Merge remote-tracking branch 'fuse/for-next'
[deliverable/linux.git] / drivers / usb / gadget / udc / pxa25x_udc.c
1 /*
2 * Intel PXA25x and IXP4xx on-chip full speed USB device controllers
3 *
4 * Copyright (C) 2002 Intrinsyc, Inc. (Frank Becker)
5 * Copyright (C) 2003 Robert Schwebel, Pengutronix
6 * Copyright (C) 2003 Benedikt Spranger, Pengutronix
7 * Copyright (C) 2003 David Brownell
8 * Copyright (C) 2003 Joshua Wise
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 */
15
16 /* #define VERBOSE_DEBUG */
17
18 #include <linux/device.h>
19 #include <linux/gpio.h>
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/ioport.h>
23 #include <linux/types.h>
24 #include <linux/errno.h>
25 #include <linux/err.h>
26 #include <linux/delay.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/list.h>
30 #include <linux/interrupt.h>
31 #include <linux/mm.h>
32 #include <linux/platform_data/pxa2xx_udc.h>
33 #include <linux/platform_device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/irq.h>
36 #include <linux/clk.h>
37 #include <linux/seq_file.h>
38 #include <linux/debugfs.h>
39 #include <linux/io.h>
40 #include <linux/prefetch.h>
41
42 #include <asm/byteorder.h>
43 #include <asm/dma.h>
44 #include <asm/mach-types.h>
45 #include <asm/unaligned.h>
46
47 #include <linux/usb/ch9.h>
48 #include <linux/usb/gadget.h>
49 #include <linux/usb/otg.h>
50
51 #ifdef CONFIG_ARCH_LUBBOCK
52 #include <mach/lubbock.h>
53 #endif
54
55 #define UDCCR 0x0000 /* UDC Control Register */
56 #define UDC_RES1 0x0004 /* UDC Undocumented - Reserved1 */
57 #define UDC_RES2 0x0008 /* UDC Undocumented - Reserved2 */
58 #define UDC_RES3 0x000C /* UDC Undocumented - Reserved3 */
59 #define UDCCS0 0x0010 /* UDC Endpoint 0 Control/Status Register */
60 #define UDCCS1 0x0014 /* UDC Endpoint 1 (IN) Control/Status Register */
61 #define UDCCS2 0x0018 /* UDC Endpoint 2 (OUT) Control/Status Register */
62 #define UDCCS3 0x001C /* UDC Endpoint 3 (IN) Control/Status Register */
63 #define UDCCS4 0x0020 /* UDC Endpoint 4 (OUT) Control/Status Register */
64 #define UDCCS5 0x0024 /* UDC Endpoint 5 (Interrupt) Control/Status Register */
65 #define UDCCS6 0x0028 /* UDC Endpoint 6 (IN) Control/Status Register */
66 #define UDCCS7 0x002C /* UDC Endpoint 7 (OUT) Control/Status Register */
67 #define UDCCS8 0x0030 /* UDC Endpoint 8 (IN) Control/Status Register */
68 #define UDCCS9 0x0034 /* UDC Endpoint 9 (OUT) Control/Status Register */
69 #define UDCCS10 0x0038 /* UDC Endpoint 10 (Interrupt) Control/Status Register */
70 #define UDCCS11 0x003C /* UDC Endpoint 11 (IN) Control/Status Register */
71 #define UDCCS12 0x0040 /* UDC Endpoint 12 (OUT) Control/Status Register */
72 #define UDCCS13 0x0044 /* UDC Endpoint 13 (IN) Control/Status Register */
73 #define UDCCS14 0x0048 /* UDC Endpoint 14 (OUT) Control/Status Register */
74 #define UDCCS15 0x004C /* UDC Endpoint 15 (Interrupt) Control/Status Register */
75 #define UFNRH 0x0060 /* UDC Frame Number Register High */
76 #define UFNRL 0x0064 /* UDC Frame Number Register Low */
77 #define UBCR2 0x0068 /* UDC Byte Count Reg 2 */
78 #define UBCR4 0x006c /* UDC Byte Count Reg 4 */
79 #define UBCR7 0x0070 /* UDC Byte Count Reg 7 */
80 #define UBCR9 0x0074 /* UDC Byte Count Reg 9 */
81 #define UBCR12 0x0078 /* UDC Byte Count Reg 12 */
82 #define UBCR14 0x007c /* UDC Byte Count Reg 14 */
83 #define UDDR0 0x0080 /* UDC Endpoint 0 Data Register */
84 #define UDDR1 0x0100 /* UDC Endpoint 1 Data Register */
85 #define UDDR2 0x0180 /* UDC Endpoint 2 Data Register */
86 #define UDDR3 0x0200 /* UDC Endpoint 3 Data Register */
87 #define UDDR4 0x0400 /* UDC Endpoint 4 Data Register */
88 #define UDDR5 0x00A0 /* UDC Endpoint 5 Data Register */
89 #define UDDR6 0x0600 /* UDC Endpoint 6 Data Register */
90 #define UDDR7 0x0680 /* UDC Endpoint 7 Data Register */
91 #define UDDR8 0x0700 /* UDC Endpoint 8 Data Register */
92 #define UDDR9 0x0900 /* UDC Endpoint 9 Data Register */
93 #define UDDR10 0x00C0 /* UDC Endpoint 10 Data Register */
94 #define UDDR11 0x0B00 /* UDC Endpoint 11 Data Register */
95 #define UDDR12 0x0B80 /* UDC Endpoint 12 Data Register */
96 #define UDDR13 0x0C00 /* UDC Endpoint 13 Data Register */
97 #define UDDR14 0x0E00 /* UDC Endpoint 14 Data Register */
98 #define UDDR15 0x00E0 /* UDC Endpoint 15 Data Register */
99
100 #define UICR0 0x0050 /* UDC Interrupt Control Register 0 */
101 #define UICR1 0x0054 /* UDC Interrupt Control Register 1 */
102
103 #define USIR0 0x0058 /* UDC Status Interrupt Register 0 */
104 #define USIR1 0x005C /* UDC Status Interrupt Register 1 */
105
106 #define UDCCR_UDE (1 << 0) /* UDC enable */
107 #define UDCCR_UDA (1 << 1) /* UDC active */
108 #define UDCCR_RSM (1 << 2) /* Device resume */
109 #define UDCCR_RESIR (1 << 3) /* Resume interrupt request */
110 #define UDCCR_SUSIR (1 << 4) /* Suspend interrupt request */
111 #define UDCCR_SRM (1 << 5) /* Suspend/resume interrupt mask */
112 #define UDCCR_RSTIR (1 << 6) /* Reset interrupt request */
113 #define UDCCR_REM (1 << 7) /* Reset interrupt mask */
114
115 #define UDCCS0_OPR (1 << 0) /* OUT packet ready */
116 #define UDCCS0_IPR (1 << 1) /* IN packet ready */
117 #define UDCCS0_FTF (1 << 2) /* Flush Tx FIFO */
118 #define UDCCS0_DRWF (1 << 3) /* Device remote wakeup feature */
119 #define UDCCS0_SST (1 << 4) /* Sent stall */
120 #define UDCCS0_FST (1 << 5) /* Force stall */
121 #define UDCCS0_RNE (1 << 6) /* Receive FIFO no empty */
122 #define UDCCS0_SA (1 << 7) /* Setup active */
123
124 #define UDCCS_BI_TFS (1 << 0) /* Transmit FIFO service */
125 #define UDCCS_BI_TPC (1 << 1) /* Transmit packet complete */
126 #define UDCCS_BI_FTF (1 << 2) /* Flush Tx FIFO */
127 #define UDCCS_BI_TUR (1 << 3) /* Transmit FIFO underrun */
128 #define UDCCS_BI_SST (1 << 4) /* Sent stall */
129 #define UDCCS_BI_FST (1 << 5) /* Force stall */
130 #define UDCCS_BI_TSP (1 << 7) /* Transmit short packet */
131
132 #define UDCCS_BO_RFS (1 << 0) /* Receive FIFO service */
133 #define UDCCS_BO_RPC (1 << 1) /* Receive packet complete */
134 #define UDCCS_BO_DME (1 << 3) /* DMA enable */
135 #define UDCCS_BO_SST (1 << 4) /* Sent stall */
136 #define UDCCS_BO_FST (1 << 5) /* Force stall */
137 #define UDCCS_BO_RNE (1 << 6) /* Receive FIFO not empty */
138 #define UDCCS_BO_RSP (1 << 7) /* Receive short packet */
139
140 #define UDCCS_II_TFS (1 << 0) /* Transmit FIFO service */
141 #define UDCCS_II_TPC (1 << 1) /* Transmit packet complete */
142 #define UDCCS_II_FTF (1 << 2) /* Flush Tx FIFO */
143 #define UDCCS_II_TUR (1 << 3) /* Transmit FIFO underrun */
144 #define UDCCS_II_TSP (1 << 7) /* Transmit short packet */
145
146 #define UDCCS_IO_RFS (1 << 0) /* Receive FIFO service */
147 #define UDCCS_IO_RPC (1 << 1) /* Receive packet complete */
148 #ifdef CONFIG_ARCH_IXP4XX /* FIXME: is this right?, datasheed says '2' */
149 #define UDCCS_IO_ROF (1 << 3) /* Receive overflow */
150 #endif
151 #ifdef CONFIG_ARCH_PXA
152 #define UDCCS_IO_ROF (1 << 2) /* Receive overflow */
153 #endif
154 #define UDCCS_IO_DME (1 << 3) /* DMA enable */
155 #define UDCCS_IO_RNE (1 << 6) /* Receive FIFO not empty */
156 #define UDCCS_IO_RSP (1 << 7) /* Receive short packet */
157
158 #define UDCCS_INT_TFS (1 << 0) /* Transmit FIFO service */
159 #define UDCCS_INT_TPC (1 << 1) /* Transmit packet complete */
160 #define UDCCS_INT_FTF (1 << 2) /* Flush Tx FIFO */
161 #define UDCCS_INT_TUR (1 << 3) /* Transmit FIFO underrun */
162 #define UDCCS_INT_SST (1 << 4) /* Sent stall */
163 #define UDCCS_INT_FST (1 << 5) /* Force stall */
164 #define UDCCS_INT_TSP (1 << 7) /* Transmit short packet */
165
166 #define UICR0_IM0 (1 << 0) /* Interrupt mask ep 0 */
167 #define UICR0_IM1 (1 << 1) /* Interrupt mask ep 1 */
168 #define UICR0_IM2 (1 << 2) /* Interrupt mask ep 2 */
169 #define UICR0_IM3 (1 << 3) /* Interrupt mask ep 3 */
170 #define UICR0_IM4 (1 << 4) /* Interrupt mask ep 4 */
171 #define UICR0_IM5 (1 << 5) /* Interrupt mask ep 5 */
172 #define UICR0_IM6 (1 << 6) /* Interrupt mask ep 6 */
173 #define UICR0_IM7 (1 << 7) /* Interrupt mask ep 7 */
174
175 #define UICR1_IM8 (1 << 0) /* Interrupt mask ep 8 */
176 #define UICR1_IM9 (1 << 1) /* Interrupt mask ep 9 */
177 #define UICR1_IM10 (1 << 2) /* Interrupt mask ep 10 */
178 #define UICR1_IM11 (1 << 3) /* Interrupt mask ep 11 */
179 #define UICR1_IM12 (1 << 4) /* Interrupt mask ep 12 */
180 #define UICR1_IM13 (1 << 5) /* Interrupt mask ep 13 */
181 #define UICR1_IM14 (1 << 6) /* Interrupt mask ep 14 */
182 #define UICR1_IM15 (1 << 7) /* Interrupt mask ep 15 */
183
184 #define USIR0_IR0 (1 << 0) /* Interrupt request ep 0 */
185 #define USIR0_IR1 (1 << 1) /* Interrupt request ep 1 */
186 #define USIR0_IR2 (1 << 2) /* Interrupt request ep 2 */
187 #define USIR0_IR3 (1 << 3) /* Interrupt request ep 3 */
188 #define USIR0_IR4 (1 << 4) /* Interrupt request ep 4 */
189 #define USIR0_IR5 (1 << 5) /* Interrupt request ep 5 */
190 #define USIR0_IR6 (1 << 6) /* Interrupt request ep 6 */
191 #define USIR0_IR7 (1 << 7) /* Interrupt request ep 7 */
192
193 #define USIR1_IR8 (1 << 0) /* Interrupt request ep 8 */
194 #define USIR1_IR9 (1 << 1) /* Interrupt request ep 9 */
195 #define USIR1_IR10 (1 << 2) /* Interrupt request ep 10 */
196 #define USIR1_IR11 (1 << 3) /* Interrupt request ep 11 */
197 #define USIR1_IR12 (1 << 4) /* Interrupt request ep 12 */
198 #define USIR1_IR13 (1 << 5) /* Interrupt request ep 13 */
199 #define USIR1_IR14 (1 << 6) /* Interrupt request ep 14 */
200 #define USIR1_IR15 (1 << 7) /* Interrupt request ep 15 */
201
202 /*
203 * This driver handles the USB Device Controller (UDC) in Intel's PXA 25x
204 * series processors. The UDC for the IXP 4xx series is very similar.
205 * There are fifteen endpoints, in addition to ep0.
206 *
207 * Such controller drivers work with a gadget driver. The gadget driver
208 * returns descriptors, implements configuration and data protocols used
209 * by the host to interact with this device, and allocates endpoints to
210 * the different protocol interfaces. The controller driver virtualizes
211 * usb hardware so that the gadget drivers will be more portable.
212 *
213 * This UDC hardware wants to implement a bit too much USB protocol, so
214 * it constrains the sorts of USB configuration change events that work.
215 * The errata for these chips are misleading; some "fixed" bugs from
216 * pxa250 a0/a1 b0/b1/b2 sure act like they're still there.
217 *
218 * Note that the UDC hardware supports DMA (except on IXP) but that's
219 * not used here. IN-DMA (to host) is simple enough, when the data is
220 * suitably aligned (16 bytes) ... the network stack doesn't do that,
221 * other software can. OUT-DMA is buggy in most chip versions, as well
222 * as poorly designed (data toggle not automatic). So this driver won't
223 * bother using DMA. (Mostly-working IN-DMA support was available in
224 * kernels before 2.6.23, but was never enabled or well tested.)
225 */
226
227 #define DRIVER_VERSION "30-June-2007"
228 #define DRIVER_DESC "PXA 25x USB Device Controller driver"
229
230
231 static const char driver_name [] = "pxa25x_udc";
232
233 static const char ep0name [] = "ep0";
234
235
236 #ifdef CONFIG_ARCH_IXP4XX
237
238 /* cpu-specific register addresses are compiled in to this code */
239 #ifdef CONFIG_ARCH_PXA
240 #error "Can't configure both IXP and PXA"
241 #endif
242
243 /* IXP doesn't yet support <linux/clk.h> */
244 #define clk_get(dev,name) NULL
245 #define clk_enable(clk) do { } while (0)
246 #define clk_disable(clk) do { } while (0)
247 #define clk_put(clk) do { } while (0)
248
249 #endif
250
251 #include "pxa25x_udc.h"
252
253
254 #ifdef CONFIG_USB_PXA25X_SMALL
255 #define SIZE_STR " (small)"
256 #else
257 #define SIZE_STR ""
258 #endif
259
260 /* ---------------------------------------------------------------------------
261 * endpoint related parts of the api to the usb controller hardware,
262 * used by gadget driver; and the inner talker-to-hardware core.
263 * ---------------------------------------------------------------------------
264 */
265
266 static void pxa25x_ep_fifo_flush (struct usb_ep *ep);
267 static void nuke (struct pxa25x_ep *, int status);
268
269 /* one GPIO should control a D+ pullup, so host sees this device (or not) */
270 static void pullup_off(void)
271 {
272 struct pxa2xx_udc_mach_info *mach = the_controller->mach;
273 int off_level = mach->gpio_pullup_inverted;
274
275 if (gpio_is_valid(mach->gpio_pullup))
276 gpio_set_value(mach->gpio_pullup, off_level);
277 else if (mach->udc_command)
278 mach->udc_command(PXA2XX_UDC_CMD_DISCONNECT);
279 }
280
281 static void pullup_on(void)
282 {
283 struct pxa2xx_udc_mach_info *mach = the_controller->mach;
284 int on_level = !mach->gpio_pullup_inverted;
285
286 if (gpio_is_valid(mach->gpio_pullup))
287 gpio_set_value(mach->gpio_pullup, on_level);
288 else if (mach->udc_command)
289 mach->udc_command(PXA2XX_UDC_CMD_CONNECT);
290 }
291
292 #if defined(CONFIG_CPU_BIG_ENDIAN)
293 /*
294 * IXP4xx has its buses wired up in a way that relies on never doing any
295 * byte swaps, independent of whether it runs in big-endian or little-endian
296 * mode, as explained by Krzysztof Hałasa.
297 *
298 * We only support pxa25x in little-endian mode, but it is very likely
299 * that it works the same way.
300 */
301 static inline void udc_set_reg(struct pxa25x_udc *dev, u32 reg, u32 val)
302 {
303 iowrite32be(val, dev->regs + reg);
304 }
305
306 static inline u32 udc_get_reg(struct pxa25x_udc *dev, u32 reg)
307 {
308 return ioread32be(dev->regs + reg);
309 }
310 #else
311 static inline void udc_set_reg(struct pxa25x_udc *dev, u32 reg, u32 val)
312 {
313 writel(val, dev->regs + reg);
314 }
315
316 static inline u32 udc_get_reg(struct pxa25x_udc *dev, u32 reg)
317 {
318 return readl(dev->regs + reg);
319 }
320 #endif
321
322 static void pio_irq_enable(struct pxa25x_ep *ep)
323 {
324 u32 bEndpointAddress = ep->bEndpointAddress & 0xf;
325
326 if (bEndpointAddress < 8)
327 udc_set_reg(ep->dev, UICR0, udc_get_reg(ep->dev, UICR0) &
328 ~(1 << bEndpointAddress));
329 else {
330 bEndpointAddress -= 8;
331 udc_set_reg(ep->dev, UICR1, udc_get_reg(ep->dev, UICR1) &
332 ~(1 << bEndpointAddress));
333 }
334 }
335
336 static void pio_irq_disable(struct pxa25x_ep *ep)
337 {
338 u32 bEndpointAddress = ep->bEndpointAddress & 0xf;
339
340 if (bEndpointAddress < 8)
341 udc_set_reg(ep->dev, UICR0, udc_get_reg(ep->dev, UICR0) |
342 (1 << bEndpointAddress));
343 else {
344 bEndpointAddress -= 8;
345 udc_set_reg(ep->dev, UICR1, udc_get_reg(ep->dev, UICR1) |
346 (1 << bEndpointAddress));
347 }
348 }
349
350 /* The UDCCR reg contains mask and interrupt status bits,
351 * so using '|=' isn't safe as it may ack an interrupt.
352 */
353 #define UDCCR_MASK_BITS (UDCCR_REM | UDCCR_SRM | UDCCR_UDE)
354
355 static inline void udc_set_mask_UDCCR(struct pxa25x_udc *dev, int mask)
356 {
357 u32 udccr = udc_get_reg(dev, UDCCR);
358
359 udc_set_reg(dev, (udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS), UDCCR);
360 }
361
362 static inline void udc_clear_mask_UDCCR(struct pxa25x_udc *dev, int mask)
363 {
364 u32 udccr = udc_get_reg(dev, UDCCR);
365
366 udc_set_reg(dev, (udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS), UDCCR);
367 }
368
369 static inline void udc_ack_int_UDCCR(struct pxa25x_udc *dev, int mask)
370 {
371 /* udccr contains the bits we dont want to change */
372 u32 udccr = udc_get_reg(dev, UDCCR) & UDCCR_MASK_BITS;
373
374 udc_set_reg(dev, udccr | (mask & ~UDCCR_MASK_BITS), UDCCR);
375 }
376
377 static inline u32 udc_ep_get_UDCCS(struct pxa25x_ep *ep)
378 {
379 return udc_get_reg(ep->dev, ep->regoff_udccs);
380 }
381
382 static inline void udc_ep_set_UDCCS(struct pxa25x_ep *ep, u32 data)
383 {
384 udc_set_reg(ep->dev, data, ep->regoff_udccs);
385 }
386
387 static inline u32 udc_ep0_get_UDCCS(struct pxa25x_udc *dev)
388 {
389 return udc_get_reg(dev, UDCCS0);
390 }
391
392 static inline void udc_ep0_set_UDCCS(struct pxa25x_udc *dev, u32 data)
393 {
394 udc_set_reg(dev, data, UDCCS0);
395 }
396
397 static inline u32 udc_ep_get_UDDR(struct pxa25x_ep *ep)
398 {
399 return udc_get_reg(ep->dev, ep->regoff_uddr);
400 }
401
402 static inline void udc_ep_set_UDDR(struct pxa25x_ep *ep, u32 data)
403 {
404 udc_set_reg(ep->dev, data, ep->regoff_uddr);
405 }
406
407 static inline u32 udc_ep_get_UBCR(struct pxa25x_ep *ep)
408 {
409 return udc_get_reg(ep->dev, ep->regoff_ubcr);
410 }
411
412 /*
413 * endpoint enable/disable
414 *
415 * we need to verify the descriptors used to enable endpoints. since pxa25x
416 * endpoint configurations are fixed, and are pretty much always enabled,
417 * there's not a lot to manage here.
418 *
419 * because pxa25x can't selectively initialize bulk (or interrupt) endpoints,
420 * (resetting endpoint halt and toggle), SET_INTERFACE is unusable except
421 * for a single interface (with only the default altsetting) and for gadget
422 * drivers that don't halt endpoints (not reset by set_interface). that also
423 * means that if you use ISO, you must violate the USB spec rule that all
424 * iso endpoints must be in non-default altsettings.
425 */
426 static int pxa25x_ep_enable (struct usb_ep *_ep,
427 const struct usb_endpoint_descriptor *desc)
428 {
429 struct pxa25x_ep *ep;
430 struct pxa25x_udc *dev;
431
432 ep = container_of (_ep, struct pxa25x_ep, ep);
433 if (!_ep || !desc || _ep->name == ep0name
434 || desc->bDescriptorType != USB_DT_ENDPOINT
435 || ep->bEndpointAddress != desc->bEndpointAddress
436 || ep->fifo_size < usb_endpoint_maxp (desc)) {
437 DMSG("%s, bad ep or descriptor\n", __func__);
438 return -EINVAL;
439 }
440
441 /* xfer types must match, except that interrupt ~= bulk */
442 if (ep->bmAttributes != desc->bmAttributes
443 && ep->bmAttributes != USB_ENDPOINT_XFER_BULK
444 && desc->bmAttributes != USB_ENDPOINT_XFER_INT) {
445 DMSG("%s, %s type mismatch\n", __func__, _ep->name);
446 return -EINVAL;
447 }
448
449 /* hardware _could_ do smaller, but driver doesn't */
450 if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
451 && usb_endpoint_maxp (desc)
452 != BULK_FIFO_SIZE)
453 || !desc->wMaxPacketSize) {
454 DMSG("%s, bad %s maxpacket\n", __func__, _ep->name);
455 return -ERANGE;
456 }
457
458 dev = ep->dev;
459 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN) {
460 DMSG("%s, bogus device state\n", __func__);
461 return -ESHUTDOWN;
462 }
463
464 ep->ep.desc = desc;
465 ep->stopped = 0;
466 ep->pio_irqs = 0;
467 ep->ep.maxpacket = usb_endpoint_maxp (desc);
468
469 /* flush fifo (mostly for OUT buffers) */
470 pxa25x_ep_fifo_flush (_ep);
471
472 /* ... reset halt state too, if we could ... */
473
474 DBG(DBG_VERBOSE, "enabled %s\n", _ep->name);
475 return 0;
476 }
477
478 static int pxa25x_ep_disable (struct usb_ep *_ep)
479 {
480 struct pxa25x_ep *ep;
481 unsigned long flags;
482
483 ep = container_of (_ep, struct pxa25x_ep, ep);
484 if (!_ep || !ep->ep.desc) {
485 DMSG("%s, %s not enabled\n", __func__,
486 _ep ? ep->ep.name : NULL);
487 return -EINVAL;
488 }
489 local_irq_save(flags);
490
491 nuke (ep, -ESHUTDOWN);
492
493 /* flush fifo (mostly for IN buffers) */
494 pxa25x_ep_fifo_flush (_ep);
495
496 ep->ep.desc = NULL;
497 ep->stopped = 1;
498
499 local_irq_restore(flags);
500 DBG(DBG_VERBOSE, "%s disabled\n", _ep->name);
501 return 0;
502 }
503
504 /*-------------------------------------------------------------------------*/
505
506 /* for the pxa25x, these can just wrap kmalloc/kfree. gadget drivers
507 * must still pass correctly initialized endpoints, since other controller
508 * drivers may care about how it's currently set up (dma issues etc).
509 */
510
511 /*
512 * pxa25x_ep_alloc_request - allocate a request data structure
513 */
514 static struct usb_request *
515 pxa25x_ep_alloc_request (struct usb_ep *_ep, gfp_t gfp_flags)
516 {
517 struct pxa25x_request *req;
518
519 req = kzalloc(sizeof(*req), gfp_flags);
520 if (!req)
521 return NULL;
522
523 INIT_LIST_HEAD (&req->queue);
524 return &req->req;
525 }
526
527
528 /*
529 * pxa25x_ep_free_request - deallocate a request data structure
530 */
531 static void
532 pxa25x_ep_free_request (struct usb_ep *_ep, struct usb_request *_req)
533 {
534 struct pxa25x_request *req;
535
536 req = container_of (_req, struct pxa25x_request, req);
537 WARN_ON(!list_empty (&req->queue));
538 kfree(req);
539 }
540
541 /*-------------------------------------------------------------------------*/
542
543 /*
544 * done - retire a request; caller blocked irqs
545 */
546 static void done(struct pxa25x_ep *ep, struct pxa25x_request *req, int status)
547 {
548 unsigned stopped = ep->stopped;
549
550 list_del_init(&req->queue);
551
552 if (likely (req->req.status == -EINPROGRESS))
553 req->req.status = status;
554 else
555 status = req->req.status;
556
557 if (status && status != -ESHUTDOWN)
558 DBG(DBG_VERBOSE, "complete %s req %p stat %d len %u/%u\n",
559 ep->ep.name, &req->req, status,
560 req->req.actual, req->req.length);
561
562 /* don't modify queue heads during completion callback */
563 ep->stopped = 1;
564 usb_gadget_giveback_request(&ep->ep, &req->req);
565 ep->stopped = stopped;
566 }
567
568
569 static inline void ep0_idle (struct pxa25x_udc *dev)
570 {
571 dev->ep0state = EP0_IDLE;
572 }
573
574 static int
575 write_packet(struct pxa25x_ep *ep, struct pxa25x_request *req, unsigned max)
576 {
577 u8 *buf;
578 unsigned length, count;
579
580 buf = req->req.buf + req->req.actual;
581 prefetch(buf);
582
583 /* how big will this packet be? */
584 length = min(req->req.length - req->req.actual, max);
585 req->req.actual += length;
586
587 count = length;
588 while (likely(count--))
589 udc_ep_set_UDDR(ep, *buf++);
590
591 return length;
592 }
593
594 /*
595 * write to an IN endpoint fifo, as many packets as possible.
596 * irqs will use this to write the rest later.
597 * caller guarantees at least one packet buffer is ready (or a zlp).
598 */
599 static int
600 write_fifo (struct pxa25x_ep *ep, struct pxa25x_request *req)
601 {
602 unsigned max;
603
604 max = usb_endpoint_maxp(ep->ep.desc);
605 do {
606 unsigned count;
607 int is_last, is_short;
608
609 count = write_packet(ep, req, max);
610
611 /* last packet is usually short (or a zlp) */
612 if (unlikely (count != max))
613 is_last = is_short = 1;
614 else {
615 if (likely(req->req.length != req->req.actual)
616 || req->req.zero)
617 is_last = 0;
618 else
619 is_last = 1;
620 /* interrupt/iso maxpacket may not fill the fifo */
621 is_short = unlikely (max < ep->fifo_size);
622 }
623
624 DBG(DBG_VERY_NOISY, "wrote %s %d bytes%s%s %d left %p\n",
625 ep->ep.name, count,
626 is_last ? "/L" : "", is_short ? "/S" : "",
627 req->req.length - req->req.actual, req);
628
629 /* let loose that packet. maybe try writing another one,
630 * double buffering might work. TSP, TPC, and TFS
631 * bit values are the same for all normal IN endpoints.
632 */
633 udc_ep_set_UDCCS(ep, UDCCS_BI_TPC);
634 if (is_short)
635 udc_ep_set_UDCCS(ep, UDCCS_BI_TSP);
636
637 /* requests complete when all IN data is in the FIFO */
638 if (is_last) {
639 done (ep, req, 0);
640 if (list_empty(&ep->queue))
641 pio_irq_disable(ep);
642 return 1;
643 }
644
645 // TODO experiment: how robust can fifo mode tweaking be?
646 // double buffering is off in the default fifo mode, which
647 // prevents TFS from being set here.
648
649 } while (udc_ep_get_UDCCS(ep) & UDCCS_BI_TFS);
650 return 0;
651 }
652
653 /* caller asserts req->pending (ep0 irq status nyet cleared); starts
654 * ep0 data stage. these chips want very simple state transitions.
655 */
656 static inline
657 void ep0start(struct pxa25x_udc *dev, u32 flags, const char *tag)
658 {
659 udc_ep0_set_UDCCS(dev, flags|UDCCS0_SA|UDCCS0_OPR);
660 udc_set_reg(dev, USIR0, USIR0_IR0);
661 dev->req_pending = 0;
662 DBG(DBG_VERY_NOISY, "%s %s, %02x/%02x\n",
663 __func__, tag, udc_ep0_get_UDCCS(dev), flags);
664 }
665
666 static int
667 write_ep0_fifo (struct pxa25x_ep *ep, struct pxa25x_request *req)
668 {
669 struct pxa25x_udc *dev = ep->dev;
670 unsigned count;
671 int is_short;
672
673 count = write_packet(&dev->ep[0], req, EP0_FIFO_SIZE);
674 ep->dev->stats.write.bytes += count;
675
676 /* last packet "must be" short (or a zlp) */
677 is_short = (count != EP0_FIFO_SIZE);
678
679 DBG(DBG_VERY_NOISY, "ep0in %d bytes %d left %p\n", count,
680 req->req.length - req->req.actual, req);
681
682 if (unlikely (is_short)) {
683 if (ep->dev->req_pending)
684 ep0start(ep->dev, UDCCS0_IPR, "short IN");
685 else
686 udc_ep0_set_UDCCS(dev, UDCCS0_IPR);
687
688 count = req->req.length;
689 done (ep, req, 0);
690 ep0_idle(ep->dev);
691 #ifndef CONFIG_ARCH_IXP4XX
692 #if 1
693 /* This seems to get rid of lost status irqs in some cases:
694 * host responds quickly, or next request involves config
695 * change automagic, or should have been hidden, or ...
696 *
697 * FIXME get rid of all udelays possible...
698 */
699 if (count >= EP0_FIFO_SIZE) {
700 count = 100;
701 do {
702 if ((udc_ep0_get_UDCCS(dev) & UDCCS0_OPR) != 0) {
703 /* clear OPR, generate ack */
704 udc_ep0_set_UDCCS(dev, UDCCS0_OPR);
705 break;
706 }
707 count--;
708 udelay(1);
709 } while (count);
710 }
711 #endif
712 #endif
713 } else if (ep->dev->req_pending)
714 ep0start(ep->dev, 0, "IN");
715 return is_short;
716 }
717
718
719 /*
720 * read_fifo - unload packet(s) from the fifo we use for usb OUT
721 * transfers and put them into the request. caller should have made
722 * sure there's at least one packet ready.
723 *
724 * returns true if the request completed because of short packet or the
725 * request buffer having filled (and maybe overran till end-of-packet).
726 */
727 static int
728 read_fifo (struct pxa25x_ep *ep, struct pxa25x_request *req)
729 {
730 for (;;) {
731 u32 udccs;
732 u8 *buf;
733 unsigned bufferspace, count, is_short;
734
735 /* make sure there's a packet in the FIFO.
736 * UDCCS_{BO,IO}_RPC are all the same bit value.
737 * UDCCS_{BO,IO}_RNE are all the same bit value.
738 */
739 udccs = udc_ep_get_UDCCS(ep);
740 if (unlikely ((udccs & UDCCS_BO_RPC) == 0))
741 break;
742 buf = req->req.buf + req->req.actual;
743 prefetchw(buf);
744 bufferspace = req->req.length - req->req.actual;
745
746 /* read all bytes from this packet */
747 if (likely (udccs & UDCCS_BO_RNE)) {
748 count = 1 + (0x0ff & udc_ep_get_UBCR(ep));
749 req->req.actual += min (count, bufferspace);
750 } else /* zlp */
751 count = 0;
752 is_short = (count < ep->ep.maxpacket);
753 DBG(DBG_VERY_NOISY, "read %s %02x, %d bytes%s req %p %d/%d\n",
754 ep->ep.name, udccs, count,
755 is_short ? "/S" : "",
756 req, req->req.actual, req->req.length);
757 while (likely (count-- != 0)) {
758 u8 byte = (u8) udc_ep_get_UDDR(ep);
759
760 if (unlikely (bufferspace == 0)) {
761 /* this happens when the driver's buffer
762 * is smaller than what the host sent.
763 * discard the extra data.
764 */
765 if (req->req.status != -EOVERFLOW)
766 DMSG("%s overflow %d\n",
767 ep->ep.name, count);
768 req->req.status = -EOVERFLOW;
769 } else {
770 *buf++ = byte;
771 bufferspace--;
772 }
773 }
774 udc_ep_set_UDCCS(ep, UDCCS_BO_RPC);
775 /* RPC/RSP/RNE could now reflect the other packet buffer */
776
777 /* iso is one request per packet */
778 if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
779 if (udccs & UDCCS_IO_ROF)
780 req->req.status = -EHOSTUNREACH;
781 /* more like "is_done" */
782 is_short = 1;
783 }
784
785 /* completion */
786 if (is_short || req->req.actual == req->req.length) {
787 done (ep, req, 0);
788 if (list_empty(&ep->queue))
789 pio_irq_disable(ep);
790 return 1;
791 }
792
793 /* finished that packet. the next one may be waiting... */
794 }
795 return 0;
796 }
797
798 /*
799 * special ep0 version of the above. no UBCR0 or double buffering; status
800 * handshaking is magic. most device protocols don't need control-OUT.
801 * CDC vendor commands (and RNDIS), mass storage CB/CBI, and some other
802 * protocols do use them.
803 */
804 static int
805 read_ep0_fifo (struct pxa25x_ep *ep, struct pxa25x_request *req)
806 {
807 u8 *buf, byte;
808 unsigned bufferspace;
809
810 buf = req->req.buf + req->req.actual;
811 bufferspace = req->req.length - req->req.actual;
812
813 while (udc_ep_get_UDCCS(ep) & UDCCS0_RNE) {
814 byte = (u8) UDDR0;
815
816 if (unlikely (bufferspace == 0)) {
817 /* this happens when the driver's buffer
818 * is smaller than what the host sent.
819 * discard the extra data.
820 */
821 if (req->req.status != -EOVERFLOW)
822 DMSG("%s overflow\n", ep->ep.name);
823 req->req.status = -EOVERFLOW;
824 } else {
825 *buf++ = byte;
826 req->req.actual++;
827 bufferspace--;
828 }
829 }
830
831 udc_ep_set_UDCCS(ep, UDCCS0_OPR | UDCCS0_IPR);
832
833 /* completion */
834 if (req->req.actual >= req->req.length)
835 return 1;
836
837 /* finished that packet. the next one may be waiting... */
838 return 0;
839 }
840
841 /*-------------------------------------------------------------------------*/
842
843 static int
844 pxa25x_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
845 {
846 struct pxa25x_request *req;
847 struct pxa25x_ep *ep;
848 struct pxa25x_udc *dev;
849 unsigned long flags;
850
851 req = container_of(_req, struct pxa25x_request, req);
852 if (unlikely (!_req || !_req->complete || !_req->buf
853 || !list_empty(&req->queue))) {
854 DMSG("%s, bad params\n", __func__);
855 return -EINVAL;
856 }
857
858 ep = container_of(_ep, struct pxa25x_ep, ep);
859 if (unlikely(!_ep || (!ep->ep.desc && ep->ep.name != ep0name))) {
860 DMSG("%s, bad ep\n", __func__);
861 return -EINVAL;
862 }
863
864 dev = ep->dev;
865 if (unlikely (!dev->driver
866 || dev->gadget.speed == USB_SPEED_UNKNOWN)) {
867 DMSG("%s, bogus device state\n", __func__);
868 return -ESHUTDOWN;
869 }
870
871 /* iso is always one packet per request, that's the only way
872 * we can report per-packet status. that also helps with dma.
873 */
874 if (unlikely (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC
875 && req->req.length > usb_endpoint_maxp(ep->ep.desc)))
876 return -EMSGSIZE;
877
878 DBG(DBG_NOISY, "%s queue req %p, len %d buf %p\n",
879 _ep->name, _req, _req->length, _req->buf);
880
881 local_irq_save(flags);
882
883 _req->status = -EINPROGRESS;
884 _req->actual = 0;
885
886 /* kickstart this i/o queue? */
887 if (list_empty(&ep->queue) && !ep->stopped) {
888 if (ep->ep.desc == NULL/* ep0 */) {
889 unsigned length = _req->length;
890
891 switch (dev->ep0state) {
892 case EP0_IN_DATA_PHASE:
893 dev->stats.write.ops++;
894 if (write_ep0_fifo(ep, req))
895 req = NULL;
896 break;
897
898 case EP0_OUT_DATA_PHASE:
899 dev->stats.read.ops++;
900 /* messy ... */
901 if (dev->req_config) {
902 DBG(DBG_VERBOSE, "ep0 config ack%s\n",
903 dev->has_cfr ? "" : " raced");
904 if (dev->has_cfr)
905 udc_set_reg(dev, UDCCFR, UDCCFR_AREN |
906 UDCCFR_ACM | UDCCFR_MB1);
907 done(ep, req, 0);
908 dev->ep0state = EP0_END_XFER;
909 local_irq_restore (flags);
910 return 0;
911 }
912 if (dev->req_pending)
913 ep0start(dev, UDCCS0_IPR, "OUT");
914 if (length == 0 || ((udc_ep0_get_UDCCS(dev) & UDCCS0_RNE) != 0
915 && read_ep0_fifo(ep, req))) {
916 ep0_idle(dev);
917 done(ep, req, 0);
918 req = NULL;
919 }
920 break;
921
922 default:
923 DMSG("ep0 i/o, odd state %d\n", dev->ep0state);
924 local_irq_restore (flags);
925 return -EL2HLT;
926 }
927 /* can the FIFO can satisfy the request immediately? */
928 } else if ((ep->bEndpointAddress & USB_DIR_IN) != 0) {
929 if ((udc_ep_get_UDCCS(ep) & UDCCS_BI_TFS) != 0
930 && write_fifo(ep, req))
931 req = NULL;
932 } else if ((udc_ep_get_UDCCS(ep) & UDCCS_BO_RFS) != 0
933 && read_fifo(ep, req)) {
934 req = NULL;
935 }
936
937 if (likely(req && ep->ep.desc))
938 pio_irq_enable(ep);
939 }
940
941 /* pio or dma irq handler advances the queue. */
942 if (likely(req != NULL))
943 list_add_tail(&req->queue, &ep->queue);
944 local_irq_restore(flags);
945
946 return 0;
947 }
948
949
950 /*
951 * nuke - dequeue ALL requests
952 */
953 static void nuke(struct pxa25x_ep *ep, int status)
954 {
955 struct pxa25x_request *req;
956
957 /* called with irqs blocked */
958 while (!list_empty(&ep->queue)) {
959 req = list_entry(ep->queue.next,
960 struct pxa25x_request,
961 queue);
962 done(ep, req, status);
963 }
964 if (ep->ep.desc)
965 pio_irq_disable(ep);
966 }
967
968
969 /* dequeue JUST ONE request */
970 static int pxa25x_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
971 {
972 struct pxa25x_ep *ep;
973 struct pxa25x_request *req;
974 unsigned long flags;
975
976 ep = container_of(_ep, struct pxa25x_ep, ep);
977 if (!_ep || ep->ep.name == ep0name)
978 return -EINVAL;
979
980 local_irq_save(flags);
981
982 /* make sure it's actually queued on this endpoint */
983 list_for_each_entry (req, &ep->queue, queue) {
984 if (&req->req == _req)
985 break;
986 }
987 if (&req->req != _req) {
988 local_irq_restore(flags);
989 return -EINVAL;
990 }
991
992 done(ep, req, -ECONNRESET);
993
994 local_irq_restore(flags);
995 return 0;
996 }
997
998 /*-------------------------------------------------------------------------*/
999
1000 static int pxa25x_ep_set_halt(struct usb_ep *_ep, int value)
1001 {
1002 struct pxa25x_ep *ep;
1003 unsigned long flags;
1004
1005 ep = container_of(_ep, struct pxa25x_ep, ep);
1006 if (unlikely (!_ep
1007 || (!ep->ep.desc && ep->ep.name != ep0name))
1008 || ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
1009 DMSG("%s, bad ep\n", __func__);
1010 return -EINVAL;
1011 }
1012 if (value == 0) {
1013 /* this path (reset toggle+halt) is needed to implement
1014 * SET_INTERFACE on normal hardware. but it can't be
1015 * done from software on the PXA UDC, and the hardware
1016 * forgets to do it as part of SET_INTERFACE automagic.
1017 */
1018 DMSG("only host can clear %s halt\n", _ep->name);
1019 return -EROFS;
1020 }
1021
1022 local_irq_save(flags);
1023
1024 if ((ep->bEndpointAddress & USB_DIR_IN) != 0
1025 && ((udc_ep_get_UDCCS(ep) & UDCCS_BI_TFS) == 0
1026 || !list_empty(&ep->queue))) {
1027 local_irq_restore(flags);
1028 return -EAGAIN;
1029 }
1030
1031 /* FST bit is the same for control, bulk in, bulk out, interrupt in */
1032 udc_ep_set_UDCCS(ep, UDCCS_BI_FST|UDCCS_BI_FTF);
1033
1034 /* ep0 needs special care */
1035 if (!ep->ep.desc) {
1036 start_watchdog(ep->dev);
1037 ep->dev->req_pending = 0;
1038 ep->dev->ep0state = EP0_STALL;
1039
1040 /* and bulk/intr endpoints like dropping stalls too */
1041 } else {
1042 unsigned i;
1043 for (i = 0; i < 1000; i += 20) {
1044 if (udc_ep_get_UDCCS(ep) & UDCCS_BI_SST)
1045 break;
1046 udelay(20);
1047 }
1048 }
1049 local_irq_restore(flags);
1050
1051 DBG(DBG_VERBOSE, "%s halt\n", _ep->name);
1052 return 0;
1053 }
1054
1055 static int pxa25x_ep_fifo_status(struct usb_ep *_ep)
1056 {
1057 struct pxa25x_ep *ep;
1058
1059 ep = container_of(_ep, struct pxa25x_ep, ep);
1060 if (!_ep) {
1061 DMSG("%s, bad ep\n", __func__);
1062 return -ENODEV;
1063 }
1064 /* pxa can't report unclaimed bytes from IN fifos */
1065 if ((ep->bEndpointAddress & USB_DIR_IN) != 0)
1066 return -EOPNOTSUPP;
1067 if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN
1068 || (udc_ep_get_UDCCS(ep) & UDCCS_BO_RFS) == 0)
1069 return 0;
1070 else
1071 return (udc_ep_get_UBCR(ep) & 0xfff) + 1;
1072 }
1073
1074 static void pxa25x_ep_fifo_flush(struct usb_ep *_ep)
1075 {
1076 struct pxa25x_ep *ep;
1077
1078 ep = container_of(_ep, struct pxa25x_ep, ep);
1079 if (!_ep || ep->ep.name == ep0name || !list_empty(&ep->queue)) {
1080 DMSG("%s, bad ep\n", __func__);
1081 return;
1082 }
1083
1084 /* toggle and halt bits stay unchanged */
1085
1086 /* for OUT, just read and discard the FIFO contents. */
1087 if ((ep->bEndpointAddress & USB_DIR_IN) == 0) {
1088 while (((udc_ep_get_UDCCS(ep)) & UDCCS_BO_RNE) != 0)
1089 (void)udc_ep_get_UDDR(ep);
1090 return;
1091 }
1092
1093 /* most IN status is the same, but ISO can't stall */
1094 udc_ep_set_UDCCS(ep, UDCCS_BI_TPC|UDCCS_BI_FTF|UDCCS_BI_TUR
1095 | (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC
1096 ? 0 : UDCCS_BI_SST));
1097 }
1098
1099
1100 static struct usb_ep_ops pxa25x_ep_ops = {
1101 .enable = pxa25x_ep_enable,
1102 .disable = pxa25x_ep_disable,
1103
1104 .alloc_request = pxa25x_ep_alloc_request,
1105 .free_request = pxa25x_ep_free_request,
1106
1107 .queue = pxa25x_ep_queue,
1108 .dequeue = pxa25x_ep_dequeue,
1109
1110 .set_halt = pxa25x_ep_set_halt,
1111 .fifo_status = pxa25x_ep_fifo_status,
1112 .fifo_flush = pxa25x_ep_fifo_flush,
1113 };
1114
1115
1116 /* ---------------------------------------------------------------------------
1117 * device-scoped parts of the api to the usb controller hardware
1118 * ---------------------------------------------------------------------------
1119 */
1120
1121 static int pxa25x_udc_get_frame(struct usb_gadget *_gadget)
1122 {
1123 struct pxa25x_udc *dev;
1124
1125 dev = container_of(_gadget, struct pxa25x_udc, gadget);
1126 return ((udc_get_reg(dev, UFNRH) & 0x07) << 8) |
1127 (udc_get_reg(dev, UFNRL) & 0xff);
1128 }
1129
1130 static int pxa25x_udc_wakeup(struct usb_gadget *_gadget)
1131 {
1132 struct pxa25x_udc *udc;
1133
1134 udc = container_of(_gadget, struct pxa25x_udc, gadget);
1135
1136 /* host may not have enabled remote wakeup */
1137 if ((udc_ep0_get_UDCCS(udc) & UDCCS0_DRWF) == 0)
1138 return -EHOSTUNREACH;
1139 udc_set_mask_UDCCR(udc, UDCCR_RSM);
1140 return 0;
1141 }
1142
1143 static void stop_activity(struct pxa25x_udc *, struct usb_gadget_driver *);
1144 static void udc_enable (struct pxa25x_udc *);
1145 static void udc_disable(struct pxa25x_udc *);
1146
1147 /* We disable the UDC -- and its 48 MHz clock -- whenever it's not
1148 * in active use.
1149 */
1150 static int pullup(struct pxa25x_udc *udc)
1151 {
1152 int is_active = udc->vbus && udc->pullup && !udc->suspended;
1153 DMSG("%s\n", is_active ? "active" : "inactive");
1154 if (is_active) {
1155 if (!udc->active) {
1156 udc->active = 1;
1157 /* Enable clock for USB device */
1158 clk_enable(udc->clk);
1159 udc_enable(udc);
1160 }
1161 } else {
1162 if (udc->active) {
1163 if (udc->gadget.speed != USB_SPEED_UNKNOWN) {
1164 DMSG("disconnect %s\n", udc->driver
1165 ? udc->driver->driver.name
1166 : "(no driver)");
1167 stop_activity(udc, udc->driver);
1168 }
1169 udc_disable(udc);
1170 /* Disable clock for USB device */
1171 clk_disable(udc->clk);
1172 udc->active = 0;
1173 }
1174
1175 }
1176 return 0;
1177 }
1178
1179 /* VBUS reporting logically comes from a transceiver */
1180 static int pxa25x_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1181 {
1182 struct pxa25x_udc *udc;
1183
1184 udc = container_of(_gadget, struct pxa25x_udc, gadget);
1185 udc->vbus = is_active;
1186 DMSG("vbus %s\n", is_active ? "supplied" : "inactive");
1187 pullup(udc);
1188 return 0;
1189 }
1190
1191 /* drivers may have software control over D+ pullup */
1192 static int pxa25x_udc_pullup(struct usb_gadget *_gadget, int is_active)
1193 {
1194 struct pxa25x_udc *udc;
1195
1196 udc = container_of(_gadget, struct pxa25x_udc, gadget);
1197
1198 /* not all boards support pullup control */
1199 if (!gpio_is_valid(udc->mach->gpio_pullup) && !udc->mach->udc_command)
1200 return -EOPNOTSUPP;
1201
1202 udc->pullup = (is_active != 0);
1203 pullup(udc);
1204 return 0;
1205 }
1206
1207 /* boards may consume current from VBUS, up to 100-500mA based on config.
1208 * the 500uA suspend ceiling means that exclusively vbus-powered PXA designs
1209 * violate USB specs.
1210 */
1211 static int pxa25x_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA)
1212 {
1213 struct pxa25x_udc *udc;
1214
1215 udc = container_of(_gadget, struct pxa25x_udc, gadget);
1216
1217 if (!IS_ERR_OR_NULL(udc->transceiver))
1218 return usb_phy_set_power(udc->transceiver, mA);
1219 return -EOPNOTSUPP;
1220 }
1221
1222 static int pxa25x_udc_start(struct usb_gadget *g,
1223 struct usb_gadget_driver *driver);
1224 static int pxa25x_udc_stop(struct usb_gadget *g);
1225
1226 static const struct usb_gadget_ops pxa25x_udc_ops = {
1227 .get_frame = pxa25x_udc_get_frame,
1228 .wakeup = pxa25x_udc_wakeup,
1229 .vbus_session = pxa25x_udc_vbus_session,
1230 .pullup = pxa25x_udc_pullup,
1231 .vbus_draw = pxa25x_udc_vbus_draw,
1232 .udc_start = pxa25x_udc_start,
1233 .udc_stop = pxa25x_udc_stop,
1234 };
1235
1236 /*-------------------------------------------------------------------------*/
1237
1238 #ifdef CONFIG_USB_GADGET_DEBUG_FS
1239
1240 static int
1241 udc_seq_show(struct seq_file *m, void *_d)
1242 {
1243 struct pxa25x_udc *dev = m->private;
1244 unsigned long flags;
1245 int i;
1246 u32 tmp;
1247
1248 local_irq_save(flags);
1249
1250 /* basic device status */
1251 seq_printf(m, DRIVER_DESC "\n"
1252 "%s version: %s\nGadget driver: %s\nHost %s\n\n",
1253 driver_name, DRIVER_VERSION SIZE_STR "(pio)",
1254 dev->driver ? dev->driver->driver.name : "(none)",
1255 dev->gadget.speed == USB_SPEED_FULL ? "full speed" : "disconnected");
1256
1257 /* registers for device and ep0 */
1258 seq_printf(m,
1259 "uicr %02X.%02X, usir %02X.%02x, ufnr %02X.%02X\n",
1260 udc_get_reg(dev, UICR1), udc_get_reg(dev, UICR0),
1261 udc_get_reg(dev, USIR1), udc_get_reg(dev, USIR0),
1262 udc_get_reg(dev, UFNRH), udc_get_reg(dev, UFNRL));
1263
1264 tmp = udc_get_reg(dev, UDCCR);
1265 seq_printf(m,
1266 "udccr %02X =%s%s%s%s%s%s%s%s\n", tmp,
1267 (tmp & UDCCR_REM) ? " rem" : "",
1268 (tmp & UDCCR_RSTIR) ? " rstir" : "",
1269 (tmp & UDCCR_SRM) ? " srm" : "",
1270 (tmp & UDCCR_SUSIR) ? " susir" : "",
1271 (tmp & UDCCR_RESIR) ? " resir" : "",
1272 (tmp & UDCCR_RSM) ? " rsm" : "",
1273 (tmp & UDCCR_UDA) ? " uda" : "",
1274 (tmp & UDCCR_UDE) ? " ude" : "");
1275
1276 tmp = udc_ep0_get_UDCCS(dev);
1277 seq_printf(m,
1278 "udccs0 %02X =%s%s%s%s%s%s%s%s\n", tmp,
1279 (tmp & UDCCS0_SA) ? " sa" : "",
1280 (tmp & UDCCS0_RNE) ? " rne" : "",
1281 (tmp & UDCCS0_FST) ? " fst" : "",
1282 (tmp & UDCCS0_SST) ? " sst" : "",
1283 (tmp & UDCCS0_DRWF) ? " dwrf" : "",
1284 (tmp & UDCCS0_FTF) ? " ftf" : "",
1285 (tmp & UDCCS0_IPR) ? " ipr" : "",
1286 (tmp & UDCCS0_OPR) ? " opr" : "");
1287
1288 if (dev->has_cfr) {
1289 tmp = udc_get_reg(dev, UDCCFR);
1290 seq_printf(m,
1291 "udccfr %02X =%s%s\n", tmp,
1292 (tmp & UDCCFR_AREN) ? " aren" : "",
1293 (tmp & UDCCFR_ACM) ? " acm" : "");
1294 }
1295
1296 if (dev->gadget.speed != USB_SPEED_FULL || !dev->driver)
1297 goto done;
1298
1299 seq_printf(m, "ep0 IN %lu/%lu, OUT %lu/%lu\nirqs %lu\n\n",
1300 dev->stats.write.bytes, dev->stats.write.ops,
1301 dev->stats.read.bytes, dev->stats.read.ops,
1302 dev->stats.irqs);
1303
1304 /* dump endpoint queues */
1305 for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) {
1306 struct pxa25x_ep *ep = &dev->ep [i];
1307 struct pxa25x_request *req;
1308
1309 if (i != 0) {
1310 const struct usb_endpoint_descriptor *desc;
1311
1312 desc = ep->ep.desc;
1313 if (!desc)
1314 continue;
1315 tmp = udc_ep_get_UDCCS(&dev->ep[i]);
1316 seq_printf(m,
1317 "%s max %d %s udccs %02x irqs %lu\n",
1318 ep->ep.name, usb_endpoint_maxp(desc),
1319 "pio", tmp, ep->pio_irqs);
1320 /* TODO translate all five groups of udccs bits! */
1321
1322 } else /* ep0 should only have one transfer queued */
1323 seq_printf(m, "ep0 max 16 pio irqs %lu\n",
1324 ep->pio_irqs);
1325
1326 if (list_empty(&ep->queue)) {
1327 seq_printf(m, "\t(nothing queued)\n");
1328 continue;
1329 }
1330 list_for_each_entry(req, &ep->queue, queue) {
1331 seq_printf(m,
1332 "\treq %p len %d/%d buf %p\n",
1333 &req->req, req->req.actual,
1334 req->req.length, req->req.buf);
1335 }
1336 }
1337
1338 done:
1339 local_irq_restore(flags);
1340 return 0;
1341 }
1342
1343 static int
1344 udc_debugfs_open(struct inode *inode, struct file *file)
1345 {
1346 return single_open(file, udc_seq_show, inode->i_private);
1347 }
1348
1349 static const struct file_operations debug_fops = {
1350 .open = udc_debugfs_open,
1351 .read = seq_read,
1352 .llseek = seq_lseek,
1353 .release = single_release,
1354 .owner = THIS_MODULE,
1355 };
1356
1357 #define create_debug_files(dev) \
1358 do { \
1359 dev->debugfs_udc = debugfs_create_file(dev->gadget.name, \
1360 S_IRUGO, NULL, dev, &debug_fops); \
1361 } while (0)
1362 #define remove_debug_files(dev) debugfs_remove(dev->debugfs_udc)
1363
1364 #else /* !CONFIG_USB_GADGET_DEBUG_FILES */
1365
1366 #define create_debug_files(dev) do {} while (0)
1367 #define remove_debug_files(dev) do {} while (0)
1368
1369 #endif /* CONFIG_USB_GADGET_DEBUG_FILES */
1370
1371 /*-------------------------------------------------------------------------*/
1372
1373 /*
1374 * udc_disable - disable USB device controller
1375 */
1376 static void udc_disable(struct pxa25x_udc *dev)
1377 {
1378 /* block all irqs */
1379 udc_set_mask_UDCCR(dev, UDCCR_SRM|UDCCR_REM);
1380 udc_set_reg(dev, UICR0, 0xff);
1381 udc_set_reg(dev, UICR1, 0xff);
1382 udc_set_reg(dev, UFNRH, UFNRH_SIM);
1383
1384 /* if hardware supports it, disconnect from usb */
1385 pullup_off();
1386
1387 udc_clear_mask_UDCCR(dev, UDCCR_UDE);
1388
1389 ep0_idle (dev);
1390 dev->gadget.speed = USB_SPEED_UNKNOWN;
1391 }
1392
1393
1394 /*
1395 * udc_reinit - initialize software state
1396 */
1397 static void udc_reinit(struct pxa25x_udc *dev)
1398 {
1399 u32 i;
1400
1401 /* device/ep0 records init */
1402 INIT_LIST_HEAD (&dev->gadget.ep_list);
1403 INIT_LIST_HEAD (&dev->gadget.ep0->ep_list);
1404 dev->ep0state = EP0_IDLE;
1405 dev->gadget.quirk_altset_not_supp = 1;
1406
1407 /* basic endpoint records init */
1408 for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) {
1409 struct pxa25x_ep *ep = &dev->ep[i];
1410
1411 if (i != 0)
1412 list_add_tail (&ep->ep.ep_list, &dev->gadget.ep_list);
1413
1414 ep->ep.desc = NULL;
1415 ep->stopped = 0;
1416 INIT_LIST_HEAD (&ep->queue);
1417 ep->pio_irqs = 0;
1418 usb_ep_set_maxpacket_limit(&ep->ep, ep->ep.maxpacket);
1419 }
1420
1421 /* the rest was statically initialized, and is read-only */
1422 }
1423
1424 /* until it's enabled, this UDC should be completely invisible
1425 * to any USB host.
1426 */
1427 static void udc_enable (struct pxa25x_udc *dev)
1428 {
1429 udc_clear_mask_UDCCR(dev, UDCCR_UDE);
1430
1431 /* try to clear these bits before we enable the udc */
1432 udc_ack_int_UDCCR(dev, UDCCR_SUSIR|/*UDCCR_RSTIR|*/UDCCR_RESIR);
1433
1434 ep0_idle(dev);
1435 dev->gadget.speed = USB_SPEED_UNKNOWN;
1436 dev->stats.irqs = 0;
1437
1438 /*
1439 * sequence taken from chapter 12.5.10, PXA250 AppProcDevManual:
1440 * - enable UDC
1441 * - if RESET is already in progress, ack interrupt
1442 * - unmask reset interrupt
1443 */
1444 udc_set_mask_UDCCR(dev, UDCCR_UDE);
1445 if (!(udc_get_reg(dev, UDCCR) & UDCCR_UDA))
1446 udc_ack_int_UDCCR(dev, UDCCR_RSTIR);
1447
1448 if (dev->has_cfr /* UDC_RES2 is defined */) {
1449 /* pxa255 (a0+) can avoid a set_config race that could
1450 * prevent gadget drivers from configuring correctly
1451 */
1452 udc_set_reg(dev, UDCCFR, UDCCFR_ACM | UDCCFR_MB1);
1453 } else {
1454 /* "USB test mode" for pxa250 errata 40-42 (stepping a0, a1)
1455 * which could result in missing packets and interrupts.
1456 * supposedly one bit per endpoint, controlling whether it
1457 * double buffers or not; ACM/AREN bits fit into the holes.
1458 * zero bits (like USIR0_IRx) disable double buffering.
1459 */
1460 udc_set_reg(dev, UDC_RES1, 0x00);
1461 udc_set_reg(dev, UDC_RES2, 0x00);
1462 }
1463
1464 /* enable suspend/resume and reset irqs */
1465 udc_clear_mask_UDCCR(dev, UDCCR_SRM | UDCCR_REM);
1466
1467 /* enable ep0 irqs */
1468 udc_set_reg(dev, UICR0, udc_get_reg(dev, UICR0) & ~UICR0_IM0);
1469
1470 /* if hardware supports it, pullup D+ and wait for reset */
1471 pullup_on();
1472 }
1473
1474
1475 /* when a driver is successfully registered, it will receive
1476 * control requests including set_configuration(), which enables
1477 * non-control requests. then usb traffic follows until a
1478 * disconnect is reported. then a host may connect again, or
1479 * the driver might get unbound.
1480 */
1481 static int pxa25x_udc_start(struct usb_gadget *g,
1482 struct usb_gadget_driver *driver)
1483 {
1484 struct pxa25x_udc *dev = to_pxa25x(g);
1485 int retval;
1486
1487 /* first hook up the driver ... */
1488 dev->driver = driver;
1489 dev->pullup = 1;
1490
1491 /* ... then enable host detection and ep0; and we're ready
1492 * for set_configuration as well as eventual disconnect.
1493 */
1494 /* connect to bus through transceiver */
1495 if (!IS_ERR_OR_NULL(dev->transceiver)) {
1496 retval = otg_set_peripheral(dev->transceiver->otg,
1497 &dev->gadget);
1498 if (retval)
1499 goto bind_fail;
1500 }
1501
1502 dump_state(dev);
1503 return 0;
1504 bind_fail:
1505 return retval;
1506 }
1507
1508 static void
1509 reset_gadget(struct pxa25x_udc *dev, struct usb_gadget_driver *driver)
1510 {
1511 int i;
1512
1513 /* don't disconnect drivers more than once */
1514 if (dev->gadget.speed == USB_SPEED_UNKNOWN)
1515 driver = NULL;
1516 dev->gadget.speed = USB_SPEED_UNKNOWN;
1517
1518 /* prevent new request submissions, kill any outstanding requests */
1519 for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) {
1520 struct pxa25x_ep *ep = &dev->ep[i];
1521
1522 ep->stopped = 1;
1523 nuke(ep, -ESHUTDOWN);
1524 }
1525 del_timer_sync(&dev->timer);
1526
1527 /* report reset; the driver is already quiesced */
1528 if (driver)
1529 usb_gadget_udc_reset(&dev->gadget, driver);
1530
1531 /* re-init driver-visible data structures */
1532 udc_reinit(dev);
1533 }
1534
1535 static void
1536 stop_activity(struct pxa25x_udc *dev, struct usb_gadget_driver *driver)
1537 {
1538 int i;
1539
1540 /* don't disconnect drivers more than once */
1541 if (dev->gadget.speed == USB_SPEED_UNKNOWN)
1542 driver = NULL;
1543 dev->gadget.speed = USB_SPEED_UNKNOWN;
1544
1545 /* prevent new request submissions, kill any outstanding requests */
1546 for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) {
1547 struct pxa25x_ep *ep = &dev->ep[i];
1548
1549 ep->stopped = 1;
1550 nuke(ep, -ESHUTDOWN);
1551 }
1552 del_timer_sync(&dev->timer);
1553
1554 /* report disconnect; the driver is already quiesced */
1555 if (driver)
1556 driver->disconnect(&dev->gadget);
1557
1558 /* re-init driver-visible data structures */
1559 udc_reinit(dev);
1560 }
1561
1562 static int pxa25x_udc_stop(struct usb_gadget*g)
1563 {
1564 struct pxa25x_udc *dev = to_pxa25x(g);
1565
1566 local_irq_disable();
1567 dev->pullup = 0;
1568 stop_activity(dev, NULL);
1569 local_irq_enable();
1570
1571 if (!IS_ERR_OR_NULL(dev->transceiver))
1572 (void) otg_set_peripheral(dev->transceiver->otg, NULL);
1573
1574 dev->driver = NULL;
1575
1576 dump_state(dev);
1577
1578 return 0;
1579 }
1580
1581 /*-------------------------------------------------------------------------*/
1582
1583 #ifdef CONFIG_ARCH_LUBBOCK
1584
1585 /* Lubbock has separate connect and disconnect irqs. More typical designs
1586 * use one GPIO as the VBUS IRQ, and another to control the D+ pullup.
1587 */
1588
1589 static irqreturn_t
1590 lubbock_vbus_irq(int irq, void *_dev)
1591 {
1592 struct pxa25x_udc *dev = _dev;
1593 int vbus;
1594
1595 dev->stats.irqs++;
1596 switch (irq) {
1597 case LUBBOCK_USB_IRQ:
1598 vbus = 1;
1599 disable_irq(LUBBOCK_USB_IRQ);
1600 enable_irq(LUBBOCK_USB_DISC_IRQ);
1601 break;
1602 case LUBBOCK_USB_DISC_IRQ:
1603 vbus = 0;
1604 disable_irq(LUBBOCK_USB_DISC_IRQ);
1605 enable_irq(LUBBOCK_USB_IRQ);
1606 break;
1607 default:
1608 return IRQ_NONE;
1609 }
1610
1611 pxa25x_udc_vbus_session(&dev->gadget, vbus);
1612 return IRQ_HANDLED;
1613 }
1614
1615 #endif
1616
1617
1618 /*-------------------------------------------------------------------------*/
1619
1620 static inline void clear_ep_state (struct pxa25x_udc *dev)
1621 {
1622 unsigned i;
1623
1624 /* hardware SET_{CONFIGURATION,INTERFACE} automagic resets endpoint
1625 * fifos, and pending transactions mustn't be continued in any case.
1626 */
1627 for (i = 1; i < PXA_UDC_NUM_ENDPOINTS; i++)
1628 nuke(&dev->ep[i], -ECONNABORTED);
1629 }
1630
1631 static void udc_watchdog(unsigned long _dev)
1632 {
1633 struct pxa25x_udc *dev = (void *)_dev;
1634
1635 local_irq_disable();
1636 if (dev->ep0state == EP0_STALL
1637 && (udc_ep0_get_UDCCS(dev) & UDCCS0_FST) == 0
1638 && (udc_ep0_get_UDCCS(dev) & UDCCS0_SST) == 0) {
1639 udc_ep0_set_UDCCS(dev, UDCCS0_FST|UDCCS0_FTF);
1640 DBG(DBG_VERBOSE, "ep0 re-stall\n");
1641 start_watchdog(dev);
1642 }
1643 local_irq_enable();
1644 }
1645
1646 static void handle_ep0 (struct pxa25x_udc *dev)
1647 {
1648 u32 udccs0 = udc_ep0_get_UDCCS(dev);
1649 struct pxa25x_ep *ep = &dev->ep [0];
1650 struct pxa25x_request *req;
1651 union {
1652 struct usb_ctrlrequest r;
1653 u8 raw [8];
1654 u32 word [2];
1655 } u;
1656
1657 if (list_empty(&ep->queue))
1658 req = NULL;
1659 else
1660 req = list_entry(ep->queue.next, struct pxa25x_request, queue);
1661
1662 /* clear stall status */
1663 if (udccs0 & UDCCS0_SST) {
1664 nuke(ep, -EPIPE);
1665 udc_ep0_set_UDCCS(dev, UDCCS0_SST);
1666 del_timer(&dev->timer);
1667 ep0_idle(dev);
1668 }
1669
1670 /* previous request unfinished? non-error iff back-to-back ... */
1671 if ((udccs0 & UDCCS0_SA) != 0 && dev->ep0state != EP0_IDLE) {
1672 nuke(ep, 0);
1673 del_timer(&dev->timer);
1674 ep0_idle(dev);
1675 }
1676
1677 switch (dev->ep0state) {
1678 case EP0_IDLE:
1679 /* late-breaking status? */
1680 udccs0 = udc_ep0_get_UDCCS(dev);
1681
1682 /* start control request? */
1683 if (likely((udccs0 & (UDCCS0_OPR|UDCCS0_SA|UDCCS0_RNE))
1684 == (UDCCS0_OPR|UDCCS0_SA|UDCCS0_RNE))) {
1685 int i;
1686
1687 nuke (ep, -EPROTO);
1688
1689 /* read SETUP packet */
1690 for (i = 0; i < 8; i++) {
1691 if (unlikely(!(udc_ep0_get_UDCCS(dev) & UDCCS0_RNE))) {
1692 bad_setup:
1693 DMSG("SETUP %d!\n", i);
1694 goto stall;
1695 }
1696 u.raw [i] = (u8) UDDR0;
1697 }
1698 if (unlikely((udc_ep0_get_UDCCS(dev) & UDCCS0_RNE) != 0))
1699 goto bad_setup;
1700
1701 got_setup:
1702 DBG(DBG_VERBOSE, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1703 u.r.bRequestType, u.r.bRequest,
1704 le16_to_cpu(u.r.wValue),
1705 le16_to_cpu(u.r.wIndex),
1706 le16_to_cpu(u.r.wLength));
1707
1708 /* cope with automagic for some standard requests. */
1709 dev->req_std = (u.r.bRequestType & USB_TYPE_MASK)
1710 == USB_TYPE_STANDARD;
1711 dev->req_config = 0;
1712 dev->req_pending = 1;
1713 switch (u.r.bRequest) {
1714 /* hardware restricts gadget drivers here! */
1715 case USB_REQ_SET_CONFIGURATION:
1716 if (u.r.bRequestType == USB_RECIP_DEVICE) {
1717 /* reflect hardware's automagic
1718 * up to the gadget driver.
1719 */
1720 config_change:
1721 dev->req_config = 1;
1722 clear_ep_state(dev);
1723 /* if !has_cfr, there's no synch
1724 * else use AREN (later) not SA|OPR
1725 * USIR0_IR0 acts edge sensitive
1726 */
1727 }
1728 break;
1729 /* ... and here, even more ... */
1730 case USB_REQ_SET_INTERFACE:
1731 if (u.r.bRequestType == USB_RECIP_INTERFACE) {
1732 /* udc hardware is broken by design:
1733 * - altsetting may only be zero;
1734 * - hw resets all interfaces' eps;
1735 * - ep reset doesn't include halt(?).
1736 */
1737 DMSG("broken set_interface (%d/%d)\n",
1738 le16_to_cpu(u.r.wIndex),
1739 le16_to_cpu(u.r.wValue));
1740 goto config_change;
1741 }
1742 break;
1743 /* hardware was supposed to hide this */
1744 case USB_REQ_SET_ADDRESS:
1745 if (u.r.bRequestType == USB_RECIP_DEVICE) {
1746 ep0start(dev, 0, "address");
1747 return;
1748 }
1749 break;
1750 }
1751
1752 if (u.r.bRequestType & USB_DIR_IN)
1753 dev->ep0state = EP0_IN_DATA_PHASE;
1754 else
1755 dev->ep0state = EP0_OUT_DATA_PHASE;
1756
1757 i = dev->driver->setup(&dev->gadget, &u.r);
1758 if (i < 0) {
1759 /* hardware automagic preventing STALL... */
1760 if (dev->req_config) {
1761 /* hardware sometimes neglects to tell
1762 * tell us about config change events,
1763 * so later ones may fail...
1764 */
1765 WARNING("config change %02x fail %d?\n",
1766 u.r.bRequest, i);
1767 return;
1768 /* TODO experiment: if has_cfr,
1769 * hardware didn't ACK; maybe we
1770 * could actually STALL!
1771 */
1772 }
1773 DBG(DBG_VERBOSE, "protocol STALL, "
1774 "%02x err %d\n", udc_ep0_get_UDCCS(dev), i);
1775 stall:
1776 /* the watchdog timer helps deal with cases
1777 * where udc seems to clear FST wrongly, and
1778 * then NAKs instead of STALLing.
1779 */
1780 ep0start(dev, UDCCS0_FST|UDCCS0_FTF, "stall");
1781 start_watchdog(dev);
1782 dev->ep0state = EP0_STALL;
1783
1784 /* deferred i/o == no response yet */
1785 } else if (dev->req_pending) {
1786 if (likely(dev->ep0state == EP0_IN_DATA_PHASE
1787 || dev->req_std || u.r.wLength))
1788 ep0start(dev, 0, "defer");
1789 else
1790 ep0start(dev, UDCCS0_IPR, "defer/IPR");
1791 }
1792
1793 /* expect at least one data or status stage irq */
1794 return;
1795
1796 } else if (likely((udccs0 & (UDCCS0_OPR|UDCCS0_SA))
1797 == (UDCCS0_OPR|UDCCS0_SA))) {
1798 unsigned i;
1799
1800 /* pxa210/250 erratum 131 for B0/B1 says RNE lies.
1801 * still observed on a pxa255 a0.
1802 */
1803 DBG(DBG_VERBOSE, "e131\n");
1804 nuke(ep, -EPROTO);
1805
1806 /* read SETUP data, but don't trust it too much */
1807 for (i = 0; i < 8; i++)
1808 u.raw [i] = (u8) UDDR0;
1809 if ((u.r.bRequestType & USB_RECIP_MASK)
1810 > USB_RECIP_OTHER)
1811 goto stall;
1812 if (u.word [0] == 0 && u.word [1] == 0)
1813 goto stall;
1814 goto got_setup;
1815 } else {
1816 /* some random early IRQ:
1817 * - we acked FST
1818 * - IPR cleared
1819 * - OPR got set, without SA (likely status stage)
1820 */
1821 udc_ep0_set_UDCCS(dev, udccs0 & (UDCCS0_SA|UDCCS0_OPR));
1822 }
1823 break;
1824 case EP0_IN_DATA_PHASE: /* GET_DESCRIPTOR etc */
1825 if (udccs0 & UDCCS0_OPR) {
1826 udc_ep0_set_UDCCS(dev, UDCCS0_OPR|UDCCS0_FTF);
1827 DBG(DBG_VERBOSE, "ep0in premature status\n");
1828 if (req)
1829 done(ep, req, 0);
1830 ep0_idle(dev);
1831 } else /* irq was IPR clearing */ {
1832 if (req) {
1833 /* this IN packet might finish the request */
1834 (void) write_ep0_fifo(ep, req);
1835 } /* else IN token before response was written */
1836 }
1837 break;
1838 case EP0_OUT_DATA_PHASE: /* SET_DESCRIPTOR etc */
1839 if (udccs0 & UDCCS0_OPR) {
1840 if (req) {
1841 /* this OUT packet might finish the request */
1842 if (read_ep0_fifo(ep, req))
1843 done(ep, req, 0);
1844 /* else more OUT packets expected */
1845 } /* else OUT token before read was issued */
1846 } else /* irq was IPR clearing */ {
1847 DBG(DBG_VERBOSE, "ep0out premature status\n");
1848 if (req)
1849 done(ep, req, 0);
1850 ep0_idle(dev);
1851 }
1852 break;
1853 case EP0_END_XFER:
1854 if (req)
1855 done(ep, req, 0);
1856 /* ack control-IN status (maybe in-zlp was skipped)
1857 * also appears after some config change events.
1858 */
1859 if (udccs0 & UDCCS0_OPR)
1860 udc_ep0_set_UDCCS(dev, UDCCS0_OPR);
1861 ep0_idle(dev);
1862 break;
1863 case EP0_STALL:
1864 udc_ep0_set_UDCCS(dev, UDCCS0_FST);
1865 break;
1866 }
1867 udc_set_reg(dev, USIR0, USIR0_IR0);
1868 }
1869
1870 static void handle_ep(struct pxa25x_ep *ep)
1871 {
1872 struct pxa25x_request *req;
1873 int is_in = ep->bEndpointAddress & USB_DIR_IN;
1874 int completed;
1875 u32 udccs, tmp;
1876
1877 do {
1878 completed = 0;
1879 if (likely (!list_empty(&ep->queue)))
1880 req = list_entry(ep->queue.next,
1881 struct pxa25x_request, queue);
1882 else
1883 req = NULL;
1884
1885 // TODO check FST handling
1886
1887 udccs = udc_ep_get_UDCCS(ep);
1888 if (unlikely(is_in)) { /* irq from TPC, SST, or (ISO) TUR */
1889 tmp = UDCCS_BI_TUR;
1890 if (likely(ep->bmAttributes == USB_ENDPOINT_XFER_BULK))
1891 tmp |= UDCCS_BI_SST;
1892 tmp &= udccs;
1893 if (likely (tmp))
1894 udc_ep_set_UDCCS(ep, tmp);
1895 if (req && likely ((udccs & UDCCS_BI_TFS) != 0))
1896 completed = write_fifo(ep, req);
1897
1898 } else { /* irq from RPC (or for ISO, ROF) */
1899 if (likely(ep->bmAttributes == USB_ENDPOINT_XFER_BULK))
1900 tmp = UDCCS_BO_SST | UDCCS_BO_DME;
1901 else
1902 tmp = UDCCS_IO_ROF | UDCCS_IO_DME;
1903 tmp &= udccs;
1904 if (likely(tmp))
1905 udc_ep_set_UDCCS(ep, tmp);
1906
1907 /* fifos can hold packets, ready for reading... */
1908 if (likely(req)) {
1909 completed = read_fifo(ep, req);
1910 } else
1911 pio_irq_disable(ep);
1912 }
1913 ep->pio_irqs++;
1914 } while (completed);
1915 }
1916
1917 /*
1918 * pxa25x_udc_irq - interrupt handler
1919 *
1920 * avoid delays in ep0 processing. the control handshaking isn't always
1921 * under software control (pxa250c0 and the pxa255 are better), and delays
1922 * could cause usb protocol errors.
1923 */
1924 static irqreturn_t
1925 pxa25x_udc_irq(int irq, void *_dev)
1926 {
1927 struct pxa25x_udc *dev = _dev;
1928 int handled;
1929
1930 dev->stats.irqs++;
1931 do {
1932 u32 udccr = udc_get_reg(dev, UDCCR);
1933
1934 handled = 0;
1935
1936 /* SUSpend Interrupt Request */
1937 if (unlikely(udccr & UDCCR_SUSIR)) {
1938 udc_ack_int_UDCCR(dev, UDCCR_SUSIR);
1939 handled = 1;
1940 DBG(DBG_VERBOSE, "USB suspend\n");
1941
1942 if (dev->gadget.speed != USB_SPEED_UNKNOWN
1943 && dev->driver
1944 && dev->driver->suspend)
1945 dev->driver->suspend(&dev->gadget);
1946 ep0_idle (dev);
1947 }
1948
1949 /* RESume Interrupt Request */
1950 if (unlikely(udccr & UDCCR_RESIR)) {
1951 udc_ack_int_UDCCR(dev, UDCCR_RESIR);
1952 handled = 1;
1953 DBG(DBG_VERBOSE, "USB resume\n");
1954
1955 if (dev->gadget.speed != USB_SPEED_UNKNOWN
1956 && dev->driver
1957 && dev->driver->resume)
1958 dev->driver->resume(&dev->gadget);
1959 }
1960
1961 /* ReSeT Interrupt Request - USB reset */
1962 if (unlikely(udccr & UDCCR_RSTIR)) {
1963 udc_ack_int_UDCCR(dev, UDCCR_RSTIR);
1964 handled = 1;
1965
1966 if ((udc_get_reg(dev, UDCCR) & UDCCR_UDA) == 0) {
1967 DBG(DBG_VERBOSE, "USB reset start\n");
1968
1969 /* reset driver and endpoints,
1970 * in case that's not yet done
1971 */
1972 reset_gadget(dev, dev->driver);
1973
1974 } else {
1975 DBG(DBG_VERBOSE, "USB reset end\n");
1976 dev->gadget.speed = USB_SPEED_FULL;
1977 memset(&dev->stats, 0, sizeof dev->stats);
1978 /* driver and endpoints are still reset */
1979 }
1980
1981 } else {
1982 u32 usir0 = udc_get_reg(dev, USIR0) &
1983 ~udc_get_reg(dev, UICR0);
1984 u32 usir1 = udc_get_reg(dev, USIR1) &
1985 ~udc_get_reg(dev, UICR1);
1986 int i;
1987
1988 if (unlikely (!usir0 && !usir1))
1989 continue;
1990
1991 DBG(DBG_VERY_NOISY, "irq %02x.%02x\n", usir1, usir0);
1992
1993 /* control traffic */
1994 if (usir0 & USIR0_IR0) {
1995 dev->ep[0].pio_irqs++;
1996 handle_ep0(dev);
1997 handled = 1;
1998 }
1999
2000 /* endpoint data transfers */
2001 for (i = 0; i < 8; i++) {
2002 u32 tmp = 1 << i;
2003
2004 if (i && (usir0 & tmp)) {
2005 handle_ep(&dev->ep[i]);
2006 udc_set_reg(dev, USIR0,
2007 udc_get_reg(dev, USIR0) | tmp);
2008 handled = 1;
2009 }
2010 #ifndef CONFIG_USB_PXA25X_SMALL
2011 if (usir1 & tmp) {
2012 handle_ep(&dev->ep[i+8]);
2013 udc_set_reg(dev, USIR1,
2014 udc_get_reg(dev, USIR1) | tmp);
2015 handled = 1;
2016 }
2017 #endif
2018 }
2019 }
2020
2021 /* we could also ask for 1 msec SOF (SIR) interrupts */
2022
2023 } while (handled);
2024 return IRQ_HANDLED;
2025 }
2026
2027 /*-------------------------------------------------------------------------*/
2028
2029 static void nop_release (struct device *dev)
2030 {
2031 DMSG("%s %s\n", __func__, dev_name(dev));
2032 }
2033
2034 /* this uses load-time allocation and initialization (instead of
2035 * doing it at run-time) to save code, eliminate fault paths, and
2036 * be more obviously correct.
2037 */
2038 static struct pxa25x_udc memory = {
2039 .gadget = {
2040 .ops = &pxa25x_udc_ops,
2041 .ep0 = &memory.ep[0].ep,
2042 .name = driver_name,
2043 .dev = {
2044 .init_name = "gadget",
2045 .release = nop_release,
2046 },
2047 },
2048
2049 /* control endpoint */
2050 .ep[0] = {
2051 .ep = {
2052 .name = ep0name,
2053 .ops = &pxa25x_ep_ops,
2054 .maxpacket = EP0_FIFO_SIZE,
2055 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL,
2056 USB_EP_CAPS_DIR_ALL),
2057 },
2058 .dev = &memory,
2059 .regoff_udccs = UDCCS0,
2060 .regoff_uddr = UDDR0,
2061 },
2062
2063 /* first group of endpoints */
2064 .ep[1] = {
2065 .ep = {
2066 .name = "ep1in-bulk",
2067 .ops = &pxa25x_ep_ops,
2068 .maxpacket = BULK_FIFO_SIZE,
2069 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2070 USB_EP_CAPS_DIR_IN),
2071 },
2072 .dev = &memory,
2073 .fifo_size = BULK_FIFO_SIZE,
2074 .bEndpointAddress = USB_DIR_IN | 1,
2075 .bmAttributes = USB_ENDPOINT_XFER_BULK,
2076 .regoff_udccs = UDCCS1,
2077 .regoff_uddr = UDDR1,
2078 },
2079 .ep[2] = {
2080 .ep = {
2081 .name = "ep2out-bulk",
2082 .ops = &pxa25x_ep_ops,
2083 .maxpacket = BULK_FIFO_SIZE,
2084 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2085 USB_EP_CAPS_DIR_OUT),
2086 },
2087 .dev = &memory,
2088 .fifo_size = BULK_FIFO_SIZE,
2089 .bEndpointAddress = 2,
2090 .bmAttributes = USB_ENDPOINT_XFER_BULK,
2091 .regoff_udccs = UDCCS2,
2092 .regoff_ubcr = UBCR2,
2093 .regoff_uddr = UDDR2,
2094 },
2095 #ifndef CONFIG_USB_PXA25X_SMALL
2096 .ep[3] = {
2097 .ep = {
2098 .name = "ep3in-iso",
2099 .ops = &pxa25x_ep_ops,
2100 .maxpacket = ISO_FIFO_SIZE,
2101 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2102 USB_EP_CAPS_DIR_IN),
2103 },
2104 .dev = &memory,
2105 .fifo_size = ISO_FIFO_SIZE,
2106 .bEndpointAddress = USB_DIR_IN | 3,
2107 .bmAttributes = USB_ENDPOINT_XFER_ISOC,
2108 .regoff_udccs = UDCCS3,
2109 .regoff_uddr = UDDR3,
2110 },
2111 .ep[4] = {
2112 .ep = {
2113 .name = "ep4out-iso",
2114 .ops = &pxa25x_ep_ops,
2115 .maxpacket = ISO_FIFO_SIZE,
2116 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2117 USB_EP_CAPS_DIR_OUT),
2118 },
2119 .dev = &memory,
2120 .fifo_size = ISO_FIFO_SIZE,
2121 .bEndpointAddress = 4,
2122 .bmAttributes = USB_ENDPOINT_XFER_ISOC,
2123 .regoff_udccs = UDCCS4,
2124 .regoff_ubcr = UBCR4,
2125 .regoff_uddr = UDDR4,
2126 },
2127 .ep[5] = {
2128 .ep = {
2129 .name = "ep5in-int",
2130 .ops = &pxa25x_ep_ops,
2131 .maxpacket = INT_FIFO_SIZE,
2132 .caps = USB_EP_CAPS(0, 0),
2133 },
2134 .dev = &memory,
2135 .fifo_size = INT_FIFO_SIZE,
2136 .bEndpointAddress = USB_DIR_IN | 5,
2137 .bmAttributes = USB_ENDPOINT_XFER_INT,
2138 .regoff_udccs = UDCCS5,
2139 .regoff_uddr = UDDR5,
2140 },
2141
2142 /* second group of endpoints */
2143 .ep[6] = {
2144 .ep = {
2145 .name = "ep6in-bulk",
2146 .ops = &pxa25x_ep_ops,
2147 .maxpacket = BULK_FIFO_SIZE,
2148 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2149 USB_EP_CAPS_DIR_IN),
2150 },
2151 .dev = &memory,
2152 .fifo_size = BULK_FIFO_SIZE,
2153 .bEndpointAddress = USB_DIR_IN | 6,
2154 .bmAttributes = USB_ENDPOINT_XFER_BULK,
2155 .regoff_udccs = UDCCS6,
2156 .regoff_uddr = UDDR6,
2157 },
2158 .ep[7] = {
2159 .ep = {
2160 .name = "ep7out-bulk",
2161 .ops = &pxa25x_ep_ops,
2162 .maxpacket = BULK_FIFO_SIZE,
2163 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2164 USB_EP_CAPS_DIR_OUT),
2165 },
2166 .dev = &memory,
2167 .fifo_size = BULK_FIFO_SIZE,
2168 .bEndpointAddress = 7,
2169 .bmAttributes = USB_ENDPOINT_XFER_BULK,
2170 .regoff_udccs = UDCCS7,
2171 .regoff_ubcr = UBCR7,
2172 .regoff_uddr = UDDR7,
2173 },
2174 .ep[8] = {
2175 .ep = {
2176 .name = "ep8in-iso",
2177 .ops = &pxa25x_ep_ops,
2178 .maxpacket = ISO_FIFO_SIZE,
2179 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2180 USB_EP_CAPS_DIR_IN),
2181 },
2182 .dev = &memory,
2183 .fifo_size = ISO_FIFO_SIZE,
2184 .bEndpointAddress = USB_DIR_IN | 8,
2185 .bmAttributes = USB_ENDPOINT_XFER_ISOC,
2186 .regoff_udccs = UDCCS8,
2187 .regoff_uddr = UDDR8,
2188 },
2189 .ep[9] = {
2190 .ep = {
2191 .name = "ep9out-iso",
2192 .ops = &pxa25x_ep_ops,
2193 .maxpacket = ISO_FIFO_SIZE,
2194 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2195 USB_EP_CAPS_DIR_OUT),
2196 },
2197 .dev = &memory,
2198 .fifo_size = ISO_FIFO_SIZE,
2199 .bEndpointAddress = 9,
2200 .bmAttributes = USB_ENDPOINT_XFER_ISOC,
2201 .regoff_udccs = UDCCS9,
2202 .regoff_ubcr = UBCR9,
2203 .regoff_uddr = UDDR9,
2204 },
2205 .ep[10] = {
2206 .ep = {
2207 .name = "ep10in-int",
2208 .ops = &pxa25x_ep_ops,
2209 .maxpacket = INT_FIFO_SIZE,
2210 .caps = USB_EP_CAPS(0, 0),
2211 },
2212 .dev = &memory,
2213 .fifo_size = INT_FIFO_SIZE,
2214 .bEndpointAddress = USB_DIR_IN | 10,
2215 .bmAttributes = USB_ENDPOINT_XFER_INT,
2216 .regoff_udccs = UDCCS10,
2217 .regoff_uddr = UDDR10,
2218 },
2219
2220 /* third group of endpoints */
2221 .ep[11] = {
2222 .ep = {
2223 .name = "ep11in-bulk",
2224 .ops = &pxa25x_ep_ops,
2225 .maxpacket = BULK_FIFO_SIZE,
2226 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2227 USB_EP_CAPS_DIR_IN),
2228 },
2229 .dev = &memory,
2230 .fifo_size = BULK_FIFO_SIZE,
2231 .bEndpointAddress = USB_DIR_IN | 11,
2232 .bmAttributes = USB_ENDPOINT_XFER_BULK,
2233 .regoff_udccs = UDCCS11,
2234 .regoff_uddr = UDDR11,
2235 },
2236 .ep[12] = {
2237 .ep = {
2238 .name = "ep12out-bulk",
2239 .ops = &pxa25x_ep_ops,
2240 .maxpacket = BULK_FIFO_SIZE,
2241 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
2242 USB_EP_CAPS_DIR_OUT),
2243 },
2244 .dev = &memory,
2245 .fifo_size = BULK_FIFO_SIZE,
2246 .bEndpointAddress = 12,
2247 .bmAttributes = USB_ENDPOINT_XFER_BULK,
2248 .regoff_udccs = UDCCS12,
2249 .regoff_ubcr = UBCR12,
2250 .regoff_uddr = UDDR12,
2251 },
2252 .ep[13] = {
2253 .ep = {
2254 .name = "ep13in-iso",
2255 .ops = &pxa25x_ep_ops,
2256 .maxpacket = ISO_FIFO_SIZE,
2257 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2258 USB_EP_CAPS_DIR_IN),
2259 },
2260 .dev = &memory,
2261 .fifo_size = ISO_FIFO_SIZE,
2262 .bEndpointAddress = USB_DIR_IN | 13,
2263 .bmAttributes = USB_ENDPOINT_XFER_ISOC,
2264 .regoff_udccs = UDCCS13,
2265 .regoff_uddr = UDDR13,
2266 },
2267 .ep[14] = {
2268 .ep = {
2269 .name = "ep14out-iso",
2270 .ops = &pxa25x_ep_ops,
2271 .maxpacket = ISO_FIFO_SIZE,
2272 .caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
2273 USB_EP_CAPS_DIR_OUT),
2274 },
2275 .dev = &memory,
2276 .fifo_size = ISO_FIFO_SIZE,
2277 .bEndpointAddress = 14,
2278 .bmAttributes = USB_ENDPOINT_XFER_ISOC,
2279 .regoff_udccs = UDCCS14,
2280 .regoff_ubcr = UBCR14,
2281 .regoff_uddr = UDDR14,
2282 },
2283 .ep[15] = {
2284 .ep = {
2285 .name = "ep15in-int",
2286 .ops = &pxa25x_ep_ops,
2287 .maxpacket = INT_FIFO_SIZE,
2288 .caps = USB_EP_CAPS(0, 0),
2289 },
2290 .dev = &memory,
2291 .fifo_size = INT_FIFO_SIZE,
2292 .bEndpointAddress = USB_DIR_IN | 15,
2293 .bmAttributes = USB_ENDPOINT_XFER_INT,
2294 .regoff_udccs = UDCCS15,
2295 .regoff_uddr = UDDR15,
2296 },
2297 #endif /* !CONFIG_USB_PXA25X_SMALL */
2298 };
2299
2300 #define CP15R0_VENDOR_MASK 0xffffe000
2301
2302 #if defined(CONFIG_ARCH_PXA)
2303 #define CP15R0_XSCALE_VALUE 0x69052000 /* intel/arm/xscale */
2304
2305 #elif defined(CONFIG_ARCH_IXP4XX)
2306 #define CP15R0_XSCALE_VALUE 0x69054000 /* intel/arm/ixp4xx */
2307
2308 #endif
2309
2310 #define CP15R0_PROD_MASK 0x000003f0
2311 #define PXA25x 0x00000100 /* and PXA26x */
2312 #define PXA210 0x00000120
2313
2314 #define CP15R0_REV_MASK 0x0000000f
2315
2316 #define CP15R0_PRODREV_MASK (CP15R0_PROD_MASK | CP15R0_REV_MASK)
2317
2318 #define PXA255_A0 0x00000106 /* or PXA260_B1 */
2319 #define PXA250_C0 0x00000105 /* or PXA26x_B0 */
2320 #define PXA250_B2 0x00000104
2321 #define PXA250_B1 0x00000103 /* or PXA260_A0 */
2322 #define PXA250_B0 0x00000102
2323 #define PXA250_A1 0x00000101
2324 #define PXA250_A0 0x00000100
2325
2326 #define PXA210_C0 0x00000125
2327 #define PXA210_B2 0x00000124
2328 #define PXA210_B1 0x00000123
2329 #define PXA210_B0 0x00000122
2330 #define IXP425_A0 0x000001c1
2331 #define IXP425_B0 0x000001f1
2332 #define IXP465_AD 0x00000200
2333
2334 /*
2335 * probe - binds to the platform device
2336 */
2337 static int pxa25x_udc_probe(struct platform_device *pdev)
2338 {
2339 struct pxa25x_udc *dev = &memory;
2340 int retval, irq;
2341 u32 chiprev;
2342 struct resource *res;
2343
2344 pr_info("%s: version %s\n", driver_name, DRIVER_VERSION);
2345
2346 /* insist on Intel/ARM/XScale */
2347 asm("mrc%? p15, 0, %0, c0, c0" : "=r" (chiprev));
2348 if ((chiprev & CP15R0_VENDOR_MASK) != CP15R0_XSCALE_VALUE) {
2349 pr_err("%s: not XScale!\n", driver_name);
2350 return -ENODEV;
2351 }
2352
2353 /* trigger chiprev-specific logic */
2354 switch (chiprev & CP15R0_PRODREV_MASK) {
2355 #if defined(CONFIG_ARCH_PXA)
2356 case PXA255_A0:
2357 dev->has_cfr = 1;
2358 break;
2359 case PXA250_A0:
2360 case PXA250_A1:
2361 /* A0/A1 "not released"; ep 13, 15 unusable */
2362 /* fall through */
2363 case PXA250_B2: case PXA210_B2:
2364 case PXA250_B1: case PXA210_B1:
2365 case PXA250_B0: case PXA210_B0:
2366 /* OUT-DMA is broken ... */
2367 /* fall through */
2368 case PXA250_C0: case PXA210_C0:
2369 break;
2370 #elif defined(CONFIG_ARCH_IXP4XX)
2371 case IXP425_A0:
2372 case IXP425_B0:
2373 case IXP465_AD:
2374 dev->has_cfr = 1;
2375 break;
2376 #endif
2377 default:
2378 pr_err("%s: unrecognized processor: %08x\n",
2379 driver_name, chiprev);
2380 /* iop3xx, ixp4xx, ... */
2381 return -ENODEV;
2382 }
2383
2384 irq = platform_get_irq(pdev, 0);
2385 if (irq < 0)
2386 return -ENODEV;
2387
2388 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2389 dev->regs = devm_ioremap_resource(&pdev->dev, res);
2390 if (IS_ERR(dev->regs))
2391 return PTR_ERR(dev->regs);
2392
2393 dev->clk = devm_clk_get(&pdev->dev, NULL);
2394 if (IS_ERR(dev->clk))
2395 return PTR_ERR(dev->clk);
2396
2397 pr_debug("%s: IRQ %d%s%s\n", driver_name, irq,
2398 dev->has_cfr ? "" : " (!cfr)",
2399 SIZE_STR "(pio)"
2400 );
2401
2402 /* other non-static parts of init */
2403 dev->dev = &pdev->dev;
2404 dev->mach = dev_get_platdata(&pdev->dev);
2405
2406 dev->transceiver = devm_usb_get_phy(&pdev->dev, USB_PHY_TYPE_USB2);
2407
2408 if (gpio_is_valid(dev->mach->gpio_pullup)) {
2409 retval = devm_gpio_request(&pdev->dev, dev->mach->gpio_pullup,
2410 "pca25x_udc GPIO PULLUP");
2411 if (retval) {
2412 dev_dbg(&pdev->dev,
2413 "can't get pullup gpio %d, err: %d\n",
2414 dev->mach->gpio_pullup, retval);
2415 goto err;
2416 }
2417 gpio_direction_output(dev->mach->gpio_pullup, 0);
2418 }
2419
2420 init_timer(&dev->timer);
2421 dev->timer.function = udc_watchdog;
2422 dev->timer.data = (unsigned long) dev;
2423
2424 the_controller = dev;
2425 platform_set_drvdata(pdev, dev);
2426
2427 udc_disable(dev);
2428 udc_reinit(dev);
2429
2430 dev->vbus = 0;
2431
2432 /* irq setup after old hardware state is cleaned up */
2433 retval = devm_request_irq(&pdev->dev, irq, pxa25x_udc_irq, 0,
2434 driver_name, dev);
2435 if (retval != 0) {
2436 pr_err("%s: can't get irq %d, err %d\n",
2437 driver_name, irq, retval);
2438 goto err;
2439 }
2440 dev->got_irq = 1;
2441
2442 #ifdef CONFIG_ARCH_LUBBOCK
2443 if (machine_is_lubbock()) {
2444 retval = devm_request_irq(&pdev->dev, LUBBOCK_USB_DISC_IRQ,
2445 lubbock_vbus_irq, 0, driver_name,
2446 dev);
2447 if (retval != 0) {
2448 pr_err("%s: can't get irq %i, err %d\n",
2449 driver_name, LUBBOCK_USB_DISC_IRQ, retval);
2450 goto err;
2451 }
2452 retval = devm_request_irq(&pdev->dev, LUBBOCK_USB_IRQ,
2453 lubbock_vbus_irq, 0, driver_name,
2454 dev);
2455 if (retval != 0) {
2456 pr_err("%s: can't get irq %i, err %d\n",
2457 driver_name, LUBBOCK_USB_IRQ, retval);
2458 goto err;
2459 }
2460 } else
2461 #endif
2462 create_debug_files(dev);
2463
2464 retval = usb_add_gadget_udc(&pdev->dev, &dev->gadget);
2465 if (!retval)
2466 return retval;
2467
2468 remove_debug_files(dev);
2469 err:
2470 if (!IS_ERR_OR_NULL(dev->transceiver))
2471 dev->transceiver = NULL;
2472 return retval;
2473 }
2474
2475 static void pxa25x_udc_shutdown(struct platform_device *_dev)
2476 {
2477 pullup_off();
2478 }
2479
2480 static int pxa25x_udc_remove(struct platform_device *pdev)
2481 {
2482 struct pxa25x_udc *dev = platform_get_drvdata(pdev);
2483
2484 if (dev->driver)
2485 return -EBUSY;
2486
2487 usb_del_gadget_udc(&dev->gadget);
2488 dev->pullup = 0;
2489 pullup(dev);
2490
2491 remove_debug_files(dev);
2492
2493 if (!IS_ERR_OR_NULL(dev->transceiver))
2494 dev->transceiver = NULL;
2495
2496 the_controller = NULL;
2497 return 0;
2498 }
2499
2500 /*-------------------------------------------------------------------------*/
2501
2502 #ifdef CONFIG_PM
2503
2504 /* USB suspend (controlled by the host) and system suspend (controlled
2505 * by the PXA) don't necessarily work well together. If USB is active,
2506 * the 48 MHz clock is required; so the system can't enter 33 MHz idle
2507 * mode, or any deeper PM saving state.
2508 *
2509 * For now, we punt and forcibly disconnect from the USB host when PXA
2510 * enters any suspend state. While we're disconnected, we always disable
2511 * the 48MHz USB clock ... allowing PXA sleep and/or 33 MHz idle states.
2512 * Boards without software pullup control shouldn't use those states.
2513 * VBUS IRQs should probably be ignored so that the PXA device just acts
2514 * "dead" to USB hosts until system resume.
2515 */
2516 static int pxa25x_udc_suspend(struct platform_device *dev, pm_message_t state)
2517 {
2518 struct pxa25x_udc *udc = platform_get_drvdata(dev);
2519 unsigned long flags;
2520
2521 if (!gpio_is_valid(udc->mach->gpio_pullup) && !udc->mach->udc_command)
2522 WARNING("USB host won't detect disconnect!\n");
2523 udc->suspended = 1;
2524
2525 local_irq_save(flags);
2526 pullup(udc);
2527 local_irq_restore(flags);
2528
2529 return 0;
2530 }
2531
2532 static int pxa25x_udc_resume(struct platform_device *dev)
2533 {
2534 struct pxa25x_udc *udc = platform_get_drvdata(dev);
2535 unsigned long flags;
2536
2537 udc->suspended = 0;
2538 local_irq_save(flags);
2539 pullup(udc);
2540 local_irq_restore(flags);
2541
2542 return 0;
2543 }
2544
2545 #else
2546 #define pxa25x_udc_suspend NULL
2547 #define pxa25x_udc_resume NULL
2548 #endif
2549
2550 /*-------------------------------------------------------------------------*/
2551
2552 static struct platform_driver udc_driver = {
2553 .shutdown = pxa25x_udc_shutdown,
2554 .probe = pxa25x_udc_probe,
2555 .remove = pxa25x_udc_remove,
2556 .suspend = pxa25x_udc_suspend,
2557 .resume = pxa25x_udc_resume,
2558 .driver = {
2559 .name = "pxa25x-udc",
2560 },
2561 };
2562
2563 module_platform_driver(udc_driver);
2564
2565 MODULE_DESCRIPTION(DRIVER_DESC);
2566 MODULE_AUTHOR("Frank Becker, Robert Schwebel, David Brownell");
2567 MODULE_LICENSE("GPL");
2568 MODULE_ALIAS("platform:pxa25x-udc");
This page took 0.089902 seconds and 5 git commands to generate.