USB: Gadget: Add Samsung S3C24XX USB High-Speed controller driver
[deliverable/linux.git] / drivers / usb / gadget / s3c-hsudc.c
1 /* linux/drivers/usb/gadget/s3c-hsudc.c
2 *
3 * Copyright (c) 2010 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com/
5 *
6 * S3C24XX USB 2.0 High-speed USB controller gadget driver
7 *
8 * The S3C24XX USB 2.0 high-speed USB controller supports upto 9 endpoints.
9 * Each endpoint can be configured as either in or out endpoint. Endpoints
10 * can be configured for Bulk or Interrupt transfer mode.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/delay.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <linux/clk.h>
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29
30 #include <mach/regs-s3c2443-clock.h>
31 #include <plat/udc.h>
32
33 #define S3C_HSUDC_REG(x) (x)
34
35 /* Non-Indexed Registers */
36 #define S3C_IR S3C_HSUDC_REG(0x00) /* Index Register */
37 #define S3C_EIR S3C_HSUDC_REG(0x04) /* EP Intr Status */
38 #define S3C_EIR_EP0 (1<<0)
39 #define S3C_EIER S3C_HSUDC_REG(0x08) /* EP Intr Enable */
40 #define S3C_FAR S3C_HSUDC_REG(0x0c) /* Gadget Address */
41 #define S3C_FNR S3C_HSUDC_REG(0x10) /* Frame Number */
42 #define S3C_EDR S3C_HSUDC_REG(0x14) /* EP Direction */
43 #define S3C_TR S3C_HSUDC_REG(0x18) /* Test Register */
44 #define S3C_SSR S3C_HSUDC_REG(0x1c) /* System Status */
45 #define S3C_SSR_DTZIEN_EN (0xff8f)
46 #define S3C_SSR_ERR (0xff80)
47 #define S3C_SSR_VBUSON (1 << 8)
48 #define S3C_SSR_HSP (1 << 4)
49 #define S3C_SSR_SDE (1 << 3)
50 #define S3C_SSR_RESUME (1 << 2)
51 #define S3C_SSR_SUSPEND (1 << 1)
52 #define S3C_SSR_RESET (1 << 0)
53 #define S3C_SCR S3C_HSUDC_REG(0x20) /* System Control */
54 #define S3C_SCR_DTZIEN_EN (1 << 14)
55 #define S3C_SCR_RRD_EN (1 << 5)
56 #define S3C_SCR_SUS_EN (1 << 1)
57 #define S3C_SCR_RST_EN (1 << 0)
58 #define S3C_EP0SR S3C_HSUDC_REG(0x24) /* EP0 Status */
59 #define S3C_EP0SR_EP0_LWO (1 << 6)
60 #define S3C_EP0SR_STALL (1 << 4)
61 #define S3C_EP0SR_TX_SUCCESS (1 << 1)
62 #define S3C_EP0SR_RX_SUCCESS (1 << 0)
63 #define S3C_EP0CR S3C_HSUDC_REG(0x28) /* EP0 Control */
64 #define S3C_BR(_x) S3C_HSUDC_REG(0x60 + (_x * 4))
65
66 /* Indexed Registers */
67 #define S3C_ESR S3C_HSUDC_REG(0x2c) /* EPn Status */
68 #define S3C_ESR_FLUSH (1 << 6)
69 #define S3C_ESR_STALL (1 << 5)
70 #define S3C_ESR_LWO (1 << 4)
71 #define S3C_ESR_PSIF_ONE (1 << 2)
72 #define S3C_ESR_PSIF_TWO (2 << 2)
73 #define S3C_ESR_TX_SUCCESS (1 << 1)
74 #define S3C_ESR_RX_SUCCESS (1 << 0)
75 #define S3C_ECR S3C_HSUDC_REG(0x30) /* EPn Control */
76 #define S3C_ECR_DUEN (1 << 7)
77 #define S3C_ECR_FLUSH (1 << 6)
78 #define S3C_ECR_STALL (1 << 1)
79 #define S3C_ECR_IEMS (1 << 0)
80 #define S3C_BRCR S3C_HSUDC_REG(0x34) /* Read Count */
81 #define S3C_BWCR S3C_HSUDC_REG(0x38) /* Write Count */
82 #define S3C_MPR S3C_HSUDC_REG(0x3c) /* Max Pkt Size */
83
84 #define WAIT_FOR_SETUP (0)
85 #define DATA_STATE_XMIT (1)
86 #define DATA_STATE_RECV (2)
87
88 /**
89 * struct s3c_hsudc_ep - Endpoint representation used by driver.
90 * @ep: USB gadget layer representation of device endpoint.
91 * @name: Endpoint name (as required by ep autoconfiguration).
92 * @dev: Reference to the device controller to which this EP belongs.
93 * @desc: Endpoint descriptor obtained from the gadget driver.
94 * @queue: Transfer request queue for the endpoint.
95 * @stopped: Maintains state of endpoint, set if EP is halted.
96 * @bEndpointAddress: EP address (including direction bit).
97 * @fifo: Base address of EP FIFO.
98 */
99 struct s3c_hsudc_ep {
100 struct usb_ep ep;
101 char name[20];
102 struct s3c_hsudc *dev;
103 const struct usb_endpoint_descriptor *desc;
104 struct list_head queue;
105 u8 stopped;
106 u8 wedge;
107 u8 bEndpointAddress;
108 void __iomem *fifo;
109 };
110
111 /**
112 * struct s3c_hsudc_req - Driver encapsulation of USB gadget transfer request.
113 * @req: Reference to USB gadget transfer request.
114 * @queue: Used for inserting this request to the endpoint request queue.
115 */
116 struct s3c_hsudc_req {
117 struct usb_request req;
118 struct list_head queue;
119 };
120
121 /**
122 * struct s3c_hsudc - Driver's abstraction of the device controller.
123 * @gadget: Instance of usb_gadget which is referenced by gadget driver.
124 * @driver: Reference to currenty active gadget driver.
125 * @dev: The device reference used by probe function.
126 * @lock: Lock to synchronize the usage of Endpoints (EP's are indexed).
127 * @regs: Remapped base address of controller's register space.
128 * @mem_rsrc: Device memory resource used for remapping device register space.
129 * irq: IRQ number used by the controller.
130 * uclk: Reference to the controller clock.
131 * ep0state: Current state of EP0.
132 * ep: List of endpoints supported by the controller.
133 */
134 struct s3c_hsudc {
135 struct usb_gadget gadget;
136 struct usb_gadget_driver *driver;
137 struct device *dev;
138 struct s3c24xx_hsudc_platdata *pd;
139 spinlock_t lock;
140 void __iomem *regs;
141 struct resource *mem_rsrc;
142 int irq;
143 struct clk *uclk;
144 int ep0state;
145 struct s3c_hsudc_ep ep[];
146 };
147
148 #define ep_maxpacket(_ep) ((_ep)->ep.maxpacket)
149 #define ep_is_in(_ep) ((_ep)->bEndpointAddress & USB_DIR_IN)
150 #define ep_index(_ep) ((_ep)->bEndpointAddress & \
151 USB_ENDPOINT_NUMBER_MASK)
152
153 static struct s3c_hsudc *the_controller;
154 static const char driver_name[] = "s3c-udc";
155 static const char ep0name[] = "ep0-control";
156
157 static inline struct s3c_hsudc_req *our_req(struct usb_request *req)
158 {
159 return container_of(req, struct s3c_hsudc_req, req);
160 }
161
162 static inline struct s3c_hsudc_ep *our_ep(struct usb_ep *ep)
163 {
164 return container_of(ep, struct s3c_hsudc_ep, ep);
165 }
166
167 static inline struct s3c_hsudc *to_hsudc(struct usb_gadget *gadget)
168 {
169 return container_of(gadget, struct s3c_hsudc, gadget);
170 }
171
172 static inline void set_index(struct s3c_hsudc *hsudc, int ep_addr)
173 {
174 ep_addr &= USB_ENDPOINT_NUMBER_MASK;
175 writel(ep_addr, hsudc->regs + S3C_IR);
176 }
177
178 static inline void __orr32(void __iomem *ptr, u32 val)
179 {
180 writel(readl(ptr) | val, ptr);
181 }
182
183 static void s3c_hsudc_init_phy(void)
184 {
185 u32 cfg;
186
187 cfg = readl(S3C2443_PWRCFG) | S3C2443_PWRCFG_USBPHY;
188 writel(cfg, S3C2443_PWRCFG);
189
190 cfg = readl(S3C2443_URSTCON);
191 cfg |= (S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
192 writel(cfg, S3C2443_URSTCON);
193 mdelay(1);
194
195 cfg = readl(S3C2443_URSTCON);
196 cfg &= ~(S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
197 writel(cfg, S3C2443_URSTCON);
198
199 cfg = readl(S3C2443_PHYCTRL);
200 cfg &= ~(S3C2443_PHYCTRL_CLKSEL | S3C2443_PHYCTRL_DSPORT);
201 cfg |= (S3C2443_PHYCTRL_EXTCLK | S3C2443_PHYCTRL_PLLSEL);
202 writel(cfg, S3C2443_PHYCTRL);
203
204 cfg = readl(S3C2443_PHYPWR);
205 cfg &= ~(S3C2443_PHYPWR_FSUSPEND | S3C2443_PHYPWR_PLL_PWRDN |
206 S3C2443_PHYPWR_XO_ON | S3C2443_PHYPWR_PLL_REFCLK |
207 S3C2443_PHYPWR_ANALOG_PD);
208 cfg |= S3C2443_PHYPWR_COMMON_ON;
209 writel(cfg, S3C2443_PHYPWR);
210
211 cfg = readl(S3C2443_UCLKCON);
212 cfg |= (S3C2443_UCLKCON_DETECT_VBUS | S3C2443_UCLKCON_FUNC_CLKEN |
213 S3C2443_UCLKCON_TCLKEN);
214 writel(cfg, S3C2443_UCLKCON);
215 }
216
217 static void s3c_hsudc_uninit_phy(void)
218 {
219 u32 cfg;
220
221 cfg = readl(S3C2443_PWRCFG) & ~S3C2443_PWRCFG_USBPHY;
222 writel(cfg, S3C2443_PWRCFG);
223
224 writel(S3C2443_PHYPWR_FSUSPEND, S3C2443_PHYPWR);
225
226 cfg = readl(S3C2443_UCLKCON) & ~S3C2443_UCLKCON_FUNC_CLKEN;
227 writel(cfg, S3C2443_UCLKCON);
228 }
229
230 /**
231 * s3c_hsudc_complete_request - Complete a transfer request.
232 * @hsep: Endpoint to which the request belongs.
233 * @hsreq: Transfer request to be completed.
234 * @status: Transfer completion status for the transfer request.
235 */
236 static void s3c_hsudc_complete_request(struct s3c_hsudc_ep *hsep,
237 struct s3c_hsudc_req *hsreq, int status)
238 {
239 unsigned int stopped = hsep->stopped;
240 struct s3c_hsudc *hsudc = hsep->dev;
241
242 list_del_init(&hsreq->queue);
243 hsreq->req.status = status;
244
245 if (!ep_index(hsep)) {
246 hsudc->ep0state = WAIT_FOR_SETUP;
247 hsep->bEndpointAddress &= ~USB_DIR_IN;
248 }
249
250 hsep->stopped = 1;
251 spin_unlock(&hsudc->lock);
252 if (hsreq->req.complete != NULL)
253 hsreq->req.complete(&hsep->ep, &hsreq->req);
254 spin_lock(&hsudc->lock);
255 hsep->stopped = stopped;
256 }
257
258 /**
259 * s3c_hsudc_nuke_ep - Terminate all requests queued for a endpoint.
260 * @hsep: Endpoint for which queued requests have to be terminated.
261 * @status: Transfer completion status for the transfer request.
262 */
263 static void s3c_hsudc_nuke_ep(struct s3c_hsudc_ep *hsep, int status)
264 {
265 struct s3c_hsudc_req *hsreq;
266
267 while (!list_empty(&hsep->queue)) {
268 hsreq = list_entry(hsep->queue.next,
269 struct s3c_hsudc_req, queue);
270 s3c_hsudc_complete_request(hsep, hsreq, status);
271 }
272 }
273
274 /**
275 * s3c_hsudc_stop_activity - Stop activity on all endpoints.
276 * @hsudc: Device controller for which EP activity is to be stopped.
277 * @driver: Reference to the gadget driver which is currently active.
278 *
279 * All the endpoints are stopped and any pending transfer requests if any on
280 * the endpoint are terminated.
281 */
282 static void s3c_hsudc_stop_activity(struct s3c_hsudc *hsudc,
283 struct usb_gadget_driver *driver)
284 {
285 struct s3c_hsudc_ep *hsep;
286 int epnum;
287
288 hsudc->gadget.speed = USB_SPEED_UNKNOWN;
289
290 for (epnum = 0; epnum < hsudc->pd->epnum; epnum++) {
291 hsep = &hsudc->ep[epnum];
292 hsep->stopped = 1;
293 s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
294 }
295
296 spin_unlock(&hsudc->lock);
297 driver->disconnect(&hsudc->gadget);
298 spin_lock(&hsudc->lock);
299 }
300
301 /**
302 * s3c_hsudc_read_setup_pkt - Read the received setup packet from EP0 fifo.
303 * @hsudc: Device controller from which setup packet is to be read.
304 * @buf: The buffer into which the setup packet is read.
305 *
306 * The setup packet received in the EP0 fifo is read and stored into a
307 * given buffer address.
308 */
309
310 static void s3c_hsudc_read_setup_pkt(struct s3c_hsudc *hsudc, u16 *buf)
311 {
312 int count;
313
314 count = readl(hsudc->regs + S3C_BRCR);
315 while (count--)
316 *buf++ = (u16)readl(hsudc->regs + S3C_BR(0));
317
318 writel(S3C_EP0SR_RX_SUCCESS, hsudc->regs + S3C_EP0SR);
319 }
320
321 /**
322 * s3c_hsudc_write_fifo - Write next chunk of transfer data to EP fifo.
323 * @hsep: Endpoint to which the data is to be written.
324 * @hsreq: Transfer request from which the next chunk of data is written.
325 *
326 * Write the next chunk of data from a transfer request to the endpoint FIFO.
327 * If the transfer request completes, 1 is returned, otherwise 0 is returned.
328 */
329 static int s3c_hsudc_write_fifo(struct s3c_hsudc_ep *hsep,
330 struct s3c_hsudc_req *hsreq)
331 {
332 u16 *buf;
333 u32 max = ep_maxpacket(hsep);
334 u32 count, length;
335 bool is_last;
336 void __iomem *fifo = hsep->fifo;
337
338 buf = hsreq->req.buf + hsreq->req.actual;
339 prefetch(buf);
340
341 length = hsreq->req.length - hsreq->req.actual;
342 length = min(length, max);
343 hsreq->req.actual += length;
344
345 writel(length, hsep->dev->regs + S3C_BWCR);
346 for (count = 0; count < length; count += 2)
347 writel(*buf++, fifo);
348
349 if (count != max) {
350 is_last = true;
351 } else {
352 if (hsreq->req.length != hsreq->req.actual || hsreq->req.zero)
353 is_last = false;
354 else
355 is_last = true;
356 }
357
358 if (is_last) {
359 s3c_hsudc_complete_request(hsep, hsreq, 0);
360 return 1;
361 }
362
363 return 0;
364 }
365
366 /**
367 * s3c_hsudc_read_fifo - Read the next chunk of data from EP fifo.
368 * @hsep: Endpoint from which the data is to be read.
369 * @hsreq: Transfer request to which the next chunk of data read is written.
370 *
371 * Read the next chunk of data from the endpoint FIFO and a write it to the
372 * transfer request buffer. If the transfer request completes, 1 is returned,
373 * otherwise 0 is returned.
374 */
375 static int s3c_hsudc_read_fifo(struct s3c_hsudc_ep *hsep,
376 struct s3c_hsudc_req *hsreq)
377 {
378 struct s3c_hsudc *hsudc = hsep->dev;
379 u32 csr, offset;
380 u16 *buf, word;
381 u32 buflen, rcnt, rlen;
382 void __iomem *fifo = hsep->fifo;
383 u32 is_short = 0;
384
385 offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
386 csr = readl(hsudc->regs + offset);
387 if (!(csr & S3C_ESR_RX_SUCCESS))
388 return -EINVAL;
389
390 buf = hsreq->req.buf + hsreq->req.actual;
391 prefetchw(buf);
392 buflen = hsreq->req.length - hsreq->req.actual;
393
394 rcnt = readl(hsudc->regs + S3C_BRCR);
395 rlen = (csr & S3C_ESR_LWO) ? (rcnt * 2 - 1) : (rcnt * 2);
396
397 hsreq->req.actual += min(rlen, buflen);
398 is_short = (rlen < hsep->ep.maxpacket);
399
400 while (rcnt-- != 0) {
401 word = (u16)readl(fifo);
402 if (buflen) {
403 *buf++ = word;
404 buflen--;
405 } else {
406 hsreq->req.status = -EOVERFLOW;
407 }
408 }
409
410 writel(S3C_ESR_RX_SUCCESS, hsudc->regs + offset);
411
412 if (is_short || hsreq->req.actual == hsreq->req.length) {
413 s3c_hsudc_complete_request(hsep, hsreq, 0);
414 return 1;
415 }
416
417 return 0;
418 }
419
420 /**
421 * s3c_hsudc_epin_intr - Handle in-endpoint interrupt.
422 * @hsudc - Device controller for which the interrupt is to be handled.
423 * @ep_idx - Endpoint number on which an interrupt is pending.
424 *
425 * Handles interrupt for a in-endpoint. The interrupts that are handled are
426 * stall and data transmit complete interrupt.
427 */
428 static void s3c_hsudc_epin_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
429 {
430 struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
431 struct s3c_hsudc_req *hsreq;
432 u32 csr;
433
434 csr = readl((u32)hsudc->regs + S3C_ESR);
435 if (csr & S3C_ESR_STALL) {
436 writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
437 return;
438 }
439
440 if (csr & S3C_ESR_TX_SUCCESS) {
441 writel(S3C_ESR_TX_SUCCESS, hsudc->regs + S3C_ESR);
442 if (list_empty(&hsep->queue))
443 return;
444
445 hsreq = list_entry(hsep->queue.next,
446 struct s3c_hsudc_req, queue);
447 if ((s3c_hsudc_write_fifo(hsep, hsreq) == 0) &&
448 (csr & S3C_ESR_PSIF_TWO))
449 s3c_hsudc_write_fifo(hsep, hsreq);
450 }
451 }
452
453 /**
454 * s3c_hsudc_epout_intr - Handle out-endpoint interrupt.
455 * @hsudc - Device controller for which the interrupt is to be handled.
456 * @ep_idx - Endpoint number on which an interrupt is pending.
457 *
458 * Handles interrupt for a out-endpoint. The interrupts that are handled are
459 * stall, flush and data ready interrupt.
460 */
461 static void s3c_hsudc_epout_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
462 {
463 struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
464 struct s3c_hsudc_req *hsreq;
465 u32 csr;
466
467 csr = readl((u32)hsudc->regs + S3C_ESR);
468 if (csr & S3C_ESR_STALL) {
469 writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
470 return;
471 }
472
473 if (csr & S3C_ESR_FLUSH) {
474 __orr32(hsudc->regs + S3C_ECR, S3C_ECR_FLUSH);
475 return;
476 }
477
478 if (csr & S3C_ESR_RX_SUCCESS) {
479 if (list_empty(&hsep->queue))
480 return;
481
482 hsreq = list_entry(hsep->queue.next,
483 struct s3c_hsudc_req, queue);
484 if (((s3c_hsudc_read_fifo(hsep, hsreq)) == 0) &&
485 (csr & S3C_ESR_PSIF_TWO))
486 s3c_hsudc_read_fifo(hsep, hsreq);
487 }
488 }
489
490 /** s3c_hsudc_set_halt - Set or clear a endpoint halt.
491 * @_ep: Endpoint on which halt has to be set or cleared.
492 * @value: 1 for setting halt on endpoint, 0 to clear halt.
493 *
494 * Set or clear endpoint halt. If halt is set, the endpoint is stopped.
495 * If halt is cleared, for in-endpoints, if there are any pending
496 * transfer requests, transfers are started.
497 */
498 static int s3c_hsudc_set_halt(struct usb_ep *_ep, int value)
499 {
500 struct s3c_hsudc_ep *hsep = our_ep(_ep);
501 struct s3c_hsudc *hsudc = hsep->dev;
502 struct s3c_hsudc_req *hsreq;
503 unsigned long irqflags;
504 u32 ecr;
505 u32 offset;
506
507 if (value && ep_is_in(hsep) && !list_empty(&hsep->queue))
508 return -EAGAIN;
509
510 spin_lock_irqsave(&hsudc->lock, irqflags);
511 set_index(hsudc, ep_index(hsep));
512 offset = (ep_index(hsep)) ? S3C_ECR : S3C_EP0CR;
513 ecr = readl(hsudc->regs + offset);
514
515 if (value) {
516 ecr |= S3C_ECR_STALL;
517 if (ep_index(hsep))
518 ecr |= S3C_ECR_FLUSH;
519 hsep->stopped = 1;
520 } else {
521 ecr &= ~S3C_ECR_STALL;
522 hsep->stopped = hsep->wedge = 0;
523 }
524 writel(ecr, hsudc->regs + offset);
525
526 if (ep_is_in(hsep) && !list_empty(&hsep->queue) && !value) {
527 hsreq = list_entry(hsep->queue.next,
528 struct s3c_hsudc_req, queue);
529 if (hsreq)
530 s3c_hsudc_write_fifo(hsep, hsreq);
531 }
532
533 spin_unlock_irqrestore(&hsudc->lock, irqflags);
534 return 0;
535 }
536
537 /** s3c_hsudc_set_wedge - Sets the halt feature with the clear requests ignored
538 * @_ep: Endpoint on which wedge has to be set.
539 *
540 * Sets the halt feature with the clear requests ignored.
541 */
542 static int s3c_hsudc_set_wedge(struct usb_ep *_ep)
543 {
544 struct s3c_hsudc_ep *hsep = our_ep(_ep);
545
546 if (!hsep)
547 return -EINVAL;
548
549 hsep->wedge = 1;
550 return usb_ep_set_halt(_ep);
551 }
552
553 /** s3c_hsudc_handle_reqfeat - Handle set feature or clear feature requests.
554 * @_ep: Device controller on which the set/clear feature needs to be handled.
555 * @ctrl: Control request as received on the endpoint 0.
556 *
557 * Handle set feature or clear feature control requests on the control endpoint.
558 */
559 static int s3c_hsudc_handle_reqfeat(struct s3c_hsudc *hsudc,
560 struct usb_ctrlrequest *ctrl)
561 {
562 struct s3c_hsudc_ep *hsep;
563 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
564 u8 ep_num = ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK;
565
566 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
567 hsep = &hsudc->ep[ep_num];
568 switch (le16_to_cpu(ctrl->wValue)) {
569 case USB_ENDPOINT_HALT:
570 if (set || (!set && !hsep->wedge))
571 s3c_hsudc_set_halt(&hsep->ep, set);
572 return 0;
573 }
574 }
575
576 return -ENOENT;
577 }
578
579 /**
580 * s3c_hsudc_process_req_status - Handle get status control request.
581 * @hsudc: Device controller on which get status request has be handled.
582 * @ctrl: Control request as received on the endpoint 0.
583 *
584 * Handle get status control request received on control endpoint.
585 */
586 static void s3c_hsudc_process_req_status(struct s3c_hsudc *hsudc,
587 struct usb_ctrlrequest *ctrl)
588 {
589 struct s3c_hsudc_ep *hsep0 = &hsudc->ep[0];
590 struct s3c_hsudc_req hsreq;
591 struct s3c_hsudc_ep *hsep;
592 __le16 reply;
593 u8 epnum;
594
595 switch (ctrl->bRequestType & USB_RECIP_MASK) {
596 case USB_RECIP_DEVICE:
597 reply = cpu_to_le16(0);
598 break;
599
600 case USB_RECIP_INTERFACE:
601 reply = cpu_to_le16(0);
602 break;
603
604 case USB_RECIP_ENDPOINT:
605 epnum = le16_to_cpu(ctrl->wIndex) & USB_ENDPOINT_NUMBER_MASK;
606 hsep = &hsudc->ep[epnum];
607 reply = cpu_to_le16(hsep->stopped ? 1 : 0);
608 break;
609 }
610
611 INIT_LIST_HEAD(&hsreq.queue);
612 hsreq.req.length = 2;
613 hsreq.req.buf = &reply;
614 hsreq.req.actual = 0;
615 hsreq.req.complete = NULL;
616 s3c_hsudc_write_fifo(hsep0, &hsreq);
617 }
618
619 /**
620 * s3c_hsudc_process_setup - Process control request received on endpoint 0.
621 * @hsudc: Device controller on which control request has been received.
622 *
623 * Read the control request received on endpoint 0, decode it and handle
624 * the request.
625 */
626 static void s3c_hsudc_process_setup(struct s3c_hsudc *hsudc)
627 {
628 struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
629 struct usb_ctrlrequest ctrl = {0};
630 int ret;
631
632 s3c_hsudc_nuke_ep(hsep, -EPROTO);
633 s3c_hsudc_read_setup_pkt(hsudc, (u16 *)&ctrl);
634
635 if (ctrl.bRequestType & USB_DIR_IN) {
636 hsep->bEndpointAddress |= USB_DIR_IN;
637 hsudc->ep0state = DATA_STATE_XMIT;
638 } else {
639 hsep->bEndpointAddress &= ~USB_DIR_IN;
640 hsudc->ep0state = DATA_STATE_RECV;
641 }
642
643 switch (ctrl.bRequest) {
644 case USB_REQ_SET_ADDRESS:
645 if (ctrl.bRequestType != (USB_TYPE_STANDARD | USB_RECIP_DEVICE))
646 break;
647 hsudc->ep0state = WAIT_FOR_SETUP;
648 return;
649
650 case USB_REQ_GET_STATUS:
651 if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
652 break;
653 s3c_hsudc_process_req_status(hsudc, &ctrl);
654 return;
655
656 case USB_REQ_SET_FEATURE:
657 case USB_REQ_CLEAR_FEATURE:
658 if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
659 break;
660 s3c_hsudc_handle_reqfeat(hsudc, &ctrl);
661 hsudc->ep0state = WAIT_FOR_SETUP;
662 return;
663 }
664
665 if (hsudc->driver) {
666 spin_unlock(&hsudc->lock);
667 ret = hsudc->driver->setup(&hsudc->gadget, &ctrl);
668 spin_lock(&hsudc->lock);
669
670 if (ctrl.bRequest == USB_REQ_SET_CONFIGURATION) {
671 hsep->bEndpointAddress &= ~USB_DIR_IN;
672 hsudc->ep0state = WAIT_FOR_SETUP;
673 }
674
675 if (ret < 0) {
676 dev_err(hsudc->dev, "setup failed, returned %d\n",
677 ret);
678 s3c_hsudc_set_halt(&hsep->ep, 1);
679 hsudc->ep0state = WAIT_FOR_SETUP;
680 hsep->bEndpointAddress &= ~USB_DIR_IN;
681 }
682 }
683 }
684
685 /** s3c_hsudc_handle_ep0_intr - Handle endpoint 0 interrupt.
686 * @hsudc: Device controller on which endpoint 0 interrupt has occured.
687 *
688 * Handle endpoint 0 interrupt when it occurs. EP0 interrupt could occur
689 * when a stall handshake is sent to host or data is sent/received on
690 * endpoint 0.
691 */
692 static void s3c_hsudc_handle_ep0_intr(struct s3c_hsudc *hsudc)
693 {
694 struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
695 struct s3c_hsudc_req *hsreq;
696 u32 csr = readl(hsudc->regs + S3C_EP0SR);
697 u32 ecr;
698
699 if (csr & S3C_EP0SR_STALL) {
700 ecr = readl(hsudc->regs + S3C_EP0CR);
701 ecr &= ~(S3C_ECR_STALL | S3C_ECR_FLUSH);
702 writel(ecr, hsudc->regs + S3C_EP0CR);
703
704 writel(S3C_EP0SR_STALL, hsudc->regs + S3C_EP0SR);
705 hsep->stopped = 0;
706
707 s3c_hsudc_nuke_ep(hsep, -ECONNABORTED);
708 hsudc->ep0state = WAIT_FOR_SETUP;
709 hsep->bEndpointAddress &= ~USB_DIR_IN;
710 return;
711 }
712
713 if (csr & S3C_EP0SR_TX_SUCCESS) {
714 writel(S3C_EP0SR_TX_SUCCESS, hsudc->regs + S3C_EP0SR);
715 if (ep_is_in(hsep)) {
716 if (list_empty(&hsep->queue))
717 return;
718
719 hsreq = list_entry(hsep->queue.next,
720 struct s3c_hsudc_req, queue);
721 s3c_hsudc_write_fifo(hsep, hsreq);
722 }
723 }
724
725 if (csr & S3C_EP0SR_RX_SUCCESS) {
726 if (hsudc->ep0state == WAIT_FOR_SETUP)
727 s3c_hsudc_process_setup(hsudc);
728 else {
729 if (!ep_is_in(hsep)) {
730 if (list_empty(&hsep->queue))
731 return;
732 hsreq = list_entry(hsep->queue.next,
733 struct s3c_hsudc_req, queue);
734 s3c_hsudc_read_fifo(hsep, hsreq);
735 }
736 }
737 }
738 }
739
740 /**
741 * s3c_hsudc_ep_enable - Enable a endpoint.
742 * @_ep: The endpoint to be enabled.
743 * @desc: Endpoint descriptor.
744 *
745 * Enables a endpoint when called from the gadget driver. Endpoint stall if
746 * any is cleared, transfer type is configured and endpoint interrupt is
747 * enabled.
748 */
749 static int s3c_hsudc_ep_enable(struct usb_ep *_ep,
750 const struct usb_endpoint_descriptor *desc)
751 {
752 struct s3c_hsudc_ep *hsep;
753 struct s3c_hsudc *hsudc;
754 unsigned long flags;
755 u32 ecr = 0;
756
757 hsep = container_of(_ep, struct s3c_hsudc_ep, ep);
758 if (!_ep || !desc || hsep->desc || _ep->name == ep0name
759 || desc->bDescriptorType != USB_DT_ENDPOINT
760 || hsep->bEndpointAddress != desc->bEndpointAddress
761 || ep_maxpacket(hsep) < le16_to_cpu(desc->wMaxPacketSize))
762 return -EINVAL;
763
764 if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
765 && le16_to_cpu(desc->wMaxPacketSize) != ep_maxpacket(hsep))
766 || !desc->wMaxPacketSize)
767 return -ERANGE;
768
769 hsudc = hsep->dev;
770 if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
771 return -ESHUTDOWN;
772
773 spin_lock_irqsave(&hsudc->lock, flags);
774
775 set_index(hsudc, hsep->bEndpointAddress);
776 ecr |= ((usb_endpoint_xfer_int(desc)) ? S3C_ECR_IEMS : S3C_ECR_DUEN);
777 writel(ecr, hsudc->regs + S3C_ECR);
778
779 hsep->stopped = hsep->wedge = 0;
780 hsep->desc = desc;
781 hsep->ep.maxpacket = le16_to_cpu(desc->wMaxPacketSize);
782
783 s3c_hsudc_set_halt(_ep, 0);
784 __set_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
785
786 spin_unlock_irqrestore(&hsudc->lock, flags);
787 return 0;
788 }
789
790 /**
791 * s3c_hsudc_ep_disable - Disable a endpoint.
792 * @_ep: The endpoint to be disabled.
793 * @desc: Endpoint descriptor.
794 *
795 * Disables a endpoint when called from the gadget driver.
796 */
797 static int s3c_hsudc_ep_disable(struct usb_ep *_ep)
798 {
799 struct s3c_hsudc_ep *hsep = our_ep(_ep);
800 struct s3c_hsudc *hsudc = hsep->dev;
801 unsigned long flags;
802
803 if (!_ep || !hsep->desc)
804 return -EINVAL;
805
806 spin_lock_irqsave(&hsudc->lock, flags);
807
808 set_index(hsudc, hsep->bEndpointAddress);
809 __clear_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
810
811 s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
812
813 hsep->desc = 0;
814 hsep->stopped = 1;
815
816 spin_unlock_irqrestore(&hsudc->lock, flags);
817 return 0;
818 }
819
820 /**
821 * s3c_hsudc_alloc_request - Allocate a new request.
822 * @_ep: Endpoint for which request is allocated (not used).
823 * @gfp_flags: Flags used for the allocation.
824 *
825 * Allocates a single transfer request structure when called from gadget driver.
826 */
827 static struct usb_request *s3c_hsudc_alloc_request(struct usb_ep *_ep,
828 gfp_t gfp_flags)
829 {
830 struct s3c_hsudc_req *hsreq;
831
832 hsreq = kzalloc(sizeof *hsreq, gfp_flags);
833 if (!hsreq)
834 return 0;
835
836 INIT_LIST_HEAD(&hsreq->queue);
837 return &hsreq->req;
838 }
839
840 /**
841 * s3c_hsudc_free_request - Deallocate a request.
842 * @ep: Endpoint for which request is deallocated (not used).
843 * @_req: Request to be deallocated.
844 *
845 * Allocates a single transfer request structure when called from gadget driver.
846 */
847 static void s3c_hsudc_free_request(struct usb_ep *ep, struct usb_request *_req)
848 {
849 struct s3c_hsudc_req *hsreq;
850
851 hsreq = container_of(_req, struct s3c_hsudc_req, req);
852 WARN_ON(!list_empty(&hsreq->queue));
853 kfree(hsreq);
854 }
855
856 /**
857 * s3c_hsudc_queue - Queue a transfer request for the endpoint.
858 * @_ep: Endpoint for which the request is queued.
859 * @_req: Request to be queued.
860 * @gfp_flags: Not used.
861 *
862 * Start or enqueue a request for a endpoint when called from gadget driver.
863 */
864 static int s3c_hsudc_queue(struct usb_ep *_ep, struct usb_request *_req,
865 gfp_t gfp_flags)
866 {
867 struct s3c_hsudc_req *hsreq;
868 struct s3c_hsudc_ep *hsep;
869 struct s3c_hsudc *hsudc;
870 unsigned long flags;
871 u32 offset;
872 u32 csr;
873
874 hsreq = container_of(_req, struct s3c_hsudc_req, req);
875 if ((!_req || !_req->complete || !_req->buf ||
876 !list_empty(&hsreq->queue)))
877 return -EINVAL;
878
879 hsep = container_of(_ep, struct s3c_hsudc_ep, ep);
880 hsudc = hsep->dev;
881 if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
882 return -ESHUTDOWN;
883
884 spin_lock_irqsave(&hsudc->lock, flags);
885 set_index(hsudc, hsep->bEndpointAddress);
886
887 _req->status = -EINPROGRESS;
888 _req->actual = 0;
889
890 if (!ep_index(hsep) && _req->length == 0) {
891 hsudc->ep0state = WAIT_FOR_SETUP;
892 s3c_hsudc_complete_request(hsep, hsreq, 0);
893 spin_unlock_irqrestore(&hsudc->lock, flags);
894 return 0;
895 }
896
897 if (list_empty(&hsep->queue) && !hsep->stopped) {
898 offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
899 if (ep_is_in(hsep)) {
900 csr = readl((u32)hsudc->regs + offset);
901 if (!(csr & S3C_ESR_TX_SUCCESS) &&
902 (s3c_hsudc_write_fifo(hsep, hsreq) == 1))
903 hsreq = 0;
904 } else {
905 csr = readl((u32)hsudc->regs + offset);
906 if ((csr & S3C_ESR_RX_SUCCESS)
907 && (s3c_hsudc_read_fifo(hsep, hsreq) == 1))
908 hsreq = 0;
909 }
910 }
911
912 if (hsreq != 0)
913 list_add_tail(&hsreq->queue, &hsep->queue);
914
915 spin_unlock_irqrestore(&hsudc->lock, flags);
916 return 0;
917 }
918
919 /**
920 * s3c_hsudc_dequeue - Dequeue a transfer request from an endpoint.
921 * @_ep: Endpoint from which the request is dequeued.
922 * @_req: Request to be dequeued.
923 *
924 * Dequeue a request from a endpoint when called from gadget driver.
925 */
926 static int s3c_hsudc_dequeue(struct usb_ep *_ep, struct usb_request *_req)
927 {
928 struct s3c_hsudc_ep *hsep = our_ep(_ep);
929 struct s3c_hsudc *hsudc = hsep->dev;
930 struct s3c_hsudc_req *hsreq;
931 unsigned long flags;
932
933 hsep = container_of(_ep, struct s3c_hsudc_ep, ep);
934 if (!_ep || hsep->ep.name == ep0name)
935 return -EINVAL;
936
937 spin_lock_irqsave(&hsudc->lock, flags);
938
939 list_for_each_entry(hsreq, &hsep->queue, queue) {
940 if (&hsreq->req == _req)
941 break;
942 }
943 if (&hsreq->req != _req) {
944 spin_unlock_irqrestore(&hsudc->lock, flags);
945 return -EINVAL;
946 }
947
948 set_index(hsudc, hsep->bEndpointAddress);
949 s3c_hsudc_complete_request(hsep, hsreq, -ECONNRESET);
950
951 spin_unlock_irqrestore(&hsudc->lock, flags);
952 return 0;
953 }
954
955 static struct usb_ep_ops s3c_hsudc_ep_ops = {
956 .enable = s3c_hsudc_ep_enable,
957 .disable = s3c_hsudc_ep_disable,
958 .alloc_request = s3c_hsudc_alloc_request,
959 .free_request = s3c_hsudc_free_request,
960 .queue = s3c_hsudc_queue,
961 .dequeue = s3c_hsudc_dequeue,
962 .set_halt = s3c_hsudc_set_halt,
963 .set_wedge = s3c_hsudc_set_wedge,
964 };
965
966 /**
967 * s3c_hsudc_initep - Initialize a endpoint to default state.
968 * @hsudc - Reference to the device controller.
969 * @hsep - Endpoint to be initialized.
970 * @epnum - Address to be assigned to the endpoint.
971 *
972 * Initialize a endpoint with default configuration.
973 */
974 static void s3c_hsudc_initep(struct s3c_hsudc *hsudc,
975 struct s3c_hsudc_ep *hsep, int epnum)
976 {
977 char *dir;
978
979 if ((epnum % 2) == 0) {
980 dir = "out";
981 } else {
982 dir = "in";
983 hsep->bEndpointAddress = USB_DIR_IN;
984 }
985
986 hsep->bEndpointAddress |= epnum;
987 if (epnum)
988 snprintf(hsep->name, sizeof(hsep->name), "ep%d%s", epnum, dir);
989 else
990 snprintf(hsep->name, sizeof(hsep->name), "%s", ep0name);
991
992 INIT_LIST_HEAD(&hsep->queue);
993 INIT_LIST_HEAD(&hsep->ep.ep_list);
994 if (epnum)
995 list_add_tail(&hsep->ep.ep_list, &hsudc->gadget.ep_list);
996
997 hsep->dev = hsudc;
998 hsep->ep.name = hsep->name;
999 hsep->ep.maxpacket = epnum ? 512 : 64;
1000 hsep->ep.ops = &s3c_hsudc_ep_ops;
1001 hsep->fifo = hsudc->regs + S3C_BR(epnum);
1002 hsep->desc = 0;
1003 hsep->stopped = 0;
1004 hsep->wedge = 0;
1005
1006 set_index(hsudc, epnum);
1007 writel(hsep->ep.maxpacket, hsudc->regs + S3C_MPR);
1008 }
1009
1010 /**
1011 * s3c_hsudc_setup_ep - Configure all endpoints to default state.
1012 * @hsudc: Reference to device controller.
1013 *
1014 * Configures all endpoints to default state.
1015 */
1016 static void s3c_hsudc_setup_ep(struct s3c_hsudc *hsudc)
1017 {
1018 int epnum;
1019
1020 hsudc->ep0state = WAIT_FOR_SETUP;
1021 INIT_LIST_HEAD(&hsudc->gadget.ep_list);
1022 for (epnum = 0; epnum < hsudc->pd->epnum; epnum++)
1023 s3c_hsudc_initep(hsudc, &hsudc->ep[epnum], epnum);
1024 }
1025
1026 /**
1027 * s3c_hsudc_reconfig - Reconfigure the device controller to default state.
1028 * @hsudc: Reference to device controller.
1029 *
1030 * Reconfigures the device controller registers to a default state.
1031 */
1032 static void s3c_hsudc_reconfig(struct s3c_hsudc *hsudc)
1033 {
1034 writel(0xAA, hsudc->regs + S3C_EDR);
1035 writel(1, hsudc->regs + S3C_EIER);
1036 writel(0, hsudc->regs + S3C_TR);
1037 writel(S3C_SCR_DTZIEN_EN | S3C_SCR_RRD_EN | S3C_SCR_SUS_EN |
1038 S3C_SCR_RST_EN, hsudc->regs + S3C_SCR);
1039 writel(0, hsudc->regs + S3C_EP0CR);
1040
1041 s3c_hsudc_setup_ep(hsudc);
1042 }
1043
1044 /**
1045 * s3c_hsudc_irq - Interrupt handler for device controller.
1046 * @irq: Not used.
1047 * @_dev: Reference to the device controller.
1048 *
1049 * Interrupt handler for the device controller. This handler handles controller
1050 * interrupts and endpoint interrupts.
1051 */
1052 static irqreturn_t s3c_hsudc_irq(int irq, void *_dev)
1053 {
1054 struct s3c_hsudc *hsudc = _dev;
1055 struct s3c_hsudc_ep *hsep;
1056 u32 ep_intr;
1057 u32 sys_status;
1058 u32 ep_idx;
1059
1060 spin_lock(&hsudc->lock);
1061
1062 sys_status = readl(hsudc->regs + S3C_SSR);
1063 ep_intr = readl(hsudc->regs + S3C_EIR) & 0x3FF;
1064
1065 if (!ep_intr && !(sys_status & S3C_SSR_DTZIEN_EN)) {
1066 spin_unlock(&hsudc->lock);
1067 return IRQ_HANDLED;
1068 }
1069
1070 if (sys_status) {
1071 if (sys_status & S3C_SSR_VBUSON)
1072 writel(S3C_SSR_VBUSON, hsudc->regs + S3C_SSR);
1073
1074 if (sys_status & S3C_SSR_ERR)
1075 writel(S3C_SSR_ERR, hsudc->regs + S3C_SSR);
1076
1077 if (sys_status & S3C_SSR_SDE) {
1078 writel(S3C_SSR_SDE, hsudc->regs + S3C_SSR);
1079 hsudc->gadget.speed = (sys_status & S3C_SSR_HSP) ?
1080 USB_SPEED_HIGH : USB_SPEED_FULL;
1081 }
1082
1083 if (sys_status & S3C_SSR_SUSPEND) {
1084 writel(S3C_SSR_SUSPEND, hsudc->regs + S3C_SSR);
1085 if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1086 && hsudc->driver && hsudc->driver->suspend)
1087 hsudc->driver->suspend(&hsudc->gadget);
1088 }
1089
1090 if (sys_status & S3C_SSR_RESUME) {
1091 writel(S3C_SSR_RESUME, hsudc->regs + S3C_SSR);
1092 if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1093 && hsudc->driver && hsudc->driver->resume)
1094 hsudc->driver->resume(&hsudc->gadget);
1095 }
1096
1097 if (sys_status & S3C_SSR_RESET) {
1098 writel(S3C_SSR_RESET, hsudc->regs + S3C_SSR);
1099 for (ep_idx = 0; ep_idx < hsudc->pd->epnum; ep_idx++) {
1100 hsep = &hsudc->ep[ep_idx];
1101 hsep->stopped = 1;
1102 s3c_hsudc_nuke_ep(hsep, -ECONNRESET);
1103 }
1104 s3c_hsudc_reconfig(hsudc);
1105 hsudc->ep0state = WAIT_FOR_SETUP;
1106 }
1107 }
1108
1109 if (ep_intr & S3C_EIR_EP0) {
1110 writel(S3C_EIR_EP0, hsudc->regs + S3C_EIR);
1111 set_index(hsudc, 0);
1112 s3c_hsudc_handle_ep0_intr(hsudc);
1113 }
1114
1115 ep_intr >>= 1;
1116 ep_idx = 1;
1117 while (ep_intr) {
1118 if (ep_intr & 1) {
1119 hsep = &hsudc->ep[ep_idx];
1120 set_index(hsudc, ep_idx);
1121 writel(1 << ep_idx, hsudc->regs + S3C_EIR);
1122 if (ep_is_in(hsep))
1123 s3c_hsudc_epin_intr(hsudc, ep_idx);
1124 else
1125 s3c_hsudc_epout_intr(hsudc, ep_idx);
1126 }
1127 ep_intr >>= 1;
1128 ep_idx++;
1129 }
1130
1131 spin_unlock(&hsudc->lock);
1132 return IRQ_HANDLED;
1133 }
1134
1135 int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
1136 int (*bind)(struct usb_gadget *))
1137 {
1138 struct s3c_hsudc *hsudc = the_controller;
1139 int ret;
1140
1141 if (!driver
1142 || (driver->speed != USB_SPEED_FULL &&
1143 driver->speed != USB_SPEED_HIGH)
1144 || !bind
1145 || !driver->unbind || !driver->disconnect || !driver->setup)
1146 return -EINVAL;
1147
1148 if (!hsudc)
1149 return -ENODEV;
1150
1151 if (hsudc->driver)
1152 return -EBUSY;
1153
1154 hsudc->driver = driver;
1155 hsudc->gadget.dev.driver = &driver->driver;
1156 hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1157 ret = device_add(&hsudc->gadget.dev);
1158 if (ret) {
1159 dev_err(hsudc->dev, "failed to probe gadget device");
1160 return ret;
1161 }
1162
1163 ret = bind(&hsudc->gadget);
1164 if (ret) {
1165 dev_err(hsudc->dev, "%s: bind failed\n", hsudc->gadget.name);
1166 device_del(&hsudc->gadget.dev);
1167
1168 hsudc->driver = NULL;
1169 hsudc->gadget.dev.driver = NULL;
1170 return ret;
1171 }
1172
1173 enable_irq(hsudc->irq);
1174 dev_info(hsudc->dev, "bound driver %s\n", driver->driver.name);
1175
1176 s3c_hsudc_reconfig(hsudc);
1177 s3c_hsudc_init_phy();
1178 if (hsudc->pd->gpio_init)
1179 hsudc->pd->gpio_init();
1180
1181 return 0;
1182 }
1183 EXPORT_SYMBOL(usb_gadget_probe_driver);
1184
1185 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1186 {
1187 struct s3c_hsudc *hsudc = the_controller;
1188 unsigned long flags;
1189
1190 if (!hsudc)
1191 return -ENODEV;
1192
1193 if (!driver || driver != hsudc->driver || !driver->unbind)
1194 return -EINVAL;
1195
1196 spin_lock_irqsave(&hsudc->lock, flags);
1197 hsudc->driver = 0;
1198 s3c_hsudc_uninit_phy();
1199 if (hsudc->pd->gpio_uninit)
1200 hsudc->pd->gpio_uninit();
1201 s3c_hsudc_stop_activity(hsudc, driver);
1202 spin_unlock_irqrestore(&hsudc->lock, flags);
1203
1204 driver->unbind(&hsudc->gadget);
1205 device_del(&hsudc->gadget.dev);
1206 disable_irq(hsudc->irq);
1207
1208 dev_info(hsudc->dev, "unregistered gadget driver '%s'\n",
1209 driver->driver.name);
1210 return 0;
1211 }
1212 EXPORT_SYMBOL(usb_gadget_unregister_driver);
1213
1214 static inline u32 s3c_hsudc_read_frameno(struct s3c_hsudc *hsudc)
1215 {
1216 return readl(hsudc->regs + S3C_FNR) & 0x3FF;
1217 }
1218
1219 static int s3c_hsudc_gadget_getframe(struct usb_gadget *gadget)
1220 {
1221 return s3c_hsudc_read_frameno(to_hsudc(gadget));
1222 }
1223
1224 static struct usb_gadget_ops s3c_hsudc_gadget_ops = {
1225 .get_frame = s3c_hsudc_gadget_getframe,
1226 };
1227
1228 static int s3c_hsudc_probe(struct platform_device *pdev)
1229 {
1230 struct device *dev = &pdev->dev;
1231 struct resource *res;
1232 struct s3c_hsudc *hsudc;
1233 struct s3c24xx_hsudc_platdata *pd = pdev->dev.platform_data;
1234 int ret;
1235
1236 hsudc = kzalloc(sizeof(struct s3c_hsudc) +
1237 sizeof(struct s3c_hsudc_ep) * pd->epnum,
1238 GFP_KERNEL);
1239 if (!hsudc) {
1240 dev_err(dev, "cannot allocate memory\n");
1241 return -ENOMEM;
1242 }
1243
1244 the_controller = hsudc;
1245 platform_set_drvdata(pdev, dev);
1246 hsudc->dev = dev;
1247 hsudc->pd = pdev->dev.platform_data;
1248
1249 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1250 if (!res) {
1251 dev_err(dev, "unable to obtain driver resource data\n");
1252 ret = -ENODEV;
1253 goto err_res;
1254 }
1255
1256 hsudc->mem_rsrc = request_mem_region(res->start, resource_size(res),
1257 dev_name(&pdev->dev));
1258 if (!hsudc->mem_rsrc) {
1259 dev_err(dev, "failed to reserve register area\n");
1260 ret = -ENODEV;
1261 goto err_res;
1262 }
1263
1264 hsudc->regs = ioremap(res->start, resource_size(res));
1265 if (!hsudc->regs) {
1266 dev_err(dev, "error mapping device register area\n");
1267 ret = -EBUSY;
1268 goto err_remap;
1269 }
1270
1271 ret = platform_get_irq(pdev, 0);
1272 if (ret < 0) {
1273 dev_err(dev, "unable to obtain IRQ number\n");
1274 goto err_irq;
1275 }
1276 hsudc->irq = ret;
1277
1278 ret = request_irq(hsudc->irq, s3c_hsudc_irq, 0, driver_name, hsudc);
1279 if (ret < 0) {
1280 dev_err(dev, "irq request failed\n");
1281 goto err_irq;
1282 }
1283
1284 spin_lock_init(&hsudc->lock);
1285
1286 device_initialize(&hsudc->gadget.dev);
1287 dev_set_name(&hsudc->gadget.dev, "gadget");
1288
1289 hsudc->gadget.is_dualspeed = 1;
1290 hsudc->gadget.ops = &s3c_hsudc_gadget_ops;
1291 hsudc->gadget.name = dev_name(dev);
1292 hsudc->gadget.dev.parent = dev;
1293 hsudc->gadget.dev.dma_mask = dev->dma_mask;
1294 hsudc->gadget.ep0 = &hsudc->ep[0].ep;
1295
1296 hsudc->gadget.is_otg = 0;
1297 hsudc->gadget.is_a_peripheral = 0;
1298
1299 s3c_hsudc_setup_ep(hsudc);
1300
1301 hsudc->uclk = clk_get(&pdev->dev, "usb-device");
1302 if (hsudc->uclk == NULL) {
1303 dev_err(dev, "failed to find usb-device clock source\n");
1304 return -ENOENT;
1305 }
1306 clk_enable(hsudc->uclk);
1307
1308 local_irq_disable();
1309
1310 disable_irq(hsudc->irq);
1311 local_irq_enable();
1312 return 0;
1313
1314 err_irq:
1315 iounmap(hsudc->regs);
1316
1317 err_remap:
1318 release_resource(hsudc->mem_rsrc);
1319 kfree(hsudc->mem_rsrc);
1320
1321 err_res:
1322 kfree(hsudc);
1323 return ret;
1324 }
1325
1326 static struct platform_driver s3c_hsudc_driver = {
1327 .driver = {
1328 .owner = THIS_MODULE,
1329 .name = "s3c-hsudc",
1330 },
1331 .probe = s3c_hsudc_probe,
1332 };
1333
1334 static int __init s3c_hsudc_modinit(void)
1335 {
1336 return platform_driver_register(&s3c_hsudc_driver);
1337 }
1338
1339 static void __exit s3c_hsudc_modexit(void)
1340 {
1341 platform_driver_unregister(&s3c_hsudc_driver);
1342 }
1343
1344 module_init(s3c_hsudc_modinit);
1345 module_exit(s3c_hsudc_modexit);
1346
1347 MODULE_DESCRIPTION("Samsung S3C24XX USB high-speed controller driver");
1348 MODULE_AUTHOR("Thomas Abraham <thomas.ab@samsung.com>");
1349 MODULE_LICENSE("GPL");
This page took 0.082096 seconds and 5 git commands to generate.