drbd: switch to using blk_queue_write_cache()
[deliverable/linux.git] / drivers / usb / host / fotg210-hcd.c
1 /* Faraday FOTG210 EHCI-like driver
2 *
3 * Copyright (c) 2013 Faraday Technology Corporation
4 *
5 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
6 * Feng-Hsin Chiang <john453@faraday-tech.com>
7 * Po-Yu Chuang <ratbert.chuang@gmail.com>
8 *
9 * Most of code borrowed from the Linux-3.7 EHCI driver
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
18 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software Foundation,
23 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25 #include <linux/module.h>
26 #include <linux/device.h>
27 #include <linux/dmapool.h>
28 #include <linux/kernel.h>
29 #include <linux/delay.h>
30 #include <linux/ioport.h>
31 #include <linux/sched.h>
32 #include <linux/vmalloc.h>
33 #include <linux/errno.h>
34 #include <linux/init.h>
35 #include <linux/hrtimer.h>
36 #include <linux/list.h>
37 #include <linux/interrupt.h>
38 #include <linux/usb.h>
39 #include <linux/usb/hcd.h>
40 #include <linux/moduleparam.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/debugfs.h>
43 #include <linux/slab.h>
44 #include <linux/uaccess.h>
45 #include <linux/platform_device.h>
46 #include <linux/io.h>
47
48 #include <asm/byteorder.h>
49 #include <asm/irq.h>
50 #include <asm/unaligned.h>
51
52 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
53 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
54 static const char hcd_name[] = "fotg210_hcd";
55
56 #undef FOTG210_URB_TRACE
57 #define FOTG210_STATS
58
59 /* magic numbers that can affect system performance */
60 #define FOTG210_TUNE_CERR 3 /* 0-3 qtd retries; 0 == don't stop */
61 #define FOTG210_TUNE_RL_HS 4 /* nak throttle; see 4.9 */
62 #define FOTG210_TUNE_RL_TT 0
63 #define FOTG210_TUNE_MULT_HS 1 /* 1-3 transactions/uframe; 4.10.3 */
64 #define FOTG210_TUNE_MULT_TT 1
65
66 /* Some drivers think it's safe to schedule isochronous transfers more than 256
67 * ms into the future (partly as a result of an old bug in the scheduling
68 * code). In an attempt to avoid trouble, we will use a minimum scheduling
69 * length of 512 frames instead of 256.
70 */
71 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
72
73 /* Initial IRQ latency: faster than hw default */
74 static int log2_irq_thresh; /* 0 to 6 */
75 module_param(log2_irq_thresh, int, S_IRUGO);
76 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
77
78 /* initial park setting: slower than hw default */
79 static unsigned park;
80 module_param(park, uint, S_IRUGO);
81 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
82
83 /* for link power management(LPM) feature */
84 static unsigned int hird;
85 module_param(hird, int, S_IRUGO);
86 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
87
88 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
89
90 #include "fotg210.h"
91
92 #define fotg210_dbg(fotg210, fmt, args...) \
93 dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
94 #define fotg210_err(fotg210, fmt, args...) \
95 dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
96 #define fotg210_info(fotg210, fmt, args...) \
97 dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
98 #define fotg210_warn(fotg210, fmt, args...) \
99 dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
100
101 /* check the values in the HCSPARAMS register (host controller _Structural_
102 * parameters) see EHCI spec, Table 2-4 for each value
103 */
104 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
105 {
106 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
107
108 fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
109 HCS_N_PORTS(params));
110 }
111
112 /* check the values in the HCCPARAMS register (host controller _Capability_
113 * parameters) see EHCI Spec, Table 2-5 for each value
114 */
115 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
116 {
117 u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
118
119 fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
120 params,
121 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
122 HCC_CANPARK(params) ? " park" : "");
123 }
124
125 static void __maybe_unused
126 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
127 {
128 fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
129 hc32_to_cpup(fotg210, &qtd->hw_next),
130 hc32_to_cpup(fotg210, &qtd->hw_alt_next),
131 hc32_to_cpup(fotg210, &qtd->hw_token),
132 hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
133 if (qtd->hw_buf[1])
134 fotg210_dbg(fotg210, " p1=%08x p2=%08x p3=%08x p4=%08x\n",
135 hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
136 hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
137 hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
138 hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
139 }
140
141 static void __maybe_unused
142 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
143 {
144 struct fotg210_qh_hw *hw = qh->hw;
145
146 fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
147 hw->hw_next, hw->hw_info1, hw->hw_info2,
148 hw->hw_current);
149
150 dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
151 }
152
153 static void __maybe_unused
154 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
155 {
156 fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
157 itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
158 itd->urb);
159
160 fotg210_dbg(fotg210,
161 " trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
162 hc32_to_cpu(fotg210, itd->hw_transaction[0]),
163 hc32_to_cpu(fotg210, itd->hw_transaction[1]),
164 hc32_to_cpu(fotg210, itd->hw_transaction[2]),
165 hc32_to_cpu(fotg210, itd->hw_transaction[3]),
166 hc32_to_cpu(fotg210, itd->hw_transaction[4]),
167 hc32_to_cpu(fotg210, itd->hw_transaction[5]),
168 hc32_to_cpu(fotg210, itd->hw_transaction[6]),
169 hc32_to_cpu(fotg210, itd->hw_transaction[7]));
170
171 fotg210_dbg(fotg210,
172 " buf: %08x %08x %08x %08x %08x %08x %08x\n",
173 hc32_to_cpu(fotg210, itd->hw_bufp[0]),
174 hc32_to_cpu(fotg210, itd->hw_bufp[1]),
175 hc32_to_cpu(fotg210, itd->hw_bufp[2]),
176 hc32_to_cpu(fotg210, itd->hw_bufp[3]),
177 hc32_to_cpu(fotg210, itd->hw_bufp[4]),
178 hc32_to_cpu(fotg210, itd->hw_bufp[5]),
179 hc32_to_cpu(fotg210, itd->hw_bufp[6]));
180
181 fotg210_dbg(fotg210, " index: %d %d %d %d %d %d %d %d\n",
182 itd->index[0], itd->index[1], itd->index[2],
183 itd->index[3], itd->index[4], itd->index[5],
184 itd->index[6], itd->index[7]);
185 }
186
187 static int __maybe_unused
188 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
189 {
190 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
191 label, label[0] ? " " : "", status,
192 (status & STS_ASS) ? " Async" : "",
193 (status & STS_PSS) ? " Periodic" : "",
194 (status & STS_RECL) ? " Recl" : "",
195 (status & STS_HALT) ? " Halt" : "",
196 (status & STS_IAA) ? " IAA" : "",
197 (status & STS_FATAL) ? " FATAL" : "",
198 (status & STS_FLR) ? " FLR" : "",
199 (status & STS_PCD) ? " PCD" : "",
200 (status & STS_ERR) ? " ERR" : "",
201 (status & STS_INT) ? " INT" : "");
202 }
203
204 static int __maybe_unused
205 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
206 {
207 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
208 label, label[0] ? " " : "", enable,
209 (enable & STS_IAA) ? " IAA" : "",
210 (enable & STS_FATAL) ? " FATAL" : "",
211 (enable & STS_FLR) ? " FLR" : "",
212 (enable & STS_PCD) ? " PCD" : "",
213 (enable & STS_ERR) ? " ERR" : "",
214 (enable & STS_INT) ? " INT" : "");
215 }
216
217 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
218
219 static int dbg_command_buf(char *buf, unsigned len, const char *label,
220 u32 command)
221 {
222 return scnprintf(buf, len,
223 "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
224 label, label[0] ? " " : "", command,
225 (command & CMD_PARK) ? " park" : "(park)",
226 CMD_PARK_CNT(command),
227 (command >> 16) & 0x3f,
228 (command & CMD_IAAD) ? " IAAD" : "",
229 (command & CMD_ASE) ? " Async" : "",
230 (command & CMD_PSE) ? " Periodic" : "",
231 fls_strings[(command >> 2) & 0x3],
232 (command & CMD_RESET) ? " Reset" : "",
233 (command & CMD_RUN) ? "RUN" : "HALT");
234 }
235
236 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
237 u32 status)
238 {
239 char *sig;
240
241 /* signaling state */
242 switch (status & (3 << 10)) {
243 case 0 << 10:
244 sig = "se0";
245 break;
246 case 1 << 10:
247 sig = "k";
248 break; /* low speed */
249 case 2 << 10:
250 sig = "j";
251 break;
252 default:
253 sig = "?";
254 break;
255 }
256
257 scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
258 label, label[0] ? " " : "", port, status,
259 status >> 25, /*device address */
260 sig,
261 (status & PORT_RESET) ? " RESET" : "",
262 (status & PORT_SUSPEND) ? " SUSPEND" : "",
263 (status & PORT_RESUME) ? " RESUME" : "",
264 (status & PORT_PEC) ? " PEC" : "",
265 (status & PORT_PE) ? " PE" : "",
266 (status & PORT_CSC) ? " CSC" : "",
267 (status & PORT_CONNECT) ? " CONNECT" : "");
268
269 return buf;
270 }
271
272 /* functions have the "wrong" filename when they're output... */
273 #define dbg_status(fotg210, label, status) { \
274 char _buf[80]; \
275 dbg_status_buf(_buf, sizeof(_buf), label, status); \
276 fotg210_dbg(fotg210, "%s\n", _buf); \
277 }
278
279 #define dbg_cmd(fotg210, label, command) { \
280 char _buf[80]; \
281 dbg_command_buf(_buf, sizeof(_buf), label, command); \
282 fotg210_dbg(fotg210, "%s\n", _buf); \
283 }
284
285 #define dbg_port(fotg210, label, port, status) { \
286 char _buf[80]; \
287 fotg210_dbg(fotg210, "%s\n", \
288 dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
289 }
290
291 /* troubleshooting help: expose state in debugfs */
292 static int debug_async_open(struct inode *, struct file *);
293 static int debug_periodic_open(struct inode *, struct file *);
294 static int debug_registers_open(struct inode *, struct file *);
295 static int debug_async_open(struct inode *, struct file *);
296
297 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
298 static int debug_close(struct inode *, struct file *);
299
300 static const struct file_operations debug_async_fops = {
301 .owner = THIS_MODULE,
302 .open = debug_async_open,
303 .read = debug_output,
304 .release = debug_close,
305 .llseek = default_llseek,
306 };
307 static const struct file_operations debug_periodic_fops = {
308 .owner = THIS_MODULE,
309 .open = debug_periodic_open,
310 .read = debug_output,
311 .release = debug_close,
312 .llseek = default_llseek,
313 };
314 static const struct file_operations debug_registers_fops = {
315 .owner = THIS_MODULE,
316 .open = debug_registers_open,
317 .read = debug_output,
318 .release = debug_close,
319 .llseek = default_llseek,
320 };
321
322 static struct dentry *fotg210_debug_root;
323
324 struct debug_buffer {
325 ssize_t (*fill_func)(struct debug_buffer *); /* fill method */
326 struct usb_bus *bus;
327 struct mutex mutex; /* protect filling of buffer */
328 size_t count; /* number of characters filled into buffer */
329 char *output_buf;
330 size_t alloc_size;
331 };
332
333 static inline char speed_char(u32 scratch)
334 {
335 switch (scratch & (3 << 12)) {
336 case QH_FULL_SPEED:
337 return 'f';
338
339 case QH_LOW_SPEED:
340 return 'l';
341
342 case QH_HIGH_SPEED:
343 return 'h';
344
345 default:
346 return '?';
347 }
348 }
349
350 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
351 {
352 __u32 v = hc32_to_cpu(fotg210, token);
353
354 if (v & QTD_STS_ACTIVE)
355 return '*';
356 if (v & QTD_STS_HALT)
357 return '-';
358 if (!IS_SHORT_READ(v))
359 return ' ';
360 /* tries to advance through hw_alt_next */
361 return '/';
362 }
363
364 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
365 char **nextp, unsigned *sizep)
366 {
367 u32 scratch;
368 u32 hw_curr;
369 struct fotg210_qtd *td;
370 unsigned temp;
371 unsigned size = *sizep;
372 char *next = *nextp;
373 char mark;
374 __le32 list_end = FOTG210_LIST_END(fotg210);
375 struct fotg210_qh_hw *hw = qh->hw;
376
377 if (hw->hw_qtd_next == list_end) /* NEC does this */
378 mark = '@';
379 else
380 mark = token_mark(fotg210, hw->hw_token);
381 if (mark == '/') { /* qh_alt_next controls qh advance? */
382 if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
383 fotg210->async->hw->hw_alt_next)
384 mark = '#'; /* blocked */
385 else if (hw->hw_alt_next == list_end)
386 mark = '.'; /* use hw_qtd_next */
387 /* else alt_next points to some other qtd */
388 }
389 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
390 hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
391 temp = scnprintf(next, size,
392 "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
393 qh, scratch & 0x007f,
394 speed_char(scratch),
395 (scratch >> 8) & 0x000f,
396 scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
397 hc32_to_cpup(fotg210, &hw->hw_token), mark,
398 (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
399 ? "data1" : "data0",
400 (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
401 size -= temp;
402 next += temp;
403
404 /* hc may be modifying the list as we read it ... */
405 list_for_each_entry(td, &qh->qtd_list, qtd_list) {
406 scratch = hc32_to_cpup(fotg210, &td->hw_token);
407 mark = ' ';
408 if (hw_curr == td->qtd_dma)
409 mark = '*';
410 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
411 mark = '+';
412 else if (QTD_LENGTH(scratch)) {
413 if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
414 mark = '#';
415 else if (td->hw_alt_next != list_end)
416 mark = '/';
417 }
418 temp = snprintf(next, size,
419 "\n\t%p%c%s len=%d %08x urb %p",
420 td, mark, ({ char *tmp;
421 switch ((scratch>>8)&0x03) {
422 case 0:
423 tmp = "out";
424 break;
425 case 1:
426 tmp = "in";
427 break;
428 case 2:
429 tmp = "setup";
430 break;
431 default:
432 tmp = "?";
433 break;
434 } tmp; }),
435 (scratch >> 16) & 0x7fff,
436 scratch,
437 td->urb);
438 if (size < temp)
439 temp = size;
440 size -= temp;
441 next += temp;
442 if (temp == size)
443 goto done;
444 }
445
446 temp = snprintf(next, size, "\n");
447 if (size < temp)
448 temp = size;
449
450 size -= temp;
451 next += temp;
452
453 done:
454 *sizep = size;
455 *nextp = next;
456 }
457
458 static ssize_t fill_async_buffer(struct debug_buffer *buf)
459 {
460 struct usb_hcd *hcd;
461 struct fotg210_hcd *fotg210;
462 unsigned long flags;
463 unsigned temp, size;
464 char *next;
465 struct fotg210_qh *qh;
466
467 hcd = bus_to_hcd(buf->bus);
468 fotg210 = hcd_to_fotg210(hcd);
469 next = buf->output_buf;
470 size = buf->alloc_size;
471
472 *next = 0;
473
474 /* dumps a snapshot of the async schedule.
475 * usually empty except for long-term bulk reads, or head.
476 * one QH per line, and TDs we know about
477 */
478 spin_lock_irqsave(&fotg210->lock, flags);
479 for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
480 qh = qh->qh_next.qh)
481 qh_lines(fotg210, qh, &next, &size);
482 if (fotg210->async_unlink && size > 0) {
483 temp = scnprintf(next, size, "\nunlink =\n");
484 size -= temp;
485 next += temp;
486
487 for (qh = fotg210->async_unlink; size > 0 && qh;
488 qh = qh->unlink_next)
489 qh_lines(fotg210, qh, &next, &size);
490 }
491 spin_unlock_irqrestore(&fotg210->lock, flags);
492
493 return strlen(buf->output_buf);
494 }
495
496 /* count tds, get ep direction */
497 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
498 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
499 {
500 u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
501 struct fotg210_qtd *qtd;
502 char *type = "";
503 unsigned temp = 0;
504
505 /* count tds, get ep direction */
506 list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
507 temp++;
508 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
509 case 0:
510 type = "out";
511 continue;
512 case 1:
513 type = "in";
514 continue;
515 }
516 }
517
518 return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
519 speed_char(scratch), scratch & 0x007f,
520 (scratch >> 8) & 0x000f, type, qh->usecs,
521 qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
522 }
523
524 #define DBG_SCHED_LIMIT 64
525 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
526 {
527 struct usb_hcd *hcd;
528 struct fotg210_hcd *fotg210;
529 unsigned long flags;
530 union fotg210_shadow p, *seen;
531 unsigned temp, size, seen_count;
532 char *next;
533 unsigned i;
534 __hc32 tag;
535
536 seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
537 if (!seen)
538 return 0;
539
540 seen_count = 0;
541
542 hcd = bus_to_hcd(buf->bus);
543 fotg210 = hcd_to_fotg210(hcd);
544 next = buf->output_buf;
545 size = buf->alloc_size;
546
547 temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
548 size -= temp;
549 next += temp;
550
551 /* dump a snapshot of the periodic schedule.
552 * iso changes, interrupt usually doesn't.
553 */
554 spin_lock_irqsave(&fotg210->lock, flags);
555 for (i = 0; i < fotg210->periodic_size; i++) {
556 p = fotg210->pshadow[i];
557 if (likely(!p.ptr))
558 continue;
559
560 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
561
562 temp = scnprintf(next, size, "%4d: ", i);
563 size -= temp;
564 next += temp;
565
566 do {
567 struct fotg210_qh_hw *hw;
568
569 switch (hc32_to_cpu(fotg210, tag)) {
570 case Q_TYPE_QH:
571 hw = p.qh->hw;
572 temp = scnprintf(next, size, " qh%d-%04x/%p",
573 p.qh->period,
574 hc32_to_cpup(fotg210,
575 &hw->hw_info2)
576 /* uframe masks */
577 & (QH_CMASK | QH_SMASK),
578 p.qh);
579 size -= temp;
580 next += temp;
581 /* don't repeat what follows this qh */
582 for (temp = 0; temp < seen_count; temp++) {
583 if (seen[temp].ptr != p.ptr)
584 continue;
585 if (p.qh->qh_next.ptr) {
586 temp = scnprintf(next, size,
587 " ...");
588 size -= temp;
589 next += temp;
590 }
591 break;
592 }
593 /* show more info the first time around */
594 if (temp == seen_count) {
595 temp = output_buf_tds_dir(next,
596 fotg210, hw,
597 p.qh, size);
598
599 if (seen_count < DBG_SCHED_LIMIT)
600 seen[seen_count++].qh = p.qh;
601 } else
602 temp = 0;
603 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
604 p = p.qh->qh_next;
605 break;
606 case Q_TYPE_FSTN:
607 temp = scnprintf(next, size,
608 " fstn-%8x/%p",
609 p.fstn->hw_prev, p.fstn);
610 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
611 p = p.fstn->fstn_next;
612 break;
613 case Q_TYPE_ITD:
614 temp = scnprintf(next, size,
615 " itd/%p", p.itd);
616 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
617 p = p.itd->itd_next;
618 break;
619 }
620 size -= temp;
621 next += temp;
622 } while (p.ptr);
623
624 temp = scnprintf(next, size, "\n");
625 size -= temp;
626 next += temp;
627 }
628 spin_unlock_irqrestore(&fotg210->lock, flags);
629 kfree(seen);
630
631 return buf->alloc_size - size;
632 }
633 #undef DBG_SCHED_LIMIT
634
635 static const char *rh_state_string(struct fotg210_hcd *fotg210)
636 {
637 switch (fotg210->rh_state) {
638 case FOTG210_RH_HALTED:
639 return "halted";
640 case FOTG210_RH_SUSPENDED:
641 return "suspended";
642 case FOTG210_RH_RUNNING:
643 return "running";
644 case FOTG210_RH_STOPPING:
645 return "stopping";
646 }
647 return "?";
648 }
649
650 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
651 {
652 struct usb_hcd *hcd;
653 struct fotg210_hcd *fotg210;
654 unsigned long flags;
655 unsigned temp, size, i;
656 char *next, scratch[80];
657 static const char fmt[] = "%*s\n";
658 static const char label[] = "";
659
660 hcd = bus_to_hcd(buf->bus);
661 fotg210 = hcd_to_fotg210(hcd);
662 next = buf->output_buf;
663 size = buf->alloc_size;
664
665 spin_lock_irqsave(&fotg210->lock, flags);
666
667 if (!HCD_HW_ACCESSIBLE(hcd)) {
668 size = scnprintf(next, size,
669 "bus %s, device %s\n"
670 "%s\n"
671 "SUSPENDED(no register access)\n",
672 hcd->self.controller->bus->name,
673 dev_name(hcd->self.controller),
674 hcd->product_desc);
675 goto done;
676 }
677
678 /* Capability Registers */
679 i = HC_VERSION(fotg210, fotg210_readl(fotg210,
680 &fotg210->caps->hc_capbase));
681 temp = scnprintf(next, size,
682 "bus %s, device %s\n"
683 "%s\n"
684 "EHCI %x.%02x, rh state %s\n",
685 hcd->self.controller->bus->name,
686 dev_name(hcd->self.controller),
687 hcd->product_desc,
688 i >> 8, i & 0x0ff, rh_state_string(fotg210));
689 size -= temp;
690 next += temp;
691
692 /* FIXME interpret both types of params */
693 i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
694 temp = scnprintf(next, size, "structural params 0x%08x\n", i);
695 size -= temp;
696 next += temp;
697
698 i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
699 temp = scnprintf(next, size, "capability params 0x%08x\n", i);
700 size -= temp;
701 next += temp;
702
703 /* Operational Registers */
704 temp = dbg_status_buf(scratch, sizeof(scratch), label,
705 fotg210_readl(fotg210, &fotg210->regs->status));
706 temp = scnprintf(next, size, fmt, temp, scratch);
707 size -= temp;
708 next += temp;
709
710 temp = dbg_command_buf(scratch, sizeof(scratch), label,
711 fotg210_readl(fotg210, &fotg210->regs->command));
712 temp = scnprintf(next, size, fmt, temp, scratch);
713 size -= temp;
714 next += temp;
715
716 temp = dbg_intr_buf(scratch, sizeof(scratch), label,
717 fotg210_readl(fotg210, &fotg210->regs->intr_enable));
718 temp = scnprintf(next, size, fmt, temp, scratch);
719 size -= temp;
720 next += temp;
721
722 temp = scnprintf(next, size, "uframe %04x\n",
723 fotg210_read_frame_index(fotg210));
724 size -= temp;
725 next += temp;
726
727 if (fotg210->async_unlink) {
728 temp = scnprintf(next, size, "async unlink qh %p\n",
729 fotg210->async_unlink);
730 size -= temp;
731 next += temp;
732 }
733
734 #ifdef FOTG210_STATS
735 temp = scnprintf(next, size,
736 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
737 fotg210->stats.normal, fotg210->stats.error,
738 fotg210->stats.iaa, fotg210->stats.lost_iaa);
739 size -= temp;
740 next += temp;
741
742 temp = scnprintf(next, size, "complete %ld unlink %ld\n",
743 fotg210->stats.complete, fotg210->stats.unlink);
744 size -= temp;
745 next += temp;
746 #endif
747
748 done:
749 spin_unlock_irqrestore(&fotg210->lock, flags);
750
751 return buf->alloc_size - size;
752 }
753
754 static struct debug_buffer
755 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
756 {
757 struct debug_buffer *buf;
758
759 buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
760
761 if (buf) {
762 buf->bus = bus;
763 buf->fill_func = fill_func;
764 mutex_init(&buf->mutex);
765 buf->alloc_size = PAGE_SIZE;
766 }
767
768 return buf;
769 }
770
771 static int fill_buffer(struct debug_buffer *buf)
772 {
773 int ret = 0;
774
775 if (!buf->output_buf)
776 buf->output_buf = vmalloc(buf->alloc_size);
777
778 if (!buf->output_buf) {
779 ret = -ENOMEM;
780 goto out;
781 }
782
783 ret = buf->fill_func(buf);
784
785 if (ret >= 0) {
786 buf->count = ret;
787 ret = 0;
788 }
789
790 out:
791 return ret;
792 }
793
794 static ssize_t debug_output(struct file *file, char __user *user_buf,
795 size_t len, loff_t *offset)
796 {
797 struct debug_buffer *buf = file->private_data;
798 int ret = 0;
799
800 mutex_lock(&buf->mutex);
801 if (buf->count == 0) {
802 ret = fill_buffer(buf);
803 if (ret != 0) {
804 mutex_unlock(&buf->mutex);
805 goto out;
806 }
807 }
808 mutex_unlock(&buf->mutex);
809
810 ret = simple_read_from_buffer(user_buf, len, offset,
811 buf->output_buf, buf->count);
812
813 out:
814 return ret;
815
816 }
817
818 static int debug_close(struct inode *inode, struct file *file)
819 {
820 struct debug_buffer *buf = file->private_data;
821
822 if (buf) {
823 vfree(buf->output_buf);
824 kfree(buf);
825 }
826
827 return 0;
828 }
829 static int debug_async_open(struct inode *inode, struct file *file)
830 {
831 file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
832
833 return file->private_data ? 0 : -ENOMEM;
834 }
835
836 static int debug_periodic_open(struct inode *inode, struct file *file)
837 {
838 struct debug_buffer *buf;
839
840 buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
841 if (!buf)
842 return -ENOMEM;
843
844 buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
845 file->private_data = buf;
846 return 0;
847 }
848
849 static int debug_registers_open(struct inode *inode, struct file *file)
850 {
851 file->private_data = alloc_buffer(inode->i_private,
852 fill_registers_buffer);
853
854 return file->private_data ? 0 : -ENOMEM;
855 }
856
857 static inline void create_debug_files(struct fotg210_hcd *fotg210)
858 {
859 struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
860
861 fotg210->debug_dir = debugfs_create_dir(bus->bus_name,
862 fotg210_debug_root);
863 if (!fotg210->debug_dir)
864 return;
865
866 if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus,
867 &debug_async_fops))
868 goto file_error;
869
870 if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus,
871 &debug_periodic_fops))
872 goto file_error;
873
874 if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus,
875 &debug_registers_fops))
876 goto file_error;
877
878 return;
879
880 file_error:
881 debugfs_remove_recursive(fotg210->debug_dir);
882 }
883
884 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
885 {
886 debugfs_remove_recursive(fotg210->debug_dir);
887 }
888
889 /* handshake - spin reading hc until handshake completes or fails
890 * @ptr: address of hc register to be read
891 * @mask: bits to look at in result of read
892 * @done: value of those bits when handshake succeeds
893 * @usec: timeout in microseconds
894 *
895 * Returns negative errno, or zero on success
896 *
897 * Success happens when the "mask" bits have the specified value (hardware
898 * handshake done). There are two failure modes: "usec" have passed (major
899 * hardware flakeout), or the register reads as all-ones (hardware removed).
900 *
901 * That last failure should_only happen in cases like physical cardbus eject
902 * before driver shutdown. But it also seems to be caused by bugs in cardbus
903 * bridge shutdown: shutting down the bridge before the devices using it.
904 */
905 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
906 u32 mask, u32 done, int usec)
907 {
908 u32 result;
909
910 do {
911 result = fotg210_readl(fotg210, ptr);
912 if (result == ~(u32)0) /* card removed */
913 return -ENODEV;
914 result &= mask;
915 if (result == done)
916 return 0;
917 udelay(1);
918 usec--;
919 } while (usec > 0);
920 return -ETIMEDOUT;
921 }
922
923 /* Force HC to halt state from unknown (EHCI spec section 2.3).
924 * Must be called with interrupts enabled and the lock not held.
925 */
926 static int fotg210_halt(struct fotg210_hcd *fotg210)
927 {
928 u32 temp;
929
930 spin_lock_irq(&fotg210->lock);
931
932 /* disable any irqs left enabled by previous code */
933 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
934
935 /*
936 * This routine gets called during probe before fotg210->command
937 * has been initialized, so we can't rely on its value.
938 */
939 fotg210->command &= ~CMD_RUN;
940 temp = fotg210_readl(fotg210, &fotg210->regs->command);
941 temp &= ~(CMD_RUN | CMD_IAAD);
942 fotg210_writel(fotg210, temp, &fotg210->regs->command);
943
944 spin_unlock_irq(&fotg210->lock);
945 synchronize_irq(fotg210_to_hcd(fotg210)->irq);
946
947 return handshake(fotg210, &fotg210->regs->status,
948 STS_HALT, STS_HALT, 16 * 125);
949 }
950
951 /* Reset a non-running (STS_HALT == 1) controller.
952 * Must be called with interrupts enabled and the lock not held.
953 */
954 static int fotg210_reset(struct fotg210_hcd *fotg210)
955 {
956 int retval;
957 u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
958
959 /* If the EHCI debug controller is active, special care must be
960 * taken before and after a host controller reset
961 */
962 if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
963 fotg210->debug = NULL;
964
965 command |= CMD_RESET;
966 dbg_cmd(fotg210, "reset", command);
967 fotg210_writel(fotg210, command, &fotg210->regs->command);
968 fotg210->rh_state = FOTG210_RH_HALTED;
969 fotg210->next_statechange = jiffies;
970 retval = handshake(fotg210, &fotg210->regs->command,
971 CMD_RESET, 0, 250 * 1000);
972
973 if (retval)
974 return retval;
975
976 if (fotg210->debug)
977 dbgp_external_startup(fotg210_to_hcd(fotg210));
978
979 fotg210->port_c_suspend = fotg210->suspended_ports =
980 fotg210->resuming_ports = 0;
981 return retval;
982 }
983
984 /* Idle the controller (turn off the schedules).
985 * Must be called with interrupts enabled and the lock not held.
986 */
987 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
988 {
989 u32 temp;
990
991 if (fotg210->rh_state != FOTG210_RH_RUNNING)
992 return;
993
994 /* wait for any schedule enables/disables to take effect */
995 temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
996 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
997 16 * 125);
998
999 /* then disable anything that's still active */
1000 spin_lock_irq(&fotg210->lock);
1001 fotg210->command &= ~(CMD_ASE | CMD_PSE);
1002 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1003 spin_unlock_irq(&fotg210->lock);
1004
1005 /* hardware can take 16 microframes to turn off ... */
1006 handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
1007 16 * 125);
1008 }
1009
1010 static void end_unlink_async(struct fotg210_hcd *fotg210);
1011 static void unlink_empty_async(struct fotg210_hcd *fotg210);
1012 static void fotg210_work(struct fotg210_hcd *fotg210);
1013 static void start_unlink_intr(struct fotg210_hcd *fotg210,
1014 struct fotg210_qh *qh);
1015 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
1016
1017 /* Set a bit in the USBCMD register */
1018 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1019 {
1020 fotg210->command |= bit;
1021 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1022
1023 /* unblock posted write */
1024 fotg210_readl(fotg210, &fotg210->regs->command);
1025 }
1026
1027 /* Clear a bit in the USBCMD register */
1028 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1029 {
1030 fotg210->command &= ~bit;
1031 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1032
1033 /* unblock posted write */
1034 fotg210_readl(fotg210, &fotg210->regs->command);
1035 }
1036
1037 /* EHCI timer support... Now using hrtimers.
1038 *
1039 * Lots of different events are triggered from fotg210->hrtimer. Whenever
1040 * the timer routine runs, it checks each possible event; events that are
1041 * currently enabled and whose expiration time has passed get handled.
1042 * The set of enabled events is stored as a collection of bitflags in
1043 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1044 * increasing delay values (ranging between 1 ms and 100 ms).
1045 *
1046 * Rather than implementing a sorted list or tree of all pending events,
1047 * we keep track only of the lowest-numbered pending event, in
1048 * fotg210->next_hrtimer_event. Whenever fotg210->hrtimer gets restarted, its
1049 * expiration time is set to the timeout value for this event.
1050 *
1051 * As a result, events might not get handled right away; the actual delay
1052 * could be anywhere up to twice the requested delay. This doesn't
1053 * matter, because none of the events are especially time-critical. The
1054 * ones that matter most all have a delay of 1 ms, so they will be
1055 * handled after 2 ms at most, which is okay. In addition to this, we
1056 * allow for an expiration range of 1 ms.
1057 */
1058
1059 /* Delay lengths for the hrtimer event types.
1060 * Keep this list sorted by delay length, in the same order as
1061 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1062 */
1063 static unsigned event_delays_ns[] = {
1064 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_ASS */
1065 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_PSS */
1066 1 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_POLL_DEAD */
1067 1125 * NSEC_PER_USEC, /* FOTG210_HRTIMER_UNLINK_INTR */
1068 2 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_FREE_ITDS */
1069 6 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1070 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1071 10 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1072 15 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1073 100 * NSEC_PER_MSEC, /* FOTG210_HRTIMER_IO_WATCHDOG */
1074 };
1075
1076 /* Enable a pending hrtimer event */
1077 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1078 bool resched)
1079 {
1080 ktime_t *timeout = &fotg210->hr_timeouts[event];
1081
1082 if (resched)
1083 *timeout = ktime_add(ktime_get(),
1084 ktime_set(0, event_delays_ns[event]));
1085 fotg210->enabled_hrtimer_events |= (1 << event);
1086
1087 /* Track only the lowest-numbered pending event */
1088 if (event < fotg210->next_hrtimer_event) {
1089 fotg210->next_hrtimer_event = event;
1090 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1091 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1092 }
1093 }
1094
1095
1096 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1097 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1098 {
1099 unsigned actual, want;
1100
1101 /* Don't enable anything if the controller isn't running (e.g., died) */
1102 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1103 return;
1104
1105 want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1106 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1107
1108 if (want != actual) {
1109
1110 /* Poll again later, but give up after about 20 ms */
1111 if (fotg210->ASS_poll_count++ < 20) {
1112 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1113 true);
1114 return;
1115 }
1116 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1117 want, actual);
1118 }
1119 fotg210->ASS_poll_count = 0;
1120
1121 /* The status is up-to-date; restart or stop the schedule as needed */
1122 if (want == 0) { /* Stopped */
1123 if (fotg210->async_count > 0)
1124 fotg210_set_command_bit(fotg210, CMD_ASE);
1125
1126 } else { /* Running */
1127 if (fotg210->async_count == 0) {
1128
1129 /* Turn off the schedule after a while */
1130 fotg210_enable_event(fotg210,
1131 FOTG210_HRTIMER_DISABLE_ASYNC,
1132 true);
1133 }
1134 }
1135 }
1136
1137 /* Turn off the async schedule after a brief delay */
1138 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1139 {
1140 fotg210_clear_command_bit(fotg210, CMD_ASE);
1141 }
1142
1143
1144 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1145 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1146 {
1147 unsigned actual, want;
1148
1149 /* Don't do anything if the controller isn't running (e.g., died) */
1150 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1151 return;
1152
1153 want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1154 actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1155
1156 if (want != actual) {
1157
1158 /* Poll again later, but give up after about 20 ms */
1159 if (fotg210->PSS_poll_count++ < 20) {
1160 fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1161 true);
1162 return;
1163 }
1164 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1165 want, actual);
1166 }
1167 fotg210->PSS_poll_count = 0;
1168
1169 /* The status is up-to-date; restart or stop the schedule as needed */
1170 if (want == 0) { /* Stopped */
1171 if (fotg210->periodic_count > 0)
1172 fotg210_set_command_bit(fotg210, CMD_PSE);
1173
1174 } else { /* Running */
1175 if (fotg210->periodic_count == 0) {
1176
1177 /* Turn off the schedule after a while */
1178 fotg210_enable_event(fotg210,
1179 FOTG210_HRTIMER_DISABLE_PERIODIC,
1180 true);
1181 }
1182 }
1183 }
1184
1185 /* Turn off the periodic schedule after a brief delay */
1186 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1187 {
1188 fotg210_clear_command_bit(fotg210, CMD_PSE);
1189 }
1190
1191
1192 /* Poll the STS_HALT status bit; see when a dead controller stops */
1193 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1194 {
1195 if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1196
1197 /* Give up after a few milliseconds */
1198 if (fotg210->died_poll_count++ < 5) {
1199 /* Try again later */
1200 fotg210_enable_event(fotg210,
1201 FOTG210_HRTIMER_POLL_DEAD, true);
1202 return;
1203 }
1204 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1205 }
1206
1207 /* Clean up the mess */
1208 fotg210->rh_state = FOTG210_RH_HALTED;
1209 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1210 fotg210_work(fotg210);
1211 end_unlink_async(fotg210);
1212
1213 /* Not in process context, so don't try to reset the controller */
1214 }
1215
1216
1217 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1218 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1219 {
1220 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1221
1222 /*
1223 * Process all the QHs on the intr_unlink list that were added
1224 * before the current unlink cycle began. The list is in
1225 * temporal order, so stop when we reach the first entry in the
1226 * current cycle. But if the root hub isn't running then
1227 * process all the QHs on the list.
1228 */
1229 fotg210->intr_unlinking = true;
1230 while (fotg210->intr_unlink) {
1231 struct fotg210_qh *qh = fotg210->intr_unlink;
1232
1233 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1234 break;
1235 fotg210->intr_unlink = qh->unlink_next;
1236 qh->unlink_next = NULL;
1237 end_unlink_intr(fotg210, qh);
1238 }
1239
1240 /* Handle remaining entries later */
1241 if (fotg210->intr_unlink) {
1242 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1243 true);
1244 ++fotg210->intr_unlink_cycle;
1245 }
1246 fotg210->intr_unlinking = false;
1247 }
1248
1249
1250 /* Start another free-iTDs/siTDs cycle */
1251 static void start_free_itds(struct fotg210_hcd *fotg210)
1252 {
1253 if (!(fotg210->enabled_hrtimer_events &
1254 BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1255 fotg210->last_itd_to_free = list_entry(
1256 fotg210->cached_itd_list.prev,
1257 struct fotg210_itd, itd_list);
1258 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1259 }
1260 }
1261
1262 /* Wait for controller to stop using old iTDs and siTDs */
1263 static void end_free_itds(struct fotg210_hcd *fotg210)
1264 {
1265 struct fotg210_itd *itd, *n;
1266
1267 if (fotg210->rh_state < FOTG210_RH_RUNNING)
1268 fotg210->last_itd_to_free = NULL;
1269
1270 list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1271 list_del(&itd->itd_list);
1272 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1273 if (itd == fotg210->last_itd_to_free)
1274 break;
1275 }
1276
1277 if (!list_empty(&fotg210->cached_itd_list))
1278 start_free_itds(fotg210);
1279 }
1280
1281
1282 /* Handle lost (or very late) IAA interrupts */
1283 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1284 {
1285 if (fotg210->rh_state != FOTG210_RH_RUNNING)
1286 return;
1287
1288 /*
1289 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1290 * So we need this watchdog, but must protect it against both
1291 * (a) SMP races against real IAA firing and retriggering, and
1292 * (b) clean HC shutdown, when IAA watchdog was pending.
1293 */
1294 if (fotg210->async_iaa) {
1295 u32 cmd, status;
1296
1297 /* If we get here, IAA is *REALLY* late. It's barely
1298 * conceivable that the system is so busy that CMD_IAAD
1299 * is still legitimately set, so let's be sure it's
1300 * clear before we read STS_IAA. (The HC should clear
1301 * CMD_IAAD when it sets STS_IAA.)
1302 */
1303 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1304
1305 /*
1306 * If IAA is set here it either legitimately triggered
1307 * after the watchdog timer expired (_way_ late, so we'll
1308 * still count it as lost) ... or a silicon erratum:
1309 * - VIA seems to set IAA without triggering the IRQ;
1310 * - IAAD potentially cleared without setting IAA.
1311 */
1312 status = fotg210_readl(fotg210, &fotg210->regs->status);
1313 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1314 COUNT(fotg210->stats.lost_iaa);
1315 fotg210_writel(fotg210, STS_IAA,
1316 &fotg210->regs->status);
1317 }
1318
1319 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1320 status, cmd);
1321 end_unlink_async(fotg210);
1322 }
1323 }
1324
1325
1326 /* Enable the I/O watchdog, if appropriate */
1327 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1328 {
1329 /* Not needed if the controller isn't running or it's already enabled */
1330 if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1331 (fotg210->enabled_hrtimer_events &
1332 BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1333 return;
1334
1335 /*
1336 * Isochronous transfers always need the watchdog.
1337 * For other sorts we use it only if the flag is set.
1338 */
1339 if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1340 fotg210->async_count + fotg210->intr_count > 0))
1341 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1342 true);
1343 }
1344
1345
1346 /* Handler functions for the hrtimer event types.
1347 * Keep this array in the same order as the event types indexed by
1348 * enum fotg210_hrtimer_event in fotg210.h.
1349 */
1350 static void (*event_handlers[])(struct fotg210_hcd *) = {
1351 fotg210_poll_ASS, /* FOTG210_HRTIMER_POLL_ASS */
1352 fotg210_poll_PSS, /* FOTG210_HRTIMER_POLL_PSS */
1353 fotg210_handle_controller_death, /* FOTG210_HRTIMER_POLL_DEAD */
1354 fotg210_handle_intr_unlinks, /* FOTG210_HRTIMER_UNLINK_INTR */
1355 end_free_itds, /* FOTG210_HRTIMER_FREE_ITDS */
1356 unlink_empty_async, /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1357 fotg210_iaa_watchdog, /* FOTG210_HRTIMER_IAA_WATCHDOG */
1358 fotg210_disable_PSE, /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1359 fotg210_disable_ASE, /* FOTG210_HRTIMER_DISABLE_ASYNC */
1360 fotg210_work, /* FOTG210_HRTIMER_IO_WATCHDOG */
1361 };
1362
1363 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1364 {
1365 struct fotg210_hcd *fotg210 =
1366 container_of(t, struct fotg210_hcd, hrtimer);
1367 ktime_t now;
1368 unsigned long events;
1369 unsigned long flags;
1370 unsigned e;
1371
1372 spin_lock_irqsave(&fotg210->lock, flags);
1373
1374 events = fotg210->enabled_hrtimer_events;
1375 fotg210->enabled_hrtimer_events = 0;
1376 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1377
1378 /*
1379 * Check each pending event. If its time has expired, handle
1380 * the event; otherwise re-enable it.
1381 */
1382 now = ktime_get();
1383 for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1384 if (now.tv64 >= fotg210->hr_timeouts[e].tv64)
1385 event_handlers[e](fotg210);
1386 else
1387 fotg210_enable_event(fotg210, e, false);
1388 }
1389
1390 spin_unlock_irqrestore(&fotg210->lock, flags);
1391 return HRTIMER_NORESTART;
1392 }
1393
1394 #define fotg210_bus_suspend NULL
1395 #define fotg210_bus_resume NULL
1396
1397 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1398 u32 __iomem *status_reg, int port_status)
1399 {
1400 if (!(port_status & PORT_CONNECT))
1401 return port_status;
1402
1403 /* if reset finished and it's still not enabled -- handoff */
1404 if (!(port_status & PORT_PE))
1405 /* with integrated TT, there's nobody to hand it to! */
1406 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1407 index + 1);
1408 else
1409 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1410 index + 1);
1411
1412 return port_status;
1413 }
1414
1415
1416 /* build "status change" packet (one or two bytes) from HC registers */
1417
1418 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1419 {
1420 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1421 u32 temp, status;
1422 u32 mask;
1423 int retval = 1;
1424 unsigned long flags;
1425
1426 /* init status to no-changes */
1427 buf[0] = 0;
1428
1429 /* Inform the core about resumes-in-progress by returning
1430 * a non-zero value even if there are no status changes.
1431 */
1432 status = fotg210->resuming_ports;
1433
1434 mask = PORT_CSC | PORT_PEC;
1435 /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1436
1437 /* no hub change reports (bit 0) for now (power, ...) */
1438
1439 /* port N changes (bit N)? */
1440 spin_lock_irqsave(&fotg210->lock, flags);
1441
1442 temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1443
1444 /*
1445 * Return status information even for ports with OWNER set.
1446 * Otherwise hub_wq wouldn't see the disconnect event when a
1447 * high-speed device is switched over to the companion
1448 * controller by the user.
1449 */
1450
1451 if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1452 (fotg210->reset_done[0] &&
1453 time_after_eq(jiffies, fotg210->reset_done[0]))) {
1454 buf[0] |= 1 << 1;
1455 status = STS_PCD;
1456 }
1457 /* FIXME autosuspend idle root hubs */
1458 spin_unlock_irqrestore(&fotg210->lock, flags);
1459 return status ? retval : 0;
1460 }
1461
1462 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1463 struct usb_hub_descriptor *desc)
1464 {
1465 int ports = HCS_N_PORTS(fotg210->hcs_params);
1466 u16 temp;
1467
1468 desc->bDescriptorType = USB_DT_HUB;
1469 desc->bPwrOn2PwrGood = 10; /* fotg210 1.0, 2.3.9 says 20ms max */
1470 desc->bHubContrCurrent = 0;
1471
1472 desc->bNbrPorts = ports;
1473 temp = 1 + (ports / 8);
1474 desc->bDescLength = 7 + 2 * temp;
1475
1476 /* two bitmaps: ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1477 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1478 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1479
1480 temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1481 temp |= HUB_CHAR_NO_LPSM; /* no power switching */
1482 desc->wHubCharacteristics = cpu_to_le16(temp);
1483 }
1484
1485 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1486 u16 wIndex, char *buf, u16 wLength)
1487 {
1488 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1489 int ports = HCS_N_PORTS(fotg210->hcs_params);
1490 u32 __iomem *status_reg = &fotg210->regs->port_status;
1491 u32 temp, temp1, status;
1492 unsigned long flags;
1493 int retval = 0;
1494 unsigned selector;
1495
1496 /*
1497 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1498 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1499 * (track current state ourselves) ... blink for diagnostics,
1500 * power, "this is the one", etc. EHCI spec supports this.
1501 */
1502
1503 spin_lock_irqsave(&fotg210->lock, flags);
1504 switch (typeReq) {
1505 case ClearHubFeature:
1506 switch (wValue) {
1507 case C_HUB_LOCAL_POWER:
1508 case C_HUB_OVER_CURRENT:
1509 /* no hub-wide feature/status flags */
1510 break;
1511 default:
1512 goto error;
1513 }
1514 break;
1515 case ClearPortFeature:
1516 if (!wIndex || wIndex > ports)
1517 goto error;
1518 wIndex--;
1519 temp = fotg210_readl(fotg210, status_reg);
1520 temp &= ~PORT_RWC_BITS;
1521
1522 /*
1523 * Even if OWNER is set, so the port is owned by the
1524 * companion controller, hub_wq needs to be able to clear
1525 * the port-change status bits (especially
1526 * USB_PORT_STAT_C_CONNECTION).
1527 */
1528
1529 switch (wValue) {
1530 case USB_PORT_FEAT_ENABLE:
1531 fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1532 break;
1533 case USB_PORT_FEAT_C_ENABLE:
1534 fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1535 break;
1536 case USB_PORT_FEAT_SUSPEND:
1537 if (temp & PORT_RESET)
1538 goto error;
1539 if (!(temp & PORT_SUSPEND))
1540 break;
1541 if ((temp & PORT_PE) == 0)
1542 goto error;
1543
1544 /* resume signaling for 20 msec */
1545 fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1546 fotg210->reset_done[wIndex] = jiffies
1547 + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1548 break;
1549 case USB_PORT_FEAT_C_SUSPEND:
1550 clear_bit(wIndex, &fotg210->port_c_suspend);
1551 break;
1552 case USB_PORT_FEAT_C_CONNECTION:
1553 fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1554 break;
1555 case USB_PORT_FEAT_C_OVER_CURRENT:
1556 fotg210_writel(fotg210, temp | OTGISR_OVC,
1557 &fotg210->regs->otgisr);
1558 break;
1559 case USB_PORT_FEAT_C_RESET:
1560 /* GetPortStatus clears reset */
1561 break;
1562 default:
1563 goto error;
1564 }
1565 fotg210_readl(fotg210, &fotg210->regs->command);
1566 break;
1567 case GetHubDescriptor:
1568 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1569 buf);
1570 break;
1571 case GetHubStatus:
1572 /* no hub-wide feature/status flags */
1573 memset(buf, 0, 4);
1574 /*cpu_to_le32s ((u32 *) buf); */
1575 break;
1576 case GetPortStatus:
1577 if (!wIndex || wIndex > ports)
1578 goto error;
1579 wIndex--;
1580 status = 0;
1581 temp = fotg210_readl(fotg210, status_reg);
1582
1583 /* wPortChange bits */
1584 if (temp & PORT_CSC)
1585 status |= USB_PORT_STAT_C_CONNECTION << 16;
1586 if (temp & PORT_PEC)
1587 status |= USB_PORT_STAT_C_ENABLE << 16;
1588
1589 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1590 if (temp1 & OTGISR_OVC)
1591 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1592
1593 /* whoever resumes must GetPortStatus to complete it!! */
1594 if (temp & PORT_RESUME) {
1595
1596 /* Remote Wakeup received? */
1597 if (!fotg210->reset_done[wIndex]) {
1598 /* resume signaling for 20 msec */
1599 fotg210->reset_done[wIndex] = jiffies
1600 + msecs_to_jiffies(20);
1601 /* check the port again */
1602 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1603 fotg210->reset_done[wIndex]);
1604 }
1605
1606 /* resume completed? */
1607 else if (time_after_eq(jiffies,
1608 fotg210->reset_done[wIndex])) {
1609 clear_bit(wIndex, &fotg210->suspended_ports);
1610 set_bit(wIndex, &fotg210->port_c_suspend);
1611 fotg210->reset_done[wIndex] = 0;
1612
1613 /* stop resume signaling */
1614 temp = fotg210_readl(fotg210, status_reg);
1615 fotg210_writel(fotg210, temp &
1616 ~(PORT_RWC_BITS | PORT_RESUME),
1617 status_reg);
1618 clear_bit(wIndex, &fotg210->resuming_ports);
1619 retval = handshake(fotg210, status_reg,
1620 PORT_RESUME, 0, 2000);/* 2ms */
1621 if (retval != 0) {
1622 fotg210_err(fotg210,
1623 "port %d resume error %d\n",
1624 wIndex + 1, retval);
1625 goto error;
1626 }
1627 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1628 }
1629 }
1630
1631 /* whoever resets must GetPortStatus to complete it!! */
1632 if ((temp & PORT_RESET) && time_after_eq(jiffies,
1633 fotg210->reset_done[wIndex])) {
1634 status |= USB_PORT_STAT_C_RESET << 16;
1635 fotg210->reset_done[wIndex] = 0;
1636 clear_bit(wIndex, &fotg210->resuming_ports);
1637
1638 /* force reset to complete */
1639 fotg210_writel(fotg210,
1640 temp & ~(PORT_RWC_BITS | PORT_RESET),
1641 status_reg);
1642 /* REVISIT: some hardware needs 550+ usec to clear
1643 * this bit; seems too long to spin routinely...
1644 */
1645 retval = handshake(fotg210, status_reg,
1646 PORT_RESET, 0, 1000);
1647 if (retval != 0) {
1648 fotg210_err(fotg210, "port %d reset error %d\n",
1649 wIndex + 1, retval);
1650 goto error;
1651 }
1652
1653 /* see what we found out */
1654 temp = check_reset_complete(fotg210, wIndex, status_reg,
1655 fotg210_readl(fotg210, status_reg));
1656 }
1657
1658 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1659 fotg210->reset_done[wIndex] = 0;
1660 clear_bit(wIndex, &fotg210->resuming_ports);
1661 }
1662
1663 /* transfer dedicated ports to the companion hc */
1664 if ((temp & PORT_CONNECT) &&
1665 test_bit(wIndex, &fotg210->companion_ports)) {
1666 temp &= ~PORT_RWC_BITS;
1667 fotg210_writel(fotg210, temp, status_reg);
1668 fotg210_dbg(fotg210, "port %d --> companion\n",
1669 wIndex + 1);
1670 temp = fotg210_readl(fotg210, status_reg);
1671 }
1672
1673 /*
1674 * Even if OWNER is set, there's no harm letting hub_wq
1675 * see the wPortStatus values (they should all be 0 except
1676 * for PORT_POWER anyway).
1677 */
1678
1679 if (temp & PORT_CONNECT) {
1680 status |= USB_PORT_STAT_CONNECTION;
1681 status |= fotg210_port_speed(fotg210, temp);
1682 }
1683 if (temp & PORT_PE)
1684 status |= USB_PORT_STAT_ENABLE;
1685
1686 /* maybe the port was unsuspended without our knowledge */
1687 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1688 status |= USB_PORT_STAT_SUSPEND;
1689 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1690 clear_bit(wIndex, &fotg210->suspended_ports);
1691 clear_bit(wIndex, &fotg210->resuming_ports);
1692 fotg210->reset_done[wIndex] = 0;
1693 if (temp & PORT_PE)
1694 set_bit(wIndex, &fotg210->port_c_suspend);
1695 }
1696
1697 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1698 if (temp1 & OTGISR_OVC)
1699 status |= USB_PORT_STAT_OVERCURRENT;
1700 if (temp & PORT_RESET)
1701 status |= USB_PORT_STAT_RESET;
1702 if (test_bit(wIndex, &fotg210->port_c_suspend))
1703 status |= USB_PORT_STAT_C_SUSPEND << 16;
1704
1705 if (status & ~0xffff) /* only if wPortChange is interesting */
1706 dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1707 put_unaligned_le32(status, buf);
1708 break;
1709 case SetHubFeature:
1710 switch (wValue) {
1711 case C_HUB_LOCAL_POWER:
1712 case C_HUB_OVER_CURRENT:
1713 /* no hub-wide feature/status flags */
1714 break;
1715 default:
1716 goto error;
1717 }
1718 break;
1719 case SetPortFeature:
1720 selector = wIndex >> 8;
1721 wIndex &= 0xff;
1722
1723 if (!wIndex || wIndex > ports)
1724 goto error;
1725 wIndex--;
1726 temp = fotg210_readl(fotg210, status_reg);
1727 temp &= ~PORT_RWC_BITS;
1728 switch (wValue) {
1729 case USB_PORT_FEAT_SUSPEND:
1730 if ((temp & PORT_PE) == 0
1731 || (temp & PORT_RESET) != 0)
1732 goto error;
1733
1734 /* After above check the port must be connected.
1735 * Set appropriate bit thus could put phy into low power
1736 * mode if we have hostpc feature
1737 */
1738 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1739 status_reg);
1740 set_bit(wIndex, &fotg210->suspended_ports);
1741 break;
1742 case USB_PORT_FEAT_RESET:
1743 if (temp & PORT_RESUME)
1744 goto error;
1745 /* line status bits may report this as low speed,
1746 * which can be fine if this root hub has a
1747 * transaction translator built in.
1748 */
1749 fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1750 temp |= PORT_RESET;
1751 temp &= ~PORT_PE;
1752
1753 /*
1754 * caller must wait, then call GetPortStatus
1755 * usb 2.0 spec says 50 ms resets on root
1756 */
1757 fotg210->reset_done[wIndex] = jiffies
1758 + msecs_to_jiffies(50);
1759 fotg210_writel(fotg210, temp, status_reg);
1760 break;
1761
1762 /* For downstream facing ports (these): one hub port is put
1763 * into test mode according to USB2 11.24.2.13, then the hub
1764 * must be reset (which for root hub now means rmmod+modprobe,
1765 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
1766 * about the EHCI-specific stuff.
1767 */
1768 case USB_PORT_FEAT_TEST:
1769 if (!selector || selector > 5)
1770 goto error;
1771 spin_unlock_irqrestore(&fotg210->lock, flags);
1772 fotg210_quiesce(fotg210);
1773 spin_lock_irqsave(&fotg210->lock, flags);
1774
1775 /* Put all enabled ports into suspend */
1776 temp = fotg210_readl(fotg210, status_reg) &
1777 ~PORT_RWC_BITS;
1778 if (temp & PORT_PE)
1779 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1780 status_reg);
1781
1782 spin_unlock_irqrestore(&fotg210->lock, flags);
1783 fotg210_halt(fotg210);
1784 spin_lock_irqsave(&fotg210->lock, flags);
1785
1786 temp = fotg210_readl(fotg210, status_reg);
1787 temp |= selector << 16;
1788 fotg210_writel(fotg210, temp, status_reg);
1789 break;
1790
1791 default:
1792 goto error;
1793 }
1794 fotg210_readl(fotg210, &fotg210->regs->command);
1795 break;
1796
1797 default:
1798 error:
1799 /* "stall" on error */
1800 retval = -EPIPE;
1801 }
1802 spin_unlock_irqrestore(&fotg210->lock, flags);
1803 return retval;
1804 }
1805
1806 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1807 int portnum)
1808 {
1809 return;
1810 }
1811
1812 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1813 int portnum)
1814 {
1815 return 0;
1816 }
1817
1818 /* There's basically three types of memory:
1819 * - data used only by the HCD ... kmalloc is fine
1820 * - async and periodic schedules, shared by HC and HCD ... these
1821 * need to use dma_pool or dma_alloc_coherent
1822 * - driver buffers, read/written by HC ... single shot DMA mapped
1823 *
1824 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1825 * No memory seen by this driver is pageable.
1826 */
1827
1828 /* Allocate the key transfer structures from the previously allocated pool */
1829 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1830 struct fotg210_qtd *qtd, dma_addr_t dma)
1831 {
1832 memset(qtd, 0, sizeof(*qtd));
1833 qtd->qtd_dma = dma;
1834 qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1835 qtd->hw_next = FOTG210_LIST_END(fotg210);
1836 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1837 INIT_LIST_HEAD(&qtd->qtd_list);
1838 }
1839
1840 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1841 gfp_t flags)
1842 {
1843 struct fotg210_qtd *qtd;
1844 dma_addr_t dma;
1845
1846 qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1847 if (qtd != NULL)
1848 fotg210_qtd_init(fotg210, qtd, dma);
1849
1850 return qtd;
1851 }
1852
1853 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1854 struct fotg210_qtd *qtd)
1855 {
1856 dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1857 }
1858
1859
1860 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1861 {
1862 /* clean qtds first, and know this is not linked */
1863 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1864 fotg210_dbg(fotg210, "unused qh not empty!\n");
1865 BUG();
1866 }
1867 if (qh->dummy)
1868 fotg210_qtd_free(fotg210, qh->dummy);
1869 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1870 kfree(qh);
1871 }
1872
1873 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1874 gfp_t flags)
1875 {
1876 struct fotg210_qh *qh;
1877 dma_addr_t dma;
1878
1879 qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1880 if (!qh)
1881 goto done;
1882 qh->hw = (struct fotg210_qh_hw *)
1883 dma_pool_alloc(fotg210->qh_pool, flags, &dma);
1884 if (!qh->hw)
1885 goto fail;
1886 memset(qh->hw, 0, sizeof(*qh->hw));
1887 qh->qh_dma = dma;
1888 INIT_LIST_HEAD(&qh->qtd_list);
1889
1890 /* dummy td enables safe urb queuing */
1891 qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1892 if (qh->dummy == NULL) {
1893 fotg210_dbg(fotg210, "no dummy td\n");
1894 goto fail1;
1895 }
1896 done:
1897 return qh;
1898 fail1:
1899 dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1900 fail:
1901 kfree(qh);
1902 return NULL;
1903 }
1904
1905 /* The queue heads and transfer descriptors are managed from pools tied
1906 * to each of the "per device" structures.
1907 * This is the initialisation and cleanup code.
1908 */
1909
1910 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1911 {
1912 if (fotg210->async)
1913 qh_destroy(fotg210, fotg210->async);
1914 fotg210->async = NULL;
1915
1916 if (fotg210->dummy)
1917 qh_destroy(fotg210, fotg210->dummy);
1918 fotg210->dummy = NULL;
1919
1920 /* DMA consistent memory and pools */
1921 dma_pool_destroy(fotg210->qtd_pool);
1922 fotg210->qtd_pool = NULL;
1923
1924 dma_pool_destroy(fotg210->qh_pool);
1925 fotg210->qh_pool = NULL;
1926
1927 dma_pool_destroy(fotg210->itd_pool);
1928 fotg210->itd_pool = NULL;
1929
1930 if (fotg210->periodic)
1931 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1932 fotg210->periodic_size * sizeof(u32),
1933 fotg210->periodic, fotg210->periodic_dma);
1934 fotg210->periodic = NULL;
1935
1936 /* shadow periodic table */
1937 kfree(fotg210->pshadow);
1938 fotg210->pshadow = NULL;
1939 }
1940
1941 /* remember to add cleanup code (above) if you add anything here */
1942 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1943 {
1944 int i;
1945
1946 /* QTDs for control/bulk/intr transfers */
1947 fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1948 fotg210_to_hcd(fotg210)->self.controller,
1949 sizeof(struct fotg210_qtd),
1950 32 /* byte alignment (for hw parts) */,
1951 4096 /* can't cross 4K */);
1952 if (!fotg210->qtd_pool)
1953 goto fail;
1954
1955 /* QHs for control/bulk/intr transfers */
1956 fotg210->qh_pool = dma_pool_create("fotg210_qh",
1957 fotg210_to_hcd(fotg210)->self.controller,
1958 sizeof(struct fotg210_qh_hw),
1959 32 /* byte alignment (for hw parts) */,
1960 4096 /* can't cross 4K */);
1961 if (!fotg210->qh_pool)
1962 goto fail;
1963
1964 fotg210->async = fotg210_qh_alloc(fotg210, flags);
1965 if (!fotg210->async)
1966 goto fail;
1967
1968 /* ITD for high speed ISO transfers */
1969 fotg210->itd_pool = dma_pool_create("fotg210_itd",
1970 fotg210_to_hcd(fotg210)->self.controller,
1971 sizeof(struct fotg210_itd),
1972 64 /* byte alignment (for hw parts) */,
1973 4096 /* can't cross 4K */);
1974 if (!fotg210->itd_pool)
1975 goto fail;
1976
1977 /* Hardware periodic table */
1978 fotg210->periodic = (__le32 *)
1979 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1980 fotg210->periodic_size * sizeof(__le32),
1981 &fotg210->periodic_dma, 0);
1982 if (fotg210->periodic == NULL)
1983 goto fail;
1984
1985 for (i = 0; i < fotg210->periodic_size; i++)
1986 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1987
1988 /* software shadow of hardware table */
1989 fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1990 flags);
1991 if (fotg210->pshadow != NULL)
1992 return 0;
1993
1994 fail:
1995 fotg210_dbg(fotg210, "couldn't init memory\n");
1996 fotg210_mem_cleanup(fotg210);
1997 return -ENOMEM;
1998 }
1999 /* EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
2000 *
2001 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
2002 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
2003 * buffers needed for the larger number). We use one QH per endpoint, queue
2004 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
2005 *
2006 * ISO traffic uses "ISO TD" (itd) records, and (along with
2007 * interrupts) needs careful scheduling. Performance improvements can be
2008 * an ongoing challenge. That's in "ehci-sched.c".
2009 *
2010 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
2011 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
2012 * (b) special fields in qh entries or (c) split iso entries. TTs will
2013 * buffer low/full speed data so the host collects it at high speed.
2014 */
2015
2016 /* fill a qtd, returning how much of the buffer we were able to queue up */
2017 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
2018 dma_addr_t buf, size_t len, int token, int maxpacket)
2019 {
2020 int i, count;
2021 u64 addr = buf;
2022
2023 /* one buffer entry per 4K ... first might be short or unaligned */
2024 qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2025 qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2026 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
2027 if (likely(len < count)) /* ... iff needed */
2028 count = len;
2029 else {
2030 buf += 0x1000;
2031 buf &= ~0x0fff;
2032
2033 /* per-qtd limit: from 16K to 20K (best alignment) */
2034 for (i = 1; count < len && i < 5; i++) {
2035 addr = buf;
2036 qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2037 qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2038 (u32)(addr >> 32));
2039 buf += 0x1000;
2040 if ((count + 0x1000) < len)
2041 count += 0x1000;
2042 else
2043 count = len;
2044 }
2045
2046 /* short packets may only terminate transfers */
2047 if (count != len)
2048 count -= (count % maxpacket);
2049 }
2050 qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2051 qtd->length = count;
2052
2053 return count;
2054 }
2055
2056 static inline void qh_update(struct fotg210_hcd *fotg210,
2057 struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2058 {
2059 struct fotg210_qh_hw *hw = qh->hw;
2060
2061 /* writes to an active overlay are unsafe */
2062 BUG_ON(qh->qh_state != QH_STATE_IDLE);
2063
2064 hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2065 hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2066
2067 /* Except for control endpoints, we make hardware maintain data
2068 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2069 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2070 * ever clear it.
2071 */
2072 if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2073 unsigned is_out, epnum;
2074
2075 is_out = qh->is_out;
2076 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2077 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2078 hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2079 usb_settoggle(qh->dev, epnum, is_out, 1);
2080 }
2081 }
2082
2083 hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2084 }
2085
2086 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2087 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2088 * recovery (including urb dequeue) would need software changes to a QH...
2089 */
2090 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2091 {
2092 struct fotg210_qtd *qtd;
2093
2094 if (list_empty(&qh->qtd_list))
2095 qtd = qh->dummy;
2096 else {
2097 qtd = list_entry(qh->qtd_list.next,
2098 struct fotg210_qtd, qtd_list);
2099 /*
2100 * first qtd may already be partially processed.
2101 * If we come here during unlink, the QH overlay region
2102 * might have reference to the just unlinked qtd. The
2103 * qtd is updated in qh_completions(). Update the QH
2104 * overlay here.
2105 */
2106 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2107 qh->hw->hw_qtd_next = qtd->hw_next;
2108 qtd = NULL;
2109 }
2110 }
2111
2112 if (qtd)
2113 qh_update(fotg210, qh, qtd);
2114 }
2115
2116 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2117
2118 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2119 struct usb_host_endpoint *ep)
2120 {
2121 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2122 struct fotg210_qh *qh = ep->hcpriv;
2123 unsigned long flags;
2124
2125 spin_lock_irqsave(&fotg210->lock, flags);
2126 qh->clearing_tt = 0;
2127 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2128 && fotg210->rh_state == FOTG210_RH_RUNNING)
2129 qh_link_async(fotg210, qh);
2130 spin_unlock_irqrestore(&fotg210->lock, flags);
2131 }
2132
2133 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2134 struct fotg210_qh *qh, struct urb *urb, u32 token)
2135 {
2136
2137 /* If an async split transaction gets an error or is unlinked,
2138 * the TT buffer may be left in an indeterminate state. We
2139 * have to clear the TT buffer.
2140 *
2141 * Note: this routine is never called for Isochronous transfers.
2142 */
2143 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2144 struct usb_device *tt = urb->dev->tt->hub;
2145
2146 dev_dbg(&tt->dev,
2147 "clear tt buffer port %d, a%d ep%d t%08x\n",
2148 urb->dev->ttport, urb->dev->devnum,
2149 usb_pipeendpoint(urb->pipe), token);
2150
2151 if (urb->dev->tt->hub !=
2152 fotg210_to_hcd(fotg210)->self.root_hub) {
2153 if (usb_hub_clear_tt_buffer(urb) == 0)
2154 qh->clearing_tt = 1;
2155 }
2156 }
2157 }
2158
2159 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2160 size_t length, u32 token)
2161 {
2162 int status = -EINPROGRESS;
2163
2164 /* count IN/OUT bytes, not SETUP (even short packets) */
2165 if (likely(QTD_PID(token) != 2))
2166 urb->actual_length += length - QTD_LENGTH(token);
2167
2168 /* don't modify error codes */
2169 if (unlikely(urb->unlinked))
2170 return status;
2171
2172 /* force cleanup after short read; not always an error */
2173 if (unlikely(IS_SHORT_READ(token)))
2174 status = -EREMOTEIO;
2175
2176 /* serious "can't proceed" faults reported by the hardware */
2177 if (token & QTD_STS_HALT) {
2178 if (token & QTD_STS_BABBLE) {
2179 /* FIXME "must" disable babbling device's port too */
2180 status = -EOVERFLOW;
2181 /* CERR nonzero + halt --> stall */
2182 } else if (QTD_CERR(token)) {
2183 status = -EPIPE;
2184
2185 /* In theory, more than one of the following bits can be set
2186 * since they are sticky and the transaction is retried.
2187 * Which to test first is rather arbitrary.
2188 */
2189 } else if (token & QTD_STS_MMF) {
2190 /* fs/ls interrupt xfer missed the complete-split */
2191 status = -EPROTO;
2192 } else if (token & QTD_STS_DBE) {
2193 status = (QTD_PID(token) == 1) /* IN ? */
2194 ? -ENOSR /* hc couldn't read data */
2195 : -ECOMM; /* hc couldn't write data */
2196 } else if (token & QTD_STS_XACT) {
2197 /* timeout, bad CRC, wrong PID, etc */
2198 fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2199 urb->dev->devpath,
2200 usb_pipeendpoint(urb->pipe),
2201 usb_pipein(urb->pipe) ? "in" : "out");
2202 status = -EPROTO;
2203 } else { /* unknown */
2204 status = -EPROTO;
2205 }
2206
2207 fotg210_dbg(fotg210,
2208 "dev%d ep%d%s qtd token %08x --> status %d\n",
2209 usb_pipedevice(urb->pipe),
2210 usb_pipeendpoint(urb->pipe),
2211 usb_pipein(urb->pipe) ? "in" : "out",
2212 token, status);
2213 }
2214
2215 return status;
2216 }
2217
2218 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2219 int status)
2220 __releases(fotg210->lock)
2221 __acquires(fotg210->lock)
2222 {
2223 if (likely(urb->hcpriv != NULL)) {
2224 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2225
2226 /* S-mask in a QH means it's an interrupt urb */
2227 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2228
2229 /* ... update hc-wide periodic stats (for usbfs) */
2230 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2231 }
2232 }
2233
2234 if (unlikely(urb->unlinked)) {
2235 COUNT(fotg210->stats.unlink);
2236 } else {
2237 /* report non-error and short read status as zero */
2238 if (status == -EINPROGRESS || status == -EREMOTEIO)
2239 status = 0;
2240 COUNT(fotg210->stats.complete);
2241 }
2242
2243 #ifdef FOTG210_URB_TRACE
2244 fotg210_dbg(fotg210,
2245 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2246 __func__, urb->dev->devpath, urb,
2247 usb_pipeendpoint(urb->pipe),
2248 usb_pipein(urb->pipe) ? "in" : "out",
2249 status,
2250 urb->actual_length, urb->transfer_buffer_length);
2251 #endif
2252
2253 /* complete() can reenter this HCD */
2254 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2255 spin_unlock(&fotg210->lock);
2256 usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2257 spin_lock(&fotg210->lock);
2258 }
2259
2260 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2261
2262 /* Process and free completed qtds for a qh, returning URBs to drivers.
2263 * Chases up to qh->hw_current. Returns number of completions called,
2264 * indicating how much "real" work we did.
2265 */
2266 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2267 struct fotg210_qh *qh)
2268 {
2269 struct fotg210_qtd *last, *end = qh->dummy;
2270 struct fotg210_qtd *qtd, *tmp;
2271 int last_status;
2272 int stopped;
2273 unsigned count = 0;
2274 u8 state;
2275 struct fotg210_qh_hw *hw = qh->hw;
2276
2277 if (unlikely(list_empty(&qh->qtd_list)))
2278 return count;
2279
2280 /* completions (or tasks on other cpus) must never clobber HALT
2281 * till we've gone through and cleaned everything up, even when
2282 * they add urbs to this qh's queue or mark them for unlinking.
2283 *
2284 * NOTE: unlinking expects to be done in queue order.
2285 *
2286 * It's a bug for qh->qh_state to be anything other than
2287 * QH_STATE_IDLE, unless our caller is scan_async() or
2288 * scan_intr().
2289 */
2290 state = qh->qh_state;
2291 qh->qh_state = QH_STATE_COMPLETING;
2292 stopped = (state == QH_STATE_IDLE);
2293
2294 rescan:
2295 last = NULL;
2296 last_status = -EINPROGRESS;
2297 qh->needs_rescan = 0;
2298
2299 /* remove de-activated QTDs from front of queue.
2300 * after faults (including short reads), cleanup this urb
2301 * then let the queue advance.
2302 * if queue is stopped, handles unlinks.
2303 */
2304 list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2305 struct urb *urb;
2306 u32 token = 0;
2307
2308 urb = qtd->urb;
2309
2310 /* clean up any state from previous QTD ...*/
2311 if (last) {
2312 if (likely(last->urb != urb)) {
2313 fotg210_urb_done(fotg210, last->urb,
2314 last_status);
2315 count++;
2316 last_status = -EINPROGRESS;
2317 }
2318 fotg210_qtd_free(fotg210, last);
2319 last = NULL;
2320 }
2321
2322 /* ignore urbs submitted during completions we reported */
2323 if (qtd == end)
2324 break;
2325
2326 /* hardware copies qtd out of qh overlay */
2327 rmb();
2328 token = hc32_to_cpu(fotg210, qtd->hw_token);
2329
2330 /* always clean up qtds the hc de-activated */
2331 retry_xacterr:
2332 if ((token & QTD_STS_ACTIVE) == 0) {
2333
2334 /* Report Data Buffer Error: non-fatal but useful */
2335 if (token & QTD_STS_DBE)
2336 fotg210_dbg(fotg210,
2337 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2338 urb, usb_endpoint_num(&urb->ep->desc),
2339 usb_endpoint_dir_in(&urb->ep->desc)
2340 ? "in" : "out",
2341 urb->transfer_buffer_length, qtd, qh);
2342
2343 /* on STALL, error, and short reads this urb must
2344 * complete and all its qtds must be recycled.
2345 */
2346 if ((token & QTD_STS_HALT) != 0) {
2347
2348 /* retry transaction errors until we
2349 * reach the software xacterr limit
2350 */
2351 if ((token & QTD_STS_XACT) &&
2352 QTD_CERR(token) == 0 &&
2353 ++qh->xacterrs < QH_XACTERR_MAX &&
2354 !urb->unlinked) {
2355 fotg210_dbg(fotg210,
2356 "detected XactErr len %zu/%zu retry %d\n",
2357 qtd->length - QTD_LENGTH(token),
2358 qtd->length,
2359 qh->xacterrs);
2360
2361 /* reset the token in the qtd and the
2362 * qh overlay (which still contains
2363 * the qtd) so that we pick up from
2364 * where we left off
2365 */
2366 token &= ~QTD_STS_HALT;
2367 token |= QTD_STS_ACTIVE |
2368 (FOTG210_TUNE_CERR << 10);
2369 qtd->hw_token = cpu_to_hc32(fotg210,
2370 token);
2371 wmb();
2372 hw->hw_token = cpu_to_hc32(fotg210,
2373 token);
2374 goto retry_xacterr;
2375 }
2376 stopped = 1;
2377
2378 /* magic dummy for some short reads; qh won't advance.
2379 * that silicon quirk can kick in with this dummy too.
2380 *
2381 * other short reads won't stop the queue, including
2382 * control transfers (status stage handles that) or
2383 * most other single-qtd reads ... the queue stops if
2384 * URB_SHORT_NOT_OK was set so the driver submitting
2385 * the urbs could clean it up.
2386 */
2387 } else if (IS_SHORT_READ(token) &&
2388 !(qtd->hw_alt_next &
2389 FOTG210_LIST_END(fotg210))) {
2390 stopped = 1;
2391 }
2392
2393 /* stop scanning when we reach qtds the hc is using */
2394 } else if (likely(!stopped
2395 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2396 break;
2397
2398 /* scan the whole queue for unlinks whenever it stops */
2399 } else {
2400 stopped = 1;
2401
2402 /* cancel everything if we halt, suspend, etc */
2403 if (fotg210->rh_state < FOTG210_RH_RUNNING)
2404 last_status = -ESHUTDOWN;
2405
2406 /* this qtd is active; skip it unless a previous qtd
2407 * for its urb faulted, or its urb was canceled.
2408 */
2409 else if (last_status == -EINPROGRESS && !urb->unlinked)
2410 continue;
2411
2412 /* qh unlinked; token in overlay may be most current */
2413 if (state == QH_STATE_IDLE &&
2414 cpu_to_hc32(fotg210, qtd->qtd_dma)
2415 == hw->hw_current) {
2416 token = hc32_to_cpu(fotg210, hw->hw_token);
2417
2418 /* An unlink may leave an incomplete
2419 * async transaction in the TT buffer.
2420 * We have to clear it.
2421 */
2422 fotg210_clear_tt_buffer(fotg210, qh, urb,
2423 token);
2424 }
2425 }
2426
2427 /* unless we already know the urb's status, collect qtd status
2428 * and update count of bytes transferred. in common short read
2429 * cases with only one data qtd (including control transfers),
2430 * queue processing won't halt. but with two or more qtds (for
2431 * example, with a 32 KB transfer), when the first qtd gets a
2432 * short read the second must be removed by hand.
2433 */
2434 if (last_status == -EINPROGRESS) {
2435 last_status = qtd_copy_status(fotg210, urb,
2436 qtd->length, token);
2437 if (last_status == -EREMOTEIO &&
2438 (qtd->hw_alt_next &
2439 FOTG210_LIST_END(fotg210)))
2440 last_status = -EINPROGRESS;
2441
2442 /* As part of low/full-speed endpoint-halt processing
2443 * we must clear the TT buffer (11.17.5).
2444 */
2445 if (unlikely(last_status != -EINPROGRESS &&
2446 last_status != -EREMOTEIO)) {
2447 /* The TT's in some hubs malfunction when they
2448 * receive this request following a STALL (they
2449 * stop sending isochronous packets). Since a
2450 * STALL can't leave the TT buffer in a busy
2451 * state (if you believe Figures 11-48 - 11-51
2452 * in the USB 2.0 spec), we won't clear the TT
2453 * buffer in this case. Strictly speaking this
2454 * is a violation of the spec.
2455 */
2456 if (last_status != -EPIPE)
2457 fotg210_clear_tt_buffer(fotg210, qh,
2458 urb, token);
2459 }
2460 }
2461
2462 /* if we're removing something not at the queue head,
2463 * patch the hardware queue pointer.
2464 */
2465 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2466 last = list_entry(qtd->qtd_list.prev,
2467 struct fotg210_qtd, qtd_list);
2468 last->hw_next = qtd->hw_next;
2469 }
2470
2471 /* remove qtd; it's recycled after possible urb completion */
2472 list_del(&qtd->qtd_list);
2473 last = qtd;
2474
2475 /* reinit the xacterr counter for the next qtd */
2476 qh->xacterrs = 0;
2477 }
2478
2479 /* last urb's completion might still need calling */
2480 if (likely(last != NULL)) {
2481 fotg210_urb_done(fotg210, last->urb, last_status);
2482 count++;
2483 fotg210_qtd_free(fotg210, last);
2484 }
2485
2486 /* Do we need to rescan for URBs dequeued during a giveback? */
2487 if (unlikely(qh->needs_rescan)) {
2488 /* If the QH is already unlinked, do the rescan now. */
2489 if (state == QH_STATE_IDLE)
2490 goto rescan;
2491
2492 /* Otherwise we have to wait until the QH is fully unlinked.
2493 * Our caller will start an unlink if qh->needs_rescan is
2494 * set. But if an unlink has already started, nothing needs
2495 * to be done.
2496 */
2497 if (state != QH_STATE_LINKED)
2498 qh->needs_rescan = 0;
2499 }
2500
2501 /* restore original state; caller must unlink or relink */
2502 qh->qh_state = state;
2503
2504 /* be sure the hardware's done with the qh before refreshing
2505 * it after fault cleanup, or recovering from silicon wrongly
2506 * overlaying the dummy qtd (which reduces DMA chatter).
2507 */
2508 if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2509 switch (state) {
2510 case QH_STATE_IDLE:
2511 qh_refresh(fotg210, qh);
2512 break;
2513 case QH_STATE_LINKED:
2514 /* We won't refresh a QH that's linked (after the HC
2515 * stopped the queue). That avoids a race:
2516 * - HC reads first part of QH;
2517 * - CPU updates that first part and the token;
2518 * - HC reads rest of that QH, including token
2519 * Result: HC gets an inconsistent image, and then
2520 * DMAs to/from the wrong memory (corrupting it).
2521 *
2522 * That should be rare for interrupt transfers,
2523 * except maybe high bandwidth ...
2524 */
2525
2526 /* Tell the caller to start an unlink */
2527 qh->needs_rescan = 1;
2528 break;
2529 /* otherwise, unlink already started */
2530 }
2531 }
2532
2533 return count;
2534 }
2535
2536 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2537 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2538 /* ... and packet size, for any kind of endpoint descriptor */
2539 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2540
2541 /* reverse of qh_urb_transaction: free a list of TDs.
2542 * used for cleanup after errors, before HC sees an URB's TDs.
2543 */
2544 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2545 struct list_head *head)
2546 {
2547 struct fotg210_qtd *qtd, *temp;
2548
2549 list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2550 list_del(&qtd->qtd_list);
2551 fotg210_qtd_free(fotg210, qtd);
2552 }
2553 }
2554
2555 /* create a list of filled qtds for this URB; won't link into qh.
2556 */
2557 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2558 struct urb *urb, struct list_head *head, gfp_t flags)
2559 {
2560 struct fotg210_qtd *qtd, *qtd_prev;
2561 dma_addr_t buf;
2562 int len, this_sg_len, maxpacket;
2563 int is_input;
2564 u32 token;
2565 int i;
2566 struct scatterlist *sg;
2567
2568 /*
2569 * URBs map to sequences of QTDs: one logical transaction
2570 */
2571 qtd = fotg210_qtd_alloc(fotg210, flags);
2572 if (unlikely(!qtd))
2573 return NULL;
2574 list_add_tail(&qtd->qtd_list, head);
2575 qtd->urb = urb;
2576
2577 token = QTD_STS_ACTIVE;
2578 token |= (FOTG210_TUNE_CERR << 10);
2579 /* for split transactions, SplitXState initialized to zero */
2580
2581 len = urb->transfer_buffer_length;
2582 is_input = usb_pipein(urb->pipe);
2583 if (usb_pipecontrol(urb->pipe)) {
2584 /* SETUP pid */
2585 qtd_fill(fotg210, qtd, urb->setup_dma,
2586 sizeof(struct usb_ctrlrequest),
2587 token | (2 /* "setup" */ << 8), 8);
2588
2589 /* ... and always at least one more pid */
2590 token ^= QTD_TOGGLE;
2591 qtd_prev = qtd;
2592 qtd = fotg210_qtd_alloc(fotg210, flags);
2593 if (unlikely(!qtd))
2594 goto cleanup;
2595 qtd->urb = urb;
2596 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2597 list_add_tail(&qtd->qtd_list, head);
2598
2599 /* for zero length DATA stages, STATUS is always IN */
2600 if (len == 0)
2601 token |= (1 /* "in" */ << 8);
2602 }
2603
2604 /*
2605 * data transfer stage: buffer setup
2606 */
2607 i = urb->num_mapped_sgs;
2608 if (len > 0 && i > 0) {
2609 sg = urb->sg;
2610 buf = sg_dma_address(sg);
2611
2612 /* urb->transfer_buffer_length may be smaller than the
2613 * size of the scatterlist (or vice versa)
2614 */
2615 this_sg_len = min_t(int, sg_dma_len(sg), len);
2616 } else {
2617 sg = NULL;
2618 buf = urb->transfer_dma;
2619 this_sg_len = len;
2620 }
2621
2622 if (is_input)
2623 token |= (1 /* "in" */ << 8);
2624 /* else it's already initted to "out" pid (0 << 8) */
2625
2626 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2627
2628 /*
2629 * buffer gets wrapped in one or more qtds;
2630 * last one may be "short" (including zero len)
2631 * and may serve as a control status ack
2632 */
2633 for (;;) {
2634 int this_qtd_len;
2635
2636 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2637 maxpacket);
2638 this_sg_len -= this_qtd_len;
2639 len -= this_qtd_len;
2640 buf += this_qtd_len;
2641
2642 /*
2643 * short reads advance to a "magic" dummy instead of the next
2644 * qtd ... that forces the queue to stop, for manual cleanup.
2645 * (this will usually be overridden later.)
2646 */
2647 if (is_input)
2648 qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2649
2650 /* qh makes control packets use qtd toggle; maybe switch it */
2651 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2652 token ^= QTD_TOGGLE;
2653
2654 if (likely(this_sg_len <= 0)) {
2655 if (--i <= 0 || len <= 0)
2656 break;
2657 sg = sg_next(sg);
2658 buf = sg_dma_address(sg);
2659 this_sg_len = min_t(int, sg_dma_len(sg), len);
2660 }
2661
2662 qtd_prev = qtd;
2663 qtd = fotg210_qtd_alloc(fotg210, flags);
2664 if (unlikely(!qtd))
2665 goto cleanup;
2666 qtd->urb = urb;
2667 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2668 list_add_tail(&qtd->qtd_list, head);
2669 }
2670
2671 /*
2672 * unless the caller requires manual cleanup after short reads,
2673 * have the alt_next mechanism keep the queue running after the
2674 * last data qtd (the only one, for control and most other cases).
2675 */
2676 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2677 usb_pipecontrol(urb->pipe)))
2678 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2679
2680 /*
2681 * control requests may need a terminating data "status" ack;
2682 * other OUT ones may need a terminating short packet
2683 * (zero length).
2684 */
2685 if (likely(urb->transfer_buffer_length != 0)) {
2686 int one_more = 0;
2687
2688 if (usb_pipecontrol(urb->pipe)) {
2689 one_more = 1;
2690 token ^= 0x0100; /* "in" <--> "out" */
2691 token |= QTD_TOGGLE; /* force DATA1 */
2692 } else if (usb_pipeout(urb->pipe)
2693 && (urb->transfer_flags & URB_ZERO_PACKET)
2694 && !(urb->transfer_buffer_length % maxpacket)) {
2695 one_more = 1;
2696 }
2697 if (one_more) {
2698 qtd_prev = qtd;
2699 qtd = fotg210_qtd_alloc(fotg210, flags);
2700 if (unlikely(!qtd))
2701 goto cleanup;
2702 qtd->urb = urb;
2703 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2704 list_add_tail(&qtd->qtd_list, head);
2705
2706 /* never any data in such packets */
2707 qtd_fill(fotg210, qtd, 0, 0, token, 0);
2708 }
2709 }
2710
2711 /* by default, enable interrupt on urb completion */
2712 if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2713 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2714 return head;
2715
2716 cleanup:
2717 qtd_list_free(fotg210, urb, head);
2718 return NULL;
2719 }
2720
2721 /* Would be best to create all qh's from config descriptors,
2722 * when each interface/altsetting is established. Unlink
2723 * any previous qh and cancel its urbs first; endpoints are
2724 * implicitly reset then (data toggle too).
2725 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2726 */
2727
2728
2729 /* Each QH holds a qtd list; a QH is used for everything except iso.
2730 *
2731 * For interrupt urbs, the scheduler must set the microframe scheduling
2732 * mask(s) each time the QH gets scheduled. For highspeed, that's
2733 * just one microframe in the s-mask. For split interrupt transactions
2734 * there are additional complications: c-mask, maybe FSTNs.
2735 */
2736 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2737 gfp_t flags)
2738 {
2739 struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2740 u32 info1 = 0, info2 = 0;
2741 int is_input, type;
2742 int maxp = 0;
2743 struct usb_tt *tt = urb->dev->tt;
2744 struct fotg210_qh_hw *hw;
2745
2746 if (!qh)
2747 return qh;
2748
2749 /*
2750 * init endpoint/device data for this QH
2751 */
2752 info1 |= usb_pipeendpoint(urb->pipe) << 8;
2753 info1 |= usb_pipedevice(urb->pipe) << 0;
2754
2755 is_input = usb_pipein(urb->pipe);
2756 type = usb_pipetype(urb->pipe);
2757 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2758
2759 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
2760 * acts like up to 3KB, but is built from smaller packets.
2761 */
2762 if (max_packet(maxp) > 1024) {
2763 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2764 max_packet(maxp));
2765 goto done;
2766 }
2767
2768 /* Compute interrupt scheduling parameters just once, and save.
2769 * - allowing for high bandwidth, how many nsec/uframe are used?
2770 * - split transactions need a second CSPLIT uframe; same question
2771 * - splits also need a schedule gap (for full/low speed I/O)
2772 * - qh has a polling interval
2773 *
2774 * For control/bulk requests, the HC or TT handles these.
2775 */
2776 if (type == PIPE_INTERRUPT) {
2777 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2778 is_input, 0,
2779 hb_mult(maxp) * max_packet(maxp)));
2780 qh->start = NO_FRAME;
2781
2782 if (urb->dev->speed == USB_SPEED_HIGH) {
2783 qh->c_usecs = 0;
2784 qh->gap_uf = 0;
2785
2786 qh->period = urb->interval >> 3;
2787 if (qh->period == 0 && urb->interval != 1) {
2788 /* NOTE interval 2 or 4 uframes could work.
2789 * But interval 1 scheduling is simpler, and
2790 * includes high bandwidth.
2791 */
2792 urb->interval = 1;
2793 } else if (qh->period > fotg210->periodic_size) {
2794 qh->period = fotg210->periodic_size;
2795 urb->interval = qh->period << 3;
2796 }
2797 } else {
2798 int think_time;
2799
2800 /* gap is f(FS/LS transfer times) */
2801 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2802 is_input, 0, maxp) / (125 * 1000);
2803
2804 /* FIXME this just approximates SPLIT/CSPLIT times */
2805 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
2806 qh->c_usecs = qh->usecs + HS_USECS(0);
2807 qh->usecs = HS_USECS(1);
2808 } else { /* SPLIT+DATA, gap, CSPLIT */
2809 qh->usecs += HS_USECS(1);
2810 qh->c_usecs = HS_USECS(0);
2811 }
2812
2813 think_time = tt ? tt->think_time : 0;
2814 qh->tt_usecs = NS_TO_US(think_time +
2815 usb_calc_bus_time(urb->dev->speed,
2816 is_input, 0, max_packet(maxp)));
2817 qh->period = urb->interval;
2818 if (qh->period > fotg210->periodic_size) {
2819 qh->period = fotg210->periodic_size;
2820 urb->interval = qh->period;
2821 }
2822 }
2823 }
2824
2825 /* support for tt scheduling, and access to toggles */
2826 qh->dev = urb->dev;
2827
2828 /* using TT? */
2829 switch (urb->dev->speed) {
2830 case USB_SPEED_LOW:
2831 info1 |= QH_LOW_SPEED;
2832 /* FALL THROUGH */
2833
2834 case USB_SPEED_FULL:
2835 /* EPS 0 means "full" */
2836 if (type != PIPE_INTERRUPT)
2837 info1 |= (FOTG210_TUNE_RL_TT << 28);
2838 if (type == PIPE_CONTROL) {
2839 info1 |= QH_CONTROL_EP; /* for TT */
2840 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2841 }
2842 info1 |= maxp << 16;
2843
2844 info2 |= (FOTG210_TUNE_MULT_TT << 30);
2845
2846 /* Some Freescale processors have an erratum in which the
2847 * port number in the queue head was 0..N-1 instead of 1..N.
2848 */
2849 if (fotg210_has_fsl_portno_bug(fotg210))
2850 info2 |= (urb->dev->ttport-1) << 23;
2851 else
2852 info2 |= urb->dev->ttport << 23;
2853
2854 /* set the address of the TT; for TDI's integrated
2855 * root hub tt, leave it zeroed.
2856 */
2857 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2858 info2 |= tt->hub->devnum << 16;
2859
2860 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2861
2862 break;
2863
2864 case USB_SPEED_HIGH: /* no TT involved */
2865 info1 |= QH_HIGH_SPEED;
2866 if (type == PIPE_CONTROL) {
2867 info1 |= (FOTG210_TUNE_RL_HS << 28);
2868 info1 |= 64 << 16; /* usb2 fixed maxpacket */
2869 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2870 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2871 } else if (type == PIPE_BULK) {
2872 info1 |= (FOTG210_TUNE_RL_HS << 28);
2873 /* The USB spec says that high speed bulk endpoints
2874 * always use 512 byte maxpacket. But some device
2875 * vendors decided to ignore that, and MSFT is happy
2876 * to help them do so. So now people expect to use
2877 * such nonconformant devices with Linux too; sigh.
2878 */
2879 info1 |= max_packet(maxp) << 16;
2880 info2 |= (FOTG210_TUNE_MULT_HS << 30);
2881 } else { /* PIPE_INTERRUPT */
2882 info1 |= max_packet(maxp) << 16;
2883 info2 |= hb_mult(maxp) << 30;
2884 }
2885 break;
2886 default:
2887 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2888 urb->dev->speed);
2889 done:
2890 qh_destroy(fotg210, qh);
2891 return NULL;
2892 }
2893
2894 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2895
2896 /* init as live, toggle clear, advance to dummy */
2897 qh->qh_state = QH_STATE_IDLE;
2898 hw = qh->hw;
2899 hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2900 hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2901 qh->is_out = !is_input;
2902 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2903 qh_refresh(fotg210, qh);
2904 return qh;
2905 }
2906
2907 static void enable_async(struct fotg210_hcd *fotg210)
2908 {
2909 if (fotg210->async_count++)
2910 return;
2911
2912 /* Stop waiting to turn off the async schedule */
2913 fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2914
2915 /* Don't start the schedule until ASS is 0 */
2916 fotg210_poll_ASS(fotg210);
2917 turn_on_io_watchdog(fotg210);
2918 }
2919
2920 static void disable_async(struct fotg210_hcd *fotg210)
2921 {
2922 if (--fotg210->async_count)
2923 return;
2924
2925 /* The async schedule and async_unlink list are supposed to be empty */
2926 WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2927
2928 /* Don't turn off the schedule until ASS is 1 */
2929 fotg210_poll_ASS(fotg210);
2930 }
2931
2932 /* move qh (and its qtds) onto async queue; maybe enable queue. */
2933
2934 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2935 {
2936 __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2937 struct fotg210_qh *head;
2938
2939 /* Don't link a QH if there's a Clear-TT-Buffer pending */
2940 if (unlikely(qh->clearing_tt))
2941 return;
2942
2943 WARN_ON(qh->qh_state != QH_STATE_IDLE);
2944
2945 /* clear halt and/or toggle; and maybe recover from silicon quirk */
2946 qh_refresh(fotg210, qh);
2947
2948 /* splice right after start */
2949 head = fotg210->async;
2950 qh->qh_next = head->qh_next;
2951 qh->hw->hw_next = head->hw->hw_next;
2952 wmb();
2953
2954 head->qh_next.qh = qh;
2955 head->hw->hw_next = dma;
2956
2957 qh->xacterrs = 0;
2958 qh->qh_state = QH_STATE_LINKED;
2959 /* qtd completions reported later by interrupt */
2960
2961 enable_async(fotg210);
2962 }
2963
2964 /* For control/bulk/interrupt, return QH with these TDs appended.
2965 * Allocates and initializes the QH if necessary.
2966 * Returns null if it can't allocate a QH it needs to.
2967 * If the QH has TDs (urbs) already, that's great.
2968 */
2969 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2970 struct urb *urb, struct list_head *qtd_list,
2971 int epnum, void **ptr)
2972 {
2973 struct fotg210_qh *qh = NULL;
2974 __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2975
2976 qh = (struct fotg210_qh *) *ptr;
2977 if (unlikely(qh == NULL)) {
2978 /* can't sleep here, we have fotg210->lock... */
2979 qh = qh_make(fotg210, urb, GFP_ATOMIC);
2980 *ptr = qh;
2981 }
2982 if (likely(qh != NULL)) {
2983 struct fotg210_qtd *qtd;
2984
2985 if (unlikely(list_empty(qtd_list)))
2986 qtd = NULL;
2987 else
2988 qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2989 qtd_list);
2990
2991 /* control qh may need patching ... */
2992 if (unlikely(epnum == 0)) {
2993 /* usb_reset_device() briefly reverts to address 0 */
2994 if (usb_pipedevice(urb->pipe) == 0)
2995 qh->hw->hw_info1 &= ~qh_addr_mask;
2996 }
2997
2998 /* just one way to queue requests: swap with the dummy qtd.
2999 * only hc or qh_refresh() ever modify the overlay.
3000 */
3001 if (likely(qtd != NULL)) {
3002 struct fotg210_qtd *dummy;
3003 dma_addr_t dma;
3004 __hc32 token;
3005
3006 /* to avoid racing the HC, use the dummy td instead of
3007 * the first td of our list (becomes new dummy). both
3008 * tds stay deactivated until we're done, when the
3009 * HC is allowed to fetch the old dummy (4.10.2).
3010 */
3011 token = qtd->hw_token;
3012 qtd->hw_token = HALT_BIT(fotg210);
3013
3014 dummy = qh->dummy;
3015
3016 dma = dummy->qtd_dma;
3017 *dummy = *qtd;
3018 dummy->qtd_dma = dma;
3019
3020 list_del(&qtd->qtd_list);
3021 list_add(&dummy->qtd_list, qtd_list);
3022 list_splice_tail(qtd_list, &qh->qtd_list);
3023
3024 fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3025 qh->dummy = qtd;
3026
3027 /* hc must see the new dummy at list end */
3028 dma = qtd->qtd_dma;
3029 qtd = list_entry(qh->qtd_list.prev,
3030 struct fotg210_qtd, qtd_list);
3031 qtd->hw_next = QTD_NEXT(fotg210, dma);
3032
3033 /* let the hc process these next qtds */
3034 wmb();
3035 dummy->hw_token = token;
3036
3037 urb->hcpriv = qh;
3038 }
3039 }
3040 return qh;
3041 }
3042
3043 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3044 struct list_head *qtd_list, gfp_t mem_flags)
3045 {
3046 int epnum;
3047 unsigned long flags;
3048 struct fotg210_qh *qh = NULL;
3049 int rc;
3050
3051 epnum = urb->ep->desc.bEndpointAddress;
3052
3053 #ifdef FOTG210_URB_TRACE
3054 {
3055 struct fotg210_qtd *qtd;
3056
3057 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3058 fotg210_dbg(fotg210,
3059 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3060 __func__, urb->dev->devpath, urb,
3061 epnum & 0x0f, (epnum & USB_DIR_IN)
3062 ? "in" : "out",
3063 urb->transfer_buffer_length,
3064 qtd, urb->ep->hcpriv);
3065 }
3066 #endif
3067
3068 spin_lock_irqsave(&fotg210->lock, flags);
3069 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3070 rc = -ESHUTDOWN;
3071 goto done;
3072 }
3073 rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3074 if (unlikely(rc))
3075 goto done;
3076
3077 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3078 if (unlikely(qh == NULL)) {
3079 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3080 rc = -ENOMEM;
3081 goto done;
3082 }
3083
3084 /* Control/bulk operations through TTs don't need scheduling,
3085 * the HC and TT handle it when the TT has a buffer ready.
3086 */
3087 if (likely(qh->qh_state == QH_STATE_IDLE))
3088 qh_link_async(fotg210, qh);
3089 done:
3090 spin_unlock_irqrestore(&fotg210->lock, flags);
3091 if (unlikely(qh == NULL))
3092 qtd_list_free(fotg210, urb, qtd_list);
3093 return rc;
3094 }
3095
3096 static void single_unlink_async(struct fotg210_hcd *fotg210,
3097 struct fotg210_qh *qh)
3098 {
3099 struct fotg210_qh *prev;
3100
3101 /* Add to the end of the list of QHs waiting for the next IAAD */
3102 qh->qh_state = QH_STATE_UNLINK;
3103 if (fotg210->async_unlink)
3104 fotg210->async_unlink_last->unlink_next = qh;
3105 else
3106 fotg210->async_unlink = qh;
3107 fotg210->async_unlink_last = qh;
3108
3109 /* Unlink it from the schedule */
3110 prev = fotg210->async;
3111 while (prev->qh_next.qh != qh)
3112 prev = prev->qh_next.qh;
3113
3114 prev->hw->hw_next = qh->hw->hw_next;
3115 prev->qh_next = qh->qh_next;
3116 if (fotg210->qh_scan_next == qh)
3117 fotg210->qh_scan_next = qh->qh_next.qh;
3118 }
3119
3120 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3121 {
3122 /*
3123 * Do nothing if an IAA cycle is already running or
3124 * if one will be started shortly.
3125 */
3126 if (fotg210->async_iaa || fotg210->async_unlinking)
3127 return;
3128
3129 /* Do all the waiting QHs at once */
3130 fotg210->async_iaa = fotg210->async_unlink;
3131 fotg210->async_unlink = NULL;
3132
3133 /* If the controller isn't running, we don't have to wait for it */
3134 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3135 if (!nested) /* Avoid recursion */
3136 end_unlink_async(fotg210);
3137
3138 /* Otherwise start a new IAA cycle */
3139 } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3140 /* Make sure the unlinks are all visible to the hardware */
3141 wmb();
3142
3143 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3144 &fotg210->regs->command);
3145 fotg210_readl(fotg210, &fotg210->regs->command);
3146 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3147 true);
3148 }
3149 }
3150
3151 /* the async qh for the qtds being unlinked are now gone from the HC */
3152
3153 static void end_unlink_async(struct fotg210_hcd *fotg210)
3154 {
3155 struct fotg210_qh *qh;
3156
3157 /* Process the idle QHs */
3158 restart:
3159 fotg210->async_unlinking = true;
3160 while (fotg210->async_iaa) {
3161 qh = fotg210->async_iaa;
3162 fotg210->async_iaa = qh->unlink_next;
3163 qh->unlink_next = NULL;
3164
3165 qh->qh_state = QH_STATE_IDLE;
3166 qh->qh_next.qh = NULL;
3167
3168 qh_completions(fotg210, qh);
3169 if (!list_empty(&qh->qtd_list) &&
3170 fotg210->rh_state == FOTG210_RH_RUNNING)
3171 qh_link_async(fotg210, qh);
3172 disable_async(fotg210);
3173 }
3174 fotg210->async_unlinking = false;
3175
3176 /* Start a new IAA cycle if any QHs are waiting for it */
3177 if (fotg210->async_unlink) {
3178 start_iaa_cycle(fotg210, true);
3179 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3180 goto restart;
3181 }
3182 }
3183
3184 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3185 {
3186 struct fotg210_qh *qh, *next;
3187 bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3188 bool check_unlinks_later = false;
3189
3190 /* Unlink all the async QHs that have been empty for a timer cycle */
3191 next = fotg210->async->qh_next.qh;
3192 while (next) {
3193 qh = next;
3194 next = qh->qh_next.qh;
3195
3196 if (list_empty(&qh->qtd_list) &&
3197 qh->qh_state == QH_STATE_LINKED) {
3198 if (!stopped && qh->unlink_cycle ==
3199 fotg210->async_unlink_cycle)
3200 check_unlinks_later = true;
3201 else
3202 single_unlink_async(fotg210, qh);
3203 }
3204 }
3205
3206 /* Start a new IAA cycle if any QHs are waiting for it */
3207 if (fotg210->async_unlink)
3208 start_iaa_cycle(fotg210, false);
3209
3210 /* QHs that haven't been empty for long enough will be handled later */
3211 if (check_unlinks_later) {
3212 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3213 true);
3214 ++fotg210->async_unlink_cycle;
3215 }
3216 }
3217
3218 /* makes sure the async qh will become idle */
3219 /* caller must own fotg210->lock */
3220
3221 static void start_unlink_async(struct fotg210_hcd *fotg210,
3222 struct fotg210_qh *qh)
3223 {
3224 /*
3225 * If the QH isn't linked then there's nothing we can do
3226 * unless we were called during a giveback, in which case
3227 * qh_completions() has to deal with it.
3228 */
3229 if (qh->qh_state != QH_STATE_LINKED) {
3230 if (qh->qh_state == QH_STATE_COMPLETING)
3231 qh->needs_rescan = 1;
3232 return;
3233 }
3234
3235 single_unlink_async(fotg210, qh);
3236 start_iaa_cycle(fotg210, false);
3237 }
3238
3239 static void scan_async(struct fotg210_hcd *fotg210)
3240 {
3241 struct fotg210_qh *qh;
3242 bool check_unlinks_later = false;
3243
3244 fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3245 while (fotg210->qh_scan_next) {
3246 qh = fotg210->qh_scan_next;
3247 fotg210->qh_scan_next = qh->qh_next.qh;
3248 rescan:
3249 /* clean any finished work for this qh */
3250 if (!list_empty(&qh->qtd_list)) {
3251 int temp;
3252
3253 /*
3254 * Unlinks could happen here; completion reporting
3255 * drops the lock. That's why fotg210->qh_scan_next
3256 * always holds the next qh to scan; if the next qh
3257 * gets unlinked then fotg210->qh_scan_next is adjusted
3258 * in single_unlink_async().
3259 */
3260 temp = qh_completions(fotg210, qh);
3261 if (qh->needs_rescan) {
3262 start_unlink_async(fotg210, qh);
3263 } else if (list_empty(&qh->qtd_list)
3264 && qh->qh_state == QH_STATE_LINKED) {
3265 qh->unlink_cycle = fotg210->async_unlink_cycle;
3266 check_unlinks_later = true;
3267 } else if (temp != 0)
3268 goto rescan;
3269 }
3270 }
3271
3272 /*
3273 * Unlink empty entries, reducing DMA usage as well
3274 * as HCD schedule-scanning costs. Delay for any qh
3275 * we just scanned, there's a not-unusual case that it
3276 * doesn't stay idle for long.
3277 */
3278 if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3279 !(fotg210->enabled_hrtimer_events &
3280 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3281 fotg210_enable_event(fotg210,
3282 FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3283 ++fotg210->async_unlink_cycle;
3284 }
3285 }
3286 /* EHCI scheduled transaction support: interrupt, iso, split iso
3287 * These are called "periodic" transactions in the EHCI spec.
3288 *
3289 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3290 * with the "asynchronous" transaction support (control/bulk transfers).
3291 * The only real difference is in how interrupt transfers are scheduled.
3292 *
3293 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3294 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3295 * pre-calculated schedule data to make appending to the queue be quick.
3296 */
3297 static int fotg210_get_frame(struct usb_hcd *hcd);
3298
3299 /* periodic_next_shadow - return "next" pointer on shadow list
3300 * @periodic: host pointer to qh/itd
3301 * @tag: hardware tag for type of this record
3302 */
3303 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3304 union fotg210_shadow *periodic, __hc32 tag)
3305 {
3306 switch (hc32_to_cpu(fotg210, tag)) {
3307 case Q_TYPE_QH:
3308 return &periodic->qh->qh_next;
3309 case Q_TYPE_FSTN:
3310 return &periodic->fstn->fstn_next;
3311 default:
3312 return &periodic->itd->itd_next;
3313 }
3314 }
3315
3316 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3317 union fotg210_shadow *periodic, __hc32 tag)
3318 {
3319 switch (hc32_to_cpu(fotg210, tag)) {
3320 /* our fotg210_shadow.qh is actually software part */
3321 case Q_TYPE_QH:
3322 return &periodic->qh->hw->hw_next;
3323 /* others are hw parts */
3324 default:
3325 return periodic->hw_next;
3326 }
3327 }
3328
3329 /* caller must hold fotg210->lock */
3330 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3331 void *ptr)
3332 {
3333 union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3334 __hc32 *hw_p = &fotg210->periodic[frame];
3335 union fotg210_shadow here = *prev_p;
3336
3337 /* find predecessor of "ptr"; hw and shadow lists are in sync */
3338 while (here.ptr && here.ptr != ptr) {
3339 prev_p = periodic_next_shadow(fotg210, prev_p,
3340 Q_NEXT_TYPE(fotg210, *hw_p));
3341 hw_p = shadow_next_periodic(fotg210, &here,
3342 Q_NEXT_TYPE(fotg210, *hw_p));
3343 here = *prev_p;
3344 }
3345 /* an interrupt entry (at list end) could have been shared */
3346 if (!here.ptr)
3347 return;
3348
3349 /* update shadow and hardware lists ... the old "next" pointers
3350 * from ptr may still be in use, the caller updates them.
3351 */
3352 *prev_p = *periodic_next_shadow(fotg210, &here,
3353 Q_NEXT_TYPE(fotg210, *hw_p));
3354
3355 *hw_p = *shadow_next_periodic(fotg210, &here,
3356 Q_NEXT_TYPE(fotg210, *hw_p));
3357 }
3358
3359 /* how many of the uframe's 125 usecs are allocated? */
3360 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3361 unsigned frame, unsigned uframe)
3362 {
3363 __hc32 *hw_p = &fotg210->periodic[frame];
3364 union fotg210_shadow *q = &fotg210->pshadow[frame];
3365 unsigned usecs = 0;
3366 struct fotg210_qh_hw *hw;
3367
3368 while (q->ptr) {
3369 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3370 case Q_TYPE_QH:
3371 hw = q->qh->hw;
3372 /* is it in the S-mask? */
3373 if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3374 usecs += q->qh->usecs;
3375 /* ... or C-mask? */
3376 if (hw->hw_info2 & cpu_to_hc32(fotg210,
3377 1 << (8 + uframe)))
3378 usecs += q->qh->c_usecs;
3379 hw_p = &hw->hw_next;
3380 q = &q->qh->qh_next;
3381 break;
3382 /* case Q_TYPE_FSTN: */
3383 default:
3384 /* for "save place" FSTNs, count the relevant INTR
3385 * bandwidth from the previous frame
3386 */
3387 if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3388 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3389
3390 hw_p = &q->fstn->hw_next;
3391 q = &q->fstn->fstn_next;
3392 break;
3393 case Q_TYPE_ITD:
3394 if (q->itd->hw_transaction[uframe])
3395 usecs += q->itd->stream->usecs;
3396 hw_p = &q->itd->hw_next;
3397 q = &q->itd->itd_next;
3398 break;
3399 }
3400 }
3401 if (usecs > fotg210->uframe_periodic_max)
3402 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3403 frame * 8 + uframe, usecs);
3404 return usecs;
3405 }
3406
3407 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3408 {
3409 if (!dev1->tt || !dev2->tt)
3410 return 0;
3411 if (dev1->tt != dev2->tt)
3412 return 0;
3413 if (dev1->tt->multi)
3414 return dev1->ttport == dev2->ttport;
3415 else
3416 return 1;
3417 }
3418
3419 /* return true iff the device's transaction translator is available
3420 * for a periodic transfer starting at the specified frame, using
3421 * all the uframes in the mask.
3422 */
3423 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3424 struct usb_device *dev, unsigned frame, u32 uf_mask)
3425 {
3426 if (period == 0) /* error */
3427 return 0;
3428
3429 /* note bandwidth wastage: split never follows csplit
3430 * (different dev or endpoint) until the next uframe.
3431 * calling convention doesn't make that distinction.
3432 */
3433 for (; frame < fotg210->periodic_size; frame += period) {
3434 union fotg210_shadow here;
3435 __hc32 type;
3436 struct fotg210_qh_hw *hw;
3437
3438 here = fotg210->pshadow[frame];
3439 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3440 while (here.ptr) {
3441 switch (hc32_to_cpu(fotg210, type)) {
3442 case Q_TYPE_ITD:
3443 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3444 here = here.itd->itd_next;
3445 continue;
3446 case Q_TYPE_QH:
3447 hw = here.qh->hw;
3448 if (same_tt(dev, here.qh->dev)) {
3449 u32 mask;
3450
3451 mask = hc32_to_cpu(fotg210,
3452 hw->hw_info2);
3453 /* "knows" no gap is needed */
3454 mask |= mask >> 8;
3455 if (mask & uf_mask)
3456 break;
3457 }
3458 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3459 here = here.qh->qh_next;
3460 continue;
3461 /* case Q_TYPE_FSTN: */
3462 default:
3463 fotg210_dbg(fotg210,
3464 "periodic frame %d bogus type %d\n",
3465 frame, type);
3466 }
3467
3468 /* collision or error */
3469 return 0;
3470 }
3471 }
3472
3473 /* no collision */
3474 return 1;
3475 }
3476
3477 static void enable_periodic(struct fotg210_hcd *fotg210)
3478 {
3479 if (fotg210->periodic_count++)
3480 return;
3481
3482 /* Stop waiting to turn off the periodic schedule */
3483 fotg210->enabled_hrtimer_events &=
3484 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3485
3486 /* Don't start the schedule until PSS is 0 */
3487 fotg210_poll_PSS(fotg210);
3488 turn_on_io_watchdog(fotg210);
3489 }
3490
3491 static void disable_periodic(struct fotg210_hcd *fotg210)
3492 {
3493 if (--fotg210->periodic_count)
3494 return;
3495
3496 /* Don't turn off the schedule until PSS is 1 */
3497 fotg210_poll_PSS(fotg210);
3498 }
3499
3500 /* periodic schedule slots have iso tds (normal or split) first, then a
3501 * sparse tree for active interrupt transfers.
3502 *
3503 * this just links in a qh; caller guarantees uframe masks are set right.
3504 * no FSTN support (yet; fotg210 0.96+)
3505 */
3506 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3507 {
3508 unsigned i;
3509 unsigned period = qh->period;
3510
3511 dev_dbg(&qh->dev->dev,
3512 "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3513 hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3514 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3515 qh->c_usecs);
3516
3517 /* high bandwidth, or otherwise every microframe */
3518 if (period == 0)
3519 period = 1;
3520
3521 for (i = qh->start; i < fotg210->periodic_size; i += period) {
3522 union fotg210_shadow *prev = &fotg210->pshadow[i];
3523 __hc32 *hw_p = &fotg210->periodic[i];
3524 union fotg210_shadow here = *prev;
3525 __hc32 type = 0;
3526
3527 /* skip the iso nodes at list head */
3528 while (here.ptr) {
3529 type = Q_NEXT_TYPE(fotg210, *hw_p);
3530 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3531 break;
3532 prev = periodic_next_shadow(fotg210, prev, type);
3533 hw_p = shadow_next_periodic(fotg210, &here, type);
3534 here = *prev;
3535 }
3536
3537 /* sorting each branch by period (slow-->fast)
3538 * enables sharing interior tree nodes
3539 */
3540 while (here.ptr && qh != here.qh) {
3541 if (qh->period > here.qh->period)
3542 break;
3543 prev = &here.qh->qh_next;
3544 hw_p = &here.qh->hw->hw_next;
3545 here = *prev;
3546 }
3547 /* link in this qh, unless some earlier pass did that */
3548 if (qh != here.qh) {
3549 qh->qh_next = here;
3550 if (here.qh)
3551 qh->hw->hw_next = *hw_p;
3552 wmb();
3553 prev->qh = qh;
3554 *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3555 }
3556 }
3557 qh->qh_state = QH_STATE_LINKED;
3558 qh->xacterrs = 0;
3559
3560 /* update per-qh bandwidth for usbfs */
3561 fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3562 ? ((qh->usecs + qh->c_usecs) / qh->period)
3563 : (qh->usecs * 8);
3564
3565 list_add(&qh->intr_node, &fotg210->intr_qh_list);
3566
3567 /* maybe enable periodic schedule processing */
3568 ++fotg210->intr_count;
3569 enable_periodic(fotg210);
3570 }
3571
3572 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3573 struct fotg210_qh *qh)
3574 {
3575 unsigned i;
3576 unsigned period;
3577
3578 /*
3579 * If qh is for a low/full-speed device, simply unlinking it
3580 * could interfere with an ongoing split transaction. To unlink
3581 * it safely would require setting the QH_INACTIVATE bit and
3582 * waiting at least one frame, as described in EHCI 4.12.2.5.
3583 *
3584 * We won't bother with any of this. Instead, we assume that the
3585 * only reason for unlinking an interrupt QH while the current URB
3586 * is still active is to dequeue all the URBs (flush the whole
3587 * endpoint queue).
3588 *
3589 * If rebalancing the periodic schedule is ever implemented, this
3590 * approach will no longer be valid.
3591 */
3592
3593 /* high bandwidth, or otherwise part of every microframe */
3594 period = qh->period;
3595 if (!period)
3596 period = 1;
3597
3598 for (i = qh->start; i < fotg210->periodic_size; i += period)
3599 periodic_unlink(fotg210, i, qh);
3600
3601 /* update per-qh bandwidth for usbfs */
3602 fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3603 ? ((qh->usecs + qh->c_usecs) / qh->period)
3604 : (qh->usecs * 8);
3605
3606 dev_dbg(&qh->dev->dev,
3607 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3608 qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3609 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3610 qh->c_usecs);
3611
3612 /* qh->qh_next still "live" to HC */
3613 qh->qh_state = QH_STATE_UNLINK;
3614 qh->qh_next.ptr = NULL;
3615
3616 if (fotg210->qh_scan_next == qh)
3617 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3618 struct fotg210_qh, intr_node);
3619 list_del(&qh->intr_node);
3620 }
3621
3622 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3623 struct fotg210_qh *qh)
3624 {
3625 /* If the QH isn't linked then there's nothing we can do
3626 * unless we were called during a giveback, in which case
3627 * qh_completions() has to deal with it.
3628 */
3629 if (qh->qh_state != QH_STATE_LINKED) {
3630 if (qh->qh_state == QH_STATE_COMPLETING)
3631 qh->needs_rescan = 1;
3632 return;
3633 }
3634
3635 qh_unlink_periodic(fotg210, qh);
3636
3637 /* Make sure the unlinks are visible before starting the timer */
3638 wmb();
3639
3640 /*
3641 * The EHCI spec doesn't say how long it takes the controller to
3642 * stop accessing an unlinked interrupt QH. The timer delay is
3643 * 9 uframes; presumably that will be long enough.
3644 */
3645 qh->unlink_cycle = fotg210->intr_unlink_cycle;
3646
3647 /* New entries go at the end of the intr_unlink list */
3648 if (fotg210->intr_unlink)
3649 fotg210->intr_unlink_last->unlink_next = qh;
3650 else
3651 fotg210->intr_unlink = qh;
3652 fotg210->intr_unlink_last = qh;
3653
3654 if (fotg210->intr_unlinking)
3655 ; /* Avoid recursive calls */
3656 else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3657 fotg210_handle_intr_unlinks(fotg210);
3658 else if (fotg210->intr_unlink == qh) {
3659 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3660 true);
3661 ++fotg210->intr_unlink_cycle;
3662 }
3663 }
3664
3665 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3666 {
3667 struct fotg210_qh_hw *hw = qh->hw;
3668 int rc;
3669
3670 qh->qh_state = QH_STATE_IDLE;
3671 hw->hw_next = FOTG210_LIST_END(fotg210);
3672
3673 qh_completions(fotg210, qh);
3674
3675 /* reschedule QH iff another request is queued */
3676 if (!list_empty(&qh->qtd_list) &&
3677 fotg210->rh_state == FOTG210_RH_RUNNING) {
3678 rc = qh_schedule(fotg210, qh);
3679
3680 /* An error here likely indicates handshake failure
3681 * or no space left in the schedule. Neither fault
3682 * should happen often ...
3683 *
3684 * FIXME kill the now-dysfunctional queued urbs
3685 */
3686 if (rc != 0)
3687 fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3688 qh, rc);
3689 }
3690
3691 /* maybe turn off periodic schedule */
3692 --fotg210->intr_count;
3693 disable_periodic(fotg210);
3694 }
3695
3696 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3697 unsigned uframe, unsigned period, unsigned usecs)
3698 {
3699 int claimed;
3700
3701 /* complete split running into next frame?
3702 * given FSTN support, we could sometimes check...
3703 */
3704 if (uframe >= 8)
3705 return 0;
3706
3707 /* convert "usecs we need" to "max already claimed" */
3708 usecs = fotg210->uframe_periodic_max - usecs;
3709
3710 /* we "know" 2 and 4 uframe intervals were rejected; so
3711 * for period 0, check _every_ microframe in the schedule.
3712 */
3713 if (unlikely(period == 0)) {
3714 do {
3715 for (uframe = 0; uframe < 7; uframe++) {
3716 claimed = periodic_usecs(fotg210, frame,
3717 uframe);
3718 if (claimed > usecs)
3719 return 0;
3720 }
3721 } while ((frame += 1) < fotg210->periodic_size);
3722
3723 /* just check the specified uframe, at that period */
3724 } else {
3725 do {
3726 claimed = periodic_usecs(fotg210, frame, uframe);
3727 if (claimed > usecs)
3728 return 0;
3729 } while ((frame += period) < fotg210->periodic_size);
3730 }
3731
3732 /* success! */
3733 return 1;
3734 }
3735
3736 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3737 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3738 {
3739 int retval = -ENOSPC;
3740 u8 mask = 0;
3741
3742 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
3743 goto done;
3744
3745 if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3746 goto done;
3747 if (!qh->c_usecs) {
3748 retval = 0;
3749 *c_maskp = 0;
3750 goto done;
3751 }
3752
3753 /* Make sure this tt's buffer is also available for CSPLITs.
3754 * We pessimize a bit; probably the typical full speed case
3755 * doesn't need the second CSPLIT.
3756 *
3757 * NOTE: both SPLIT and CSPLIT could be checked in just
3758 * one smart pass...
3759 */
3760 mask = 0x03 << (uframe + qh->gap_uf);
3761 *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3762
3763 mask |= 1 << uframe;
3764 if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3765 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3766 qh->period, qh->c_usecs))
3767 goto done;
3768 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3769 qh->period, qh->c_usecs))
3770 goto done;
3771 retval = 0;
3772 }
3773 done:
3774 return retval;
3775 }
3776
3777 /* "first fit" scheduling policy used the first time through,
3778 * or when the previous schedule slot can't be re-used.
3779 */
3780 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3781 {
3782 int status;
3783 unsigned uframe;
3784 __hc32 c_mask;
3785 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3786 struct fotg210_qh_hw *hw = qh->hw;
3787
3788 qh_refresh(fotg210, qh);
3789 hw->hw_next = FOTG210_LIST_END(fotg210);
3790 frame = qh->start;
3791
3792 /* reuse the previous schedule slots, if we can */
3793 if (frame < qh->period) {
3794 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3795 status = check_intr_schedule(fotg210, frame, --uframe,
3796 qh, &c_mask);
3797 } else {
3798 uframe = 0;
3799 c_mask = 0;
3800 status = -ENOSPC;
3801 }
3802
3803 /* else scan the schedule to find a group of slots such that all
3804 * uframes have enough periodic bandwidth available.
3805 */
3806 if (status) {
3807 /* "normal" case, uframing flexible except with splits */
3808 if (qh->period) {
3809 int i;
3810
3811 for (i = qh->period; status && i > 0; --i) {
3812 frame = ++fotg210->random_frame % qh->period;
3813 for (uframe = 0; uframe < 8; uframe++) {
3814 status = check_intr_schedule(fotg210,
3815 frame, uframe, qh,
3816 &c_mask);
3817 if (status == 0)
3818 break;
3819 }
3820 }
3821
3822 /* qh->period == 0 means every uframe */
3823 } else {
3824 frame = 0;
3825 status = check_intr_schedule(fotg210, 0, 0, qh,
3826 &c_mask);
3827 }
3828 if (status)
3829 goto done;
3830 qh->start = frame;
3831
3832 /* reset S-frame and (maybe) C-frame masks */
3833 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3834 hw->hw_info2 |= qh->period
3835 ? cpu_to_hc32(fotg210, 1 << uframe)
3836 : cpu_to_hc32(fotg210, QH_SMASK);
3837 hw->hw_info2 |= c_mask;
3838 } else
3839 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3840
3841 /* stuff into the periodic schedule */
3842 qh_link_periodic(fotg210, qh);
3843 done:
3844 return status;
3845 }
3846
3847 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3848 struct list_head *qtd_list, gfp_t mem_flags)
3849 {
3850 unsigned epnum;
3851 unsigned long flags;
3852 struct fotg210_qh *qh;
3853 int status;
3854 struct list_head empty;
3855
3856 /* get endpoint and transfer/schedule data */
3857 epnum = urb->ep->desc.bEndpointAddress;
3858
3859 spin_lock_irqsave(&fotg210->lock, flags);
3860
3861 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3862 status = -ESHUTDOWN;
3863 goto done_not_linked;
3864 }
3865 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3866 if (unlikely(status))
3867 goto done_not_linked;
3868
3869 /* get qh and force any scheduling errors */
3870 INIT_LIST_HEAD(&empty);
3871 qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3872 if (qh == NULL) {
3873 status = -ENOMEM;
3874 goto done;
3875 }
3876 if (qh->qh_state == QH_STATE_IDLE) {
3877 status = qh_schedule(fotg210, qh);
3878 if (status)
3879 goto done;
3880 }
3881
3882 /* then queue the urb's tds to the qh */
3883 qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3884 BUG_ON(qh == NULL);
3885
3886 /* ... update usbfs periodic stats */
3887 fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3888
3889 done:
3890 if (unlikely(status))
3891 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3892 done_not_linked:
3893 spin_unlock_irqrestore(&fotg210->lock, flags);
3894 if (status)
3895 qtd_list_free(fotg210, urb, qtd_list);
3896
3897 return status;
3898 }
3899
3900 static void scan_intr(struct fotg210_hcd *fotg210)
3901 {
3902 struct fotg210_qh *qh;
3903
3904 list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3905 &fotg210->intr_qh_list, intr_node) {
3906 rescan:
3907 /* clean any finished work for this qh */
3908 if (!list_empty(&qh->qtd_list)) {
3909 int temp;
3910
3911 /*
3912 * Unlinks could happen here; completion reporting
3913 * drops the lock. That's why fotg210->qh_scan_next
3914 * always holds the next qh to scan; if the next qh
3915 * gets unlinked then fotg210->qh_scan_next is adjusted
3916 * in qh_unlink_periodic().
3917 */
3918 temp = qh_completions(fotg210, qh);
3919 if (unlikely(qh->needs_rescan ||
3920 (list_empty(&qh->qtd_list) &&
3921 qh->qh_state == QH_STATE_LINKED)))
3922 start_unlink_intr(fotg210, qh);
3923 else if (temp != 0)
3924 goto rescan;
3925 }
3926 }
3927 }
3928
3929 /* fotg210_iso_stream ops work with both ITD and SITD */
3930
3931 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3932 {
3933 struct fotg210_iso_stream *stream;
3934
3935 stream = kzalloc(sizeof(*stream), mem_flags);
3936 if (likely(stream != NULL)) {
3937 INIT_LIST_HEAD(&stream->td_list);
3938 INIT_LIST_HEAD(&stream->free_list);
3939 stream->next_uframe = -1;
3940 }
3941 return stream;
3942 }
3943
3944 static void iso_stream_init(struct fotg210_hcd *fotg210,
3945 struct fotg210_iso_stream *stream, struct usb_device *dev,
3946 int pipe, unsigned interval)
3947 {
3948 u32 buf1;
3949 unsigned epnum, maxp;
3950 int is_input;
3951 long bandwidth;
3952 unsigned multi;
3953
3954 /*
3955 * this might be a "high bandwidth" highspeed endpoint,
3956 * as encoded in the ep descriptor's wMaxPacket field
3957 */
3958 epnum = usb_pipeendpoint(pipe);
3959 is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3960 maxp = usb_maxpacket(dev, pipe, !is_input);
3961 if (is_input)
3962 buf1 = (1 << 11);
3963 else
3964 buf1 = 0;
3965
3966 maxp = max_packet(maxp);
3967 multi = hb_mult(maxp);
3968 buf1 |= maxp;
3969 maxp *= multi;
3970
3971 stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3972 stream->buf1 = cpu_to_hc32(fotg210, buf1);
3973 stream->buf2 = cpu_to_hc32(fotg210, multi);
3974
3975 /* usbfs wants to report the average usecs per frame tied up
3976 * when transfers on this endpoint are scheduled ...
3977 */
3978 if (dev->speed == USB_SPEED_FULL) {
3979 interval <<= 3;
3980 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3981 is_input, 1, maxp));
3982 stream->usecs /= 8;
3983 } else {
3984 stream->highspeed = 1;
3985 stream->usecs = HS_USECS_ISO(maxp);
3986 }
3987 bandwidth = stream->usecs * 8;
3988 bandwidth /= interval;
3989
3990 stream->bandwidth = bandwidth;
3991 stream->udev = dev;
3992 stream->bEndpointAddress = is_input | epnum;
3993 stream->interval = interval;
3994 stream->maxp = maxp;
3995 }
3996
3997 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3998 struct urb *urb)
3999 {
4000 unsigned epnum;
4001 struct fotg210_iso_stream *stream;
4002 struct usb_host_endpoint *ep;
4003 unsigned long flags;
4004
4005 epnum = usb_pipeendpoint(urb->pipe);
4006 if (usb_pipein(urb->pipe))
4007 ep = urb->dev->ep_in[epnum];
4008 else
4009 ep = urb->dev->ep_out[epnum];
4010
4011 spin_lock_irqsave(&fotg210->lock, flags);
4012 stream = ep->hcpriv;
4013
4014 if (unlikely(stream == NULL)) {
4015 stream = iso_stream_alloc(GFP_ATOMIC);
4016 if (likely(stream != NULL)) {
4017 ep->hcpriv = stream;
4018 stream->ep = ep;
4019 iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
4020 urb->interval);
4021 }
4022
4023 /* if dev->ep[epnum] is a QH, hw is set */
4024 } else if (unlikely(stream->hw != NULL)) {
4025 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4026 urb->dev->devpath, epnum,
4027 usb_pipein(urb->pipe) ? "in" : "out");
4028 stream = NULL;
4029 }
4030
4031 spin_unlock_irqrestore(&fotg210->lock, flags);
4032 return stream;
4033 }
4034
4035 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4036
4037 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4038 gfp_t mem_flags)
4039 {
4040 struct fotg210_iso_sched *iso_sched;
4041 int size = sizeof(*iso_sched);
4042
4043 size += packets * sizeof(struct fotg210_iso_packet);
4044 iso_sched = kzalloc(size, mem_flags);
4045 if (likely(iso_sched != NULL))
4046 INIT_LIST_HEAD(&iso_sched->td_list);
4047
4048 return iso_sched;
4049 }
4050
4051 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4052 struct fotg210_iso_sched *iso_sched,
4053 struct fotg210_iso_stream *stream, struct urb *urb)
4054 {
4055 unsigned i;
4056 dma_addr_t dma = urb->transfer_dma;
4057
4058 /* how many uframes are needed for these transfers */
4059 iso_sched->span = urb->number_of_packets * stream->interval;
4060
4061 /* figure out per-uframe itd fields that we'll need later
4062 * when we fit new itds into the schedule.
4063 */
4064 for (i = 0; i < urb->number_of_packets; i++) {
4065 struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4066 unsigned length;
4067 dma_addr_t buf;
4068 u32 trans;
4069
4070 length = urb->iso_frame_desc[i].length;
4071 buf = dma + urb->iso_frame_desc[i].offset;
4072
4073 trans = FOTG210_ISOC_ACTIVE;
4074 trans |= buf & 0x0fff;
4075 if (unlikely(((i + 1) == urb->number_of_packets))
4076 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4077 trans |= FOTG210_ITD_IOC;
4078 trans |= length << 16;
4079 uframe->transaction = cpu_to_hc32(fotg210, trans);
4080
4081 /* might need to cross a buffer page within a uframe */
4082 uframe->bufp = (buf & ~(u64)0x0fff);
4083 buf += length;
4084 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4085 uframe->cross = 1;
4086 }
4087 }
4088
4089 static void iso_sched_free(struct fotg210_iso_stream *stream,
4090 struct fotg210_iso_sched *iso_sched)
4091 {
4092 if (!iso_sched)
4093 return;
4094 /* caller must hold fotg210->lock!*/
4095 list_splice(&iso_sched->td_list, &stream->free_list);
4096 kfree(iso_sched);
4097 }
4098
4099 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4100 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4101 {
4102 struct fotg210_itd *itd;
4103 dma_addr_t itd_dma;
4104 int i;
4105 unsigned num_itds;
4106 struct fotg210_iso_sched *sched;
4107 unsigned long flags;
4108
4109 sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4110 if (unlikely(sched == NULL))
4111 return -ENOMEM;
4112
4113 itd_sched_init(fotg210, sched, stream, urb);
4114
4115 if (urb->interval < 8)
4116 num_itds = 1 + (sched->span + 7) / 8;
4117 else
4118 num_itds = urb->number_of_packets;
4119
4120 /* allocate/init ITDs */
4121 spin_lock_irqsave(&fotg210->lock, flags);
4122 for (i = 0; i < num_itds; i++) {
4123
4124 /*
4125 * Use iTDs from the free list, but not iTDs that may
4126 * still be in use by the hardware.
4127 */
4128 if (likely(!list_empty(&stream->free_list))) {
4129 itd = list_first_entry(&stream->free_list,
4130 struct fotg210_itd, itd_list);
4131 if (itd->frame == fotg210->now_frame)
4132 goto alloc_itd;
4133 list_del(&itd->itd_list);
4134 itd_dma = itd->itd_dma;
4135 } else {
4136 alloc_itd:
4137 spin_unlock_irqrestore(&fotg210->lock, flags);
4138 itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4139 &itd_dma);
4140 spin_lock_irqsave(&fotg210->lock, flags);
4141 if (!itd) {
4142 iso_sched_free(stream, sched);
4143 spin_unlock_irqrestore(&fotg210->lock, flags);
4144 return -ENOMEM;
4145 }
4146 }
4147
4148 memset(itd, 0, sizeof(*itd));
4149 itd->itd_dma = itd_dma;
4150 list_add(&itd->itd_list, &sched->td_list);
4151 }
4152 spin_unlock_irqrestore(&fotg210->lock, flags);
4153
4154 /* temporarily store schedule info in hcpriv */
4155 urb->hcpriv = sched;
4156 urb->error_count = 0;
4157 return 0;
4158 }
4159
4160 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4161 u8 usecs, u32 period)
4162 {
4163 uframe %= period;
4164 do {
4165 /* can't commit more than uframe_periodic_max usec */
4166 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4167 > (fotg210->uframe_periodic_max - usecs))
4168 return 0;
4169
4170 /* we know urb->interval is 2^N uframes */
4171 uframe += period;
4172 } while (uframe < mod);
4173 return 1;
4174 }
4175
4176 /* This scheduler plans almost as far into the future as it has actual
4177 * periodic schedule slots. (Affected by TUNE_FLS, which defaults to
4178 * "as small as possible" to be cache-friendlier.) That limits the size
4179 * transfers you can stream reliably; avoid more than 64 msec per urb.
4180 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4181 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4182 * and other factors); or more than about 230 msec total (for portability,
4183 * given FOTG210_TUNE_FLS and the slop). Or, write a smarter scheduler!
4184 */
4185
4186 #define SCHEDULE_SLOP 80 /* microframes */
4187
4188 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4189 struct fotg210_iso_stream *stream)
4190 {
4191 u32 now, next, start, period, span;
4192 int status;
4193 unsigned mod = fotg210->periodic_size << 3;
4194 struct fotg210_iso_sched *sched = urb->hcpriv;
4195
4196 period = urb->interval;
4197 span = sched->span;
4198
4199 if (span > mod - SCHEDULE_SLOP) {
4200 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4201 status = -EFBIG;
4202 goto fail;
4203 }
4204
4205 now = fotg210_read_frame_index(fotg210) & (mod - 1);
4206
4207 /* Typical case: reuse current schedule, stream is still active.
4208 * Hopefully there are no gaps from the host falling behind
4209 * (irq delays etc), but if there are we'll take the next
4210 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4211 */
4212 if (likely(!list_empty(&stream->td_list))) {
4213 u32 excess;
4214
4215 /* For high speed devices, allow scheduling within the
4216 * isochronous scheduling threshold. For full speed devices
4217 * and Intel PCI-based controllers, don't (work around for
4218 * Intel ICH9 bug).
4219 */
4220 if (!stream->highspeed && fotg210->fs_i_thresh)
4221 next = now + fotg210->i_thresh;
4222 else
4223 next = now;
4224
4225 /* Fell behind (by up to twice the slop amount)?
4226 * We decide based on the time of the last currently-scheduled
4227 * slot, not the time of the next available slot.
4228 */
4229 excess = (stream->next_uframe - period - next) & (mod - 1);
4230 if (excess >= mod - 2 * SCHEDULE_SLOP)
4231 start = next + excess - mod + period *
4232 DIV_ROUND_UP(mod - excess, period);
4233 else
4234 start = next + excess + period;
4235 if (start - now >= mod) {
4236 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4237 urb, start - now - period, period,
4238 mod);
4239 status = -EFBIG;
4240 goto fail;
4241 }
4242 }
4243
4244 /* need to schedule; when's the next (u)frame we could start?
4245 * this is bigger than fotg210->i_thresh allows; scheduling itself
4246 * isn't free, the slop should handle reasonably slow cpus. it
4247 * can also help high bandwidth if the dma and irq loads don't
4248 * jump until after the queue is primed.
4249 */
4250 else {
4251 int done = 0;
4252
4253 start = SCHEDULE_SLOP + (now & ~0x07);
4254
4255 /* NOTE: assumes URB_ISO_ASAP, to limit complexity/bugs */
4256
4257 /* find a uframe slot with enough bandwidth.
4258 * Early uframes are more precious because full-speed
4259 * iso IN transfers can't use late uframes,
4260 * and therefore they should be allocated last.
4261 */
4262 next = start;
4263 start += period;
4264 do {
4265 start--;
4266 /* check schedule: enough space? */
4267 if (itd_slot_ok(fotg210, mod, start,
4268 stream->usecs, period))
4269 done = 1;
4270 } while (start > next && !done);
4271
4272 /* no room in the schedule */
4273 if (!done) {
4274 fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4275 urb, now, now + mod);
4276 status = -ENOSPC;
4277 goto fail;
4278 }
4279 }
4280
4281 /* Tried to schedule too far into the future? */
4282 if (unlikely(start - now + span - period >=
4283 mod - 2 * SCHEDULE_SLOP)) {
4284 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4285 urb, start - now, span - period,
4286 mod - 2 * SCHEDULE_SLOP);
4287 status = -EFBIG;
4288 goto fail;
4289 }
4290
4291 stream->next_uframe = start & (mod - 1);
4292
4293 /* report high speed start in uframes; full speed, in frames */
4294 urb->start_frame = stream->next_uframe;
4295 if (!stream->highspeed)
4296 urb->start_frame >>= 3;
4297
4298 /* Make sure scan_isoc() sees these */
4299 if (fotg210->isoc_count == 0)
4300 fotg210->next_frame = now >> 3;
4301 return 0;
4302
4303 fail:
4304 iso_sched_free(stream, sched);
4305 urb->hcpriv = NULL;
4306 return status;
4307 }
4308
4309 static inline void itd_init(struct fotg210_hcd *fotg210,
4310 struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4311 {
4312 int i;
4313
4314 /* it's been recently zeroed */
4315 itd->hw_next = FOTG210_LIST_END(fotg210);
4316 itd->hw_bufp[0] = stream->buf0;
4317 itd->hw_bufp[1] = stream->buf1;
4318 itd->hw_bufp[2] = stream->buf2;
4319
4320 for (i = 0; i < 8; i++)
4321 itd->index[i] = -1;
4322
4323 /* All other fields are filled when scheduling */
4324 }
4325
4326 static inline void itd_patch(struct fotg210_hcd *fotg210,
4327 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4328 unsigned index, u16 uframe)
4329 {
4330 struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4331 unsigned pg = itd->pg;
4332
4333 uframe &= 0x07;
4334 itd->index[uframe] = index;
4335
4336 itd->hw_transaction[uframe] = uf->transaction;
4337 itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4338 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4339 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4340
4341 /* iso_frame_desc[].offset must be strictly increasing */
4342 if (unlikely(uf->cross)) {
4343 u64 bufp = uf->bufp + 4096;
4344
4345 itd->pg = ++pg;
4346 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4347 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4348 }
4349 }
4350
4351 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4352 struct fotg210_itd *itd)
4353 {
4354 union fotg210_shadow *prev = &fotg210->pshadow[frame];
4355 __hc32 *hw_p = &fotg210->periodic[frame];
4356 union fotg210_shadow here = *prev;
4357 __hc32 type = 0;
4358
4359 /* skip any iso nodes which might belong to previous microframes */
4360 while (here.ptr) {
4361 type = Q_NEXT_TYPE(fotg210, *hw_p);
4362 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4363 break;
4364 prev = periodic_next_shadow(fotg210, prev, type);
4365 hw_p = shadow_next_periodic(fotg210, &here, type);
4366 here = *prev;
4367 }
4368
4369 itd->itd_next = here;
4370 itd->hw_next = *hw_p;
4371 prev->itd = itd;
4372 itd->frame = frame;
4373 wmb();
4374 *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4375 }
4376
4377 /* fit urb's itds into the selected schedule slot; activate as needed */
4378 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4379 unsigned mod, struct fotg210_iso_stream *stream)
4380 {
4381 int packet;
4382 unsigned next_uframe, uframe, frame;
4383 struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4384 struct fotg210_itd *itd;
4385
4386 next_uframe = stream->next_uframe & (mod - 1);
4387
4388 if (unlikely(list_empty(&stream->td_list))) {
4389 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4390 += stream->bandwidth;
4391 fotg210_dbg(fotg210,
4392 "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4393 urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4394 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4395 urb->interval,
4396 next_uframe >> 3, next_uframe & 0x7);
4397 }
4398
4399 /* fill iTDs uframe by uframe */
4400 for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4401 if (itd == NULL) {
4402 /* ASSERT: we have all necessary itds */
4403
4404 /* ASSERT: no itds for this endpoint in this uframe */
4405
4406 itd = list_entry(iso_sched->td_list.next,
4407 struct fotg210_itd, itd_list);
4408 list_move_tail(&itd->itd_list, &stream->td_list);
4409 itd->stream = stream;
4410 itd->urb = urb;
4411 itd_init(fotg210, stream, itd);
4412 }
4413
4414 uframe = next_uframe & 0x07;
4415 frame = next_uframe >> 3;
4416
4417 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4418
4419 next_uframe += stream->interval;
4420 next_uframe &= mod - 1;
4421 packet++;
4422
4423 /* link completed itds into the schedule */
4424 if (((next_uframe >> 3) != frame)
4425 || packet == urb->number_of_packets) {
4426 itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4427 itd);
4428 itd = NULL;
4429 }
4430 }
4431 stream->next_uframe = next_uframe;
4432
4433 /* don't need that schedule data any more */
4434 iso_sched_free(stream, iso_sched);
4435 urb->hcpriv = NULL;
4436
4437 ++fotg210->isoc_count;
4438 enable_periodic(fotg210);
4439 }
4440
4441 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4442 FOTG210_ISOC_XACTERR)
4443
4444 /* Process and recycle a completed ITD. Return true iff its urb completed,
4445 * and hence its completion callback probably added things to the hardware
4446 * schedule.
4447 *
4448 * Note that we carefully avoid recycling this descriptor until after any
4449 * completion callback runs, so that it won't be reused quickly. That is,
4450 * assuming (a) no more than two urbs per frame on this endpoint, and also
4451 * (b) only this endpoint's completions submit URBs. It seems some silicon
4452 * corrupts things if you reuse completed descriptors very quickly...
4453 */
4454 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4455 {
4456 struct urb *urb = itd->urb;
4457 struct usb_iso_packet_descriptor *desc;
4458 u32 t;
4459 unsigned uframe;
4460 int urb_index = -1;
4461 struct fotg210_iso_stream *stream = itd->stream;
4462 struct usb_device *dev;
4463 bool retval = false;
4464
4465 /* for each uframe with a packet */
4466 for (uframe = 0; uframe < 8; uframe++) {
4467 if (likely(itd->index[uframe] == -1))
4468 continue;
4469 urb_index = itd->index[uframe];
4470 desc = &urb->iso_frame_desc[urb_index];
4471
4472 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4473 itd->hw_transaction[uframe] = 0;
4474
4475 /* report transfer status */
4476 if (unlikely(t & ISO_ERRS)) {
4477 urb->error_count++;
4478 if (t & FOTG210_ISOC_BUF_ERR)
4479 desc->status = usb_pipein(urb->pipe)
4480 ? -ENOSR /* hc couldn't read */
4481 : -ECOMM; /* hc couldn't write */
4482 else if (t & FOTG210_ISOC_BABBLE)
4483 desc->status = -EOVERFLOW;
4484 else /* (t & FOTG210_ISOC_XACTERR) */
4485 desc->status = -EPROTO;
4486
4487 /* HC need not update length with this error */
4488 if (!(t & FOTG210_ISOC_BABBLE)) {
4489 desc->actual_length =
4490 fotg210_itdlen(urb, desc, t);
4491 urb->actual_length += desc->actual_length;
4492 }
4493 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4494 desc->status = 0;
4495 desc->actual_length = fotg210_itdlen(urb, desc, t);
4496 urb->actual_length += desc->actual_length;
4497 } else {
4498 /* URB was too late */
4499 desc->status = -EXDEV;
4500 }
4501 }
4502
4503 /* handle completion now? */
4504 if (likely((urb_index + 1) != urb->number_of_packets))
4505 goto done;
4506
4507 /* ASSERT: it's really the last itd for this urb
4508 * list_for_each_entry (itd, &stream->td_list, itd_list)
4509 * BUG_ON (itd->urb == urb);
4510 */
4511
4512 /* give urb back to the driver; completion often (re)submits */
4513 dev = urb->dev;
4514 fotg210_urb_done(fotg210, urb, 0);
4515 retval = true;
4516 urb = NULL;
4517
4518 --fotg210->isoc_count;
4519 disable_periodic(fotg210);
4520
4521 if (unlikely(list_is_singular(&stream->td_list))) {
4522 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4523 -= stream->bandwidth;
4524 fotg210_dbg(fotg210,
4525 "deschedule devp %s ep%d%s-iso\n",
4526 dev->devpath, stream->bEndpointAddress & 0x0f,
4527 (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4528 }
4529
4530 done:
4531 itd->urb = NULL;
4532
4533 /* Add to the end of the free list for later reuse */
4534 list_move_tail(&itd->itd_list, &stream->free_list);
4535
4536 /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4537 if (list_empty(&stream->td_list)) {
4538 list_splice_tail_init(&stream->free_list,
4539 &fotg210->cached_itd_list);
4540 start_free_itds(fotg210);
4541 }
4542
4543 return retval;
4544 }
4545
4546 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4547 gfp_t mem_flags)
4548 {
4549 int status = -EINVAL;
4550 unsigned long flags;
4551 struct fotg210_iso_stream *stream;
4552
4553 /* Get iso_stream head */
4554 stream = iso_stream_find(fotg210, urb);
4555 if (unlikely(stream == NULL)) {
4556 fotg210_dbg(fotg210, "can't get iso stream\n");
4557 return -ENOMEM;
4558 }
4559 if (unlikely(urb->interval != stream->interval &&
4560 fotg210_port_speed(fotg210, 0) ==
4561 USB_PORT_STAT_HIGH_SPEED)) {
4562 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4563 stream->interval, urb->interval);
4564 goto done;
4565 }
4566
4567 #ifdef FOTG210_URB_TRACE
4568 fotg210_dbg(fotg210,
4569 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4570 __func__, urb->dev->devpath, urb,
4571 usb_pipeendpoint(urb->pipe),
4572 usb_pipein(urb->pipe) ? "in" : "out",
4573 urb->transfer_buffer_length,
4574 urb->number_of_packets, urb->interval,
4575 stream);
4576 #endif
4577
4578 /* allocate ITDs w/o locking anything */
4579 status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4580 if (unlikely(status < 0)) {
4581 fotg210_dbg(fotg210, "can't init itds\n");
4582 goto done;
4583 }
4584
4585 /* schedule ... need to lock */
4586 spin_lock_irqsave(&fotg210->lock, flags);
4587 if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4588 status = -ESHUTDOWN;
4589 goto done_not_linked;
4590 }
4591 status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4592 if (unlikely(status))
4593 goto done_not_linked;
4594 status = iso_stream_schedule(fotg210, urb, stream);
4595 if (likely(status == 0))
4596 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4597 else
4598 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4599 done_not_linked:
4600 spin_unlock_irqrestore(&fotg210->lock, flags);
4601 done:
4602 return status;
4603 }
4604
4605 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4606 unsigned now_frame, bool live)
4607 {
4608 unsigned uf;
4609 bool modified;
4610 union fotg210_shadow q, *q_p;
4611 __hc32 type, *hw_p;
4612
4613 /* scan each element in frame's queue for completions */
4614 q_p = &fotg210->pshadow[frame];
4615 hw_p = &fotg210->periodic[frame];
4616 q.ptr = q_p->ptr;
4617 type = Q_NEXT_TYPE(fotg210, *hw_p);
4618 modified = false;
4619
4620 while (q.ptr) {
4621 switch (hc32_to_cpu(fotg210, type)) {
4622 case Q_TYPE_ITD:
4623 /* If this ITD is still active, leave it for
4624 * later processing ... check the next entry.
4625 * No need to check for activity unless the
4626 * frame is current.
4627 */
4628 if (frame == now_frame && live) {
4629 rmb();
4630 for (uf = 0; uf < 8; uf++) {
4631 if (q.itd->hw_transaction[uf] &
4632 ITD_ACTIVE(fotg210))
4633 break;
4634 }
4635 if (uf < 8) {
4636 q_p = &q.itd->itd_next;
4637 hw_p = &q.itd->hw_next;
4638 type = Q_NEXT_TYPE(fotg210,
4639 q.itd->hw_next);
4640 q = *q_p;
4641 break;
4642 }
4643 }
4644
4645 /* Take finished ITDs out of the schedule
4646 * and process them: recycle, maybe report
4647 * URB completion. HC won't cache the
4648 * pointer for much longer, if at all.
4649 */
4650 *q_p = q.itd->itd_next;
4651 *hw_p = q.itd->hw_next;
4652 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4653 wmb();
4654 modified = itd_complete(fotg210, q.itd);
4655 q = *q_p;
4656 break;
4657 default:
4658 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4659 type, frame, q.ptr);
4660 /* FALL THROUGH */
4661 case Q_TYPE_QH:
4662 case Q_TYPE_FSTN:
4663 /* End of the iTDs and siTDs */
4664 q.ptr = NULL;
4665 break;
4666 }
4667
4668 /* assume completion callbacks modify the queue */
4669 if (unlikely(modified && fotg210->isoc_count > 0))
4670 return -EINVAL;
4671 }
4672 return 0;
4673 }
4674
4675 static void scan_isoc(struct fotg210_hcd *fotg210)
4676 {
4677 unsigned uf, now_frame, frame, ret;
4678 unsigned fmask = fotg210->periodic_size - 1;
4679 bool live;
4680
4681 /*
4682 * When running, scan from last scan point up to "now"
4683 * else clean up by scanning everything that's left.
4684 * Touches as few pages as possible: cache-friendly.
4685 */
4686 if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4687 uf = fotg210_read_frame_index(fotg210);
4688 now_frame = (uf >> 3) & fmask;
4689 live = true;
4690 } else {
4691 now_frame = (fotg210->next_frame - 1) & fmask;
4692 live = false;
4693 }
4694 fotg210->now_frame = now_frame;
4695
4696 frame = fotg210->next_frame;
4697 for (;;) {
4698 ret = 1;
4699 while (ret != 0)
4700 ret = scan_frame_queue(fotg210, frame,
4701 now_frame, live);
4702
4703 /* Stop when we have reached the current frame */
4704 if (frame == now_frame)
4705 break;
4706 frame = (frame + 1) & fmask;
4707 }
4708 fotg210->next_frame = now_frame;
4709 }
4710
4711 /* Display / Set uframe_periodic_max
4712 */
4713 static ssize_t show_uframe_periodic_max(struct device *dev,
4714 struct device_attribute *attr, char *buf)
4715 {
4716 struct fotg210_hcd *fotg210;
4717 int n;
4718
4719 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4720 n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4721 return n;
4722 }
4723
4724
4725 static ssize_t store_uframe_periodic_max(struct device *dev,
4726 struct device_attribute *attr, const char *buf, size_t count)
4727 {
4728 struct fotg210_hcd *fotg210;
4729 unsigned uframe_periodic_max;
4730 unsigned frame, uframe;
4731 unsigned short allocated_max;
4732 unsigned long flags;
4733 ssize_t ret;
4734
4735 fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4736 if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4737 return -EINVAL;
4738
4739 if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4740 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4741 uframe_periodic_max);
4742 return -EINVAL;
4743 }
4744
4745 ret = -EINVAL;
4746
4747 /*
4748 * lock, so that our checking does not race with possible periodic
4749 * bandwidth allocation through submitting new urbs.
4750 */
4751 spin_lock_irqsave(&fotg210->lock, flags);
4752
4753 /*
4754 * for request to decrease max periodic bandwidth, we have to check
4755 * every microframe in the schedule to see whether the decrease is
4756 * possible.
4757 */
4758 if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4759 allocated_max = 0;
4760
4761 for (frame = 0; frame < fotg210->periodic_size; ++frame)
4762 for (uframe = 0; uframe < 7; ++uframe)
4763 allocated_max = max(allocated_max,
4764 periodic_usecs(fotg210, frame,
4765 uframe));
4766
4767 if (allocated_max > uframe_periodic_max) {
4768 fotg210_info(fotg210,
4769 "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4770 allocated_max, uframe_periodic_max);
4771 goto out_unlock;
4772 }
4773 }
4774
4775 /* increasing is always ok */
4776
4777 fotg210_info(fotg210,
4778 "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4779 100 * uframe_periodic_max/125, uframe_periodic_max);
4780
4781 if (uframe_periodic_max != 100)
4782 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4783
4784 fotg210->uframe_periodic_max = uframe_periodic_max;
4785 ret = count;
4786
4787 out_unlock:
4788 spin_unlock_irqrestore(&fotg210->lock, flags);
4789 return ret;
4790 }
4791
4792 static DEVICE_ATTR(uframe_periodic_max, 0644, show_uframe_periodic_max,
4793 store_uframe_periodic_max);
4794
4795 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4796 {
4797 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4798 int i = 0;
4799
4800 if (i)
4801 goto out;
4802
4803 i = device_create_file(controller, &dev_attr_uframe_periodic_max);
4804 out:
4805 return i;
4806 }
4807
4808 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4809 {
4810 struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4811
4812 device_remove_file(controller, &dev_attr_uframe_periodic_max);
4813 }
4814 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4815 * The firmware seems to think that powering off is a wakeup event!
4816 * This routine turns off remote wakeup and everything else, on all ports.
4817 */
4818 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4819 {
4820 u32 __iomem *status_reg = &fotg210->regs->port_status;
4821
4822 fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4823 }
4824
4825 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4826 * Must be called with interrupts enabled and the lock not held.
4827 */
4828 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4829 {
4830 fotg210_halt(fotg210);
4831
4832 spin_lock_irq(&fotg210->lock);
4833 fotg210->rh_state = FOTG210_RH_HALTED;
4834 fotg210_turn_off_all_ports(fotg210);
4835 spin_unlock_irq(&fotg210->lock);
4836 }
4837
4838 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4839 * This forcibly disables dma and IRQs, helping kexec and other cases
4840 * where the next system software may expect clean state.
4841 */
4842 static void fotg210_shutdown(struct usb_hcd *hcd)
4843 {
4844 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4845
4846 spin_lock_irq(&fotg210->lock);
4847 fotg210->shutdown = true;
4848 fotg210->rh_state = FOTG210_RH_STOPPING;
4849 fotg210->enabled_hrtimer_events = 0;
4850 spin_unlock_irq(&fotg210->lock);
4851
4852 fotg210_silence_controller(fotg210);
4853
4854 hrtimer_cancel(&fotg210->hrtimer);
4855 }
4856
4857 /* fotg210_work is called from some interrupts, timers, and so on.
4858 * it calls driver completion functions, after dropping fotg210->lock.
4859 */
4860 static void fotg210_work(struct fotg210_hcd *fotg210)
4861 {
4862 /* another CPU may drop fotg210->lock during a schedule scan while
4863 * it reports urb completions. this flag guards against bogus
4864 * attempts at re-entrant schedule scanning.
4865 */
4866 if (fotg210->scanning) {
4867 fotg210->need_rescan = true;
4868 return;
4869 }
4870 fotg210->scanning = true;
4871
4872 rescan:
4873 fotg210->need_rescan = false;
4874 if (fotg210->async_count)
4875 scan_async(fotg210);
4876 if (fotg210->intr_count > 0)
4877 scan_intr(fotg210);
4878 if (fotg210->isoc_count > 0)
4879 scan_isoc(fotg210);
4880 if (fotg210->need_rescan)
4881 goto rescan;
4882 fotg210->scanning = false;
4883
4884 /* the IO watchdog guards against hardware or driver bugs that
4885 * misplace IRQs, and should let us run completely without IRQs.
4886 * such lossage has been observed on both VT6202 and VT8235.
4887 */
4888 turn_on_io_watchdog(fotg210);
4889 }
4890
4891 /* Called when the fotg210_hcd module is removed.
4892 */
4893 static void fotg210_stop(struct usb_hcd *hcd)
4894 {
4895 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4896
4897 fotg210_dbg(fotg210, "stop\n");
4898
4899 /* no more interrupts ... */
4900
4901 spin_lock_irq(&fotg210->lock);
4902 fotg210->enabled_hrtimer_events = 0;
4903 spin_unlock_irq(&fotg210->lock);
4904
4905 fotg210_quiesce(fotg210);
4906 fotg210_silence_controller(fotg210);
4907 fotg210_reset(fotg210);
4908
4909 hrtimer_cancel(&fotg210->hrtimer);
4910 remove_sysfs_files(fotg210);
4911 remove_debug_files(fotg210);
4912
4913 /* root hub is shut down separately (first, when possible) */
4914 spin_lock_irq(&fotg210->lock);
4915 end_free_itds(fotg210);
4916 spin_unlock_irq(&fotg210->lock);
4917 fotg210_mem_cleanup(fotg210);
4918
4919 #ifdef FOTG210_STATS
4920 fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4921 fotg210->stats.normal, fotg210->stats.error,
4922 fotg210->stats.iaa, fotg210->stats.lost_iaa);
4923 fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4924 fotg210->stats.complete, fotg210->stats.unlink);
4925 #endif
4926
4927 dbg_status(fotg210, "fotg210_stop completed",
4928 fotg210_readl(fotg210, &fotg210->regs->status));
4929 }
4930
4931 /* one-time init, only for memory state */
4932 static int hcd_fotg210_init(struct usb_hcd *hcd)
4933 {
4934 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4935 u32 temp;
4936 int retval;
4937 u32 hcc_params;
4938 struct fotg210_qh_hw *hw;
4939
4940 spin_lock_init(&fotg210->lock);
4941
4942 /*
4943 * keep io watchdog by default, those good HCDs could turn off it later
4944 */
4945 fotg210->need_io_watchdog = 1;
4946
4947 hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4948 fotg210->hrtimer.function = fotg210_hrtimer_func;
4949 fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4950
4951 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4952
4953 /*
4954 * by default set standard 80% (== 100 usec/uframe) max periodic
4955 * bandwidth as required by USB 2.0
4956 */
4957 fotg210->uframe_periodic_max = 100;
4958
4959 /*
4960 * hw default: 1K periodic list heads, one per frame.
4961 * periodic_size can shrink by USBCMD update if hcc_params allows.
4962 */
4963 fotg210->periodic_size = DEFAULT_I_TDPS;
4964 INIT_LIST_HEAD(&fotg210->intr_qh_list);
4965 INIT_LIST_HEAD(&fotg210->cached_itd_list);
4966
4967 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4968 /* periodic schedule size can be smaller than default */
4969 switch (FOTG210_TUNE_FLS) {
4970 case 0:
4971 fotg210->periodic_size = 1024;
4972 break;
4973 case 1:
4974 fotg210->periodic_size = 512;
4975 break;
4976 case 2:
4977 fotg210->periodic_size = 256;
4978 break;
4979 default:
4980 BUG();
4981 }
4982 }
4983 retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4984 if (retval < 0)
4985 return retval;
4986
4987 /* controllers may cache some of the periodic schedule ... */
4988 fotg210->i_thresh = 2;
4989
4990 /*
4991 * dedicate a qh for the async ring head, since we couldn't unlink
4992 * a 'real' qh without stopping the async schedule [4.8]. use it
4993 * as the 'reclamation list head' too.
4994 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4995 * from automatically advancing to the next td after short reads.
4996 */
4997 fotg210->async->qh_next.qh = NULL;
4998 hw = fotg210->async->hw;
4999 hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
5000 hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
5001 hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
5002 hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
5003 fotg210->async->qh_state = QH_STATE_LINKED;
5004 hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
5005
5006 /* clear interrupt enables, set irq latency */
5007 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
5008 log2_irq_thresh = 0;
5009 temp = 1 << (16 + log2_irq_thresh);
5010 if (HCC_CANPARK(hcc_params)) {
5011 /* HW default park == 3, on hardware that supports it (like
5012 * NVidia and ALI silicon), maximizes throughput on the async
5013 * schedule by avoiding QH fetches between transfers.
5014 *
5015 * With fast usb storage devices and NForce2, "park" seems to
5016 * make problems: throughput reduction (!), data errors...
5017 */
5018 if (park) {
5019 park = min_t(unsigned, park, 3);
5020 temp |= CMD_PARK;
5021 temp |= park << 8;
5022 }
5023 fotg210_dbg(fotg210, "park %d\n", park);
5024 }
5025 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5026 /* periodic schedule size can be smaller than default */
5027 temp &= ~(3 << 2);
5028 temp |= (FOTG210_TUNE_FLS << 2);
5029 }
5030 fotg210->command = temp;
5031
5032 /* Accept arbitrarily long scatter-gather lists */
5033 if (!(hcd->driver->flags & HCD_LOCAL_MEM))
5034 hcd->self.sg_tablesize = ~0;
5035 return 0;
5036 }
5037
5038 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5039 static int fotg210_run(struct usb_hcd *hcd)
5040 {
5041 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5042 u32 temp;
5043 u32 hcc_params;
5044
5045 hcd->uses_new_polling = 1;
5046
5047 /* EHCI spec section 4.1 */
5048
5049 fotg210_writel(fotg210, fotg210->periodic_dma,
5050 &fotg210->regs->frame_list);
5051 fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5052 &fotg210->regs->async_next);
5053
5054 /*
5055 * hcc_params controls whether fotg210->regs->segment must (!!!)
5056 * be used; it constrains QH/ITD/SITD and QTD locations.
5057 * pci_pool consistent memory always uses segment zero.
5058 * streaming mappings for I/O buffers, like pci_map_single(),
5059 * can return segments above 4GB, if the device allows.
5060 *
5061 * NOTE: the dma mask is visible through dev->dma_mask, so
5062 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5063 * Scsi_Host.highmem_io, and so forth. It's readonly to all
5064 * host side drivers though.
5065 */
5066 hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5067
5068 /*
5069 * Philips, Intel, and maybe others need CMD_RUN before the
5070 * root hub will detect new devices (why?); NEC doesn't
5071 */
5072 fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5073 fotg210->command |= CMD_RUN;
5074 fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5075 dbg_cmd(fotg210, "init", fotg210->command);
5076
5077 /*
5078 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5079 * are explicitly handed to companion controller(s), so no TT is
5080 * involved with the root hub. (Except where one is integrated,
5081 * and there's no companion controller unless maybe for USB OTG.)
5082 *
5083 * Turning on the CF flag will transfer ownership of all ports
5084 * from the companions to the EHCI controller. If any of the
5085 * companions are in the middle of a port reset at the time, it
5086 * could cause trouble. Write-locking ehci_cf_port_reset_rwsem
5087 * guarantees that no resets are in progress. After we set CF,
5088 * a short delay lets the hardware catch up; new resets shouldn't
5089 * be started before the port switching actions could complete.
5090 */
5091 down_write(&ehci_cf_port_reset_rwsem);
5092 fotg210->rh_state = FOTG210_RH_RUNNING;
5093 /* unblock posted writes */
5094 fotg210_readl(fotg210, &fotg210->regs->command);
5095 usleep_range(5000, 10000);
5096 up_write(&ehci_cf_port_reset_rwsem);
5097 fotg210->last_periodic_enable = ktime_get_real();
5098
5099 temp = HC_VERSION(fotg210,
5100 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5101 fotg210_info(fotg210,
5102 "USB %x.%x started, EHCI %x.%02x\n",
5103 ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5104 temp >> 8, temp & 0xff);
5105
5106 fotg210_writel(fotg210, INTR_MASK,
5107 &fotg210->regs->intr_enable); /* Turn On Interrupts */
5108
5109 /* GRR this is run-once init(), being done every time the HC starts.
5110 * So long as they're part of class devices, we can't do it init()
5111 * since the class device isn't created that early.
5112 */
5113 create_debug_files(fotg210);
5114 create_sysfs_files(fotg210);
5115
5116 return 0;
5117 }
5118
5119 static int fotg210_setup(struct usb_hcd *hcd)
5120 {
5121 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5122 int retval;
5123
5124 fotg210->regs = (void __iomem *)fotg210->caps +
5125 HC_LENGTH(fotg210,
5126 fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5127 dbg_hcs_params(fotg210, "reset");
5128 dbg_hcc_params(fotg210, "reset");
5129
5130 /* cache this readonly data; minimize chip reads */
5131 fotg210->hcs_params = fotg210_readl(fotg210,
5132 &fotg210->caps->hcs_params);
5133
5134 fotg210->sbrn = HCD_USB2;
5135
5136 /* data structure init */
5137 retval = hcd_fotg210_init(hcd);
5138 if (retval)
5139 return retval;
5140
5141 retval = fotg210_halt(fotg210);
5142 if (retval)
5143 return retval;
5144
5145 fotg210_reset(fotg210);
5146
5147 return 0;
5148 }
5149
5150 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5151 {
5152 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5153 u32 status, masked_status, pcd_status = 0, cmd;
5154 int bh;
5155
5156 spin_lock(&fotg210->lock);
5157
5158 status = fotg210_readl(fotg210, &fotg210->regs->status);
5159
5160 /* e.g. cardbus physical eject */
5161 if (status == ~(u32) 0) {
5162 fotg210_dbg(fotg210, "device removed\n");
5163 goto dead;
5164 }
5165
5166 /*
5167 * We don't use STS_FLR, but some controllers don't like it to
5168 * remain on, so mask it out along with the other status bits.
5169 */
5170 masked_status = status & (INTR_MASK | STS_FLR);
5171
5172 /* Shared IRQ? */
5173 if (!masked_status ||
5174 unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5175 spin_unlock(&fotg210->lock);
5176 return IRQ_NONE;
5177 }
5178
5179 /* clear (just) interrupts */
5180 fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5181 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5182 bh = 0;
5183
5184 /* unrequested/ignored: Frame List Rollover */
5185 dbg_status(fotg210, "irq", status);
5186
5187 /* INT, ERR, and IAA interrupt rates can be throttled */
5188
5189 /* normal [4.15.1.2] or error [4.15.1.1] completion */
5190 if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5191 if (likely((status & STS_ERR) == 0))
5192 COUNT(fotg210->stats.normal);
5193 else
5194 COUNT(fotg210->stats.error);
5195 bh = 1;
5196 }
5197
5198 /* complete the unlinking of some qh [4.15.2.3] */
5199 if (status & STS_IAA) {
5200
5201 /* Turn off the IAA watchdog */
5202 fotg210->enabled_hrtimer_events &=
5203 ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5204
5205 /*
5206 * Mild optimization: Allow another IAAD to reset the
5207 * hrtimer, if one occurs before the next expiration.
5208 * In theory we could always cancel the hrtimer, but
5209 * tests show that about half the time it will be reset
5210 * for some other event anyway.
5211 */
5212 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5213 ++fotg210->next_hrtimer_event;
5214
5215 /* guard against (alleged) silicon errata */
5216 if (cmd & CMD_IAAD)
5217 fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5218 if (fotg210->async_iaa) {
5219 COUNT(fotg210->stats.iaa);
5220 end_unlink_async(fotg210);
5221 } else
5222 fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5223 }
5224
5225 /* remote wakeup [4.3.1] */
5226 if (status & STS_PCD) {
5227 int pstatus;
5228 u32 __iomem *status_reg = &fotg210->regs->port_status;
5229
5230 /* kick root hub later */
5231 pcd_status = status;
5232
5233 /* resume root hub? */
5234 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5235 usb_hcd_resume_root_hub(hcd);
5236
5237 pstatus = fotg210_readl(fotg210, status_reg);
5238
5239 if (test_bit(0, &fotg210->suspended_ports) &&
5240 ((pstatus & PORT_RESUME) ||
5241 !(pstatus & PORT_SUSPEND)) &&
5242 (pstatus & PORT_PE) &&
5243 fotg210->reset_done[0] == 0) {
5244
5245 /* start 20 msec resume signaling from this port,
5246 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5247 * stop that signaling. Use 5 ms extra for safety,
5248 * like usb_port_resume() does.
5249 */
5250 fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5251 set_bit(0, &fotg210->resuming_ports);
5252 fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5253 mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5254 }
5255 }
5256
5257 /* PCI errors [4.15.2.4] */
5258 if (unlikely((status & STS_FATAL) != 0)) {
5259 fotg210_err(fotg210, "fatal error\n");
5260 dbg_cmd(fotg210, "fatal", cmd);
5261 dbg_status(fotg210, "fatal", status);
5262 dead:
5263 usb_hc_died(hcd);
5264
5265 /* Don't let the controller do anything more */
5266 fotg210->shutdown = true;
5267 fotg210->rh_state = FOTG210_RH_STOPPING;
5268 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5269 fotg210_writel(fotg210, fotg210->command,
5270 &fotg210->regs->command);
5271 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5272 fotg210_handle_controller_death(fotg210);
5273
5274 /* Handle completions when the controller stops */
5275 bh = 0;
5276 }
5277
5278 if (bh)
5279 fotg210_work(fotg210);
5280 spin_unlock(&fotg210->lock);
5281 if (pcd_status)
5282 usb_hcd_poll_rh_status(hcd);
5283 return IRQ_HANDLED;
5284 }
5285
5286 /* non-error returns are a promise to giveback() the urb later
5287 * we drop ownership so next owner (or urb unlink) can get it
5288 *
5289 * urb + dev is in hcd.self.controller.urb_list
5290 * we're queueing TDs onto software and hardware lists
5291 *
5292 * hcd-specific init for hcpriv hasn't been done yet
5293 *
5294 * NOTE: control, bulk, and interrupt share the same code to append TDs
5295 * to a (possibly active) QH, and the same QH scanning code.
5296 */
5297 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5298 gfp_t mem_flags)
5299 {
5300 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5301 struct list_head qtd_list;
5302
5303 INIT_LIST_HEAD(&qtd_list);
5304
5305 switch (usb_pipetype(urb->pipe)) {
5306 case PIPE_CONTROL:
5307 /* qh_completions() code doesn't handle all the fault cases
5308 * in multi-TD control transfers. Even 1KB is rare anyway.
5309 */
5310 if (urb->transfer_buffer_length > (16 * 1024))
5311 return -EMSGSIZE;
5312 /* FALLTHROUGH */
5313 /* case PIPE_BULK: */
5314 default:
5315 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5316 return -ENOMEM;
5317 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5318
5319 case PIPE_INTERRUPT:
5320 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5321 return -ENOMEM;
5322 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5323
5324 case PIPE_ISOCHRONOUS:
5325 return itd_submit(fotg210, urb, mem_flags);
5326 }
5327 }
5328
5329 /* remove from hardware lists
5330 * completions normally happen asynchronously
5331 */
5332
5333 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5334 {
5335 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5336 struct fotg210_qh *qh;
5337 unsigned long flags;
5338 int rc;
5339
5340 spin_lock_irqsave(&fotg210->lock, flags);
5341 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5342 if (rc)
5343 goto done;
5344
5345 switch (usb_pipetype(urb->pipe)) {
5346 /* case PIPE_CONTROL: */
5347 /* case PIPE_BULK:*/
5348 default:
5349 qh = (struct fotg210_qh *) urb->hcpriv;
5350 if (!qh)
5351 break;
5352 switch (qh->qh_state) {
5353 case QH_STATE_LINKED:
5354 case QH_STATE_COMPLETING:
5355 start_unlink_async(fotg210, qh);
5356 break;
5357 case QH_STATE_UNLINK:
5358 case QH_STATE_UNLINK_WAIT:
5359 /* already started */
5360 break;
5361 case QH_STATE_IDLE:
5362 /* QH might be waiting for a Clear-TT-Buffer */
5363 qh_completions(fotg210, qh);
5364 break;
5365 }
5366 break;
5367
5368 case PIPE_INTERRUPT:
5369 qh = (struct fotg210_qh *) urb->hcpriv;
5370 if (!qh)
5371 break;
5372 switch (qh->qh_state) {
5373 case QH_STATE_LINKED:
5374 case QH_STATE_COMPLETING:
5375 start_unlink_intr(fotg210, qh);
5376 break;
5377 case QH_STATE_IDLE:
5378 qh_completions(fotg210, qh);
5379 break;
5380 default:
5381 fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5382 qh, qh->qh_state);
5383 goto done;
5384 }
5385 break;
5386
5387 case PIPE_ISOCHRONOUS:
5388 /* itd... */
5389
5390 /* wait till next completion, do it then. */
5391 /* completion irqs can wait up to 1024 msec, */
5392 break;
5393 }
5394 done:
5395 spin_unlock_irqrestore(&fotg210->lock, flags);
5396 return rc;
5397 }
5398
5399 /* bulk qh holds the data toggle */
5400
5401 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5402 struct usb_host_endpoint *ep)
5403 {
5404 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5405 unsigned long flags;
5406 struct fotg210_qh *qh, *tmp;
5407
5408 /* ASSERT: any requests/urbs are being unlinked */
5409 /* ASSERT: nobody can be submitting urbs for this any more */
5410
5411 rescan:
5412 spin_lock_irqsave(&fotg210->lock, flags);
5413 qh = ep->hcpriv;
5414 if (!qh)
5415 goto done;
5416
5417 /* endpoints can be iso streams. for now, we don't
5418 * accelerate iso completions ... so spin a while.
5419 */
5420 if (qh->hw == NULL) {
5421 struct fotg210_iso_stream *stream = ep->hcpriv;
5422
5423 if (!list_empty(&stream->td_list))
5424 goto idle_timeout;
5425
5426 /* BUG_ON(!list_empty(&stream->free_list)); */
5427 kfree(stream);
5428 goto done;
5429 }
5430
5431 if (fotg210->rh_state < FOTG210_RH_RUNNING)
5432 qh->qh_state = QH_STATE_IDLE;
5433 switch (qh->qh_state) {
5434 case QH_STATE_LINKED:
5435 case QH_STATE_COMPLETING:
5436 for (tmp = fotg210->async->qh_next.qh;
5437 tmp && tmp != qh;
5438 tmp = tmp->qh_next.qh)
5439 continue;
5440 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5441 * may already be unlinked.
5442 */
5443 if (tmp)
5444 start_unlink_async(fotg210, qh);
5445 /* FALL THROUGH */
5446 case QH_STATE_UNLINK: /* wait for hw to finish? */
5447 case QH_STATE_UNLINK_WAIT:
5448 idle_timeout:
5449 spin_unlock_irqrestore(&fotg210->lock, flags);
5450 schedule_timeout_uninterruptible(1);
5451 goto rescan;
5452 case QH_STATE_IDLE: /* fully unlinked */
5453 if (qh->clearing_tt)
5454 goto idle_timeout;
5455 if (list_empty(&qh->qtd_list)) {
5456 qh_destroy(fotg210, qh);
5457 break;
5458 }
5459 /* else FALL THROUGH */
5460 default:
5461 /* caller was supposed to have unlinked any requests;
5462 * that's not our job. just leak this memory.
5463 */
5464 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5465 qh, ep->desc.bEndpointAddress, qh->qh_state,
5466 list_empty(&qh->qtd_list) ? "" : "(has tds)");
5467 break;
5468 }
5469 done:
5470 ep->hcpriv = NULL;
5471 spin_unlock_irqrestore(&fotg210->lock, flags);
5472 }
5473
5474 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5475 struct usb_host_endpoint *ep)
5476 {
5477 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5478 struct fotg210_qh *qh;
5479 int eptype = usb_endpoint_type(&ep->desc);
5480 int epnum = usb_endpoint_num(&ep->desc);
5481 int is_out = usb_endpoint_dir_out(&ep->desc);
5482 unsigned long flags;
5483
5484 if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5485 return;
5486
5487 spin_lock_irqsave(&fotg210->lock, flags);
5488 qh = ep->hcpriv;
5489
5490 /* For Bulk and Interrupt endpoints we maintain the toggle state
5491 * in the hardware; the toggle bits in udev aren't used at all.
5492 * When an endpoint is reset by usb_clear_halt() we must reset
5493 * the toggle bit in the QH.
5494 */
5495 if (qh) {
5496 usb_settoggle(qh->dev, epnum, is_out, 0);
5497 if (!list_empty(&qh->qtd_list)) {
5498 WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5499 } else if (qh->qh_state == QH_STATE_LINKED ||
5500 qh->qh_state == QH_STATE_COMPLETING) {
5501
5502 /* The toggle value in the QH can't be updated
5503 * while the QH is active. Unlink it now;
5504 * re-linking will call qh_refresh().
5505 */
5506 if (eptype == USB_ENDPOINT_XFER_BULK)
5507 start_unlink_async(fotg210, qh);
5508 else
5509 start_unlink_intr(fotg210, qh);
5510 }
5511 }
5512 spin_unlock_irqrestore(&fotg210->lock, flags);
5513 }
5514
5515 static int fotg210_get_frame(struct usb_hcd *hcd)
5516 {
5517 struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5518
5519 return (fotg210_read_frame_index(fotg210) >> 3) %
5520 fotg210->periodic_size;
5521 }
5522
5523 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5524 * because its registers (and irq) are shared between host/gadget/otg
5525 * functions and in order to facilitate role switching we cannot
5526 * give the fotg210 driver exclusive access to those.
5527 */
5528 MODULE_DESCRIPTION(DRIVER_DESC);
5529 MODULE_AUTHOR(DRIVER_AUTHOR);
5530 MODULE_LICENSE("GPL");
5531
5532 static const struct hc_driver fotg210_fotg210_hc_driver = {
5533 .description = hcd_name,
5534 .product_desc = "Faraday USB2.0 Host Controller",
5535 .hcd_priv_size = sizeof(struct fotg210_hcd),
5536
5537 /*
5538 * generic hardware linkage
5539 */
5540 .irq = fotg210_irq,
5541 .flags = HCD_MEMORY | HCD_USB2,
5542
5543 /*
5544 * basic lifecycle operations
5545 */
5546 .reset = hcd_fotg210_init,
5547 .start = fotg210_run,
5548 .stop = fotg210_stop,
5549 .shutdown = fotg210_shutdown,
5550
5551 /*
5552 * managing i/o requests and associated device resources
5553 */
5554 .urb_enqueue = fotg210_urb_enqueue,
5555 .urb_dequeue = fotg210_urb_dequeue,
5556 .endpoint_disable = fotg210_endpoint_disable,
5557 .endpoint_reset = fotg210_endpoint_reset,
5558
5559 /*
5560 * scheduling support
5561 */
5562 .get_frame_number = fotg210_get_frame,
5563
5564 /*
5565 * root hub support
5566 */
5567 .hub_status_data = fotg210_hub_status_data,
5568 .hub_control = fotg210_hub_control,
5569 .bus_suspend = fotg210_bus_suspend,
5570 .bus_resume = fotg210_bus_resume,
5571
5572 .relinquish_port = fotg210_relinquish_port,
5573 .port_handed_over = fotg210_port_handed_over,
5574
5575 .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5576 };
5577
5578 static void fotg210_init(struct fotg210_hcd *fotg210)
5579 {
5580 u32 value;
5581
5582 iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5583 &fotg210->regs->gmir);
5584
5585 value = ioread32(&fotg210->regs->otgcsr);
5586 value &= ~OTGCSR_A_BUS_DROP;
5587 value |= OTGCSR_A_BUS_REQ;
5588 iowrite32(value, &fotg210->regs->otgcsr);
5589 }
5590
5591 /**
5592 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5593 *
5594 * Allocates basic resources for this USB host controller, and
5595 * then invokes the start() method for the HCD associated with it
5596 * through the hotplug entry's driver_data.
5597 */
5598 static int fotg210_hcd_probe(struct platform_device *pdev)
5599 {
5600 struct device *dev = &pdev->dev;
5601 struct usb_hcd *hcd;
5602 struct resource *res;
5603 int irq;
5604 int retval = -ENODEV;
5605 struct fotg210_hcd *fotg210;
5606
5607 if (usb_disabled())
5608 return -ENODEV;
5609
5610 pdev->dev.power.power_state = PMSG_ON;
5611
5612 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5613 if (!res) {
5614 dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5615 dev_name(dev));
5616 return -ENODEV;
5617 }
5618
5619 irq = res->start;
5620
5621 hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5622 dev_name(dev));
5623 if (!hcd) {
5624 dev_err(dev, "failed to create hcd with err %d\n", retval);
5625 retval = -ENOMEM;
5626 goto fail_create_hcd;
5627 }
5628
5629 hcd->has_tt = 1;
5630
5631 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5632 hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5633 if (IS_ERR(hcd->regs)) {
5634 retval = PTR_ERR(hcd->regs);
5635 goto failed;
5636 }
5637
5638 hcd->rsrc_start = res->start;
5639 hcd->rsrc_len = resource_size(res);
5640
5641 fotg210 = hcd_to_fotg210(hcd);
5642
5643 fotg210->caps = hcd->regs;
5644
5645 retval = fotg210_setup(hcd);
5646 if (retval)
5647 goto failed;
5648
5649 fotg210_init(fotg210);
5650
5651 retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5652 if (retval) {
5653 dev_err(dev, "failed to add hcd with err %d\n", retval);
5654 goto failed;
5655 }
5656 device_wakeup_enable(hcd->self.controller);
5657
5658 return retval;
5659
5660 failed:
5661 usb_put_hcd(hcd);
5662 fail_create_hcd:
5663 dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5664 return retval;
5665 }
5666
5667 /**
5668 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5669 * @dev: USB Host Controller being removed
5670 *
5671 */
5672 static int fotg210_hcd_remove(struct platform_device *pdev)
5673 {
5674 struct device *dev = &pdev->dev;
5675 struct usb_hcd *hcd = dev_get_drvdata(dev);
5676
5677 if (!hcd)
5678 return 0;
5679
5680 usb_remove_hcd(hcd);
5681 usb_put_hcd(hcd);
5682
5683 return 0;
5684 }
5685
5686 static struct platform_driver fotg210_hcd_driver = {
5687 .driver = {
5688 .name = "fotg210-hcd",
5689 },
5690 .probe = fotg210_hcd_probe,
5691 .remove = fotg210_hcd_remove,
5692 };
5693
5694 static int __init fotg210_hcd_init(void)
5695 {
5696 int retval = 0;
5697
5698 if (usb_disabled())
5699 return -ENODEV;
5700
5701 pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5702 set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5703 if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5704 test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5705 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5706
5707 pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n",
5708 hcd_name, sizeof(struct fotg210_qh),
5709 sizeof(struct fotg210_qtd),
5710 sizeof(struct fotg210_itd));
5711
5712 fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5713 if (!fotg210_debug_root) {
5714 retval = -ENOENT;
5715 goto err_debug;
5716 }
5717
5718 retval = platform_driver_register(&fotg210_hcd_driver);
5719 if (retval < 0)
5720 goto clean;
5721 return retval;
5722
5723 clean:
5724 debugfs_remove(fotg210_debug_root);
5725 fotg210_debug_root = NULL;
5726 err_debug:
5727 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5728 return retval;
5729 }
5730 module_init(fotg210_hcd_init);
5731
5732 static void __exit fotg210_hcd_cleanup(void)
5733 {
5734 platform_driver_unregister(&fotg210_hcd_driver);
5735 debugfs_remove(fotg210_debug_root);
5736 clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5737 }
5738 module_exit(fotg210_hcd_cleanup);
This page took 0.284849 seconds and 5 git commands to generate.