Merge tag 'pci-v3.13-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[deliverable/linux.git] / drivers / usb / gadget / s3c-hsotg.c
1 /**
2 * linux/drivers/usb/gadget/s3c-hsotg.c
3 *
4 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com
6 *
7 * Copyright 2008 Openmoko, Inc.
8 * Copyright 2008 Simtec Electronics
9 * Ben Dooks <ben@simtec.co.uk>
10 * http://armlinux.simtec.co.uk/
11 *
12 * S3C USB2.0 High-speed / OtG driver
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/interrupt.h>
23 #include <linux/platform_device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/delay.h>
28 #include <linux/io.h>
29 #include <linux/slab.h>
30 #include <linux/clk.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/of_platform.h>
33
34 #include <linux/usb/ch9.h>
35 #include <linux/usb/gadget.h>
36 #include <linux/usb/phy.h>
37 #include <linux/platform_data/s3c-hsotg.h>
38
39 #include <mach/map.h>
40
41 #include "s3c-hsotg.h"
42
43 static const char * const s3c_hsotg_supply_names[] = {
44 "vusb_d", /* digital USB supply, 1.2V */
45 "vusb_a", /* analog USB supply, 1.1V */
46 };
47
48 /*
49 * EP0_MPS_LIMIT
50 *
51 * Unfortunately there seems to be a limit of the amount of data that can
52 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
53 * packets (which practically means 1 packet and 63 bytes of data) when the
54 * MPS is set to 64.
55 *
56 * This means if we are wanting to move >127 bytes of data, we need to
57 * split the transactions up, but just doing one packet at a time does
58 * not work (this may be an implicit DATA0 PID on first packet of the
59 * transaction) and doing 2 packets is outside the controller's limits.
60 *
61 * If we try to lower the MPS size for EP0, then no transfers work properly
62 * for EP0, and the system will fail basic enumeration. As no cause for this
63 * has currently been found, we cannot support any large IN transfers for
64 * EP0.
65 */
66 #define EP0_MPS_LIMIT 64
67
68 struct s3c_hsotg;
69 struct s3c_hsotg_req;
70
71 /**
72 * struct s3c_hsotg_ep - driver endpoint definition.
73 * @ep: The gadget layer representation of the endpoint.
74 * @name: The driver generated name for the endpoint.
75 * @queue: Queue of requests for this endpoint.
76 * @parent: Reference back to the parent device structure.
77 * @req: The current request that the endpoint is processing. This is
78 * used to indicate an request has been loaded onto the endpoint
79 * and has yet to be completed (maybe due to data move, or simply
80 * awaiting an ack from the core all the data has been completed).
81 * @debugfs: File entry for debugfs file for this endpoint.
82 * @lock: State lock to protect contents of endpoint.
83 * @dir_in: Set to true if this endpoint is of the IN direction, which
84 * means that it is sending data to the Host.
85 * @index: The index for the endpoint registers.
86 * @mc: Multi Count - number of transactions per microframe
87 * @interval - Interval for periodic endpoints
88 * @name: The name array passed to the USB core.
89 * @halted: Set if the endpoint has been halted.
90 * @periodic: Set if this is a periodic ep, such as Interrupt
91 * @isochronous: Set if this is a isochronous ep
92 * @sent_zlp: Set if we've sent a zero-length packet.
93 * @total_data: The total number of data bytes done.
94 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
95 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
96 * @last_load: The offset of data for the last start of request.
97 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
98 *
99 * This is the driver's state for each registered enpoint, allowing it
100 * to keep track of transactions that need doing. Each endpoint has a
101 * lock to protect the state, to try and avoid using an overall lock
102 * for the host controller as much as possible.
103 *
104 * For periodic IN endpoints, we have fifo_size and fifo_load to try
105 * and keep track of the amount of data in the periodic FIFO for each
106 * of these as we don't have a status register that tells us how much
107 * is in each of them. (note, this may actually be useless information
108 * as in shared-fifo mode periodic in acts like a single-frame packet
109 * buffer than a fifo)
110 */
111 struct s3c_hsotg_ep {
112 struct usb_ep ep;
113 struct list_head queue;
114 struct s3c_hsotg *parent;
115 struct s3c_hsotg_req *req;
116 struct dentry *debugfs;
117
118
119 unsigned long total_data;
120 unsigned int size_loaded;
121 unsigned int last_load;
122 unsigned int fifo_load;
123 unsigned short fifo_size;
124
125 unsigned char dir_in;
126 unsigned char index;
127 unsigned char mc;
128 unsigned char interval;
129
130 unsigned int halted:1;
131 unsigned int periodic:1;
132 unsigned int isochronous:1;
133 unsigned int sent_zlp:1;
134
135 char name[10];
136 };
137
138 /**
139 * struct s3c_hsotg - driver state.
140 * @dev: The parent device supplied to the probe function
141 * @driver: USB gadget driver
142 * @phy: The otg phy transceiver structure for phy control.
143 * @plat: The platform specific configuration data. This can be removed once
144 * all SoCs support usb transceiver.
145 * @regs: The memory area mapped for accessing registers.
146 * @irq: The IRQ number we are using
147 * @supplies: Definition of USB power supplies
148 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
149 * @num_of_eps: Number of available EPs (excluding EP0)
150 * @debug_root: root directrory for debugfs.
151 * @debug_file: main status file for debugfs.
152 * @debug_fifo: FIFO status file for debugfs.
153 * @ep0_reply: Request used for ep0 reply.
154 * @ep0_buff: Buffer for EP0 reply data, if needed.
155 * @ctrl_buff: Buffer for EP0 control requests.
156 * @ctrl_req: Request for EP0 control packets.
157 * @setup: NAK management for EP0 SETUP
158 * @last_rst: Time of last reset
159 * @eps: The endpoints being supplied to the gadget framework
160 */
161 struct s3c_hsotg {
162 struct device *dev;
163 struct usb_gadget_driver *driver;
164 struct usb_phy *phy;
165 struct s3c_hsotg_plat *plat;
166
167 spinlock_t lock;
168
169 void __iomem *regs;
170 int irq;
171 struct clk *clk;
172
173 struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsotg_supply_names)];
174
175 unsigned int dedicated_fifos:1;
176 unsigned char num_of_eps;
177
178 struct dentry *debug_root;
179 struct dentry *debug_file;
180 struct dentry *debug_fifo;
181
182 struct usb_request *ep0_reply;
183 struct usb_request *ctrl_req;
184 u8 ep0_buff[8];
185 u8 ctrl_buff[8];
186
187 struct usb_gadget gadget;
188 unsigned int setup;
189 unsigned long last_rst;
190 struct s3c_hsotg_ep *eps;
191 };
192
193 /**
194 * struct s3c_hsotg_req - data transfer request
195 * @req: The USB gadget request
196 * @queue: The list of requests for the endpoint this is queued for.
197 * @in_progress: Has already had size/packets written to core
198 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
199 */
200 struct s3c_hsotg_req {
201 struct usb_request req;
202 struct list_head queue;
203 unsigned char in_progress;
204 unsigned char mapped;
205 };
206
207 /* conversion functions */
208 static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
209 {
210 return container_of(req, struct s3c_hsotg_req, req);
211 }
212
213 static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
214 {
215 return container_of(ep, struct s3c_hsotg_ep, ep);
216 }
217
218 static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
219 {
220 return container_of(gadget, struct s3c_hsotg, gadget);
221 }
222
223 static inline void __orr32(void __iomem *ptr, u32 val)
224 {
225 writel(readl(ptr) | val, ptr);
226 }
227
228 static inline void __bic32(void __iomem *ptr, u32 val)
229 {
230 writel(readl(ptr) & ~val, ptr);
231 }
232
233 /* forward decleration of functions */
234 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
235
236 /**
237 * using_dma - return the DMA status of the driver.
238 * @hsotg: The driver state.
239 *
240 * Return true if we're using DMA.
241 *
242 * Currently, we have the DMA support code worked into everywhere
243 * that needs it, but the AMBA DMA implementation in the hardware can
244 * only DMA from 32bit aligned addresses. This means that gadgets such
245 * as the CDC Ethernet cannot work as they often pass packets which are
246 * not 32bit aligned.
247 *
248 * Unfortunately the choice to use DMA or not is global to the controller
249 * and seems to be only settable when the controller is being put through
250 * a core reset. This means we either need to fix the gadgets to take
251 * account of DMA alignment, or add bounce buffers (yuerk).
252 *
253 * Until this issue is sorted out, we always return 'false'.
254 */
255 static inline bool using_dma(struct s3c_hsotg *hsotg)
256 {
257 return false; /* support is not complete */
258 }
259
260 /**
261 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
262 * @hsotg: The device state
263 * @ints: A bitmask of the interrupts to enable
264 */
265 static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
266 {
267 u32 gsintmsk = readl(hsotg->regs + GINTMSK);
268 u32 new_gsintmsk;
269
270 new_gsintmsk = gsintmsk | ints;
271
272 if (new_gsintmsk != gsintmsk) {
273 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
274 writel(new_gsintmsk, hsotg->regs + GINTMSK);
275 }
276 }
277
278 /**
279 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
280 * @hsotg: The device state
281 * @ints: A bitmask of the interrupts to enable
282 */
283 static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
284 {
285 u32 gsintmsk = readl(hsotg->regs + GINTMSK);
286 u32 new_gsintmsk;
287
288 new_gsintmsk = gsintmsk & ~ints;
289
290 if (new_gsintmsk != gsintmsk)
291 writel(new_gsintmsk, hsotg->regs + GINTMSK);
292 }
293
294 /**
295 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
296 * @hsotg: The device state
297 * @ep: The endpoint index
298 * @dir_in: True if direction is in.
299 * @en: The enable value, true to enable
300 *
301 * Set or clear the mask for an individual endpoint's interrupt
302 * request.
303 */
304 static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
305 unsigned int ep, unsigned int dir_in,
306 unsigned int en)
307 {
308 unsigned long flags;
309 u32 bit = 1 << ep;
310 u32 daint;
311
312 if (!dir_in)
313 bit <<= 16;
314
315 local_irq_save(flags);
316 daint = readl(hsotg->regs + DAINTMSK);
317 if (en)
318 daint |= bit;
319 else
320 daint &= ~bit;
321 writel(daint, hsotg->regs + DAINTMSK);
322 local_irq_restore(flags);
323 }
324
325 /**
326 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
327 * @hsotg: The device instance.
328 */
329 static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
330 {
331 unsigned int ep;
332 unsigned int addr;
333 unsigned int size;
334 int timeout;
335 u32 val;
336
337 /* set FIFO sizes to 2048/1024 */
338
339 writel(2048, hsotg->regs + GRXFSIZ);
340 writel(GNPTXFSIZ_NPTxFStAddr(2048) |
341 GNPTXFSIZ_NPTxFDep(1024),
342 hsotg->regs + GNPTXFSIZ);
343
344 /*
345 * arange all the rest of the TX FIFOs, as some versions of this
346 * block have overlapping default addresses. This also ensures
347 * that if the settings have been changed, then they are set to
348 * known values.
349 */
350
351 /* start at the end of the GNPTXFSIZ, rounded up */
352 addr = 2048 + 1024;
353 size = 768;
354
355 /*
356 * currently we allocate TX FIFOs for all possible endpoints,
357 * and assume that they are all the same size.
358 */
359
360 for (ep = 1; ep <= 15; ep++) {
361 val = addr;
362 val |= size << DPTXFSIZn_DPTxFSize_SHIFT;
363 addr += size;
364
365 writel(val, hsotg->regs + DPTXFSIZn(ep));
366 }
367
368 /*
369 * according to p428 of the design guide, we need to ensure that
370 * all fifos are flushed before continuing
371 */
372
373 writel(GRSTCTL_TxFNum(0x10) | GRSTCTL_TxFFlsh |
374 GRSTCTL_RxFFlsh, hsotg->regs + GRSTCTL);
375
376 /* wait until the fifos are both flushed */
377 timeout = 100;
378 while (1) {
379 val = readl(hsotg->regs + GRSTCTL);
380
381 if ((val & (GRSTCTL_TxFFlsh | GRSTCTL_RxFFlsh)) == 0)
382 break;
383
384 if (--timeout == 0) {
385 dev_err(hsotg->dev,
386 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
387 __func__, val);
388 }
389
390 udelay(1);
391 }
392
393 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
394 }
395
396 /**
397 * @ep: USB endpoint to allocate request for.
398 * @flags: Allocation flags
399 *
400 * Allocate a new USB request structure appropriate for the specified endpoint
401 */
402 static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
403 gfp_t flags)
404 {
405 struct s3c_hsotg_req *req;
406
407 req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
408 if (!req)
409 return NULL;
410
411 INIT_LIST_HEAD(&req->queue);
412
413 return &req->req;
414 }
415
416 /**
417 * is_ep_periodic - return true if the endpoint is in periodic mode.
418 * @hs_ep: The endpoint to query.
419 *
420 * Returns true if the endpoint is in periodic mode, meaning it is being
421 * used for an Interrupt or ISO transfer.
422 */
423 static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
424 {
425 return hs_ep->periodic;
426 }
427
428 /**
429 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
430 * @hsotg: The device state.
431 * @hs_ep: The endpoint for the request
432 * @hs_req: The request being processed.
433 *
434 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
435 * of a request to ensure the buffer is ready for access by the caller.
436 */
437 static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
438 struct s3c_hsotg_ep *hs_ep,
439 struct s3c_hsotg_req *hs_req)
440 {
441 struct usb_request *req = &hs_req->req;
442
443 /* ignore this if we're not moving any data */
444 if (hs_req->req.length == 0)
445 return;
446
447 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
448 }
449
450 /**
451 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
452 * @hsotg: The controller state.
453 * @hs_ep: The endpoint we're going to write for.
454 * @hs_req: The request to write data for.
455 *
456 * This is called when the TxFIFO has some space in it to hold a new
457 * transmission and we have something to give it. The actual setup of
458 * the data size is done elsewhere, so all we have to do is to actually
459 * write the data.
460 *
461 * The return value is zero if there is more space (or nothing was done)
462 * otherwise -ENOSPC is returned if the FIFO space was used up.
463 *
464 * This routine is only needed for PIO
465 */
466 static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
467 struct s3c_hsotg_ep *hs_ep,
468 struct s3c_hsotg_req *hs_req)
469 {
470 bool periodic = is_ep_periodic(hs_ep);
471 u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
472 int buf_pos = hs_req->req.actual;
473 int to_write = hs_ep->size_loaded;
474 void *data;
475 int can_write;
476 int pkt_round;
477 int max_transfer;
478
479 to_write -= (buf_pos - hs_ep->last_load);
480
481 /* if there's nothing to write, get out early */
482 if (to_write == 0)
483 return 0;
484
485 if (periodic && !hsotg->dedicated_fifos) {
486 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
487 int size_left;
488 int size_done;
489
490 /*
491 * work out how much data was loaded so we can calculate
492 * how much data is left in the fifo.
493 */
494
495 size_left = DxEPTSIZ_XferSize_GET(epsize);
496
497 /*
498 * if shared fifo, we cannot write anything until the
499 * previous data has been completely sent.
500 */
501 if (hs_ep->fifo_load != 0) {
502 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
503 return -ENOSPC;
504 }
505
506 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
507 __func__, size_left,
508 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
509
510 /* how much of the data has moved */
511 size_done = hs_ep->size_loaded - size_left;
512
513 /* how much data is left in the fifo */
514 can_write = hs_ep->fifo_load - size_done;
515 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
516 __func__, can_write);
517
518 can_write = hs_ep->fifo_size - can_write;
519 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
520 __func__, can_write);
521
522 if (can_write <= 0) {
523 s3c_hsotg_en_gsint(hsotg, GINTSTS_PTxFEmp);
524 return -ENOSPC;
525 }
526 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
527 can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
528
529 can_write &= 0xffff;
530 can_write *= 4;
531 } else {
532 if (GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
533 dev_dbg(hsotg->dev,
534 "%s: no queue slots available (0x%08x)\n",
535 __func__, gnptxsts);
536
537 s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTxFEmp);
538 return -ENOSPC;
539 }
540
541 can_write = GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
542 can_write *= 4; /* fifo size is in 32bit quantities. */
543 }
544
545 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
546
547 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
548 __func__, gnptxsts, can_write, to_write, max_transfer);
549
550 /*
551 * limit to 512 bytes of data, it seems at least on the non-periodic
552 * FIFO, requests of >512 cause the endpoint to get stuck with a
553 * fragment of the end of the transfer in it.
554 */
555 if (can_write > 512 && !periodic)
556 can_write = 512;
557
558 /*
559 * limit the write to one max-packet size worth of data, but allow
560 * the transfer to return that it did not run out of fifo space
561 * doing it.
562 */
563 if (to_write > max_transfer) {
564 to_write = max_transfer;
565
566 /* it's needed only when we do not use dedicated fifos */
567 if (!hsotg->dedicated_fifos)
568 s3c_hsotg_en_gsint(hsotg,
569 periodic ? GINTSTS_PTxFEmp :
570 GINTSTS_NPTxFEmp);
571 }
572
573 /* see if we can write data */
574
575 if (to_write > can_write) {
576 to_write = can_write;
577 pkt_round = to_write % max_transfer;
578
579 /*
580 * Round the write down to an
581 * exact number of packets.
582 *
583 * Note, we do not currently check to see if we can ever
584 * write a full packet or not to the FIFO.
585 */
586
587 if (pkt_round)
588 to_write -= pkt_round;
589
590 /*
591 * enable correct FIFO interrupt to alert us when there
592 * is more room left.
593 */
594
595 /* it's needed only when we do not use dedicated fifos */
596 if (!hsotg->dedicated_fifos)
597 s3c_hsotg_en_gsint(hsotg,
598 periodic ? GINTSTS_PTxFEmp :
599 GINTSTS_NPTxFEmp);
600 }
601
602 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
603 to_write, hs_req->req.length, can_write, buf_pos);
604
605 if (to_write <= 0)
606 return -ENOSPC;
607
608 hs_req->req.actual = buf_pos + to_write;
609 hs_ep->total_data += to_write;
610
611 if (periodic)
612 hs_ep->fifo_load += to_write;
613
614 to_write = DIV_ROUND_UP(to_write, 4);
615 data = hs_req->req.buf + buf_pos;
616
617 writesl(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
618
619 return (to_write >= can_write) ? -ENOSPC : 0;
620 }
621
622 /**
623 * get_ep_limit - get the maximum data legnth for this endpoint
624 * @hs_ep: The endpoint
625 *
626 * Return the maximum data that can be queued in one go on a given endpoint
627 * so that transfers that are too long can be split.
628 */
629 static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
630 {
631 int index = hs_ep->index;
632 unsigned maxsize;
633 unsigned maxpkt;
634
635 if (index != 0) {
636 maxsize = DxEPTSIZ_XferSize_LIMIT + 1;
637 maxpkt = DxEPTSIZ_PktCnt_LIMIT + 1;
638 } else {
639 maxsize = 64+64;
640 if (hs_ep->dir_in)
641 maxpkt = DIEPTSIZ0_PktCnt_LIMIT + 1;
642 else
643 maxpkt = 2;
644 }
645
646 /* we made the constant loading easier above by using +1 */
647 maxpkt--;
648 maxsize--;
649
650 /*
651 * constrain by packet count if maxpkts*pktsize is greater
652 * than the length register size.
653 */
654
655 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
656 maxsize = maxpkt * hs_ep->ep.maxpacket;
657
658 return maxsize;
659 }
660
661 /**
662 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
663 * @hsotg: The controller state.
664 * @hs_ep: The endpoint to process a request for
665 * @hs_req: The request to start.
666 * @continuing: True if we are doing more for the current request.
667 *
668 * Start the given request running by setting the endpoint registers
669 * appropriately, and writing any data to the FIFOs.
670 */
671 static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
672 struct s3c_hsotg_ep *hs_ep,
673 struct s3c_hsotg_req *hs_req,
674 bool continuing)
675 {
676 struct usb_request *ureq = &hs_req->req;
677 int index = hs_ep->index;
678 int dir_in = hs_ep->dir_in;
679 u32 epctrl_reg;
680 u32 epsize_reg;
681 u32 epsize;
682 u32 ctrl;
683 unsigned length;
684 unsigned packets;
685 unsigned maxreq;
686
687 if (index != 0) {
688 if (hs_ep->req && !continuing) {
689 dev_err(hsotg->dev, "%s: active request\n", __func__);
690 WARN_ON(1);
691 return;
692 } else if (hs_ep->req != hs_req && continuing) {
693 dev_err(hsotg->dev,
694 "%s: continue different req\n", __func__);
695 WARN_ON(1);
696 return;
697 }
698 }
699
700 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
701 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
702
703 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
704 __func__, readl(hsotg->regs + epctrl_reg), index,
705 hs_ep->dir_in ? "in" : "out");
706
707 /* If endpoint is stalled, we will restart request later */
708 ctrl = readl(hsotg->regs + epctrl_reg);
709
710 if (ctrl & DxEPCTL_Stall) {
711 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
712 return;
713 }
714
715 length = ureq->length - ureq->actual;
716 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
717 ureq->length, ureq->actual);
718 if (0)
719 dev_dbg(hsotg->dev,
720 "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
721 ureq->buf, length, ureq->dma,
722 ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
723
724 maxreq = get_ep_limit(hs_ep);
725 if (length > maxreq) {
726 int round = maxreq % hs_ep->ep.maxpacket;
727
728 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
729 __func__, length, maxreq, round);
730
731 /* round down to multiple of packets */
732 if (round)
733 maxreq -= round;
734
735 length = maxreq;
736 }
737
738 if (length)
739 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
740 else
741 packets = 1; /* send one packet if length is zero. */
742
743 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
744 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
745 return;
746 }
747
748 if (dir_in && index != 0)
749 if (hs_ep->isochronous)
750 epsize = DxEPTSIZ_MC(packets);
751 else
752 epsize = DxEPTSIZ_MC(1);
753 else
754 epsize = 0;
755
756 if (index != 0 && ureq->zero) {
757 /*
758 * test for the packets being exactly right for the
759 * transfer
760 */
761
762 if (length == (packets * hs_ep->ep.maxpacket))
763 packets++;
764 }
765
766 epsize |= DxEPTSIZ_PktCnt(packets);
767 epsize |= DxEPTSIZ_XferSize(length);
768
769 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
770 __func__, packets, length, ureq->length, epsize, epsize_reg);
771
772 /* store the request as the current one we're doing */
773 hs_ep->req = hs_req;
774
775 /* write size / packets */
776 writel(epsize, hsotg->regs + epsize_reg);
777
778 if (using_dma(hsotg) && !continuing) {
779 unsigned int dma_reg;
780
781 /*
782 * write DMA address to control register, buffer already
783 * synced by s3c_hsotg_ep_queue().
784 */
785
786 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
787 writel(ureq->dma, hsotg->regs + dma_reg);
788
789 dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
790 __func__, ureq->dma, dma_reg);
791 }
792
793 ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
794 ctrl |= DxEPCTL_USBActEp;
795
796 dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);
797
798 /* For Setup request do not clear NAK */
799 if (hsotg->setup && index == 0)
800 hsotg->setup = 0;
801 else
802 ctrl |= DxEPCTL_CNAK; /* clear NAK set by core */
803
804
805 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
806 writel(ctrl, hsotg->regs + epctrl_reg);
807
808 /*
809 * set these, it seems that DMA support increments past the end
810 * of the packet buffer so we need to calculate the length from
811 * this information.
812 */
813 hs_ep->size_loaded = length;
814 hs_ep->last_load = ureq->actual;
815
816 if (dir_in && !using_dma(hsotg)) {
817 /* set these anyway, we may need them for non-periodic in */
818 hs_ep->fifo_load = 0;
819
820 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
821 }
822
823 /*
824 * clear the INTknTXFEmpMsk when we start request, more as a aide
825 * to debugging to see what is going on.
826 */
827 if (dir_in)
828 writel(DIEPMSK_INTknTXFEmpMsk,
829 hsotg->regs + DIEPINT(index));
830
831 /*
832 * Note, trying to clear the NAK here causes problems with transmit
833 * on the S3C6400 ending up with the TXFIFO becoming full.
834 */
835
836 /* check ep is enabled */
837 if (!(readl(hsotg->regs + epctrl_reg) & DxEPCTL_EPEna))
838 dev_warn(hsotg->dev,
839 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
840 index, readl(hsotg->regs + epctrl_reg));
841
842 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
843 __func__, readl(hsotg->regs + epctrl_reg));
844
845 /* enable ep interrupts */
846 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
847 }
848
849 /**
850 * s3c_hsotg_map_dma - map the DMA memory being used for the request
851 * @hsotg: The device state.
852 * @hs_ep: The endpoint the request is on.
853 * @req: The request being processed.
854 *
855 * We've been asked to queue a request, so ensure that the memory buffer
856 * is correctly setup for DMA. If we've been passed an extant DMA address
857 * then ensure the buffer has been synced to memory. If our buffer has no
858 * DMA memory, then we map the memory and mark our request to allow us to
859 * cleanup on completion.
860 */
861 static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
862 struct s3c_hsotg_ep *hs_ep,
863 struct usb_request *req)
864 {
865 struct s3c_hsotg_req *hs_req = our_req(req);
866 int ret;
867
868 /* if the length is zero, ignore the DMA data */
869 if (hs_req->req.length == 0)
870 return 0;
871
872 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
873 if (ret)
874 goto dma_error;
875
876 return 0;
877
878 dma_error:
879 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
880 __func__, req->buf, req->length);
881
882 return -EIO;
883 }
884
885 static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
886 gfp_t gfp_flags)
887 {
888 struct s3c_hsotg_req *hs_req = our_req(req);
889 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
890 struct s3c_hsotg *hs = hs_ep->parent;
891 bool first;
892
893 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
894 ep->name, req, req->length, req->buf, req->no_interrupt,
895 req->zero, req->short_not_ok);
896
897 /* initialise status of the request */
898 INIT_LIST_HEAD(&hs_req->queue);
899 req->actual = 0;
900 req->status = -EINPROGRESS;
901
902 /* if we're using DMA, sync the buffers as necessary */
903 if (using_dma(hs)) {
904 int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
905 if (ret)
906 return ret;
907 }
908
909 first = list_empty(&hs_ep->queue);
910 list_add_tail(&hs_req->queue, &hs_ep->queue);
911
912 if (first)
913 s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
914
915 return 0;
916 }
917
918 static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
919 gfp_t gfp_flags)
920 {
921 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
922 struct s3c_hsotg *hs = hs_ep->parent;
923 unsigned long flags = 0;
924 int ret = 0;
925
926 spin_lock_irqsave(&hs->lock, flags);
927 ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
928 spin_unlock_irqrestore(&hs->lock, flags);
929
930 return ret;
931 }
932
933 static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
934 struct usb_request *req)
935 {
936 struct s3c_hsotg_req *hs_req = our_req(req);
937
938 kfree(hs_req);
939 }
940
941 /**
942 * s3c_hsotg_complete_oursetup - setup completion callback
943 * @ep: The endpoint the request was on.
944 * @req: The request completed.
945 *
946 * Called on completion of any requests the driver itself
947 * submitted that need cleaning up.
948 */
949 static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
950 struct usb_request *req)
951 {
952 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
953 struct s3c_hsotg *hsotg = hs_ep->parent;
954
955 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
956
957 s3c_hsotg_ep_free_request(ep, req);
958 }
959
960 /**
961 * ep_from_windex - convert control wIndex value to endpoint
962 * @hsotg: The driver state.
963 * @windex: The control request wIndex field (in host order).
964 *
965 * Convert the given wIndex into a pointer to an driver endpoint
966 * structure, or return NULL if it is not a valid endpoint.
967 */
968 static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
969 u32 windex)
970 {
971 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
972 int dir = (windex & USB_DIR_IN) ? 1 : 0;
973 int idx = windex & 0x7F;
974
975 if (windex >= 0x100)
976 return NULL;
977
978 if (idx > hsotg->num_of_eps)
979 return NULL;
980
981 if (idx && ep->dir_in != dir)
982 return NULL;
983
984 return ep;
985 }
986
987 /**
988 * s3c_hsotg_send_reply - send reply to control request
989 * @hsotg: The device state
990 * @ep: Endpoint 0
991 * @buff: Buffer for request
992 * @length: Length of reply.
993 *
994 * Create a request and queue it on the given endpoint. This is useful as
995 * an internal method of sending replies to certain control requests, etc.
996 */
997 static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
998 struct s3c_hsotg_ep *ep,
999 void *buff,
1000 int length)
1001 {
1002 struct usb_request *req;
1003 int ret;
1004
1005 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1006
1007 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1008 hsotg->ep0_reply = req;
1009 if (!req) {
1010 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1011 return -ENOMEM;
1012 }
1013
1014 req->buf = hsotg->ep0_buff;
1015 req->length = length;
1016 req->zero = 1; /* always do zero-length final transfer */
1017 req->complete = s3c_hsotg_complete_oursetup;
1018
1019 if (length)
1020 memcpy(req->buf, buff, length);
1021 else
1022 ep->sent_zlp = 1;
1023
1024 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1025 if (ret) {
1026 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1027 return ret;
1028 }
1029
1030 return 0;
1031 }
1032
1033 /**
1034 * s3c_hsotg_process_req_status - process request GET_STATUS
1035 * @hsotg: The device state
1036 * @ctrl: USB control request
1037 */
1038 static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
1039 struct usb_ctrlrequest *ctrl)
1040 {
1041 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1042 struct s3c_hsotg_ep *ep;
1043 __le16 reply;
1044 int ret;
1045
1046 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1047
1048 if (!ep0->dir_in) {
1049 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1050 return -EINVAL;
1051 }
1052
1053 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1054 case USB_RECIP_DEVICE:
1055 reply = cpu_to_le16(0); /* bit 0 => self powered,
1056 * bit 1 => remote wakeup */
1057 break;
1058
1059 case USB_RECIP_INTERFACE:
1060 /* currently, the data result should be zero */
1061 reply = cpu_to_le16(0);
1062 break;
1063
1064 case USB_RECIP_ENDPOINT:
1065 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1066 if (!ep)
1067 return -ENOENT;
1068
1069 reply = cpu_to_le16(ep->halted ? 1 : 0);
1070 break;
1071
1072 default:
1073 return 0;
1074 }
1075
1076 if (le16_to_cpu(ctrl->wLength) != 2)
1077 return -EINVAL;
1078
1079 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
1080 if (ret) {
1081 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1082 return ret;
1083 }
1084
1085 return 1;
1086 }
1087
1088 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1089
1090 /**
1091 * get_ep_head - return the first request on the endpoint
1092 * @hs_ep: The controller endpoint to get
1093 *
1094 * Get the first request on the endpoint.
1095 */
1096 static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1097 {
1098 if (list_empty(&hs_ep->queue))
1099 return NULL;
1100
1101 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1102 }
1103
1104 /**
1105 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
1106 * @hsotg: The device state
1107 * @ctrl: USB control request
1108 */
1109 static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
1110 struct usb_ctrlrequest *ctrl)
1111 {
1112 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1113 struct s3c_hsotg_req *hs_req;
1114 bool restart;
1115 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1116 struct s3c_hsotg_ep *ep;
1117 int ret;
1118 bool halted;
1119
1120 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1121 __func__, set ? "SET" : "CLEAR");
1122
1123 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
1124 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1125 if (!ep) {
1126 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1127 __func__, le16_to_cpu(ctrl->wIndex));
1128 return -ENOENT;
1129 }
1130
1131 switch (le16_to_cpu(ctrl->wValue)) {
1132 case USB_ENDPOINT_HALT:
1133 halted = ep->halted;
1134
1135 s3c_hsotg_ep_sethalt(&ep->ep, set);
1136
1137 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1138 if (ret) {
1139 dev_err(hsotg->dev,
1140 "%s: failed to send reply\n", __func__);
1141 return ret;
1142 }
1143
1144 /*
1145 * we have to complete all requests for ep if it was
1146 * halted, and the halt was cleared by CLEAR_FEATURE
1147 */
1148
1149 if (!set && halted) {
1150 /*
1151 * If we have request in progress,
1152 * then complete it
1153 */
1154 if (ep->req) {
1155 hs_req = ep->req;
1156 ep->req = NULL;
1157 list_del_init(&hs_req->queue);
1158 hs_req->req.complete(&ep->ep,
1159 &hs_req->req);
1160 }
1161
1162 /* If we have pending request, then start it */
1163 restart = !list_empty(&ep->queue);
1164 if (restart) {
1165 hs_req = get_ep_head(ep);
1166 s3c_hsotg_start_req(hsotg, ep,
1167 hs_req, false);
1168 }
1169 }
1170
1171 break;
1172
1173 default:
1174 return -ENOENT;
1175 }
1176 } else
1177 return -ENOENT; /* currently only deal with endpoint */
1178
1179 return 1;
1180 }
1181
1182 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1183
1184 /**
1185 * s3c_hsotg_process_control - process a control request
1186 * @hsotg: The device state
1187 * @ctrl: The control request received
1188 *
1189 * The controller has received the SETUP phase of a control request, and
1190 * needs to work out what to do next (and whether to pass it on to the
1191 * gadget driver).
1192 */
1193 static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1194 struct usb_ctrlrequest *ctrl)
1195 {
1196 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1197 int ret = 0;
1198 u32 dcfg;
1199
1200 ep0->sent_zlp = 0;
1201
1202 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1203 ctrl->bRequest, ctrl->bRequestType,
1204 ctrl->wValue, ctrl->wLength);
1205
1206 /*
1207 * record the direction of the request, for later use when enquing
1208 * packets onto EP0.
1209 */
1210
1211 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1212 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1213
1214 /*
1215 * if we've no data with this request, then the last part of the
1216 * transaction is going to implicitly be IN.
1217 */
1218 if (ctrl->wLength == 0)
1219 ep0->dir_in = 1;
1220
1221 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1222 switch (ctrl->bRequest) {
1223 case USB_REQ_SET_ADDRESS:
1224 dcfg = readl(hsotg->regs + DCFG);
1225 dcfg &= ~DCFG_DevAddr_MASK;
1226 dcfg |= ctrl->wValue << DCFG_DevAddr_SHIFT;
1227 writel(dcfg, hsotg->regs + DCFG);
1228
1229 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1230
1231 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1232 return;
1233
1234 case USB_REQ_GET_STATUS:
1235 ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1236 break;
1237
1238 case USB_REQ_CLEAR_FEATURE:
1239 case USB_REQ_SET_FEATURE:
1240 ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1241 break;
1242 }
1243 }
1244
1245 /* as a fallback, try delivering it to the driver to deal with */
1246
1247 if (ret == 0 && hsotg->driver) {
1248 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1249 if (ret < 0)
1250 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1251 }
1252
1253 /*
1254 * the request is either unhandlable, or is not formatted correctly
1255 * so respond with a STALL for the status stage to indicate failure.
1256 */
1257
1258 if (ret < 0) {
1259 u32 reg;
1260 u32 ctrl;
1261
1262 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1263 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1264
1265 /*
1266 * DxEPCTL_Stall will be cleared by EP once it has
1267 * taken effect, so no need to clear later.
1268 */
1269
1270 ctrl = readl(hsotg->regs + reg);
1271 ctrl |= DxEPCTL_Stall;
1272 ctrl |= DxEPCTL_CNAK;
1273 writel(ctrl, hsotg->regs + reg);
1274
1275 dev_dbg(hsotg->dev,
1276 "written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1277 ctrl, reg, readl(hsotg->regs + reg));
1278
1279 /*
1280 * don't believe we need to anything more to get the EP
1281 * to reply with a STALL packet
1282 */
1283
1284 /*
1285 * complete won't be called, so we enqueue
1286 * setup request here
1287 */
1288 s3c_hsotg_enqueue_setup(hsotg);
1289 }
1290 }
1291
1292 /**
1293 * s3c_hsotg_complete_setup - completion of a setup transfer
1294 * @ep: The endpoint the request was on.
1295 * @req: The request completed.
1296 *
1297 * Called on completion of any requests the driver itself submitted for
1298 * EP0 setup packets
1299 */
1300 static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1301 struct usb_request *req)
1302 {
1303 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1304 struct s3c_hsotg *hsotg = hs_ep->parent;
1305
1306 if (req->status < 0) {
1307 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1308 return;
1309 }
1310
1311 if (req->actual == 0)
1312 s3c_hsotg_enqueue_setup(hsotg);
1313 else
1314 s3c_hsotg_process_control(hsotg, req->buf);
1315 }
1316
1317 /**
1318 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1319 * @hsotg: The device state.
1320 *
1321 * Enqueue a request on EP0 if necessary to received any SETUP packets
1322 * received from the host.
1323 */
1324 static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1325 {
1326 struct usb_request *req = hsotg->ctrl_req;
1327 struct s3c_hsotg_req *hs_req = our_req(req);
1328 int ret;
1329
1330 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1331
1332 req->zero = 0;
1333 req->length = 8;
1334 req->buf = hsotg->ctrl_buff;
1335 req->complete = s3c_hsotg_complete_setup;
1336
1337 if (!list_empty(&hs_req->queue)) {
1338 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1339 return;
1340 }
1341
1342 hsotg->eps[0].dir_in = 0;
1343
1344 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1345 if (ret < 0) {
1346 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1347 /*
1348 * Don't think there's much we can do other than watch the
1349 * driver fail.
1350 */
1351 }
1352 }
1353
1354 /**
1355 * s3c_hsotg_complete_request - complete a request given to us
1356 * @hsotg: The device state.
1357 * @hs_ep: The endpoint the request was on.
1358 * @hs_req: The request to complete.
1359 * @result: The result code (0 => Ok, otherwise errno)
1360 *
1361 * The given request has finished, so call the necessary completion
1362 * if it has one and then look to see if we can start a new request
1363 * on the endpoint.
1364 *
1365 * Note, expects the ep to already be locked as appropriate.
1366 */
1367 static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1368 struct s3c_hsotg_ep *hs_ep,
1369 struct s3c_hsotg_req *hs_req,
1370 int result)
1371 {
1372 bool restart;
1373
1374 if (!hs_req) {
1375 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1376 return;
1377 }
1378
1379 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1380 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1381
1382 /*
1383 * only replace the status if we've not already set an error
1384 * from a previous transaction
1385 */
1386
1387 if (hs_req->req.status == -EINPROGRESS)
1388 hs_req->req.status = result;
1389
1390 hs_ep->req = NULL;
1391 list_del_init(&hs_req->queue);
1392
1393 if (using_dma(hsotg))
1394 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1395
1396 /*
1397 * call the complete request with the locks off, just in case the
1398 * request tries to queue more work for this endpoint.
1399 */
1400
1401 if (hs_req->req.complete) {
1402 spin_unlock(&hsotg->lock);
1403 hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1404 spin_lock(&hsotg->lock);
1405 }
1406
1407 /*
1408 * Look to see if there is anything else to do. Note, the completion
1409 * of the previous request may have caused a new request to be started
1410 * so be careful when doing this.
1411 */
1412
1413 if (!hs_ep->req && result >= 0) {
1414 restart = !list_empty(&hs_ep->queue);
1415 if (restart) {
1416 hs_req = get_ep_head(hs_ep);
1417 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1418 }
1419 }
1420 }
1421
1422 /**
1423 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1424 * @hsotg: The device state.
1425 * @ep_idx: The endpoint index for the data
1426 * @size: The size of data in the fifo, in bytes
1427 *
1428 * The FIFO status shows there is data to read from the FIFO for a given
1429 * endpoint, so sort out whether we need to read the data into a request
1430 * that has been made for that endpoint.
1431 */
1432 static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1433 {
1434 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1435 struct s3c_hsotg_req *hs_req = hs_ep->req;
1436 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1437 int to_read;
1438 int max_req;
1439 int read_ptr;
1440
1441
1442 if (!hs_req) {
1443 u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1444 int ptr;
1445
1446 dev_warn(hsotg->dev,
1447 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1448 __func__, size, ep_idx, epctl);
1449
1450 /* dump the data from the FIFO, we've nothing we can do */
1451 for (ptr = 0; ptr < size; ptr += 4)
1452 (void)readl(fifo);
1453
1454 return;
1455 }
1456
1457 to_read = size;
1458 read_ptr = hs_req->req.actual;
1459 max_req = hs_req->req.length - read_ptr;
1460
1461 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1462 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1463
1464 if (to_read > max_req) {
1465 /*
1466 * more data appeared than we where willing
1467 * to deal with in this request.
1468 */
1469
1470 /* currently we don't deal this */
1471 WARN_ON_ONCE(1);
1472 }
1473
1474 hs_ep->total_data += to_read;
1475 hs_req->req.actual += to_read;
1476 to_read = DIV_ROUND_UP(to_read, 4);
1477
1478 /*
1479 * note, we might over-write the buffer end by 3 bytes depending on
1480 * alignment of the data.
1481 */
1482 readsl(fifo, hs_req->req.buf + read_ptr, to_read);
1483 }
1484
1485 /**
1486 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1487 * @hsotg: The device instance
1488 * @req: The request currently on this endpoint
1489 *
1490 * Generate a zero-length IN packet request for terminating a SETUP
1491 * transaction.
1492 *
1493 * Note, since we don't write any data to the TxFIFO, then it is
1494 * currently believed that we do not need to wait for any space in
1495 * the TxFIFO.
1496 */
1497 static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1498 struct s3c_hsotg_req *req)
1499 {
1500 u32 ctrl;
1501
1502 if (!req) {
1503 dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1504 return;
1505 }
1506
1507 if (req->req.length == 0) {
1508 hsotg->eps[0].sent_zlp = 1;
1509 s3c_hsotg_enqueue_setup(hsotg);
1510 return;
1511 }
1512
1513 hsotg->eps[0].dir_in = 1;
1514 hsotg->eps[0].sent_zlp = 1;
1515
1516 dev_dbg(hsotg->dev, "sending zero-length packet\n");
1517
1518 /* issue a zero-sized packet to terminate this */
1519 writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
1520 DxEPTSIZ_XferSize(0), hsotg->regs + DIEPTSIZ(0));
1521
1522 ctrl = readl(hsotg->regs + DIEPCTL0);
1523 ctrl |= DxEPCTL_CNAK; /* clear NAK set by core */
1524 ctrl |= DxEPCTL_EPEna; /* ensure ep enabled */
1525 ctrl |= DxEPCTL_USBActEp;
1526 writel(ctrl, hsotg->regs + DIEPCTL0);
1527 }
1528
1529 /**
1530 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1531 * @hsotg: The device instance
1532 * @epnum: The endpoint received from
1533 * @was_setup: Set if processing a SetupDone event.
1534 *
1535 * The RXFIFO has delivered an OutDone event, which means that the data
1536 * transfer for an OUT endpoint has been completed, either by a short
1537 * packet or by the finish of a transfer.
1538 */
1539 static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1540 int epnum, bool was_setup)
1541 {
1542 u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1543 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1544 struct s3c_hsotg_req *hs_req = hs_ep->req;
1545 struct usb_request *req = &hs_req->req;
1546 unsigned size_left = DxEPTSIZ_XferSize_GET(epsize);
1547 int result = 0;
1548
1549 if (!hs_req) {
1550 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1551 return;
1552 }
1553
1554 if (using_dma(hsotg)) {
1555 unsigned size_done;
1556
1557 /*
1558 * Calculate the size of the transfer by checking how much
1559 * is left in the endpoint size register and then working it
1560 * out from the amount we loaded for the transfer.
1561 *
1562 * We need to do this as DMA pointers are always 32bit aligned
1563 * so may overshoot/undershoot the transfer.
1564 */
1565
1566 size_done = hs_ep->size_loaded - size_left;
1567 size_done += hs_ep->last_load;
1568
1569 req->actual = size_done;
1570 }
1571
1572 /* if there is more request to do, schedule new transfer */
1573 if (req->actual < req->length && size_left == 0) {
1574 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1575 return;
1576 } else if (epnum == 0) {
1577 /*
1578 * After was_setup = 1 =>
1579 * set CNAK for non Setup requests
1580 */
1581 hsotg->setup = was_setup ? 0 : 1;
1582 }
1583
1584 if (req->actual < req->length && req->short_not_ok) {
1585 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1586 __func__, req->actual, req->length);
1587
1588 /*
1589 * todo - what should we return here? there's no one else
1590 * even bothering to check the status.
1591 */
1592 }
1593
1594 if (epnum == 0) {
1595 /*
1596 * Condition req->complete != s3c_hsotg_complete_setup says:
1597 * send ZLP when we have an asynchronous request from gadget
1598 */
1599 if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1600 s3c_hsotg_send_zlp(hsotg, hs_req);
1601 }
1602
1603 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1604 }
1605
1606 /**
1607 * s3c_hsotg_read_frameno - read current frame number
1608 * @hsotg: The device instance
1609 *
1610 * Return the current frame number
1611 */
1612 static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1613 {
1614 u32 dsts;
1615
1616 dsts = readl(hsotg->regs + DSTS);
1617 dsts &= DSTS_SOFFN_MASK;
1618 dsts >>= DSTS_SOFFN_SHIFT;
1619
1620 return dsts;
1621 }
1622
1623 /**
1624 * s3c_hsotg_handle_rx - RX FIFO has data
1625 * @hsotg: The device instance
1626 *
1627 * The IRQ handler has detected that the RX FIFO has some data in it
1628 * that requires processing, so find out what is in there and do the
1629 * appropriate read.
1630 *
1631 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1632 * chunks, so if you have x packets received on an endpoint you'll get x
1633 * FIFO events delivered, each with a packet's worth of data in it.
1634 *
1635 * When using DMA, we should not be processing events from the RXFIFO
1636 * as the actual data should be sent to the memory directly and we turn
1637 * on the completion interrupts to get notifications of transfer completion.
1638 */
1639 static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1640 {
1641 u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1642 u32 epnum, status, size;
1643
1644 WARN_ON(using_dma(hsotg));
1645
1646 epnum = grxstsr & GRXSTS_EPNum_MASK;
1647 status = grxstsr & GRXSTS_PktSts_MASK;
1648
1649 size = grxstsr & GRXSTS_ByteCnt_MASK;
1650 size >>= GRXSTS_ByteCnt_SHIFT;
1651
1652 if (1)
1653 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1654 __func__, grxstsr, size, epnum);
1655
1656 #define __status(x) ((x) >> GRXSTS_PktSts_SHIFT)
1657
1658 switch (status >> GRXSTS_PktSts_SHIFT) {
1659 case __status(GRXSTS_PktSts_GlobalOutNAK):
1660 dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1661 break;
1662
1663 case __status(GRXSTS_PktSts_OutDone):
1664 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1665 s3c_hsotg_read_frameno(hsotg));
1666
1667 if (!using_dma(hsotg))
1668 s3c_hsotg_handle_outdone(hsotg, epnum, false);
1669 break;
1670
1671 case __status(GRXSTS_PktSts_SetupDone):
1672 dev_dbg(hsotg->dev,
1673 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1674 s3c_hsotg_read_frameno(hsotg),
1675 readl(hsotg->regs + DOEPCTL(0)));
1676
1677 s3c_hsotg_handle_outdone(hsotg, epnum, true);
1678 break;
1679
1680 case __status(GRXSTS_PktSts_OutRX):
1681 s3c_hsotg_rx_data(hsotg, epnum, size);
1682 break;
1683
1684 case __status(GRXSTS_PktSts_SetupRX):
1685 dev_dbg(hsotg->dev,
1686 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1687 s3c_hsotg_read_frameno(hsotg),
1688 readl(hsotg->regs + DOEPCTL(0)));
1689
1690 s3c_hsotg_rx_data(hsotg, epnum, size);
1691 break;
1692
1693 default:
1694 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1695 __func__, grxstsr);
1696
1697 s3c_hsotg_dump(hsotg);
1698 break;
1699 }
1700 }
1701
1702 /**
1703 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1704 * @mps: The maximum packet size in bytes.
1705 */
1706 static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1707 {
1708 switch (mps) {
1709 case 64:
1710 return D0EPCTL_MPS_64;
1711 case 32:
1712 return D0EPCTL_MPS_32;
1713 case 16:
1714 return D0EPCTL_MPS_16;
1715 case 8:
1716 return D0EPCTL_MPS_8;
1717 }
1718
1719 /* bad max packet size, warn and return invalid result */
1720 WARN_ON(1);
1721 return (u32)-1;
1722 }
1723
1724 /**
1725 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1726 * @hsotg: The driver state.
1727 * @ep: The index number of the endpoint
1728 * @mps: The maximum packet size in bytes
1729 *
1730 * Configure the maximum packet size for the given endpoint, updating
1731 * the hardware control registers to reflect this.
1732 */
1733 static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1734 unsigned int ep, unsigned int mps)
1735 {
1736 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1737 void __iomem *regs = hsotg->regs;
1738 u32 mpsval;
1739 u32 mcval;
1740 u32 reg;
1741
1742 if (ep == 0) {
1743 /* EP0 is a special case */
1744 mpsval = s3c_hsotg_ep0_mps(mps);
1745 if (mpsval > 3)
1746 goto bad_mps;
1747 hs_ep->ep.maxpacket = mps;
1748 hs_ep->mc = 1;
1749 } else {
1750 mpsval = mps & DxEPCTL_MPS_MASK;
1751 if (mpsval > 1024)
1752 goto bad_mps;
1753 mcval = ((mps >> 11) & 0x3) + 1;
1754 hs_ep->mc = mcval;
1755 if (mcval > 3)
1756 goto bad_mps;
1757 hs_ep->ep.maxpacket = mpsval;
1758 }
1759
1760 /*
1761 * update both the in and out endpoint controldir_ registers, even
1762 * if one of the directions may not be in use.
1763 */
1764
1765 reg = readl(regs + DIEPCTL(ep));
1766 reg &= ~DxEPCTL_MPS_MASK;
1767 reg |= mpsval;
1768 writel(reg, regs + DIEPCTL(ep));
1769
1770 if (ep) {
1771 reg = readl(regs + DOEPCTL(ep));
1772 reg &= ~DxEPCTL_MPS_MASK;
1773 reg |= mpsval;
1774 writel(reg, regs + DOEPCTL(ep));
1775 }
1776
1777 return;
1778
1779 bad_mps:
1780 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1781 }
1782
1783 /**
1784 * s3c_hsotg_txfifo_flush - flush Tx FIFO
1785 * @hsotg: The driver state
1786 * @idx: The index for the endpoint (0..15)
1787 */
1788 static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
1789 {
1790 int timeout;
1791 int val;
1792
1793 writel(GRSTCTL_TxFNum(idx) | GRSTCTL_TxFFlsh,
1794 hsotg->regs + GRSTCTL);
1795
1796 /* wait until the fifo is flushed */
1797 timeout = 100;
1798
1799 while (1) {
1800 val = readl(hsotg->regs + GRSTCTL);
1801
1802 if ((val & (GRSTCTL_TxFFlsh)) == 0)
1803 break;
1804
1805 if (--timeout == 0) {
1806 dev_err(hsotg->dev,
1807 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1808 __func__, val);
1809 }
1810
1811 udelay(1);
1812 }
1813 }
1814
1815 /**
1816 * s3c_hsotg_trytx - check to see if anything needs transmitting
1817 * @hsotg: The driver state
1818 * @hs_ep: The driver endpoint to check.
1819 *
1820 * Check to see if there is a request that has data to send, and if so
1821 * make an attempt to write data into the FIFO.
1822 */
1823 static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1824 struct s3c_hsotg_ep *hs_ep)
1825 {
1826 struct s3c_hsotg_req *hs_req = hs_ep->req;
1827
1828 if (!hs_ep->dir_in || !hs_req) {
1829 /**
1830 * if request is not enqueued, we disable interrupts
1831 * for endpoints, excepting ep0
1832 */
1833 if (hs_ep->index != 0)
1834 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
1835 hs_ep->dir_in, 0);
1836 return 0;
1837 }
1838
1839 if (hs_req->req.actual < hs_req->req.length) {
1840 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1841 hs_ep->index);
1842 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1843 }
1844
1845 return 0;
1846 }
1847
1848 /**
1849 * s3c_hsotg_complete_in - complete IN transfer
1850 * @hsotg: The device state.
1851 * @hs_ep: The endpoint that has just completed.
1852 *
1853 * An IN transfer has been completed, update the transfer's state and then
1854 * call the relevant completion routines.
1855 */
1856 static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1857 struct s3c_hsotg_ep *hs_ep)
1858 {
1859 struct s3c_hsotg_req *hs_req = hs_ep->req;
1860 u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1861 int size_left, size_done;
1862
1863 if (!hs_req) {
1864 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1865 return;
1866 }
1867
1868 /* Finish ZLP handling for IN EP0 transactions */
1869 if (hsotg->eps[0].sent_zlp) {
1870 dev_dbg(hsotg->dev, "zlp packet received\n");
1871 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1872 return;
1873 }
1874
1875 /*
1876 * Calculate the size of the transfer by checking how much is left
1877 * in the endpoint size register and then working it out from
1878 * the amount we loaded for the transfer.
1879 *
1880 * We do this even for DMA, as the transfer may have incremented
1881 * past the end of the buffer (DMA transfers are always 32bit
1882 * aligned).
1883 */
1884
1885 size_left = DxEPTSIZ_XferSize_GET(epsize);
1886
1887 size_done = hs_ep->size_loaded - size_left;
1888 size_done += hs_ep->last_load;
1889
1890 if (hs_req->req.actual != size_done)
1891 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1892 __func__, hs_req->req.actual, size_done);
1893
1894 hs_req->req.actual = size_done;
1895 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1896 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1897
1898 /*
1899 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
1900 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
1901 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
1902 * inform the host that no more data is available.
1903 * The state of req.zero member is checked to be sure that the value to
1904 * send is smaller than wValue expected from host.
1905 * Check req.length to NOT send another ZLP when the current one is
1906 * under completion (the one for which this completion has been called).
1907 */
1908 if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
1909 hs_req->req.length == hs_req->req.actual &&
1910 !(hs_req->req.length % hs_ep->ep.maxpacket)) {
1911
1912 dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
1913 s3c_hsotg_send_zlp(hsotg, hs_req);
1914
1915 return;
1916 }
1917
1918 if (!size_left && hs_req->req.actual < hs_req->req.length) {
1919 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1920 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1921 } else
1922 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1923 }
1924
1925 /**
1926 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1927 * @hsotg: The driver state
1928 * @idx: The index for the endpoint (0..15)
1929 * @dir_in: Set if this is an IN endpoint
1930 *
1931 * Process and clear any interrupt pending for an individual endpoint
1932 */
1933 static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1934 int dir_in)
1935 {
1936 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1937 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1938 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1939 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1940 u32 ints;
1941 u32 ctrl;
1942
1943 ints = readl(hsotg->regs + epint_reg);
1944 ctrl = readl(hsotg->regs + epctl_reg);
1945
1946 /* Clear endpoint interrupts */
1947 writel(ints, hsotg->regs + epint_reg);
1948
1949 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1950 __func__, idx, dir_in ? "in" : "out", ints);
1951
1952 if (ints & DxEPINT_XferCompl) {
1953 if (hs_ep->isochronous && hs_ep->interval == 1) {
1954 if (ctrl & DxEPCTL_EOFrNum)
1955 ctrl |= DxEPCTL_SetEvenFr;
1956 else
1957 ctrl |= DxEPCTL_SetOddFr;
1958 writel(ctrl, hsotg->regs + epctl_reg);
1959 }
1960
1961 dev_dbg(hsotg->dev,
1962 "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1963 __func__, readl(hsotg->regs + epctl_reg),
1964 readl(hsotg->regs + epsiz_reg));
1965
1966 /*
1967 * we get OutDone from the FIFO, so we only need to look
1968 * at completing IN requests here
1969 */
1970 if (dir_in) {
1971 s3c_hsotg_complete_in(hsotg, hs_ep);
1972
1973 if (idx == 0 && !hs_ep->req)
1974 s3c_hsotg_enqueue_setup(hsotg);
1975 } else if (using_dma(hsotg)) {
1976 /*
1977 * We're using DMA, we need to fire an OutDone here
1978 * as we ignore the RXFIFO.
1979 */
1980
1981 s3c_hsotg_handle_outdone(hsotg, idx, false);
1982 }
1983 }
1984
1985 if (ints & DxEPINT_EPDisbld) {
1986 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1987
1988 if (dir_in) {
1989 int epctl = readl(hsotg->regs + epctl_reg);
1990
1991 s3c_hsotg_txfifo_flush(hsotg, idx);
1992
1993 if ((epctl & DxEPCTL_Stall) &&
1994 (epctl & DxEPCTL_EPType_Bulk)) {
1995 int dctl = readl(hsotg->regs + DCTL);
1996
1997 dctl |= DCTL_CGNPInNAK;
1998 writel(dctl, hsotg->regs + DCTL);
1999 }
2000 }
2001 }
2002
2003 if (ints & DxEPINT_AHBErr)
2004 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2005
2006 if (ints & DxEPINT_Setup) { /* Setup or Timeout */
2007 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
2008
2009 if (using_dma(hsotg) && idx == 0) {
2010 /*
2011 * this is the notification we've received a
2012 * setup packet. In non-DMA mode we'd get this
2013 * from the RXFIFO, instead we need to process
2014 * the setup here.
2015 */
2016
2017 if (dir_in)
2018 WARN_ON_ONCE(1);
2019 else
2020 s3c_hsotg_handle_outdone(hsotg, 0, true);
2021 }
2022 }
2023
2024 if (ints & DxEPINT_Back2BackSetup)
2025 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2026
2027 if (dir_in && !hs_ep->isochronous) {
2028 /* not sure if this is important, but we'll clear it anyway */
2029 if (ints & DIEPMSK_INTknTXFEmpMsk) {
2030 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2031 __func__, idx);
2032 }
2033
2034 /* this probably means something bad is happening */
2035 if (ints & DIEPMSK_INTknEPMisMsk) {
2036 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2037 __func__, idx);
2038 }
2039
2040 /* FIFO has space or is empty (see GAHBCFG) */
2041 if (hsotg->dedicated_fifos &&
2042 ints & DIEPMSK_TxFIFOEmpty) {
2043 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2044 __func__, idx);
2045 if (!using_dma(hsotg))
2046 s3c_hsotg_trytx(hsotg, hs_ep);
2047 }
2048 }
2049 }
2050
2051 /**
2052 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2053 * @hsotg: The device state.
2054 *
2055 * Handle updating the device settings after the enumeration phase has
2056 * been completed.
2057 */
2058 static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
2059 {
2060 u32 dsts = readl(hsotg->regs + DSTS);
2061 int ep0_mps = 0, ep_mps;
2062
2063 /*
2064 * This should signal the finish of the enumeration phase
2065 * of the USB handshaking, so we should now know what rate
2066 * we connected at.
2067 */
2068
2069 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2070
2071 /*
2072 * note, since we're limited by the size of transfer on EP0, and
2073 * it seems IN transfers must be a even number of packets we do
2074 * not advertise a 64byte MPS on EP0.
2075 */
2076
2077 /* catch both EnumSpd_FS and EnumSpd_FS48 */
2078 switch (dsts & DSTS_EnumSpd_MASK) {
2079 case DSTS_EnumSpd_FS:
2080 case DSTS_EnumSpd_FS48:
2081 hsotg->gadget.speed = USB_SPEED_FULL;
2082 ep0_mps = EP0_MPS_LIMIT;
2083 ep_mps = 64;
2084 break;
2085
2086 case DSTS_EnumSpd_HS:
2087 hsotg->gadget.speed = USB_SPEED_HIGH;
2088 ep0_mps = EP0_MPS_LIMIT;
2089 ep_mps = 512;
2090 break;
2091
2092 case DSTS_EnumSpd_LS:
2093 hsotg->gadget.speed = USB_SPEED_LOW;
2094 /*
2095 * note, we don't actually support LS in this driver at the
2096 * moment, and the documentation seems to imply that it isn't
2097 * supported by the PHYs on some of the devices.
2098 */
2099 break;
2100 }
2101 dev_info(hsotg->dev, "new device is %s\n",
2102 usb_speed_string(hsotg->gadget.speed));
2103
2104 /*
2105 * we should now know the maximum packet size for an
2106 * endpoint, so set the endpoints to a default value.
2107 */
2108
2109 if (ep0_mps) {
2110 int i;
2111 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
2112 for (i = 1; i < hsotg->num_of_eps; i++)
2113 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
2114 }
2115
2116 /* ensure after enumeration our EP0 is active */
2117
2118 s3c_hsotg_enqueue_setup(hsotg);
2119
2120 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2121 readl(hsotg->regs + DIEPCTL0),
2122 readl(hsotg->regs + DOEPCTL0));
2123 }
2124
2125 /**
2126 * kill_all_requests - remove all requests from the endpoint's queue
2127 * @hsotg: The device state.
2128 * @ep: The endpoint the requests may be on.
2129 * @result: The result code to use.
2130 * @force: Force removal of any current requests
2131 *
2132 * Go through the requests on the given endpoint and mark them
2133 * completed with the given result code.
2134 */
2135 static void kill_all_requests(struct s3c_hsotg *hsotg,
2136 struct s3c_hsotg_ep *ep,
2137 int result, bool force)
2138 {
2139 struct s3c_hsotg_req *req, *treq;
2140
2141 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2142 /*
2143 * currently, we can't do much about an already
2144 * running request on an in endpoint
2145 */
2146
2147 if (ep->req == req && ep->dir_in && !force)
2148 continue;
2149
2150 s3c_hsotg_complete_request(hsotg, ep, req,
2151 result);
2152 }
2153 }
2154
2155 #define call_gadget(_hs, _entry) \
2156 do { \
2157 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
2158 (_hs)->driver && (_hs)->driver->_entry) { \
2159 spin_unlock(&_hs->lock); \
2160 (_hs)->driver->_entry(&(_hs)->gadget); \
2161 spin_lock(&_hs->lock); \
2162 } \
2163 } while (0)
2164
2165 /**
2166 * s3c_hsotg_disconnect - disconnect service
2167 * @hsotg: The device state.
2168 *
2169 * The device has been disconnected. Remove all current
2170 * transactions and signal the gadget driver that this
2171 * has happened.
2172 */
2173 static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2174 {
2175 unsigned ep;
2176
2177 for (ep = 0; ep < hsotg->num_of_eps; ep++)
2178 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
2179
2180 call_gadget(hsotg, disconnect);
2181 }
2182
2183 /**
2184 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2185 * @hsotg: The device state:
2186 * @periodic: True if this is a periodic FIFO interrupt
2187 */
2188 static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
2189 {
2190 struct s3c_hsotg_ep *ep;
2191 int epno, ret;
2192
2193 /* look through for any more data to transmit */
2194
2195 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2196 ep = &hsotg->eps[epno];
2197
2198 if (!ep->dir_in)
2199 continue;
2200
2201 if ((periodic && !ep->periodic) ||
2202 (!periodic && ep->periodic))
2203 continue;
2204
2205 ret = s3c_hsotg_trytx(hsotg, ep);
2206 if (ret < 0)
2207 break;
2208 }
2209 }
2210
2211 /* IRQ flags which will trigger a retry around the IRQ loop */
2212 #define IRQ_RETRY_MASK (GINTSTS_NPTxFEmp | \
2213 GINTSTS_PTxFEmp | \
2214 GINTSTS_RxFLvl)
2215
2216 /**
2217 * s3c_hsotg_corereset - issue softreset to the core
2218 * @hsotg: The device state
2219 *
2220 * Issue a soft reset to the core, and await the core finishing it.
2221 */
2222 static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2223 {
2224 int timeout;
2225 u32 grstctl;
2226
2227 dev_dbg(hsotg->dev, "resetting core\n");
2228
2229 /* issue soft reset */
2230 writel(GRSTCTL_CSftRst, hsotg->regs + GRSTCTL);
2231
2232 timeout = 10000;
2233 do {
2234 grstctl = readl(hsotg->regs + GRSTCTL);
2235 } while ((grstctl & GRSTCTL_CSftRst) && timeout-- > 0);
2236
2237 if (grstctl & GRSTCTL_CSftRst) {
2238 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2239 return -EINVAL;
2240 }
2241
2242 timeout = 10000;
2243
2244 while (1) {
2245 u32 grstctl = readl(hsotg->regs + GRSTCTL);
2246
2247 if (timeout-- < 0) {
2248 dev_info(hsotg->dev,
2249 "%s: reset failed, GRSTCTL=%08x\n",
2250 __func__, grstctl);
2251 return -ETIMEDOUT;
2252 }
2253
2254 if (!(grstctl & GRSTCTL_AHBIdle))
2255 continue;
2256
2257 break; /* reset done */
2258 }
2259
2260 dev_dbg(hsotg->dev, "reset successful\n");
2261 return 0;
2262 }
2263
2264 /**
2265 * s3c_hsotg_core_init - issue softreset to the core
2266 * @hsotg: The device state
2267 *
2268 * Issue a soft reset to the core, and await the core finishing it.
2269 */
2270 static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
2271 {
2272 s3c_hsotg_corereset(hsotg);
2273
2274 /*
2275 * we must now enable ep0 ready for host detection and then
2276 * set configuration.
2277 */
2278
2279 /* set the PLL on, remove the HNP/SRP and set the PHY */
2280 writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) |
2281 (0x5 << 10), hsotg->regs + GUSBCFG);
2282
2283 s3c_hsotg_init_fifo(hsotg);
2284
2285 __orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2286
2287 writel(1 << 18 | DCFG_DevSpd_HS, hsotg->regs + DCFG);
2288
2289 /* Clear any pending OTG interrupts */
2290 writel(0xffffffff, hsotg->regs + GOTGINT);
2291
2292 /* Clear any pending interrupts */
2293 writel(0xffffffff, hsotg->regs + GINTSTS);
2294
2295 writel(GINTSTS_ErlySusp | GINTSTS_SessReqInt |
2296 GINTSTS_GOUTNakEff | GINTSTS_GINNakEff |
2297 GINTSTS_ConIDStsChng | GINTSTS_USBRst |
2298 GINTSTS_EnumDone | GINTSTS_OTGInt |
2299 GINTSTS_USBSusp | GINTSTS_WkUpInt,
2300 hsotg->regs + GINTMSK);
2301
2302 if (using_dma(hsotg))
2303 writel(GAHBCFG_GlblIntrEn | GAHBCFG_DMAEn |
2304 GAHBCFG_HBstLen_Incr4,
2305 hsotg->regs + GAHBCFG);
2306 else
2307 writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NPTxFEmpLvl |
2308 GAHBCFG_PTxFEmpLvl) : 0) |
2309 GAHBCFG_GlblIntrEn,
2310 hsotg->regs + GAHBCFG);
2311
2312 /*
2313 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2314 * when we have no data to transfer. Otherwise we get being flooded by
2315 * interrupts.
2316 */
2317
2318 writel(((hsotg->dedicated_fifos) ? DIEPMSK_TxFIFOEmpty |
2319 DIEPMSK_INTknTXFEmpMsk : 0) |
2320 DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk |
2321 DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
2322 DIEPMSK_INTknEPMisMsk,
2323 hsotg->regs + DIEPMSK);
2324
2325 /*
2326 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2327 * DMA mode we may need this.
2328 */
2329 writel((using_dma(hsotg) ? (DIEPMSK_XferComplMsk |
2330 DIEPMSK_TimeOUTMsk) : 0) |
2331 DOEPMSK_EPDisbldMsk | DOEPMSK_AHBErrMsk |
2332 DOEPMSK_SetupMsk,
2333 hsotg->regs + DOEPMSK);
2334
2335 writel(0, hsotg->regs + DAINTMSK);
2336
2337 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2338 readl(hsotg->regs + DIEPCTL0),
2339 readl(hsotg->regs + DOEPCTL0));
2340
2341 /* enable in and out endpoint interrupts */
2342 s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPInt | GINTSTS_IEPInt);
2343
2344 /*
2345 * Enable the RXFIFO when in slave mode, as this is how we collect
2346 * the data. In DMA mode, we get events from the FIFO but also
2347 * things we cannot process, so do not use it.
2348 */
2349 if (!using_dma(hsotg))
2350 s3c_hsotg_en_gsint(hsotg, GINTSTS_RxFLvl);
2351
2352 /* Enable interrupts for EP0 in and out */
2353 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2354 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2355
2356 __orr32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2357 udelay(10); /* see openiboot */
2358 __bic32(hsotg->regs + DCTL, DCTL_PWROnPrgDone);
2359
2360 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2361
2362 /*
2363 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2364 * writing to the EPCTL register..
2365 */
2366
2367 /* set to read 1 8byte packet */
2368 writel(DxEPTSIZ_MC(1) | DxEPTSIZ_PktCnt(1) |
2369 DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2370
2371 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2372 DxEPCTL_CNAK | DxEPCTL_EPEna |
2373 DxEPCTL_USBActEp,
2374 hsotg->regs + DOEPCTL0);
2375
2376 /* enable, but don't activate EP0in */
2377 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2378 DxEPCTL_USBActEp, hsotg->regs + DIEPCTL0);
2379
2380 s3c_hsotg_enqueue_setup(hsotg);
2381
2382 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2383 readl(hsotg->regs + DIEPCTL0),
2384 readl(hsotg->regs + DOEPCTL0));
2385
2386 /* clear global NAKs */
2387 writel(DCTL_CGOUTNak | DCTL_CGNPInNAK,
2388 hsotg->regs + DCTL);
2389
2390 /* must be at-least 3ms to allow bus to see disconnect */
2391 mdelay(3);
2392
2393 /* remove the soft-disconnect and let's go */
2394 __bic32(hsotg->regs + DCTL, DCTL_SftDiscon);
2395 }
2396
2397 /**
2398 * s3c_hsotg_irq - handle device interrupt
2399 * @irq: The IRQ number triggered
2400 * @pw: The pw value when registered the handler.
2401 */
2402 static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
2403 {
2404 struct s3c_hsotg *hsotg = pw;
2405 int retry_count = 8;
2406 u32 gintsts;
2407 u32 gintmsk;
2408
2409 spin_lock(&hsotg->lock);
2410 irq_retry:
2411 gintsts = readl(hsotg->regs + GINTSTS);
2412 gintmsk = readl(hsotg->regs + GINTMSK);
2413
2414 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2415 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2416
2417 gintsts &= gintmsk;
2418
2419 if (gintsts & GINTSTS_OTGInt) {
2420 u32 otgint = readl(hsotg->regs + GOTGINT);
2421
2422 dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
2423
2424 writel(otgint, hsotg->regs + GOTGINT);
2425 }
2426
2427 if (gintsts & GINTSTS_SessReqInt) {
2428 dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2429 writel(GINTSTS_SessReqInt, hsotg->regs + GINTSTS);
2430 }
2431
2432 if (gintsts & GINTSTS_EnumDone) {
2433 writel(GINTSTS_EnumDone, hsotg->regs + GINTSTS);
2434
2435 s3c_hsotg_irq_enumdone(hsotg);
2436 }
2437
2438 if (gintsts & GINTSTS_ConIDStsChng) {
2439 dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2440 readl(hsotg->regs + DSTS),
2441 readl(hsotg->regs + GOTGCTL));
2442
2443 writel(GINTSTS_ConIDStsChng, hsotg->regs + GINTSTS);
2444 }
2445
2446 if (gintsts & (GINTSTS_OEPInt | GINTSTS_IEPInt)) {
2447 u32 daint = readl(hsotg->regs + DAINT);
2448 u32 daintmsk = readl(hsotg->regs + DAINTMSK);
2449 u32 daint_out, daint_in;
2450 int ep;
2451
2452 daint &= daintmsk;
2453 daint_out = daint >> DAINT_OutEP_SHIFT;
2454 daint_in = daint & ~(daint_out << DAINT_OutEP_SHIFT);
2455
2456 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2457
2458 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2459 if (daint_out & 1)
2460 s3c_hsotg_epint(hsotg, ep, 0);
2461 }
2462
2463 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2464 if (daint_in & 1)
2465 s3c_hsotg_epint(hsotg, ep, 1);
2466 }
2467 }
2468
2469 if (gintsts & GINTSTS_USBRst) {
2470
2471 u32 usb_status = readl(hsotg->regs + GOTGCTL);
2472
2473 dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2474 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2475 readl(hsotg->regs + GNPTXSTS));
2476
2477 writel(GINTSTS_USBRst, hsotg->regs + GINTSTS);
2478
2479 if (usb_status & GOTGCTL_BSESVLD) {
2480 if (time_after(jiffies, hsotg->last_rst +
2481 msecs_to_jiffies(200))) {
2482
2483 kill_all_requests(hsotg, &hsotg->eps[0],
2484 -ECONNRESET, true);
2485
2486 s3c_hsotg_core_init(hsotg);
2487 hsotg->last_rst = jiffies;
2488 }
2489 }
2490 }
2491
2492 /* check both FIFOs */
2493
2494 if (gintsts & GINTSTS_NPTxFEmp) {
2495 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2496
2497 /*
2498 * Disable the interrupt to stop it happening again
2499 * unless one of these endpoint routines decides that
2500 * it needs re-enabling
2501 */
2502
2503 s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTxFEmp);
2504 s3c_hsotg_irq_fifoempty(hsotg, false);
2505 }
2506
2507 if (gintsts & GINTSTS_PTxFEmp) {
2508 dev_dbg(hsotg->dev, "PTxFEmp\n");
2509
2510 /* See note in GINTSTS_NPTxFEmp */
2511
2512 s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTxFEmp);
2513 s3c_hsotg_irq_fifoempty(hsotg, true);
2514 }
2515
2516 if (gintsts & GINTSTS_RxFLvl) {
2517 /*
2518 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2519 * we need to retry s3c_hsotg_handle_rx if this is still
2520 * set.
2521 */
2522
2523 s3c_hsotg_handle_rx(hsotg);
2524 }
2525
2526 if (gintsts & GINTSTS_ModeMis) {
2527 dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2528 writel(GINTSTS_ModeMis, hsotg->regs + GINTSTS);
2529 }
2530
2531 if (gintsts & GINTSTS_USBSusp) {
2532 dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
2533 writel(GINTSTS_USBSusp, hsotg->regs + GINTSTS);
2534
2535 call_gadget(hsotg, suspend);
2536 s3c_hsotg_disconnect(hsotg);
2537 }
2538
2539 if (gintsts & GINTSTS_WkUpInt) {
2540 dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
2541 writel(GINTSTS_WkUpInt, hsotg->regs + GINTSTS);
2542
2543 call_gadget(hsotg, resume);
2544 }
2545
2546 if (gintsts & GINTSTS_ErlySusp) {
2547 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2548 writel(GINTSTS_ErlySusp, hsotg->regs + GINTSTS);
2549 }
2550
2551 /*
2552 * these next two seem to crop-up occasionally causing the core
2553 * to shutdown the USB transfer, so try clearing them and logging
2554 * the occurrence.
2555 */
2556
2557 if (gintsts & GINTSTS_GOUTNakEff) {
2558 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2559
2560 writel(DCTL_CGOUTNak, hsotg->regs + DCTL);
2561
2562 s3c_hsotg_dump(hsotg);
2563 }
2564
2565 if (gintsts & GINTSTS_GINNakEff) {
2566 dev_info(hsotg->dev, "GINNakEff triggered\n");
2567
2568 writel(DCTL_CGNPInNAK, hsotg->regs + DCTL);
2569
2570 s3c_hsotg_dump(hsotg);
2571 }
2572
2573 /*
2574 * if we've had fifo events, we should try and go around the
2575 * loop again to see if there's any point in returning yet.
2576 */
2577
2578 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2579 goto irq_retry;
2580
2581 spin_unlock(&hsotg->lock);
2582
2583 return IRQ_HANDLED;
2584 }
2585
2586 /**
2587 * s3c_hsotg_ep_enable - enable the given endpoint
2588 * @ep: The USB endpint to configure
2589 * @desc: The USB endpoint descriptor to configure with.
2590 *
2591 * This is called from the USB gadget code's usb_ep_enable().
2592 */
2593 static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2594 const struct usb_endpoint_descriptor *desc)
2595 {
2596 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2597 struct s3c_hsotg *hsotg = hs_ep->parent;
2598 unsigned long flags;
2599 int index = hs_ep->index;
2600 u32 epctrl_reg;
2601 u32 epctrl;
2602 u32 mps;
2603 int dir_in;
2604 int ret = 0;
2605
2606 dev_dbg(hsotg->dev,
2607 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2608 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2609 desc->wMaxPacketSize, desc->bInterval);
2610
2611 /* not to be called for EP0 */
2612 WARN_ON(index == 0);
2613
2614 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2615 if (dir_in != hs_ep->dir_in) {
2616 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2617 return -EINVAL;
2618 }
2619
2620 mps = usb_endpoint_maxp(desc);
2621
2622 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2623
2624 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2625 epctrl = readl(hsotg->regs + epctrl_reg);
2626
2627 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2628 __func__, epctrl, epctrl_reg);
2629
2630 spin_lock_irqsave(&hsotg->lock, flags);
2631
2632 epctrl &= ~(DxEPCTL_EPType_MASK | DxEPCTL_MPS_MASK);
2633 epctrl |= DxEPCTL_MPS(mps);
2634
2635 /*
2636 * mark the endpoint as active, otherwise the core may ignore
2637 * transactions entirely for this endpoint
2638 */
2639 epctrl |= DxEPCTL_USBActEp;
2640
2641 /*
2642 * set the NAK status on the endpoint, otherwise we might try and
2643 * do something with data that we've yet got a request to process
2644 * since the RXFIFO will take data for an endpoint even if the
2645 * size register hasn't been set.
2646 */
2647
2648 epctrl |= DxEPCTL_SNAK;
2649
2650 /* update the endpoint state */
2651 s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2652
2653 /* default, set to non-periodic */
2654 hs_ep->isochronous = 0;
2655 hs_ep->periodic = 0;
2656 hs_ep->halted = 0;
2657 hs_ep->interval = desc->bInterval;
2658
2659 if (hs_ep->interval > 1 && hs_ep->mc > 1)
2660 dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2661
2662 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2663 case USB_ENDPOINT_XFER_ISOC:
2664 epctrl |= DxEPCTL_EPType_Iso;
2665 epctrl |= DxEPCTL_SetEvenFr;
2666 hs_ep->isochronous = 1;
2667 if (dir_in)
2668 hs_ep->periodic = 1;
2669 break;
2670
2671 case USB_ENDPOINT_XFER_BULK:
2672 epctrl |= DxEPCTL_EPType_Bulk;
2673 break;
2674
2675 case USB_ENDPOINT_XFER_INT:
2676 if (dir_in) {
2677 /*
2678 * Allocate our TxFNum by simply using the index
2679 * of the endpoint for the moment. We could do
2680 * something better if the host indicates how
2681 * many FIFOs we are expecting to use.
2682 */
2683
2684 hs_ep->periodic = 1;
2685 epctrl |= DxEPCTL_TxFNum(index);
2686 }
2687
2688 epctrl |= DxEPCTL_EPType_Intterupt;
2689 break;
2690
2691 case USB_ENDPOINT_XFER_CONTROL:
2692 epctrl |= DxEPCTL_EPType_Control;
2693 break;
2694 }
2695
2696 /*
2697 * if the hardware has dedicated fifos, we must give each IN EP
2698 * a unique tx-fifo even if it is non-periodic.
2699 */
2700 if (dir_in && hsotg->dedicated_fifos)
2701 epctrl |= DxEPCTL_TxFNum(index);
2702
2703 /* for non control endpoints, set PID to D0 */
2704 if (index)
2705 epctrl |= DxEPCTL_SetD0PID;
2706
2707 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2708 __func__, epctrl);
2709
2710 writel(epctrl, hsotg->regs + epctrl_reg);
2711 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2712 __func__, readl(hsotg->regs + epctrl_reg));
2713
2714 /* enable the endpoint interrupt */
2715 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2716
2717 spin_unlock_irqrestore(&hsotg->lock, flags);
2718 return ret;
2719 }
2720
2721 /**
2722 * s3c_hsotg_ep_disable - disable given endpoint
2723 * @ep: The endpoint to disable.
2724 */
2725 static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2726 {
2727 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2728 struct s3c_hsotg *hsotg = hs_ep->parent;
2729 int dir_in = hs_ep->dir_in;
2730 int index = hs_ep->index;
2731 unsigned long flags;
2732 u32 epctrl_reg;
2733 u32 ctrl;
2734
2735 dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2736
2737 if (ep == &hsotg->eps[0].ep) {
2738 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2739 return -EINVAL;
2740 }
2741
2742 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2743
2744 spin_lock_irqsave(&hsotg->lock, flags);
2745 /* terminate all requests with shutdown */
2746 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2747
2748
2749 ctrl = readl(hsotg->regs + epctrl_reg);
2750 ctrl &= ~DxEPCTL_EPEna;
2751 ctrl &= ~DxEPCTL_USBActEp;
2752 ctrl |= DxEPCTL_SNAK;
2753
2754 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2755 writel(ctrl, hsotg->regs + epctrl_reg);
2756
2757 /* disable endpoint interrupts */
2758 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2759
2760 spin_unlock_irqrestore(&hsotg->lock, flags);
2761 return 0;
2762 }
2763
2764 /**
2765 * on_list - check request is on the given endpoint
2766 * @ep: The endpoint to check.
2767 * @test: The request to test if it is on the endpoint.
2768 */
2769 static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2770 {
2771 struct s3c_hsotg_req *req, *treq;
2772
2773 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2774 if (req == test)
2775 return true;
2776 }
2777
2778 return false;
2779 }
2780
2781 /**
2782 * s3c_hsotg_ep_dequeue - dequeue given endpoint
2783 * @ep: The endpoint to dequeue.
2784 * @req: The request to be removed from a queue.
2785 */
2786 static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2787 {
2788 struct s3c_hsotg_req *hs_req = our_req(req);
2789 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2790 struct s3c_hsotg *hs = hs_ep->parent;
2791 unsigned long flags;
2792
2793 dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2794
2795 spin_lock_irqsave(&hs->lock, flags);
2796
2797 if (!on_list(hs_ep, hs_req)) {
2798 spin_unlock_irqrestore(&hs->lock, flags);
2799 return -EINVAL;
2800 }
2801
2802 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2803 spin_unlock_irqrestore(&hs->lock, flags);
2804
2805 return 0;
2806 }
2807
2808 /**
2809 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
2810 * @ep: The endpoint to set halt.
2811 * @value: Set or unset the halt.
2812 */
2813 static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2814 {
2815 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2816 struct s3c_hsotg *hs = hs_ep->parent;
2817 int index = hs_ep->index;
2818 u32 epreg;
2819 u32 epctl;
2820 u32 xfertype;
2821
2822 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2823
2824 /* write both IN and OUT control registers */
2825
2826 epreg = DIEPCTL(index);
2827 epctl = readl(hs->regs + epreg);
2828
2829 if (value) {
2830 epctl |= DxEPCTL_Stall + DxEPCTL_SNAK;
2831 if (epctl & DxEPCTL_EPEna)
2832 epctl |= DxEPCTL_EPDis;
2833 } else {
2834 epctl &= ~DxEPCTL_Stall;
2835 xfertype = epctl & DxEPCTL_EPType_MASK;
2836 if (xfertype == DxEPCTL_EPType_Bulk ||
2837 xfertype == DxEPCTL_EPType_Intterupt)
2838 epctl |= DxEPCTL_SetD0PID;
2839 }
2840
2841 writel(epctl, hs->regs + epreg);
2842
2843 epreg = DOEPCTL(index);
2844 epctl = readl(hs->regs + epreg);
2845
2846 if (value)
2847 epctl |= DxEPCTL_Stall;
2848 else {
2849 epctl &= ~DxEPCTL_Stall;
2850 xfertype = epctl & DxEPCTL_EPType_MASK;
2851 if (xfertype == DxEPCTL_EPType_Bulk ||
2852 xfertype == DxEPCTL_EPType_Intterupt)
2853 epctl |= DxEPCTL_SetD0PID;
2854 }
2855
2856 writel(epctl, hs->regs + epreg);
2857
2858 hs_ep->halted = value;
2859
2860 return 0;
2861 }
2862
2863 /**
2864 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
2865 * @ep: The endpoint to set halt.
2866 * @value: Set or unset the halt.
2867 */
2868 static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
2869 {
2870 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2871 struct s3c_hsotg *hs = hs_ep->parent;
2872 unsigned long flags = 0;
2873 int ret = 0;
2874
2875 spin_lock_irqsave(&hs->lock, flags);
2876 ret = s3c_hsotg_ep_sethalt(ep, value);
2877 spin_unlock_irqrestore(&hs->lock, flags);
2878
2879 return ret;
2880 }
2881
2882 static struct usb_ep_ops s3c_hsotg_ep_ops = {
2883 .enable = s3c_hsotg_ep_enable,
2884 .disable = s3c_hsotg_ep_disable,
2885 .alloc_request = s3c_hsotg_ep_alloc_request,
2886 .free_request = s3c_hsotg_ep_free_request,
2887 .queue = s3c_hsotg_ep_queue_lock,
2888 .dequeue = s3c_hsotg_ep_dequeue,
2889 .set_halt = s3c_hsotg_ep_sethalt_lock,
2890 /* note, don't believe we have any call for the fifo routines */
2891 };
2892
2893 /**
2894 * s3c_hsotg_phy_enable - enable platform phy dev
2895 * @hsotg: The driver state
2896 *
2897 * A wrapper for platform code responsible for controlling
2898 * low-level USB code
2899 */
2900 static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
2901 {
2902 struct platform_device *pdev = to_platform_device(hsotg->dev);
2903
2904 dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2905
2906 if (hsotg->phy)
2907 usb_phy_init(hsotg->phy);
2908 else if (hsotg->plat->phy_init)
2909 hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2910 }
2911
2912 /**
2913 * s3c_hsotg_phy_disable - disable platform phy dev
2914 * @hsotg: The driver state
2915 *
2916 * A wrapper for platform code responsible for controlling
2917 * low-level USB code
2918 */
2919 static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
2920 {
2921 struct platform_device *pdev = to_platform_device(hsotg->dev);
2922
2923 if (hsotg->phy)
2924 usb_phy_shutdown(hsotg->phy);
2925 else if (hsotg->plat->phy_exit)
2926 hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2927 }
2928
2929 /**
2930 * s3c_hsotg_init - initalize the usb core
2931 * @hsotg: The driver state
2932 */
2933 static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2934 {
2935 /* unmask subset of endpoint interrupts */
2936
2937 writel(DIEPMSK_TimeOUTMsk | DIEPMSK_AHBErrMsk |
2938 DIEPMSK_EPDisbldMsk | DIEPMSK_XferComplMsk,
2939 hsotg->regs + DIEPMSK);
2940
2941 writel(DOEPMSK_SetupMsk | DOEPMSK_AHBErrMsk |
2942 DOEPMSK_EPDisbldMsk | DOEPMSK_XferComplMsk,
2943 hsotg->regs + DOEPMSK);
2944
2945 writel(0, hsotg->regs + DAINTMSK);
2946
2947 /* Be in disconnected state until gadget is registered */
2948 __orr32(hsotg->regs + DCTL, DCTL_SftDiscon);
2949
2950 if (0) {
2951 /* post global nak until we're ready */
2952 writel(DCTL_SGNPInNAK | DCTL_SGOUTNak,
2953 hsotg->regs + DCTL);
2954 }
2955
2956 /* setup fifos */
2957
2958 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2959 readl(hsotg->regs + GRXFSIZ),
2960 readl(hsotg->regs + GNPTXFSIZ));
2961
2962 s3c_hsotg_init_fifo(hsotg);
2963
2964 /* set the PLL on, remove the HNP/SRP and set the PHY */
2965 writel(GUSBCFG_PHYIf16 | GUSBCFG_TOutCal(7) | (0x5 << 10),
2966 hsotg->regs + GUSBCFG);
2967
2968 writel(using_dma(hsotg) ? GAHBCFG_DMAEn : 0x0,
2969 hsotg->regs + GAHBCFG);
2970 }
2971
2972 /**
2973 * s3c_hsotg_udc_start - prepare the udc for work
2974 * @gadget: The usb gadget state
2975 * @driver: The usb gadget driver
2976 *
2977 * Perform initialization to prepare udc device and driver
2978 * to work.
2979 */
2980 static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
2981 struct usb_gadget_driver *driver)
2982 {
2983 struct s3c_hsotg *hsotg = to_hsotg(gadget);
2984 int ret;
2985
2986 if (!hsotg) {
2987 pr_err("%s: called with no device\n", __func__);
2988 return -ENODEV;
2989 }
2990
2991 if (!driver) {
2992 dev_err(hsotg->dev, "%s: no driver\n", __func__);
2993 return -EINVAL;
2994 }
2995
2996 if (driver->max_speed < USB_SPEED_FULL)
2997 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2998
2999 if (!driver->setup) {
3000 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
3001 return -EINVAL;
3002 }
3003
3004 WARN_ON(hsotg->driver);
3005
3006 driver->driver.bus = NULL;
3007 hsotg->driver = driver;
3008 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3009 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3010
3011 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3012 hsotg->supplies);
3013 if (ret) {
3014 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3015 goto err;
3016 }
3017
3018 hsotg->last_rst = jiffies;
3019 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3020 return 0;
3021
3022 err:
3023 hsotg->driver = NULL;
3024 return ret;
3025 }
3026
3027 /**
3028 * s3c_hsotg_udc_stop - stop the udc
3029 * @gadget: The usb gadget state
3030 * @driver: The usb gadget driver
3031 *
3032 * Stop udc hw block and stay tunned for future transmissions
3033 */
3034 static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
3035 struct usb_gadget_driver *driver)
3036 {
3037 struct s3c_hsotg *hsotg = to_hsotg(gadget);
3038 unsigned long flags = 0;
3039 int ep;
3040
3041 if (!hsotg)
3042 return -ENODEV;
3043
3044 /* all endpoints should be shutdown */
3045 for (ep = 0; ep < hsotg->num_of_eps; ep++)
3046 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
3047
3048 spin_lock_irqsave(&hsotg->lock, flags);
3049
3050 s3c_hsotg_phy_disable(hsotg);
3051
3052 if (!driver)
3053 hsotg->driver = NULL;
3054
3055 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3056
3057 spin_unlock_irqrestore(&hsotg->lock, flags);
3058
3059 regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3060
3061 return 0;
3062 }
3063
3064 /**
3065 * s3c_hsotg_gadget_getframe - read the frame number
3066 * @gadget: The usb gadget state
3067 *
3068 * Read the {micro} frame number
3069 */
3070 static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
3071 {
3072 return s3c_hsotg_read_frameno(to_hsotg(gadget));
3073 }
3074
3075 /**
3076 * s3c_hsotg_pullup - connect/disconnect the USB PHY
3077 * @gadget: The usb gadget state
3078 * @is_on: Current state of the USB PHY
3079 *
3080 * Connect/Disconnect the USB PHY pullup
3081 */
3082 static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3083 {
3084 struct s3c_hsotg *hsotg = to_hsotg(gadget);
3085 unsigned long flags = 0;
3086
3087 dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);
3088
3089 spin_lock_irqsave(&hsotg->lock, flags);
3090 if (is_on) {
3091 s3c_hsotg_phy_enable(hsotg);
3092 s3c_hsotg_core_init(hsotg);
3093 } else {
3094 s3c_hsotg_disconnect(hsotg);
3095 s3c_hsotg_phy_disable(hsotg);
3096 }
3097
3098 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3099 spin_unlock_irqrestore(&hsotg->lock, flags);
3100
3101 return 0;
3102 }
3103
3104 static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3105 .get_frame = s3c_hsotg_gadget_getframe,
3106 .udc_start = s3c_hsotg_udc_start,
3107 .udc_stop = s3c_hsotg_udc_stop,
3108 .pullup = s3c_hsotg_pullup,
3109 };
3110
3111 /**
3112 * s3c_hsotg_initep - initialise a single endpoint
3113 * @hsotg: The device state.
3114 * @hs_ep: The endpoint to be initialised.
3115 * @epnum: The endpoint number
3116 *
3117 * Initialise the given endpoint (as part of the probe and device state
3118 * creation) to give to the gadget driver. Setup the endpoint name, any
3119 * direction information and other state that may be required.
3120 */
3121 static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
3122 struct s3c_hsotg_ep *hs_ep,
3123 int epnum)
3124 {
3125 u32 ptxfifo;
3126 char *dir;
3127
3128 if (epnum == 0)
3129 dir = "";
3130 else if ((epnum % 2) == 0) {
3131 dir = "out";
3132 } else {
3133 dir = "in";
3134 hs_ep->dir_in = 1;
3135 }
3136
3137 hs_ep->index = epnum;
3138
3139 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3140
3141 INIT_LIST_HEAD(&hs_ep->queue);
3142 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3143
3144 /* add to the list of endpoints known by the gadget driver */
3145 if (epnum)
3146 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3147
3148 hs_ep->parent = hsotg;
3149 hs_ep->ep.name = hs_ep->name;
3150 hs_ep->ep.maxpacket = epnum ? 1024 : EP0_MPS_LIMIT;
3151 hs_ep->ep.ops = &s3c_hsotg_ep_ops;
3152
3153 /*
3154 * Read the FIFO size for the Periodic TX FIFO, even if we're
3155 * an OUT endpoint, we may as well do this if in future the
3156 * code is changed to make each endpoint's direction changeable.
3157 */
3158
3159 ptxfifo = readl(hsotg->regs + DPTXFSIZn(epnum));
3160 hs_ep->fifo_size = DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
3161
3162 /*
3163 * if we're using dma, we need to set the next-endpoint pointer
3164 * to be something valid.
3165 */
3166
3167 if (using_dma(hsotg)) {
3168 u32 next = DxEPCTL_NextEp((epnum + 1) % 15);
3169 writel(next, hsotg->regs + DIEPCTL(epnum));
3170 writel(next, hsotg->regs + DOEPCTL(epnum));
3171 }
3172 }
3173
3174 /**
3175 * s3c_hsotg_hw_cfg - read HW configuration registers
3176 * @param: The device state
3177 *
3178 * Read the USB core HW configuration registers
3179 */
3180 static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3181 {
3182 u32 cfg2, cfg4;
3183 /* check hardware configuration */
3184
3185 cfg2 = readl(hsotg->regs + 0x48);
3186 hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3187
3188 dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
3189
3190 cfg4 = readl(hsotg->regs + 0x50);
3191 hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
3192
3193 dev_info(hsotg->dev, "%s fifos\n",
3194 hsotg->dedicated_fifos ? "dedicated" : "shared");
3195 }
3196
3197 /**
3198 * s3c_hsotg_dump - dump state of the udc
3199 * @param: The device state
3200 */
3201 static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
3202 {
3203 #ifdef DEBUG
3204 struct device *dev = hsotg->dev;
3205 void __iomem *regs = hsotg->regs;
3206 u32 val;
3207 int idx;
3208
3209 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3210 readl(regs + DCFG), readl(regs + DCTL),
3211 readl(regs + DIEPMSK));
3212
3213 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3214 readl(regs + GAHBCFG), readl(regs + 0x44));
3215
3216 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3217 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3218
3219 /* show periodic fifo settings */
3220
3221 for (idx = 1; idx <= 15; idx++) {
3222 val = readl(regs + DPTXFSIZn(idx));
3223 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3224 val >> DPTXFSIZn_DPTxFSize_SHIFT,
3225 val & DPTXFSIZn_DPTxFStAddr_MASK);
3226 }
3227
3228 for (idx = 0; idx < 15; idx++) {
3229 dev_info(dev,
3230 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3231 readl(regs + DIEPCTL(idx)),
3232 readl(regs + DIEPTSIZ(idx)),
3233 readl(regs + DIEPDMA(idx)));
3234
3235 val = readl(regs + DOEPCTL(idx));
3236 dev_info(dev,
3237 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3238 idx, readl(regs + DOEPCTL(idx)),
3239 readl(regs + DOEPTSIZ(idx)),
3240 readl(regs + DOEPDMA(idx)));
3241
3242 }
3243
3244 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3245 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
3246 #endif
3247 }
3248
3249 /**
3250 * state_show - debugfs: show overall driver and device state.
3251 * @seq: The seq file to write to.
3252 * @v: Unused parameter.
3253 *
3254 * This debugfs entry shows the overall state of the hardware and
3255 * some general information about each of the endpoints available
3256 * to the system.
3257 */
3258 static int state_show(struct seq_file *seq, void *v)
3259 {
3260 struct s3c_hsotg *hsotg = seq->private;
3261 void __iomem *regs = hsotg->regs;
3262 int idx;
3263
3264 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3265 readl(regs + DCFG),
3266 readl(regs + DCTL),
3267 readl(regs + DSTS));
3268
3269 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3270 readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3271
3272 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3273 readl(regs + GINTMSK),
3274 readl(regs + GINTSTS));
3275
3276 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3277 readl(regs + DAINTMSK),
3278 readl(regs + DAINT));
3279
3280 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3281 readl(regs + GNPTXSTS),
3282 readl(regs + GRXSTSR));
3283
3284 seq_puts(seq, "\nEndpoint status:\n");
3285
3286 for (idx = 0; idx < 15; idx++) {
3287 u32 in, out;
3288
3289 in = readl(regs + DIEPCTL(idx));
3290 out = readl(regs + DOEPCTL(idx));
3291
3292 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
3293 idx, in, out);
3294
3295 in = readl(regs + DIEPTSIZ(idx));
3296 out = readl(regs + DOEPTSIZ(idx));
3297
3298 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
3299 in, out);
3300
3301 seq_puts(seq, "\n");
3302 }
3303
3304 return 0;
3305 }
3306
3307 static int state_open(struct inode *inode, struct file *file)
3308 {
3309 return single_open(file, state_show, inode->i_private);
3310 }
3311
3312 static const struct file_operations state_fops = {
3313 .owner = THIS_MODULE,
3314 .open = state_open,
3315 .read = seq_read,
3316 .llseek = seq_lseek,
3317 .release = single_release,
3318 };
3319
3320 /**
3321 * fifo_show - debugfs: show the fifo information
3322 * @seq: The seq_file to write data to.
3323 * @v: Unused parameter.
3324 *
3325 * Show the FIFO information for the overall fifo and all the
3326 * periodic transmission FIFOs.
3327 */
3328 static int fifo_show(struct seq_file *seq, void *v)
3329 {
3330 struct s3c_hsotg *hsotg = seq->private;
3331 void __iomem *regs = hsotg->regs;
3332 u32 val;
3333 int idx;
3334
3335 seq_puts(seq, "Non-periodic FIFOs:\n");
3336 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3337
3338 val = readl(regs + GNPTXFSIZ);
3339 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3340 val >> GNPTXFSIZ_NPTxFDep_SHIFT,
3341 val & GNPTXFSIZ_NPTxFStAddr_MASK);
3342
3343 seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3344
3345 for (idx = 1; idx <= 15; idx++) {
3346 val = readl(regs + DPTXFSIZn(idx));
3347
3348 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3349 val >> DPTXFSIZn_DPTxFSize_SHIFT,
3350 val & DPTXFSIZn_DPTxFStAddr_MASK);
3351 }
3352
3353 return 0;
3354 }
3355
3356 static int fifo_open(struct inode *inode, struct file *file)
3357 {
3358 return single_open(file, fifo_show, inode->i_private);
3359 }
3360
3361 static const struct file_operations fifo_fops = {
3362 .owner = THIS_MODULE,
3363 .open = fifo_open,
3364 .read = seq_read,
3365 .llseek = seq_lseek,
3366 .release = single_release,
3367 };
3368
3369
3370 static const char *decode_direction(int is_in)
3371 {
3372 return is_in ? "in" : "out";
3373 }
3374
3375 /**
3376 * ep_show - debugfs: show the state of an endpoint.
3377 * @seq: The seq_file to write data to.
3378 * @v: Unused parameter.
3379 *
3380 * This debugfs entry shows the state of the given endpoint (one is
3381 * registered for each available).
3382 */
3383 static int ep_show(struct seq_file *seq, void *v)
3384 {
3385 struct s3c_hsotg_ep *ep = seq->private;
3386 struct s3c_hsotg *hsotg = ep->parent;
3387 struct s3c_hsotg_req *req;
3388 void __iomem *regs = hsotg->regs;
3389 int index = ep->index;
3390 int show_limit = 15;
3391 unsigned long flags;
3392
3393 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
3394 ep->index, ep->ep.name, decode_direction(ep->dir_in));
3395
3396 /* first show the register state */
3397
3398 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3399 readl(regs + DIEPCTL(index)),
3400 readl(regs + DOEPCTL(index)));
3401
3402 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3403 readl(regs + DIEPDMA(index)),
3404 readl(regs + DOEPDMA(index)));
3405
3406 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3407 readl(regs + DIEPINT(index)),
3408 readl(regs + DOEPINT(index)));
3409
3410 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3411 readl(regs + DIEPTSIZ(index)),
3412 readl(regs + DOEPTSIZ(index)));
3413
3414 seq_puts(seq, "\n");
3415 seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
3416 seq_printf(seq, "total_data=%ld\n", ep->total_data);
3417
3418 seq_printf(seq, "request list (%p,%p):\n",
3419 ep->queue.next, ep->queue.prev);
3420
3421 spin_lock_irqsave(&hsotg->lock, flags);
3422
3423 list_for_each_entry(req, &ep->queue, queue) {
3424 if (--show_limit < 0) {
3425 seq_puts(seq, "not showing more requests...\n");
3426 break;
3427 }
3428
3429 seq_printf(seq, "%c req %p: %d bytes @%p, ",
3430 req == ep->req ? '*' : ' ',
3431 req, req->req.length, req->req.buf);
3432 seq_printf(seq, "%d done, res %d\n",
3433 req->req.actual, req->req.status);
3434 }
3435
3436 spin_unlock_irqrestore(&hsotg->lock, flags);
3437
3438 return 0;
3439 }
3440
3441 static int ep_open(struct inode *inode, struct file *file)
3442 {
3443 return single_open(file, ep_show, inode->i_private);
3444 }
3445
3446 static const struct file_operations ep_fops = {
3447 .owner = THIS_MODULE,
3448 .open = ep_open,
3449 .read = seq_read,
3450 .llseek = seq_lseek,
3451 .release = single_release,
3452 };
3453
3454 /**
3455 * s3c_hsotg_create_debug - create debugfs directory and files
3456 * @hsotg: The driver state
3457 *
3458 * Create the debugfs files to allow the user to get information
3459 * about the state of the system. The directory name is created
3460 * with the same name as the device itself, in case we end up
3461 * with multiple blocks in future systems.
3462 */
3463 static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3464 {
3465 struct dentry *root;
3466 unsigned epidx;
3467
3468 root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3469 hsotg->debug_root = root;
3470 if (IS_ERR(root)) {
3471 dev_err(hsotg->dev, "cannot create debug root\n");
3472 return;
3473 }
3474
3475 /* create general state file */
3476
3477 hsotg->debug_file = debugfs_create_file("state", 0444, root,
3478 hsotg, &state_fops);
3479
3480 if (IS_ERR(hsotg->debug_file))
3481 dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3482
3483 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3484 hsotg, &fifo_fops);
3485
3486 if (IS_ERR(hsotg->debug_fifo))
3487 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3488
3489 /* create one file for each endpoint */
3490
3491 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3492 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3493
3494 ep->debugfs = debugfs_create_file(ep->name, 0444,
3495 root, ep, &ep_fops);
3496
3497 if (IS_ERR(ep->debugfs))
3498 dev_err(hsotg->dev, "failed to create %s debug file\n",
3499 ep->name);
3500 }
3501 }
3502
3503 /**
3504 * s3c_hsotg_delete_debug - cleanup debugfs entries
3505 * @hsotg: The driver state
3506 *
3507 * Cleanup (remove) the debugfs files for use on module exit.
3508 */
3509 static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3510 {
3511 unsigned epidx;
3512
3513 for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3514 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3515 debugfs_remove(ep->debugfs);
3516 }
3517
3518 debugfs_remove(hsotg->debug_file);
3519 debugfs_remove(hsotg->debug_fifo);
3520 debugfs_remove(hsotg->debug_root);
3521 }
3522
3523 /**
3524 * s3c_hsotg_probe - probe function for hsotg driver
3525 * @pdev: The platform information for the driver
3526 */
3527
3528 static int s3c_hsotg_probe(struct platform_device *pdev)
3529 {
3530 struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev);
3531 struct usb_phy *phy;
3532 struct device *dev = &pdev->dev;
3533 struct s3c_hsotg_ep *eps;
3534 struct s3c_hsotg *hsotg;
3535 struct resource *res;
3536 int epnum;
3537 int ret;
3538 int i;
3539
3540 hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3541 if (!hsotg) {
3542 dev_err(dev, "cannot get memory\n");
3543 return -ENOMEM;
3544 }
3545
3546 phy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
3547 if (IS_ERR(phy)) {
3548 /* Fallback for pdata */
3549 plat = dev_get_platdata(&pdev->dev);
3550 if (!plat) {
3551 dev_err(&pdev->dev, "no platform data or transceiver defined\n");
3552 return -EPROBE_DEFER;
3553 } else {
3554 hsotg->plat = plat;
3555 }
3556 } else {
3557 hsotg->phy = phy;
3558 }
3559
3560 hsotg->dev = dev;
3561
3562 hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3563 if (IS_ERR(hsotg->clk)) {
3564 dev_err(dev, "cannot get otg clock\n");
3565 return PTR_ERR(hsotg->clk);
3566 }
3567
3568 platform_set_drvdata(pdev, hsotg);
3569
3570 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3571
3572 hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
3573 if (IS_ERR(hsotg->regs)) {
3574 ret = PTR_ERR(hsotg->regs);
3575 goto err_clk;
3576 }
3577
3578 ret = platform_get_irq(pdev, 0);
3579 if (ret < 0) {
3580 dev_err(dev, "cannot find IRQ\n");
3581 goto err_clk;
3582 }
3583
3584 spin_lock_init(&hsotg->lock);
3585
3586 hsotg->irq = ret;
3587
3588 ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
3589 dev_name(dev), hsotg);
3590 if (ret < 0) {
3591 dev_err(dev, "cannot claim IRQ\n");
3592 goto err_clk;
3593 }
3594
3595 dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3596
3597 hsotg->gadget.max_speed = USB_SPEED_HIGH;
3598 hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3599 hsotg->gadget.name = dev_name(dev);
3600
3601 /* reset the system */
3602
3603 clk_prepare_enable(hsotg->clk);
3604
3605 /* regulators */
3606
3607 for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
3608 hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];
3609
3610 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3611 hsotg->supplies);
3612 if (ret) {
3613 dev_err(dev, "failed to request supplies: %d\n", ret);
3614 goto err_clk;
3615 }
3616
3617 ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3618 hsotg->supplies);
3619
3620 if (ret) {
3621 dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3622 goto err_supplies;
3623 }
3624
3625 /* usb phy enable */
3626 s3c_hsotg_phy_enable(hsotg);
3627
3628 s3c_hsotg_corereset(hsotg);
3629 s3c_hsotg_init(hsotg);
3630 s3c_hsotg_hw_cfg(hsotg);
3631
3632 /* hsotg->num_of_eps holds number of EPs other than ep0 */
3633
3634 if (hsotg->num_of_eps == 0) {
3635 dev_err(dev, "wrong number of EPs (zero)\n");
3636 ret = -EINVAL;
3637 goto err_supplies;
3638 }
3639
3640 eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
3641 GFP_KERNEL);
3642 if (!eps) {
3643 dev_err(dev, "cannot get memory\n");
3644 ret = -ENOMEM;
3645 goto err_supplies;
3646 }
3647
3648 hsotg->eps = eps;
3649
3650 /* setup endpoint information */
3651
3652 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3653 hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3654
3655 /* allocate EP0 request */
3656
3657 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3658 GFP_KERNEL);
3659 if (!hsotg->ctrl_req) {
3660 dev_err(dev, "failed to allocate ctrl req\n");
3661 ret = -ENOMEM;
3662 goto err_ep_mem;
3663 }
3664
3665 /* initialise the endpoints now the core has been initialised */
3666 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3667 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3668
3669 /* disable power and clock */
3670
3671 ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
3672 hsotg->supplies);
3673 if (ret) {
3674 dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
3675 goto err_ep_mem;
3676 }
3677
3678 s3c_hsotg_phy_disable(hsotg);
3679
3680 ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
3681 if (ret)
3682 goto err_ep_mem;
3683
3684 s3c_hsotg_create_debug(hsotg);
3685
3686 s3c_hsotg_dump(hsotg);
3687
3688 return 0;
3689
3690 err_ep_mem:
3691 kfree(eps);
3692 err_supplies:
3693 s3c_hsotg_phy_disable(hsotg);
3694 err_clk:
3695 clk_disable_unprepare(hsotg->clk);
3696
3697 return ret;
3698 }
3699
3700 /**
3701 * s3c_hsotg_remove - remove function for hsotg driver
3702 * @pdev: The platform information for the driver
3703 */
3704 static int s3c_hsotg_remove(struct platform_device *pdev)
3705 {
3706 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3707
3708 usb_del_gadget_udc(&hsotg->gadget);
3709
3710 s3c_hsotg_delete_debug(hsotg);
3711
3712 if (hsotg->driver) {
3713 /* should have been done already by driver model core */
3714 usb_gadget_unregister_driver(hsotg->driver);
3715 }
3716
3717 s3c_hsotg_phy_disable(hsotg);
3718 clk_disable_unprepare(hsotg->clk);
3719
3720 return 0;
3721 }
3722
3723 #if 1
3724 #define s3c_hsotg_suspend NULL
3725 #define s3c_hsotg_resume NULL
3726 #endif
3727
3728 #ifdef CONFIG_OF
3729 static const struct of_device_id s3c_hsotg_of_ids[] = {
3730 { .compatible = "samsung,s3c6400-hsotg", },
3731 { /* sentinel */ }
3732 };
3733 MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids);
3734 #endif
3735
3736 static struct platform_driver s3c_hsotg_driver = {
3737 .driver = {
3738 .name = "s3c-hsotg",
3739 .owner = THIS_MODULE,
3740 .of_match_table = of_match_ptr(s3c_hsotg_of_ids),
3741 },
3742 .probe = s3c_hsotg_probe,
3743 .remove = s3c_hsotg_remove,
3744 .suspend = s3c_hsotg_suspend,
3745 .resume = s3c_hsotg_resume,
3746 };
3747
3748 module_platform_driver(s3c_hsotg_driver);
3749
3750 MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3751 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3752 MODULE_LICENSE("GPL");
3753 MODULE_ALIAS("platform:s3c-hsotg");
This page took 0.103049 seconds and 6 git commands to generate.