs_req,
1362 int result)
1363 {
1364 bool restart;
1365
1366 if (!hs_req) {
1367 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1368 return;
1369 }
1370
1371 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1372 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1373
1374 /*
1375 * only replace the status if we've not already set an error
1376 * from a previous transaction
1377 */
1378
1379 if (hs_req->req.status == -EINPROGRESS)
1380 hs_req->req.status = result;
1381
1382 hs_ep->req = NULL;
1383 list_del_init(&hs_req->queue);
1384
1385 if (using_dma(hsotg))
1386 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1387
1388 /*
1389 * call the complete request with the locks off, just in case the
1390 * request tries to queue more work for this endpoint.
1391 */
1392
1393 if (hs_req->req.complete) {
1394 spin_unlock(&hsotg->lock);
1395 hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1396 spin_lock(&hsotg->lock);
1397 }
1398
1399 /*
1400 * Look to see if there is anything else to do. Note, the completion
1401 * of the previous request may have caused a new request to be started
1402 * so be careful when doing this.
1403 */
1404
1405 if (!hs_ep->req && result >= 0) {
1406 restart = !list_empty(&hs_ep->queue);
1407 if (restart) {
1408 hs_req = get_ep_head(hs_ep);
1409 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1410 }
1411 }
1412 }
1413
1414 /**
1415 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1416 * @hsotg: The device state.
1417 * @ep_idx: The endpoint index for the data
1418 * @size: The size of data in the fifo, in bytes
1419 *
1420 * The FIFO status shows there is data to read from the FIFO for a given
1421 * endpoint, so sort out whether we need to read the data into a request
1422 * that has been made for that endpoint.
1423 */
1424 static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1425 {
1426 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1427 struct s3c_hsotg_req *hs_req = hs_ep->req;
1428 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1429 int to_read;
1430 int max_req;
1431 int read_ptr;
1432
1433
1434 if (!hs_req) {
1435 u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1436 int ptr;
1437
1438 dev_warn(hsotg->dev,
1439 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1440 __func__, size, ep_idx, epctl);
1441
1442 /* dump the data from the FIFO, we've nothing we can do */
1443 for (ptr = 0; ptr < size; ptr += 4)
1444 (void)readl(fifo);
1445
1446 return;
1447 }
1448
1449 to_read = size;
1450 read_ptr = hs_req->req.actual;
1451 max_req = hs_req->req.length - read_ptr;
1452
1453 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1454 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1455
1456 if (to_read > max_req) {
1457 /*
1458 * more data appeared than we where willing
1459 * to deal with in this request.
1460 */
1461
1462 /* currently we don't deal this */
1463 WARN_ON_ONCE(1);
1464 }
1465
1466 hs_ep->total_data += to_read;
1467 hs_req->req.actual += to_read;
1468 to_read = DIV_ROUND_UP(to_read, 4);
1469
1470 /*
1471 * note, we might over-write the buffer end by 3 bytes depending on
1472 * alignment of the data.
1473 */
1474 readsl(fifo, hs_req->req.buf + read_ptr, to_read);
1475 }
1476
1477 /**
1478 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1479 * @hsotg: The device instance
1480 * @req: The request currently on this endpoint
1481 *
1482 * Generate a zero-length IN packet request for terminating a SETUP
1483 * transaction.
1484 *
1485 * Note, since we don't write any data to the TxFIFO, then it is
1486 * currently believed that we do not need to wait for any space in
1487 * the TxFIFO.
1488 */
1489 static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1490 struct s3c_hsotg_req *req)
1491 {
1492 u32 ctrl;
1493
1494 if (!req) {
1495 dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1496 return;
1497 }
1498
1499 if (req->req.length == 0) {
1500 hsotg->eps[0].sent_zlp = 1;
1501 s3c_hsotg_enqueue_setup(hsotg);
1502 return;
1503 }
1504
1505 hsotg->eps[0].dir_in = 1;
1506 hsotg->eps[0].sent_zlp = 1;
1507
1508 dev_dbg(hsotg->dev, "sending zero-length packet\n");
1509
1510 /* issue a zero-sized packet to terminate this */
1511 writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
1512 DxEPTSIZ_XferSize(0), hsotg->regs + DIEPTSIZ(0));
1513
1514 ctrl = readl(hsotg->regs + DIEPCTL0);
1515 ctrl |= DxEPCTL_CNAK; /* clear NAK set by core */
1516 ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
1517 ctrl |= DxEPCTL_USBActEp;
1518 writel(ctrl, hsotg->regs + DIEPCTL0);
1519 }
1520
1521 /**
1522 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1523 * @hsotg: The device instance
1524 * @epnum: The endpoint received from
1525 * @was_setup: Set if processing a SetupDone event.
1526 *
1527 * The RXFIFO has delivered an OutDone event, which means that the data
1528 * transfer for an OUT endpoint has been completed, either by a short
1529 * packet or by the finish of a transfer.
1530 */
1531 static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1532 int epnum, bool was_setup)
1533 {
1534 u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1535 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1536 struct s3c_hsotg_req *hs_req = hs_ep->req;
1537 struct usb_request *req = &hs_req->req;
1538 unsigned size_left = DxEPTSIZ_XferSize_GET(epsize);
1539 int result = 0;
1540
1541 if (!hs_req) {
1542 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1543 return;
1544 }
1545
1546 if (using_dma(hsotg)) {
1547 unsigned size_done;
1548
1549 /*
1550 * Calculate the size of the transfer by checking how much
1551 * is left in the endpoint size register and then working it
1552 * out from the amount we loaded for the transfer.
1553 *
1554 * We need to do this as DMA pointers are always 32bit aligned
1555 * so may overshoot/undershoot the transfer.
1556 */
1557
1558 size_done = hs_ep->size_loaded - size_left;
1559 size_done += hs_ep->last_load;
1560
1561 req->actual = size_done;
1562 }
1563
1564 /* if there is more request to do, schedule new transfer */
1565 if (req->actual < req->length && size_left == 0) {
1566 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1567 return;
1568 } else if (epnum == 0) {
1569 /*
1570 * After was_setup = 1 =>
1571 * set CNAK for non Setup requests
1572 */
1573 hsotg->setup = was_setup ? 0 : 1;
1574 }
1575
1576 if (req->actual < req->length && req->short_not_ok) {
1577 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1578 __func__, req->actual, req->length);
1579
1580 /*
1581 * todo - what should we return here? there's no one else
1582 * even bothering to check the status.
1583 */
1584 }
1585
1586 if (epnum == 0) {
1587 /*
1588 * Condition req->complete != s3c_hsotg_complete_setup says:
1589 * send ZLP when we have an asynchronous request from gadget
1590 */
1591 if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1592 s3c_hsotg_send_zlp(hsotg, hs_req);
1593 }
1594
1595 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1596 }
1597
1598 /**
1599 * s3c_hsotg_read_frameno - read current frame number
1600 * @hsotg: The device instance
1601 *
1602 * Return the current frame number
1603 */
1604 static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1605 {
1606 u32 dsts;
1607
1608 dsts = readl(hsotg->regs + DSTS);
1609 dsts &= DSTS_SOFFN_MASK;
1610 dsts >>= DSTS_SOFFN_SHIFT;
1611
1612 return dsts;
1613 }
1614
1615 /**
1616 * s3c_hsotg_handle_rx - RX FIFO has data
1617 * @hsotg: The device instance
1618 *
1619 * The IRQ handler has detected that the RX FIFO has some data in it
1620 * that requires processing, so find out what is in there and do the
1621 * appropriate read.
1622 *
1623 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1624 * chunks, so if you have x packets received on an endpoint you'll get x
1625 * FIFO events delivered, each with a packet's worth of data in it.
1626 *
1627 * When using DMA, we should not be processing events from the RXFIFO
1628 * as the actual data should be sent to the memory directly and we turn
1629 * on the completion interrupts to get notifications of transfer completion.
1630 */
1631 static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1632 {
1633 u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1634 u32 epnum, status, size;
1635
1636 WARN_ON(using_dma(hsotg));
1637
1638 epnum = grxstsr & GRXSTS_EPNum_MASK;
1639 status = grxstsr & GRXSTS_PktSts_MASK;
1640
1641 size = grxstsr & GRXSTS_ByteCnt_MASK;
1642 size >>= GRXSTS_ByteCnt_SHIFT;
1643
1644 if (1)
1645 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1646 __func__, grxstsr, size, epnum);
1647
1648 #define __status(x) ((x) >> GRXSTS_PktSts_SHIFT)
1649
1650 switch (status >> GRXSTS_PktSts_SHIFT) {
1651 case __status(GRXSTS_PktSts_GlobalOutNAK):
1652 dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1653 break;
1654
1655 case __status(GRXSTS_PktSts_OutDone):
1656 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1657 s3c_hsotg_read_frameno(hsotg));
1658
1659 if (!using_dma(hsotg))
1660 s3c_hsotg_handle_outdone(hsotg, epnum, false);
1661 break;
1662
1663 case __status(GRXSTS_PktSts_SetupDone):
1664 dev_dbg(hsotg->dev,
1665 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1666 s3c_hsotg_read_frameno(hsotg),
1667 readl(hsotg->regs + DOEPCTL(0)));
1668
1669 s3c_hsotg_handle_outdone(hsotg, epnum, true);
1670 break;
1671
1672 case __status(GRXSTS_PktSts_OutRX):
1673 s3c_hsotg_rx_data(hsotg, epnum, size);
1674 break;
1675
1676 case __status(GRXSTS_PktSts_SetupRX):
1677 dev_dbg(hsotg->dev,
1678 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1679 s3c_hsotg_read_frameno(hsotg),
1680 readl(hsotg->regs + DOEPCTL(0)));
1681
1682 s3c_hsotg_rx_data(hsotg, epnum, size);
1683 break;
1684
1685 default:
1686 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1687 __func__, grxstsr);
1688
1689 s3c_hsotg_dump(hsotg);
1690 break;
1691 }
1692 }
1693
1694 /**
1695 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1696 * @mps: The maximum packet size in bytes.
1697 */
1698 static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1699 {
1700 switch (mps) {
1701 case 64:
1702 return D0EPCTL_MPS_64;
1703 case 32:
1704 return D0EPCTL_MPS_32;
1705 case 16:
1706 return D0EPCTL_MPS_16;
1707 case 8:
1708 return D0EPCTL_MPS_8;
1709 }
1710
1711 /* bad max packet size, warn and return invalid result */
1712 WARN_ON(1);
1713 return (u32)-1;
1714 }
1715
1716 /**
1717 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1718 * @hsotg: The driver state.
1719 * @ep: The index number of the endpoint
1720 * @mps: The maximum packet size in bytes
1721 *
1722 * Configure the maximum packet size for the given endpoint, updating
1723 * the hardware control registers to reflect this.
1724 */
1725 static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1726 unsigned int ep, unsigned int mps)
1727 {
1728 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1729 void __iomem *regs = hsotg->regs;
1730 u32 mpsval;
1731 u32 mcval;
1732 u32 reg;
1733
1734 if (ep == 0) {
1735 /* EP0 is a special case */
1736 mpsval = s3c_hsotg_ep0_mps(mps);
1737 if (mpsval > 3)
1738 goto bad_mps;
1739 hs_ep->ep.maxpacket = mps;
1740 hs_ep->mc = 1;
1741 } else {
1742 mpsval = mps & DxEPCTL_MPS_MASK;
1743 if (mpsval > 1024)
1744 goto bad_mps;
1745 mcval = ((mps >> 11) & 0x3) + 1;
1746 hs_ep->mc = mcval;
1747 if (mcval > 3)
1748 goto bad_mps;
1749 hs_ep->ep.maxpacket = mpsval;
1750 }
1751
1752 /*
1753 * update both the in and out endpoint controldir_ registers, even
1754 * if one of the directions may not be in use.
1755 */
1756
1757 reg = readl(regs + DIEPCTL(ep));
1758 reg &= ~DxEPCTL_MPS_MASK;
1759 reg |= mpsval;
1760 writel(reg, regs + DIEPCTL(ep));
1761
1762 if (ep) {
1763 reg = readl(regs + DOEPCTL(ep));
1764 reg &= ~DxEPCTL_MPS_MASK;
1765 reg |= mpsval;
1766 writel(reg, regs + DOEPCTL(ep));
1767 }
1768
1769 return;
1770
1771 bad_mps:
1772 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1773 }
1774
1775 /**
1776 * s3c_hsotg_txfifo_flush - flush Tx FIFO
1777 * @hsotg: The driver state
1778 * @idx: The index for the endpoint (0..15)
1779 */
1780 static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
1781 {
1782 int timeout;
1783 int val;
1784
1785 writel(GRSTCTL_TxFNum(idx) | GRSTCTL_TxFFlsh,
1786 hsotg->regs + GRSTCTL);
1787
1788 /* wait until the fifo is flushed */
1789 timeout = 100;
1790
1791 while (1) {
1792 val = readl(hsotg->regs + GRSTCTL);
1793
1794 if ((val & (GRSTCTL_TxFFlsh)) == 0)
1795 break;
1796
1797 if (--timeout == 0) {
1798 dev_err(hsotg->dev,
1799 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1800 __func__, val);
1801 }
1802
1803 udelay(1);
1804 }
1805 }
1806
1807 /**
1808 * s3c_hsotg_trytx - check to see if anything needs transmitting
1809 * @hsotg: The driver state
1810 * @hs_ep: The driver endpoint to check.
1811 *
1812 * Check to see if there is a request that has data to send, and if so
1813 * make an attempt to write data into the FIFO.
1814 */
1815 static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1816 struct s3c_hsotg_ep *hs_ep)
1817 {
1818 struct s3c_hsotg_req *hs_req = hs_ep->req;
1819
1820 if (!hs_ep->dir_in || !hs_req) {
1821 /**
1822 * if request is not enqueued, we disable interrupts
1823 * for endpoints, excepting ep0
1824 */
1825 if (hs_ep->index != 0)
1826 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
1827 hs_ep->dir_in, 0);
1828 return 0;
1829 }
1830
1831 if (hs_req->req.actual < hs_req->req.length) {
1832 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1833 hs_ep->index);
1834 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1835 }
1836
1837 return 0;
1838 }
1839
1840 /**
1841 * s3c_hsotg_complete_in - complete IN transfer
1842 * @hsotg: The device state.
1843 * @hs_ep: The endpoint that has just completed.
1844 *
1845 * An IN transfer has been completed, update the transfer's state and then
1846 * call the relevant completion routines.
1847 */
1848 static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1849 struct s3c_hsotg_ep *hs_ep)
1850 {
1851 struct s3c_hsotg_req *hs_req = hs_ep->req;
1852 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1853 int size_left, size_done;
1854
1855 if (!hs_req) {
1856 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1857 return;
1858 }
1859
1860 /* Finish ZLP handling for IN EP0 transactions */
1861 if (hsotg->eps[0].sent_zlp) {
1862 dev_dbg(hsotg->dev, "zlp packet received\n");
1863 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1864 return;
1865 }
1866
1867 /*
1868 * Calculate the size of the transfer by checking how much is left
1869 * in the endpoint size register and then working it out from
1870 * the amount we loaded for the transfer.
1871 *
1872 * We do this even for DMA, as the transfer may have incremented
1873 * past the end of the buffer (DMA transfers are always 32bit
1874 * aligned).
1875 */
1876
1877 size_left = DxEPTSIZ_XferSize_GET(epsize);
1878
1879 size_done = hs_ep->size_loaded - size_left;
1880 size_done += hs_ep->last_load;
1881
1882 if (hs_req->req.actual != size_done)
1883 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1884 __func__, hs_req->req.actual, size_done);
1885
1886 hs_req->req.actual = size_done;
1887 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1888 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1889
1890 /*
1891 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
1892 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
1893 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
1894 * inform the host that no more data is available.
1895 * The state of req.zero member is checked to be sure that the value to
1896 * send is smaller than wValue expected from host.
1897 * Check req.length to NOT send another ZLP when the current one is
1898 * under completion (the one for which this completion has been called).
1899 */
1900 if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
1901 hs_req->req.length == hs_req->req.actual &&
1902 !(hs_req->req.length % hs_ep->ep.maxpacket)) {
1903
1904 dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
1905 s3c_hsotg_send_zlp(hsotg, hs_req);
1906
1907 return;
1908 }
1909
1910 if (!size_left && hs_req->req.actual < hs_req->req.length) {
1911 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1912 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1913 } else
1914 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1915 }
1916
1917 /**
1918 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1919 * @hsotg: The driver state
1920 * @idx: The index for the endpoint (0..15)
1921 * @dir_in: Set if this is an IN endpoint
1922 *
1923 * Process and clear any interrupt pending for an individual endpoint
1924 */
1925 static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1926 int dir_in)
1927 {
1928 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1929 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1930 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1931 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1932 u32 ints;
1933 u32 ctrl;
1934
1935 ints = readl(hsotg->regs + epint_reg);
1936 ctrl = readl(hsotg->regs + epctl_reg);
1937
1938 /* Clear endpoint interrupts */
1939 writel(ints, hsotg->regs + epint_reg);
1940
1941 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1942 __func__, idx, dir_in ? "in" : "out", ints);
1943
1944 if (ints & DxEPINT_XferCompl) {
1945 if (hs_ep->isochronous && hs_ep->interval == 1) {
1946 if (ctrl & DxEPCTL_EOFrNum)
1947 ctrl |= DxEPCTL_SetEvenFr;
1948 else
1949 ctrl |= DxEPCTL_SetOddFr;
1950 writel(ctrl, hsotg->regs + epctl_reg);
1951 }
1952
1953 dev_dbg(hsotg->dev,
1954 "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1955 __func__, readl(hsotg->regs + epctl_reg),
1956 readl(hsotg->regs + epsiz_reg));
1957
1958 /*
1959 * we get OutDone from the FIFO, so we only need to look
1960 * at completing IN requests here
1961 */
1962 if (dir_in) {
1963 s3c_hsotg_complete_in(hsotg, hs_ep);
1964
1965 if (idx == 0 && !hs_ep->req)
1966 s3c_hsotg_enqueue_setup(hsotg);
1967 } else if (using_dma(hsotg)) {
1968 /*
1969 * We're using DMA, we need to fire an OutDone here
1970 * as we ignore the RXFIFO.
1971 */
1972
1973 s3c_hsotg_handle_outdone(hsotg, idx, false);
1974 }
1975 }
1976
1977 if (ints & DxEPINT_EPDisbld) {
1978 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1979
1980 if (dir_in) {
1981 int epctl = readl(hsotg->regs + epctl_reg);
1982
1983 s3c_hsotg_txfifo_flush(hsotg, idx);
1984
1985 if ((epctl & DxEPCTL_Stall) &&
1986 (epctl & DxEPCTL_EPType_Bulk)) {
1987 int dctl = readl(hsotg->regs + DCTL);
1988
1989 dctl |= DCTL_CGNPInNAK;
1990 writel(dctl, hsotg->regs + DCTL);
1991 }
1992 }
1993 }
1994
1995 if (ints & DxEPINT_AHBErr)
1996 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1997
1998 if (ints & DxEPINT_Setup) { /* Setup or Timeout */
1999 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
2000
2001 if (using_dma(hsotg) && idx == 0) {
2002 /*
2003 * this is the notification we've received a
2004 * setup packet. In non-DMA mode we'd get this
2005 * from the RXFIFO, instead we need to process
2006 * the setup here.
2007 */
2008
2009 if (dir_in)
2010 WARN_ON_ONCE(1);
2011 else
2012 s3c_hsotg_handle_outdone(hsotg, 0, true);
2013 }
2014 }
2015
2016 if (ints & DxEPINT_Back2BackSetup)
2017 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2018
2019 if (dir_in && !hs_ep->isochronous) {
2020 /* not sure if this is important, but we'll clear it anyway */
2021 if (ints & DIEPMSK_INTknTXFEmpMsk) {
2022 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2023 __func__, idx);
2024 }
2025
2026 /* this probably means something bad is happening */
2027 if (ints & DIEPMSK_INTknEPMisMsk) {
2028 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2029 __func__, idx);
2030 }
2031
2032 /* FIFO has space or is empty (see GAHBCFG) */
2033 if (hsotg->dedicated_fifos &&
2034 ints & DIEPMSK_TxFIFOEmpty) {
2035 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2036 __func__, idx);
2037 if (!using_dma(hsotg))
2038 s3c_hsotg_trytx(hsotg, hs_ep);
2039 }
2040 }
2041 }
2042
2043 /**
2044 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2045 * @hsotg: The device state.
2046 *
2047 * Handle updating the device settings after the enumeration phase has
2048 * been completed.
2049 */
2050 static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
2051 {
2052 u32 dsts = readl(hsotg->regs + DSTS);
2053 int ep0_mps = 0, ep_mps;
2054
2055 /*
2056 * This should signal the finish of the enumeration phase
2057 * of the USB handshaking, so we should now know what rate
2058 * we connected at.
2059 */
2060
2061 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2062
2063 /*
2064 * note, since we're limited by the size of transfer on EP0, and
2065 * it seems IN transfers must be a even number of packets we do
2066 * not advertise a 64byte MPS on EP0.
2067 */
2068
2069 /* catch both EnumSpd_FS and EnumSpd_FS48 */
2070 switch (dsts & DSTS_EnumSpd_MASK) {
2071 case DSTS_EnumSpd_FS:
2072 case DSTS_EnumSpd_FS48:
2073 hsotg->gadget.speed = USB_SPEED_FULL;
2074 ep0_mps = EP0_MPS_LIMIT;
2075 ep_mps = 64;
2076 break;
2077
2078 case DSTS_EnumSpd_HS:
2079 hsotg->gadget.speed = USB_SPEED_HIGH;
2080 ep0_mps = EP0_MPS_LIMIT;
2081 ep_mps = 512;
2082 break;
2083
2084 case DSTS_EnumSpd_LS:
2085 hsotg->gadget.speed = USB_SPEED_LOW;
2086 /*
2087 * note, we don't actually support LS in this driver at the
2088 * moment, and the documentation seems to imply that it isn't
2089 * supported by the PHYs on some of the devices.
2090 */
2091 break;
2092 }
2093 dev_info(hsotg->dev, "new device is %s\n",
2094 usb_speed_string(hsotg->gadget.speed));
2095
2096 /*
2097 * we should now know the maximum packet size for an
2098 * endpoint, so set the endpoints to a default value.
2099 */
2100
2101 if (ep0_mps) {
2102 int i;
2103 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
2104 for (i = 1; i < hsotg->num_of_eps; i++)
2105 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
2106 }
2107
2108 /* ensure after enumeration our EP0 is active */
2109
2110 s3c_hsotg_enqueue_setup(hsotg);
2111
2112 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2113 readl(hsotg->regs + DIEPCTL0),
2114 readl(hsotg->regs + DOEPCTL0));
2115 }
2116
2117 /**
2118 * kill_all_requests - remove all requests from the endpoint's queue
2119 * @hsotg: The device state.
2120 * @ep: The endpoint the requests may be on.
2121 * @result: The result code to use.
2122 * @force: Force removal of any current requests
2123 *
2124 * Go through the requests on the given endpoint and mark them
2125 * completed with the given result code.
2126 */
2127 static void kill_all_requests(struct s3c_hsotg *hsotg,
2128 struct s3c_hsotg_ep *ep,
2129 int result, bool force)
2130 {
2131 struct s3c_hsotg_req *req, *treq;
2132
2133 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2134 /*
2135 * currently, we can't do much about an already
2136 * running request on an in endpoint
2137 */
2138
2139 if (ep->req == req && ep->dir_in && !force)
2140 continue;
2141
2142 s3c_hsotg_complete_request(hsotg, ep, req,
2143 result);
2144 }
2145 }
2146
2147 #define call_gadget(_hs, _entry) \
2148 do { \
2149 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
2150 (_hs)->driver && (_hs)->driver->_entry) { \
2151 spin_unlock(&_hs->lock); \
2152 (_hs)->driver->_entry(&(_hs)->gadget); \
2153 spin_lock(&_hs->lock); \
2154 } \
2155 } while (0)
2156
2157 /**
2158 * s3c_hsotg_disconnect - disconnect service
2159 * @hsotg: The device state.
2160 *
2161 * The device has been disconnected. Remove all current
2162 * transactions and signal the gadget driver that this
2163 * has happened.
2164 */
2165 static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2166 {
2167 unsigned ep;
2168
2169 for (ep = 0; ep < hsotg->num_of_eps; ep++)
2170 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2171
2172 call_gadget(hsotg, disconnect);
2173 }
2174
2175 /**
2176 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2177 * @hsotg: The device state:
2178 * @periodic: True if this is a periodic FIFO interrupt
2179 */
2180 static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2181 {
2182 struct s3c_hsotg_ep *ep;
2183 int epno, ret;
2184
2185 /* look through for any more data to transmit */
2186
2187 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2188 ep = &hsotg->eps[epno];
2189
2190 if (!ep->dir_in)
2191 continue;
2192
2193 if ((periodic && !ep->periodic) ||
2194 (!periodic && ep->periodic))
2195 continue;
2196
2197 ret = s3c_hsotg_trytx(hsotg, ep);
2198 if (ret < 0)
2199 break;
2200 }
2201 }
2202
2203 /* IRQ flags which will trigger a retry around the IRQ loop */
2204 #define IRQ_RETRY_MASK (GINTSTS_NPTxFEmp | \
2205 GINTSTS_PTxFEmp | \
2206 GINTSTS_RxFLvl)
2207
2208 /**
2209 * s3c_hsotg_corereset - issue softreset to the core
2210 * @hsotg: The device state
2211 *
2212 * Issue a soft reset to the core, and await the core finishing it.
2213 */
2214 static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2215 {
2216 int timeout;
2217 u32 grstctl;
2218
2219 dev_dbg(hsotg->dev, "resetting core\n");
2220
2221 /* issue soft reset */
2222 writel(GRSTCTL_CSftRst, hsotg->regs + GRSTCTL);
2223
2224 timeout = 10000;
2225 do {
2226 grstctl = readl(hsotg->regs + GRSTCTL);
2227 } while ((grstctl & GRSTCTL_CSftRst) && timeout-- > 0);
2228
2229 if (grstctl & GRSTCTL_CSftRst) {
2230 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2231 return -EINVAL;
2232 }
2233
2234 timeout = 10000;
2235
2236 while (1) {
2237 u32 grstctl = readl(hsotg->regs + GRSTCTL);
2238
2239 if (timeout-- < 0) {
2240 dev_info(hsotg->dev,
2241 "%s: reset failed, GRSTCTL=%08x\n",
2242 __func__, grstctl);
2243 return -ETIMEDOUT;
2244 }
2245
2246 if (!(grstctl & GRSTCTL_AHBIdle))
2247 continue;
2248
2249 break; /* reset done */
2250 }
2251
2252 dev_dbg(hsotg->dev, "reset successful\n");
2253 return 0;
2254 }
2255
2256 /**
2257 * s3c_hsotg_core_init - issue softreset to the core
2258 * @hsotg: The device state
2259 *
2260 * Issue a soft reset to the core, and await the core finishing it.
2261 */
2262 static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
2263 {
2264 s3c_hsotg_corereset(hsotg);
2265
2266 /*
2267 * we must now enable ep0 ready for host detection and then
2268 * set configuration.
2269 */
2270
2271 /* set the PLL on, remove the HNP/SRP and set the PHY */
2272 writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) |
2273 (0x5 << 10), hsotg->regs + GUSBCFG);
2274
2275 s3c_hsotg_init_fifo(hsotg);
2276
2277 __orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2278
2279 writel(1 << 18 | DCFG_DevSpd_HS, hsotg->regs + DCFG);
2280
2281 /* Clear any pending OTG interrupts */
2282 writel(0xffffffff, hsotg->regs + GOTGINT);
2283
2284 /* Clear any pending interrupts */
2285 writel(0xffffffff, hsotg->regs + GINTSTS);
2286
2287 writel(GINTSTS_ErlySusp | GINTSTS_SessReqInt |
2288 GINTSTS_GOUTNakEff | GINTSTS_GINNakEff |
2289 GINTSTS_ConIDStsChng | GINTSTS_USBRst |
2290 GINTSTS_EnumDone | GINTSTS_OTGInt |
2291 GINTSTS_USBSusp | GINTSTS_WkUpInt,
2292 hsotg->regs + GINTMSK);
2293
2294 if (using_dma(hsotg))
2295 writel(GAHBCFG_GlblIntrEn | GAHBCFG_DMAEn |
2296 GAHBCFG_HBstLen_Incr4,
2297 hsotg->regs + GAHBCFG);
2298 else
2299 writel(GAHBCFG_GlblIntrEn, hsotg->regs + GAHBCFG);
2300
2301 /*
2302 * Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2303 * up being flooded with interrupts if the host is polling the
2304 * endpoint to try and read data.
2305 */
2306
2307 writel(((hsotg->dedicated_fifos) ? DIEPMSK_TxFIFOEmpty : 0) |
2308 DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk |
2309 DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
2310 DIEPMSK_INTknEPMisMsk,
2311 hsotg->regs + DIEPMSK);
2312
2313 /*
2314 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2315 * DMA mode we may need this.
2316 */
2317 writel((using_dma(hsotg) ? (DIEPMSK_XferComplMsk |
2318 DIEPMSK_TimeOUTMsk) : 0) |
2319 DOEPMSK_EPDisbldMsk | DOEPMSK_AHBErrMsk |
2320 DOEPMSK_SetupMsk,
2321 hsotg->regs + DOEPMSK);
2322
2323 writel(0, hsotg->regs + DAINTMSK);
2324
2325 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2326 readl(hsotg->regs + DIEPCTL0),
2327 readl(hsotg->regs + DOEPCTL0));
2328
2329 /* enable in and out endpoint interrupts */
2330 s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPInt | GINTSTS_IEPInt);
2331
2332 /*
2333 * Enable the RXFIFO when in slave mode, as this is how we collect
2334 * the data. In DMA mode, we get events from the FIFO but also
2335 * things we cannot process, so do not use it.
2336 */
2337 if (!using_dma(hsotg))
2338 s3c_hsotg_en_gsint(hsotg, GINTSTS_RxFLvl);
2339
2340 /* Enable interrupts for EP0 in and out */
2341 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2342 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2343
2344 __orr32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2345 udelay(10); /* see openiboot */
2346 __bic32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2347
2348 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2349
2350 /*
2351 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2352 * writing to the EPCTL register..
2353 */
2354
2355 /* set to read 1 8byte packet */
2356 writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
2357 DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2358
2359 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2360 DxEPCTL_CNAK | DxEPCTL_EPEna |
2361 DxEPCTL_USBActEp,
2362 hsotg->regs + DOEPCTL0);
2363
2364 /* enable, but don't activate EP0in */
2365 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2366 DxEPCTL_USBActEp, hsotg->regs + DIEPCTL0);
2367
2368 s3c_hsotg_enqueue_setup(hsotg);
2369
2370 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2371 readl(hsotg->regs + DIEPCTL0),
2372 readl(hsotg->regs + DOEPCTL0));
2373
2374 /* clear global NAKs */
2375 writel(DCTL_CGOUTNak | DCTL_CGNPInNAK,
2376 hsotg->regs + DCTL);
2377
2378 /* must be at-least 3ms to allow bus to see disconnect */
2379 mdelay(3);
2380
2381 /* remove the soft-disconnect and let's go */
2382 __bic32(hsotg->regs + DCTL, DCTL_SftDiscon);
2383 }
2384
2385 /**
2386 * s3c_hsotg_irq - handle device interrupt
2387 * @irq: The IRQ number triggered
2388 * @pw: The pw value when registered the handler.
2389 */
2390 static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2391 {
2392 struct s3c_hsotg *hsotg = pw;
2393 int retry_count = 8;
2394 u32 gintsts;
2395 u32 gintmsk;
2396
2397 spin_lock(&hsotg->lock);
2398 irq_retry:
2399 gintsts = readl(hsotg->regs + GINTSTS);
2400 gintmsk = readl(hsotg->regs + GINTMSK);
2401
2402 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2403 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2404
2405 gintsts &= gintmsk;
2406
2407 if (gintsts & GINTSTS_OTGInt) {
2408 u32 otgint = readl(hsotg->regs + GOTGINT);
2409
2410 dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2411
2412 writel(otgint, hsotg->regs + GOTGINT);
2413 }
2414
2415 if (gintsts & GINTSTS_SessReqInt) {
2416 dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2417 writel(GINTSTS_SessReqInt, hsotg->regs + GINTSTS);
2418 }
2419
2420 if (gintsts & GINTSTS_EnumDone) {
2421 writel(GINTSTS_EnumDone, hsotg->regs + GINTSTS);
2422
2423 s3c_hsotg_irq_enumdone(hsotg);
2424 }
2425
2426 if (gintsts & GINTSTS_ConIDStsChng) {
2427 dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2428 readl(hsotg->regs + DSTS),
2429 readl(hsotg->regs + GOTGCTL));
2430
2431 writel(GINTSTS_ConIDStsChng, hsotg->regs + GINTSTS);
2432 }
2433
2434 if (gintsts & (GINTSTS_OEPInt | GINTSTS_IEPInt)) {
2435 u32 daint = readl(hsotg->regs + DAINT);
2436 u32 daintmsk = readl(hsotg->regs + DAINTMSK);
2437 u32 daint_out, daint_in;
2438 int ep;
2439
2440 daint &= daintmsk;
2441 daint_out = daint >> DAINT_OutEP_SHIFT;
2442 daint_in = daint & ~(daint_out << DAINT_OutEP_SHIFT);
2443
2444 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2445
2446 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2447 if (daint_out & 1)
2448 s3c_hsotg_epint(hsotg, ep, 0);
2449 }
2450
2451 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2452 if (daint_in & 1)
2453 s3c_hsotg_epint(hsotg, ep, 1);
2454 }
2455 }
2456
2457 if (gintsts & GINTSTS_USBRst) {
2458
2459 u32 usb_status = readl(hsotg->regs + GOTGCTL);
2460
2461 dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2462 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2463 readl(hsotg->regs + GNPTXSTS));
2464
2465 writel(GINTSTS_USBRst, hsotg->regs + GINTSTS);
2466
2467 if (usb_status & GOTGCTL_BSESVLD) {
2468 if (time_after(jiffies, hsotg->last_rst +
2469 msecs_to_jiffies(200))) {
2470
2471 kill_all_requests(hsotg, &hsotg->eps[0],
2472 -ECONNRESET, true);
2473
2474 s3c_hsotg_core_init(hsotg);
2475 hsotg->last_rst = jiffies;
2476 }
2477 }
2478 }
2479
2480 /* check both FIFOs */
2481
2482 if (gintsts & GINTSTS_NPTxFEmp) {
2483 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2484
2485 /*
2486 * Disable the interrupt to stop it happening again
2487 * unless one of these endpoint routines decides that
2488 * it needs re-enabling
2489 */
2490
2491 s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTxFEmp);
2492 s3c_hsotg_irq_fifoempty(hsotg, false);
2493 }
2494
2495 if (gintsts & GINTSTS_PTxFEmp) {
2496 dev_dbg(hsotg->dev, "PTxFEmp\n");
2497
2498 /* See note in GINTSTS_NPTxFEmp */
2499
2500 s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTxFEmp);
2501 s3c_hsotg_irq_fifoempty(hsotg, true);
2502 }
2503
2504 if (gintsts & GINTSTS_RxFLvl) {
2505 /*
2506 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2507 * we need to retry s3c_hsotg_handle_rx if this is still
2508 * set.
2509 */
2510
2511 s3c_hsotg_handle_rx(hsotg);
2512 }
2513
2514 if (gintsts & GINTSTS_ModeMis) {
2515 dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2516 writel(GINTSTS_ModeMis, hsotg->regs + GINTSTS);
2517 }
2518
2519 if (gintsts & GINTSTS_USBSusp) {
2520 dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
2521 writel(GINTSTS_USBSusp, hsotg->regs + GINTSTS);
2522
2523 call_gadget(hsotg, suspend);
2524 s3c_hsotg_disconnect(hsotg);
2525 }
2526
2527 if (gintsts & GINTSTS_WkUpInt) {
2528 dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
2529 writel(GINTSTS_WkUpInt, hsotg->regs + GINTSTS);
2530
2531 call_gadget(hsotg, resume);
2532 }
2533
2534 if (gintsts & GINTSTS_ErlySusp) {
2535 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2536 writel(GINTSTS_ErlySusp, hsotg->regs + GINTSTS);
2537 }
2538
2539 /*
2540 * these next two seem to crop-up occasionally causing the core
2541 * to shutdown the USB transfer, so try clearing them and logging
2542 * the occurrence.
2543 */
2544
2545 if (gintsts & GINTSTS_GOUTNakEff) {
2546 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2547
2548 writel(DCTL_CGOUTNak, hsotg->regs + DCTL);
2549
2550 s3c_hsotg_dump(hsotg);
2551 }
2552
2553 if (gintsts & GINTSTS_GINNakEff) {
2554 dev_info(hsotg->dev, "GINNakEff triggered\n");
2555
2556 writel(DCTL_CGNPInNAK, hsotg->regs + DCTL);
2557
2558 s3c_hsotg_dump(hsotg);
2559 }
2560
2561 /*
2562 * if we've had fifo events, we should try and go around the
2563 * loop again to see if there's any point in returning yet.
2564 */
2565
2566 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2567 goto irq_retry;
2568
2569 spin_unlock(&hsotg->lock);
2570
2571 return IRQ_HANDLED;
2572 }
2573
2574 /**
2575 * s3c_hsotg_ep_enable - enable the given endpoint
2576 * @ep: The USB endpint to configure
2577 * @desc: The USB endpoint descriptor to configure with.
2578 *
2579 * This is called from the USB gadget code's usb_ep_enable().
2580 */
2581 static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2582 const struct usb_endpoint_descriptor *desc)
2583 {
2584 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2585 struct s3c_hsotg *hsotg = hs_ep->parent;
2586 unsigned long flags;
2587 int index = hs_ep->index;
2588 u32 epctrl_reg;
2589 u32 epctrl;
2590 u32 mps;
2591 int dir_in;
2592 int ret = 0;
2593
2594 dev_dbg(hsotg->dev,
2595 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2596 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2597 desc->wMaxPacketSize, desc->bInterval);
2598
2599 /* not to be called for EP0 */
2600 WARN_ON(index == 0);
2601
2602 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2603 if (dir_in != hs_ep->dir_in) {
2604 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2605 return -EINVAL;
2606 }
2607
2608 mps = usb_endpoint_maxp(desc);
2609
2610 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2611
2612 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2613 epctrl = readl(hsotg->regs + epctrl_reg);
2614
2615 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2616 __func__, epctrl, epctrl_reg);
2617
2618 spin_lock_irqsave(&hsotg->lock, flags);
2619
2620 epctrl &= ~(DxEPCTL_EPType_MASK | DxEPCTL_MPS_MASK);
2621 epctrl |= DxEPCTL_MPS(mps);
2622
2623 /*
2624 * mark the endpoint as active, otherwise the core may ignore
2625 * transactions entirely for this endpoint
2626 */
2627 epctrl |= DxEPCTL_USBActEp;
2628
2629 /*
2630 * set the NAK status on the endpoint, otherwise we might try and
2631 * do something with data that we've yet got a request to process
2632 * since the RXFIFO will take data for an endpoint even if the
2633 * size register hasn't been set.
2634 */
2635
2636 epctrl |= DxEPCTL_SNAK;
2637
2638 /* update the endpoint state */
2639 s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2640
2641 /* default, set to non-periodic */
2642 hs_ep->isochronous = 0;
2643 hs_ep->periodic = 0;
2644 hs_ep->halted = 0;
2645 hs_ep->interval = desc->bInterval;
2646
2647 if (hs_ep->interval > 1 && hs_ep->mc > 1)
2648 dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2649
2650 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2651 case USB_ENDPOINT_XFER_ISOC:
2652 epctrl |= DxEPCTL_EPType_Iso;
2653 epctrl |= DxEPCTL_SetEvenFr;
2654 hs_ep->isochronous = 1;
2655 if (dir_in)
2656 hs_ep->periodic = 1;
2657 break;
2658
2659 case USB_ENDPOINT_XFER_BULK:
2660 epctrl |= DxEPCTL_EPType_Bulk;
2661 break;
2662
2663 case USB_ENDPOINT_XFER_INT:
2664 if (dir_in) {
2665 /*
2666 * Allocate our TxFNum by simply using the index
2667 * of the endpoint for the moment. We could do
2668 * something better if the host indicates how
2669 * many FIFOs we are expecting to use.
2670 */
2671
2672 hs_ep->periodic = 1;
2673 epctrl |= DxEPCTL_TxFNum(index);
2674 }
2675
2676 epctrl |= DxEPCTL_EPType_Intterupt;
2677 break;
2678
2679 case USB_ENDPOINT_XFER_CONTROL:
2680 epctrl |= DxEPCTL_EPType_Control;
2681 break;
2682 }
2683
2684 /*
2685 * if the hardware has dedicated fifos, we must give each IN EP
2686 * a unique tx-fifo even if it is non-periodic.
2687 */
2688 if (dir_in && hsotg->dedicated_fifos)
2689 epctrl |= DxEPCTL_TxFNum(index);
2690
2691 /* for non control endpoints, set PID to D0 */
2692 if (index)
2693 epctrl |= DxEPCTL_SetD0PID;
2694
2695 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2696 __func__, epctrl);
2697
2698 writel(epctrl, hsotg->regs + epctrl_reg);
2699 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2700 __func__, readl(hsotg->regs + epctrl_reg));
2701
2702 /* enable the endpoint interrupt */
2703 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2704
2705 spin_unlock_irqrestore(&hsotg->lock, flags);
2706 return ret;
2707 }
2708
2709 /**
2710 * s3c_hsotg_ep_disable - disable given endpoint
2711 * @ep: The endpoint to disable.
2712 */
2713 static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2714 {
2715 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2716 struct s3c_hsotg *hsotg = hs_ep->parent;
2717 int dir_in = hs_ep->dir_in;
2718 int index = hs_ep->index;
2719 unsigned long flags;
2720 u32 epctrl_reg;
2721 u32 ctrl;
2722
2723 dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2724
2725 if (ep == &hsotg->eps[0].ep) {
2726 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2727 return -EINVAL;
2728 }
2729
2730 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2731
2732 spin_lock_irqsave(&hsotg->lock, flags);
2733 /* terminate all requests with shutdown */
2734 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2735
2736
2737 ctrl = readl(hsotg->regs + epctrl_reg);
2738 ctrl &= ~DxEPCTL_EPEna;
2739 ctrl &= ~DxEPCTL_USBActEp;
2740 ctrl |= DxEPCTL_SNAK;
2741
2742 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2743 writel(ctrl, hsotg->regs + epctrl_reg);
2744
2745 /* disable endpoint interrupts */
2746 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2747
2748 spin_unlock_irqrestore(&hsotg->lock, flags);
2749 return 0;
2750 }
2751
2752 /**
2753 * on_list - check request is on the given endpoint
2754 * @ep: The endpoint to check.
2755 * @test: The request to test if it is on the endpoint.
2756 */
2757 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2758 {
2759 struct s3c_hsotg_req *req, *treq;
2760
2761 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2762 if (req == test)
2763 return true;
2764 }
2765
2766 return false;
2767 }
2768
2769 /**
2770 * s3c_hsotg_ep_dequeue - dequeue given endpoint
2771 * @ep: The endpoint to dequeue.
2772 * @req: The request to be removed from a queue.
2773 */
2774 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2775 {
2776 struct s3c_hsotg_req *hs_req = our_req(req);
2777 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2778 struct s3c_hsotg *hs = hs_ep->parent;
2779 unsigned long flags;
2780
2781 dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2782
2783 spin_lock_irqsave(&hs->lock, flags);
2784
2785 if (!on_list(hs_ep, hs_req)) {
2786 spin_unlock_irqrestore(&hs->lock, flags);
2787 return -EINVAL;
2788 }
2789
2790 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2791 spin_unlock_irqrestore(&hs->lock, flags);
2792
2793 return 0;
2794 }
2795
2796 /**
2797 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2798 * @ep: The endpoint to set halt.
2799 * @value: Set or unset the halt.
2800 */
2801 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2802 {
2803 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2804 struct s3c_hsotg *hs = hs_ep->parent;
2805 int index = hs_ep->index;
2806 u32 epreg;
2807 u32 epctl;
2808 u32 xfertype;
2809
2810 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2811
2812 /* write both IN and OUT control registers */
2813
2814 epreg = DIEPCTL(index);
2815 epctl = readl(hs->regs + epreg);
2816
2817 if (value) {
2818 epctl |= DxEPCTL_Stall + DxEPCTL_SNAK;
2819 if (epctl & DxEPCTL_EPEna)
2820 epctl |= DxEPCTL_EPDis;
2821 } else {
2822 epctl &= ~DxEPCTL_Stall;
2823 xfertype = epctl & DxEPCTL_EPType_MASK;
2824 if (xfertype == DxEPCTL_EPType_Bulk ||
2825 xfertype == DxEPCTL_EPType_Intterupt)
2826 epctl |= DxEPCTL_SetD0PID;
2827 }
2828
2829 writel(epctl, hs->regs + epreg);
2830
2831 epreg = DOEPCTL(index);
2832 epctl = readl(hs->regs + epreg);
2833
2834 if (value)
2835 epctl |= DxEPCTL_Stall;
2836 else {
2837 epctl &= ~DxEPCTL_Stall;
2838 xfertype = epctl & DxEPCTL_EPType_MASK;
2839 if (xfertype == DxEPCTL_EPType_Bulk ||
2840 xfertype == DxEPCTL_EPType_Intterupt)
2841 epctl |= DxEPCTL_SetD0PID;
2842 }
2843
2844 writel(epctl, hs->regs + epreg);
2845
2846 hs_ep->halted = value;
2847
2848 return 0;
2849 }
2850
2851 /**
2852 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2853 * @ep: The endpoint to set halt.
2854 * @value: Set or unset the halt.
2855 */
2856 static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2857 {
2858 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2859 struct s3c_hsotg *hs = hs_ep->parent;
2860 unsigned long flags = 0;
2861 int ret = 0;
2862
2863 spin_lock_irqsave(&hs->lock, flags);
2864 ret = s3c_hsotg_ep_sethalt(ep, value);
2865 spin_unlock_irqrestore(&hs->lock, flags);
2866
2867 return ret;
2868 }
2869
2870 static struct usb_ep_ops s3c_hsotg_ep_ops = {
2871 .enable = s3c_hsotg_ep_enable,
2872 .disable = s3c_hsotg_ep_disable,
2873 .alloc_request = s3c_hsotg_ep_alloc_request,
2874 .free_request = s3c_hsotg_ep_free_request,
2875 .queue = s3c_hsotg_ep_queue_lock,
2876 .dequeue = s3c_hsotg_ep_dequeue,
2877 .set_halt = s3c_hsotg_ep_sethalt_lock,
2878 /* note, don't believe we have any call for the fifo routines */
2879 };
2880
2881 /**
2882 * s3c_hsotg_phy_enable - enable platform phy dev
2883 * @hsotg: The driver state
2884 *
2885 * A wrapper for platform code responsible for controlling
2886 * low-level USB code
2887 */
2888 static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
2889 {
2890 struct platform_device *pdev = to_platform_device(hsotg->dev);
2891
2892 dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2893
2894 if (hsotg->phy)
2895 usb_phy_init(hsotg->phy);
2896 else if (hsotg->plat->phy_init)
2897 hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2898 }
2899
2900 /**
2901 * s3c_hsotg_phy_disable - disable platform phy dev
2902 * @hsotg: The driver state
2903 *
2904 * A wrapper for platform code responsible for controlling
2905 * low-level USB code
2906 */
2907 static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
2908 {
2909 struct platform_device *pdev = to_platform_device(hsotg->dev);
2910
2911 if (hsotg->phy)
2912 usb_phy_shutdown(hsotg->phy);
2913 else if (hsotg->plat->phy_exit)
2914 hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2915 }
2916
2917 /**
2918 * s3c_hsotg_init - initalize the usb core
2919 * @hsotg: The driver state
2920 */
2921 static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2922 {
2923 /* unmask subset of endpoint interrupts */
2924
2925 writel(DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
2926 DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk,
2927 hsotg->regs + DIEPMSK);
2928
2929 writel(DOEPMSK_SetupMsk | DOEPMSK_AHBErrMsk |
2930 DOEPMSK_EPDisbldMsk | DOEPMSK_XferComplMsk,
2931 hsotg->regs + DOEPMSK);
2932
2933 writel(0, hsotg->regs + DAINTMSK);
2934
2935 /* Be in disconnected state until gadget is registered */
2936 __orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2937
2938 if (0) {
2939 /* post global nak until we're ready */
2940 writel(DCTL_SGNPInNAK | DCTL_SGOUTNak,
2941 hsotg->regs + DCTL);
2942 }
2943
2944 /* setup fifos */
2945
2946 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2947 readl(hsotg->regs + GRXFSIZ),
2948 readl(hsotg->regs + GNPTXFSIZ));
2949
2950 s3c_hsotg_init_fifo(hsotg);
2951
2952 /* set the PLL on, remove the HNP/SRP and set the PHY */
2953 writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) | (0x5 << 10),
2954 hsotg->regs + GUSBCFG);
2955
2956 writel(using_dma(hsotg) ? GAHBCFG_DMAEn : 0x0,
2957 hsotg->regs + GAHBCFG);
2958 }
2959
2960 /**
2961 * s3c_hsotg_udc_start - prepare the udc for work
2962 * @gadget: The usb gadget state
2963 * @driver: The usb gadget driver
2964 *
2965 * Perform initialization to prepare udc device and driver
2966 * to work.
2967 */
2968 static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
2969 struct usb_gadget_driver *driver)
2970 {
2971 struct s3c_hsotg *hsotg = to_hsotg(gadget);
2972 int ret;
2973
2974 if (!hsotg) {
2975 pr_err("%s: called with no device\n", __func__);
2976 return -ENODEV;
2977 }
2978
2979 if (!driver) {
2980 dev_err(hsotg->dev, "%s: no driver\n", __func__);
2981 return -EINVAL;
2982 }
2983
2984 if (driver->max_speed < USB_SPEED_FULL)
2985 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2986
2987 if (!driver->setup) {
2988 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2989 return -EINVAL;
2990 }
2991
2992 WARN_ON(hsotg->driver);
2993
2994 driver->driver.bus = NULL;
2995 hsotg->driver = driver;
2996 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2997 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2998
2999 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3000 hsotg->supplies);
3001 if (ret) {
3002 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3003 goto err;
3004 }
3005
3006 hsotg->last_rst = jiffies;
3007 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3008 return 0;
3009
3010 err:
3011 hsotg->driver = NULL;
3012 return ret;
3013 }
3014
3015 /**
3016 * s3c_hsotg_udc_stop - stop the udc
3017 * @gadget: The usb gadget state
3018 * @driver: The usb gadget driver
3019 *
3020 * Stop udc hw block and stay tunned for future transmissions
3021 */
3022 static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
3023 struct usb_gadget_driver *driver)
3024 {
3025 struct s3c_hsotg *hsotg = to_hsotg(gadget);
3026 unsigned long flags = 0;
3027 int ep;
3028
3029 if (!hsotg)
3030 return -ENODEV;
3031
3032 /* all endpoints should be shutdown */
3033 for (ep = 0; ep < hsotg->num_of_eps; ep++)
3034 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
3035
3036 spin_lock_irqsave(&hsotg->lock, flags);
3037
3038 s3c_hsotg_phy_disable(hsotg);
3039
3040 if (!driver)
3041 hsotg->driver = NULL;
3042
3043 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3044
3045 spin_unlock_irqrestore(&hsotg->lock, flags);
3046
3047 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3048
3049 return 0;
3050 }
3051
3052 /**
3053 * s3c_hsotg_gadget_getframe - read the frame number
3054 * @gadget: The usb gadget state
3055 *
3056 * Read the {micro} frame number
3057 */
3058 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
3059 {
3060 return s3c_hsotg_read_frameno(to_hsotg(gadget));
3061 }
3062
3063 /**
3064 * s3c_hsotg_pullup - connect/disconnect the USB PHY
3065 * @gadget: The usb gadget state
3066 * @is_on: Current state of the USB PHY
3067 *
3068 * Connect/Disconnect the USB PHY pullup
3069 */
3070 static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3071 {
3072 struct s3c_hsotg *hsotg = to_hsotg(gadget);
3073 unsigned long flags = 0;
3074
3075 dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);
3076
3077 spin_lock_irqsave(&hsotg->lock, flags);
3078 if (is_on) {
3079 s3c_hsotg_phy_enable(hsotg);
3080 s3c_hsotg_core_init(hsotg);
3081 } else {
3082 s3c_hsotg_disconnect(hsotg);
3083 s3c_hsotg_phy_disable(hsotg);
3084 }
3085
3086 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3087 spin_unlock_irqrestore(&hsotg->lock, flags);
3088
3089 return 0;
3090 }
3091
3092 static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3093 .get_frame = s3c_hsotg_gadget_getframe,
3094 .udc_start = s3c_hsotg_udc_start,
3095 .udc_stop = s3c_hsotg_udc_stop,
3096 .pullup = s3c_hsotg_pullup,
3097 };
3098
3099 /**
3100 * s3c_hsotg_initep - initialise a single endpoint
3101 * @hsotg: The device state.
3102 * @hs_ep: The endpoint to be initialised.
3103 * @epnum: The endpoint number
3104 *
3105 * Initialise the given endpoint (as part of the probe and device state
3106 * creation) to give to the gadget driver. Setup the endpoint name, any
3107 * direction information and other state that may be required.
3108 */
3109 static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
3110 struct s3c_hsotg_ep *hs_ep,
3111 int epnum)
3112 {
3113 u32 ptxfifo;
3114 char *dir;
3115
3116 if (epnum == 0)
3117 dir = "";
3118 else if ((epnum % 2) == 0) {
3119 dir = "out";
3120 } else {
3121 dir = "in";
3122 hs_ep->dir_in = 1;
3123 }
3124
3125 hs_ep->index = epnum;
3126
3127 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3128
3129 INIT_LIST_HEAD(&hs_ep->queue);
3130 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3131
3132 /* add to the list of endpoints known by the gadget driver */
3133 if (epnum)
3134 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3135
3136 hs_ep->parent = hsotg;
3137 hs_ep->ep.name = hs_ep->name;
3138 hs_ep->ep.maxpacket = epnum ? 1024 : EP0_MPS_LIMIT;
3139 hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3140
3141 /*
3142 * Read the FIFO size for the Periodic TX FIFO, even if we're
3143 * an OUT endpoint, we may as well do this if in future the
3144 * code is changed to make each endpoint's direction changeable.
3145 */
3146
3147 ptxfifo = readl(hsotg->regs + DPTXFSIZn(epnum));
3148 hs_ep->fifo_size = DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
3149
3150 /*
3151 * if we're using dma, we need to set the next-endpoint pointer
3152 * to be something valid.
3153 */
3154
3155 if (using_dma(hsotg)) {
3156 u32 next = DxEPCTL_NextEp((epnum + 1) % 15);
3157 writel(next, hsotg->regs + DIEPCTL(epnum));
3158 writel(next, hsotg->regs + DOEPCTL(epnum));
3159 }
3160 }
3161
3162 /**
3163 * s3c_hsotg_hw_cfg - read HW configuration registers
3164 * @param: The device state
3165 *
3166 * Read the USB core HW configuration registers
3167 */
3168 static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3169 {
3170 u32 cfg2, cfg4;
3171 /* check hardware configuration */
3172
3173 cfg2 = readl(hsotg->regs + 0x48);
3174 hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3175
3176 dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
3177
3178 cfg4 = readl(hsotg->regs + 0x50);
3179 hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
3180
3181 dev_info(hsotg->dev, "%s fifos\n",
3182 hsotg->dedicated_fifos ? "dedicated" : "shared");
3183 }
3184
3185 /**
3186 * s3c_hsotg_dump - dump state of the udc
3187 * @param: The device state
3188 */
3189 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
3190 {
3191 #ifdef DEBUG
3192 struct device *dev = hsotg->dev;
3193 void __iomem *regs = hsotg->regs;
3194 u32 val;
3195 int idx;
3196
3197 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3198 readl(regs + DCFG), readl(regs + DCTL),
3199 readl(regs + DIEPMSK));
3200
3201 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3202 readl(regs + GAHBCFG), readl(regs + 0x44));
3203
3204 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3205 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3206
3207 /* show periodic fifo settings */
3208
3209 for (idx = 1; idx <= 15; idx++) {
3210 val = readl(regs + DPTXFSIZn(idx));
3211 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3212 val >> DPTXFSIZn_DPTxFSize_SHIFT,
3213 val & DPTXFSIZn_DPTxFStAddr_MASK);
3214 }
3215
3216 for (idx = 0; idx < 15; idx++) {
3217 dev_info(dev,
3218 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3219 readl(regs + DIEPCTL(idx)),
3220 readl(regs + DIEPTSIZ(idx)),
3221 readl(regs + DIEPDMA(idx)));
3222
3223 val = readl(regs + DOEPCTL(idx));
3224 dev_info(dev,
3225 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3226 idx, readl(regs + DOEPCTL(idx)),
3227 readl(regs + DOEPTSIZ(idx)),
3228 readl(regs + DOEPDMA(idx)));
3229
3230 }
3231
3232 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3233 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
3234 #endif
3235 }
3236
3237 /**
3238 * state_show - debugfs: show overall driver and device state.
3239 * @seq: The seq file to write to.
3240 * @v: Unused parameter.
3241 *
3242 * This debugfs entry shows the overall state of the hardware and
3243 * some general information about each of the endpoints available
3244 * to the system.
3245 */
3246 static int state_show(struct seq_file *seq, void *v)
3247 {
3248 struct s3c_hsotg *hsotg = seq->private;
3249 void __iomem *regs = hsotg->regs;
3250 int idx;
3251
3252 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3253 readl(regs + DCFG),
3254 readl(regs + DCTL),
3255 readl(regs + DSTS));
3256
3257 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3258 readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3259
3260 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3261 readl(regs + GINTMSK),
3262 readl(regs + GINTSTS));
3263
3264 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3265 readl(regs + DAINTMSK),
3266 readl(regs + DAINT));
3267
3268 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3269 readl(regs + GNPTXSTS),
3270 readl(regs + GRXSTSR));
3271
3272 seq_puts(seq, "\nEndpoint status:\n");
3273
3274 for (idx = 0; idx < 15; idx++) {
3275 u32 in, out;
3276
3277 in = readl(regs + DIEPCTL(idx));
3278 out = readl(regs + DOEPCTL(idx));
3279
3280 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3281 idx, in, out);
3282
3283 in = readl(regs + DIEPTSIZ(idx));
3284 out = readl(regs + DOEPTSIZ(idx));
3285
3286 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3287 in, out);
3288
3289 seq_puts(seq, "\n");
3290 }
3291
3292 return 0;
3293 }
3294
3295 static int state_open(struct inode *inode, struct file *file)
3296 {
3297 return single_open(file, state_show, inode->i_private);
3298 }
3299
3300 static const struct file_operations state_fops = {
3301 .owner = THIS_MODULE,
3302 .open = state_open,
3303 .read = seq_read,
3304 .llseek = seq_lseek,
3305 .release = single_release,
3306 };
3307
3308 /**
3309 * fifo_show - debugfs: show the fifo information
3310 * @seq: The seq_file to write data to.
3311 * @v: Unused parameter.
3312 *
3313 * Show the FIFO information for the overall fifo and all the
3314 * periodic transmission FIFOs.
3315 */
3316 static int fifo_show(struct seq_file *seq, void *v)
3317 {
3318 struct s3c_hsotg *hsotg = seq->private;
3319 void __iomem *regs = hsotg->regs;
3320 u32 val;
3321 int idx;
3322
3323 seq_puts(seq, "Non-periodic FIFOs:\n");
3324 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3325
3326 val = readl(regs + GNPTXFSIZ);
3327 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3328 val >> GNPTXFSIZ_NPTxFDep_SHIFT,
3329 val & GNPTXFSIZ_NPTxFStAddr_MASK);
3330
3331 seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3332
3333 for (idx = 1; idx <= 15; idx++) {
3334 val = readl(regs + DPTXFSIZn(idx));
3335
3336 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3337 val >> DPTXFSIZn_DPTxFSize_SHIFT,
3338 val & DPTXFSIZn_DPTxFStAddr_MASK);
3339 }
3340
3341 return 0;
3342 }
3343
3344 static int fifo_open(struct inode *inode, struct file *file)
3345 {
3346 return single_open(file, fifo_show, inode->i_private);
3347 }
3348
3349 static const struct file_operations fifo_fops = {
3350 .owner = THIS_MODULE,
3351 .open = fifo_open,
3352 .read = seq_read,
3353 .llseek = seq_lseek,
3354 .release = single_release,
3355 };
3356
3357
3358 static const char *decode_direction(int is_in)
3359 {
3360 return is_in ? "in" : "out";
3361 }
3362
3363 /**
3364 * ep_show - debugfs: show the state of an endpoint.
3365 * @seq: The seq_file to write data to.
3366 * @v: Unused parameter.
3367 *
3368 * This debugfs entry shows the state of the given endpoint (one is
3369 * registered for each available).
3370 */
3371 static int ep_show(struct seq_file *seq, void *v)
3372 {
3373 struct s3c_hsotg_ep *ep = seq->private;
3374 struct s3c_hsotg *hsotg = ep->parent;
3375 struct s3c_hsotg_req *req;
3376 void __iomem *regs = hsotg->regs;
3377 int index = ep->index;
3378 int show_limit = 15;
3379 unsigned long flags;
3380
3381 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
3382 ep->index, ep->ep.name, decode_direction(ep->dir_in));
3383
3384 /* first show the register state */
3385
3386 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3387 readl(regs + DIEPCTL(index)),
3388 readl(regs + DOEPCTL(index)));
3389
3390 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3391 readl(regs + DIEPDMA(index)),
3392 readl(regs + DOEPDMA(index)));
3393
3394 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3395 readl(regs + DIEPINT(index)),
3396 readl(regs + DOEPINT(index)));
3397
3398 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3399 readl(regs + DIEPTSIZ(index)),
3400 readl(regs + DOEPTSIZ(index)));
3401
3402 seq_puts(seq, "\n");
3403 seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3404 seq_printf(seq, "total_data=%ld\n", ep->total_data);
3405
3406 seq_printf(seq, "request list (%p,%p):\n",
3407 ep->queue.next, ep->queue.prev);
3408
3409 spin_lock_irqsave(&hsotg->lock, flags);
3410
3411 list_for_each_entry(req, &ep->queue, queue) {
3412 if (--show_limit < 0) {
3413 seq_puts(seq, "not showing more requests...\n");
3414 break;
3415 }
3416
3417 seq_printf(seq, "%c req %p: %d bytes @%p, ",
3418 req == ep->req ? '*' : ' ',
3419 req, req->req.length, req->req.buf);
3420 seq_printf(seq, "%d done, res %d\n",
3421 req->req.actual, req->req.status);
3422 }
3423
3424 spin_unlock_irqrestore(&hsotg->lock, flags);
3425
3426 return 0;
3427 }
3428
3429 static int ep_open(struct inode *inode, struct file *file)
3430 {
3431 return single_open(file, ep_show, inode->i_private);
3432 }
3433
3434 static const struct file_operations ep_fops = {
3435 .owner = THIS_MODULE,
3436 .open = ep_open,
3437 .read = seq_read,
3438 .llseek = seq_lseek,
3439 .release = single_release,
3440 };
3441
3442 /**
3443 * s3c_hsotg_create_debug - create debugfs directory and files
3444 * @hsotg: The driver state
3445 *
3446 * Create the debugfs files to allow the user to get information
3447 * about the state of the system. The directory name is created
3448 * with the same name as the device itself, in case we end up
3449 * with multiple blocks in future systems.
3450 */
3451 static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3452 {
3453 struct dentry *root;
3454 unsigned epidx;
3455
3456 root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3457 hsotg->debug_root = root;
3458 if (IS_ERR(root)) {
3459 dev_err(hsotg->dev, "cannot create debug root\n");
3460 return;
3461 }
3462
3463 /* create general state file */
3464
3465 hsotg->debug_file = debugfs_create_file("state", 0444, root,
3466 hsotg, &state_fops);
3467
3468 if (IS_ERR(hsotg->debug_file))
3469 dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3470
3471 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3472 hsotg, &fifo_fops);
3473
3474 if (IS_ERR(hsotg->debug_fifo))
3475 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3476
3477 /* create one file for each endpoint */
3478
3479 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3480 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3481
3482 ep->debugfs = debugfs_create_file(ep->name, 0444,
3483 root, ep, &ep_fops);
3484
3485 if (IS_ERR(ep->debugfs))
3486 dev_err(hsotg->dev, "failed to create %s debug file\n",
3487 ep->name);
3488 }
3489 }
3490
3491 /**
3492 * s3c_hsotg_delete_debug - cleanup debugfs entries
3493 * @hsotg: The driver state
3494 *
3495 * Cleanup (remove) the debugfs files for use on module exit.
3496 */
3497 static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3498 {
3499 unsigned epidx;
3500
3501 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3502 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3503 debugfs_remove(ep->debugfs);
3504 }
3505
3506 debugfs_remove(hsotg->debug_file);
3507 debugfs_remove(hsotg->debug_fifo);
3508 debugfs_remove(hsotg->debug_root);
3509 }
3510
3511 /**
3512 * s3c_hsotg_probe - probe function for hsotg driver
3513 * @pdev: The platform information for the driver
3514 */
3515
3516 static int s3c_hsotg_probe(struct platform_device *pdev)
3517 {
3518 struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev);
3519 struct usb_phy *phy;
3520 struct device *dev = &pdev->dev;
3521 struct s3c_hsotg_ep *eps;
3522 struct s3c_hsotg *hsotg;
3523 struct resource *res;
3524 int epnum;
3525 int ret;
3526 int i;
3527
3528 hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3529 if (!hsotg) {
3530 dev_err(dev, "cannot get memory\n");
3531 return -ENOMEM;
3532 }
3533
3534 phy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
3535 if (IS_ERR(phy)) {
3536 /* Fallback for pdata */
3537 plat = dev_get_platdata(&pdev->dev);
3538 if (!plat) {
3539 dev_err(&pdev->dev, "no platform data or transceiver defined\n");
3540 return -EPROBE_DEFER;
3541 } else {
3542 hsotg->plat = plat;
3543 }
3544 } else {
3545 hsotg->phy = phy;
3546 }
3547
3548 hsotg->dev = dev;
3549
3550 hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3551 if (IS_ERR(hsotg->clk)) {
3552 dev_err(dev, "cannot get otg clock\n");
3553 return PTR_ERR(hsotg->clk);
3554 }
3555
3556 platform_set_drvdata(pdev, hsotg);
3557
3558 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3559
3560 hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
3561 if (IS_ERR(hsotg->regs)) {
3562 ret = PTR_ERR(hsotg->regs);
3563 goto err_clk;
3564 }
3565
3566 ret = platform_get_irq(pdev, 0);
3567 if (ret < 0) {
3568 dev_err(dev, "cannot find IRQ\n");
3569 goto err_clk;
3570 }
3571
3572 spin_lock_init(&hsotg->lock);
3573
3574 hsotg->irq = ret;
3575
3576 ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
3577 dev_name(dev), hsotg);
3578 if (ret < 0) {
3579 dev_err(dev, "cannot claim IRQ\n");
3580 goto err_clk;
3581 }
3582
3583 dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3584
3585 hsotg->gadget.max_speed = USB_SPEED_HIGH;
3586 hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3587 hsotg->gadget.name = dev_name(dev);
3588
3589 /* reset the system */
3590
3591 clk_prepare_enable(hsotg->clk);
3592
3593 /* regulators */
3594
3595 for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3596 hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3597
3598 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3599 hsotg->supplies);
3600 if (ret) {
3601 dev_err(dev, "failed to request supplies: %d\n", ret);
3602 goto err_clk;
3603 }
3604
3605 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3606 hsotg->supplies);
3607
3608 if (ret) {
3609 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3610 goto err_supplies;
3611 }
3612
3613 /* usb phy enable */
3614 s3c_hsotg_phy_enable(hsotg);
3615
3616 s3c_hsotg_corereset(hsotg);
3617 s3c_hsotg_init(hsotg);
3618 s3c_hsotg_hw_cfg(hsotg);
3619
3620 /* hsotg->num_of_eps holds number of EPs other than ep0 */
3621
3622 if (hsotg->num_of_eps == 0) {
3623 dev_err(dev, "wrong number of EPs (zero)\n");
3624 ret = -EINVAL;
3625 goto err_supplies;
3626 }
3627
3628 eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
3629 GFP_KERNEL);
3630 if (!eps) {
3631 dev_err(dev, "cannot get memory\n");
3632 ret = -ENOMEM;
3633 goto err_supplies;
3634 }
3635
3636 hsotg->eps = eps;
3637
3638 /* setup endpoint information */
3639
3640 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3641 hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3642
3643 /* allocate EP0 request */
3644
3645 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3646 GFP_KERNEL);
3647 if (!hsotg->ctrl_req) {
3648 dev_err(dev, "failed to allocate ctrl req\n");
3649 ret = -ENOMEM;
3650 goto err_ep_mem;
3651 }
3652
3653 /* initialise the endpoints now the core has been initialised */
3654 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3655 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3656
3657 /* disable power and clock */
3658
3659 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3660 hsotg->supplies);
3661 if (ret) {
3662 dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
3663 goto err_ep_mem;
3664 }
3665
3666 s3c_hsotg_phy_disable(hsotg);
3667
3668 ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
3669 if (ret)
3670 goto err_ep_mem;
3671
3672 s3c_hsotg_create_debug(hsotg);
3673
3674 s3c_hsotg_dump(hsotg);
3675
3676 return 0;
3677
3678 err_ep_mem:
3679 kfree(eps);
3680 err_supplies:
3681 s3c_hsotg_phy_disable(hsotg);
3682 err_clk:
3683 clk_disable_unprepare(hsotg->clk);
3684
3685 return ret;
3686 }
3687
3688 /**
3689 * s3c_hsotg_remove - remove function for hsotg driver
3690 * @pdev: The platform information for the driver
3691 */
3692 static int s3c_hsotg_remove(struct platform_device *pdev)
3693 {
3694 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3695
3696 usb_del_gadget_udc(&hsotg->gadget);
3697
3698 s3c_hsotg_delete_debug(hsotg);
3699
3700 if (hsotg->driver) {
3701 /* should have been done already by driver model core */
3702 usb_gadget_unregister_driver(hsotg->driver);
3703 }
3704
3705 s3c_hsotg_phy_disable(hsotg);
3706 clk_disable_unprepare(hsotg->clk);
3707
3708 return 0;
3709 }
3710
3711 #if 1
3712 #define s3c_hsotg_suspend NULL
3713 #define s3c_hsotg_resume NULL
3714 #endif
3715
3716 #ifdef CONFIG_OF
3717 static const struct of_device_id s3c_hsotg_of_ids[] = {
3718 { .compatible = "samsung,s3c6400-hsotg", },
3719 { /* sentinel */ }
3720 };
3721 MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids);
3722 #endif
3723
3724 static struct platform_driver s3c_hsotg_driver = {
3725 .driver = {
3726 .name = "s3c-hsotg",
3727 .owner = THIS_MODULE,
3728 .of_match_table = of_match_ptr(s3c_hsotg_of_ids),
3729 },
3730 .probe = s3c_hsotg_probe,
3731 .remove = s3c_hsotg_remove,
3732 .suspend = s3c_hsotg_suspend,
3733 .resume = s3c_hsotg_resume,
3734 };
3735
3736 module_platform_driver(s3c_hsotg_driver);
3737
3738 MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3739 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3740 MODULE_LICENSE("GPL");
3741 MODULE_ALIAS("platform:s3c-hsotg");
This page took 0.110416 seconds and 5 git commands to generate.