usb: gadget: add multiple definition guards
[deliverable/linux.git] / drivers / usb / gadget / u_serial.c
1 /*
2 * u_serial.c - utilities for USB gadget "serial port"/TTY support
3 *
4 * Copyright (C) 2003 Al Borchers (alborchers@steinerpoint.com)
5 * Copyright (C) 2008 David Brownell
6 * Copyright (C) 2008 by Nokia Corporation
7 *
8 * This code also borrows from usbserial.c, which is
9 * Copyright (C) 1999 - 2002 Greg Kroah-Hartman (greg@kroah.com)
10 * Copyright (C) 2000 Peter Berger (pberger@brimson.com)
11 * Copyright (C) 2000 Al Borchers (alborchers@steinerpoint.com)
12 *
13 * This software is distributed under the terms of the GNU General
14 * Public License ("GPL") as published by the Free Software Foundation,
15 * either version 2 of that License or (at your option) any later version.
16 */
17
18 /* #define VERBOSE_DEBUG */
19
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/delay.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/slab.h>
28 #include <linux/export.h>
29
30 #include "u_serial.h"
31
32
33 /*
34 * This component encapsulates the TTY layer glue needed to provide basic
35 * "serial port" functionality through the USB gadget stack. Each such
36 * port is exposed through a /dev/ttyGS* node.
37 *
38 * After initialization (gserial_setup), these TTY port devices stay
39 * available until they are removed (gserial_cleanup). Each one may be
40 * connected to a USB function (gserial_connect), or disconnected (with
41 * gserial_disconnect) when the USB host issues a config change event.
42 * Data can only flow when the port is connected to the host.
43 *
44 * A given TTY port can be made available in multiple configurations.
45 * For example, each one might expose a ttyGS0 node which provides a
46 * login application. In one case that might use CDC ACM interface 0,
47 * while another configuration might use interface 3 for that. The
48 * work to handle that (including descriptor management) is not part
49 * of this component.
50 *
51 * Configurations may expose more than one TTY port. For example, if
52 * ttyGS0 provides login service, then ttyGS1 might provide dialer access
53 * for a telephone or fax link. And ttyGS2 might be something that just
54 * needs a simple byte stream interface for some messaging protocol that
55 * is managed in userspace ... OBEX, PTP, and MTP have been mentioned.
56 */
57
58 #define PREFIX "ttyGS"
59
60 /*
61 * gserial is the lifecycle interface, used by USB functions
62 * gs_port is the I/O nexus, used by the tty driver
63 * tty_struct links to the tty/filesystem framework
64 *
65 * gserial <---> gs_port ... links will be null when the USB link is
66 * inactive; managed by gserial_{connect,disconnect}(). each gserial
67 * instance can wrap its own USB control protocol.
68 * gserial->ioport == usb_ep->driver_data ... gs_port
69 * gs_port->port_usb ... gserial
70 *
71 * gs_port <---> tty_struct ... links will be null when the TTY file
72 * isn't opened; managed by gs_open()/gs_close()
73 * gserial->port_tty ... tty_struct
74 * tty_struct->driver_data ... gserial
75 */
76
77 /* RX and TX queues can buffer QUEUE_SIZE packets before they hit the
78 * next layer of buffering. For TX that's a circular buffer; for RX
79 * consider it a NOP. A third layer is provided by the TTY code.
80 */
81 #define QUEUE_SIZE 16
82 #define WRITE_BUF_SIZE 8192 /* TX only */
83
84 /* circular buffer */
85 struct gs_buf {
86 unsigned buf_size;
87 char *buf_buf;
88 char *buf_get;
89 char *buf_put;
90 };
91
92 /*
93 * The port structure holds info for each port, one for each minor number
94 * (and thus for each /dev/ node).
95 */
96 struct gs_port {
97 struct tty_port port;
98 spinlock_t port_lock; /* guard port_* access */
99
100 struct gserial *port_usb;
101
102 bool openclose; /* open/close in progress */
103 u8 port_num;
104
105 struct list_head read_pool;
106 int read_started;
107 int read_allocated;
108 struct list_head read_queue;
109 unsigned n_read;
110 struct tasklet_struct push;
111
112 struct list_head write_pool;
113 int write_started;
114 int write_allocated;
115 struct gs_buf port_write_buf;
116 wait_queue_head_t drain_wait; /* wait while writes drain */
117
118 /* REVISIT this state ... */
119 struct usb_cdc_line_coding port_line_coding; /* 8-N-1 etc */
120 };
121
122 /* increase N_PORTS if you need more */
123 #define N_PORTS 4
124 static struct portmaster {
125 struct mutex lock; /* protect open/close */
126 struct gs_port *port;
127 } ports[N_PORTS];
128 static unsigned n_ports;
129
130 #define GS_CLOSE_TIMEOUT 15 /* seconds */
131
132
133
134 #ifdef VERBOSE_DEBUG
135 #ifndef pr_vdebug
136 #define pr_vdebug(fmt, arg...) \
137 pr_debug(fmt, ##arg)
138 #endif /* pr_vdebug */
139 #else
140 #ifndef pr_vdebig
141 #define pr_vdebug(fmt, arg...) \
142 ({ if (0) pr_debug(fmt, ##arg); })
143 #endif /* pr_vdebug */
144 #endif
145
146 /*-------------------------------------------------------------------------*/
147
148 /* Circular Buffer */
149
150 /*
151 * gs_buf_alloc
152 *
153 * Allocate a circular buffer and all associated memory.
154 */
155 static int gs_buf_alloc(struct gs_buf *gb, unsigned size)
156 {
157 gb->buf_buf = kmalloc(size, GFP_KERNEL);
158 if (gb->buf_buf == NULL)
159 return -ENOMEM;
160
161 gb->buf_size = size;
162 gb->buf_put = gb->buf_buf;
163 gb->buf_get = gb->buf_buf;
164
165 return 0;
166 }
167
168 /*
169 * gs_buf_free
170 *
171 * Free the buffer and all associated memory.
172 */
173 static void gs_buf_free(struct gs_buf *gb)
174 {
175 kfree(gb->buf_buf);
176 gb->buf_buf = NULL;
177 }
178
179 /*
180 * gs_buf_clear
181 *
182 * Clear out all data in the circular buffer.
183 */
184 static void gs_buf_clear(struct gs_buf *gb)
185 {
186 gb->buf_get = gb->buf_put;
187 /* equivalent to a get of all data available */
188 }
189
190 /*
191 * gs_buf_data_avail
192 *
193 * Return the number of bytes of data written into the circular
194 * buffer.
195 */
196 static unsigned gs_buf_data_avail(struct gs_buf *gb)
197 {
198 return (gb->buf_size + gb->buf_put - gb->buf_get) % gb->buf_size;
199 }
200
201 /*
202 * gs_buf_space_avail
203 *
204 * Return the number of bytes of space available in the circular
205 * buffer.
206 */
207 static unsigned gs_buf_space_avail(struct gs_buf *gb)
208 {
209 return (gb->buf_size + gb->buf_get - gb->buf_put - 1) % gb->buf_size;
210 }
211
212 /*
213 * gs_buf_put
214 *
215 * Copy data data from a user buffer and put it into the circular buffer.
216 * Restrict to the amount of space available.
217 *
218 * Return the number of bytes copied.
219 */
220 static unsigned
221 gs_buf_put(struct gs_buf *gb, const char *buf, unsigned count)
222 {
223 unsigned len;
224
225 len = gs_buf_space_avail(gb);
226 if (count > len)
227 count = len;
228
229 if (count == 0)
230 return 0;
231
232 len = gb->buf_buf + gb->buf_size - gb->buf_put;
233 if (count > len) {
234 memcpy(gb->buf_put, buf, len);
235 memcpy(gb->buf_buf, buf+len, count - len);
236 gb->buf_put = gb->buf_buf + count - len;
237 } else {
238 memcpy(gb->buf_put, buf, count);
239 if (count < len)
240 gb->buf_put += count;
241 else /* count == len */
242 gb->buf_put = gb->buf_buf;
243 }
244
245 return count;
246 }
247
248 /*
249 * gs_buf_get
250 *
251 * Get data from the circular buffer and copy to the given buffer.
252 * Restrict to the amount of data available.
253 *
254 * Return the number of bytes copied.
255 */
256 static unsigned
257 gs_buf_get(struct gs_buf *gb, char *buf, unsigned count)
258 {
259 unsigned len;
260
261 len = gs_buf_data_avail(gb);
262 if (count > len)
263 count = len;
264
265 if (count == 0)
266 return 0;
267
268 len = gb->buf_buf + gb->buf_size - gb->buf_get;
269 if (count > len) {
270 memcpy(buf, gb->buf_get, len);
271 memcpy(buf+len, gb->buf_buf, count - len);
272 gb->buf_get = gb->buf_buf + count - len;
273 } else {
274 memcpy(buf, gb->buf_get, count);
275 if (count < len)
276 gb->buf_get += count;
277 else /* count == len */
278 gb->buf_get = gb->buf_buf;
279 }
280
281 return count;
282 }
283
284 /*-------------------------------------------------------------------------*/
285
286 /* I/O glue between TTY (upper) and USB function (lower) driver layers */
287
288 /*
289 * gs_alloc_req
290 *
291 * Allocate a usb_request and its buffer. Returns a pointer to the
292 * usb_request or NULL if there is an error.
293 */
294 struct usb_request *
295 gs_alloc_req(struct usb_ep *ep, unsigned len, gfp_t kmalloc_flags)
296 {
297 struct usb_request *req;
298
299 req = usb_ep_alloc_request(ep, kmalloc_flags);
300
301 if (req != NULL) {
302 req->length = len;
303 req->buf = kmalloc(len, kmalloc_flags);
304 if (req->buf == NULL) {
305 usb_ep_free_request(ep, req);
306 return NULL;
307 }
308 }
309
310 return req;
311 }
312
313 /*
314 * gs_free_req
315 *
316 * Free a usb_request and its buffer.
317 */
318 void gs_free_req(struct usb_ep *ep, struct usb_request *req)
319 {
320 kfree(req->buf);
321 usb_ep_free_request(ep, req);
322 }
323
324 /*
325 * gs_send_packet
326 *
327 * If there is data to send, a packet is built in the given
328 * buffer and the size is returned. If there is no data to
329 * send, 0 is returned.
330 *
331 * Called with port_lock held.
332 */
333 static unsigned
334 gs_send_packet(struct gs_port *port, char *packet, unsigned size)
335 {
336 unsigned len;
337
338 len = gs_buf_data_avail(&port->port_write_buf);
339 if (len < size)
340 size = len;
341 if (size != 0)
342 size = gs_buf_get(&port->port_write_buf, packet, size);
343 return size;
344 }
345
346 /*
347 * gs_start_tx
348 *
349 * This function finds available write requests, calls
350 * gs_send_packet to fill these packets with data, and
351 * continues until either there are no more write requests
352 * available or no more data to send. This function is
353 * run whenever data arrives or write requests are available.
354 *
355 * Context: caller owns port_lock; port_usb is non-null.
356 */
357 static int gs_start_tx(struct gs_port *port)
358 /*
359 __releases(&port->port_lock)
360 __acquires(&port->port_lock)
361 */
362 {
363 struct list_head *pool = &port->write_pool;
364 struct usb_ep *in = port->port_usb->in;
365 int status = 0;
366 bool do_tty_wake = false;
367
368 while (!list_empty(pool)) {
369 struct usb_request *req;
370 int len;
371
372 if (port->write_started >= QUEUE_SIZE)
373 break;
374
375 req = list_entry(pool->next, struct usb_request, list);
376 len = gs_send_packet(port, req->buf, in->maxpacket);
377 if (len == 0) {
378 wake_up_interruptible(&port->drain_wait);
379 break;
380 }
381 do_tty_wake = true;
382
383 req->length = len;
384 list_del(&req->list);
385 req->zero = (gs_buf_data_avail(&port->port_write_buf) == 0);
386
387 pr_vdebug(PREFIX "%d: tx len=%d, 0x%02x 0x%02x 0x%02x ...\n",
388 port->port_num, len, *((u8 *)req->buf),
389 *((u8 *)req->buf+1), *((u8 *)req->buf+2));
390
391 /* Drop lock while we call out of driver; completions
392 * could be issued while we do so. Disconnection may
393 * happen too; maybe immediately before we queue this!
394 *
395 * NOTE that we may keep sending data for a while after
396 * the TTY closed (dev->ioport->port_tty is NULL).
397 */
398 spin_unlock(&port->port_lock);
399 status = usb_ep_queue(in, req, GFP_ATOMIC);
400 spin_lock(&port->port_lock);
401
402 if (status) {
403 pr_debug("%s: %s %s err %d\n",
404 __func__, "queue", in->name, status);
405 list_add(&req->list, pool);
406 break;
407 }
408
409 port->write_started++;
410
411 /* abort immediately after disconnect */
412 if (!port->port_usb)
413 break;
414 }
415
416 if (do_tty_wake && port->port.tty)
417 tty_wakeup(port->port.tty);
418 return status;
419 }
420
421 /*
422 * Context: caller owns port_lock, and port_usb is set
423 */
424 static unsigned gs_start_rx(struct gs_port *port)
425 /*
426 __releases(&port->port_lock)
427 __acquires(&port->port_lock)
428 */
429 {
430 struct list_head *pool = &port->read_pool;
431 struct usb_ep *out = port->port_usb->out;
432
433 while (!list_empty(pool)) {
434 struct usb_request *req;
435 int status;
436 struct tty_struct *tty;
437
438 /* no more rx if closed */
439 tty = port->port.tty;
440 if (!tty)
441 break;
442
443 if (port->read_started >= QUEUE_SIZE)
444 break;
445
446 req = list_entry(pool->next, struct usb_request, list);
447 list_del(&req->list);
448 req->length = out->maxpacket;
449
450 /* drop lock while we call out; the controller driver
451 * may need to call us back (e.g. for disconnect)
452 */
453 spin_unlock(&port->port_lock);
454 status = usb_ep_queue(out, req, GFP_ATOMIC);
455 spin_lock(&port->port_lock);
456
457 if (status) {
458 pr_debug("%s: %s %s err %d\n",
459 __func__, "queue", out->name, status);
460 list_add(&req->list, pool);
461 break;
462 }
463 port->read_started++;
464
465 /* abort immediately after disconnect */
466 if (!port->port_usb)
467 break;
468 }
469 return port->read_started;
470 }
471
472 /*
473 * RX tasklet takes data out of the RX queue and hands it up to the TTY
474 * layer until it refuses to take any more data (or is throttled back).
475 * Then it issues reads for any further data.
476 *
477 * If the RX queue becomes full enough that no usb_request is queued,
478 * the OUT endpoint may begin NAKing as soon as its FIFO fills up.
479 * So QUEUE_SIZE packets plus however many the FIFO holds (usually two)
480 * can be buffered before the TTY layer's buffers (currently 64 KB).
481 */
482 static void gs_rx_push(unsigned long _port)
483 {
484 struct gs_port *port = (void *)_port;
485 struct tty_struct *tty;
486 struct list_head *queue = &port->read_queue;
487 bool disconnect = false;
488 bool do_push = false;
489
490 /* hand any queued data to the tty */
491 spin_lock_irq(&port->port_lock);
492 tty = port->port.tty;
493 while (!list_empty(queue)) {
494 struct usb_request *req;
495
496 req = list_first_entry(queue, struct usb_request, list);
497
498 /* discard data if tty was closed */
499 if (!tty)
500 goto recycle;
501
502 /* leave data queued if tty was rx throttled */
503 if (test_bit(TTY_THROTTLED, &tty->flags))
504 break;
505
506 switch (req->status) {
507 case -ESHUTDOWN:
508 disconnect = true;
509 pr_vdebug(PREFIX "%d: shutdown\n", port->port_num);
510 break;
511
512 default:
513 /* presumably a transient fault */
514 pr_warning(PREFIX "%d: unexpected RX status %d\n",
515 port->port_num, req->status);
516 /* FALLTHROUGH */
517 case 0:
518 /* normal completion */
519 break;
520 }
521
522 /* push data to (open) tty */
523 if (req->actual) {
524 char *packet = req->buf;
525 unsigned size = req->actual;
526 unsigned n;
527 int count;
528
529 /* we may have pushed part of this packet already... */
530 n = port->n_read;
531 if (n) {
532 packet += n;
533 size -= n;
534 }
535
536 count = tty_insert_flip_string(tty, packet, size);
537 if (count)
538 do_push = true;
539 if (count != size) {
540 /* stop pushing; TTY layer can't handle more */
541 port->n_read += count;
542 pr_vdebug(PREFIX "%d: rx block %d/%d\n",
543 port->port_num,
544 count, req->actual);
545 break;
546 }
547 port->n_read = 0;
548 }
549 recycle:
550 list_move(&req->list, &port->read_pool);
551 port->read_started--;
552 }
553
554 /* Push from tty to ldisc; without low_latency set this is handled by
555 * a workqueue, so we won't get callbacks and can hold port_lock
556 */
557 if (tty && do_push)
558 tty_flip_buffer_push(tty);
559
560
561 /* We want our data queue to become empty ASAP, keeping data
562 * in the tty and ldisc (not here). If we couldn't push any
563 * this time around, there may be trouble unless there's an
564 * implicit tty_unthrottle() call on its way...
565 *
566 * REVISIT we should probably add a timer to keep the tasklet
567 * from starving ... but it's not clear that case ever happens.
568 */
569 if (!list_empty(queue) && tty) {
570 if (!test_bit(TTY_THROTTLED, &tty->flags)) {
571 if (do_push)
572 tasklet_schedule(&port->push);
573 else
574 pr_warning(PREFIX "%d: RX not scheduled?\n",
575 port->port_num);
576 }
577 }
578
579 /* If we're still connected, refill the USB RX queue. */
580 if (!disconnect && port->port_usb)
581 gs_start_rx(port);
582
583 spin_unlock_irq(&port->port_lock);
584 }
585
586 static void gs_read_complete(struct usb_ep *ep, struct usb_request *req)
587 {
588 struct gs_port *port = ep->driver_data;
589
590 /* Queue all received data until the tty layer is ready for it. */
591 spin_lock(&port->port_lock);
592 list_add_tail(&req->list, &port->read_queue);
593 tasklet_schedule(&port->push);
594 spin_unlock(&port->port_lock);
595 }
596
597 static void gs_write_complete(struct usb_ep *ep, struct usb_request *req)
598 {
599 struct gs_port *port = ep->driver_data;
600
601 spin_lock(&port->port_lock);
602 list_add(&req->list, &port->write_pool);
603 port->write_started--;
604
605 switch (req->status) {
606 default:
607 /* presumably a transient fault */
608 pr_warning("%s: unexpected %s status %d\n",
609 __func__, ep->name, req->status);
610 /* FALL THROUGH */
611 case 0:
612 /* normal completion */
613 gs_start_tx(port);
614 break;
615
616 case -ESHUTDOWN:
617 /* disconnect */
618 pr_vdebug("%s: %s shutdown\n", __func__, ep->name);
619 break;
620 }
621
622 spin_unlock(&port->port_lock);
623 }
624
625 static void gs_free_requests(struct usb_ep *ep, struct list_head *head,
626 int *allocated)
627 {
628 struct usb_request *req;
629
630 while (!list_empty(head)) {
631 req = list_entry(head->next, struct usb_request, list);
632 list_del(&req->list);
633 gs_free_req(ep, req);
634 if (allocated)
635 (*allocated)--;
636 }
637 }
638
639 static int gs_alloc_requests(struct usb_ep *ep, struct list_head *head,
640 void (*fn)(struct usb_ep *, struct usb_request *),
641 int *allocated)
642 {
643 int i;
644 struct usb_request *req;
645 int n = allocated ? QUEUE_SIZE - *allocated : QUEUE_SIZE;
646
647 /* Pre-allocate up to QUEUE_SIZE transfers, but if we can't
648 * do quite that many this time, don't fail ... we just won't
649 * be as speedy as we might otherwise be.
650 */
651 for (i = 0; i < n; i++) {
652 req = gs_alloc_req(ep, ep->maxpacket, GFP_ATOMIC);
653 if (!req)
654 return list_empty(head) ? -ENOMEM : 0;
655 req->complete = fn;
656 list_add_tail(&req->list, head);
657 if (allocated)
658 (*allocated)++;
659 }
660 return 0;
661 }
662
663 /**
664 * gs_start_io - start USB I/O streams
665 * @dev: encapsulates endpoints to use
666 * Context: holding port_lock; port_tty and port_usb are non-null
667 *
668 * We only start I/O when something is connected to both sides of
669 * this port. If nothing is listening on the host side, we may
670 * be pointlessly filling up our TX buffers and FIFO.
671 */
672 static int gs_start_io(struct gs_port *port)
673 {
674 struct list_head *head = &port->read_pool;
675 struct usb_ep *ep = port->port_usb->out;
676 int status;
677 unsigned started;
678
679 /* Allocate RX and TX I/O buffers. We can't easily do this much
680 * earlier (with GFP_KERNEL) because the requests are coupled to
681 * endpoints, as are the packet sizes we'll be using. Different
682 * configurations may use different endpoints with a given port;
683 * and high speed vs full speed changes packet sizes too.
684 */
685 status = gs_alloc_requests(ep, head, gs_read_complete,
686 &port->read_allocated);
687 if (status)
688 return status;
689
690 status = gs_alloc_requests(port->port_usb->in, &port->write_pool,
691 gs_write_complete, &port->write_allocated);
692 if (status) {
693 gs_free_requests(ep, head, &port->read_allocated);
694 return status;
695 }
696
697 /* queue read requests */
698 port->n_read = 0;
699 started = gs_start_rx(port);
700
701 /* unblock any pending writes into our circular buffer */
702 if (started) {
703 tty_wakeup(port->port.tty);
704 } else {
705 gs_free_requests(ep, head, &port->read_allocated);
706 gs_free_requests(port->port_usb->in, &port->write_pool,
707 &port->write_allocated);
708 status = -EIO;
709 }
710
711 return status;
712 }
713
714 /*-------------------------------------------------------------------------*/
715
716 /* TTY Driver */
717
718 /*
719 * gs_open sets up the link between a gs_port and its associated TTY.
720 * That link is broken *only* by TTY close(), and all driver methods
721 * know that.
722 */
723 static int gs_open(struct tty_struct *tty, struct file *file)
724 {
725 int port_num = tty->index;
726 struct gs_port *port;
727 int status;
728
729 do {
730 mutex_lock(&ports[port_num].lock);
731 port = ports[port_num].port;
732 if (!port)
733 status = -ENODEV;
734 else {
735 spin_lock_irq(&port->port_lock);
736
737 /* already open? Great. */
738 if (port->port.count) {
739 status = 0;
740 port->port.count++;
741
742 /* currently opening/closing? wait ... */
743 } else if (port->openclose) {
744 status = -EBUSY;
745
746 /* ... else we do the work */
747 } else {
748 status = -EAGAIN;
749 port->openclose = true;
750 }
751 spin_unlock_irq(&port->port_lock);
752 }
753 mutex_unlock(&ports[port_num].lock);
754
755 switch (status) {
756 default:
757 /* fully handled */
758 return status;
759 case -EAGAIN:
760 /* must do the work */
761 break;
762 case -EBUSY:
763 /* wait for EAGAIN task to finish */
764 msleep(1);
765 /* REVISIT could have a waitchannel here, if
766 * concurrent open performance is important
767 */
768 break;
769 }
770 } while (status != -EAGAIN);
771
772 /* Do the "real open" */
773 spin_lock_irq(&port->port_lock);
774
775 /* allocate circular buffer on first open */
776 if (port->port_write_buf.buf_buf == NULL) {
777
778 spin_unlock_irq(&port->port_lock);
779 status = gs_buf_alloc(&port->port_write_buf, WRITE_BUF_SIZE);
780 spin_lock_irq(&port->port_lock);
781
782 if (status) {
783 pr_debug("gs_open: ttyGS%d (%p,%p) no buffer\n",
784 port->port_num, tty, file);
785 port->openclose = false;
786 goto exit_unlock_port;
787 }
788 }
789
790 /* REVISIT if REMOVED (ports[].port NULL), abort the open
791 * to let rmmod work faster (but this way isn't wrong).
792 */
793
794 /* REVISIT maybe wait for "carrier detect" */
795
796 tty->driver_data = port;
797 port->port.tty = tty;
798
799 port->port.count = 1;
800 port->openclose = false;
801
802 /* if connected, start the I/O stream */
803 if (port->port_usb) {
804 struct gserial *gser = port->port_usb;
805
806 pr_debug("gs_open: start ttyGS%d\n", port->port_num);
807 gs_start_io(port);
808
809 if (gser->connect)
810 gser->connect(gser);
811 }
812
813 pr_debug("gs_open: ttyGS%d (%p,%p)\n", port->port_num, tty, file);
814
815 status = 0;
816
817 exit_unlock_port:
818 spin_unlock_irq(&port->port_lock);
819 return status;
820 }
821
822 static int gs_writes_finished(struct gs_port *p)
823 {
824 int cond;
825
826 /* return true on disconnect or empty buffer */
827 spin_lock_irq(&p->port_lock);
828 cond = (p->port_usb == NULL) || !gs_buf_data_avail(&p->port_write_buf);
829 spin_unlock_irq(&p->port_lock);
830
831 return cond;
832 }
833
834 static void gs_close(struct tty_struct *tty, struct file *file)
835 {
836 struct gs_port *port = tty->driver_data;
837 struct gserial *gser;
838
839 spin_lock_irq(&port->port_lock);
840
841 if (port->port.count != 1) {
842 if (port->port.count == 0)
843 WARN_ON(1);
844 else
845 --port->port.count;
846 goto exit;
847 }
848
849 pr_debug("gs_close: ttyGS%d (%p,%p) ...\n", port->port_num, tty, file);
850
851 /* mark port as closing but in use; we can drop port lock
852 * and sleep if necessary
853 */
854 port->openclose = true;
855 port->port.count = 0;
856
857 gser = port->port_usb;
858 if (gser && gser->disconnect)
859 gser->disconnect(gser);
860
861 /* wait for circular write buffer to drain, disconnect, or at
862 * most GS_CLOSE_TIMEOUT seconds; then discard the rest
863 */
864 if (gs_buf_data_avail(&port->port_write_buf) > 0 && gser) {
865 spin_unlock_irq(&port->port_lock);
866 wait_event_interruptible_timeout(port->drain_wait,
867 gs_writes_finished(port),
868 GS_CLOSE_TIMEOUT * HZ);
869 spin_lock_irq(&port->port_lock);
870 gser = port->port_usb;
871 }
872
873 /* Iff we're disconnected, there can be no I/O in flight so it's
874 * ok to free the circular buffer; else just scrub it. And don't
875 * let the push tasklet fire again until we're re-opened.
876 */
877 if (gser == NULL)
878 gs_buf_free(&port->port_write_buf);
879 else
880 gs_buf_clear(&port->port_write_buf);
881
882 tty->driver_data = NULL;
883 port->port.tty = NULL;
884
885 port->openclose = false;
886
887 pr_debug("gs_close: ttyGS%d (%p,%p) done!\n",
888 port->port_num, tty, file);
889
890 wake_up_interruptible(&port->port.close_wait);
891 exit:
892 spin_unlock_irq(&port->port_lock);
893 }
894
895 static int gs_write(struct tty_struct *tty, const unsigned char *buf, int count)
896 {
897 struct gs_port *port = tty->driver_data;
898 unsigned long flags;
899 int status;
900
901 pr_vdebug("gs_write: ttyGS%d (%p) writing %d bytes\n",
902 port->port_num, tty, count);
903
904 spin_lock_irqsave(&port->port_lock, flags);
905 if (count)
906 count = gs_buf_put(&port->port_write_buf, buf, count);
907 /* treat count == 0 as flush_chars() */
908 if (port->port_usb)
909 status = gs_start_tx(port);
910 spin_unlock_irqrestore(&port->port_lock, flags);
911
912 return count;
913 }
914
915 static int gs_put_char(struct tty_struct *tty, unsigned char ch)
916 {
917 struct gs_port *port = tty->driver_data;
918 unsigned long flags;
919 int status;
920
921 pr_vdebug("gs_put_char: (%d,%p) char=0x%x, called from %pf\n",
922 port->port_num, tty, ch, __builtin_return_address(0));
923
924 spin_lock_irqsave(&port->port_lock, flags);
925 status = gs_buf_put(&port->port_write_buf, &ch, 1);
926 spin_unlock_irqrestore(&port->port_lock, flags);
927
928 return status;
929 }
930
931 static void gs_flush_chars(struct tty_struct *tty)
932 {
933 struct gs_port *port = tty->driver_data;
934 unsigned long flags;
935
936 pr_vdebug("gs_flush_chars: (%d,%p)\n", port->port_num, tty);
937
938 spin_lock_irqsave(&port->port_lock, flags);
939 if (port->port_usb)
940 gs_start_tx(port);
941 spin_unlock_irqrestore(&port->port_lock, flags);
942 }
943
944 static int gs_write_room(struct tty_struct *tty)
945 {
946 struct gs_port *port = tty->driver_data;
947 unsigned long flags;
948 int room = 0;
949
950 spin_lock_irqsave(&port->port_lock, flags);
951 if (port->port_usb)
952 room = gs_buf_space_avail(&port->port_write_buf);
953 spin_unlock_irqrestore(&port->port_lock, flags);
954
955 pr_vdebug("gs_write_room: (%d,%p) room=%d\n",
956 port->port_num, tty, room);
957
958 return room;
959 }
960
961 static int gs_chars_in_buffer(struct tty_struct *tty)
962 {
963 struct gs_port *port = tty->driver_data;
964 unsigned long flags;
965 int chars = 0;
966
967 spin_lock_irqsave(&port->port_lock, flags);
968 chars = gs_buf_data_avail(&port->port_write_buf);
969 spin_unlock_irqrestore(&port->port_lock, flags);
970
971 pr_vdebug("gs_chars_in_buffer: (%d,%p) chars=%d\n",
972 port->port_num, tty, chars);
973
974 return chars;
975 }
976
977 /* undo side effects of setting TTY_THROTTLED */
978 static void gs_unthrottle(struct tty_struct *tty)
979 {
980 struct gs_port *port = tty->driver_data;
981 unsigned long flags;
982
983 spin_lock_irqsave(&port->port_lock, flags);
984 if (port->port_usb) {
985 /* Kickstart read queue processing. We don't do xon/xoff,
986 * rts/cts, or other handshaking with the host, but if the
987 * read queue backs up enough we'll be NAKing OUT packets.
988 */
989 tasklet_schedule(&port->push);
990 pr_vdebug(PREFIX "%d: unthrottle\n", port->port_num);
991 }
992 spin_unlock_irqrestore(&port->port_lock, flags);
993 }
994
995 static int gs_break_ctl(struct tty_struct *tty, int duration)
996 {
997 struct gs_port *port = tty->driver_data;
998 int status = 0;
999 struct gserial *gser;
1000
1001 pr_vdebug("gs_break_ctl: ttyGS%d, send break (%d) \n",
1002 port->port_num, duration);
1003
1004 spin_lock_irq(&port->port_lock);
1005 gser = port->port_usb;
1006 if (gser && gser->send_break)
1007 status = gser->send_break(gser, duration);
1008 spin_unlock_irq(&port->port_lock);
1009
1010 return status;
1011 }
1012
1013 static const struct tty_operations gs_tty_ops = {
1014 .open = gs_open,
1015 .close = gs_close,
1016 .write = gs_write,
1017 .put_char = gs_put_char,
1018 .flush_chars = gs_flush_chars,
1019 .write_room = gs_write_room,
1020 .chars_in_buffer = gs_chars_in_buffer,
1021 .unthrottle = gs_unthrottle,
1022 .break_ctl = gs_break_ctl,
1023 };
1024
1025 /*-------------------------------------------------------------------------*/
1026
1027 static struct tty_driver *gs_tty_driver;
1028
1029 static int
1030 gs_port_alloc(unsigned port_num, struct usb_cdc_line_coding *coding)
1031 {
1032 struct gs_port *port;
1033
1034 port = kzalloc(sizeof(struct gs_port), GFP_KERNEL);
1035 if (port == NULL)
1036 return -ENOMEM;
1037
1038 tty_port_init(&port->port);
1039 spin_lock_init(&port->port_lock);
1040 init_waitqueue_head(&port->drain_wait);
1041
1042 tasklet_init(&port->push, gs_rx_push, (unsigned long) port);
1043
1044 INIT_LIST_HEAD(&port->read_pool);
1045 INIT_LIST_HEAD(&port->read_queue);
1046 INIT_LIST_HEAD(&port->write_pool);
1047
1048 port->port_num = port_num;
1049 port->port_line_coding = *coding;
1050
1051 ports[port_num].port = port;
1052
1053 return 0;
1054 }
1055
1056 /**
1057 * gserial_setup - initialize TTY driver for one or more ports
1058 * @g: gadget to associate with these ports
1059 * @count: how many ports to support
1060 * Context: may sleep
1061 *
1062 * The TTY stack needs to know in advance how many devices it should
1063 * plan to manage. Use this call to set up the ports you will be
1064 * exporting through USB. Later, connect them to functions based
1065 * on what configuration is activated by the USB host; and disconnect
1066 * them as appropriate.
1067 *
1068 * An example would be a two-configuration device in which both
1069 * configurations expose port 0, but through different functions.
1070 * One configuration could even expose port 1 while the other
1071 * one doesn't.
1072 *
1073 * Returns negative errno or zero.
1074 */
1075 int gserial_setup(struct usb_gadget *g, unsigned count)
1076 {
1077 unsigned i;
1078 struct usb_cdc_line_coding coding;
1079 int status;
1080
1081 if (count == 0 || count > N_PORTS)
1082 return -EINVAL;
1083
1084 gs_tty_driver = alloc_tty_driver(count);
1085 if (!gs_tty_driver)
1086 return -ENOMEM;
1087
1088 gs_tty_driver->driver_name = "g_serial";
1089 gs_tty_driver->name = PREFIX;
1090 /* uses dynamically assigned dev_t values */
1091
1092 gs_tty_driver->type = TTY_DRIVER_TYPE_SERIAL;
1093 gs_tty_driver->subtype = SERIAL_TYPE_NORMAL;
1094 gs_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1095 gs_tty_driver->init_termios = tty_std_termios;
1096
1097 /* 9600-8-N-1 ... matches defaults expected by "usbser.sys" on
1098 * MS-Windows. Otherwise, most of these flags shouldn't affect
1099 * anything unless we were to actually hook up to a serial line.
1100 */
1101 gs_tty_driver->init_termios.c_cflag =
1102 B9600 | CS8 | CREAD | HUPCL | CLOCAL;
1103 gs_tty_driver->init_termios.c_ispeed = 9600;
1104 gs_tty_driver->init_termios.c_ospeed = 9600;
1105
1106 coding.dwDTERate = cpu_to_le32(9600);
1107 coding.bCharFormat = 8;
1108 coding.bParityType = USB_CDC_NO_PARITY;
1109 coding.bDataBits = USB_CDC_1_STOP_BITS;
1110
1111 tty_set_operations(gs_tty_driver, &gs_tty_ops);
1112
1113 /* make devices be openable */
1114 for (i = 0; i < count; i++) {
1115 mutex_init(&ports[i].lock);
1116 status = gs_port_alloc(i, &coding);
1117 if (status) {
1118 count = i;
1119 goto fail;
1120 }
1121 }
1122 n_ports = count;
1123
1124 /* export the driver ... */
1125 status = tty_register_driver(gs_tty_driver);
1126 if (status) {
1127 pr_err("%s: cannot register, err %d\n",
1128 __func__, status);
1129 goto fail;
1130 }
1131
1132 /* ... and sysfs class devices, so mdev/udev make /dev/ttyGS* */
1133 for (i = 0; i < count; i++) {
1134 struct device *tty_dev;
1135
1136 tty_dev = tty_register_device(gs_tty_driver, i, &g->dev);
1137 if (IS_ERR(tty_dev))
1138 pr_warning("%s: no classdev for port %d, err %ld\n",
1139 __func__, i, PTR_ERR(tty_dev));
1140 }
1141
1142 pr_debug("%s: registered %d ttyGS* device%s\n", __func__,
1143 count, (count == 1) ? "" : "s");
1144
1145 return status;
1146 fail:
1147 while (count--)
1148 kfree(ports[count].port);
1149 put_tty_driver(gs_tty_driver);
1150 gs_tty_driver = NULL;
1151 return status;
1152 }
1153
1154 static int gs_closed(struct gs_port *port)
1155 {
1156 int cond;
1157
1158 spin_lock_irq(&port->port_lock);
1159 cond = (port->port.count == 0) && !port->openclose;
1160 spin_unlock_irq(&port->port_lock);
1161 return cond;
1162 }
1163
1164 /**
1165 * gserial_cleanup - remove TTY-over-USB driver and devices
1166 * Context: may sleep
1167 *
1168 * This is called to free all resources allocated by @gserial_setup().
1169 * Accordingly, it may need to wait until some open /dev/ files have
1170 * closed.
1171 *
1172 * The caller must have issued @gserial_disconnect() for any ports
1173 * that had previously been connected, so that there is never any
1174 * I/O pending when it's called.
1175 */
1176 void gserial_cleanup(void)
1177 {
1178 unsigned i;
1179 struct gs_port *port;
1180
1181 if (!gs_tty_driver)
1182 return;
1183
1184 /* start sysfs and /dev/ttyGS* node removal */
1185 for (i = 0; i < n_ports; i++)
1186 tty_unregister_device(gs_tty_driver, i);
1187
1188 for (i = 0; i < n_ports; i++) {
1189 /* prevent new opens */
1190 mutex_lock(&ports[i].lock);
1191 port = ports[i].port;
1192 ports[i].port = NULL;
1193 mutex_unlock(&ports[i].lock);
1194
1195 tasklet_kill(&port->push);
1196
1197 /* wait for old opens to finish */
1198 wait_event(port->port.close_wait, gs_closed(port));
1199
1200 WARN_ON(port->port_usb != NULL);
1201
1202 kfree(port);
1203 }
1204 n_ports = 0;
1205
1206 tty_unregister_driver(gs_tty_driver);
1207 put_tty_driver(gs_tty_driver);
1208 gs_tty_driver = NULL;
1209
1210 pr_debug("%s: cleaned up ttyGS* support\n", __func__);
1211 }
1212
1213 /**
1214 * gserial_connect - notify TTY I/O glue that USB link is active
1215 * @gser: the function, set up with endpoints and descriptors
1216 * @port_num: which port is active
1217 * Context: any (usually from irq)
1218 *
1219 * This is called activate endpoints and let the TTY layer know that
1220 * the connection is active ... not unlike "carrier detect". It won't
1221 * necessarily start I/O queues; unless the TTY is held open by any
1222 * task, there would be no point. However, the endpoints will be
1223 * activated so the USB host can perform I/O, subject to basic USB
1224 * hardware flow control.
1225 *
1226 * Caller needs to have set up the endpoints and USB function in @dev
1227 * before calling this, as well as the appropriate (speed-specific)
1228 * endpoint descriptors, and also have set up the TTY driver by calling
1229 * @gserial_setup().
1230 *
1231 * Returns negative errno or zero.
1232 * On success, ep->driver_data will be overwritten.
1233 */
1234 int gserial_connect(struct gserial *gser, u8 port_num)
1235 {
1236 struct gs_port *port;
1237 unsigned long flags;
1238 int status;
1239
1240 if (!gs_tty_driver || port_num >= n_ports)
1241 return -ENXIO;
1242
1243 /* we "know" gserial_cleanup() hasn't been called */
1244 port = ports[port_num].port;
1245
1246 /* activate the endpoints */
1247 status = usb_ep_enable(gser->in);
1248 if (status < 0)
1249 return status;
1250 gser->in->driver_data = port;
1251
1252 status = usb_ep_enable(gser->out);
1253 if (status < 0)
1254 goto fail_out;
1255 gser->out->driver_data = port;
1256
1257 /* then tell the tty glue that I/O can work */
1258 spin_lock_irqsave(&port->port_lock, flags);
1259 gser->ioport = port;
1260 port->port_usb = gser;
1261
1262 /* REVISIT unclear how best to handle this state...
1263 * we don't really couple it with the Linux TTY.
1264 */
1265 gser->port_line_coding = port->port_line_coding;
1266
1267 /* REVISIT if waiting on "carrier detect", signal. */
1268
1269 /* if it's already open, start I/O ... and notify the serial
1270 * protocol about open/close status (connect/disconnect).
1271 */
1272 if (port->port.count) {
1273 pr_debug("gserial_connect: start ttyGS%d\n", port->port_num);
1274 gs_start_io(port);
1275 if (gser->connect)
1276 gser->connect(gser);
1277 } else {
1278 if (gser->disconnect)
1279 gser->disconnect(gser);
1280 }
1281
1282 spin_unlock_irqrestore(&port->port_lock, flags);
1283
1284 return status;
1285
1286 fail_out:
1287 usb_ep_disable(gser->in);
1288 gser->in->driver_data = NULL;
1289 return status;
1290 }
1291
1292 /**
1293 * gserial_disconnect - notify TTY I/O glue that USB link is inactive
1294 * @gser: the function, on which gserial_connect() was called
1295 * Context: any (usually from irq)
1296 *
1297 * This is called to deactivate endpoints and let the TTY layer know
1298 * that the connection went inactive ... not unlike "hangup".
1299 *
1300 * On return, the state is as if gserial_connect() had never been called;
1301 * there is no active USB I/O on these endpoints.
1302 */
1303 void gserial_disconnect(struct gserial *gser)
1304 {
1305 struct gs_port *port = gser->ioport;
1306 unsigned long flags;
1307
1308 if (!port)
1309 return;
1310
1311 /* tell the TTY glue not to do I/O here any more */
1312 spin_lock_irqsave(&port->port_lock, flags);
1313
1314 /* REVISIT as above: how best to track this? */
1315 port->port_line_coding = gser->port_line_coding;
1316
1317 port->port_usb = NULL;
1318 gser->ioport = NULL;
1319 if (port->port.count > 0 || port->openclose) {
1320 wake_up_interruptible(&port->drain_wait);
1321 if (port->port.tty)
1322 tty_hangup(port->port.tty);
1323 }
1324 spin_unlock_irqrestore(&port->port_lock, flags);
1325
1326 /* disable endpoints, aborting down any active I/O */
1327 usb_ep_disable(gser->out);
1328 gser->out->driver_data = NULL;
1329
1330 usb_ep_disable(gser->in);
1331 gser->in->driver_data = NULL;
1332
1333 /* finally, free any unused/unusable I/O buffers */
1334 spin_lock_irqsave(&port->port_lock, flags);
1335 if (port->port.count == 0 && !port->openclose)
1336 gs_buf_free(&port->port_write_buf);
1337 gs_free_requests(gser->out, &port->read_pool, NULL);
1338 gs_free_requests(gser->out, &port->read_queue, NULL);
1339 gs_free_requests(gser->in, &port->write_pool, NULL);
1340
1341 port->read_allocated = port->read_started =
1342 port->write_allocated = port->write_started = 0;
1343
1344 spin_unlock_irqrestore(&port->port_lock, flags);
1345 }
This page took 0.058629 seconds and 6 git commands to generate.