USB: EHCI: accept very late isochronous URBs
[deliverable/linux.git] / drivers / usb / host / ehci-sched.c
1 /*
2 * Copyright (c) 2001-2004 by David Brownell
3 * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License as published by the
7 * Free Software Foundation; either version 2 of the License, or (at your
8 * option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software Foundation,
17 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 */
19
20 /* this file is part of ehci-hcd.c */
21
22 /*-------------------------------------------------------------------------*/
23
24 /*
25 * EHCI scheduled transaction support: interrupt, iso, split iso
26 * These are called "periodic" transactions in the EHCI spec.
27 *
28 * Note that for interrupt transfers, the QH/QTD manipulation is shared
29 * with the "asynchronous" transaction support (control/bulk transfers).
30 * The only real difference is in how interrupt transfers are scheduled.
31 *
32 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33 * It keeps track of every ITD (or SITD) that's linked, and holds enough
34 * pre-calculated schedule data to make appending to the queue be quick.
35 */
36
37 static int ehci_get_frame (struct usb_hcd *hcd);
38
39 /*
40 * periodic_next_shadow - return "next" pointer on shadow list
41 * @periodic: host pointer to qh/itd/sitd
42 * @tag: hardware tag for type of this record
43 */
44 static union ehci_shadow *
45 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
46 __hc32 tag)
47 {
48 switch (hc32_to_cpu(ehci, tag)) {
49 case Q_TYPE_QH:
50 return &periodic->qh->qh_next;
51 case Q_TYPE_FSTN:
52 return &periodic->fstn->fstn_next;
53 case Q_TYPE_ITD:
54 return &periodic->itd->itd_next;
55 // case Q_TYPE_SITD:
56 default:
57 return &periodic->sitd->sitd_next;
58 }
59 }
60
61 static __hc32 *
62 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
63 __hc32 tag)
64 {
65 switch (hc32_to_cpu(ehci, tag)) {
66 /* our ehci_shadow.qh is actually software part */
67 case Q_TYPE_QH:
68 return &periodic->qh->hw->hw_next;
69 /* others are hw parts */
70 default:
71 return periodic->hw_next;
72 }
73 }
74
75 /* caller must hold ehci->lock */
76 static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
77 {
78 union ehci_shadow *prev_p = &ehci->pshadow[frame];
79 __hc32 *hw_p = &ehci->periodic[frame];
80 union ehci_shadow here = *prev_p;
81
82 /* find predecessor of "ptr"; hw and shadow lists are in sync */
83 while (here.ptr && here.ptr != ptr) {
84 prev_p = periodic_next_shadow(ehci, prev_p,
85 Q_NEXT_TYPE(ehci, *hw_p));
86 hw_p = shadow_next_periodic(ehci, &here,
87 Q_NEXT_TYPE(ehci, *hw_p));
88 here = *prev_p;
89 }
90 /* an interrupt entry (at list end) could have been shared */
91 if (!here.ptr)
92 return;
93
94 /* update shadow and hardware lists ... the old "next" pointers
95 * from ptr may still be in use, the caller updates them.
96 */
97 *prev_p = *periodic_next_shadow(ehci, &here,
98 Q_NEXT_TYPE(ehci, *hw_p));
99
100 if (!ehci->use_dummy_qh ||
101 *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
102 != EHCI_LIST_END(ehci))
103 *hw_p = *shadow_next_periodic(ehci, &here,
104 Q_NEXT_TYPE(ehci, *hw_p));
105 else
106 *hw_p = ehci->dummy->qh_dma;
107 }
108
109 /* how many of the uframe's 125 usecs are allocated? */
110 static unsigned short
111 periodic_usecs (struct ehci_hcd *ehci, unsigned frame, unsigned uframe)
112 {
113 __hc32 *hw_p = &ehci->periodic [frame];
114 union ehci_shadow *q = &ehci->pshadow [frame];
115 unsigned usecs = 0;
116 struct ehci_qh_hw *hw;
117
118 while (q->ptr) {
119 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
120 case Q_TYPE_QH:
121 hw = q->qh->hw;
122 /* is it in the S-mask? */
123 if (hw->hw_info2 & cpu_to_hc32(ehci, 1 << uframe))
124 usecs += q->qh->usecs;
125 /* ... or C-mask? */
126 if (hw->hw_info2 & cpu_to_hc32(ehci,
127 1 << (8 + uframe)))
128 usecs += q->qh->c_usecs;
129 hw_p = &hw->hw_next;
130 q = &q->qh->qh_next;
131 break;
132 // case Q_TYPE_FSTN:
133 default:
134 /* for "save place" FSTNs, count the relevant INTR
135 * bandwidth from the previous frame
136 */
137 if (q->fstn->hw_prev != EHCI_LIST_END(ehci)) {
138 ehci_dbg (ehci, "ignoring FSTN cost ...\n");
139 }
140 hw_p = &q->fstn->hw_next;
141 q = &q->fstn->fstn_next;
142 break;
143 case Q_TYPE_ITD:
144 if (q->itd->hw_transaction[uframe])
145 usecs += q->itd->stream->usecs;
146 hw_p = &q->itd->hw_next;
147 q = &q->itd->itd_next;
148 break;
149 case Q_TYPE_SITD:
150 /* is it in the S-mask? (count SPLIT, DATA) */
151 if (q->sitd->hw_uframe & cpu_to_hc32(ehci,
152 1 << uframe)) {
153 if (q->sitd->hw_fullspeed_ep &
154 cpu_to_hc32(ehci, 1<<31))
155 usecs += q->sitd->stream->usecs;
156 else /* worst case for OUT start-split */
157 usecs += HS_USECS_ISO (188);
158 }
159
160 /* ... C-mask? (count CSPLIT, DATA) */
161 if (q->sitd->hw_uframe &
162 cpu_to_hc32(ehci, 1 << (8 + uframe))) {
163 /* worst case for IN complete-split */
164 usecs += q->sitd->stream->c_usecs;
165 }
166
167 hw_p = &q->sitd->hw_next;
168 q = &q->sitd->sitd_next;
169 break;
170 }
171 }
172 #ifdef DEBUG
173 if (usecs > ehci->uframe_periodic_max)
174 ehci_err (ehci, "uframe %d sched overrun: %d usecs\n",
175 frame * 8 + uframe, usecs);
176 #endif
177 return usecs;
178 }
179
180 /*-------------------------------------------------------------------------*/
181
182 static int same_tt (struct usb_device *dev1, struct usb_device *dev2)
183 {
184 if (!dev1->tt || !dev2->tt)
185 return 0;
186 if (dev1->tt != dev2->tt)
187 return 0;
188 if (dev1->tt->multi)
189 return dev1->ttport == dev2->ttport;
190 else
191 return 1;
192 }
193
194 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
195
196 /* Which uframe does the low/fullspeed transfer start in?
197 *
198 * The parameter is the mask of ssplits in "H-frame" terms
199 * and this returns the transfer start uframe in "B-frame" terms,
200 * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
201 * will cause a transfer in "B-frame" uframe 0. "B-frames" lag
202 * "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7.
203 */
204 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
205 {
206 unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
207 if (!smask) {
208 ehci_err(ehci, "invalid empty smask!\n");
209 /* uframe 7 can't have bw so this will indicate failure */
210 return 7;
211 }
212 return ffs(smask) - 1;
213 }
214
215 static const unsigned char
216 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
217
218 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
219 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
220 {
221 int i;
222 for (i=0; i<7; i++) {
223 if (max_tt_usecs[i] < tt_usecs[i]) {
224 tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
225 tt_usecs[i] = max_tt_usecs[i];
226 }
227 }
228 }
229
230 /* How many of the tt's periodic downstream 1000 usecs are allocated?
231 *
232 * While this measures the bandwidth in terms of usecs/uframe,
233 * the low/fullspeed bus has no notion of uframes, so any particular
234 * low/fullspeed transfer can "carry over" from one uframe to the next,
235 * since the TT just performs downstream transfers in sequence.
236 *
237 * For example two separate 100 usec transfers can start in the same uframe,
238 * and the second one would "carry over" 75 usecs into the next uframe.
239 */
240 static void
241 periodic_tt_usecs (
242 struct ehci_hcd *ehci,
243 struct usb_device *dev,
244 unsigned frame,
245 unsigned short tt_usecs[8]
246 )
247 {
248 __hc32 *hw_p = &ehci->periodic [frame];
249 union ehci_shadow *q = &ehci->pshadow [frame];
250 unsigned char uf;
251
252 memset(tt_usecs, 0, 16);
253
254 while (q->ptr) {
255 switch (hc32_to_cpu(ehci, Q_NEXT_TYPE(ehci, *hw_p))) {
256 case Q_TYPE_ITD:
257 hw_p = &q->itd->hw_next;
258 q = &q->itd->itd_next;
259 continue;
260 case Q_TYPE_QH:
261 if (same_tt(dev, q->qh->dev)) {
262 uf = tt_start_uframe(ehci, q->qh->hw->hw_info2);
263 tt_usecs[uf] += q->qh->tt_usecs;
264 }
265 hw_p = &q->qh->hw->hw_next;
266 q = &q->qh->qh_next;
267 continue;
268 case Q_TYPE_SITD:
269 if (same_tt(dev, q->sitd->urb->dev)) {
270 uf = tt_start_uframe(ehci, q->sitd->hw_uframe);
271 tt_usecs[uf] += q->sitd->stream->tt_usecs;
272 }
273 hw_p = &q->sitd->hw_next;
274 q = &q->sitd->sitd_next;
275 continue;
276 // case Q_TYPE_FSTN:
277 default:
278 ehci_dbg(ehci, "ignoring periodic frame %d FSTN\n",
279 frame);
280 hw_p = &q->fstn->hw_next;
281 q = &q->fstn->fstn_next;
282 }
283 }
284
285 carryover_tt_bandwidth(tt_usecs);
286
287 if (max_tt_usecs[7] < tt_usecs[7])
288 ehci_err(ehci, "frame %d tt sched overrun: %d usecs\n",
289 frame, tt_usecs[7] - max_tt_usecs[7]);
290 }
291
292 /*
293 * Return true if the device's tt's downstream bus is available for a
294 * periodic transfer of the specified length (usecs), starting at the
295 * specified frame/uframe. Note that (as summarized in section 11.19
296 * of the usb 2.0 spec) TTs can buffer multiple transactions for each
297 * uframe.
298 *
299 * The uframe parameter is when the fullspeed/lowspeed transfer
300 * should be executed in "B-frame" terms, which is the same as the
301 * highspeed ssplit's uframe (which is in "H-frame" terms). For example
302 * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
303 * See the EHCI spec sec 4.5 and fig 4.7.
304 *
305 * This checks if the full/lowspeed bus, at the specified starting uframe,
306 * has the specified bandwidth available, according to rules listed
307 * in USB 2.0 spec section 11.18.1 fig 11-60.
308 *
309 * This does not check if the transfer would exceed the max ssplit
310 * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
311 * since proper scheduling limits ssplits to less than 16 per uframe.
312 */
313 static int tt_available (
314 struct ehci_hcd *ehci,
315 unsigned period,
316 struct usb_device *dev,
317 unsigned frame,
318 unsigned uframe,
319 u16 usecs
320 )
321 {
322 if ((period == 0) || (uframe >= 7)) /* error */
323 return 0;
324
325 for (; frame < ehci->periodic_size; frame += period) {
326 unsigned short tt_usecs[8];
327
328 periodic_tt_usecs (ehci, dev, frame, tt_usecs);
329
330 ehci_vdbg(ehci, "tt frame %d check %d usecs start uframe %d in"
331 " schedule %d/%d/%d/%d/%d/%d/%d/%d\n",
332 frame, usecs, uframe,
333 tt_usecs[0], tt_usecs[1], tt_usecs[2], tt_usecs[3],
334 tt_usecs[4], tt_usecs[5], tt_usecs[6], tt_usecs[7]);
335
336 if (max_tt_usecs[uframe] <= tt_usecs[uframe]) {
337 ehci_vdbg(ehci, "frame %d uframe %d fully scheduled\n",
338 frame, uframe);
339 return 0;
340 }
341
342 /* special case for isoc transfers larger than 125us:
343 * the first and each subsequent fully used uframe
344 * must be empty, so as to not illegally delay
345 * already scheduled transactions
346 */
347 if (125 < usecs) {
348 int ufs = (usecs / 125);
349 int i;
350 for (i = uframe; i < (uframe + ufs) && i < 8; i++)
351 if (0 < tt_usecs[i]) {
352 ehci_vdbg(ehci,
353 "multi-uframe xfer can't fit "
354 "in frame %d uframe %d\n",
355 frame, i);
356 return 0;
357 }
358 }
359
360 tt_usecs[uframe] += usecs;
361
362 carryover_tt_bandwidth(tt_usecs);
363
364 /* fail if the carryover pushed bw past the last uframe's limit */
365 if (max_tt_usecs[7] < tt_usecs[7]) {
366 ehci_vdbg(ehci,
367 "tt unavailable usecs %d frame %d uframe %d\n",
368 usecs, frame, uframe);
369 return 0;
370 }
371 }
372
373 return 1;
374 }
375
376 #else
377
378 /* return true iff the device's transaction translator is available
379 * for a periodic transfer starting at the specified frame, using
380 * all the uframes in the mask.
381 */
382 static int tt_no_collision (
383 struct ehci_hcd *ehci,
384 unsigned period,
385 struct usb_device *dev,
386 unsigned frame,
387 u32 uf_mask
388 )
389 {
390 if (period == 0) /* error */
391 return 0;
392
393 /* note bandwidth wastage: split never follows csplit
394 * (different dev or endpoint) until the next uframe.
395 * calling convention doesn't make that distinction.
396 */
397 for (; frame < ehci->periodic_size; frame += period) {
398 union ehci_shadow here;
399 __hc32 type;
400 struct ehci_qh_hw *hw;
401
402 here = ehci->pshadow [frame];
403 type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
404 while (here.ptr) {
405 switch (hc32_to_cpu(ehci, type)) {
406 case Q_TYPE_ITD:
407 type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
408 here = here.itd->itd_next;
409 continue;
410 case Q_TYPE_QH:
411 hw = here.qh->hw;
412 if (same_tt (dev, here.qh->dev)) {
413 u32 mask;
414
415 mask = hc32_to_cpu(ehci,
416 hw->hw_info2);
417 /* "knows" no gap is needed */
418 mask |= mask >> 8;
419 if (mask & uf_mask)
420 break;
421 }
422 type = Q_NEXT_TYPE(ehci, hw->hw_next);
423 here = here.qh->qh_next;
424 continue;
425 case Q_TYPE_SITD:
426 if (same_tt (dev, here.sitd->urb->dev)) {
427 u16 mask;
428
429 mask = hc32_to_cpu(ehci, here.sitd
430 ->hw_uframe);
431 /* FIXME assumes no gap for IN! */
432 mask |= mask >> 8;
433 if (mask & uf_mask)
434 break;
435 }
436 type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
437 here = here.sitd->sitd_next;
438 continue;
439 // case Q_TYPE_FSTN:
440 default:
441 ehci_dbg (ehci,
442 "periodic frame %d bogus type %d\n",
443 frame, type);
444 }
445
446 /* collision or error */
447 return 0;
448 }
449 }
450
451 /* no collision */
452 return 1;
453 }
454
455 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
456
457 /*-------------------------------------------------------------------------*/
458
459 static void enable_periodic(struct ehci_hcd *ehci)
460 {
461 if (ehci->periodic_count++)
462 return;
463
464 /* Stop waiting to turn off the periodic schedule */
465 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
466
467 /* Don't start the schedule until PSS is 0 */
468 ehci_poll_PSS(ehci);
469 turn_on_io_watchdog(ehci);
470 }
471
472 static void disable_periodic(struct ehci_hcd *ehci)
473 {
474 if (--ehci->periodic_count)
475 return;
476
477 /* Don't turn off the schedule until PSS is 1 */
478 ehci_poll_PSS(ehci);
479 }
480
481 /*-------------------------------------------------------------------------*/
482
483 /* periodic schedule slots have iso tds (normal or split) first, then a
484 * sparse tree for active interrupt transfers.
485 *
486 * this just links in a qh; caller guarantees uframe masks are set right.
487 * no FSTN support (yet; ehci 0.96+)
488 */
489 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
490 {
491 unsigned i;
492 unsigned period = qh->period;
493
494 dev_dbg (&qh->dev->dev,
495 "link qh%d-%04x/%p start %d [%d/%d us]\n",
496 period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
497 & (QH_CMASK | QH_SMASK),
498 qh, qh->start, qh->usecs, qh->c_usecs);
499
500 /* high bandwidth, or otherwise every microframe */
501 if (period == 0)
502 period = 1;
503
504 for (i = qh->start; i < ehci->periodic_size; i += period) {
505 union ehci_shadow *prev = &ehci->pshadow[i];
506 __hc32 *hw_p = &ehci->periodic[i];
507 union ehci_shadow here = *prev;
508 __hc32 type = 0;
509
510 /* skip the iso nodes at list head */
511 while (here.ptr) {
512 type = Q_NEXT_TYPE(ehci, *hw_p);
513 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
514 break;
515 prev = periodic_next_shadow(ehci, prev, type);
516 hw_p = shadow_next_periodic(ehci, &here, type);
517 here = *prev;
518 }
519
520 /* sorting each branch by period (slow-->fast)
521 * enables sharing interior tree nodes
522 */
523 while (here.ptr && qh != here.qh) {
524 if (qh->period > here.qh->period)
525 break;
526 prev = &here.qh->qh_next;
527 hw_p = &here.qh->hw->hw_next;
528 here = *prev;
529 }
530 /* link in this qh, unless some earlier pass did that */
531 if (qh != here.qh) {
532 qh->qh_next = here;
533 if (here.qh)
534 qh->hw->hw_next = *hw_p;
535 wmb ();
536 prev->qh = qh;
537 *hw_p = QH_NEXT (ehci, qh->qh_dma);
538 }
539 }
540 qh->qh_state = QH_STATE_LINKED;
541 qh->xacterrs = 0;
542 qh->exception = 0;
543
544 /* update per-qh bandwidth for usbfs */
545 ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->period
546 ? ((qh->usecs + qh->c_usecs) / qh->period)
547 : (qh->usecs * 8);
548
549 list_add(&qh->intr_node, &ehci->intr_qh_list);
550
551 /* maybe enable periodic schedule processing */
552 ++ehci->intr_count;
553 enable_periodic(ehci);
554 }
555
556 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
557 {
558 unsigned i;
559 unsigned period;
560
561 /*
562 * If qh is for a low/full-speed device, simply unlinking it
563 * could interfere with an ongoing split transaction. To unlink
564 * it safely would require setting the QH_INACTIVATE bit and
565 * waiting at least one frame, as described in EHCI 4.12.2.5.
566 *
567 * We won't bother with any of this. Instead, we assume that the
568 * only reason for unlinking an interrupt QH while the current URB
569 * is still active is to dequeue all the URBs (flush the whole
570 * endpoint queue).
571 *
572 * If rebalancing the periodic schedule is ever implemented, this
573 * approach will no longer be valid.
574 */
575
576 /* high bandwidth, or otherwise part of every microframe */
577 if ((period = qh->period) == 0)
578 period = 1;
579
580 for (i = qh->start; i < ehci->periodic_size; i += period)
581 periodic_unlink (ehci, i, qh);
582
583 /* update per-qh bandwidth for usbfs */
584 ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->period
585 ? ((qh->usecs + qh->c_usecs) / qh->period)
586 : (qh->usecs * 8);
587
588 dev_dbg (&qh->dev->dev,
589 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
590 qh->period,
591 hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
592 qh, qh->start, qh->usecs, qh->c_usecs);
593
594 /* qh->qh_next still "live" to HC */
595 qh->qh_state = QH_STATE_UNLINK;
596 qh->qh_next.ptr = NULL;
597
598 if (ehci->qh_scan_next == qh)
599 ehci->qh_scan_next = list_entry(qh->intr_node.next,
600 struct ehci_qh, intr_node);
601 list_del(&qh->intr_node);
602 }
603
604 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
605 {
606 /* If the QH isn't linked then there's nothing we can do. */
607 if (qh->qh_state != QH_STATE_LINKED)
608 return;
609
610 qh_unlink_periodic (ehci, qh);
611
612 /* Make sure the unlinks are visible before starting the timer */
613 wmb();
614
615 /*
616 * The EHCI spec doesn't say how long it takes the controller to
617 * stop accessing an unlinked interrupt QH. The timer delay is
618 * 9 uframes; presumably that will be long enough.
619 */
620 qh->unlink_cycle = ehci->intr_unlink_cycle;
621
622 /* New entries go at the end of the intr_unlink list */
623 list_add_tail(&qh->unlink_node, &ehci->intr_unlink);
624
625 if (ehci->intr_unlinking)
626 ; /* Avoid recursive calls */
627 else if (ehci->rh_state < EHCI_RH_RUNNING)
628 ehci_handle_intr_unlinks(ehci);
629 else if (ehci->intr_unlink.next == &qh->unlink_node) {
630 ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
631 ++ehci->intr_unlink_cycle;
632 }
633 }
634
635 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
636 {
637 struct ehci_qh_hw *hw = qh->hw;
638 int rc;
639
640 qh->qh_state = QH_STATE_IDLE;
641 hw->hw_next = EHCI_LIST_END(ehci);
642
643 if (!list_empty(&qh->qtd_list))
644 qh_completions(ehci, qh);
645
646 /* reschedule QH iff another request is queued */
647 if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
648 rc = qh_schedule(ehci, qh);
649 if (rc == 0) {
650 qh_refresh(ehci, qh);
651 qh_link_periodic(ehci, qh);
652 }
653
654 /* An error here likely indicates handshake failure
655 * or no space left in the schedule. Neither fault
656 * should happen often ...
657 *
658 * FIXME kill the now-dysfunctional queued urbs
659 */
660 else {
661 ehci_err(ehci, "can't reschedule qh %p, err %d\n",
662 qh, rc);
663 }
664 }
665
666 /* maybe turn off periodic schedule */
667 --ehci->intr_count;
668 disable_periodic(ehci);
669 }
670
671 /*-------------------------------------------------------------------------*/
672
673 static int check_period (
674 struct ehci_hcd *ehci,
675 unsigned frame,
676 unsigned uframe,
677 unsigned period,
678 unsigned usecs
679 ) {
680 int claimed;
681
682 /* complete split running into next frame?
683 * given FSTN support, we could sometimes check...
684 */
685 if (uframe >= 8)
686 return 0;
687
688 /* convert "usecs we need" to "max already claimed" */
689 usecs = ehci->uframe_periodic_max - usecs;
690
691 /* we "know" 2 and 4 uframe intervals were rejected; so
692 * for period 0, check _every_ microframe in the schedule.
693 */
694 if (unlikely (period == 0)) {
695 do {
696 for (uframe = 0; uframe < 7; uframe++) {
697 claimed = periodic_usecs (ehci, frame, uframe);
698 if (claimed > usecs)
699 return 0;
700 }
701 } while ((frame += 1) < ehci->periodic_size);
702
703 /* just check the specified uframe, at that period */
704 } else {
705 do {
706 claimed = periodic_usecs (ehci, frame, uframe);
707 if (claimed > usecs)
708 return 0;
709 } while ((frame += period) < ehci->periodic_size);
710 }
711
712 // success!
713 return 1;
714 }
715
716 static int check_intr_schedule (
717 struct ehci_hcd *ehci,
718 unsigned frame,
719 unsigned uframe,
720 const struct ehci_qh *qh,
721 __hc32 *c_maskp
722 )
723 {
724 int retval = -ENOSPC;
725 u8 mask = 0;
726
727 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
728 goto done;
729
730 if (!check_period (ehci, frame, uframe, qh->period, qh->usecs))
731 goto done;
732 if (!qh->c_usecs) {
733 retval = 0;
734 *c_maskp = 0;
735 goto done;
736 }
737
738 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
739 if (tt_available (ehci, qh->period, qh->dev, frame, uframe,
740 qh->tt_usecs)) {
741 unsigned i;
742
743 /* TODO : this may need FSTN for SSPLIT in uframe 5. */
744 for (i=uframe+1; i<8 && i<uframe+4; i++)
745 if (!check_period (ehci, frame, i,
746 qh->period, qh->c_usecs))
747 goto done;
748 else
749 mask |= 1 << i;
750
751 retval = 0;
752
753 *c_maskp = cpu_to_hc32(ehci, mask << 8);
754 }
755 #else
756 /* Make sure this tt's buffer is also available for CSPLITs.
757 * We pessimize a bit; probably the typical full speed case
758 * doesn't need the second CSPLIT.
759 *
760 * NOTE: both SPLIT and CSPLIT could be checked in just
761 * one smart pass...
762 */
763 mask = 0x03 << (uframe + qh->gap_uf);
764 *c_maskp = cpu_to_hc32(ehci, mask << 8);
765
766 mask |= 1 << uframe;
767 if (tt_no_collision (ehci, qh->period, qh->dev, frame, mask)) {
768 if (!check_period (ehci, frame, uframe + qh->gap_uf + 1,
769 qh->period, qh->c_usecs))
770 goto done;
771 if (!check_period (ehci, frame, uframe + qh->gap_uf,
772 qh->period, qh->c_usecs))
773 goto done;
774 retval = 0;
775 }
776 #endif
777 done:
778 return retval;
779 }
780
781 /* "first fit" scheduling policy used the first time through,
782 * or when the previous schedule slot can't be re-used.
783 */
784 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
785 {
786 int status;
787 unsigned uframe;
788 __hc32 c_mask;
789 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
790 struct ehci_qh_hw *hw = qh->hw;
791
792 hw->hw_next = EHCI_LIST_END(ehci);
793 frame = qh->start;
794
795 /* reuse the previous schedule slots, if we can */
796 if (frame < qh->period) {
797 uframe = ffs(hc32_to_cpup(ehci, &hw->hw_info2) & QH_SMASK);
798 status = check_intr_schedule (ehci, frame, --uframe,
799 qh, &c_mask);
800 } else {
801 uframe = 0;
802 c_mask = 0;
803 status = -ENOSPC;
804 }
805
806 /* else scan the schedule to find a group of slots such that all
807 * uframes have enough periodic bandwidth available.
808 */
809 if (status) {
810 /* "normal" case, uframing flexible except with splits */
811 if (qh->period) {
812 int i;
813
814 for (i = qh->period; status && i > 0; --i) {
815 frame = ++ehci->random_frame % qh->period;
816 for (uframe = 0; uframe < 8; uframe++) {
817 status = check_intr_schedule (ehci,
818 frame, uframe, qh,
819 &c_mask);
820 if (status == 0)
821 break;
822 }
823 }
824
825 /* qh->period == 0 means every uframe */
826 } else {
827 frame = 0;
828 status = check_intr_schedule (ehci, 0, 0, qh, &c_mask);
829 }
830 if (status)
831 goto done;
832 qh->start = frame;
833
834 /* reset S-frame and (maybe) C-frame masks */
835 hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
836 hw->hw_info2 |= qh->period
837 ? cpu_to_hc32(ehci, 1 << uframe)
838 : cpu_to_hc32(ehci, QH_SMASK);
839 hw->hw_info2 |= c_mask;
840 } else
841 ehci_dbg (ehci, "reused qh %p schedule\n", qh);
842
843 done:
844 return status;
845 }
846
847 static int intr_submit (
848 struct ehci_hcd *ehci,
849 struct urb *urb,
850 struct list_head *qtd_list,
851 gfp_t mem_flags
852 ) {
853 unsigned epnum;
854 unsigned long flags;
855 struct ehci_qh *qh;
856 int status;
857 struct list_head empty;
858
859 /* get endpoint and transfer/schedule data */
860 epnum = urb->ep->desc.bEndpointAddress;
861
862 spin_lock_irqsave (&ehci->lock, flags);
863
864 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
865 status = -ESHUTDOWN;
866 goto done_not_linked;
867 }
868 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
869 if (unlikely(status))
870 goto done_not_linked;
871
872 /* get qh and force any scheduling errors */
873 INIT_LIST_HEAD (&empty);
874 qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
875 if (qh == NULL) {
876 status = -ENOMEM;
877 goto done;
878 }
879 if (qh->qh_state == QH_STATE_IDLE) {
880 if ((status = qh_schedule (ehci, qh)) != 0)
881 goto done;
882 }
883
884 /* then queue the urb's tds to the qh */
885 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
886 BUG_ON (qh == NULL);
887
888 /* stuff into the periodic schedule */
889 if (qh->qh_state == QH_STATE_IDLE) {
890 qh_refresh(ehci, qh);
891 qh_link_periodic(ehci, qh);
892 }
893
894 /* ... update usbfs periodic stats */
895 ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
896
897 done:
898 if (unlikely(status))
899 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
900 done_not_linked:
901 spin_unlock_irqrestore (&ehci->lock, flags);
902 if (status)
903 qtd_list_free (ehci, urb, qtd_list);
904
905 return status;
906 }
907
908 static void scan_intr(struct ehci_hcd *ehci)
909 {
910 struct ehci_qh *qh;
911
912 list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
913 intr_node) {
914
915 /* clean any finished work for this qh */
916 if (!list_empty(&qh->qtd_list)) {
917 int temp;
918
919 /*
920 * Unlinks could happen here; completion reporting
921 * drops the lock. That's why ehci->qh_scan_next
922 * always holds the next qh to scan; if the next qh
923 * gets unlinked then ehci->qh_scan_next is adjusted
924 * in qh_unlink_periodic().
925 */
926 temp = qh_completions(ehci, qh);
927 if (unlikely(temp || (list_empty(&qh->qtd_list) &&
928 qh->qh_state == QH_STATE_LINKED)))
929 start_unlink_intr(ehci, qh);
930 }
931 }
932 }
933
934 /*-------------------------------------------------------------------------*/
935
936 /* ehci_iso_stream ops work with both ITD and SITD */
937
938 static struct ehci_iso_stream *
939 iso_stream_alloc (gfp_t mem_flags)
940 {
941 struct ehci_iso_stream *stream;
942
943 stream = kzalloc(sizeof *stream, mem_flags);
944 if (likely (stream != NULL)) {
945 INIT_LIST_HEAD(&stream->td_list);
946 INIT_LIST_HEAD(&stream->free_list);
947 stream->next_uframe = -1;
948 }
949 return stream;
950 }
951
952 static void
953 iso_stream_init (
954 struct ehci_hcd *ehci,
955 struct ehci_iso_stream *stream,
956 struct usb_device *dev,
957 int pipe,
958 unsigned interval
959 )
960 {
961 static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
962
963 u32 buf1;
964 unsigned epnum, maxp;
965 int is_input;
966 long bandwidth;
967
968 /*
969 * this might be a "high bandwidth" highspeed endpoint,
970 * as encoded in the ep descriptor's wMaxPacket field
971 */
972 epnum = usb_pipeendpoint (pipe);
973 is_input = usb_pipein (pipe) ? USB_DIR_IN : 0;
974 maxp = usb_maxpacket(dev, pipe, !is_input);
975 if (is_input) {
976 buf1 = (1 << 11);
977 } else {
978 buf1 = 0;
979 }
980
981 /* knows about ITD vs SITD */
982 if (dev->speed == USB_SPEED_HIGH) {
983 unsigned multi = hb_mult(maxp);
984
985 stream->highspeed = 1;
986
987 maxp = max_packet(maxp);
988 buf1 |= maxp;
989 maxp *= multi;
990
991 stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
992 stream->buf1 = cpu_to_hc32(ehci, buf1);
993 stream->buf2 = cpu_to_hc32(ehci, multi);
994
995 /* usbfs wants to report the average usecs per frame tied up
996 * when transfers on this endpoint are scheduled ...
997 */
998 stream->usecs = HS_USECS_ISO (maxp);
999 bandwidth = stream->usecs * 8;
1000 bandwidth /= interval;
1001
1002 } else {
1003 u32 addr;
1004 int think_time;
1005 int hs_transfers;
1006
1007 addr = dev->ttport << 24;
1008 if (!ehci_is_TDI(ehci)
1009 || (dev->tt->hub !=
1010 ehci_to_hcd(ehci)->self.root_hub))
1011 addr |= dev->tt->hub->devnum << 16;
1012 addr |= epnum << 8;
1013 addr |= dev->devnum;
1014 stream->usecs = HS_USECS_ISO (maxp);
1015 think_time = dev->tt ? dev->tt->think_time : 0;
1016 stream->tt_usecs = NS_TO_US (think_time + usb_calc_bus_time (
1017 dev->speed, is_input, 1, maxp));
1018 hs_transfers = max (1u, (maxp + 187) / 188);
1019 if (is_input) {
1020 u32 tmp;
1021
1022 addr |= 1 << 31;
1023 stream->c_usecs = stream->usecs;
1024 stream->usecs = HS_USECS_ISO (1);
1025 stream->raw_mask = 1;
1026
1027 /* c-mask as specified in USB 2.0 11.18.4 3.c */
1028 tmp = (1 << (hs_transfers + 2)) - 1;
1029 stream->raw_mask |= tmp << (8 + 2);
1030 } else
1031 stream->raw_mask = smask_out [hs_transfers - 1];
1032 bandwidth = stream->usecs + stream->c_usecs;
1033 bandwidth /= interval << 3;
1034
1035 /* stream->splits gets created from raw_mask later */
1036 stream->address = cpu_to_hc32(ehci, addr);
1037 }
1038 stream->bandwidth = bandwidth;
1039
1040 stream->udev = dev;
1041
1042 stream->bEndpointAddress = is_input | epnum;
1043 stream->interval = interval;
1044 stream->maxp = maxp;
1045 }
1046
1047 static struct ehci_iso_stream *
1048 iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
1049 {
1050 unsigned epnum;
1051 struct ehci_iso_stream *stream;
1052 struct usb_host_endpoint *ep;
1053 unsigned long flags;
1054
1055 epnum = usb_pipeendpoint (urb->pipe);
1056 if (usb_pipein(urb->pipe))
1057 ep = urb->dev->ep_in[epnum];
1058 else
1059 ep = urb->dev->ep_out[epnum];
1060
1061 spin_lock_irqsave (&ehci->lock, flags);
1062 stream = ep->hcpriv;
1063
1064 if (unlikely (stream == NULL)) {
1065 stream = iso_stream_alloc(GFP_ATOMIC);
1066 if (likely (stream != NULL)) {
1067 ep->hcpriv = stream;
1068 stream->ep = ep;
1069 iso_stream_init(ehci, stream, urb->dev, urb->pipe,
1070 urb->interval);
1071 }
1072
1073 /* if dev->ep [epnum] is a QH, hw is set */
1074 } else if (unlikely (stream->hw != NULL)) {
1075 ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
1076 urb->dev->devpath, epnum,
1077 usb_pipein(urb->pipe) ? "in" : "out");
1078 stream = NULL;
1079 }
1080
1081 spin_unlock_irqrestore (&ehci->lock, flags);
1082 return stream;
1083 }
1084
1085 /*-------------------------------------------------------------------------*/
1086
1087 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1088
1089 static struct ehci_iso_sched *
1090 iso_sched_alloc (unsigned packets, gfp_t mem_flags)
1091 {
1092 struct ehci_iso_sched *iso_sched;
1093 int size = sizeof *iso_sched;
1094
1095 size += packets * sizeof (struct ehci_iso_packet);
1096 iso_sched = kzalloc(size, mem_flags);
1097 if (likely (iso_sched != NULL)) {
1098 INIT_LIST_HEAD (&iso_sched->td_list);
1099 }
1100 return iso_sched;
1101 }
1102
1103 static inline void
1104 itd_sched_init(
1105 struct ehci_hcd *ehci,
1106 struct ehci_iso_sched *iso_sched,
1107 struct ehci_iso_stream *stream,
1108 struct urb *urb
1109 )
1110 {
1111 unsigned i;
1112 dma_addr_t dma = urb->transfer_dma;
1113
1114 /* how many uframes are needed for these transfers */
1115 iso_sched->span = urb->number_of_packets * stream->interval;
1116
1117 /* figure out per-uframe itd fields that we'll need later
1118 * when we fit new itds into the schedule.
1119 */
1120 for (i = 0; i < urb->number_of_packets; i++) {
1121 struct ehci_iso_packet *uframe = &iso_sched->packet [i];
1122 unsigned length;
1123 dma_addr_t buf;
1124 u32 trans;
1125
1126 length = urb->iso_frame_desc [i].length;
1127 buf = dma + urb->iso_frame_desc [i].offset;
1128
1129 trans = EHCI_ISOC_ACTIVE;
1130 trans |= buf & 0x0fff;
1131 if (unlikely (((i + 1) == urb->number_of_packets))
1132 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1133 trans |= EHCI_ITD_IOC;
1134 trans |= length << 16;
1135 uframe->transaction = cpu_to_hc32(ehci, trans);
1136
1137 /* might need to cross a buffer page within a uframe */
1138 uframe->bufp = (buf & ~(u64)0x0fff);
1139 buf += length;
1140 if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
1141 uframe->cross = 1;
1142 }
1143 }
1144
1145 static void
1146 iso_sched_free (
1147 struct ehci_iso_stream *stream,
1148 struct ehci_iso_sched *iso_sched
1149 )
1150 {
1151 if (!iso_sched)
1152 return;
1153 // caller must hold ehci->lock!
1154 list_splice (&iso_sched->td_list, &stream->free_list);
1155 kfree (iso_sched);
1156 }
1157
1158 static int
1159 itd_urb_transaction (
1160 struct ehci_iso_stream *stream,
1161 struct ehci_hcd *ehci,
1162 struct urb *urb,
1163 gfp_t mem_flags
1164 )
1165 {
1166 struct ehci_itd *itd;
1167 dma_addr_t itd_dma;
1168 int i;
1169 unsigned num_itds;
1170 struct ehci_iso_sched *sched;
1171 unsigned long flags;
1172
1173 sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1174 if (unlikely (sched == NULL))
1175 return -ENOMEM;
1176
1177 itd_sched_init(ehci, sched, stream, urb);
1178
1179 if (urb->interval < 8)
1180 num_itds = 1 + (sched->span + 7) / 8;
1181 else
1182 num_itds = urb->number_of_packets;
1183
1184 /* allocate/init ITDs */
1185 spin_lock_irqsave (&ehci->lock, flags);
1186 for (i = 0; i < num_itds; i++) {
1187
1188 /*
1189 * Use iTDs from the free list, but not iTDs that may
1190 * still be in use by the hardware.
1191 */
1192 if (likely(!list_empty(&stream->free_list))) {
1193 itd = list_first_entry(&stream->free_list,
1194 struct ehci_itd, itd_list);
1195 if (itd->frame == ehci->now_frame)
1196 goto alloc_itd;
1197 list_del (&itd->itd_list);
1198 itd_dma = itd->itd_dma;
1199 } else {
1200 alloc_itd:
1201 spin_unlock_irqrestore (&ehci->lock, flags);
1202 itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
1203 &itd_dma);
1204 spin_lock_irqsave (&ehci->lock, flags);
1205 if (!itd) {
1206 iso_sched_free(stream, sched);
1207 spin_unlock_irqrestore(&ehci->lock, flags);
1208 return -ENOMEM;
1209 }
1210 }
1211
1212 memset (itd, 0, sizeof *itd);
1213 itd->itd_dma = itd_dma;
1214 itd->frame = 9999; /* an invalid value */
1215 list_add (&itd->itd_list, &sched->td_list);
1216 }
1217 spin_unlock_irqrestore (&ehci->lock, flags);
1218
1219 /* temporarily store schedule info in hcpriv */
1220 urb->hcpriv = sched;
1221 urb->error_count = 0;
1222 return 0;
1223 }
1224
1225 /*-------------------------------------------------------------------------*/
1226
1227 static inline int
1228 itd_slot_ok (
1229 struct ehci_hcd *ehci,
1230 u32 mod,
1231 u32 uframe,
1232 u8 usecs,
1233 u32 period
1234 )
1235 {
1236 uframe %= period;
1237 do {
1238 /* can't commit more than uframe_periodic_max usec */
1239 if (periodic_usecs (ehci, uframe >> 3, uframe & 0x7)
1240 > (ehci->uframe_periodic_max - usecs))
1241 return 0;
1242
1243 /* we know urb->interval is 2^N uframes */
1244 uframe += period;
1245 } while (uframe < mod);
1246 return 1;
1247 }
1248
1249 static inline int
1250 sitd_slot_ok (
1251 struct ehci_hcd *ehci,
1252 u32 mod,
1253 struct ehci_iso_stream *stream,
1254 u32 uframe,
1255 struct ehci_iso_sched *sched,
1256 u32 period_uframes
1257 )
1258 {
1259 u32 mask, tmp;
1260 u32 frame, uf;
1261
1262 mask = stream->raw_mask << (uframe & 7);
1263
1264 /* for IN, don't wrap CSPLIT into the next frame */
1265 if (mask & ~0xffff)
1266 return 0;
1267
1268 /* check bandwidth */
1269 uframe %= period_uframes;
1270 frame = uframe >> 3;
1271
1272 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1273 /* The tt's fullspeed bus bandwidth must be available.
1274 * tt_available scheduling guarantees 10+% for control/bulk.
1275 */
1276 uf = uframe & 7;
1277 if (!tt_available(ehci, period_uframes >> 3,
1278 stream->udev, frame, uf, stream->tt_usecs))
1279 return 0;
1280 #else
1281 /* tt must be idle for start(s), any gap, and csplit.
1282 * assume scheduling slop leaves 10+% for control/bulk.
1283 */
1284 if (!tt_no_collision(ehci, period_uframes >> 3,
1285 stream->udev, frame, mask))
1286 return 0;
1287 #endif
1288
1289 /* this multi-pass logic is simple, but performance may
1290 * suffer when the schedule data isn't cached.
1291 */
1292 do {
1293 u32 max_used;
1294
1295 frame = uframe >> 3;
1296 uf = uframe & 7;
1297
1298 /* check starts (OUT uses more than one) */
1299 max_used = ehci->uframe_periodic_max - stream->usecs;
1300 for (tmp = stream->raw_mask & 0xff; tmp; tmp >>= 1, uf++) {
1301 if (periodic_usecs (ehci, frame, uf) > max_used)
1302 return 0;
1303 }
1304
1305 /* for IN, check CSPLIT */
1306 if (stream->c_usecs) {
1307 uf = uframe & 7;
1308 max_used = ehci->uframe_periodic_max - stream->c_usecs;
1309 do {
1310 tmp = 1 << uf;
1311 tmp <<= 8;
1312 if ((stream->raw_mask & tmp) == 0)
1313 continue;
1314 if (periodic_usecs (ehci, frame, uf)
1315 > max_used)
1316 return 0;
1317 } while (++uf < 8);
1318 }
1319
1320 /* we know urb->interval is 2^N uframes */
1321 uframe += period_uframes;
1322 } while (uframe < mod);
1323
1324 stream->splits = cpu_to_hc32(ehci, stream->raw_mask << (uframe & 7));
1325 return 1;
1326 }
1327
1328 /*
1329 * This scheduler plans almost as far into the future as it has actual
1330 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
1331 * "as small as possible" to be cache-friendlier.) That limits the size
1332 * transfers you can stream reliably; avoid more than 64 msec per urb.
1333 * Also avoid queue depths of less than ehci's worst irq latency (affected
1334 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1335 * and other factors); or more than about 230 msec total (for portability,
1336 * given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler!
1337 */
1338
1339 #define SCHEDULING_DELAY 40 /* microframes */
1340
1341 static int
1342 iso_stream_schedule (
1343 struct ehci_hcd *ehci,
1344 struct urb *urb,
1345 struct ehci_iso_stream *stream
1346 )
1347 {
1348 u32 now, base, next, start, period, span;
1349 int status;
1350 unsigned mod = ehci->periodic_size << 3;
1351 struct ehci_iso_sched *sched = urb->hcpriv;
1352
1353 period = urb->interval;
1354 span = sched->span;
1355 if (!stream->highspeed) {
1356 period <<= 3;
1357 span <<= 3;
1358 }
1359
1360 now = ehci_read_frame_index(ehci) & (mod - 1);
1361
1362 /* Typical case: reuse current schedule, stream is still active.
1363 * Hopefully there are no gaps from the host falling behind
1364 * (irq delays etc). If there are, the behavior depends on
1365 * whether URB_ISO_ASAP is set.
1366 */
1367 if (likely (!list_empty (&stream->td_list))) {
1368
1369 /* Take the isochronous scheduling threshold into account */
1370 if (ehci->i_thresh)
1371 next = now + ehci->i_thresh; /* uframe cache */
1372 else
1373 next = (now + 2 + 7) & ~0x07; /* full frame cache */
1374
1375 /*
1376 * Use ehci->last_iso_frame as the base. There can't be any
1377 * TDs scheduled for earlier than that.
1378 */
1379 base = ehci->last_iso_frame << 3;
1380 next = (next - base) & (mod - 1);
1381 start = (stream->next_uframe - base) & (mod - 1);
1382
1383 /* Is the schedule already full? */
1384 if (unlikely(start < period)) {
1385 ehci_dbg(ehci, "iso sched full %p (%u-%u < %u mod %u)\n",
1386 urb, stream->next_uframe, base,
1387 period, mod);
1388 status = -ENOSPC;
1389 goto fail;
1390 }
1391
1392 /* Behind the scheduling threshold? */
1393 if (unlikely(start < next)) {
1394 unsigned now2 = (now - base) & (mod - 1);
1395
1396 /* USB_ISO_ASAP: Round up to the first available slot */
1397 if (urb->transfer_flags & URB_ISO_ASAP)
1398 start += (next - start + period - 1) & -period;
1399
1400 /*
1401 * Not ASAP: Use the next slot in the stream,
1402 * no matter what.
1403 */
1404 else if (start + span - period < now2) {
1405 ehci_dbg(ehci, "iso underrun %p (%u+%u < %u)\n",
1406 urb, start + base,
1407 span - period, now2 + base);
1408 }
1409 }
1410
1411 start += base;
1412 }
1413
1414 /* need to schedule; when's the next (u)frame we could start?
1415 * this is bigger than ehci->i_thresh allows; scheduling itself
1416 * isn't free, the delay should handle reasonably slow cpus. it
1417 * can also help high bandwidth if the dma and irq loads don't
1418 * jump until after the queue is primed.
1419 */
1420 else {
1421 int done = 0;
1422
1423 base = now & ~0x07;
1424 start = base + SCHEDULING_DELAY;
1425
1426 /* find a uframe slot with enough bandwidth.
1427 * Early uframes are more precious because full-speed
1428 * iso IN transfers can't use late uframes,
1429 * and therefore they should be allocated last.
1430 */
1431 next = start;
1432 start += period;
1433 do {
1434 start--;
1435 /* check schedule: enough space? */
1436 if (stream->highspeed) {
1437 if (itd_slot_ok(ehci, mod, start,
1438 stream->usecs, period))
1439 done = 1;
1440 } else {
1441 if ((start % 8) >= 6)
1442 continue;
1443 if (sitd_slot_ok(ehci, mod, stream,
1444 start, sched, period))
1445 done = 1;
1446 }
1447 } while (start > next && !done);
1448
1449 /* no room in the schedule */
1450 if (!done) {
1451 ehci_dbg(ehci, "iso sched full %p", urb);
1452 status = -ENOSPC;
1453 goto fail;
1454 }
1455 }
1456
1457 /* Tried to schedule too far into the future? */
1458 if (unlikely(start - base + span - period >= mod)) {
1459 ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
1460 urb, start - base, span - period, mod);
1461 status = -EFBIG;
1462 goto fail;
1463 }
1464
1465 stream->next_uframe = start & (mod - 1);
1466
1467 /* report high speed start in uframes; full speed, in frames */
1468 urb->start_frame = stream->next_uframe;
1469 if (!stream->highspeed)
1470 urb->start_frame >>= 3;
1471
1472 /* Make sure scan_isoc() sees these */
1473 if (ehci->isoc_count == 0)
1474 ehci->last_iso_frame = now >> 3;
1475 return 0;
1476
1477 fail:
1478 iso_sched_free(stream, sched);
1479 urb->hcpriv = NULL;
1480 return status;
1481 }
1482
1483 /*-------------------------------------------------------------------------*/
1484
1485 static inline void
1486 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1487 struct ehci_itd *itd)
1488 {
1489 int i;
1490
1491 /* it's been recently zeroed */
1492 itd->hw_next = EHCI_LIST_END(ehci);
1493 itd->hw_bufp [0] = stream->buf0;
1494 itd->hw_bufp [1] = stream->buf1;
1495 itd->hw_bufp [2] = stream->buf2;
1496
1497 for (i = 0; i < 8; i++)
1498 itd->index[i] = -1;
1499
1500 /* All other fields are filled when scheduling */
1501 }
1502
1503 static inline void
1504 itd_patch(
1505 struct ehci_hcd *ehci,
1506 struct ehci_itd *itd,
1507 struct ehci_iso_sched *iso_sched,
1508 unsigned index,
1509 u16 uframe
1510 )
1511 {
1512 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1513 unsigned pg = itd->pg;
1514
1515 // BUG_ON (pg == 6 && uf->cross);
1516
1517 uframe &= 0x07;
1518 itd->index [uframe] = index;
1519
1520 itd->hw_transaction[uframe] = uf->transaction;
1521 itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1522 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1523 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1524
1525 /* iso_frame_desc[].offset must be strictly increasing */
1526 if (unlikely (uf->cross)) {
1527 u64 bufp = uf->bufp + 4096;
1528
1529 itd->pg = ++pg;
1530 itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1531 itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1532 }
1533 }
1534
1535 static inline void
1536 itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1537 {
1538 union ehci_shadow *prev = &ehci->pshadow[frame];
1539 __hc32 *hw_p = &ehci->periodic[frame];
1540 union ehci_shadow here = *prev;
1541 __hc32 type = 0;
1542
1543 /* skip any iso nodes which might belong to previous microframes */
1544 while (here.ptr) {
1545 type = Q_NEXT_TYPE(ehci, *hw_p);
1546 if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1547 break;
1548 prev = periodic_next_shadow(ehci, prev, type);
1549 hw_p = shadow_next_periodic(ehci, &here, type);
1550 here = *prev;
1551 }
1552
1553 itd->itd_next = here;
1554 itd->hw_next = *hw_p;
1555 prev->itd = itd;
1556 itd->frame = frame;
1557 wmb ();
1558 *hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1559 }
1560
1561 /* fit urb's itds into the selected schedule slot; activate as needed */
1562 static void itd_link_urb(
1563 struct ehci_hcd *ehci,
1564 struct urb *urb,
1565 unsigned mod,
1566 struct ehci_iso_stream *stream
1567 )
1568 {
1569 int packet;
1570 unsigned next_uframe, uframe, frame;
1571 struct ehci_iso_sched *iso_sched = urb->hcpriv;
1572 struct ehci_itd *itd;
1573
1574 next_uframe = stream->next_uframe & (mod - 1);
1575
1576 if (unlikely (list_empty(&stream->td_list))) {
1577 ehci_to_hcd(ehci)->self.bandwidth_allocated
1578 += stream->bandwidth;
1579 ehci_vdbg (ehci,
1580 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
1581 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1582 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1583 urb->interval,
1584 next_uframe >> 3, next_uframe & 0x7);
1585 }
1586
1587 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1588 if (ehci->amd_pll_fix == 1)
1589 usb_amd_quirk_pll_disable();
1590 }
1591
1592 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1593
1594 /* fill iTDs uframe by uframe */
1595 for (packet = 0, itd = NULL; packet < urb->number_of_packets; ) {
1596 if (itd == NULL) {
1597 /* ASSERT: we have all necessary itds */
1598 // BUG_ON (list_empty (&iso_sched->td_list));
1599
1600 /* ASSERT: no itds for this endpoint in this uframe */
1601
1602 itd = list_entry (iso_sched->td_list.next,
1603 struct ehci_itd, itd_list);
1604 list_move_tail (&itd->itd_list, &stream->td_list);
1605 itd->stream = stream;
1606 itd->urb = urb;
1607 itd_init (ehci, stream, itd);
1608 }
1609
1610 uframe = next_uframe & 0x07;
1611 frame = next_uframe >> 3;
1612
1613 itd_patch(ehci, itd, iso_sched, packet, uframe);
1614
1615 next_uframe += stream->interval;
1616 next_uframe &= mod - 1;
1617 packet++;
1618
1619 /* link completed itds into the schedule */
1620 if (((next_uframe >> 3) != frame)
1621 || packet == urb->number_of_packets) {
1622 itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1623 itd = NULL;
1624 }
1625 }
1626 stream->next_uframe = next_uframe;
1627
1628 /* don't need that schedule data any more */
1629 iso_sched_free (stream, iso_sched);
1630 urb->hcpriv = stream;
1631
1632 ++ehci->isoc_count;
1633 enable_periodic(ehci);
1634 }
1635
1636 #define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1637
1638 /* Process and recycle a completed ITD. Return true iff its urb completed,
1639 * and hence its completion callback probably added things to the hardware
1640 * schedule.
1641 *
1642 * Note that we carefully avoid recycling this descriptor until after any
1643 * completion callback runs, so that it won't be reused quickly. That is,
1644 * assuming (a) no more than two urbs per frame on this endpoint, and also
1645 * (b) only this endpoint's completions submit URBs. It seems some silicon
1646 * corrupts things if you reuse completed descriptors very quickly...
1647 */
1648 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1649 {
1650 struct urb *urb = itd->urb;
1651 struct usb_iso_packet_descriptor *desc;
1652 u32 t;
1653 unsigned uframe;
1654 int urb_index = -1;
1655 struct ehci_iso_stream *stream = itd->stream;
1656 struct usb_device *dev;
1657 bool retval = false;
1658
1659 /* for each uframe with a packet */
1660 for (uframe = 0; uframe < 8; uframe++) {
1661 if (likely (itd->index[uframe] == -1))
1662 continue;
1663 urb_index = itd->index[uframe];
1664 desc = &urb->iso_frame_desc [urb_index];
1665
1666 t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
1667 itd->hw_transaction [uframe] = 0;
1668
1669 /* report transfer status */
1670 if (unlikely (t & ISO_ERRS)) {
1671 urb->error_count++;
1672 if (t & EHCI_ISOC_BUF_ERR)
1673 desc->status = usb_pipein (urb->pipe)
1674 ? -ENOSR /* hc couldn't read */
1675 : -ECOMM; /* hc couldn't write */
1676 else if (t & EHCI_ISOC_BABBLE)
1677 desc->status = -EOVERFLOW;
1678 else /* (t & EHCI_ISOC_XACTERR) */
1679 desc->status = -EPROTO;
1680
1681 /* HC need not update length with this error */
1682 if (!(t & EHCI_ISOC_BABBLE)) {
1683 desc->actual_length = EHCI_ITD_LENGTH(t);
1684 urb->actual_length += desc->actual_length;
1685 }
1686 } else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
1687 desc->status = 0;
1688 desc->actual_length = EHCI_ITD_LENGTH(t);
1689 urb->actual_length += desc->actual_length;
1690 } else {
1691 /* URB was too late */
1692 urb->error_count++;
1693 }
1694 }
1695
1696 /* handle completion now? */
1697 if (likely ((urb_index + 1) != urb->number_of_packets))
1698 goto done;
1699
1700 /* ASSERT: it's really the last itd for this urb
1701 list_for_each_entry (itd, &stream->td_list, itd_list)
1702 BUG_ON (itd->urb == urb);
1703 */
1704
1705 /* give urb back to the driver; completion often (re)submits */
1706 dev = urb->dev;
1707 ehci_urb_done(ehci, urb, 0);
1708 retval = true;
1709 urb = NULL;
1710
1711 --ehci->isoc_count;
1712 disable_periodic(ehci);
1713
1714 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1715 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1716 if (ehci->amd_pll_fix == 1)
1717 usb_amd_quirk_pll_enable();
1718 }
1719
1720 if (unlikely(list_is_singular(&stream->td_list))) {
1721 ehci_to_hcd(ehci)->self.bandwidth_allocated
1722 -= stream->bandwidth;
1723 ehci_vdbg (ehci,
1724 "deschedule devp %s ep%d%s-iso\n",
1725 dev->devpath, stream->bEndpointAddress & 0x0f,
1726 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
1727 }
1728
1729 done:
1730 itd->urb = NULL;
1731
1732 /* Add to the end of the free list for later reuse */
1733 list_move_tail(&itd->itd_list, &stream->free_list);
1734
1735 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1736 if (list_empty(&stream->td_list)) {
1737 list_splice_tail_init(&stream->free_list,
1738 &ehci->cached_itd_list);
1739 start_free_itds(ehci);
1740 }
1741
1742 return retval;
1743 }
1744
1745 /*-------------------------------------------------------------------------*/
1746
1747 static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
1748 gfp_t mem_flags)
1749 {
1750 int status = -EINVAL;
1751 unsigned long flags;
1752 struct ehci_iso_stream *stream;
1753
1754 /* Get iso_stream head */
1755 stream = iso_stream_find (ehci, urb);
1756 if (unlikely (stream == NULL)) {
1757 ehci_dbg (ehci, "can't get iso stream\n");
1758 return -ENOMEM;
1759 }
1760 if (unlikely (urb->interval != stream->interval)) {
1761 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
1762 stream->interval, urb->interval);
1763 goto done;
1764 }
1765
1766 #ifdef EHCI_URB_TRACE
1767 ehci_dbg (ehci,
1768 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1769 __func__, urb->dev->devpath, urb,
1770 usb_pipeendpoint (urb->pipe),
1771 usb_pipein (urb->pipe) ? "in" : "out",
1772 urb->transfer_buffer_length,
1773 urb->number_of_packets, urb->interval,
1774 stream);
1775 #endif
1776
1777 /* allocate ITDs w/o locking anything */
1778 status = itd_urb_transaction (stream, ehci, urb, mem_flags);
1779 if (unlikely (status < 0)) {
1780 ehci_dbg (ehci, "can't init itds\n");
1781 goto done;
1782 }
1783
1784 /* schedule ... need to lock */
1785 spin_lock_irqsave (&ehci->lock, flags);
1786 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1787 status = -ESHUTDOWN;
1788 goto done_not_linked;
1789 }
1790 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1791 if (unlikely(status))
1792 goto done_not_linked;
1793 status = iso_stream_schedule(ehci, urb, stream);
1794 if (likely (status == 0))
1795 itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
1796 else
1797 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1798 done_not_linked:
1799 spin_unlock_irqrestore (&ehci->lock, flags);
1800 done:
1801 return status;
1802 }
1803
1804 /*-------------------------------------------------------------------------*/
1805
1806 /*
1807 * "Split ISO TDs" ... used for USB 1.1 devices going through the
1808 * TTs in USB 2.0 hubs. These need microframe scheduling.
1809 */
1810
1811 static inline void
1812 sitd_sched_init(
1813 struct ehci_hcd *ehci,
1814 struct ehci_iso_sched *iso_sched,
1815 struct ehci_iso_stream *stream,
1816 struct urb *urb
1817 )
1818 {
1819 unsigned i;
1820 dma_addr_t dma = urb->transfer_dma;
1821
1822 /* how many frames are needed for these transfers */
1823 iso_sched->span = urb->number_of_packets * stream->interval;
1824
1825 /* figure out per-frame sitd fields that we'll need later
1826 * when we fit new sitds into the schedule.
1827 */
1828 for (i = 0; i < urb->number_of_packets; i++) {
1829 struct ehci_iso_packet *packet = &iso_sched->packet [i];
1830 unsigned length;
1831 dma_addr_t buf;
1832 u32 trans;
1833
1834 length = urb->iso_frame_desc [i].length & 0x03ff;
1835 buf = dma + urb->iso_frame_desc [i].offset;
1836
1837 trans = SITD_STS_ACTIVE;
1838 if (((i + 1) == urb->number_of_packets)
1839 && !(urb->transfer_flags & URB_NO_INTERRUPT))
1840 trans |= SITD_IOC;
1841 trans |= length << 16;
1842 packet->transaction = cpu_to_hc32(ehci, trans);
1843
1844 /* might need to cross a buffer page within a td */
1845 packet->bufp = buf;
1846 packet->buf1 = (buf + length) & ~0x0fff;
1847 if (packet->buf1 != (buf & ~(u64)0x0fff))
1848 packet->cross = 1;
1849
1850 /* OUT uses multiple start-splits */
1851 if (stream->bEndpointAddress & USB_DIR_IN)
1852 continue;
1853 length = (length + 187) / 188;
1854 if (length > 1) /* BEGIN vs ALL */
1855 length |= 1 << 3;
1856 packet->buf1 |= length;
1857 }
1858 }
1859
1860 static int
1861 sitd_urb_transaction (
1862 struct ehci_iso_stream *stream,
1863 struct ehci_hcd *ehci,
1864 struct urb *urb,
1865 gfp_t mem_flags
1866 )
1867 {
1868 struct ehci_sitd *sitd;
1869 dma_addr_t sitd_dma;
1870 int i;
1871 struct ehci_iso_sched *iso_sched;
1872 unsigned long flags;
1873
1874 iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
1875 if (iso_sched == NULL)
1876 return -ENOMEM;
1877
1878 sitd_sched_init(ehci, iso_sched, stream, urb);
1879
1880 /* allocate/init sITDs */
1881 spin_lock_irqsave (&ehci->lock, flags);
1882 for (i = 0; i < urb->number_of_packets; i++) {
1883
1884 /* NOTE: for now, we don't try to handle wraparound cases
1885 * for IN (using sitd->hw_backpointer, like a FSTN), which
1886 * means we never need two sitds for full speed packets.
1887 */
1888
1889 /*
1890 * Use siTDs from the free list, but not siTDs that may
1891 * still be in use by the hardware.
1892 */
1893 if (likely(!list_empty(&stream->free_list))) {
1894 sitd = list_first_entry(&stream->free_list,
1895 struct ehci_sitd, sitd_list);
1896 if (sitd->frame == ehci->now_frame)
1897 goto alloc_sitd;
1898 list_del (&sitd->sitd_list);
1899 sitd_dma = sitd->sitd_dma;
1900 } else {
1901 alloc_sitd:
1902 spin_unlock_irqrestore (&ehci->lock, flags);
1903 sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
1904 &sitd_dma);
1905 spin_lock_irqsave (&ehci->lock, flags);
1906 if (!sitd) {
1907 iso_sched_free(stream, iso_sched);
1908 spin_unlock_irqrestore(&ehci->lock, flags);
1909 return -ENOMEM;
1910 }
1911 }
1912
1913 memset (sitd, 0, sizeof *sitd);
1914 sitd->sitd_dma = sitd_dma;
1915 sitd->frame = 9999; /* an invalid value */
1916 list_add (&sitd->sitd_list, &iso_sched->td_list);
1917 }
1918
1919 /* temporarily store schedule info in hcpriv */
1920 urb->hcpriv = iso_sched;
1921 urb->error_count = 0;
1922
1923 spin_unlock_irqrestore (&ehci->lock, flags);
1924 return 0;
1925 }
1926
1927 /*-------------------------------------------------------------------------*/
1928
1929 static inline void
1930 sitd_patch(
1931 struct ehci_hcd *ehci,
1932 struct ehci_iso_stream *stream,
1933 struct ehci_sitd *sitd,
1934 struct ehci_iso_sched *iso_sched,
1935 unsigned index
1936 )
1937 {
1938 struct ehci_iso_packet *uf = &iso_sched->packet [index];
1939 u64 bufp = uf->bufp;
1940
1941 sitd->hw_next = EHCI_LIST_END(ehci);
1942 sitd->hw_fullspeed_ep = stream->address;
1943 sitd->hw_uframe = stream->splits;
1944 sitd->hw_results = uf->transaction;
1945 sitd->hw_backpointer = EHCI_LIST_END(ehci);
1946
1947 bufp = uf->bufp;
1948 sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
1949 sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
1950
1951 sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
1952 if (uf->cross)
1953 bufp += 4096;
1954 sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
1955 sitd->index = index;
1956 }
1957
1958 static inline void
1959 sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
1960 {
1961 /* note: sitd ordering could matter (CSPLIT then SSPLIT) */
1962 sitd->sitd_next = ehci->pshadow [frame];
1963 sitd->hw_next = ehci->periodic [frame];
1964 ehci->pshadow [frame].sitd = sitd;
1965 sitd->frame = frame;
1966 wmb ();
1967 ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
1968 }
1969
1970 /* fit urb's sitds into the selected schedule slot; activate as needed */
1971 static void sitd_link_urb(
1972 struct ehci_hcd *ehci,
1973 struct urb *urb,
1974 unsigned mod,
1975 struct ehci_iso_stream *stream
1976 )
1977 {
1978 int packet;
1979 unsigned next_uframe;
1980 struct ehci_iso_sched *sched = urb->hcpriv;
1981 struct ehci_sitd *sitd;
1982
1983 next_uframe = stream->next_uframe;
1984
1985 if (list_empty(&stream->td_list)) {
1986 /* usbfs ignores TT bandwidth */
1987 ehci_to_hcd(ehci)->self.bandwidth_allocated
1988 += stream->bandwidth;
1989 ehci_vdbg (ehci,
1990 "sched devp %s ep%d%s-iso [%d] %dms/%04x\n",
1991 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
1992 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
1993 (next_uframe >> 3) & (ehci->periodic_size - 1),
1994 stream->interval, hc32_to_cpu(ehci, stream->splits));
1995 }
1996
1997 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1998 if (ehci->amd_pll_fix == 1)
1999 usb_amd_quirk_pll_disable();
2000 }
2001
2002 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2003
2004 /* fill sITDs frame by frame */
2005 for (packet = 0, sitd = NULL;
2006 packet < urb->number_of_packets;
2007 packet++) {
2008
2009 /* ASSERT: we have all necessary sitds */
2010 BUG_ON (list_empty (&sched->td_list));
2011
2012 /* ASSERT: no itds for this endpoint in this frame */
2013
2014 sitd = list_entry (sched->td_list.next,
2015 struct ehci_sitd, sitd_list);
2016 list_move_tail (&sitd->sitd_list, &stream->td_list);
2017 sitd->stream = stream;
2018 sitd->urb = urb;
2019
2020 sitd_patch(ehci, stream, sitd, sched, packet);
2021 sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2022 sitd);
2023
2024 next_uframe += stream->interval << 3;
2025 }
2026 stream->next_uframe = next_uframe & (mod - 1);
2027
2028 /* don't need that schedule data any more */
2029 iso_sched_free (stream, sched);
2030 urb->hcpriv = stream;
2031
2032 ++ehci->isoc_count;
2033 enable_periodic(ehci);
2034 }
2035
2036 /*-------------------------------------------------------------------------*/
2037
2038 #define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2039 | SITD_STS_XACT | SITD_STS_MMF)
2040
2041 /* Process and recycle a completed SITD. Return true iff its urb completed,
2042 * and hence its completion callback probably added things to the hardware
2043 * schedule.
2044 *
2045 * Note that we carefully avoid recycling this descriptor until after any
2046 * completion callback runs, so that it won't be reused quickly. That is,
2047 * assuming (a) no more than two urbs per frame on this endpoint, and also
2048 * (b) only this endpoint's completions submit URBs. It seems some silicon
2049 * corrupts things if you reuse completed descriptors very quickly...
2050 */
2051 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2052 {
2053 struct urb *urb = sitd->urb;
2054 struct usb_iso_packet_descriptor *desc;
2055 u32 t;
2056 int urb_index = -1;
2057 struct ehci_iso_stream *stream = sitd->stream;
2058 struct usb_device *dev;
2059 bool retval = false;
2060
2061 urb_index = sitd->index;
2062 desc = &urb->iso_frame_desc [urb_index];
2063 t = hc32_to_cpup(ehci, &sitd->hw_results);
2064
2065 /* report transfer status */
2066 if (unlikely(t & SITD_ERRS)) {
2067 urb->error_count++;
2068 if (t & SITD_STS_DBE)
2069 desc->status = usb_pipein (urb->pipe)
2070 ? -ENOSR /* hc couldn't read */
2071 : -ECOMM; /* hc couldn't write */
2072 else if (t & SITD_STS_BABBLE)
2073 desc->status = -EOVERFLOW;
2074 else /* XACT, MMF, etc */
2075 desc->status = -EPROTO;
2076 } else if (unlikely(t & SITD_STS_ACTIVE)) {
2077 /* URB was too late */
2078 urb->error_count++;
2079 } else {
2080 desc->status = 0;
2081 desc->actual_length = desc->length - SITD_LENGTH(t);
2082 urb->actual_length += desc->actual_length;
2083 }
2084
2085 /* handle completion now? */
2086 if ((urb_index + 1) != urb->number_of_packets)
2087 goto done;
2088
2089 /* ASSERT: it's really the last sitd for this urb
2090 list_for_each_entry (sitd, &stream->td_list, sitd_list)
2091 BUG_ON (sitd->urb == urb);
2092 */
2093
2094 /* give urb back to the driver; completion often (re)submits */
2095 dev = urb->dev;
2096 ehci_urb_done(ehci, urb, 0);
2097 retval = true;
2098 urb = NULL;
2099
2100 --ehci->isoc_count;
2101 disable_periodic(ehci);
2102
2103 ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2104 if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2105 if (ehci->amd_pll_fix == 1)
2106 usb_amd_quirk_pll_enable();
2107 }
2108
2109 if (list_is_singular(&stream->td_list)) {
2110 ehci_to_hcd(ehci)->self.bandwidth_allocated
2111 -= stream->bandwidth;
2112 ehci_vdbg (ehci,
2113 "deschedule devp %s ep%d%s-iso\n",
2114 dev->devpath, stream->bEndpointAddress & 0x0f,
2115 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
2116 }
2117
2118 done:
2119 sitd->urb = NULL;
2120
2121 /* Add to the end of the free list for later reuse */
2122 list_move_tail(&sitd->sitd_list, &stream->free_list);
2123
2124 /* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2125 if (list_empty(&stream->td_list)) {
2126 list_splice_tail_init(&stream->free_list,
2127 &ehci->cached_sitd_list);
2128 start_free_itds(ehci);
2129 }
2130
2131 return retval;
2132 }
2133
2134
2135 static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
2136 gfp_t mem_flags)
2137 {
2138 int status = -EINVAL;
2139 unsigned long flags;
2140 struct ehci_iso_stream *stream;
2141
2142 /* Get iso_stream head */
2143 stream = iso_stream_find (ehci, urb);
2144 if (stream == NULL) {
2145 ehci_dbg (ehci, "can't get iso stream\n");
2146 return -ENOMEM;
2147 }
2148 if (urb->interval != stream->interval) {
2149 ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
2150 stream->interval, urb->interval);
2151 goto done;
2152 }
2153
2154 #ifdef EHCI_URB_TRACE
2155 ehci_dbg (ehci,
2156 "submit %p dev%s ep%d%s-iso len %d\n",
2157 urb, urb->dev->devpath,
2158 usb_pipeendpoint (urb->pipe),
2159 usb_pipein (urb->pipe) ? "in" : "out",
2160 urb->transfer_buffer_length);
2161 #endif
2162
2163 /* allocate SITDs */
2164 status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
2165 if (status < 0) {
2166 ehci_dbg (ehci, "can't init sitds\n");
2167 goto done;
2168 }
2169
2170 /* schedule ... need to lock */
2171 spin_lock_irqsave (&ehci->lock, flags);
2172 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2173 status = -ESHUTDOWN;
2174 goto done_not_linked;
2175 }
2176 status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2177 if (unlikely(status))
2178 goto done_not_linked;
2179 status = iso_stream_schedule(ehci, urb, stream);
2180 if (status == 0)
2181 sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
2182 else
2183 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2184 done_not_linked:
2185 spin_unlock_irqrestore (&ehci->lock, flags);
2186 done:
2187 return status;
2188 }
2189
2190 /*-------------------------------------------------------------------------*/
2191
2192 static void scan_isoc(struct ehci_hcd *ehci)
2193 {
2194 unsigned uf, now_frame, frame;
2195 unsigned fmask = ehci->periodic_size - 1;
2196 bool modified, live;
2197
2198 /*
2199 * When running, scan from last scan point up to "now"
2200 * else clean up by scanning everything that's left.
2201 * Touches as few pages as possible: cache-friendly.
2202 */
2203 if (ehci->rh_state >= EHCI_RH_RUNNING) {
2204 uf = ehci_read_frame_index(ehci);
2205 now_frame = (uf >> 3) & fmask;
2206 live = true;
2207 } else {
2208 now_frame = (ehci->last_iso_frame - 1) & fmask;
2209 live = false;
2210 }
2211 ehci->now_frame = now_frame;
2212
2213 frame = ehci->last_iso_frame;
2214 for (;;) {
2215 union ehci_shadow q, *q_p;
2216 __hc32 type, *hw_p;
2217
2218 restart:
2219 /* scan each element in frame's queue for completions */
2220 q_p = &ehci->pshadow [frame];
2221 hw_p = &ehci->periodic [frame];
2222 q.ptr = q_p->ptr;
2223 type = Q_NEXT_TYPE(ehci, *hw_p);
2224 modified = false;
2225
2226 while (q.ptr != NULL) {
2227 switch (hc32_to_cpu(ehci, type)) {
2228 case Q_TYPE_ITD:
2229 /* If this ITD is still active, leave it for
2230 * later processing ... check the next entry.
2231 * No need to check for activity unless the
2232 * frame is current.
2233 */
2234 if (frame == now_frame && live) {
2235 rmb();
2236 for (uf = 0; uf < 8; uf++) {
2237 if (q.itd->hw_transaction[uf] &
2238 ITD_ACTIVE(ehci))
2239 break;
2240 }
2241 if (uf < 8) {
2242 q_p = &q.itd->itd_next;
2243 hw_p = &q.itd->hw_next;
2244 type = Q_NEXT_TYPE(ehci,
2245 q.itd->hw_next);
2246 q = *q_p;
2247 break;
2248 }
2249 }
2250
2251 /* Take finished ITDs out of the schedule
2252 * and process them: recycle, maybe report
2253 * URB completion. HC won't cache the
2254 * pointer for much longer, if at all.
2255 */
2256 *q_p = q.itd->itd_next;
2257 if (!ehci->use_dummy_qh ||
2258 q.itd->hw_next != EHCI_LIST_END(ehci))
2259 *hw_p = q.itd->hw_next;
2260 else
2261 *hw_p = ehci->dummy->qh_dma;
2262 type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2263 wmb();
2264 modified = itd_complete (ehci, q.itd);
2265 q = *q_p;
2266 break;
2267 case Q_TYPE_SITD:
2268 /* If this SITD is still active, leave it for
2269 * later processing ... check the next entry.
2270 * No need to check for activity unless the
2271 * frame is current.
2272 */
2273 if (((frame == now_frame) ||
2274 (((frame + 1) & fmask) == now_frame))
2275 && live
2276 && (q.sitd->hw_results &
2277 SITD_ACTIVE(ehci))) {
2278
2279 q_p = &q.sitd->sitd_next;
2280 hw_p = &q.sitd->hw_next;
2281 type = Q_NEXT_TYPE(ehci,
2282 q.sitd->hw_next);
2283 q = *q_p;
2284 break;
2285 }
2286
2287 /* Take finished SITDs out of the schedule
2288 * and process them: recycle, maybe report
2289 * URB completion.
2290 */
2291 *q_p = q.sitd->sitd_next;
2292 if (!ehci->use_dummy_qh ||
2293 q.sitd->hw_next != EHCI_LIST_END(ehci))
2294 *hw_p = q.sitd->hw_next;
2295 else
2296 *hw_p = ehci->dummy->qh_dma;
2297 type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2298 wmb();
2299 modified = sitd_complete (ehci, q.sitd);
2300 q = *q_p;
2301 break;
2302 default:
2303 ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2304 type, frame, q.ptr);
2305 // BUG ();
2306 /* FALL THROUGH */
2307 case Q_TYPE_QH:
2308 case Q_TYPE_FSTN:
2309 /* End of the iTDs and siTDs */
2310 q.ptr = NULL;
2311 break;
2312 }
2313
2314 /* assume completion callbacks modify the queue */
2315 if (unlikely(modified && ehci->isoc_count > 0))
2316 goto restart;
2317 }
2318
2319 /* Stop when we have reached the current frame */
2320 if (frame == now_frame)
2321 break;
2322
2323 /* The last frame may still have active siTDs */
2324 ehci->last_iso_frame = frame;
2325 frame = (frame + 1) & fmask;
2326 }
2327 }
This page took 0.080574 seconds and 5 git commands to generate.