Merge remote-tracking branch 'fuse/for-next'
[deliverable/linux.git] / drivers / usb / gadget / udc / mv_udc_core.c
1 /*
2 * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
3 * Author: Chao Xie <chao.xie@marvell.com>
4 * Neil Zhang <zhangwm@marvell.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation; either version 2 of the License, or (at your
9 * option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dmapool.h>
16 #include <linux/kernel.h>
17 #include <linux/delay.h>
18 #include <linux/ioport.h>
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/timer.h>
24 #include <linux/list.h>
25 #include <linux/interrupt.h>
26 #include <linux/moduleparam.h>
27 #include <linux/device.h>
28 #include <linux/usb/ch9.h>
29 #include <linux/usb/gadget.h>
30 #include <linux/usb/otg.h>
31 #include <linux/pm.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/platform_device.h>
35 #include <linux/clk.h>
36 #include <linux/platform_data/mv_usb.h>
37 #include <asm/unaligned.h>
38
39 #include "mv_udc.h"
40
41 #define DRIVER_DESC "Marvell PXA USB Device Controller driver"
42 #define DRIVER_VERSION "8 Nov 2010"
43
44 #define ep_dir(ep) (((ep)->ep_num == 0) ? \
45 ((ep)->udc->ep0_dir) : ((ep)->direction))
46
47 /* timeout value -- usec */
48 #define RESET_TIMEOUT 10000
49 #define FLUSH_TIMEOUT 10000
50 #define EPSTATUS_TIMEOUT 10000
51 #define PRIME_TIMEOUT 10000
52 #define READSAFE_TIMEOUT 1000
53
54 #define LOOPS_USEC_SHIFT 1
55 #define LOOPS_USEC (1 << LOOPS_USEC_SHIFT)
56 #define LOOPS(timeout) ((timeout) >> LOOPS_USEC_SHIFT)
57
58 static DECLARE_COMPLETION(release_done);
59
60 static const char driver_name[] = "mv_udc";
61 static const char driver_desc[] = DRIVER_DESC;
62
63 static void nuke(struct mv_ep *ep, int status);
64 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
65
66 /* for endpoint 0 operations */
67 static const struct usb_endpoint_descriptor mv_ep0_desc = {
68 .bLength = USB_DT_ENDPOINT_SIZE,
69 .bDescriptorType = USB_DT_ENDPOINT,
70 .bEndpointAddress = 0,
71 .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
72 .wMaxPacketSize = EP0_MAX_PKT_SIZE,
73 };
74
75 static void ep0_reset(struct mv_udc *udc)
76 {
77 struct mv_ep *ep;
78 u32 epctrlx;
79 int i = 0;
80
81 /* ep0 in and out */
82 for (i = 0; i < 2; i++) {
83 ep = &udc->eps[i];
84 ep->udc = udc;
85
86 /* ep0 dQH */
87 ep->dqh = &udc->ep_dqh[i];
88
89 /* configure ep0 endpoint capabilities in dQH */
90 ep->dqh->max_packet_length =
91 (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
92 | EP_QUEUE_HEAD_IOS;
93
94 ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
95
96 epctrlx = readl(&udc->op_regs->epctrlx[0]);
97 if (i) { /* TX */
98 epctrlx |= EPCTRL_TX_ENABLE
99 | (USB_ENDPOINT_XFER_CONTROL
100 << EPCTRL_TX_EP_TYPE_SHIFT);
101
102 } else { /* RX */
103 epctrlx |= EPCTRL_RX_ENABLE
104 | (USB_ENDPOINT_XFER_CONTROL
105 << EPCTRL_RX_EP_TYPE_SHIFT);
106 }
107
108 writel(epctrlx, &udc->op_regs->epctrlx[0]);
109 }
110 }
111
112 /* protocol ep0 stall, will automatically be cleared on new transaction */
113 static void ep0_stall(struct mv_udc *udc)
114 {
115 u32 epctrlx;
116
117 /* set TX and RX to stall */
118 epctrlx = readl(&udc->op_regs->epctrlx[0]);
119 epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
120 writel(epctrlx, &udc->op_regs->epctrlx[0]);
121
122 /* update ep0 state */
123 udc->ep0_state = WAIT_FOR_SETUP;
124 udc->ep0_dir = EP_DIR_OUT;
125 }
126
127 static int process_ep_req(struct mv_udc *udc, int index,
128 struct mv_req *curr_req)
129 {
130 struct mv_dtd *curr_dtd;
131 struct mv_dqh *curr_dqh;
132 int actual, remaining_length;
133 int i, direction;
134 int retval = 0;
135 u32 errors;
136 u32 bit_pos;
137
138 curr_dqh = &udc->ep_dqh[index];
139 direction = index % 2;
140
141 curr_dtd = curr_req->head;
142 actual = curr_req->req.length;
143
144 for (i = 0; i < curr_req->dtd_count; i++) {
145 if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
146 dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
147 udc->eps[index].name);
148 return 1;
149 }
150
151 errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
152 if (!errors) {
153 remaining_length =
154 (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
155 >> DTD_LENGTH_BIT_POS;
156 actual -= remaining_length;
157
158 if (remaining_length) {
159 if (direction) {
160 dev_dbg(&udc->dev->dev,
161 "TX dTD remains data\n");
162 retval = -EPROTO;
163 break;
164 } else
165 break;
166 }
167 } else {
168 dev_info(&udc->dev->dev,
169 "complete_tr error: ep=%d %s: error = 0x%x\n",
170 index >> 1, direction ? "SEND" : "RECV",
171 errors);
172 if (errors & DTD_STATUS_HALTED) {
173 /* Clear the errors and Halt condition */
174 curr_dqh->size_ioc_int_sts &= ~errors;
175 retval = -EPIPE;
176 } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
177 retval = -EPROTO;
178 } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
179 retval = -EILSEQ;
180 }
181 }
182 if (i != curr_req->dtd_count - 1)
183 curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
184 }
185 if (retval)
186 return retval;
187
188 if (direction == EP_DIR_OUT)
189 bit_pos = 1 << curr_req->ep->ep_num;
190 else
191 bit_pos = 1 << (16 + curr_req->ep->ep_num);
192
193 while ((curr_dqh->curr_dtd_ptr == curr_dtd->td_dma)) {
194 if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
195 while (readl(&udc->op_regs->epstatus) & bit_pos)
196 udelay(1);
197 break;
198 }
199 udelay(1);
200 }
201
202 curr_req->req.actual = actual;
203
204 return 0;
205 }
206
207 /*
208 * done() - retire a request; caller blocked irqs
209 * @status : request status to be set, only works when
210 * request is still in progress.
211 */
212 static void done(struct mv_ep *ep, struct mv_req *req, int status)
213 __releases(&ep->udc->lock)
214 __acquires(&ep->udc->lock)
215 {
216 struct mv_udc *udc = NULL;
217 unsigned char stopped = ep->stopped;
218 struct mv_dtd *curr_td, *next_td;
219 int j;
220
221 udc = (struct mv_udc *)ep->udc;
222 /* Removed the req from fsl_ep->queue */
223 list_del_init(&req->queue);
224
225 /* req.status should be set as -EINPROGRESS in ep_queue() */
226 if (req->req.status == -EINPROGRESS)
227 req->req.status = status;
228 else
229 status = req->req.status;
230
231 /* Free dtd for the request */
232 next_td = req->head;
233 for (j = 0; j < req->dtd_count; j++) {
234 curr_td = next_td;
235 if (j != req->dtd_count - 1)
236 next_td = curr_td->next_dtd_virt;
237 dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
238 }
239
240 usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
241
242 if (status && (status != -ESHUTDOWN))
243 dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
244 ep->ep.name, &req->req, status,
245 req->req.actual, req->req.length);
246
247 ep->stopped = 1;
248
249 spin_unlock(&ep->udc->lock);
250
251 usb_gadget_giveback_request(&ep->ep, &req->req);
252
253 spin_lock(&ep->udc->lock);
254 ep->stopped = stopped;
255 }
256
257 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
258 {
259 struct mv_udc *udc;
260 struct mv_dqh *dqh;
261 u32 bit_pos, direction;
262 u32 usbcmd, epstatus;
263 unsigned int loops;
264 int retval = 0;
265
266 udc = ep->udc;
267 direction = ep_dir(ep);
268 dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
269 bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
270
271 /* check if the pipe is empty */
272 if (!(list_empty(&ep->queue))) {
273 struct mv_req *lastreq;
274 lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
275 lastreq->tail->dtd_next =
276 req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
277
278 wmb();
279
280 if (readl(&udc->op_regs->epprime) & bit_pos)
281 goto done;
282
283 loops = LOOPS(READSAFE_TIMEOUT);
284 while (1) {
285 /* start with setting the semaphores */
286 usbcmd = readl(&udc->op_regs->usbcmd);
287 usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
288 writel(usbcmd, &udc->op_regs->usbcmd);
289
290 /* read the endpoint status */
291 epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
292
293 /*
294 * Reread the ATDTW semaphore bit to check if it is
295 * cleared. When hardware see a hazard, it will clear
296 * the bit or else we remain set to 1 and we can
297 * proceed with priming of endpoint if not already
298 * primed.
299 */
300 if (readl(&udc->op_regs->usbcmd)
301 & USBCMD_ATDTW_TRIPWIRE_SET)
302 break;
303
304 loops--;
305 if (loops == 0) {
306 dev_err(&udc->dev->dev,
307 "Timeout for ATDTW_TRIPWIRE...\n");
308 retval = -ETIME;
309 goto done;
310 }
311 udelay(LOOPS_USEC);
312 }
313
314 /* Clear the semaphore */
315 usbcmd = readl(&udc->op_regs->usbcmd);
316 usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
317 writel(usbcmd, &udc->op_regs->usbcmd);
318
319 if (epstatus)
320 goto done;
321 }
322
323 /* Write dQH next pointer and terminate bit to 0 */
324 dqh->next_dtd_ptr = req->head->td_dma
325 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
326
327 /* clear active and halt bit, in case set from a previous error */
328 dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
329
330 /* Ensure that updates to the QH will occur before priming. */
331 wmb();
332
333 /* Prime the Endpoint */
334 writel(bit_pos, &udc->op_regs->epprime);
335
336 done:
337 return retval;
338 }
339
340 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
341 dma_addr_t *dma, int *is_last)
342 {
343 struct mv_dtd *dtd;
344 struct mv_udc *udc;
345 struct mv_dqh *dqh;
346 u32 temp, mult = 0;
347
348 /* how big will this transfer be? */
349 if (usb_endpoint_xfer_isoc(req->ep->ep.desc)) {
350 dqh = req->ep->dqh;
351 mult = (dqh->max_packet_length >> EP_QUEUE_HEAD_MULT_POS)
352 & 0x3;
353 *length = min(req->req.length - req->req.actual,
354 (unsigned)(mult * req->ep->ep.maxpacket));
355 } else
356 *length = min(req->req.length - req->req.actual,
357 (unsigned)EP_MAX_LENGTH_TRANSFER);
358
359 udc = req->ep->udc;
360
361 /*
362 * Be careful that no _GFP_HIGHMEM is set,
363 * or we can not use dma_to_virt
364 */
365 dtd = dma_pool_alloc(udc->dtd_pool, GFP_ATOMIC, dma);
366 if (dtd == NULL)
367 return dtd;
368
369 dtd->td_dma = *dma;
370 /* initialize buffer page pointers */
371 temp = (u32)(req->req.dma + req->req.actual);
372 dtd->buff_ptr0 = cpu_to_le32(temp);
373 temp &= ~0xFFF;
374 dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
375 dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
376 dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
377 dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
378
379 req->req.actual += *length;
380
381 /* zlp is needed if req->req.zero is set */
382 if (req->req.zero) {
383 if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
384 *is_last = 1;
385 else
386 *is_last = 0;
387 } else if (req->req.length == req->req.actual)
388 *is_last = 1;
389 else
390 *is_last = 0;
391
392 /* Fill in the transfer size; set active bit */
393 temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
394
395 /* Enable interrupt for the last dtd of a request */
396 if (*is_last && !req->req.no_interrupt)
397 temp |= DTD_IOC;
398
399 temp |= mult << 10;
400
401 dtd->size_ioc_sts = temp;
402
403 mb();
404
405 return dtd;
406 }
407
408 /* generate dTD linked list for a request */
409 static int req_to_dtd(struct mv_req *req)
410 {
411 unsigned count;
412 int is_last, is_first = 1;
413 struct mv_dtd *dtd, *last_dtd = NULL;
414 dma_addr_t dma;
415
416 do {
417 dtd = build_dtd(req, &count, &dma, &is_last);
418 if (dtd == NULL)
419 return -ENOMEM;
420
421 if (is_first) {
422 is_first = 0;
423 req->head = dtd;
424 } else {
425 last_dtd->dtd_next = dma;
426 last_dtd->next_dtd_virt = dtd;
427 }
428 last_dtd = dtd;
429 req->dtd_count++;
430 } while (!is_last);
431
432 /* set terminate bit to 1 for the last dTD */
433 dtd->dtd_next = DTD_NEXT_TERMINATE;
434
435 req->tail = dtd;
436
437 return 0;
438 }
439
440 static int mv_ep_enable(struct usb_ep *_ep,
441 const struct usb_endpoint_descriptor *desc)
442 {
443 struct mv_udc *udc;
444 struct mv_ep *ep;
445 struct mv_dqh *dqh;
446 u16 max = 0;
447 u32 bit_pos, epctrlx, direction;
448 unsigned char zlt = 0, ios = 0, mult = 0;
449 unsigned long flags;
450
451 ep = container_of(_ep, struct mv_ep, ep);
452 udc = ep->udc;
453
454 if (!_ep || !desc
455 || desc->bDescriptorType != USB_DT_ENDPOINT)
456 return -EINVAL;
457
458 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
459 return -ESHUTDOWN;
460
461 direction = ep_dir(ep);
462 max = usb_endpoint_maxp(desc);
463
464 /*
465 * disable HW zero length termination select
466 * driver handles zero length packet through req->req.zero
467 */
468 zlt = 1;
469
470 bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
471
472 /* Check if the Endpoint is Primed */
473 if ((readl(&udc->op_regs->epprime) & bit_pos)
474 || (readl(&udc->op_regs->epstatus) & bit_pos)) {
475 dev_info(&udc->dev->dev,
476 "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
477 " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
478 (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
479 (unsigned)readl(&udc->op_regs->epprime),
480 (unsigned)readl(&udc->op_regs->epstatus),
481 (unsigned)bit_pos);
482 goto en_done;
483 }
484 /* Set the max packet length, interrupt on Setup and Mult fields */
485 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
486 case USB_ENDPOINT_XFER_BULK:
487 zlt = 1;
488 mult = 0;
489 break;
490 case USB_ENDPOINT_XFER_CONTROL:
491 ios = 1;
492 case USB_ENDPOINT_XFER_INT:
493 mult = 0;
494 break;
495 case USB_ENDPOINT_XFER_ISOC:
496 /* Calculate transactions needed for high bandwidth iso */
497 mult = (unsigned char)(1 + ((max >> 11) & 0x03));
498 max = max & 0x7ff; /* bit 0~10 */
499 /* 3 transactions at most */
500 if (mult > 3)
501 goto en_done;
502 break;
503 default:
504 goto en_done;
505 }
506
507 spin_lock_irqsave(&udc->lock, flags);
508 /* Get the endpoint queue head address */
509 dqh = ep->dqh;
510 dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
511 | (mult << EP_QUEUE_HEAD_MULT_POS)
512 | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
513 | (ios ? EP_QUEUE_HEAD_IOS : 0);
514 dqh->next_dtd_ptr = 1;
515 dqh->size_ioc_int_sts = 0;
516
517 ep->ep.maxpacket = max;
518 ep->ep.desc = desc;
519 ep->stopped = 0;
520
521 /* Enable the endpoint for Rx or Tx and set the endpoint type */
522 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
523 if (direction == EP_DIR_IN) {
524 epctrlx &= ~EPCTRL_TX_ALL_MASK;
525 epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
526 | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
527 << EPCTRL_TX_EP_TYPE_SHIFT);
528 } else {
529 epctrlx &= ~EPCTRL_RX_ALL_MASK;
530 epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
531 | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
532 << EPCTRL_RX_EP_TYPE_SHIFT);
533 }
534 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
535
536 /*
537 * Implement Guideline (GL# USB-7) The unused endpoint type must
538 * be programmed to bulk.
539 */
540 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
541 if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
542 epctrlx |= (USB_ENDPOINT_XFER_BULK
543 << EPCTRL_RX_EP_TYPE_SHIFT);
544 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
545 }
546
547 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
548 if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
549 epctrlx |= (USB_ENDPOINT_XFER_BULK
550 << EPCTRL_TX_EP_TYPE_SHIFT);
551 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
552 }
553
554 spin_unlock_irqrestore(&udc->lock, flags);
555
556 return 0;
557 en_done:
558 return -EINVAL;
559 }
560
561 static int mv_ep_disable(struct usb_ep *_ep)
562 {
563 struct mv_udc *udc;
564 struct mv_ep *ep;
565 struct mv_dqh *dqh;
566 u32 epctrlx, direction;
567 unsigned long flags;
568
569 ep = container_of(_ep, struct mv_ep, ep);
570 if ((_ep == NULL) || !ep->ep.desc)
571 return -EINVAL;
572
573 udc = ep->udc;
574
575 /* Get the endpoint queue head address */
576 dqh = ep->dqh;
577
578 spin_lock_irqsave(&udc->lock, flags);
579
580 direction = ep_dir(ep);
581
582 /* Reset the max packet length and the interrupt on Setup */
583 dqh->max_packet_length = 0;
584
585 /* Disable the endpoint for Rx or Tx and reset the endpoint type */
586 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
587 epctrlx &= ~((direction == EP_DIR_IN)
588 ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
589 : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
590 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
591
592 /* nuke all pending requests (does flush) */
593 nuke(ep, -ESHUTDOWN);
594
595 ep->ep.desc = NULL;
596 ep->stopped = 1;
597
598 spin_unlock_irqrestore(&udc->lock, flags);
599
600 return 0;
601 }
602
603 static struct usb_request *
604 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
605 {
606 struct mv_req *req = NULL;
607
608 req = kzalloc(sizeof *req, gfp_flags);
609 if (!req)
610 return NULL;
611
612 req->req.dma = DMA_ADDR_INVALID;
613 INIT_LIST_HEAD(&req->queue);
614
615 return &req->req;
616 }
617
618 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
619 {
620 struct mv_req *req = NULL;
621
622 req = container_of(_req, struct mv_req, req);
623
624 if (_req)
625 kfree(req);
626 }
627
628 static void mv_ep_fifo_flush(struct usb_ep *_ep)
629 {
630 struct mv_udc *udc;
631 u32 bit_pos, direction;
632 struct mv_ep *ep;
633 unsigned int loops;
634
635 if (!_ep)
636 return;
637
638 ep = container_of(_ep, struct mv_ep, ep);
639 if (!ep->ep.desc)
640 return;
641
642 udc = ep->udc;
643 direction = ep_dir(ep);
644
645 if (ep->ep_num == 0)
646 bit_pos = (1 << 16) | 1;
647 else if (direction == EP_DIR_OUT)
648 bit_pos = 1 << ep->ep_num;
649 else
650 bit_pos = 1 << (16 + ep->ep_num);
651
652 loops = LOOPS(EPSTATUS_TIMEOUT);
653 do {
654 unsigned int inter_loops;
655
656 if (loops == 0) {
657 dev_err(&udc->dev->dev,
658 "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
659 (unsigned)readl(&udc->op_regs->epstatus),
660 (unsigned)bit_pos);
661 return;
662 }
663 /* Write 1 to the Flush register */
664 writel(bit_pos, &udc->op_regs->epflush);
665
666 /* Wait until flushing completed */
667 inter_loops = LOOPS(FLUSH_TIMEOUT);
668 while (readl(&udc->op_regs->epflush)) {
669 /*
670 * ENDPTFLUSH bit should be cleared to indicate this
671 * operation is complete
672 */
673 if (inter_loops == 0) {
674 dev_err(&udc->dev->dev,
675 "TIMEOUT for ENDPTFLUSH=0x%x,"
676 "bit_pos=0x%x\n",
677 (unsigned)readl(&udc->op_regs->epflush),
678 (unsigned)bit_pos);
679 return;
680 }
681 inter_loops--;
682 udelay(LOOPS_USEC);
683 }
684 loops--;
685 } while (readl(&udc->op_regs->epstatus) & bit_pos);
686 }
687
688 /* queues (submits) an I/O request to an endpoint */
689 static int
690 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
691 {
692 struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
693 struct mv_req *req = container_of(_req, struct mv_req, req);
694 struct mv_udc *udc = ep->udc;
695 unsigned long flags;
696 int retval;
697
698 /* catch various bogus parameters */
699 if (!_req || !req->req.complete || !req->req.buf
700 || !list_empty(&req->queue)) {
701 dev_err(&udc->dev->dev, "%s, bad params", __func__);
702 return -EINVAL;
703 }
704 if (unlikely(!_ep || !ep->ep.desc)) {
705 dev_err(&udc->dev->dev, "%s, bad ep", __func__);
706 return -EINVAL;
707 }
708
709 udc = ep->udc;
710 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
711 return -ESHUTDOWN;
712
713 req->ep = ep;
714
715 /* map virtual address to hardware */
716 retval = usb_gadget_map_request(&udc->gadget, _req, ep_dir(ep));
717 if (retval)
718 return retval;
719
720 req->req.status = -EINPROGRESS;
721 req->req.actual = 0;
722 req->dtd_count = 0;
723
724 spin_lock_irqsave(&udc->lock, flags);
725
726 /* build dtds and push them to device queue */
727 if (!req_to_dtd(req)) {
728 retval = queue_dtd(ep, req);
729 if (retval) {
730 spin_unlock_irqrestore(&udc->lock, flags);
731 dev_err(&udc->dev->dev, "Failed to queue dtd\n");
732 goto err_unmap_dma;
733 }
734 } else {
735 spin_unlock_irqrestore(&udc->lock, flags);
736 dev_err(&udc->dev->dev, "Failed to dma_pool_alloc\n");
737 retval = -ENOMEM;
738 goto err_unmap_dma;
739 }
740
741 /* Update ep0 state */
742 if (ep->ep_num == 0)
743 udc->ep0_state = DATA_STATE_XMIT;
744
745 /* irq handler advances the queue */
746 list_add_tail(&req->queue, &ep->queue);
747 spin_unlock_irqrestore(&udc->lock, flags);
748
749 return 0;
750
751 err_unmap_dma:
752 usb_gadget_unmap_request(&udc->gadget, _req, ep_dir(ep));
753
754 return retval;
755 }
756
757 static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
758 {
759 struct mv_dqh *dqh = ep->dqh;
760 u32 bit_pos;
761
762 /* Write dQH next pointer and terminate bit to 0 */
763 dqh->next_dtd_ptr = req->head->td_dma
764 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
765
766 /* clear active and halt bit, in case set from a previous error */
767 dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
768
769 /* Ensure that updates to the QH will occure before priming. */
770 wmb();
771
772 bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
773
774 /* Prime the Endpoint */
775 writel(bit_pos, &ep->udc->op_regs->epprime);
776 }
777
778 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
779 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
780 {
781 struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
782 struct mv_req *req;
783 struct mv_udc *udc = ep->udc;
784 unsigned long flags;
785 int stopped, ret = 0;
786 u32 epctrlx;
787
788 if (!_ep || !_req)
789 return -EINVAL;
790
791 spin_lock_irqsave(&ep->udc->lock, flags);
792 stopped = ep->stopped;
793
794 /* Stop the ep before we deal with the queue */
795 ep->stopped = 1;
796 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
797 if (ep_dir(ep) == EP_DIR_IN)
798 epctrlx &= ~EPCTRL_TX_ENABLE;
799 else
800 epctrlx &= ~EPCTRL_RX_ENABLE;
801 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
802
803 /* make sure it's actually queued on this endpoint */
804 list_for_each_entry(req, &ep->queue, queue) {
805 if (&req->req == _req)
806 break;
807 }
808 if (&req->req != _req) {
809 ret = -EINVAL;
810 goto out;
811 }
812
813 /* The request is in progress, or completed but not dequeued */
814 if (ep->queue.next == &req->queue) {
815 _req->status = -ECONNRESET;
816 mv_ep_fifo_flush(_ep); /* flush current transfer */
817
818 /* The request isn't the last request in this ep queue */
819 if (req->queue.next != &ep->queue) {
820 struct mv_req *next_req;
821
822 next_req = list_entry(req->queue.next,
823 struct mv_req, queue);
824
825 /* Point the QH to the first TD of next request */
826 mv_prime_ep(ep, next_req);
827 } else {
828 struct mv_dqh *qh;
829
830 qh = ep->dqh;
831 qh->next_dtd_ptr = 1;
832 qh->size_ioc_int_sts = 0;
833 }
834
835 /* The request hasn't been processed, patch up the TD chain */
836 } else {
837 struct mv_req *prev_req;
838
839 prev_req = list_entry(req->queue.prev, struct mv_req, queue);
840 writel(readl(&req->tail->dtd_next),
841 &prev_req->tail->dtd_next);
842
843 }
844
845 done(ep, req, -ECONNRESET);
846
847 /* Enable EP */
848 out:
849 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
850 if (ep_dir(ep) == EP_DIR_IN)
851 epctrlx |= EPCTRL_TX_ENABLE;
852 else
853 epctrlx |= EPCTRL_RX_ENABLE;
854 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
855 ep->stopped = stopped;
856
857 spin_unlock_irqrestore(&ep->udc->lock, flags);
858 return ret;
859 }
860
861 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
862 {
863 u32 epctrlx;
864
865 epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
866
867 if (stall) {
868 if (direction == EP_DIR_IN)
869 epctrlx |= EPCTRL_TX_EP_STALL;
870 else
871 epctrlx |= EPCTRL_RX_EP_STALL;
872 } else {
873 if (direction == EP_DIR_IN) {
874 epctrlx &= ~EPCTRL_TX_EP_STALL;
875 epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
876 } else {
877 epctrlx &= ~EPCTRL_RX_EP_STALL;
878 epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
879 }
880 }
881 writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
882 }
883
884 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
885 {
886 u32 epctrlx;
887
888 epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
889
890 if (direction == EP_DIR_OUT)
891 return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
892 else
893 return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
894 }
895
896 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
897 {
898 struct mv_ep *ep;
899 unsigned long flags = 0;
900 int status = 0;
901 struct mv_udc *udc;
902
903 ep = container_of(_ep, struct mv_ep, ep);
904 udc = ep->udc;
905 if (!_ep || !ep->ep.desc) {
906 status = -EINVAL;
907 goto out;
908 }
909
910 if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
911 status = -EOPNOTSUPP;
912 goto out;
913 }
914
915 /*
916 * Attempt to halt IN ep will fail if any transfer requests
917 * are still queue
918 */
919 if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
920 status = -EAGAIN;
921 goto out;
922 }
923
924 spin_lock_irqsave(&ep->udc->lock, flags);
925 ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
926 if (halt && wedge)
927 ep->wedge = 1;
928 else if (!halt)
929 ep->wedge = 0;
930 spin_unlock_irqrestore(&ep->udc->lock, flags);
931
932 if (ep->ep_num == 0) {
933 udc->ep0_state = WAIT_FOR_SETUP;
934 udc->ep0_dir = EP_DIR_OUT;
935 }
936 out:
937 return status;
938 }
939
940 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
941 {
942 return mv_ep_set_halt_wedge(_ep, halt, 0);
943 }
944
945 static int mv_ep_set_wedge(struct usb_ep *_ep)
946 {
947 return mv_ep_set_halt_wedge(_ep, 1, 1);
948 }
949
950 static struct usb_ep_ops mv_ep_ops = {
951 .enable = mv_ep_enable,
952 .disable = mv_ep_disable,
953
954 .alloc_request = mv_alloc_request,
955 .free_request = mv_free_request,
956
957 .queue = mv_ep_queue,
958 .dequeue = mv_ep_dequeue,
959
960 .set_wedge = mv_ep_set_wedge,
961 .set_halt = mv_ep_set_halt,
962 .fifo_flush = mv_ep_fifo_flush, /* flush fifo */
963 };
964
965 static void udc_clock_enable(struct mv_udc *udc)
966 {
967 clk_prepare_enable(udc->clk);
968 }
969
970 static void udc_clock_disable(struct mv_udc *udc)
971 {
972 clk_disable_unprepare(udc->clk);
973 }
974
975 static void udc_stop(struct mv_udc *udc)
976 {
977 u32 tmp;
978
979 /* Disable interrupts */
980 tmp = readl(&udc->op_regs->usbintr);
981 tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
982 USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
983 writel(tmp, &udc->op_regs->usbintr);
984
985 udc->stopped = 1;
986
987 /* Reset the Run the bit in the command register to stop VUSB */
988 tmp = readl(&udc->op_regs->usbcmd);
989 tmp &= ~USBCMD_RUN_STOP;
990 writel(tmp, &udc->op_regs->usbcmd);
991 }
992
993 static void udc_start(struct mv_udc *udc)
994 {
995 u32 usbintr;
996
997 usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
998 | USBINTR_PORT_CHANGE_DETECT_EN
999 | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
1000 /* Enable interrupts */
1001 writel(usbintr, &udc->op_regs->usbintr);
1002
1003 udc->stopped = 0;
1004
1005 /* Set the Run bit in the command register */
1006 writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
1007 }
1008
1009 static int udc_reset(struct mv_udc *udc)
1010 {
1011 unsigned int loops;
1012 u32 tmp, portsc;
1013
1014 /* Stop the controller */
1015 tmp = readl(&udc->op_regs->usbcmd);
1016 tmp &= ~USBCMD_RUN_STOP;
1017 writel(tmp, &udc->op_regs->usbcmd);
1018
1019 /* Reset the controller to get default values */
1020 writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1021
1022 /* wait for reset to complete */
1023 loops = LOOPS(RESET_TIMEOUT);
1024 while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1025 if (loops == 0) {
1026 dev_err(&udc->dev->dev,
1027 "Wait for RESET completed TIMEOUT\n");
1028 return -ETIMEDOUT;
1029 }
1030 loops--;
1031 udelay(LOOPS_USEC);
1032 }
1033
1034 /* set controller to device mode */
1035 tmp = readl(&udc->op_regs->usbmode);
1036 tmp |= USBMODE_CTRL_MODE_DEVICE;
1037
1038 /* turn setup lockout off, require setup tripwire in usbcmd */
1039 tmp |= USBMODE_SETUP_LOCK_OFF;
1040
1041 writel(tmp, &udc->op_regs->usbmode);
1042
1043 writel(0x0, &udc->op_regs->epsetupstat);
1044
1045 /* Configure the Endpoint List Address */
1046 writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1047 &udc->op_regs->eplistaddr);
1048
1049 portsc = readl(&udc->op_regs->portsc[0]);
1050 if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1051 portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1052
1053 if (udc->force_fs)
1054 portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1055 else
1056 portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1057
1058 writel(portsc, &udc->op_regs->portsc[0]);
1059
1060 tmp = readl(&udc->op_regs->epctrlx[0]);
1061 tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1062 writel(tmp, &udc->op_regs->epctrlx[0]);
1063
1064 return 0;
1065 }
1066
1067 static int mv_udc_enable_internal(struct mv_udc *udc)
1068 {
1069 int retval;
1070
1071 if (udc->active)
1072 return 0;
1073
1074 dev_dbg(&udc->dev->dev, "enable udc\n");
1075 udc_clock_enable(udc);
1076 if (udc->pdata->phy_init) {
1077 retval = udc->pdata->phy_init(udc->phy_regs);
1078 if (retval) {
1079 dev_err(&udc->dev->dev,
1080 "init phy error %d\n", retval);
1081 udc_clock_disable(udc);
1082 return retval;
1083 }
1084 }
1085 udc->active = 1;
1086
1087 return 0;
1088 }
1089
1090 static int mv_udc_enable(struct mv_udc *udc)
1091 {
1092 if (udc->clock_gating)
1093 return mv_udc_enable_internal(udc);
1094
1095 return 0;
1096 }
1097
1098 static void mv_udc_disable_internal(struct mv_udc *udc)
1099 {
1100 if (udc->active) {
1101 dev_dbg(&udc->dev->dev, "disable udc\n");
1102 if (udc->pdata->phy_deinit)
1103 udc->pdata->phy_deinit(udc->phy_regs);
1104 udc_clock_disable(udc);
1105 udc->active = 0;
1106 }
1107 }
1108
1109 static void mv_udc_disable(struct mv_udc *udc)
1110 {
1111 if (udc->clock_gating)
1112 mv_udc_disable_internal(udc);
1113 }
1114
1115 static int mv_udc_get_frame(struct usb_gadget *gadget)
1116 {
1117 struct mv_udc *udc;
1118 u16 retval;
1119
1120 if (!gadget)
1121 return -ENODEV;
1122
1123 udc = container_of(gadget, struct mv_udc, gadget);
1124
1125 retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1126
1127 return retval;
1128 }
1129
1130 /* Tries to wake up the host connected to this gadget */
1131 static int mv_udc_wakeup(struct usb_gadget *gadget)
1132 {
1133 struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1134 u32 portsc;
1135
1136 /* Remote wakeup feature not enabled by host */
1137 if (!udc->remote_wakeup)
1138 return -ENOTSUPP;
1139
1140 portsc = readl(&udc->op_regs->portsc);
1141 /* not suspended? */
1142 if (!(portsc & PORTSCX_PORT_SUSPEND))
1143 return 0;
1144 /* trigger force resume */
1145 portsc |= PORTSCX_PORT_FORCE_RESUME;
1146 writel(portsc, &udc->op_regs->portsc[0]);
1147 return 0;
1148 }
1149
1150 static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
1151 {
1152 struct mv_udc *udc;
1153 unsigned long flags;
1154 int retval = 0;
1155
1156 udc = container_of(gadget, struct mv_udc, gadget);
1157 spin_lock_irqsave(&udc->lock, flags);
1158
1159 udc->vbus_active = (is_active != 0);
1160
1161 dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1162 __func__, udc->softconnect, udc->vbus_active);
1163
1164 if (udc->driver && udc->softconnect && udc->vbus_active) {
1165 retval = mv_udc_enable(udc);
1166 if (retval == 0) {
1167 /* Clock is disabled, need re-init registers */
1168 udc_reset(udc);
1169 ep0_reset(udc);
1170 udc_start(udc);
1171 }
1172 } else if (udc->driver && udc->softconnect) {
1173 if (!udc->active)
1174 goto out;
1175
1176 /* stop all the transfer in queue*/
1177 stop_activity(udc, udc->driver);
1178 udc_stop(udc);
1179 mv_udc_disable(udc);
1180 }
1181
1182 out:
1183 spin_unlock_irqrestore(&udc->lock, flags);
1184 return retval;
1185 }
1186
1187 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1188 {
1189 struct mv_udc *udc;
1190 unsigned long flags;
1191 int retval = 0;
1192
1193 udc = container_of(gadget, struct mv_udc, gadget);
1194 spin_lock_irqsave(&udc->lock, flags);
1195
1196 udc->softconnect = (is_on != 0);
1197
1198 dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1199 __func__, udc->softconnect, udc->vbus_active);
1200
1201 if (udc->driver && udc->softconnect && udc->vbus_active) {
1202 retval = mv_udc_enable(udc);
1203 if (retval == 0) {
1204 /* Clock is disabled, need re-init registers */
1205 udc_reset(udc);
1206 ep0_reset(udc);
1207 udc_start(udc);
1208 }
1209 } else if (udc->driver && udc->vbus_active) {
1210 /* stop all the transfer in queue*/
1211 stop_activity(udc, udc->driver);
1212 udc_stop(udc);
1213 mv_udc_disable(udc);
1214 }
1215
1216 spin_unlock_irqrestore(&udc->lock, flags);
1217 return retval;
1218 }
1219
1220 static int mv_udc_start(struct usb_gadget *, struct usb_gadget_driver *);
1221 static int mv_udc_stop(struct usb_gadget *);
1222 /* device controller usb_gadget_ops structure */
1223 static const struct usb_gadget_ops mv_ops = {
1224
1225 /* returns the current frame number */
1226 .get_frame = mv_udc_get_frame,
1227
1228 /* tries to wake up the host connected to this gadget */
1229 .wakeup = mv_udc_wakeup,
1230
1231 /* notify controller that VBUS is powered or not */
1232 .vbus_session = mv_udc_vbus_session,
1233
1234 /* D+ pullup, software-controlled connect/disconnect to USB host */
1235 .pullup = mv_udc_pullup,
1236 .udc_start = mv_udc_start,
1237 .udc_stop = mv_udc_stop,
1238 };
1239
1240 static int eps_init(struct mv_udc *udc)
1241 {
1242 struct mv_ep *ep;
1243 char name[14];
1244 int i;
1245
1246 /* initialize ep0 */
1247 ep = &udc->eps[0];
1248 ep->udc = udc;
1249 strncpy(ep->name, "ep0", sizeof(ep->name));
1250 ep->ep.name = ep->name;
1251 ep->ep.ops = &mv_ep_ops;
1252 ep->wedge = 0;
1253 ep->stopped = 0;
1254 usb_ep_set_maxpacket_limit(&ep->ep, EP0_MAX_PKT_SIZE);
1255 ep->ep.caps.type_control = true;
1256 ep->ep.caps.dir_in = true;
1257 ep->ep.caps.dir_out = true;
1258 ep->ep_num = 0;
1259 ep->ep.desc = &mv_ep0_desc;
1260 INIT_LIST_HEAD(&ep->queue);
1261
1262 ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1263
1264 /* initialize other endpoints */
1265 for (i = 2; i < udc->max_eps * 2; i++) {
1266 ep = &udc->eps[i];
1267 if (i % 2) {
1268 snprintf(name, sizeof(name), "ep%din", i / 2);
1269 ep->direction = EP_DIR_IN;
1270 ep->ep.caps.dir_in = true;
1271 } else {
1272 snprintf(name, sizeof(name), "ep%dout", i / 2);
1273 ep->direction = EP_DIR_OUT;
1274 ep->ep.caps.dir_out = true;
1275 }
1276 ep->udc = udc;
1277 strncpy(ep->name, name, sizeof(ep->name));
1278 ep->ep.name = ep->name;
1279
1280 ep->ep.caps.type_iso = true;
1281 ep->ep.caps.type_bulk = true;
1282 ep->ep.caps.type_int = true;
1283
1284 ep->ep.ops = &mv_ep_ops;
1285 ep->stopped = 0;
1286 usb_ep_set_maxpacket_limit(&ep->ep, (unsigned short) ~0);
1287 ep->ep_num = i / 2;
1288
1289 INIT_LIST_HEAD(&ep->queue);
1290 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1291
1292 ep->dqh = &udc->ep_dqh[i];
1293 }
1294
1295 return 0;
1296 }
1297
1298 /* delete all endpoint requests, called with spinlock held */
1299 static void nuke(struct mv_ep *ep, int status)
1300 {
1301 /* called with spinlock held */
1302 ep->stopped = 1;
1303
1304 /* endpoint fifo flush */
1305 mv_ep_fifo_flush(&ep->ep);
1306
1307 while (!list_empty(&ep->queue)) {
1308 struct mv_req *req = NULL;
1309 req = list_entry(ep->queue.next, struct mv_req, queue);
1310 done(ep, req, status);
1311 }
1312 }
1313
1314 static void gadget_reset(struct mv_udc *udc, struct usb_gadget_driver *driver)
1315 {
1316 struct mv_ep *ep;
1317
1318 nuke(&udc->eps[0], -ESHUTDOWN);
1319
1320 list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1321 nuke(ep, -ESHUTDOWN);
1322 }
1323
1324 /* report reset; the driver is already quiesced */
1325 if (driver) {
1326 spin_unlock(&udc->lock);
1327 usb_gadget_udc_reset(&udc->gadget, driver);
1328 spin_lock(&udc->lock);
1329 }
1330 }
1331 /* stop all USB activities */
1332 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1333 {
1334 struct mv_ep *ep;
1335
1336 nuke(&udc->eps[0], -ESHUTDOWN);
1337
1338 list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1339 nuke(ep, -ESHUTDOWN);
1340 }
1341
1342 /* report disconnect; the driver is already quiesced */
1343 if (driver) {
1344 spin_unlock(&udc->lock);
1345 driver->disconnect(&udc->gadget);
1346 spin_lock(&udc->lock);
1347 }
1348 }
1349
1350 static int mv_udc_start(struct usb_gadget *gadget,
1351 struct usb_gadget_driver *driver)
1352 {
1353 struct mv_udc *udc;
1354 int retval = 0;
1355 unsigned long flags;
1356
1357 udc = container_of(gadget, struct mv_udc, gadget);
1358
1359 if (udc->driver)
1360 return -EBUSY;
1361
1362 spin_lock_irqsave(&udc->lock, flags);
1363
1364 /* hook up the driver ... */
1365 driver->driver.bus = NULL;
1366 udc->driver = driver;
1367
1368 udc->usb_state = USB_STATE_ATTACHED;
1369 udc->ep0_state = WAIT_FOR_SETUP;
1370 udc->ep0_dir = EP_DIR_OUT;
1371
1372 spin_unlock_irqrestore(&udc->lock, flags);
1373
1374 if (udc->transceiver) {
1375 retval = otg_set_peripheral(udc->transceiver->otg,
1376 &udc->gadget);
1377 if (retval) {
1378 dev_err(&udc->dev->dev,
1379 "unable to register peripheral to otg\n");
1380 udc->driver = NULL;
1381 return retval;
1382 }
1383 }
1384
1385 /* When boot with cable attached, there will be no vbus irq occurred */
1386 if (udc->qwork)
1387 queue_work(udc->qwork, &udc->vbus_work);
1388
1389 return 0;
1390 }
1391
1392 static int mv_udc_stop(struct usb_gadget *gadget)
1393 {
1394 struct mv_udc *udc;
1395 unsigned long flags;
1396
1397 udc = container_of(gadget, struct mv_udc, gadget);
1398
1399 spin_lock_irqsave(&udc->lock, flags);
1400
1401 mv_udc_enable(udc);
1402 udc_stop(udc);
1403
1404 /* stop all usb activities */
1405 udc->gadget.speed = USB_SPEED_UNKNOWN;
1406 stop_activity(udc, NULL);
1407 mv_udc_disable(udc);
1408
1409 spin_unlock_irqrestore(&udc->lock, flags);
1410
1411 /* unbind gadget driver */
1412 udc->driver = NULL;
1413
1414 return 0;
1415 }
1416
1417 static void mv_set_ptc(struct mv_udc *udc, u32 mode)
1418 {
1419 u32 portsc;
1420
1421 portsc = readl(&udc->op_regs->portsc[0]);
1422 portsc |= mode << 16;
1423 writel(portsc, &udc->op_regs->portsc[0]);
1424 }
1425
1426 static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
1427 {
1428 struct mv_ep *mvep = container_of(ep, struct mv_ep, ep);
1429 struct mv_req *req = container_of(_req, struct mv_req, req);
1430 struct mv_udc *udc;
1431 unsigned long flags;
1432
1433 udc = mvep->udc;
1434
1435 dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
1436
1437 spin_lock_irqsave(&udc->lock, flags);
1438 if (req->test_mode) {
1439 mv_set_ptc(udc, req->test_mode);
1440 req->test_mode = 0;
1441 }
1442 spin_unlock_irqrestore(&udc->lock, flags);
1443 }
1444
1445 static int
1446 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1447 {
1448 int retval = 0;
1449 struct mv_req *req;
1450 struct mv_ep *ep;
1451
1452 ep = &udc->eps[0];
1453 udc->ep0_dir = direction;
1454 udc->ep0_state = WAIT_FOR_OUT_STATUS;
1455
1456 req = udc->status_req;
1457
1458 /* fill in the reqest structure */
1459 if (empty == false) {
1460 *((u16 *) req->req.buf) = cpu_to_le16(status);
1461 req->req.length = 2;
1462 } else
1463 req->req.length = 0;
1464
1465 req->ep = ep;
1466 req->req.status = -EINPROGRESS;
1467 req->req.actual = 0;
1468 if (udc->test_mode) {
1469 req->req.complete = prime_status_complete;
1470 req->test_mode = udc->test_mode;
1471 udc->test_mode = 0;
1472 } else
1473 req->req.complete = NULL;
1474 req->dtd_count = 0;
1475
1476 if (req->req.dma == DMA_ADDR_INVALID) {
1477 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
1478 req->req.buf, req->req.length,
1479 ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1480 req->mapped = 1;
1481 }
1482
1483 /* prime the data phase */
1484 if (!req_to_dtd(req)) {
1485 retval = queue_dtd(ep, req);
1486 if (retval) {
1487 dev_err(&udc->dev->dev,
1488 "Failed to queue dtd when prime status\n");
1489 goto out;
1490 }
1491 } else{ /* no mem */
1492 retval = -ENOMEM;
1493 dev_err(&udc->dev->dev,
1494 "Failed to dma_pool_alloc when prime status\n");
1495 goto out;
1496 }
1497
1498 list_add_tail(&req->queue, &ep->queue);
1499
1500 return 0;
1501 out:
1502 usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
1503
1504 return retval;
1505 }
1506
1507 static void mv_udc_testmode(struct mv_udc *udc, u16 index)
1508 {
1509 if (index <= TEST_FORCE_EN) {
1510 udc->test_mode = index;
1511 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1512 ep0_stall(udc);
1513 } else
1514 dev_err(&udc->dev->dev,
1515 "This test mode(%d) is not supported\n", index);
1516 }
1517
1518 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1519 {
1520 udc->dev_addr = (u8)setup->wValue;
1521
1522 /* update usb state */
1523 udc->usb_state = USB_STATE_ADDRESS;
1524
1525 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1526 ep0_stall(udc);
1527 }
1528
1529 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1530 struct usb_ctrlrequest *setup)
1531 {
1532 u16 status = 0;
1533 int retval;
1534
1535 if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1536 != (USB_DIR_IN | USB_TYPE_STANDARD))
1537 return;
1538
1539 if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1540 status = 1 << USB_DEVICE_SELF_POWERED;
1541 status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1542 } else if ((setup->bRequestType & USB_RECIP_MASK)
1543 == USB_RECIP_INTERFACE) {
1544 /* get interface status */
1545 status = 0;
1546 } else if ((setup->bRequestType & USB_RECIP_MASK)
1547 == USB_RECIP_ENDPOINT) {
1548 u8 ep_num, direction;
1549
1550 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1551 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1552 ? EP_DIR_IN : EP_DIR_OUT;
1553 status = ep_is_stall(udc, ep_num, direction)
1554 << USB_ENDPOINT_HALT;
1555 }
1556
1557 retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1558 if (retval)
1559 ep0_stall(udc);
1560 else
1561 udc->ep0_state = DATA_STATE_XMIT;
1562 }
1563
1564 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1565 {
1566 u8 ep_num;
1567 u8 direction;
1568 struct mv_ep *ep;
1569
1570 if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1571 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1572 switch (setup->wValue) {
1573 case USB_DEVICE_REMOTE_WAKEUP:
1574 udc->remote_wakeup = 0;
1575 break;
1576 default:
1577 goto out;
1578 }
1579 } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1580 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1581 switch (setup->wValue) {
1582 case USB_ENDPOINT_HALT:
1583 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1584 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1585 ? EP_DIR_IN : EP_DIR_OUT;
1586 if (setup->wValue != 0 || setup->wLength != 0
1587 || ep_num > udc->max_eps)
1588 goto out;
1589 ep = &udc->eps[ep_num * 2 + direction];
1590 if (ep->wedge == 1)
1591 break;
1592 spin_unlock(&udc->lock);
1593 ep_set_stall(udc, ep_num, direction, 0);
1594 spin_lock(&udc->lock);
1595 break;
1596 default:
1597 goto out;
1598 }
1599 } else
1600 goto out;
1601
1602 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1603 ep0_stall(udc);
1604 out:
1605 return;
1606 }
1607
1608 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1609 {
1610 u8 ep_num;
1611 u8 direction;
1612
1613 if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1614 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1615 switch (setup->wValue) {
1616 case USB_DEVICE_REMOTE_WAKEUP:
1617 udc->remote_wakeup = 1;
1618 break;
1619 case USB_DEVICE_TEST_MODE:
1620 if (setup->wIndex & 0xFF
1621 || udc->gadget.speed != USB_SPEED_HIGH)
1622 ep0_stall(udc);
1623
1624 if (udc->usb_state != USB_STATE_CONFIGURED
1625 && udc->usb_state != USB_STATE_ADDRESS
1626 && udc->usb_state != USB_STATE_DEFAULT)
1627 ep0_stall(udc);
1628
1629 mv_udc_testmode(udc, (setup->wIndex >> 8));
1630 goto out;
1631 default:
1632 goto out;
1633 }
1634 } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1635 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1636 switch (setup->wValue) {
1637 case USB_ENDPOINT_HALT:
1638 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1639 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1640 ? EP_DIR_IN : EP_DIR_OUT;
1641 if (setup->wValue != 0 || setup->wLength != 0
1642 || ep_num > udc->max_eps)
1643 goto out;
1644 spin_unlock(&udc->lock);
1645 ep_set_stall(udc, ep_num, direction, 1);
1646 spin_lock(&udc->lock);
1647 break;
1648 default:
1649 goto out;
1650 }
1651 } else
1652 goto out;
1653
1654 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1655 ep0_stall(udc);
1656 out:
1657 return;
1658 }
1659
1660 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1661 struct usb_ctrlrequest *setup)
1662 __releases(&ep->udc->lock)
1663 __acquires(&ep->udc->lock)
1664 {
1665 bool delegate = false;
1666
1667 nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1668
1669 dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1670 setup->bRequestType, setup->bRequest,
1671 setup->wValue, setup->wIndex, setup->wLength);
1672 /* We process some standard setup requests here */
1673 if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1674 switch (setup->bRequest) {
1675 case USB_REQ_GET_STATUS:
1676 ch9getstatus(udc, ep_num, setup);
1677 break;
1678
1679 case USB_REQ_SET_ADDRESS:
1680 ch9setaddress(udc, setup);
1681 break;
1682
1683 case USB_REQ_CLEAR_FEATURE:
1684 ch9clearfeature(udc, setup);
1685 break;
1686
1687 case USB_REQ_SET_FEATURE:
1688 ch9setfeature(udc, setup);
1689 break;
1690
1691 default:
1692 delegate = true;
1693 }
1694 } else
1695 delegate = true;
1696
1697 /* delegate USB standard requests to the gadget driver */
1698 if (delegate == true) {
1699 /* USB requests handled by gadget */
1700 if (setup->wLength) {
1701 /* DATA phase from gadget, STATUS phase from udc */
1702 udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1703 ? EP_DIR_IN : EP_DIR_OUT;
1704 spin_unlock(&udc->lock);
1705 if (udc->driver->setup(&udc->gadget,
1706 &udc->local_setup_buff) < 0)
1707 ep0_stall(udc);
1708 spin_lock(&udc->lock);
1709 udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1710 ? DATA_STATE_XMIT : DATA_STATE_RECV;
1711 } else {
1712 /* no DATA phase, IN STATUS phase from gadget */
1713 udc->ep0_dir = EP_DIR_IN;
1714 spin_unlock(&udc->lock);
1715 if (udc->driver->setup(&udc->gadget,
1716 &udc->local_setup_buff) < 0)
1717 ep0_stall(udc);
1718 spin_lock(&udc->lock);
1719 udc->ep0_state = WAIT_FOR_OUT_STATUS;
1720 }
1721 }
1722 }
1723
1724 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
1725 static void ep0_req_complete(struct mv_udc *udc,
1726 struct mv_ep *ep0, struct mv_req *req)
1727 {
1728 u32 new_addr;
1729
1730 if (udc->usb_state == USB_STATE_ADDRESS) {
1731 /* set the new address */
1732 new_addr = (u32)udc->dev_addr;
1733 writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1734 &udc->op_regs->deviceaddr);
1735 }
1736
1737 done(ep0, req, 0);
1738
1739 switch (udc->ep0_state) {
1740 case DATA_STATE_XMIT:
1741 /* receive status phase */
1742 if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1743 ep0_stall(udc);
1744 break;
1745 case DATA_STATE_RECV:
1746 /* send status phase */
1747 if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1748 ep0_stall(udc);
1749 break;
1750 case WAIT_FOR_OUT_STATUS:
1751 udc->ep0_state = WAIT_FOR_SETUP;
1752 break;
1753 case WAIT_FOR_SETUP:
1754 dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1755 break;
1756 default:
1757 ep0_stall(udc);
1758 break;
1759 }
1760 }
1761
1762 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1763 {
1764 u32 temp;
1765 struct mv_dqh *dqh;
1766
1767 dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1768
1769 /* Clear bit in ENDPTSETUPSTAT */
1770 writel((1 << ep_num), &udc->op_regs->epsetupstat);
1771
1772 /* while a hazard exists when setup package arrives */
1773 do {
1774 /* Set Setup Tripwire */
1775 temp = readl(&udc->op_regs->usbcmd);
1776 writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1777
1778 /* Copy the setup packet to local buffer */
1779 memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1780 } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1781
1782 /* Clear Setup Tripwire */
1783 temp = readl(&udc->op_regs->usbcmd);
1784 writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1785 }
1786
1787 static void irq_process_tr_complete(struct mv_udc *udc)
1788 {
1789 u32 tmp, bit_pos;
1790 int i, ep_num = 0, direction = 0;
1791 struct mv_ep *curr_ep;
1792 struct mv_req *curr_req, *temp_req;
1793 int status;
1794
1795 /*
1796 * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1797 * because the setup packets are to be read ASAP
1798 */
1799
1800 /* Process all Setup packet received interrupts */
1801 tmp = readl(&udc->op_regs->epsetupstat);
1802
1803 if (tmp) {
1804 for (i = 0; i < udc->max_eps; i++) {
1805 if (tmp & (1 << i)) {
1806 get_setup_data(udc, i,
1807 (u8 *)(&udc->local_setup_buff));
1808 handle_setup_packet(udc, i,
1809 &udc->local_setup_buff);
1810 }
1811 }
1812 }
1813
1814 /* Don't clear the endpoint setup status register here.
1815 * It is cleared as a setup packet is read out of the buffer
1816 */
1817
1818 /* Process non-setup transaction complete interrupts */
1819 tmp = readl(&udc->op_regs->epcomplete);
1820
1821 if (!tmp)
1822 return;
1823
1824 writel(tmp, &udc->op_regs->epcomplete);
1825
1826 for (i = 0; i < udc->max_eps * 2; i++) {
1827 ep_num = i >> 1;
1828 direction = i % 2;
1829
1830 bit_pos = 1 << (ep_num + 16 * direction);
1831
1832 if (!(bit_pos & tmp))
1833 continue;
1834
1835 if (i == 1)
1836 curr_ep = &udc->eps[0];
1837 else
1838 curr_ep = &udc->eps[i];
1839 /* process the req queue until an uncomplete request */
1840 list_for_each_entry_safe(curr_req, temp_req,
1841 &curr_ep->queue, queue) {
1842 status = process_ep_req(udc, i, curr_req);
1843 if (status)
1844 break;
1845
1846 /* write back status to req */
1847 curr_req->req.status = status;
1848
1849 /* ep0 request completion */
1850 if (ep_num == 0) {
1851 ep0_req_complete(udc, curr_ep, curr_req);
1852 break;
1853 } else {
1854 done(curr_ep, curr_req, status);
1855 }
1856 }
1857 }
1858 }
1859
1860 static void irq_process_reset(struct mv_udc *udc)
1861 {
1862 u32 tmp;
1863 unsigned int loops;
1864
1865 udc->ep0_dir = EP_DIR_OUT;
1866 udc->ep0_state = WAIT_FOR_SETUP;
1867 udc->remote_wakeup = 0; /* default to 0 on reset */
1868
1869 /* The address bits are past bit 25-31. Set the address */
1870 tmp = readl(&udc->op_regs->deviceaddr);
1871 tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1872 writel(tmp, &udc->op_regs->deviceaddr);
1873
1874 /* Clear all the setup token semaphores */
1875 tmp = readl(&udc->op_regs->epsetupstat);
1876 writel(tmp, &udc->op_regs->epsetupstat);
1877
1878 /* Clear all the endpoint complete status bits */
1879 tmp = readl(&udc->op_regs->epcomplete);
1880 writel(tmp, &udc->op_regs->epcomplete);
1881
1882 /* wait until all endptprime bits cleared */
1883 loops = LOOPS(PRIME_TIMEOUT);
1884 while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1885 if (loops == 0) {
1886 dev_err(&udc->dev->dev,
1887 "Timeout for ENDPTPRIME = 0x%x\n",
1888 readl(&udc->op_regs->epprime));
1889 break;
1890 }
1891 loops--;
1892 udelay(LOOPS_USEC);
1893 }
1894
1895 /* Write 1s to the Flush register */
1896 writel((u32)~0, &udc->op_regs->epflush);
1897
1898 if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1899 dev_info(&udc->dev->dev, "usb bus reset\n");
1900 udc->usb_state = USB_STATE_DEFAULT;
1901 /* reset all the queues, stop all USB activities */
1902 gadget_reset(udc, udc->driver);
1903 } else {
1904 dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1905 readl(&udc->op_regs->portsc));
1906
1907 /*
1908 * re-initialize
1909 * controller reset
1910 */
1911 udc_reset(udc);
1912
1913 /* reset all the queues, stop all USB activities */
1914 stop_activity(udc, udc->driver);
1915
1916 /* reset ep0 dQH and endptctrl */
1917 ep0_reset(udc);
1918
1919 /* enable interrupt and set controller to run state */
1920 udc_start(udc);
1921
1922 udc->usb_state = USB_STATE_ATTACHED;
1923 }
1924 }
1925
1926 static void handle_bus_resume(struct mv_udc *udc)
1927 {
1928 udc->usb_state = udc->resume_state;
1929 udc->resume_state = 0;
1930
1931 /* report resume to the driver */
1932 if (udc->driver) {
1933 if (udc->driver->resume) {
1934 spin_unlock(&udc->lock);
1935 udc->driver->resume(&udc->gadget);
1936 spin_lock(&udc->lock);
1937 }
1938 }
1939 }
1940
1941 static void irq_process_suspend(struct mv_udc *udc)
1942 {
1943 udc->resume_state = udc->usb_state;
1944 udc->usb_state = USB_STATE_SUSPENDED;
1945
1946 if (udc->driver->suspend) {
1947 spin_unlock(&udc->lock);
1948 udc->driver->suspend(&udc->gadget);
1949 spin_lock(&udc->lock);
1950 }
1951 }
1952
1953 static void irq_process_port_change(struct mv_udc *udc)
1954 {
1955 u32 portsc;
1956
1957 portsc = readl(&udc->op_regs->portsc[0]);
1958 if (!(portsc & PORTSCX_PORT_RESET)) {
1959 /* Get the speed */
1960 u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1961 switch (speed) {
1962 case PORTSCX_PORT_SPEED_HIGH:
1963 udc->gadget.speed = USB_SPEED_HIGH;
1964 break;
1965 case PORTSCX_PORT_SPEED_FULL:
1966 udc->gadget.speed = USB_SPEED_FULL;
1967 break;
1968 case PORTSCX_PORT_SPEED_LOW:
1969 udc->gadget.speed = USB_SPEED_LOW;
1970 break;
1971 default:
1972 udc->gadget.speed = USB_SPEED_UNKNOWN;
1973 break;
1974 }
1975 }
1976
1977 if (portsc & PORTSCX_PORT_SUSPEND) {
1978 udc->resume_state = udc->usb_state;
1979 udc->usb_state = USB_STATE_SUSPENDED;
1980 if (udc->driver->suspend) {
1981 spin_unlock(&udc->lock);
1982 udc->driver->suspend(&udc->gadget);
1983 spin_lock(&udc->lock);
1984 }
1985 }
1986
1987 if (!(portsc & PORTSCX_PORT_SUSPEND)
1988 && udc->usb_state == USB_STATE_SUSPENDED) {
1989 handle_bus_resume(udc);
1990 }
1991
1992 if (!udc->resume_state)
1993 udc->usb_state = USB_STATE_DEFAULT;
1994 }
1995
1996 static void irq_process_error(struct mv_udc *udc)
1997 {
1998 /* Increment the error count */
1999 udc->errors++;
2000 }
2001
2002 static irqreturn_t mv_udc_irq(int irq, void *dev)
2003 {
2004 struct mv_udc *udc = (struct mv_udc *)dev;
2005 u32 status, intr;
2006
2007 /* Disable ISR when stopped bit is set */
2008 if (udc->stopped)
2009 return IRQ_NONE;
2010
2011 spin_lock(&udc->lock);
2012
2013 status = readl(&udc->op_regs->usbsts);
2014 intr = readl(&udc->op_regs->usbintr);
2015 status &= intr;
2016
2017 if (status == 0) {
2018 spin_unlock(&udc->lock);
2019 return IRQ_NONE;
2020 }
2021
2022 /* Clear all the interrupts occurred */
2023 writel(status, &udc->op_regs->usbsts);
2024
2025 if (status & USBSTS_ERR)
2026 irq_process_error(udc);
2027
2028 if (status & USBSTS_RESET)
2029 irq_process_reset(udc);
2030
2031 if (status & USBSTS_PORT_CHANGE)
2032 irq_process_port_change(udc);
2033
2034 if (status & USBSTS_INT)
2035 irq_process_tr_complete(udc);
2036
2037 if (status & USBSTS_SUSPEND)
2038 irq_process_suspend(udc);
2039
2040 spin_unlock(&udc->lock);
2041
2042 return IRQ_HANDLED;
2043 }
2044
2045 static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
2046 {
2047 struct mv_udc *udc = (struct mv_udc *)dev;
2048
2049 /* polling VBUS and init phy may cause too much time*/
2050 if (udc->qwork)
2051 queue_work(udc->qwork, &udc->vbus_work);
2052
2053 return IRQ_HANDLED;
2054 }
2055
2056 static void mv_udc_vbus_work(struct work_struct *work)
2057 {
2058 struct mv_udc *udc;
2059 unsigned int vbus;
2060
2061 udc = container_of(work, struct mv_udc, vbus_work);
2062 if (!udc->pdata->vbus)
2063 return;
2064
2065 vbus = udc->pdata->vbus->poll();
2066 dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
2067
2068 if (vbus == VBUS_HIGH)
2069 mv_udc_vbus_session(&udc->gadget, 1);
2070 else if (vbus == VBUS_LOW)
2071 mv_udc_vbus_session(&udc->gadget, 0);
2072 }
2073
2074 /* release device structure */
2075 static void gadget_release(struct device *_dev)
2076 {
2077 struct mv_udc *udc;
2078
2079 udc = dev_get_drvdata(_dev);
2080
2081 complete(udc->done);
2082 }
2083
2084 static int mv_udc_remove(struct platform_device *pdev)
2085 {
2086 struct mv_udc *udc;
2087
2088 udc = platform_get_drvdata(pdev);
2089
2090 usb_del_gadget_udc(&udc->gadget);
2091
2092 if (udc->qwork) {
2093 flush_workqueue(udc->qwork);
2094 destroy_workqueue(udc->qwork);
2095 }
2096
2097 /* free memory allocated in probe */
2098 dma_pool_destroy(udc->dtd_pool);
2099
2100 if (udc->ep_dqh)
2101 dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2102 udc->ep_dqh, udc->ep_dqh_dma);
2103
2104 mv_udc_disable(udc);
2105
2106 /* free dev, wait for the release() finished */
2107 wait_for_completion(udc->done);
2108
2109 return 0;
2110 }
2111
2112 static int mv_udc_probe(struct platform_device *pdev)
2113 {
2114 struct mv_usb_platform_data *pdata = dev_get_platdata(&pdev->dev);
2115 struct mv_udc *udc;
2116 int retval = 0;
2117 struct resource *r;
2118 size_t size;
2119
2120 if (pdata == NULL) {
2121 dev_err(&pdev->dev, "missing platform_data\n");
2122 return -ENODEV;
2123 }
2124
2125 udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2126 if (udc == NULL)
2127 return -ENOMEM;
2128
2129 udc->done = &release_done;
2130 udc->pdata = dev_get_platdata(&pdev->dev);
2131 spin_lock_init(&udc->lock);
2132
2133 udc->dev = pdev;
2134
2135 if (pdata->mode == MV_USB_MODE_OTG) {
2136 udc->transceiver = devm_usb_get_phy(&pdev->dev,
2137 USB_PHY_TYPE_USB2);
2138 if (IS_ERR(udc->transceiver)) {
2139 retval = PTR_ERR(udc->transceiver);
2140
2141 if (retval == -ENXIO)
2142 return retval;
2143
2144 udc->transceiver = NULL;
2145 return -EPROBE_DEFER;
2146 }
2147 }
2148
2149 /* udc only have one sysclk. */
2150 udc->clk = devm_clk_get(&pdev->dev, NULL);
2151 if (IS_ERR(udc->clk))
2152 return PTR_ERR(udc->clk);
2153
2154 r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
2155 if (r == NULL) {
2156 dev_err(&pdev->dev, "no I/O memory resource defined\n");
2157 return -ENODEV;
2158 }
2159
2160 udc->cap_regs = (struct mv_cap_regs __iomem *)
2161 devm_ioremap(&pdev->dev, r->start, resource_size(r));
2162 if (udc->cap_regs == NULL) {
2163 dev_err(&pdev->dev, "failed to map I/O memory\n");
2164 return -EBUSY;
2165 }
2166
2167 r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
2168 if (r == NULL) {
2169 dev_err(&pdev->dev, "no phy I/O memory resource defined\n");
2170 return -ENODEV;
2171 }
2172
2173 udc->phy_regs = devm_ioremap(&pdev->dev, r->start, resource_size(r));
2174 if (udc->phy_regs == NULL) {
2175 dev_err(&pdev->dev, "failed to map phy I/O memory\n");
2176 return -EBUSY;
2177 }
2178
2179 /* we will acces controller register, so enable the clk */
2180 retval = mv_udc_enable_internal(udc);
2181 if (retval)
2182 return retval;
2183
2184 udc->op_regs =
2185 (struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
2186 + (readl(&udc->cap_regs->caplength_hciversion)
2187 & CAPLENGTH_MASK));
2188 udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
2189
2190 /*
2191 * some platform will use usb to download image, it may not disconnect
2192 * usb gadget before loading kernel. So first stop udc here.
2193 */
2194 udc_stop(udc);
2195 writel(0xFFFFFFFF, &udc->op_regs->usbsts);
2196
2197 size = udc->max_eps * sizeof(struct mv_dqh) *2;
2198 size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
2199 udc->ep_dqh = dma_alloc_coherent(&pdev->dev, size,
2200 &udc->ep_dqh_dma, GFP_KERNEL);
2201
2202 if (udc->ep_dqh == NULL) {
2203 dev_err(&pdev->dev, "allocate dQH memory failed\n");
2204 retval = -ENOMEM;
2205 goto err_disable_clock;
2206 }
2207 udc->ep_dqh_size = size;
2208
2209 /* create dTD dma_pool resource */
2210 udc->dtd_pool = dma_pool_create("mv_dtd",
2211 &pdev->dev,
2212 sizeof(struct mv_dtd),
2213 DTD_ALIGNMENT,
2214 DMA_BOUNDARY);
2215
2216 if (!udc->dtd_pool) {
2217 retval = -ENOMEM;
2218 goto err_free_dma;
2219 }
2220
2221 size = udc->max_eps * sizeof(struct mv_ep) *2;
2222 udc->eps = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
2223 if (udc->eps == NULL) {
2224 retval = -ENOMEM;
2225 goto err_destroy_dma;
2226 }
2227
2228 /* initialize ep0 status request structure */
2229 udc->status_req = devm_kzalloc(&pdev->dev, sizeof(struct mv_req),
2230 GFP_KERNEL);
2231 if (!udc->status_req) {
2232 retval = -ENOMEM;
2233 goto err_destroy_dma;
2234 }
2235 INIT_LIST_HEAD(&udc->status_req->queue);
2236
2237 /* allocate a small amount of memory to get valid address */
2238 udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2239 udc->status_req->req.dma = DMA_ADDR_INVALID;
2240
2241 udc->resume_state = USB_STATE_NOTATTACHED;
2242 udc->usb_state = USB_STATE_POWERED;
2243 udc->ep0_dir = EP_DIR_OUT;
2244 udc->remote_wakeup = 0;
2245
2246 r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2247 if (r == NULL) {
2248 dev_err(&pdev->dev, "no IRQ resource defined\n");
2249 retval = -ENODEV;
2250 goto err_destroy_dma;
2251 }
2252 udc->irq = r->start;
2253 if (devm_request_irq(&pdev->dev, udc->irq, mv_udc_irq,
2254 IRQF_SHARED, driver_name, udc)) {
2255 dev_err(&pdev->dev, "Request irq %d for UDC failed\n",
2256 udc->irq);
2257 retval = -ENODEV;
2258 goto err_destroy_dma;
2259 }
2260
2261 /* initialize gadget structure */
2262 udc->gadget.ops = &mv_ops; /* usb_gadget_ops */
2263 udc->gadget.ep0 = &udc->eps[0].ep; /* gadget ep0 */
2264 INIT_LIST_HEAD(&udc->gadget.ep_list); /* ep_list */
2265 udc->gadget.speed = USB_SPEED_UNKNOWN; /* speed */
2266 udc->gadget.max_speed = USB_SPEED_HIGH; /* support dual speed */
2267
2268 /* the "gadget" abstracts/virtualizes the controller */
2269 udc->gadget.name = driver_name; /* gadget name */
2270
2271 eps_init(udc);
2272
2273 /* VBUS detect: we can disable/enable clock on demand.*/
2274 if (udc->transceiver)
2275 udc->clock_gating = 1;
2276 else if (pdata->vbus) {
2277 udc->clock_gating = 1;
2278 retval = devm_request_threaded_irq(&pdev->dev,
2279 pdata->vbus->irq, NULL,
2280 mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
2281 if (retval) {
2282 dev_info(&pdev->dev,
2283 "Can not request irq for VBUS, "
2284 "disable clock gating\n");
2285 udc->clock_gating = 0;
2286 }
2287
2288 udc->qwork = create_singlethread_workqueue("mv_udc_queue");
2289 if (!udc->qwork) {
2290 dev_err(&pdev->dev, "cannot create workqueue\n");
2291 retval = -ENOMEM;
2292 goto err_destroy_dma;
2293 }
2294
2295 INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
2296 }
2297
2298 /*
2299 * When clock gating is supported, we can disable clk and phy.
2300 * If not, it means that VBUS detection is not supported, we
2301 * have to enable vbus active all the time to let controller work.
2302 */
2303 if (udc->clock_gating)
2304 mv_udc_disable_internal(udc);
2305 else
2306 udc->vbus_active = 1;
2307
2308 retval = usb_add_gadget_udc_release(&pdev->dev, &udc->gadget,
2309 gadget_release);
2310 if (retval)
2311 goto err_create_workqueue;
2312
2313 platform_set_drvdata(pdev, udc);
2314 dev_info(&pdev->dev, "successful probe UDC device %s clock gating.\n",
2315 udc->clock_gating ? "with" : "without");
2316
2317 return 0;
2318
2319 err_create_workqueue:
2320 destroy_workqueue(udc->qwork);
2321 err_destroy_dma:
2322 dma_pool_destroy(udc->dtd_pool);
2323 err_free_dma:
2324 dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2325 udc->ep_dqh, udc->ep_dqh_dma);
2326 err_disable_clock:
2327 mv_udc_disable_internal(udc);
2328
2329 return retval;
2330 }
2331
2332 #ifdef CONFIG_PM
2333 static int mv_udc_suspend(struct device *dev)
2334 {
2335 struct mv_udc *udc;
2336
2337 udc = dev_get_drvdata(dev);
2338
2339 /* if OTG is enabled, the following will be done in OTG driver*/
2340 if (udc->transceiver)
2341 return 0;
2342
2343 if (udc->pdata->vbus && udc->pdata->vbus->poll)
2344 if (udc->pdata->vbus->poll() == VBUS_HIGH) {
2345 dev_info(&udc->dev->dev, "USB cable is connected!\n");
2346 return -EAGAIN;
2347 }
2348
2349 /*
2350 * only cable is unplugged, udc can suspend.
2351 * So do not care about clock_gating == 1.
2352 */
2353 if (!udc->clock_gating) {
2354 udc_stop(udc);
2355
2356 spin_lock_irq(&udc->lock);
2357 /* stop all usb activities */
2358 stop_activity(udc, udc->driver);
2359 spin_unlock_irq(&udc->lock);
2360
2361 mv_udc_disable_internal(udc);
2362 }
2363
2364 return 0;
2365 }
2366
2367 static int mv_udc_resume(struct device *dev)
2368 {
2369 struct mv_udc *udc;
2370 int retval;
2371
2372 udc = dev_get_drvdata(dev);
2373
2374 /* if OTG is enabled, the following will be done in OTG driver*/
2375 if (udc->transceiver)
2376 return 0;
2377
2378 if (!udc->clock_gating) {
2379 retval = mv_udc_enable_internal(udc);
2380 if (retval)
2381 return retval;
2382
2383 if (udc->driver && udc->softconnect) {
2384 udc_reset(udc);
2385 ep0_reset(udc);
2386 udc_start(udc);
2387 }
2388 }
2389
2390 return 0;
2391 }
2392
2393 static const struct dev_pm_ops mv_udc_pm_ops = {
2394 .suspend = mv_udc_suspend,
2395 .resume = mv_udc_resume,
2396 };
2397 #endif
2398
2399 static void mv_udc_shutdown(struct platform_device *pdev)
2400 {
2401 struct mv_udc *udc;
2402 u32 mode;
2403
2404 udc = platform_get_drvdata(pdev);
2405 /* reset controller mode to IDLE */
2406 mv_udc_enable(udc);
2407 mode = readl(&udc->op_regs->usbmode);
2408 mode &= ~3;
2409 writel(mode, &udc->op_regs->usbmode);
2410 mv_udc_disable(udc);
2411 }
2412
2413 static struct platform_driver udc_driver = {
2414 .probe = mv_udc_probe,
2415 .remove = mv_udc_remove,
2416 .shutdown = mv_udc_shutdown,
2417 .driver = {
2418 .name = "mv-udc",
2419 #ifdef CONFIG_PM
2420 .pm = &mv_udc_pm_ops,
2421 #endif
2422 },
2423 };
2424
2425 module_platform_driver(udc_driver);
2426 MODULE_ALIAS("platform:mv-udc");
2427 MODULE_DESCRIPTION(DRIVER_DESC);
2428 MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
2429 MODULE_VERSION(DRIVER_VERSION);
2430 MODULE_LICENSE("GPL");
This page took 0.083544 seconds and 5 git commands to generate.