MAINTAINERS: Add phy-miphy28lp.c and phy-miphy365x.c to ARCH/STI architecture
[deliverable/linux.git] / drivers / usb / gadget / udc / pxa27x_udc.c
1 /*
2 * Handles the Intel 27x USB Device Controller (UDC)
3 *
4 * Inspired by original driver by Frank Becker, David Brownell, and others.
5 * Copyright (C) 2008 Robert Jarzmik
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 */
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/errno.h>
16 #include <linux/err.h>
17 #include <linux/platform_device.h>
18 #include <linux/delay.h>
19 #include <linux/list.h>
20 #include <linux/interrupt.h>
21 #include <linux/proc_fs.h>
22 #include <linux/clk.h>
23 #include <linux/irq.h>
24 #include <linux/gpio.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/slab.h>
27 #include <linux/prefetch.h>
28 #include <linux/byteorder/generic.h>
29 #include <linux/platform_data/pxa2xx_udc.h>
30 #include <linux/of_device.h>
31 #include <linux/of_gpio.h>
32
33 #include <linux/usb.h>
34 #include <linux/usb/ch9.h>
35 #include <linux/usb/gadget.h>
36
37 #include "pxa27x_udc.h"
38
39 /*
40 * This driver handles the USB Device Controller (UDC) in Intel's PXA 27x
41 * series processors.
42 *
43 * Such controller drivers work with a gadget driver. The gadget driver
44 * returns descriptors, implements configuration and data protocols used
45 * by the host to interact with this device, and allocates endpoints to
46 * the different protocol interfaces. The controller driver virtualizes
47 * usb hardware so that the gadget drivers will be more portable.
48 *
49 * This UDC hardware wants to implement a bit too much USB protocol. The
50 * biggest issues are: that the endpoints have to be set up before the
51 * controller can be enabled (minor, and not uncommon); and each endpoint
52 * can only have one configuration, interface and alternative interface
53 * number (major, and very unusual). Once set up, these cannot be changed
54 * without a controller reset.
55 *
56 * The workaround is to setup all combinations necessary for the gadgets which
57 * will work with this driver. This is done in pxa_udc structure, statically.
58 * See pxa_udc, udc_usb_ep versus pxa_ep, and matching function find_pxa_ep.
59 * (You could modify this if needed. Some drivers have a "fifo_mode" module
60 * parameter to facilitate such changes.)
61 *
62 * The combinations have been tested with these gadgets :
63 * - zero gadget
64 * - file storage gadget
65 * - ether gadget
66 *
67 * The driver doesn't use DMA, only IO access and IRQ callbacks. No use is
68 * made of UDC's double buffering either. USB "On-The-Go" is not implemented.
69 *
70 * All the requests are handled the same way :
71 * - the drivers tries to handle the request directly to the IO
72 * - if the IO fifo is not big enough, the remaining is send/received in
73 * interrupt handling.
74 */
75
76 #define DRIVER_VERSION "2008-04-18"
77 #define DRIVER_DESC "PXA 27x USB Device Controller driver"
78
79 static const char driver_name[] = "pxa27x_udc";
80 static struct pxa_udc *the_controller;
81
82 static void handle_ep(struct pxa_ep *ep);
83
84 /*
85 * Debug filesystem
86 */
87 #ifdef CONFIG_USB_GADGET_DEBUG_FS
88
89 #include <linux/debugfs.h>
90 #include <linux/uaccess.h>
91 #include <linux/seq_file.h>
92
93 static int state_dbg_show(struct seq_file *s, void *p)
94 {
95 struct pxa_udc *udc = s->private;
96 int pos = 0, ret;
97 u32 tmp;
98
99 ret = -ENODEV;
100 if (!udc->driver)
101 goto out;
102
103 /* basic device status */
104 pos += seq_printf(s, DRIVER_DESC "\n"
105 "%s version: %s\nGadget driver: %s\n",
106 driver_name, DRIVER_VERSION,
107 udc->driver ? udc->driver->driver.name : "(none)");
108
109 tmp = udc_readl(udc, UDCCR);
110 pos += seq_printf(s,
111 "udccr=0x%0x(%s%s%s%s%s%s%s%s%s%s), "
112 "con=%d,inter=%d,altinter=%d\n", tmp,
113 (tmp & UDCCR_OEN) ? " oen":"",
114 (tmp & UDCCR_AALTHNP) ? " aalthnp":"",
115 (tmp & UDCCR_AHNP) ? " rem" : "",
116 (tmp & UDCCR_BHNP) ? " rstir" : "",
117 (tmp & UDCCR_DWRE) ? " dwre" : "",
118 (tmp & UDCCR_SMAC) ? " smac" : "",
119 (tmp & UDCCR_EMCE) ? " emce" : "",
120 (tmp & UDCCR_UDR) ? " udr" : "",
121 (tmp & UDCCR_UDA) ? " uda" : "",
122 (tmp & UDCCR_UDE) ? " ude" : "",
123 (tmp & UDCCR_ACN) >> UDCCR_ACN_S,
124 (tmp & UDCCR_AIN) >> UDCCR_AIN_S,
125 (tmp & UDCCR_AAISN) >> UDCCR_AAISN_S);
126 /* registers for device and ep0 */
127 pos += seq_printf(s, "udcicr0=0x%08x udcicr1=0x%08x\n",
128 udc_readl(udc, UDCICR0), udc_readl(udc, UDCICR1));
129 pos += seq_printf(s, "udcisr0=0x%08x udcisr1=0x%08x\n",
130 udc_readl(udc, UDCISR0), udc_readl(udc, UDCISR1));
131 pos += seq_printf(s, "udcfnr=%d\n", udc_readl(udc, UDCFNR));
132 pos += seq_printf(s, "irqs: reset=%lu, suspend=%lu, resume=%lu, "
133 "reconfig=%lu\n",
134 udc->stats.irqs_reset, udc->stats.irqs_suspend,
135 udc->stats.irqs_resume, udc->stats.irqs_reconfig);
136
137 ret = 0;
138 out:
139 return ret;
140 }
141
142 static int queues_dbg_show(struct seq_file *s, void *p)
143 {
144 struct pxa_udc *udc = s->private;
145 struct pxa_ep *ep;
146 struct pxa27x_request *req;
147 int pos = 0, i, maxpkt, ret;
148
149 ret = -ENODEV;
150 if (!udc->driver)
151 goto out;
152
153 /* dump endpoint queues */
154 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
155 ep = &udc->pxa_ep[i];
156 maxpkt = ep->fifo_size;
157 pos += seq_printf(s, "%-12s max_pkt=%d %s\n",
158 EPNAME(ep), maxpkt, "pio");
159
160 if (list_empty(&ep->queue)) {
161 pos += seq_printf(s, "\t(nothing queued)\n");
162 continue;
163 }
164
165 list_for_each_entry(req, &ep->queue, queue) {
166 pos += seq_printf(s, "\treq %p len %d/%d buf %p\n",
167 &req->req, req->req.actual,
168 req->req.length, req->req.buf);
169 }
170 }
171
172 ret = 0;
173 out:
174 return ret;
175 }
176
177 static int eps_dbg_show(struct seq_file *s, void *p)
178 {
179 struct pxa_udc *udc = s->private;
180 struct pxa_ep *ep;
181 int pos = 0, i, ret;
182 u32 tmp;
183
184 ret = -ENODEV;
185 if (!udc->driver)
186 goto out;
187
188 ep = &udc->pxa_ep[0];
189 tmp = udc_ep_readl(ep, UDCCSR);
190 pos += seq_printf(s, "udccsr0=0x%03x(%s%s%s%s%s%s%s)\n", tmp,
191 (tmp & UDCCSR0_SA) ? " sa" : "",
192 (tmp & UDCCSR0_RNE) ? " rne" : "",
193 (tmp & UDCCSR0_FST) ? " fst" : "",
194 (tmp & UDCCSR0_SST) ? " sst" : "",
195 (tmp & UDCCSR0_DME) ? " dme" : "",
196 (tmp & UDCCSR0_IPR) ? " ipr" : "",
197 (tmp & UDCCSR0_OPC) ? " opc" : "");
198 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
199 ep = &udc->pxa_ep[i];
200 tmp = i? udc_ep_readl(ep, UDCCR) : udc_readl(udc, UDCCR);
201 pos += seq_printf(s, "%-12s: "
202 "IN %lu(%lu reqs), OUT %lu(%lu reqs), "
203 "irqs=%lu, udccr=0x%08x, udccsr=0x%03x, "
204 "udcbcr=%d\n",
205 EPNAME(ep),
206 ep->stats.in_bytes, ep->stats.in_ops,
207 ep->stats.out_bytes, ep->stats.out_ops,
208 ep->stats.irqs,
209 tmp, udc_ep_readl(ep, UDCCSR),
210 udc_ep_readl(ep, UDCBCR));
211 }
212
213 ret = 0;
214 out:
215 return ret;
216 }
217
218 static int eps_dbg_open(struct inode *inode, struct file *file)
219 {
220 return single_open(file, eps_dbg_show, inode->i_private);
221 }
222
223 static int queues_dbg_open(struct inode *inode, struct file *file)
224 {
225 return single_open(file, queues_dbg_show, inode->i_private);
226 }
227
228 static int state_dbg_open(struct inode *inode, struct file *file)
229 {
230 return single_open(file, state_dbg_show, inode->i_private);
231 }
232
233 static const struct file_operations state_dbg_fops = {
234 .owner = THIS_MODULE,
235 .open = state_dbg_open,
236 .llseek = seq_lseek,
237 .read = seq_read,
238 .release = single_release,
239 };
240
241 static const struct file_operations queues_dbg_fops = {
242 .owner = THIS_MODULE,
243 .open = queues_dbg_open,
244 .llseek = seq_lseek,
245 .read = seq_read,
246 .release = single_release,
247 };
248
249 static const struct file_operations eps_dbg_fops = {
250 .owner = THIS_MODULE,
251 .open = eps_dbg_open,
252 .llseek = seq_lseek,
253 .read = seq_read,
254 .release = single_release,
255 };
256
257 static void pxa_init_debugfs(struct pxa_udc *udc)
258 {
259 struct dentry *root, *state, *queues, *eps;
260
261 root = debugfs_create_dir(udc->gadget.name, NULL);
262 if (IS_ERR(root) || !root)
263 goto err_root;
264
265 state = debugfs_create_file("udcstate", 0400, root, udc,
266 &state_dbg_fops);
267 if (!state)
268 goto err_state;
269 queues = debugfs_create_file("queues", 0400, root, udc,
270 &queues_dbg_fops);
271 if (!queues)
272 goto err_queues;
273 eps = debugfs_create_file("epstate", 0400, root, udc,
274 &eps_dbg_fops);
275 if (!eps)
276 goto err_eps;
277
278 udc->debugfs_root = root;
279 udc->debugfs_state = state;
280 udc->debugfs_queues = queues;
281 udc->debugfs_eps = eps;
282 return;
283 err_eps:
284 debugfs_remove(eps);
285 err_queues:
286 debugfs_remove(queues);
287 err_state:
288 debugfs_remove(root);
289 err_root:
290 dev_err(udc->dev, "debugfs is not available\n");
291 }
292
293 static void pxa_cleanup_debugfs(struct pxa_udc *udc)
294 {
295 debugfs_remove(udc->debugfs_eps);
296 debugfs_remove(udc->debugfs_queues);
297 debugfs_remove(udc->debugfs_state);
298 debugfs_remove(udc->debugfs_root);
299 udc->debugfs_eps = NULL;
300 udc->debugfs_queues = NULL;
301 udc->debugfs_state = NULL;
302 udc->debugfs_root = NULL;
303 }
304
305 #else
306 static inline void pxa_init_debugfs(struct pxa_udc *udc)
307 {
308 }
309
310 static inline void pxa_cleanup_debugfs(struct pxa_udc *udc)
311 {
312 }
313 #endif
314
315 /**
316 * is_match_usb_pxa - check if usb_ep and pxa_ep match
317 * @udc_usb_ep: usb endpoint
318 * @ep: pxa endpoint
319 * @config: configuration required in pxa_ep
320 * @interface: interface required in pxa_ep
321 * @altsetting: altsetting required in pxa_ep
322 *
323 * Returns 1 if all criteria match between pxa and usb endpoint, 0 otherwise
324 */
325 static int is_match_usb_pxa(struct udc_usb_ep *udc_usb_ep, struct pxa_ep *ep,
326 int config, int interface, int altsetting)
327 {
328 if (usb_endpoint_num(&udc_usb_ep->desc) != ep->addr)
329 return 0;
330 if (usb_endpoint_dir_in(&udc_usb_ep->desc) != ep->dir_in)
331 return 0;
332 if (usb_endpoint_type(&udc_usb_ep->desc) != ep->type)
333 return 0;
334 if ((ep->config != config) || (ep->interface != interface)
335 || (ep->alternate != altsetting))
336 return 0;
337 return 1;
338 }
339
340 /**
341 * find_pxa_ep - find pxa_ep structure matching udc_usb_ep
342 * @udc: pxa udc
343 * @udc_usb_ep: udc_usb_ep structure
344 *
345 * Match udc_usb_ep and all pxa_ep available, to see if one matches.
346 * This is necessary because of the strong pxa hardware restriction requiring
347 * that once pxa endpoints are initialized, their configuration is freezed, and
348 * no change can be made to their address, direction, or in which configuration,
349 * interface or altsetting they are active ... which differs from more usual
350 * models which have endpoints be roughly just addressable fifos, and leave
351 * configuration events up to gadget drivers (like all control messages).
352 *
353 * Note that there is still a blurred point here :
354 * - we rely on UDCCR register "active interface" and "active altsetting".
355 * This is a nonsense in regard of USB spec, where multiple interfaces are
356 * active at the same time.
357 * - if we knew for sure that the pxa can handle multiple interface at the
358 * same time, assuming Intel's Developer Guide is wrong, this function
359 * should be reviewed, and a cache of couples (iface, altsetting) should
360 * be kept in the pxa_udc structure. In this case this function would match
361 * against the cache of couples instead of the "last altsetting" set up.
362 *
363 * Returns the matched pxa_ep structure or NULL if none found
364 */
365 static struct pxa_ep *find_pxa_ep(struct pxa_udc *udc,
366 struct udc_usb_ep *udc_usb_ep)
367 {
368 int i;
369 struct pxa_ep *ep;
370 int cfg = udc->config;
371 int iface = udc->last_interface;
372 int alt = udc->last_alternate;
373
374 if (udc_usb_ep == &udc->udc_usb_ep[0])
375 return &udc->pxa_ep[0];
376
377 for (i = 1; i < NR_PXA_ENDPOINTS; i++) {
378 ep = &udc->pxa_ep[i];
379 if (is_match_usb_pxa(udc_usb_ep, ep, cfg, iface, alt))
380 return ep;
381 }
382 return NULL;
383 }
384
385 /**
386 * update_pxa_ep_matches - update pxa_ep cached values in all udc_usb_ep
387 * @udc: pxa udc
388 *
389 * Context: in_interrupt()
390 *
391 * Updates all pxa_ep fields in udc_usb_ep structures, if this field was
392 * previously set up (and is not NULL). The update is necessary is a
393 * configuration change or altsetting change was issued by the USB host.
394 */
395 static void update_pxa_ep_matches(struct pxa_udc *udc)
396 {
397 int i;
398 struct udc_usb_ep *udc_usb_ep;
399
400 for (i = 1; i < NR_USB_ENDPOINTS; i++) {
401 udc_usb_ep = &udc->udc_usb_ep[i];
402 if (udc_usb_ep->pxa_ep)
403 udc_usb_ep->pxa_ep = find_pxa_ep(udc, udc_usb_ep);
404 }
405 }
406
407 /**
408 * pio_irq_enable - Enables irq generation for one endpoint
409 * @ep: udc endpoint
410 */
411 static void pio_irq_enable(struct pxa_ep *ep)
412 {
413 struct pxa_udc *udc = ep->dev;
414 int index = EPIDX(ep);
415 u32 udcicr0 = udc_readl(udc, UDCICR0);
416 u32 udcicr1 = udc_readl(udc, UDCICR1);
417
418 if (index < 16)
419 udc_writel(udc, UDCICR0, udcicr0 | (3 << (index * 2)));
420 else
421 udc_writel(udc, UDCICR1, udcicr1 | (3 << ((index - 16) * 2)));
422 }
423
424 /**
425 * pio_irq_disable - Disables irq generation for one endpoint
426 * @ep: udc endpoint
427 */
428 static void pio_irq_disable(struct pxa_ep *ep)
429 {
430 struct pxa_udc *udc = ep->dev;
431 int index = EPIDX(ep);
432 u32 udcicr0 = udc_readl(udc, UDCICR0);
433 u32 udcicr1 = udc_readl(udc, UDCICR1);
434
435 if (index < 16)
436 udc_writel(udc, UDCICR0, udcicr0 & ~(3 << (index * 2)));
437 else
438 udc_writel(udc, UDCICR1, udcicr1 & ~(3 << ((index - 16) * 2)));
439 }
440
441 /**
442 * udc_set_mask_UDCCR - set bits in UDCCR
443 * @udc: udc device
444 * @mask: bits to set in UDCCR
445 *
446 * Sets bits in UDCCR, leaving DME and FST bits as they were.
447 */
448 static inline void udc_set_mask_UDCCR(struct pxa_udc *udc, int mask)
449 {
450 u32 udccr = udc_readl(udc, UDCCR);
451 udc_writel(udc, UDCCR,
452 (udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS));
453 }
454
455 /**
456 * udc_clear_mask_UDCCR - clears bits in UDCCR
457 * @udc: udc device
458 * @mask: bit to clear in UDCCR
459 *
460 * Clears bits in UDCCR, leaving DME and FST bits as they were.
461 */
462 static inline void udc_clear_mask_UDCCR(struct pxa_udc *udc, int mask)
463 {
464 u32 udccr = udc_readl(udc, UDCCR);
465 udc_writel(udc, UDCCR,
466 (udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS));
467 }
468
469 /**
470 * ep_write_UDCCSR - set bits in UDCCSR
471 * @udc: udc device
472 * @mask: bits to set in UDCCR
473 *
474 * Sets bits in UDCCSR (UDCCSR0 and UDCCSR*).
475 *
476 * A specific case is applied to ep0 : the ACM bit is always set to 1, for
477 * SET_INTERFACE and SET_CONFIGURATION.
478 */
479 static inline void ep_write_UDCCSR(struct pxa_ep *ep, int mask)
480 {
481 if (is_ep0(ep))
482 mask |= UDCCSR0_ACM;
483 udc_ep_writel(ep, UDCCSR, mask);
484 }
485
486 /**
487 * ep_count_bytes_remain - get how many bytes in udc endpoint
488 * @ep: udc endpoint
489 *
490 * Returns number of bytes in OUT fifos. Broken for IN fifos (-EOPNOTSUPP)
491 */
492 static int ep_count_bytes_remain(struct pxa_ep *ep)
493 {
494 if (ep->dir_in)
495 return -EOPNOTSUPP;
496 return udc_ep_readl(ep, UDCBCR) & 0x3ff;
497 }
498
499 /**
500 * ep_is_empty - checks if ep has byte ready for reading
501 * @ep: udc endpoint
502 *
503 * If endpoint is the control endpoint, checks if there are bytes in the
504 * control endpoint fifo. If endpoint is a data endpoint, checks if bytes
505 * are ready for reading on OUT endpoint.
506 *
507 * Returns 0 if ep not empty, 1 if ep empty, -EOPNOTSUPP if IN endpoint
508 */
509 static int ep_is_empty(struct pxa_ep *ep)
510 {
511 int ret;
512
513 if (!is_ep0(ep) && ep->dir_in)
514 return -EOPNOTSUPP;
515 if (is_ep0(ep))
516 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR0_RNE);
517 else
518 ret = !(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNE);
519 return ret;
520 }
521
522 /**
523 * ep_is_full - checks if ep has place to write bytes
524 * @ep: udc endpoint
525 *
526 * If endpoint is not the control endpoint and is an IN endpoint, checks if
527 * there is place to write bytes into the endpoint.
528 *
529 * Returns 0 if ep not full, 1 if ep full, -EOPNOTSUPP if OUT endpoint
530 */
531 static int ep_is_full(struct pxa_ep *ep)
532 {
533 if (is_ep0(ep))
534 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_IPR);
535 if (!ep->dir_in)
536 return -EOPNOTSUPP;
537 return (!(udc_ep_readl(ep, UDCCSR) & UDCCSR_BNF));
538 }
539
540 /**
541 * epout_has_pkt - checks if OUT endpoint fifo has a packet available
542 * @ep: pxa endpoint
543 *
544 * Returns 1 if a complete packet is available, 0 if not, -EOPNOTSUPP for IN ep.
545 */
546 static int epout_has_pkt(struct pxa_ep *ep)
547 {
548 if (!is_ep0(ep) && ep->dir_in)
549 return -EOPNOTSUPP;
550 if (is_ep0(ep))
551 return (udc_ep_readl(ep, UDCCSR) & UDCCSR0_OPC);
552 return (udc_ep_readl(ep, UDCCSR) & UDCCSR_PC);
553 }
554
555 /**
556 * set_ep0state - Set ep0 automata state
557 * @dev: udc device
558 * @state: state
559 */
560 static void set_ep0state(struct pxa_udc *udc, int state)
561 {
562 struct pxa_ep *ep = &udc->pxa_ep[0];
563 char *old_stname = EP0_STNAME(udc);
564
565 udc->ep0state = state;
566 ep_dbg(ep, "state=%s->%s, udccsr0=0x%03x, udcbcr=%d\n", old_stname,
567 EP0_STNAME(udc), udc_ep_readl(ep, UDCCSR),
568 udc_ep_readl(ep, UDCBCR));
569 }
570
571 /**
572 * ep0_idle - Put control endpoint into idle state
573 * @dev: udc device
574 */
575 static void ep0_idle(struct pxa_udc *dev)
576 {
577 set_ep0state(dev, WAIT_FOR_SETUP);
578 }
579
580 /**
581 * inc_ep_stats_reqs - Update ep stats counts
582 * @ep: physical endpoint
583 * @req: usb request
584 * @is_in: ep direction (USB_DIR_IN or 0)
585 *
586 */
587 static void inc_ep_stats_reqs(struct pxa_ep *ep, int is_in)
588 {
589 if (is_in)
590 ep->stats.in_ops++;
591 else
592 ep->stats.out_ops++;
593 }
594
595 /**
596 * inc_ep_stats_bytes - Update ep stats counts
597 * @ep: physical endpoint
598 * @count: bytes transferred on endpoint
599 * @is_in: ep direction (USB_DIR_IN or 0)
600 */
601 static void inc_ep_stats_bytes(struct pxa_ep *ep, int count, int is_in)
602 {
603 if (is_in)
604 ep->stats.in_bytes += count;
605 else
606 ep->stats.out_bytes += count;
607 }
608
609 /**
610 * pxa_ep_setup - Sets up an usb physical endpoint
611 * @ep: pxa27x physical endpoint
612 *
613 * Find the physical pxa27x ep, and setup its UDCCR
614 */
615 static void pxa_ep_setup(struct pxa_ep *ep)
616 {
617 u32 new_udccr;
618
619 new_udccr = ((ep->config << UDCCONR_CN_S) & UDCCONR_CN)
620 | ((ep->interface << UDCCONR_IN_S) & UDCCONR_IN)
621 | ((ep->alternate << UDCCONR_AISN_S) & UDCCONR_AISN)
622 | ((EPADDR(ep) << UDCCONR_EN_S) & UDCCONR_EN)
623 | ((EPXFERTYPE(ep) << UDCCONR_ET_S) & UDCCONR_ET)
624 | ((ep->dir_in) ? UDCCONR_ED : 0)
625 | ((ep->fifo_size << UDCCONR_MPS_S) & UDCCONR_MPS)
626 | UDCCONR_EE;
627
628 udc_ep_writel(ep, UDCCR, new_udccr);
629 }
630
631 /**
632 * pxa_eps_setup - Sets up all usb physical endpoints
633 * @dev: udc device
634 *
635 * Setup all pxa physical endpoints, except ep0
636 */
637 static void pxa_eps_setup(struct pxa_udc *dev)
638 {
639 unsigned int i;
640
641 dev_dbg(dev->dev, "%s: dev=%p\n", __func__, dev);
642
643 for (i = 1; i < NR_PXA_ENDPOINTS; i++)
644 pxa_ep_setup(&dev->pxa_ep[i]);
645 }
646
647 /**
648 * pxa_ep_alloc_request - Allocate usb request
649 * @_ep: usb endpoint
650 * @gfp_flags:
651 *
652 * For the pxa27x, these can just wrap kmalloc/kfree. gadget drivers
653 * must still pass correctly initialized endpoints, since other controller
654 * drivers may care about how it's currently set up (dma issues etc).
655 */
656 static struct usb_request *
657 pxa_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
658 {
659 struct pxa27x_request *req;
660
661 req = kzalloc(sizeof *req, gfp_flags);
662 if (!req)
663 return NULL;
664
665 INIT_LIST_HEAD(&req->queue);
666 req->in_use = 0;
667 req->udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
668
669 return &req->req;
670 }
671
672 /**
673 * pxa_ep_free_request - Free usb request
674 * @_ep: usb endpoint
675 * @_req: usb request
676 *
677 * Wrapper around kfree to free _req
678 */
679 static void pxa_ep_free_request(struct usb_ep *_ep, struct usb_request *_req)
680 {
681 struct pxa27x_request *req;
682
683 req = container_of(_req, struct pxa27x_request, req);
684 WARN_ON(!list_empty(&req->queue));
685 kfree(req);
686 }
687
688 /**
689 * ep_add_request - add a request to the endpoint's queue
690 * @ep: usb endpoint
691 * @req: usb request
692 *
693 * Context: ep->lock held
694 *
695 * Queues the request in the endpoint's queue, and enables the interrupts
696 * on the endpoint.
697 */
698 static void ep_add_request(struct pxa_ep *ep, struct pxa27x_request *req)
699 {
700 if (unlikely(!req))
701 return;
702 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
703 req->req.length, udc_ep_readl(ep, UDCCSR));
704
705 req->in_use = 1;
706 list_add_tail(&req->queue, &ep->queue);
707 pio_irq_enable(ep);
708 }
709
710 /**
711 * ep_del_request - removes a request from the endpoint's queue
712 * @ep: usb endpoint
713 * @req: usb request
714 *
715 * Context: ep->lock held
716 *
717 * Unqueue the request from the endpoint's queue. If there are no more requests
718 * on the endpoint, and if it's not the control endpoint, interrupts are
719 * disabled on the endpoint.
720 */
721 static void ep_del_request(struct pxa_ep *ep, struct pxa27x_request *req)
722 {
723 if (unlikely(!req))
724 return;
725 ep_vdbg(ep, "req:%p, lg=%d, udccsr=0x%03x\n", req,
726 req->req.length, udc_ep_readl(ep, UDCCSR));
727
728 list_del_init(&req->queue);
729 req->in_use = 0;
730 if (!is_ep0(ep) && list_empty(&ep->queue))
731 pio_irq_disable(ep);
732 }
733
734 /**
735 * req_done - Complete an usb request
736 * @ep: pxa physical endpoint
737 * @req: pxa request
738 * @status: usb request status sent to gadget API
739 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
740 *
741 * Context: ep->lock held if flags not NULL, else ep->lock released
742 *
743 * Retire a pxa27x usb request. Endpoint must be locked.
744 */
745 static void req_done(struct pxa_ep *ep, struct pxa27x_request *req, int status,
746 unsigned long *pflags)
747 {
748 unsigned long flags;
749
750 ep_del_request(ep, req);
751 if (likely(req->req.status == -EINPROGRESS))
752 req->req.status = status;
753 else
754 status = req->req.status;
755
756 if (status && status != -ESHUTDOWN)
757 ep_dbg(ep, "complete req %p stat %d len %u/%u\n",
758 &req->req, status,
759 req->req.actual, req->req.length);
760
761 if (pflags)
762 spin_unlock_irqrestore(&ep->lock, *pflags);
763 local_irq_save(flags);
764 usb_gadget_giveback_request(&req->udc_usb_ep->usb_ep, &req->req);
765 local_irq_restore(flags);
766 if (pflags)
767 spin_lock_irqsave(&ep->lock, *pflags);
768 }
769
770 /**
771 * ep_end_out_req - Ends endpoint OUT request
772 * @ep: physical endpoint
773 * @req: pxa request
774 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
775 *
776 * Context: ep->lock held or released (see req_done())
777 *
778 * Ends endpoint OUT request (completes usb request).
779 */
780 static void ep_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
781 unsigned long *pflags)
782 {
783 inc_ep_stats_reqs(ep, !USB_DIR_IN);
784 req_done(ep, req, 0, pflags);
785 }
786
787 /**
788 * ep0_end_out_req - Ends control endpoint OUT request (ends data stage)
789 * @ep: physical endpoint
790 * @req: pxa request
791 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
792 *
793 * Context: ep->lock held or released (see req_done())
794 *
795 * Ends control endpoint OUT request (completes usb request), and puts
796 * control endpoint into idle state
797 */
798 static void ep0_end_out_req(struct pxa_ep *ep, struct pxa27x_request *req,
799 unsigned long *pflags)
800 {
801 set_ep0state(ep->dev, OUT_STATUS_STAGE);
802 ep_end_out_req(ep, req, pflags);
803 ep0_idle(ep->dev);
804 }
805
806 /**
807 * ep_end_in_req - Ends endpoint IN request
808 * @ep: physical endpoint
809 * @req: pxa request
810 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
811 *
812 * Context: ep->lock held or released (see req_done())
813 *
814 * Ends endpoint IN request (completes usb request).
815 */
816 static void ep_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
817 unsigned long *pflags)
818 {
819 inc_ep_stats_reqs(ep, USB_DIR_IN);
820 req_done(ep, req, 0, pflags);
821 }
822
823 /**
824 * ep0_end_in_req - Ends control endpoint IN request (ends data stage)
825 * @ep: physical endpoint
826 * @req: pxa request
827 * @pflags: flags of previous spinlock_irq_save() or NULL if no lock held
828 *
829 * Context: ep->lock held or released (see req_done())
830 *
831 * Ends control endpoint IN request (completes usb request), and puts
832 * control endpoint into status state
833 */
834 static void ep0_end_in_req(struct pxa_ep *ep, struct pxa27x_request *req,
835 unsigned long *pflags)
836 {
837 set_ep0state(ep->dev, IN_STATUS_STAGE);
838 ep_end_in_req(ep, req, pflags);
839 }
840
841 /**
842 * nuke - Dequeue all requests
843 * @ep: pxa endpoint
844 * @status: usb request status
845 *
846 * Context: ep->lock released
847 *
848 * Dequeues all requests on an endpoint. As a side effect, interrupts will be
849 * disabled on that endpoint (because no more requests).
850 */
851 static void nuke(struct pxa_ep *ep, int status)
852 {
853 struct pxa27x_request *req;
854 unsigned long flags;
855
856 spin_lock_irqsave(&ep->lock, flags);
857 while (!list_empty(&ep->queue)) {
858 req = list_entry(ep->queue.next, struct pxa27x_request, queue);
859 req_done(ep, req, status, &flags);
860 }
861 spin_unlock_irqrestore(&ep->lock, flags);
862 }
863
864 /**
865 * read_packet - transfer 1 packet from an OUT endpoint into request
866 * @ep: pxa physical endpoint
867 * @req: usb request
868 *
869 * Takes bytes from OUT endpoint and transfers them info the usb request.
870 * If there is less space in request than bytes received in OUT endpoint,
871 * bytes are left in the OUT endpoint.
872 *
873 * Returns how many bytes were actually transferred
874 */
875 static int read_packet(struct pxa_ep *ep, struct pxa27x_request *req)
876 {
877 u32 *buf;
878 int bytes_ep, bufferspace, count, i;
879
880 bytes_ep = ep_count_bytes_remain(ep);
881 bufferspace = req->req.length - req->req.actual;
882
883 buf = (u32 *)(req->req.buf + req->req.actual);
884 prefetchw(buf);
885
886 if (likely(!ep_is_empty(ep)))
887 count = min(bytes_ep, bufferspace);
888 else /* zlp */
889 count = 0;
890
891 for (i = count; i > 0; i -= 4)
892 *buf++ = udc_ep_readl(ep, UDCDR);
893 req->req.actual += count;
894
895 ep_write_UDCCSR(ep, UDCCSR_PC);
896
897 return count;
898 }
899
900 /**
901 * write_packet - transfer 1 packet from request into an IN endpoint
902 * @ep: pxa physical endpoint
903 * @req: usb request
904 * @max: max bytes that fit into endpoint
905 *
906 * Takes bytes from usb request, and transfers them into the physical
907 * endpoint. If there are no bytes to transfer, doesn't write anything
908 * to physical endpoint.
909 *
910 * Returns how many bytes were actually transferred.
911 */
912 static int write_packet(struct pxa_ep *ep, struct pxa27x_request *req,
913 unsigned int max)
914 {
915 int length, count, remain, i;
916 u32 *buf;
917 u8 *buf_8;
918
919 buf = (u32 *)(req->req.buf + req->req.actual);
920 prefetch(buf);
921
922 length = min(req->req.length - req->req.actual, max);
923 req->req.actual += length;
924
925 remain = length & 0x3;
926 count = length & ~(0x3);
927 for (i = count; i > 0 ; i -= 4)
928 udc_ep_writel(ep, UDCDR, *buf++);
929
930 buf_8 = (u8 *)buf;
931 for (i = remain; i > 0; i--)
932 udc_ep_writeb(ep, UDCDR, *buf_8++);
933
934 ep_vdbg(ep, "length=%d+%d, udccsr=0x%03x\n", count, remain,
935 udc_ep_readl(ep, UDCCSR));
936
937 return length;
938 }
939
940 /**
941 * read_fifo - Transfer packets from OUT endpoint into usb request
942 * @ep: pxa physical endpoint
943 * @req: usb request
944 *
945 * Context: callable when in_interrupt()
946 *
947 * Unload as many packets as possible from the fifo we use for usb OUT
948 * transfers and put them into the request. Caller should have made sure
949 * there's at least one packet ready.
950 * Doesn't complete the request, that's the caller's job
951 *
952 * Returns 1 if the request completed, 0 otherwise
953 */
954 static int read_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
955 {
956 int count, is_short, completed = 0;
957
958 while (epout_has_pkt(ep)) {
959 count = read_packet(ep, req);
960 inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
961
962 is_short = (count < ep->fifo_size);
963 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
964 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
965 &req->req, req->req.actual, req->req.length);
966
967 /* completion */
968 if (is_short || req->req.actual == req->req.length) {
969 completed = 1;
970 break;
971 }
972 /* finished that packet. the next one may be waiting... */
973 }
974 return completed;
975 }
976
977 /**
978 * write_fifo - transfer packets from usb request into an IN endpoint
979 * @ep: pxa physical endpoint
980 * @req: pxa usb request
981 *
982 * Write to an IN endpoint fifo, as many packets as possible.
983 * irqs will use this to write the rest later.
984 * caller guarantees at least one packet buffer is ready (or a zlp).
985 * Doesn't complete the request, that's the caller's job
986 *
987 * Returns 1 if request fully transferred, 0 if partial transfer
988 */
989 static int write_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
990 {
991 unsigned max;
992 int count, is_short, is_last = 0, completed = 0, totcount = 0;
993 u32 udccsr;
994
995 max = ep->fifo_size;
996 do {
997 is_short = 0;
998
999 udccsr = udc_ep_readl(ep, UDCCSR);
1000 if (udccsr & UDCCSR_PC) {
1001 ep_vdbg(ep, "Clearing Transmit Complete, udccsr=%x\n",
1002 udccsr);
1003 ep_write_UDCCSR(ep, UDCCSR_PC);
1004 }
1005 if (udccsr & UDCCSR_TRN) {
1006 ep_vdbg(ep, "Clearing Underrun on, udccsr=%x\n",
1007 udccsr);
1008 ep_write_UDCCSR(ep, UDCCSR_TRN);
1009 }
1010
1011 count = write_packet(ep, req, max);
1012 inc_ep_stats_bytes(ep, count, USB_DIR_IN);
1013 totcount += count;
1014
1015 /* last packet is usually short (or a zlp) */
1016 if (unlikely(count < max)) {
1017 is_last = 1;
1018 is_short = 1;
1019 } else {
1020 if (likely(req->req.length > req->req.actual)
1021 || req->req.zero)
1022 is_last = 0;
1023 else
1024 is_last = 1;
1025 /* interrupt/iso maxpacket may not fill the fifo */
1026 is_short = unlikely(max < ep->fifo_size);
1027 }
1028
1029 if (is_short)
1030 ep_write_UDCCSR(ep, UDCCSR_SP);
1031
1032 /* requests complete when all IN data is in the FIFO */
1033 if (is_last) {
1034 completed = 1;
1035 break;
1036 }
1037 } while (!ep_is_full(ep));
1038
1039 ep_dbg(ep, "wrote count:%d bytes%s%s, left:%d req=%p\n",
1040 totcount, is_last ? "/L" : "", is_short ? "/S" : "",
1041 req->req.length - req->req.actual, &req->req);
1042
1043 return completed;
1044 }
1045
1046 /**
1047 * read_ep0_fifo - Transfer packets from control endpoint into usb request
1048 * @ep: control endpoint
1049 * @req: pxa usb request
1050 *
1051 * Special ep0 version of the above read_fifo. Reads as many bytes from control
1052 * endpoint as can be read, and stores them into usb request (limited by request
1053 * maximum length).
1054 *
1055 * Returns 0 if usb request only partially filled, 1 if fully filled
1056 */
1057 static int read_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
1058 {
1059 int count, is_short, completed = 0;
1060
1061 while (epout_has_pkt(ep)) {
1062 count = read_packet(ep, req);
1063 ep_write_UDCCSR(ep, UDCCSR0_OPC);
1064 inc_ep_stats_bytes(ep, count, !USB_DIR_IN);
1065
1066 is_short = (count < ep->fifo_size);
1067 ep_dbg(ep, "read udccsr:%03x, count:%d bytes%s req %p %d/%d\n",
1068 udc_ep_readl(ep, UDCCSR), count, is_short ? "/S" : "",
1069 &req->req, req->req.actual, req->req.length);
1070
1071 if (is_short || req->req.actual >= req->req.length) {
1072 completed = 1;
1073 break;
1074 }
1075 }
1076
1077 return completed;
1078 }
1079
1080 /**
1081 * write_ep0_fifo - Send a request to control endpoint (ep0 in)
1082 * @ep: control endpoint
1083 * @req: request
1084 *
1085 * Context: callable when in_interrupt()
1086 *
1087 * Sends a request (or a part of the request) to the control endpoint (ep0 in).
1088 * If the request doesn't fit, the remaining part will be sent from irq.
1089 * The request is considered fully written only if either :
1090 * - last write transferred all remaining bytes, but fifo was not fully filled
1091 * - last write was a 0 length write
1092 *
1093 * Returns 1 if request fully written, 0 if request only partially sent
1094 */
1095 static int write_ep0_fifo(struct pxa_ep *ep, struct pxa27x_request *req)
1096 {
1097 unsigned count;
1098 int is_last, is_short;
1099
1100 count = write_packet(ep, req, EP0_FIFO_SIZE);
1101 inc_ep_stats_bytes(ep, count, USB_DIR_IN);
1102
1103 is_short = (count < EP0_FIFO_SIZE);
1104 is_last = ((count == 0) || (count < EP0_FIFO_SIZE));
1105
1106 /* Sends either a short packet or a 0 length packet */
1107 if (unlikely(is_short))
1108 ep_write_UDCCSR(ep, UDCCSR0_IPR);
1109
1110 ep_dbg(ep, "in %d bytes%s%s, %d left, req=%p, udccsr0=0x%03x\n",
1111 count, is_short ? "/S" : "", is_last ? "/L" : "",
1112 req->req.length - req->req.actual,
1113 &req->req, udc_ep_readl(ep, UDCCSR));
1114
1115 return is_last;
1116 }
1117
1118 /**
1119 * pxa_ep_queue - Queue a request into an IN endpoint
1120 * @_ep: usb endpoint
1121 * @_req: usb request
1122 * @gfp_flags: flags
1123 *
1124 * Context: normally called when !in_interrupt, but callable when in_interrupt()
1125 * in the special case of ep0 setup :
1126 * (irq->handle_ep0_ctrl_req->gadget_setup->pxa_ep_queue)
1127 *
1128 * Returns 0 if succedeed, error otherwise
1129 */
1130 static int pxa_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1131 gfp_t gfp_flags)
1132 {
1133 struct udc_usb_ep *udc_usb_ep;
1134 struct pxa_ep *ep;
1135 struct pxa27x_request *req;
1136 struct pxa_udc *dev;
1137 unsigned long flags;
1138 int rc = 0;
1139 int is_first_req;
1140 unsigned length;
1141 int recursion_detected;
1142
1143 req = container_of(_req, struct pxa27x_request, req);
1144 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1145
1146 if (unlikely(!_req || !_req->complete || !_req->buf))
1147 return -EINVAL;
1148
1149 if (unlikely(!_ep))
1150 return -EINVAL;
1151
1152 dev = udc_usb_ep->dev;
1153 ep = udc_usb_ep->pxa_ep;
1154 if (unlikely(!ep))
1155 return -EINVAL;
1156
1157 dev = ep->dev;
1158 if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) {
1159 ep_dbg(ep, "bogus device state\n");
1160 return -ESHUTDOWN;
1161 }
1162
1163 /* iso is always one packet per request, that's the only way
1164 * we can report per-packet status. that also helps with dma.
1165 */
1166 if (unlikely(EPXFERTYPE_is_ISO(ep)
1167 && req->req.length > ep->fifo_size))
1168 return -EMSGSIZE;
1169
1170 spin_lock_irqsave(&ep->lock, flags);
1171 recursion_detected = ep->in_handle_ep;
1172
1173 is_first_req = list_empty(&ep->queue);
1174 ep_dbg(ep, "queue req %p(first=%s), len %d buf %p\n",
1175 _req, is_first_req ? "yes" : "no",
1176 _req->length, _req->buf);
1177
1178 if (!ep->enabled) {
1179 _req->status = -ESHUTDOWN;
1180 rc = -ESHUTDOWN;
1181 goto out_locked;
1182 }
1183
1184 if (req->in_use) {
1185 ep_err(ep, "refusing to queue req %p (already queued)\n", req);
1186 goto out_locked;
1187 }
1188
1189 length = _req->length;
1190 _req->status = -EINPROGRESS;
1191 _req->actual = 0;
1192
1193 ep_add_request(ep, req);
1194 spin_unlock_irqrestore(&ep->lock, flags);
1195
1196 if (is_ep0(ep)) {
1197 switch (dev->ep0state) {
1198 case WAIT_ACK_SET_CONF_INTERF:
1199 if (length == 0) {
1200 ep_end_in_req(ep, req, NULL);
1201 } else {
1202 ep_err(ep, "got a request of %d bytes while"
1203 "in state WAIT_ACK_SET_CONF_INTERF\n",
1204 length);
1205 ep_del_request(ep, req);
1206 rc = -EL2HLT;
1207 }
1208 ep0_idle(ep->dev);
1209 break;
1210 case IN_DATA_STAGE:
1211 if (!ep_is_full(ep))
1212 if (write_ep0_fifo(ep, req))
1213 ep0_end_in_req(ep, req, NULL);
1214 break;
1215 case OUT_DATA_STAGE:
1216 if ((length == 0) || !epout_has_pkt(ep))
1217 if (read_ep0_fifo(ep, req))
1218 ep0_end_out_req(ep, req, NULL);
1219 break;
1220 default:
1221 ep_err(ep, "odd state %s to send me a request\n",
1222 EP0_STNAME(ep->dev));
1223 ep_del_request(ep, req);
1224 rc = -EL2HLT;
1225 break;
1226 }
1227 } else {
1228 if (!recursion_detected)
1229 handle_ep(ep);
1230 }
1231
1232 out:
1233 return rc;
1234 out_locked:
1235 spin_unlock_irqrestore(&ep->lock, flags);
1236 goto out;
1237 }
1238
1239 /**
1240 * pxa_ep_dequeue - Dequeue one request
1241 * @_ep: usb endpoint
1242 * @_req: usb request
1243 *
1244 * Return 0 if no error, -EINVAL or -ECONNRESET otherwise
1245 */
1246 static int pxa_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1247 {
1248 struct pxa_ep *ep;
1249 struct udc_usb_ep *udc_usb_ep;
1250 struct pxa27x_request *req;
1251 unsigned long flags;
1252 int rc = -EINVAL;
1253
1254 if (!_ep)
1255 return rc;
1256 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1257 ep = udc_usb_ep->pxa_ep;
1258 if (!ep || is_ep0(ep))
1259 return rc;
1260
1261 spin_lock_irqsave(&ep->lock, flags);
1262
1263 /* make sure it's actually queued on this endpoint */
1264 list_for_each_entry(req, &ep->queue, queue) {
1265 if (&req->req == _req) {
1266 rc = 0;
1267 break;
1268 }
1269 }
1270
1271 spin_unlock_irqrestore(&ep->lock, flags);
1272 if (!rc)
1273 req_done(ep, req, -ECONNRESET, NULL);
1274 return rc;
1275 }
1276
1277 /**
1278 * pxa_ep_set_halt - Halts operations on one endpoint
1279 * @_ep: usb endpoint
1280 * @value:
1281 *
1282 * Returns 0 if no error, -EINVAL, -EROFS, -EAGAIN otherwise
1283 */
1284 static int pxa_ep_set_halt(struct usb_ep *_ep, int value)
1285 {
1286 struct pxa_ep *ep;
1287 struct udc_usb_ep *udc_usb_ep;
1288 unsigned long flags;
1289 int rc;
1290
1291
1292 if (!_ep)
1293 return -EINVAL;
1294 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1295 ep = udc_usb_ep->pxa_ep;
1296 if (!ep || is_ep0(ep))
1297 return -EINVAL;
1298
1299 if (value == 0) {
1300 /*
1301 * This path (reset toggle+halt) is needed to implement
1302 * SET_INTERFACE on normal hardware. but it can't be
1303 * done from software on the PXA UDC, and the hardware
1304 * forgets to do it as part of SET_INTERFACE automagic.
1305 */
1306 ep_dbg(ep, "only host can clear halt\n");
1307 return -EROFS;
1308 }
1309
1310 spin_lock_irqsave(&ep->lock, flags);
1311
1312 rc = -EAGAIN;
1313 if (ep->dir_in && (ep_is_full(ep) || !list_empty(&ep->queue)))
1314 goto out;
1315
1316 /* FST, FEF bits are the same for control and non control endpoints */
1317 rc = 0;
1318 ep_write_UDCCSR(ep, UDCCSR_FST | UDCCSR_FEF);
1319 if (is_ep0(ep))
1320 set_ep0state(ep->dev, STALL);
1321
1322 out:
1323 spin_unlock_irqrestore(&ep->lock, flags);
1324 return rc;
1325 }
1326
1327 /**
1328 * pxa_ep_fifo_status - Get how many bytes in physical endpoint
1329 * @_ep: usb endpoint
1330 *
1331 * Returns number of bytes in OUT fifos. Broken for IN fifos.
1332 */
1333 static int pxa_ep_fifo_status(struct usb_ep *_ep)
1334 {
1335 struct pxa_ep *ep;
1336 struct udc_usb_ep *udc_usb_ep;
1337
1338 if (!_ep)
1339 return -ENODEV;
1340 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1341 ep = udc_usb_ep->pxa_ep;
1342 if (!ep || is_ep0(ep))
1343 return -ENODEV;
1344
1345 if (ep->dir_in)
1346 return -EOPNOTSUPP;
1347 if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN || ep_is_empty(ep))
1348 return 0;
1349 else
1350 return ep_count_bytes_remain(ep) + 1;
1351 }
1352
1353 /**
1354 * pxa_ep_fifo_flush - Flushes one endpoint
1355 * @_ep: usb endpoint
1356 *
1357 * Discards all data in one endpoint(IN or OUT), except control endpoint.
1358 */
1359 static void pxa_ep_fifo_flush(struct usb_ep *_ep)
1360 {
1361 struct pxa_ep *ep;
1362 struct udc_usb_ep *udc_usb_ep;
1363 unsigned long flags;
1364
1365 if (!_ep)
1366 return;
1367 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1368 ep = udc_usb_ep->pxa_ep;
1369 if (!ep || is_ep0(ep))
1370 return;
1371
1372 spin_lock_irqsave(&ep->lock, flags);
1373
1374 if (unlikely(!list_empty(&ep->queue)))
1375 ep_dbg(ep, "called while queue list not empty\n");
1376 ep_dbg(ep, "called\n");
1377
1378 /* for OUT, just read and discard the FIFO contents. */
1379 if (!ep->dir_in) {
1380 while (!ep_is_empty(ep))
1381 udc_ep_readl(ep, UDCDR);
1382 } else {
1383 /* most IN status is the same, but ISO can't stall */
1384 ep_write_UDCCSR(ep,
1385 UDCCSR_PC | UDCCSR_FEF | UDCCSR_TRN
1386 | (EPXFERTYPE_is_ISO(ep) ? 0 : UDCCSR_SST));
1387 }
1388
1389 spin_unlock_irqrestore(&ep->lock, flags);
1390 }
1391
1392 /**
1393 * pxa_ep_enable - Enables usb endpoint
1394 * @_ep: usb endpoint
1395 * @desc: usb endpoint descriptor
1396 *
1397 * Nothing much to do here, as ep configuration is done once and for all
1398 * before udc is enabled. After udc enable, no physical endpoint configuration
1399 * can be changed.
1400 * Function makes sanity checks and flushes the endpoint.
1401 */
1402 static int pxa_ep_enable(struct usb_ep *_ep,
1403 const struct usb_endpoint_descriptor *desc)
1404 {
1405 struct pxa_ep *ep;
1406 struct udc_usb_ep *udc_usb_ep;
1407 struct pxa_udc *udc;
1408
1409 if (!_ep || !desc)
1410 return -EINVAL;
1411
1412 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1413 if (udc_usb_ep->pxa_ep) {
1414 ep = udc_usb_ep->pxa_ep;
1415 ep_warn(ep, "usb_ep %s already enabled, doing nothing\n",
1416 _ep->name);
1417 } else {
1418 ep = find_pxa_ep(udc_usb_ep->dev, udc_usb_ep);
1419 }
1420
1421 if (!ep || is_ep0(ep)) {
1422 dev_err(udc_usb_ep->dev->dev,
1423 "unable to match pxa_ep for ep %s\n",
1424 _ep->name);
1425 return -EINVAL;
1426 }
1427
1428 if ((desc->bDescriptorType != USB_DT_ENDPOINT)
1429 || (ep->type != usb_endpoint_type(desc))) {
1430 ep_err(ep, "type mismatch\n");
1431 return -EINVAL;
1432 }
1433
1434 if (ep->fifo_size < usb_endpoint_maxp(desc)) {
1435 ep_err(ep, "bad maxpacket\n");
1436 return -ERANGE;
1437 }
1438
1439 udc_usb_ep->pxa_ep = ep;
1440 udc = ep->dev;
1441
1442 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1443 ep_err(ep, "bogus device state\n");
1444 return -ESHUTDOWN;
1445 }
1446
1447 ep->enabled = 1;
1448
1449 /* flush fifo (mostly for OUT buffers) */
1450 pxa_ep_fifo_flush(_ep);
1451
1452 ep_dbg(ep, "enabled\n");
1453 return 0;
1454 }
1455
1456 /**
1457 * pxa_ep_disable - Disable usb endpoint
1458 * @_ep: usb endpoint
1459 *
1460 * Same as for pxa_ep_enable, no physical endpoint configuration can be
1461 * changed.
1462 * Function flushes the endpoint and related requests.
1463 */
1464 static int pxa_ep_disable(struct usb_ep *_ep)
1465 {
1466 struct pxa_ep *ep;
1467 struct udc_usb_ep *udc_usb_ep;
1468
1469 if (!_ep)
1470 return -EINVAL;
1471
1472 udc_usb_ep = container_of(_ep, struct udc_usb_ep, usb_ep);
1473 ep = udc_usb_ep->pxa_ep;
1474 if (!ep || is_ep0(ep) || !list_empty(&ep->queue))
1475 return -EINVAL;
1476
1477 ep->enabled = 0;
1478 nuke(ep, -ESHUTDOWN);
1479
1480 pxa_ep_fifo_flush(_ep);
1481 udc_usb_ep->pxa_ep = NULL;
1482
1483 ep_dbg(ep, "disabled\n");
1484 return 0;
1485 }
1486
1487 static struct usb_ep_ops pxa_ep_ops = {
1488 .enable = pxa_ep_enable,
1489 .disable = pxa_ep_disable,
1490
1491 .alloc_request = pxa_ep_alloc_request,
1492 .free_request = pxa_ep_free_request,
1493
1494 .queue = pxa_ep_queue,
1495 .dequeue = pxa_ep_dequeue,
1496
1497 .set_halt = pxa_ep_set_halt,
1498 .fifo_status = pxa_ep_fifo_status,
1499 .fifo_flush = pxa_ep_fifo_flush,
1500 };
1501
1502 /**
1503 * dplus_pullup - Connect or disconnect pullup resistor to D+ pin
1504 * @udc: udc device
1505 * @on: 0 if disconnect pullup resistor, 1 otherwise
1506 * Context: any
1507 *
1508 * Handle D+ pullup resistor, make the device visible to the usb bus, and
1509 * declare it as a full speed usb device
1510 */
1511 static void dplus_pullup(struct pxa_udc *udc, int on)
1512 {
1513 if (udc->gpiod) {
1514 gpiod_set_value(udc->gpiod, on);
1515 } else if (udc->udc_command) {
1516 if (on)
1517 udc->udc_command(PXA2XX_UDC_CMD_CONNECT);
1518 else
1519 udc->udc_command(PXA2XX_UDC_CMD_DISCONNECT);
1520 }
1521 udc->pullup_on = on;
1522 }
1523
1524 /**
1525 * pxa_udc_get_frame - Returns usb frame number
1526 * @_gadget: usb gadget
1527 */
1528 static int pxa_udc_get_frame(struct usb_gadget *_gadget)
1529 {
1530 struct pxa_udc *udc = to_gadget_udc(_gadget);
1531
1532 return (udc_readl(udc, UDCFNR) & 0x7ff);
1533 }
1534
1535 /**
1536 * pxa_udc_wakeup - Force udc device out of suspend
1537 * @_gadget: usb gadget
1538 *
1539 * Returns 0 if successful, error code otherwise
1540 */
1541 static int pxa_udc_wakeup(struct usb_gadget *_gadget)
1542 {
1543 struct pxa_udc *udc = to_gadget_udc(_gadget);
1544
1545 /* host may not have enabled remote wakeup */
1546 if ((udc_readl(udc, UDCCR) & UDCCR_DWRE) == 0)
1547 return -EHOSTUNREACH;
1548 udc_set_mask_UDCCR(udc, UDCCR_UDR);
1549 return 0;
1550 }
1551
1552 static void udc_enable(struct pxa_udc *udc);
1553 static void udc_disable(struct pxa_udc *udc);
1554
1555 /**
1556 * should_enable_udc - Tells if UDC should be enabled
1557 * @udc: udc device
1558 * Context: any
1559 *
1560 * The UDC should be enabled if :
1561
1562 * - the pullup resistor is connected
1563 * - and a gadget driver is bound
1564 * - and vbus is sensed (or no vbus sense is available)
1565 *
1566 * Returns 1 if UDC should be enabled, 0 otherwise
1567 */
1568 static int should_enable_udc(struct pxa_udc *udc)
1569 {
1570 int put_on;
1571
1572 put_on = ((udc->pullup_on) && (udc->driver));
1573 put_on &= ((udc->vbus_sensed) || (IS_ERR_OR_NULL(udc->transceiver)));
1574 return put_on;
1575 }
1576
1577 /**
1578 * should_disable_udc - Tells if UDC should be disabled
1579 * @udc: udc device
1580 * Context: any
1581 *
1582 * The UDC should be disabled if :
1583 * - the pullup resistor is not connected
1584 * - or no gadget driver is bound
1585 * - or no vbus is sensed (when vbus sesing is available)
1586 *
1587 * Returns 1 if UDC should be disabled
1588 */
1589 static int should_disable_udc(struct pxa_udc *udc)
1590 {
1591 int put_off;
1592
1593 put_off = ((!udc->pullup_on) || (!udc->driver));
1594 put_off |= ((!udc->vbus_sensed) && (!IS_ERR_OR_NULL(udc->transceiver)));
1595 return put_off;
1596 }
1597
1598 /**
1599 * pxa_udc_pullup - Offer manual D+ pullup control
1600 * @_gadget: usb gadget using the control
1601 * @is_active: 0 if disconnect, else connect D+ pullup resistor
1602 * Context: !in_interrupt()
1603 *
1604 * Returns 0 if OK, -EOPNOTSUPP if udc driver doesn't handle D+ pullup
1605 */
1606 static int pxa_udc_pullup(struct usb_gadget *_gadget, int is_active)
1607 {
1608 struct pxa_udc *udc = to_gadget_udc(_gadget);
1609
1610 if (!udc->gpiod && !udc->udc_command)
1611 return -EOPNOTSUPP;
1612
1613 dplus_pullup(udc, is_active);
1614
1615 if (should_enable_udc(udc))
1616 udc_enable(udc);
1617 if (should_disable_udc(udc))
1618 udc_disable(udc);
1619 return 0;
1620 }
1621
1622 static void udc_enable(struct pxa_udc *udc);
1623 static void udc_disable(struct pxa_udc *udc);
1624
1625 /**
1626 * pxa_udc_vbus_session - Called by external transceiver to enable/disable udc
1627 * @_gadget: usb gadget
1628 * @is_active: 0 if should disable the udc, 1 if should enable
1629 *
1630 * Enables the udc, and optionnaly activates D+ pullup resistor. Or disables the
1631 * udc, and deactivates D+ pullup resistor.
1632 *
1633 * Returns 0
1634 */
1635 static int pxa_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1636 {
1637 struct pxa_udc *udc = to_gadget_udc(_gadget);
1638
1639 udc->vbus_sensed = is_active;
1640 if (should_enable_udc(udc))
1641 udc_enable(udc);
1642 if (should_disable_udc(udc))
1643 udc_disable(udc);
1644
1645 return 0;
1646 }
1647
1648 /**
1649 * pxa_udc_vbus_draw - Called by gadget driver after SET_CONFIGURATION completed
1650 * @_gadget: usb gadget
1651 * @mA: current drawn
1652 *
1653 * Context: !in_interrupt()
1654 *
1655 * Called after a configuration was chosen by a USB host, to inform how much
1656 * current can be drawn by the device from VBus line.
1657 *
1658 * Returns 0 or -EOPNOTSUPP if no transceiver is handling the udc
1659 */
1660 static int pxa_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA)
1661 {
1662 struct pxa_udc *udc;
1663
1664 udc = to_gadget_udc(_gadget);
1665 if (!IS_ERR_OR_NULL(udc->transceiver))
1666 return usb_phy_set_power(udc->transceiver, mA);
1667 return -EOPNOTSUPP;
1668 }
1669
1670 static int pxa27x_udc_start(struct usb_gadget *g,
1671 struct usb_gadget_driver *driver);
1672 static int pxa27x_udc_stop(struct usb_gadget *g);
1673
1674 static const struct usb_gadget_ops pxa_udc_ops = {
1675 .get_frame = pxa_udc_get_frame,
1676 .wakeup = pxa_udc_wakeup,
1677 .pullup = pxa_udc_pullup,
1678 .vbus_session = pxa_udc_vbus_session,
1679 .vbus_draw = pxa_udc_vbus_draw,
1680 .udc_start = pxa27x_udc_start,
1681 .udc_stop = pxa27x_udc_stop,
1682 };
1683
1684 /**
1685 * udc_disable - disable udc device controller
1686 * @udc: udc device
1687 * Context: any
1688 *
1689 * Disables the udc device : disables clocks, udc interrupts, control endpoint
1690 * interrupts.
1691 */
1692 static void udc_disable(struct pxa_udc *udc)
1693 {
1694 if (!udc->enabled)
1695 return;
1696
1697 udc_writel(udc, UDCICR0, 0);
1698 udc_writel(udc, UDCICR1, 0);
1699
1700 udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1701
1702 ep0_idle(udc);
1703 udc->gadget.speed = USB_SPEED_UNKNOWN;
1704 clk_disable(udc->clk);
1705
1706 udc->enabled = 0;
1707 }
1708
1709 /**
1710 * udc_init_data - Initialize udc device data structures
1711 * @dev: udc device
1712 *
1713 * Initializes gadget endpoint list, endpoints locks. No action is taken
1714 * on the hardware.
1715 */
1716 static void udc_init_data(struct pxa_udc *dev)
1717 {
1718 int i;
1719 struct pxa_ep *ep;
1720
1721 /* device/ep0 records init */
1722 INIT_LIST_HEAD(&dev->gadget.ep_list);
1723 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1724 dev->udc_usb_ep[0].pxa_ep = &dev->pxa_ep[0];
1725 ep0_idle(dev);
1726
1727 /* PXA endpoints init */
1728 for (i = 0; i < NR_PXA_ENDPOINTS; i++) {
1729 ep = &dev->pxa_ep[i];
1730
1731 ep->enabled = is_ep0(ep);
1732 INIT_LIST_HEAD(&ep->queue);
1733 spin_lock_init(&ep->lock);
1734 }
1735
1736 /* USB endpoints init */
1737 for (i = 1; i < NR_USB_ENDPOINTS; i++) {
1738 list_add_tail(&dev->udc_usb_ep[i].usb_ep.ep_list,
1739 &dev->gadget.ep_list);
1740 usb_ep_set_maxpacket_limit(&dev->udc_usb_ep[i].usb_ep,
1741 dev->udc_usb_ep[i].usb_ep.maxpacket);
1742 }
1743 }
1744
1745 /**
1746 * udc_enable - Enables the udc device
1747 * @dev: udc device
1748 *
1749 * Enables the udc device : enables clocks, udc interrupts, control endpoint
1750 * interrupts, sets usb as UDC client and setups endpoints.
1751 */
1752 static void udc_enable(struct pxa_udc *udc)
1753 {
1754 if (udc->enabled)
1755 return;
1756
1757 clk_enable(udc->clk);
1758 udc_writel(udc, UDCICR0, 0);
1759 udc_writel(udc, UDCICR1, 0);
1760 udc_clear_mask_UDCCR(udc, UDCCR_UDE);
1761
1762 ep0_idle(udc);
1763 udc->gadget.speed = USB_SPEED_FULL;
1764 memset(&udc->stats, 0, sizeof(udc->stats));
1765
1766 pxa_eps_setup(udc);
1767 udc_set_mask_UDCCR(udc, UDCCR_UDE);
1768 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_ACM);
1769 udelay(2);
1770 if (udc_readl(udc, UDCCR) & UDCCR_EMCE)
1771 dev_err(udc->dev, "Configuration errors, udc disabled\n");
1772
1773 /*
1774 * Caller must be able to sleep in order to cope with startup transients
1775 */
1776 msleep(100);
1777
1778 /* enable suspend/resume and reset irqs */
1779 udc_writel(udc, UDCICR1,
1780 UDCICR1_IECC | UDCICR1_IERU
1781 | UDCICR1_IESU | UDCICR1_IERS);
1782
1783 /* enable ep0 irqs */
1784 pio_irq_enable(&udc->pxa_ep[0]);
1785
1786 udc->enabled = 1;
1787 }
1788
1789 /**
1790 * pxa27x_start - Register gadget driver
1791 * @driver: gadget driver
1792 * @bind: bind function
1793 *
1794 * When a driver is successfully registered, it will receive control requests
1795 * including set_configuration(), which enables non-control requests. Then
1796 * usb traffic follows until a disconnect is reported. Then a host may connect
1797 * again, or the driver might get unbound.
1798 *
1799 * Note that the udc is not automatically enabled. Check function
1800 * should_enable_udc().
1801 *
1802 * Returns 0 if no error, -EINVAL, -ENODEV, -EBUSY otherwise
1803 */
1804 static int pxa27x_udc_start(struct usb_gadget *g,
1805 struct usb_gadget_driver *driver)
1806 {
1807 struct pxa_udc *udc = to_pxa(g);
1808 int retval;
1809
1810 /* first hook up the driver ... */
1811 udc->driver = driver;
1812
1813 if (!IS_ERR_OR_NULL(udc->transceiver)) {
1814 retval = otg_set_peripheral(udc->transceiver->otg,
1815 &udc->gadget);
1816 if (retval) {
1817 dev_err(udc->dev, "can't bind to transceiver\n");
1818 goto fail;
1819 }
1820 }
1821
1822 if (should_enable_udc(udc))
1823 udc_enable(udc);
1824 return 0;
1825
1826 fail:
1827 udc->driver = NULL;
1828 return retval;
1829 }
1830
1831 /**
1832 * stop_activity - Stops udc endpoints
1833 * @udc: udc device
1834 * @driver: gadget driver
1835 *
1836 * Disables all udc endpoints (even control endpoint), report disconnect to
1837 * the gadget user.
1838 */
1839 static void stop_activity(struct pxa_udc *udc, struct usb_gadget_driver *driver)
1840 {
1841 int i;
1842
1843 /* don't disconnect drivers more than once */
1844 if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1845 driver = NULL;
1846 udc->gadget.speed = USB_SPEED_UNKNOWN;
1847
1848 for (i = 0; i < NR_USB_ENDPOINTS; i++)
1849 pxa_ep_disable(&udc->udc_usb_ep[i].usb_ep);
1850 }
1851
1852 /**
1853 * pxa27x_udc_stop - Unregister the gadget driver
1854 * @driver: gadget driver
1855 *
1856 * Returns 0 if no error, -ENODEV, -EINVAL otherwise
1857 */
1858 static int pxa27x_udc_stop(struct usb_gadget *g)
1859 {
1860 struct pxa_udc *udc = to_pxa(g);
1861
1862 stop_activity(udc, NULL);
1863 udc_disable(udc);
1864
1865 udc->driver = NULL;
1866
1867 if (!IS_ERR_OR_NULL(udc->transceiver))
1868 return otg_set_peripheral(udc->transceiver->otg, NULL);
1869 return 0;
1870 }
1871
1872 /**
1873 * handle_ep0_ctrl_req - handle control endpoint control request
1874 * @udc: udc device
1875 * @req: control request
1876 */
1877 static void handle_ep0_ctrl_req(struct pxa_udc *udc,
1878 struct pxa27x_request *req)
1879 {
1880 struct pxa_ep *ep = &udc->pxa_ep[0];
1881 union {
1882 struct usb_ctrlrequest r;
1883 u32 word[2];
1884 } u;
1885 int i;
1886 int have_extrabytes = 0;
1887 unsigned long flags;
1888
1889 nuke(ep, -EPROTO);
1890 spin_lock_irqsave(&ep->lock, flags);
1891
1892 /*
1893 * In the PXA320 manual, in the section about Back-to-Back setup
1894 * packets, it describes this situation. The solution is to set OPC to
1895 * get rid of the status packet, and then continue with the setup
1896 * packet. Generalize to pxa27x CPUs.
1897 */
1898 if (epout_has_pkt(ep) && (ep_count_bytes_remain(ep) == 0))
1899 ep_write_UDCCSR(ep, UDCCSR0_OPC);
1900
1901 /* read SETUP packet */
1902 for (i = 0; i < 2; i++) {
1903 if (unlikely(ep_is_empty(ep)))
1904 goto stall;
1905 u.word[i] = udc_ep_readl(ep, UDCDR);
1906 }
1907
1908 have_extrabytes = !ep_is_empty(ep);
1909 while (!ep_is_empty(ep)) {
1910 i = udc_ep_readl(ep, UDCDR);
1911 ep_err(ep, "wrong to have extra bytes for setup : 0x%08x\n", i);
1912 }
1913
1914 ep_dbg(ep, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1915 u.r.bRequestType, u.r.bRequest,
1916 le16_to_cpu(u.r.wValue), le16_to_cpu(u.r.wIndex),
1917 le16_to_cpu(u.r.wLength));
1918 if (unlikely(have_extrabytes))
1919 goto stall;
1920
1921 if (u.r.bRequestType & USB_DIR_IN)
1922 set_ep0state(udc, IN_DATA_STAGE);
1923 else
1924 set_ep0state(udc, OUT_DATA_STAGE);
1925
1926 /* Tell UDC to enter Data Stage */
1927 ep_write_UDCCSR(ep, UDCCSR0_SA | UDCCSR0_OPC);
1928
1929 spin_unlock_irqrestore(&ep->lock, flags);
1930 i = udc->driver->setup(&udc->gadget, &u.r);
1931 spin_lock_irqsave(&ep->lock, flags);
1932 if (i < 0)
1933 goto stall;
1934 out:
1935 spin_unlock_irqrestore(&ep->lock, flags);
1936 return;
1937 stall:
1938 ep_dbg(ep, "protocol STALL, udccsr0=%03x err %d\n",
1939 udc_ep_readl(ep, UDCCSR), i);
1940 ep_write_UDCCSR(ep, UDCCSR0_FST | UDCCSR0_FTF);
1941 set_ep0state(udc, STALL);
1942 goto out;
1943 }
1944
1945 /**
1946 * handle_ep0 - Handle control endpoint data transfers
1947 * @udc: udc device
1948 * @fifo_irq: 1 if triggered by fifo service type irq
1949 * @opc_irq: 1 if triggered by output packet complete type irq
1950 *
1951 * Context : when in_interrupt() or with ep->lock held
1952 *
1953 * Tries to transfer all pending request data into the endpoint and/or
1954 * transfer all pending data in the endpoint into usb requests.
1955 * Handles states of ep0 automata.
1956 *
1957 * PXA27x hardware handles several standard usb control requests without
1958 * driver notification. The requests fully handled by hardware are :
1959 * SET_ADDRESS, SET_FEATURE, CLEAR_FEATURE, GET_CONFIGURATION, GET_INTERFACE,
1960 * GET_STATUS
1961 * The requests handled by hardware, but with irq notification are :
1962 * SYNCH_FRAME, SET_CONFIGURATION, SET_INTERFACE
1963 * The remaining standard requests really handled by handle_ep0 are :
1964 * GET_DESCRIPTOR, SET_DESCRIPTOR, specific requests.
1965 * Requests standardized outside of USB 2.0 chapter 9 are handled more
1966 * uniformly, by gadget drivers.
1967 *
1968 * The control endpoint state machine is _not_ USB spec compliant, it's even
1969 * hardly compliant with Intel PXA270 developers guide.
1970 * The key points which inferred this state machine are :
1971 * - on every setup token, bit UDCCSR0_SA is raised and held until cleared by
1972 * software.
1973 * - on every OUT packet received, UDCCSR0_OPC is raised and held until
1974 * cleared by software.
1975 * - clearing UDCCSR0_OPC always flushes ep0. If in setup stage, never do it
1976 * before reading ep0.
1977 * This is true only for PXA27x. This is not true anymore for PXA3xx family
1978 * (check Back-to-Back setup packet in developers guide).
1979 * - irq can be called on a "packet complete" event (opc_irq=1), while
1980 * UDCCSR0_OPC is not yet raised (delta can be as big as 100ms
1981 * from experimentation).
1982 * - as UDCCSR0_SA can be activated while in irq handling, and clearing
1983 * UDCCSR0_OPC would flush the setup data, we almost never clear UDCCSR0_OPC
1984 * => we never actually read the "status stage" packet of an IN data stage
1985 * => this is not documented in Intel documentation
1986 * - hardware as no idea of STATUS STAGE, it only handle SETUP STAGE and DATA
1987 * STAGE. The driver add STATUS STAGE to send last zero length packet in
1988 * OUT_STATUS_STAGE.
1989 * - special attention was needed for IN_STATUS_STAGE. If a packet complete
1990 * event is detected, we terminate the status stage without ackowledging the
1991 * packet (not to risk to loose a potential SETUP packet)
1992 */
1993 static void handle_ep0(struct pxa_udc *udc, int fifo_irq, int opc_irq)
1994 {
1995 u32 udccsr0;
1996 struct pxa_ep *ep = &udc->pxa_ep[0];
1997 struct pxa27x_request *req = NULL;
1998 int completed = 0;
1999
2000 if (!list_empty(&ep->queue))
2001 req = list_entry(ep->queue.next, struct pxa27x_request, queue);
2002
2003 udccsr0 = udc_ep_readl(ep, UDCCSR);
2004 ep_dbg(ep, "state=%s, req=%p, udccsr0=0x%03x, udcbcr=%d, irq_msk=%x\n",
2005 EP0_STNAME(udc), req, udccsr0, udc_ep_readl(ep, UDCBCR),
2006 (fifo_irq << 1 | opc_irq));
2007
2008 if (udccsr0 & UDCCSR0_SST) {
2009 ep_dbg(ep, "clearing stall status\n");
2010 nuke(ep, -EPIPE);
2011 ep_write_UDCCSR(ep, UDCCSR0_SST);
2012 ep0_idle(udc);
2013 }
2014
2015 if (udccsr0 & UDCCSR0_SA) {
2016 nuke(ep, 0);
2017 set_ep0state(udc, SETUP_STAGE);
2018 }
2019
2020 switch (udc->ep0state) {
2021 case WAIT_FOR_SETUP:
2022 /*
2023 * Hardware bug : beware, we cannot clear OPC, since we would
2024 * miss a potential OPC irq for a setup packet.
2025 * So, we only do ... nothing, and hope for a next irq with
2026 * UDCCSR0_SA set.
2027 */
2028 break;
2029 case SETUP_STAGE:
2030 udccsr0 &= UDCCSR0_CTRL_REQ_MASK;
2031 if (likely(udccsr0 == UDCCSR0_CTRL_REQ_MASK))
2032 handle_ep0_ctrl_req(udc, req);
2033 break;
2034 case IN_DATA_STAGE: /* GET_DESCRIPTOR */
2035 if (epout_has_pkt(ep))
2036 ep_write_UDCCSR(ep, UDCCSR0_OPC);
2037 if (req && !ep_is_full(ep))
2038 completed = write_ep0_fifo(ep, req);
2039 if (completed)
2040 ep0_end_in_req(ep, req, NULL);
2041 break;
2042 case OUT_DATA_STAGE: /* SET_DESCRIPTOR */
2043 if (epout_has_pkt(ep) && req)
2044 completed = read_ep0_fifo(ep, req);
2045 if (completed)
2046 ep0_end_out_req(ep, req, NULL);
2047 break;
2048 case STALL:
2049 ep_write_UDCCSR(ep, UDCCSR0_FST);
2050 break;
2051 case IN_STATUS_STAGE:
2052 /*
2053 * Hardware bug : beware, we cannot clear OPC, since we would
2054 * miss a potential PC irq for a setup packet.
2055 * So, we only put the ep0 into WAIT_FOR_SETUP state.
2056 */
2057 if (opc_irq)
2058 ep0_idle(udc);
2059 break;
2060 case OUT_STATUS_STAGE:
2061 case WAIT_ACK_SET_CONF_INTERF:
2062 ep_warn(ep, "should never get in %s state here!!!\n",
2063 EP0_STNAME(ep->dev));
2064 ep0_idle(udc);
2065 break;
2066 }
2067 }
2068
2069 /**
2070 * handle_ep - Handle endpoint data tranfers
2071 * @ep: pxa physical endpoint
2072 *
2073 * Tries to transfer all pending request data into the endpoint and/or
2074 * transfer all pending data in the endpoint into usb requests.
2075 *
2076 * Is always called when in_interrupt() and with ep->lock released.
2077 */
2078 static void handle_ep(struct pxa_ep *ep)
2079 {
2080 struct pxa27x_request *req;
2081 int completed;
2082 u32 udccsr;
2083 int is_in = ep->dir_in;
2084 int loop = 0;
2085 unsigned long flags;
2086
2087 spin_lock_irqsave(&ep->lock, flags);
2088 if (ep->in_handle_ep)
2089 goto recursion_detected;
2090 ep->in_handle_ep = 1;
2091
2092 do {
2093 completed = 0;
2094 udccsr = udc_ep_readl(ep, UDCCSR);
2095
2096 if (likely(!list_empty(&ep->queue)))
2097 req = list_entry(ep->queue.next,
2098 struct pxa27x_request, queue);
2099 else
2100 req = NULL;
2101
2102 ep_dbg(ep, "req:%p, udccsr 0x%03x loop=%d\n",
2103 req, udccsr, loop++);
2104
2105 if (unlikely(udccsr & (UDCCSR_SST | UDCCSR_TRN)))
2106 udc_ep_writel(ep, UDCCSR,
2107 udccsr & (UDCCSR_SST | UDCCSR_TRN));
2108 if (!req)
2109 break;
2110
2111 if (unlikely(is_in)) {
2112 if (likely(!ep_is_full(ep)))
2113 completed = write_fifo(ep, req);
2114 } else {
2115 if (likely(epout_has_pkt(ep)))
2116 completed = read_fifo(ep, req);
2117 }
2118
2119 if (completed) {
2120 if (is_in)
2121 ep_end_in_req(ep, req, &flags);
2122 else
2123 ep_end_out_req(ep, req, &flags);
2124 }
2125 } while (completed);
2126
2127 ep->in_handle_ep = 0;
2128 recursion_detected:
2129 spin_unlock_irqrestore(&ep->lock, flags);
2130 }
2131
2132 /**
2133 * pxa27x_change_configuration - Handle SET_CONF usb request notification
2134 * @udc: udc device
2135 * @config: usb configuration
2136 *
2137 * Post the request to upper level.
2138 * Don't use any pxa specific harware configuration capabilities
2139 */
2140 static void pxa27x_change_configuration(struct pxa_udc *udc, int config)
2141 {
2142 struct usb_ctrlrequest req ;
2143
2144 dev_dbg(udc->dev, "config=%d\n", config);
2145
2146 udc->config = config;
2147 udc->last_interface = 0;
2148 udc->last_alternate = 0;
2149
2150 req.bRequestType = 0;
2151 req.bRequest = USB_REQ_SET_CONFIGURATION;
2152 req.wValue = config;
2153 req.wIndex = 0;
2154 req.wLength = 0;
2155
2156 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2157 udc->driver->setup(&udc->gadget, &req);
2158 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2159 }
2160
2161 /**
2162 * pxa27x_change_interface - Handle SET_INTERF usb request notification
2163 * @udc: udc device
2164 * @iface: interface number
2165 * @alt: alternate setting number
2166 *
2167 * Post the request to upper level.
2168 * Don't use any pxa specific harware configuration capabilities
2169 */
2170 static void pxa27x_change_interface(struct pxa_udc *udc, int iface, int alt)
2171 {
2172 struct usb_ctrlrequest req;
2173
2174 dev_dbg(udc->dev, "interface=%d, alternate setting=%d\n", iface, alt);
2175
2176 udc->last_interface = iface;
2177 udc->last_alternate = alt;
2178
2179 req.bRequestType = USB_RECIP_INTERFACE;
2180 req.bRequest = USB_REQ_SET_INTERFACE;
2181 req.wValue = alt;
2182 req.wIndex = iface;
2183 req.wLength = 0;
2184
2185 set_ep0state(udc, WAIT_ACK_SET_CONF_INTERF);
2186 udc->driver->setup(&udc->gadget, &req);
2187 ep_write_UDCCSR(&udc->pxa_ep[0], UDCCSR0_AREN);
2188 }
2189
2190 /*
2191 * irq_handle_data - Handle data transfer
2192 * @irq: irq IRQ number
2193 * @udc: dev pxa_udc device structure
2194 *
2195 * Called from irq handler, transferts data to or from endpoint to queue
2196 */
2197 static void irq_handle_data(int irq, struct pxa_udc *udc)
2198 {
2199 int i;
2200 struct pxa_ep *ep;
2201 u32 udcisr0 = udc_readl(udc, UDCISR0) & UDCCISR0_EP_MASK;
2202 u32 udcisr1 = udc_readl(udc, UDCISR1) & UDCCISR1_EP_MASK;
2203
2204 if (udcisr0 & UDCISR_INT_MASK) {
2205 udc->pxa_ep[0].stats.irqs++;
2206 udc_writel(udc, UDCISR0, UDCISR_INT(0, UDCISR_INT_MASK));
2207 handle_ep0(udc, !!(udcisr0 & UDCICR_FIFOERR),
2208 !!(udcisr0 & UDCICR_PKTCOMPL));
2209 }
2210
2211 udcisr0 >>= 2;
2212 for (i = 1; udcisr0 != 0 && i < 16; udcisr0 >>= 2, i++) {
2213 if (!(udcisr0 & UDCISR_INT_MASK))
2214 continue;
2215
2216 udc_writel(udc, UDCISR0, UDCISR_INT(i, UDCISR_INT_MASK));
2217
2218 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
2219 if (i < ARRAY_SIZE(udc->pxa_ep)) {
2220 ep = &udc->pxa_ep[i];
2221 ep->stats.irqs++;
2222 handle_ep(ep);
2223 }
2224 }
2225
2226 for (i = 16; udcisr1 != 0 && i < 24; udcisr1 >>= 2, i++) {
2227 udc_writel(udc, UDCISR1, UDCISR_INT(i - 16, UDCISR_INT_MASK));
2228 if (!(udcisr1 & UDCISR_INT_MASK))
2229 continue;
2230
2231 WARN_ON(i >= ARRAY_SIZE(udc->pxa_ep));
2232 if (i < ARRAY_SIZE(udc->pxa_ep)) {
2233 ep = &udc->pxa_ep[i];
2234 ep->stats.irqs++;
2235 handle_ep(ep);
2236 }
2237 }
2238
2239 }
2240
2241 /**
2242 * irq_udc_suspend - Handle IRQ "UDC Suspend"
2243 * @udc: udc device
2244 */
2245 static void irq_udc_suspend(struct pxa_udc *udc)
2246 {
2247 udc_writel(udc, UDCISR1, UDCISR1_IRSU);
2248 udc->stats.irqs_suspend++;
2249
2250 if (udc->gadget.speed != USB_SPEED_UNKNOWN
2251 && udc->driver && udc->driver->suspend)
2252 udc->driver->suspend(&udc->gadget);
2253 ep0_idle(udc);
2254 }
2255
2256 /**
2257 * irq_udc_resume - Handle IRQ "UDC Resume"
2258 * @udc: udc device
2259 */
2260 static void irq_udc_resume(struct pxa_udc *udc)
2261 {
2262 udc_writel(udc, UDCISR1, UDCISR1_IRRU);
2263 udc->stats.irqs_resume++;
2264
2265 if (udc->gadget.speed != USB_SPEED_UNKNOWN
2266 && udc->driver && udc->driver->resume)
2267 udc->driver->resume(&udc->gadget);
2268 }
2269
2270 /**
2271 * irq_udc_reconfig - Handle IRQ "UDC Change Configuration"
2272 * @udc: udc device
2273 */
2274 static void irq_udc_reconfig(struct pxa_udc *udc)
2275 {
2276 unsigned config, interface, alternate, config_change;
2277 u32 udccr = udc_readl(udc, UDCCR);
2278
2279 udc_writel(udc, UDCISR1, UDCISR1_IRCC);
2280 udc->stats.irqs_reconfig++;
2281
2282 config = (udccr & UDCCR_ACN) >> UDCCR_ACN_S;
2283 config_change = (config != udc->config);
2284 pxa27x_change_configuration(udc, config);
2285
2286 interface = (udccr & UDCCR_AIN) >> UDCCR_AIN_S;
2287 alternate = (udccr & UDCCR_AAISN) >> UDCCR_AAISN_S;
2288 pxa27x_change_interface(udc, interface, alternate);
2289
2290 if (config_change)
2291 update_pxa_ep_matches(udc);
2292 udc_set_mask_UDCCR(udc, UDCCR_SMAC);
2293 }
2294
2295 /**
2296 * irq_udc_reset - Handle IRQ "UDC Reset"
2297 * @udc: udc device
2298 */
2299 static void irq_udc_reset(struct pxa_udc *udc)
2300 {
2301 u32 udccr = udc_readl(udc, UDCCR);
2302 struct pxa_ep *ep = &udc->pxa_ep[0];
2303
2304 dev_info(udc->dev, "USB reset\n");
2305 udc_writel(udc, UDCISR1, UDCISR1_IRRS);
2306 udc->stats.irqs_reset++;
2307
2308 if ((udccr & UDCCR_UDA) == 0) {
2309 dev_dbg(udc->dev, "USB reset start\n");
2310 stop_activity(udc, udc->driver);
2311 }
2312 udc->gadget.speed = USB_SPEED_FULL;
2313 memset(&udc->stats, 0, sizeof udc->stats);
2314
2315 nuke(ep, -EPROTO);
2316 ep_write_UDCCSR(ep, UDCCSR0_FTF | UDCCSR0_OPC);
2317 ep0_idle(udc);
2318 }
2319
2320 /**
2321 * pxa_udc_irq - Main irq handler
2322 * @irq: irq number
2323 * @_dev: udc device
2324 *
2325 * Handles all udc interrupts
2326 */
2327 static irqreturn_t pxa_udc_irq(int irq, void *_dev)
2328 {
2329 struct pxa_udc *udc = _dev;
2330 u32 udcisr0 = udc_readl(udc, UDCISR0);
2331 u32 udcisr1 = udc_readl(udc, UDCISR1);
2332 u32 udccr = udc_readl(udc, UDCCR);
2333 u32 udcisr1_spec;
2334
2335 dev_vdbg(udc->dev, "Interrupt, UDCISR0:0x%08x, UDCISR1:0x%08x, "
2336 "UDCCR:0x%08x\n", udcisr0, udcisr1, udccr);
2337
2338 udcisr1_spec = udcisr1 & 0xf8000000;
2339 if (unlikely(udcisr1_spec & UDCISR1_IRSU))
2340 irq_udc_suspend(udc);
2341 if (unlikely(udcisr1_spec & UDCISR1_IRRU))
2342 irq_udc_resume(udc);
2343 if (unlikely(udcisr1_spec & UDCISR1_IRCC))
2344 irq_udc_reconfig(udc);
2345 if (unlikely(udcisr1_spec & UDCISR1_IRRS))
2346 irq_udc_reset(udc);
2347
2348 if ((udcisr0 & UDCCISR0_EP_MASK) | (udcisr1 & UDCCISR1_EP_MASK))
2349 irq_handle_data(irq, udc);
2350
2351 return IRQ_HANDLED;
2352 }
2353
2354 static struct pxa_udc memory = {
2355 .gadget = {
2356 .ops = &pxa_udc_ops,
2357 .ep0 = &memory.udc_usb_ep[0].usb_ep,
2358 .name = driver_name,
2359 .dev = {
2360 .init_name = "gadget",
2361 },
2362 },
2363
2364 .udc_usb_ep = {
2365 USB_EP_CTRL,
2366 USB_EP_OUT_BULK(1),
2367 USB_EP_IN_BULK(2),
2368 USB_EP_IN_ISO(3),
2369 USB_EP_OUT_ISO(4),
2370 USB_EP_IN_INT(5),
2371 },
2372
2373 .pxa_ep = {
2374 PXA_EP_CTRL,
2375 /* Endpoints for gadget zero */
2376 PXA_EP_OUT_BULK(1, 1, 3, 0, 0),
2377 PXA_EP_IN_BULK(2, 2, 3, 0, 0),
2378 /* Endpoints for ether gadget, file storage gadget */
2379 PXA_EP_OUT_BULK(3, 1, 1, 0, 0),
2380 PXA_EP_IN_BULK(4, 2, 1, 0, 0),
2381 PXA_EP_IN_ISO(5, 3, 1, 0, 0),
2382 PXA_EP_OUT_ISO(6, 4, 1, 0, 0),
2383 PXA_EP_IN_INT(7, 5, 1, 0, 0),
2384 /* Endpoints for RNDIS, serial */
2385 PXA_EP_OUT_BULK(8, 1, 2, 0, 0),
2386 PXA_EP_IN_BULK(9, 2, 2, 0, 0),
2387 PXA_EP_IN_INT(10, 5, 2, 0, 0),
2388 /*
2389 * All the following endpoints are only for completion. They
2390 * won't never work, as multiple interfaces are really broken on
2391 * the pxa.
2392 */
2393 PXA_EP_OUT_BULK(11, 1, 2, 1, 0),
2394 PXA_EP_IN_BULK(12, 2, 2, 1, 0),
2395 /* Endpoint for CDC Ether */
2396 PXA_EP_OUT_BULK(13, 1, 1, 1, 1),
2397 PXA_EP_IN_BULK(14, 2, 1, 1, 1),
2398 }
2399 };
2400
2401 #if defined(CONFIG_OF)
2402 static struct of_device_id udc_pxa_dt_ids[] = {
2403 { .compatible = "marvell,pxa270-udc" },
2404 {}
2405 };
2406 MODULE_DEVICE_TABLE(of, udc_pxa_dt_ids);
2407 #endif
2408
2409 /**
2410 * pxa_udc_probe - probes the udc device
2411 * @_dev: platform device
2412 *
2413 * Perform basic init : allocates udc clock, creates sysfs files, requests
2414 * irq.
2415 */
2416 static int pxa_udc_probe(struct platform_device *pdev)
2417 {
2418 struct resource *regs;
2419 struct pxa_udc *udc = &memory;
2420 int retval = 0, gpio;
2421 struct pxa2xx_udc_mach_info *mach = dev_get_platdata(&pdev->dev);
2422 unsigned long gpio_flags;
2423
2424 if (mach) {
2425 gpio_flags = mach->gpio_pullup_inverted ? GPIOF_ACTIVE_LOW : 0;
2426 gpio = mach->gpio_pullup;
2427 if (gpio_is_valid(gpio)) {
2428 retval = devm_gpio_request_one(&pdev->dev, gpio,
2429 gpio_flags,
2430 "USB D+ pullup");
2431 if (retval)
2432 return retval;
2433 udc->gpiod = gpio_to_desc(mach->gpio_pullup);
2434 }
2435 udc->udc_command = mach->udc_command;
2436 } else {
2437 udc->gpiod = devm_gpiod_get(&pdev->dev, NULL);
2438 }
2439
2440 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2441 udc->regs = devm_ioremap_resource(&pdev->dev, regs);
2442 if (IS_ERR(udc->regs))
2443 return PTR_ERR(udc->regs);
2444 udc->irq = platform_get_irq(pdev, 0);
2445 if (udc->irq < 0)
2446 return udc->irq;
2447
2448 udc->dev = &pdev->dev;
2449 udc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
2450
2451 if (IS_ERR(udc->gpiod)) {
2452 dev_err(&pdev->dev, "Couldn't find or request D+ gpio : %ld\n",
2453 PTR_ERR(udc->gpiod));
2454 return PTR_ERR(udc->gpiod);
2455 }
2456 if (udc->gpiod)
2457 gpiod_direction_output(udc->gpiod, 0);
2458
2459 udc->clk = devm_clk_get(&pdev->dev, NULL);
2460 if (IS_ERR(udc->clk))
2461 return PTR_ERR(udc->clk);
2462
2463 retval = clk_prepare(udc->clk);
2464 if (retval)
2465 return retval;
2466
2467 udc->vbus_sensed = 0;
2468
2469 the_controller = udc;
2470 platform_set_drvdata(pdev, udc);
2471 udc_init_data(udc);
2472
2473 /* irq setup after old hardware state is cleaned up */
2474 retval = devm_request_irq(&pdev->dev, udc->irq, pxa_udc_irq,
2475 IRQF_SHARED, driver_name, udc);
2476 if (retval != 0) {
2477 dev_err(udc->dev, "%s: can't get irq %i, err %d\n",
2478 driver_name, udc->irq, retval);
2479 goto err;
2480 }
2481
2482 retval = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2483 if (retval)
2484 goto err;
2485
2486 pxa_init_debugfs(udc);
2487 if (should_enable_udc(udc))
2488 udc_enable(udc);
2489 return 0;
2490 err:
2491 clk_unprepare(udc->clk);
2492 return retval;
2493 }
2494
2495 /**
2496 * pxa_udc_remove - removes the udc device driver
2497 * @_dev: platform device
2498 */
2499 static int pxa_udc_remove(struct platform_device *_dev)
2500 {
2501 struct pxa_udc *udc = platform_get_drvdata(_dev);
2502
2503 usb_del_gadget_udc(&udc->gadget);
2504 pxa_cleanup_debugfs(udc);
2505
2506 usb_put_phy(udc->transceiver);
2507
2508 udc->transceiver = NULL;
2509 the_controller = NULL;
2510 clk_unprepare(udc->clk);
2511
2512 return 0;
2513 }
2514
2515 static void pxa_udc_shutdown(struct platform_device *_dev)
2516 {
2517 struct pxa_udc *udc = platform_get_drvdata(_dev);
2518
2519 if (udc_readl(udc, UDCCR) & UDCCR_UDE)
2520 udc_disable(udc);
2521 }
2522
2523 #ifdef CONFIG_PXA27x
2524 extern void pxa27x_clear_otgph(void);
2525 #else
2526 #define pxa27x_clear_otgph() do {} while (0)
2527 #endif
2528
2529 #ifdef CONFIG_PM
2530 /**
2531 * pxa_udc_suspend - Suspend udc device
2532 * @_dev: platform device
2533 * @state: suspend state
2534 *
2535 * Suspends udc : saves configuration registers (UDCCR*), then disables the udc
2536 * device.
2537 */
2538 static int pxa_udc_suspend(struct platform_device *_dev, pm_message_t state)
2539 {
2540 struct pxa_udc *udc = platform_get_drvdata(_dev);
2541 struct pxa_ep *ep;
2542
2543 ep = &udc->pxa_ep[0];
2544 udc->udccsr0 = udc_ep_readl(ep, UDCCSR);
2545
2546 udc_disable(udc);
2547 udc->pullup_resume = udc->pullup_on;
2548 dplus_pullup(udc, 0);
2549
2550 return 0;
2551 }
2552
2553 /**
2554 * pxa_udc_resume - Resume udc device
2555 * @_dev: platform device
2556 *
2557 * Resumes udc : restores configuration registers (UDCCR*), then enables the udc
2558 * device.
2559 */
2560 static int pxa_udc_resume(struct platform_device *_dev)
2561 {
2562 struct pxa_udc *udc = platform_get_drvdata(_dev);
2563 struct pxa_ep *ep;
2564
2565 ep = &udc->pxa_ep[0];
2566 udc_ep_writel(ep, UDCCSR, udc->udccsr0 & (UDCCSR0_FST | UDCCSR0_DME));
2567
2568 dplus_pullup(udc, udc->pullup_resume);
2569 if (should_enable_udc(udc))
2570 udc_enable(udc);
2571 /*
2572 * We do not handle OTG yet.
2573 *
2574 * OTGPH bit is set when sleep mode is entered.
2575 * it indicates that OTG pad is retaining its state.
2576 * Upon exit from sleep mode and before clearing OTGPH,
2577 * Software must configure the USB OTG pad, UDC, and UHC
2578 * to the state they were in before entering sleep mode.
2579 */
2580 pxa27x_clear_otgph();
2581
2582 return 0;
2583 }
2584 #endif
2585
2586 /* work with hotplug and coldplug */
2587 MODULE_ALIAS("platform:pxa27x-udc");
2588
2589 static struct platform_driver udc_driver = {
2590 .driver = {
2591 .name = "pxa27x-udc",
2592 .of_match_table = of_match_ptr(udc_pxa_dt_ids),
2593 },
2594 .probe = pxa_udc_probe,
2595 .remove = pxa_udc_remove,
2596 .shutdown = pxa_udc_shutdown,
2597 #ifdef CONFIG_PM
2598 .suspend = pxa_udc_suspend,
2599 .resume = pxa_udc_resume
2600 #endif
2601 };
2602
2603 module_platform_driver(udc_driver);
2604
2605 MODULE_DESCRIPTION(DRIVER_DESC);
2606 MODULE_AUTHOR("Robert Jarzmik");
2607 MODULE_LICENSE("GPL");
This page took 0.092497 seconds and 5 git commands to generate.