Merge branch 'for-linville' of git://github.com/kvalo/ath6kl
[deliverable/linux.git] / drivers / usb / host / oxu210hp-hcd.c
1 /*
2 * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
3 * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
4 *
5 * This code is *strongly* based on EHCI-HCD code by David Brownell since
6 * the chip is a quasi-EHCI compatible.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
11 * option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/dmapool.h>
26 #include <linux/kernel.h>
27 #include <linux/delay.h>
28 #include <linux/ioport.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/errno.h>
32 #include <linux/init.h>
33 #include <linux/timer.h>
34 #include <linux/list.h>
35 #include <linux/interrupt.h>
36 #include <linux/usb.h>
37 #include <linux/usb/hcd.h>
38 #include <linux/moduleparam.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/io.h>
41
42 #include <asm/irq.h>
43 #include <asm/unaligned.h>
44
45 #include <linux/irq.h>
46 #include <linux/platform_device.h>
47
48 #include "oxu210hp.h"
49
50 #define DRIVER_VERSION "0.0.50"
51
52 /*
53 * Main defines
54 */
55
56 #define oxu_dbg(oxu, fmt, args...) \
57 dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
58 #define oxu_err(oxu, fmt, args...) \
59 dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
60 #define oxu_info(oxu, fmt, args...) \
61 dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
62
63 static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
64 {
65 return container_of((void *) oxu, struct usb_hcd, hcd_priv);
66 }
67
68 static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
69 {
70 return (struct oxu_hcd *) (hcd->hcd_priv);
71 }
72
73 /*
74 * Debug stuff
75 */
76
77 #undef OXU_URB_TRACE
78 #undef OXU_VERBOSE_DEBUG
79
80 #ifdef OXU_VERBOSE_DEBUG
81 #define oxu_vdbg oxu_dbg
82 #else
83 #define oxu_vdbg(oxu, fmt, args...) /* Nop */
84 #endif
85
86 #ifdef DEBUG
87
88 static int __attribute__((__unused__))
89 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
90 {
91 return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
92 label, label[0] ? " " : "", status,
93 (status & STS_ASS) ? " Async" : "",
94 (status & STS_PSS) ? " Periodic" : "",
95 (status & STS_RECL) ? " Recl" : "",
96 (status & STS_HALT) ? " Halt" : "",
97 (status & STS_IAA) ? " IAA" : "",
98 (status & STS_FATAL) ? " FATAL" : "",
99 (status & STS_FLR) ? " FLR" : "",
100 (status & STS_PCD) ? " PCD" : "",
101 (status & STS_ERR) ? " ERR" : "",
102 (status & STS_INT) ? " INT" : ""
103 );
104 }
105
106 static int __attribute__((__unused__))
107 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
108 {
109 return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
110 label, label[0] ? " " : "", enable,
111 (enable & STS_IAA) ? " IAA" : "",
112 (enable & STS_FATAL) ? " FATAL" : "",
113 (enable & STS_FLR) ? " FLR" : "",
114 (enable & STS_PCD) ? " PCD" : "",
115 (enable & STS_ERR) ? " ERR" : "",
116 (enable & STS_INT) ? " INT" : ""
117 );
118 }
119
120 static const char *const fls_strings[] =
121 { "1024", "512", "256", "??" };
122
123 static int dbg_command_buf(char *buf, unsigned len,
124 const char *label, u32 command)
125 {
126 return scnprintf(buf, len,
127 "%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
128 label, label[0] ? " " : "", command,
129 (command & CMD_PARK) ? "park" : "(park)",
130 CMD_PARK_CNT(command),
131 (command >> 16) & 0x3f,
132 (command & CMD_LRESET) ? " LReset" : "",
133 (command & CMD_IAAD) ? " IAAD" : "",
134 (command & CMD_ASE) ? " Async" : "",
135 (command & CMD_PSE) ? " Periodic" : "",
136 fls_strings[(command >> 2) & 0x3],
137 (command & CMD_RESET) ? " Reset" : "",
138 (command & CMD_RUN) ? "RUN" : "HALT"
139 );
140 }
141
142 static int dbg_port_buf(char *buf, unsigned len, const char *label,
143 int port, u32 status)
144 {
145 char *sig;
146
147 /* signaling state */
148 switch (status & (3 << 10)) {
149 case 0 << 10:
150 sig = "se0";
151 break;
152 case 1 << 10:
153 sig = "k"; /* low speed */
154 break;
155 case 2 << 10:
156 sig = "j";
157 break;
158 default:
159 sig = "?";
160 break;
161 }
162
163 return scnprintf(buf, len,
164 "%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
165 label, label[0] ? " " : "", port, status,
166 (status & PORT_POWER) ? " POWER" : "",
167 (status & PORT_OWNER) ? " OWNER" : "",
168 sig,
169 (status & PORT_RESET) ? " RESET" : "",
170 (status & PORT_SUSPEND) ? " SUSPEND" : "",
171 (status & PORT_RESUME) ? " RESUME" : "",
172 (status & PORT_OCC) ? " OCC" : "",
173 (status & PORT_OC) ? " OC" : "",
174 (status & PORT_PEC) ? " PEC" : "",
175 (status & PORT_PE) ? " PE" : "",
176 (status & PORT_CSC) ? " CSC" : "",
177 (status & PORT_CONNECT) ? " CONNECT" : ""
178 );
179 }
180
181 #else
182
183 static inline int __attribute__((__unused__))
184 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
185 { return 0; }
186
187 static inline int __attribute__((__unused__))
188 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
189 { return 0; }
190
191 static inline int __attribute__((__unused__))
192 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
193 { return 0; }
194
195 static inline int __attribute__((__unused__))
196 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
197 { return 0; }
198
199 #endif /* DEBUG */
200
201 /* functions have the "wrong" filename when they're output... */
202 #define dbg_status(oxu, label, status) { \
203 char _buf[80]; \
204 dbg_status_buf(_buf, sizeof _buf, label, status); \
205 oxu_dbg(oxu, "%s\n", _buf); \
206 }
207
208 #define dbg_cmd(oxu, label, command) { \
209 char _buf[80]; \
210 dbg_command_buf(_buf, sizeof _buf, label, command); \
211 oxu_dbg(oxu, "%s\n", _buf); \
212 }
213
214 #define dbg_port(oxu, label, port, status) { \
215 char _buf[80]; \
216 dbg_port_buf(_buf, sizeof _buf, label, port, status); \
217 oxu_dbg(oxu, "%s\n", _buf); \
218 }
219
220 /*
221 * Module parameters
222 */
223
224 /* Initial IRQ latency: faster than hw default */
225 static int log2_irq_thresh; /* 0 to 6 */
226 module_param(log2_irq_thresh, int, S_IRUGO);
227 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
228
229 /* Initial park setting: slower than hw default */
230 static unsigned park;
231 module_param(park, uint, S_IRUGO);
232 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
233
234 /* For flakey hardware, ignore overcurrent indicators */
235 static bool ignore_oc;
236 module_param(ignore_oc, bool, S_IRUGO);
237 MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
238
239
240 static void ehci_work(struct oxu_hcd *oxu);
241 static int oxu_hub_control(struct usb_hcd *hcd,
242 u16 typeReq, u16 wValue, u16 wIndex,
243 char *buf, u16 wLength);
244
245 /*
246 * Local functions
247 */
248
249 /* Low level read/write registers functions */
250 static inline u32 oxu_readl(void *base, u32 reg)
251 {
252 return readl(base + reg);
253 }
254
255 static inline void oxu_writel(void *base, u32 reg, u32 val)
256 {
257 writel(val, base + reg);
258 }
259
260 static inline void timer_action_done(struct oxu_hcd *oxu,
261 enum ehci_timer_action action)
262 {
263 clear_bit(action, &oxu->actions);
264 }
265
266 static inline void timer_action(struct oxu_hcd *oxu,
267 enum ehci_timer_action action)
268 {
269 if (!test_and_set_bit(action, &oxu->actions)) {
270 unsigned long t;
271
272 switch (action) {
273 case TIMER_IAA_WATCHDOG:
274 t = EHCI_IAA_JIFFIES;
275 break;
276 case TIMER_IO_WATCHDOG:
277 t = EHCI_IO_JIFFIES;
278 break;
279 case TIMER_ASYNC_OFF:
280 t = EHCI_ASYNC_JIFFIES;
281 break;
282 case TIMER_ASYNC_SHRINK:
283 default:
284 t = EHCI_SHRINK_JIFFIES;
285 break;
286 }
287 t += jiffies;
288 /* all timings except IAA watchdog can be overridden.
289 * async queue SHRINK often precedes IAA. while it's ready
290 * to go OFF neither can matter, and afterwards the IO
291 * watchdog stops unless there's still periodic traffic.
292 */
293 if (action != TIMER_IAA_WATCHDOG
294 && t > oxu->watchdog.expires
295 && timer_pending(&oxu->watchdog))
296 return;
297 mod_timer(&oxu->watchdog, t);
298 }
299 }
300
301 /*
302 * handshake - spin reading hc until handshake completes or fails
303 * @ptr: address of hc register to be read
304 * @mask: bits to look at in result of read
305 * @done: value of those bits when handshake succeeds
306 * @usec: timeout in microseconds
307 *
308 * Returns negative errno, or zero on success
309 *
310 * Success happens when the "mask" bits have the specified value (hardware
311 * handshake done). There are two failure modes: "usec" have passed (major
312 * hardware flakeout), or the register reads as all-ones (hardware removed).
313 *
314 * That last failure should_only happen in cases like physical cardbus eject
315 * before driver shutdown. But it also seems to be caused by bugs in cardbus
316 * bridge shutdown: shutting down the bridge before the devices using it.
317 */
318 static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
319 u32 mask, u32 done, int usec)
320 {
321 u32 result;
322
323 do {
324 result = readl(ptr);
325 if (result == ~(u32)0) /* card removed */
326 return -ENODEV;
327 result &= mask;
328 if (result == done)
329 return 0;
330 udelay(1);
331 usec--;
332 } while (usec > 0);
333 return -ETIMEDOUT;
334 }
335
336 /* Force HC to halt state from unknown (EHCI spec section 2.3) */
337 static int ehci_halt(struct oxu_hcd *oxu)
338 {
339 u32 temp = readl(&oxu->regs->status);
340
341 /* disable any irqs left enabled by previous code */
342 writel(0, &oxu->regs->intr_enable);
343
344 if ((temp & STS_HALT) != 0)
345 return 0;
346
347 temp = readl(&oxu->regs->command);
348 temp &= ~CMD_RUN;
349 writel(temp, &oxu->regs->command);
350 return handshake(oxu, &oxu->regs->status,
351 STS_HALT, STS_HALT, 16 * 125);
352 }
353
354 /* Put TDI/ARC silicon into EHCI mode */
355 static void tdi_reset(struct oxu_hcd *oxu)
356 {
357 u32 __iomem *reg_ptr;
358 u32 tmp;
359
360 reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
361 tmp = readl(reg_ptr);
362 tmp |= 0x3;
363 writel(tmp, reg_ptr);
364 }
365
366 /* Reset a non-running (STS_HALT == 1) controller */
367 static int ehci_reset(struct oxu_hcd *oxu)
368 {
369 int retval;
370 u32 command = readl(&oxu->regs->command);
371
372 command |= CMD_RESET;
373 dbg_cmd(oxu, "reset", command);
374 writel(command, &oxu->regs->command);
375 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
376 oxu->next_statechange = jiffies;
377 retval = handshake(oxu, &oxu->regs->command,
378 CMD_RESET, 0, 250 * 1000);
379
380 if (retval)
381 return retval;
382
383 tdi_reset(oxu);
384
385 return retval;
386 }
387
388 /* Idle the controller (from running) */
389 static void ehci_quiesce(struct oxu_hcd *oxu)
390 {
391 u32 temp;
392
393 #ifdef DEBUG
394 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
395 BUG();
396 #endif
397
398 /* wait for any schedule enables/disables to take effect */
399 temp = readl(&oxu->regs->command) << 10;
400 temp &= STS_ASS | STS_PSS;
401 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
402 temp, 16 * 125) != 0) {
403 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
404 return;
405 }
406
407 /* then disable anything that's still active */
408 temp = readl(&oxu->regs->command);
409 temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
410 writel(temp, &oxu->regs->command);
411
412 /* hardware can take 16 microframes to turn off ... */
413 if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
414 0, 16 * 125) != 0) {
415 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
416 return;
417 }
418 }
419
420 static int check_reset_complete(struct oxu_hcd *oxu, int index,
421 u32 __iomem *status_reg, int port_status)
422 {
423 if (!(port_status & PORT_CONNECT)) {
424 oxu->reset_done[index] = 0;
425 return port_status;
426 }
427
428 /* if reset finished and it's still not enabled -- handoff */
429 if (!(port_status & PORT_PE)) {
430 oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
431 index+1);
432 return port_status;
433 } else
434 oxu_dbg(oxu, "port %d high speed\n", index + 1);
435
436 return port_status;
437 }
438
439 static void ehci_hub_descriptor(struct oxu_hcd *oxu,
440 struct usb_hub_descriptor *desc)
441 {
442 int ports = HCS_N_PORTS(oxu->hcs_params);
443 u16 temp;
444
445 desc->bDescriptorType = 0x29;
446 desc->bPwrOn2PwrGood = 10; /* oxu 1.0, 2.3.9 says 20ms max */
447 desc->bHubContrCurrent = 0;
448
449 desc->bNbrPorts = ports;
450 temp = 1 + (ports / 8);
451 desc->bDescLength = 7 + 2 * temp;
452
453 /* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
454 memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
455 memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
456
457 temp = 0x0008; /* per-port overcurrent reporting */
458 if (HCS_PPC(oxu->hcs_params))
459 temp |= 0x0001; /* per-port power control */
460 else
461 temp |= 0x0002; /* no power switching */
462 desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
463 }
464
465
466 /* Allocate an OXU210HP on-chip memory data buffer
467 *
468 * An on-chip memory data buffer is required for each OXU210HP USB transfer.
469 * Each transfer descriptor has one or more on-chip memory data buffers.
470 *
471 * Data buffers are allocated from a fix sized pool of data blocks.
472 * To minimise fragmentation and give reasonable memory utlisation,
473 * data buffers are allocated with sizes the power of 2 multiples of
474 * the block size, starting on an address a multiple of the allocated size.
475 *
476 * FIXME: callers of this function require a buffer to be allocated for
477 * len=0. This is a waste of on-chip memory and should be fix. Then this
478 * function should be changed to not allocate a buffer for len=0.
479 */
480 static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
481 {
482 int n_blocks; /* minium blocks needed to hold len */
483 int a_blocks; /* blocks allocated */
484 int i, j;
485
486 /* Don't allocte bigger than supported */
487 if (len > BUFFER_SIZE * BUFFER_NUM) {
488 oxu_err(oxu, "buffer too big (%d)\n", len);
489 return -ENOMEM;
490 }
491
492 spin_lock(&oxu->mem_lock);
493
494 /* Number of blocks needed to hold len */
495 n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
496
497 /* Round the number of blocks up to the power of 2 */
498 for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
499 ;
500
501 /* Find a suitable available data buffer */
502 for (i = 0; i < BUFFER_NUM;
503 i += max(a_blocks, (int)oxu->db_used[i])) {
504
505 /* Check all the required blocks are available */
506 for (j = 0; j < a_blocks; j++)
507 if (oxu->db_used[i + j])
508 break;
509
510 if (j != a_blocks)
511 continue;
512
513 /* Allocate blocks found! */
514 qtd->buffer = (void *) &oxu->mem->db_pool[i];
515 qtd->buffer_dma = virt_to_phys(qtd->buffer);
516
517 qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
518 oxu->db_used[i] = a_blocks;
519
520 spin_unlock(&oxu->mem_lock);
521
522 return 0;
523 }
524
525 /* Failed */
526
527 spin_unlock(&oxu->mem_lock);
528
529 return -ENOMEM;
530 }
531
532 static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
533 {
534 int index;
535
536 spin_lock(&oxu->mem_lock);
537
538 index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
539 / BUFFER_SIZE;
540 oxu->db_used[index] = 0;
541 qtd->qtd_buffer_len = 0;
542 qtd->buffer_dma = 0;
543 qtd->buffer = NULL;
544
545 spin_unlock(&oxu->mem_lock);
546 }
547
548 static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
549 {
550 memset(qtd, 0, sizeof *qtd);
551 qtd->qtd_dma = dma;
552 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
553 qtd->hw_next = EHCI_LIST_END;
554 qtd->hw_alt_next = EHCI_LIST_END;
555 INIT_LIST_HEAD(&qtd->qtd_list);
556 }
557
558 static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
559 {
560 int index;
561
562 if (qtd->buffer)
563 oxu_buf_free(oxu, qtd);
564
565 spin_lock(&oxu->mem_lock);
566
567 index = qtd - &oxu->mem->qtd_pool[0];
568 oxu->qtd_used[index] = 0;
569
570 spin_unlock(&oxu->mem_lock);
571 }
572
573 static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
574 {
575 int i;
576 struct ehci_qtd *qtd = NULL;
577
578 spin_lock(&oxu->mem_lock);
579
580 for (i = 0; i < QTD_NUM; i++)
581 if (!oxu->qtd_used[i])
582 break;
583
584 if (i < QTD_NUM) {
585 qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
586 memset(qtd, 0, sizeof *qtd);
587
588 qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
589 qtd->hw_next = EHCI_LIST_END;
590 qtd->hw_alt_next = EHCI_LIST_END;
591 INIT_LIST_HEAD(&qtd->qtd_list);
592
593 qtd->qtd_dma = virt_to_phys(qtd);
594
595 oxu->qtd_used[i] = 1;
596 }
597
598 spin_unlock(&oxu->mem_lock);
599
600 return qtd;
601 }
602
603 static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
604 {
605 int index;
606
607 spin_lock(&oxu->mem_lock);
608
609 index = qh - &oxu->mem->qh_pool[0];
610 oxu->qh_used[index] = 0;
611
612 spin_unlock(&oxu->mem_lock);
613 }
614
615 static void qh_destroy(struct kref *kref)
616 {
617 struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
618 struct oxu_hcd *oxu = qh->oxu;
619
620 /* clean qtds first, and know this is not linked */
621 if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
622 oxu_dbg(oxu, "unused qh not empty!\n");
623 BUG();
624 }
625 if (qh->dummy)
626 oxu_qtd_free(oxu, qh->dummy);
627 oxu_qh_free(oxu, qh);
628 }
629
630 static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
631 {
632 int i;
633 struct ehci_qh *qh = NULL;
634
635 spin_lock(&oxu->mem_lock);
636
637 for (i = 0; i < QHEAD_NUM; i++)
638 if (!oxu->qh_used[i])
639 break;
640
641 if (i < QHEAD_NUM) {
642 qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
643 memset(qh, 0, sizeof *qh);
644
645 kref_init(&qh->kref);
646 qh->oxu = oxu;
647 qh->qh_dma = virt_to_phys(qh);
648 INIT_LIST_HEAD(&qh->qtd_list);
649
650 /* dummy td enables safe urb queuing */
651 qh->dummy = ehci_qtd_alloc(oxu);
652 if (qh->dummy == NULL) {
653 oxu_dbg(oxu, "no dummy td\n");
654 oxu->qh_used[i] = 0;
655 qh = NULL;
656 goto unlock;
657 }
658
659 oxu->qh_used[i] = 1;
660 }
661 unlock:
662 spin_unlock(&oxu->mem_lock);
663
664 return qh;
665 }
666
667 /* to share a qh (cpu threads, or hc) */
668 static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
669 {
670 kref_get(&qh->kref);
671 return qh;
672 }
673
674 static inline void qh_put(struct ehci_qh *qh)
675 {
676 kref_put(&qh->kref, qh_destroy);
677 }
678
679 static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
680 {
681 int index;
682
683 spin_lock(&oxu->mem_lock);
684
685 index = murb - &oxu->murb_pool[0];
686 oxu->murb_used[index] = 0;
687
688 spin_unlock(&oxu->mem_lock);
689 }
690
691 static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
692
693 {
694 int i;
695 struct oxu_murb *murb = NULL;
696
697 spin_lock(&oxu->mem_lock);
698
699 for (i = 0; i < MURB_NUM; i++)
700 if (!oxu->murb_used[i])
701 break;
702
703 if (i < MURB_NUM) {
704 murb = &(oxu->murb_pool)[i];
705
706 oxu->murb_used[i] = 1;
707 }
708
709 spin_unlock(&oxu->mem_lock);
710
711 return murb;
712 }
713
714 /* The queue heads and transfer descriptors are managed from pools tied
715 * to each of the "per device" structures.
716 * This is the initialisation and cleanup code.
717 */
718 static void ehci_mem_cleanup(struct oxu_hcd *oxu)
719 {
720 kfree(oxu->murb_pool);
721 oxu->murb_pool = NULL;
722
723 if (oxu->async)
724 qh_put(oxu->async);
725 oxu->async = NULL;
726
727 del_timer(&oxu->urb_timer);
728
729 oxu->periodic = NULL;
730
731 /* shadow periodic table */
732 kfree(oxu->pshadow);
733 oxu->pshadow = NULL;
734 }
735
736 /* Remember to add cleanup code (above) if you add anything here.
737 */
738 static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
739 {
740 int i;
741
742 for (i = 0; i < oxu->periodic_size; i++)
743 oxu->mem->frame_list[i] = EHCI_LIST_END;
744 for (i = 0; i < QHEAD_NUM; i++)
745 oxu->qh_used[i] = 0;
746 for (i = 0; i < QTD_NUM; i++)
747 oxu->qtd_used[i] = 0;
748
749 oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
750 if (!oxu->murb_pool)
751 goto fail;
752
753 for (i = 0; i < MURB_NUM; i++)
754 oxu->murb_used[i] = 0;
755
756 oxu->async = oxu_qh_alloc(oxu);
757 if (!oxu->async)
758 goto fail;
759
760 oxu->periodic = (__le32 *) &oxu->mem->frame_list;
761 oxu->periodic_dma = virt_to_phys(oxu->periodic);
762
763 for (i = 0; i < oxu->periodic_size; i++)
764 oxu->periodic[i] = EHCI_LIST_END;
765
766 /* software shadow of hardware table */
767 oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
768 if (oxu->pshadow != NULL)
769 return 0;
770
771 fail:
772 oxu_dbg(oxu, "couldn't init memory\n");
773 ehci_mem_cleanup(oxu);
774 return -ENOMEM;
775 }
776
777 /* Fill a qtd, returning how much of the buffer we were able to queue up.
778 */
779 static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
780 int token, int maxpacket)
781 {
782 int i, count;
783 u64 addr = buf;
784
785 /* one buffer entry per 4K ... first might be short or unaligned */
786 qtd->hw_buf[0] = cpu_to_le32((u32)addr);
787 qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
788 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
789 if (likely(len < count)) /* ... iff needed */
790 count = len;
791 else {
792 buf += 0x1000;
793 buf &= ~0x0fff;
794
795 /* per-qtd limit: from 16K to 20K (best alignment) */
796 for (i = 1; count < len && i < 5; i++) {
797 addr = buf;
798 qtd->hw_buf[i] = cpu_to_le32((u32)addr);
799 qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
800 buf += 0x1000;
801 if ((count + 0x1000) < len)
802 count += 0x1000;
803 else
804 count = len;
805 }
806
807 /* short packets may only terminate transfers */
808 if (count != len)
809 count -= (count % maxpacket);
810 }
811 qtd->hw_token = cpu_to_le32((count << 16) | token);
812 qtd->length = count;
813
814 return count;
815 }
816
817 static inline void qh_update(struct oxu_hcd *oxu,
818 struct ehci_qh *qh, struct ehci_qtd *qtd)
819 {
820 /* writes to an active overlay are unsafe */
821 BUG_ON(qh->qh_state != QH_STATE_IDLE);
822
823 qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
824 qh->hw_alt_next = EHCI_LIST_END;
825
826 /* Except for control endpoints, we make hardware maintain data
827 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
828 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
829 * ever clear it.
830 */
831 if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
832 unsigned is_out, epnum;
833
834 is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
835 epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
836 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
837 qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
838 usb_settoggle(qh->dev, epnum, is_out, 1);
839 }
840 }
841
842 /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
843 wmb();
844 qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
845 }
846
847 /* If it weren't for a common silicon quirk (writing the dummy into the qh
848 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
849 * recovery (including urb dequeue) would need software changes to a QH...
850 */
851 static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
852 {
853 struct ehci_qtd *qtd;
854
855 if (list_empty(&qh->qtd_list))
856 qtd = qh->dummy;
857 else {
858 qtd = list_entry(qh->qtd_list.next,
859 struct ehci_qtd, qtd_list);
860 /* first qtd may already be partially processed */
861 if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
862 qtd = NULL;
863 }
864
865 if (qtd)
866 qh_update(oxu, qh, qtd);
867 }
868
869 static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
870 size_t length, u32 token)
871 {
872 /* count IN/OUT bytes, not SETUP (even short packets) */
873 if (likely(QTD_PID(token) != 2))
874 urb->actual_length += length - QTD_LENGTH(token);
875
876 /* don't modify error codes */
877 if (unlikely(urb->status != -EINPROGRESS))
878 return;
879
880 /* force cleanup after short read; not always an error */
881 if (unlikely(IS_SHORT_READ(token)))
882 urb->status = -EREMOTEIO;
883
884 /* serious "can't proceed" faults reported by the hardware */
885 if (token & QTD_STS_HALT) {
886 if (token & QTD_STS_BABBLE) {
887 /* FIXME "must" disable babbling device's port too */
888 urb->status = -EOVERFLOW;
889 } else if (token & QTD_STS_MMF) {
890 /* fs/ls interrupt xfer missed the complete-split */
891 urb->status = -EPROTO;
892 } else if (token & QTD_STS_DBE) {
893 urb->status = (QTD_PID(token) == 1) /* IN ? */
894 ? -ENOSR /* hc couldn't read data */
895 : -ECOMM; /* hc couldn't write data */
896 } else if (token & QTD_STS_XACT) {
897 /* timeout, bad crc, wrong PID, etc; retried */
898 if (QTD_CERR(token))
899 urb->status = -EPIPE;
900 else {
901 oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
902 urb->dev->devpath,
903 usb_pipeendpoint(urb->pipe),
904 usb_pipein(urb->pipe) ? "in" : "out");
905 urb->status = -EPROTO;
906 }
907 /* CERR nonzero + no errors + halt --> stall */
908 } else if (QTD_CERR(token))
909 urb->status = -EPIPE;
910 else /* unknown */
911 urb->status = -EPROTO;
912
913 oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
914 usb_pipedevice(urb->pipe),
915 usb_pipeendpoint(urb->pipe),
916 usb_pipein(urb->pipe) ? "in" : "out",
917 token, urb->status);
918 }
919 }
920
921 static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
922 __releases(oxu->lock)
923 __acquires(oxu->lock)
924 {
925 if (likely(urb->hcpriv != NULL)) {
926 struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv;
927
928 /* S-mask in a QH means it's an interrupt urb */
929 if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
930
931 /* ... update hc-wide periodic stats (for usbfs) */
932 oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
933 }
934 qh_put(qh);
935 }
936
937 urb->hcpriv = NULL;
938 switch (urb->status) {
939 case -EINPROGRESS: /* success */
940 urb->status = 0;
941 default: /* fault */
942 break;
943 case -EREMOTEIO: /* fault or normal */
944 if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
945 urb->status = 0;
946 break;
947 case -ECONNRESET: /* canceled */
948 case -ENOENT:
949 break;
950 }
951
952 #ifdef OXU_URB_TRACE
953 oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
954 __func__, urb->dev->devpath, urb,
955 usb_pipeendpoint(urb->pipe),
956 usb_pipein(urb->pipe) ? "in" : "out",
957 urb->status,
958 urb->actual_length, urb->transfer_buffer_length);
959 #endif
960
961 /* complete() can reenter this HCD */
962 spin_unlock(&oxu->lock);
963 usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
964 spin_lock(&oxu->lock);
965 }
966
967 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
968 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
969
970 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
971 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
972
973 #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
974
975 /* Process and free completed qtds for a qh, returning URBs to drivers.
976 * Chases up to qh->hw_current. Returns number of completions called,
977 * indicating how much "real" work we did.
978 */
979 static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
980 {
981 struct ehci_qtd *last = NULL, *end = qh->dummy;
982 struct list_head *entry, *tmp;
983 int stopped;
984 unsigned count = 0;
985 int do_status = 0;
986 u8 state;
987 struct oxu_murb *murb = NULL;
988
989 if (unlikely(list_empty(&qh->qtd_list)))
990 return count;
991
992 /* completions (or tasks on other cpus) must never clobber HALT
993 * till we've gone through and cleaned everything up, even when
994 * they add urbs to this qh's queue or mark them for unlinking.
995 *
996 * NOTE: unlinking expects to be done in queue order.
997 */
998 state = qh->qh_state;
999 qh->qh_state = QH_STATE_COMPLETING;
1000 stopped = (state == QH_STATE_IDLE);
1001
1002 /* remove de-activated QTDs from front of queue.
1003 * after faults (including short reads), cleanup this urb
1004 * then let the queue advance.
1005 * if queue is stopped, handles unlinks.
1006 */
1007 list_for_each_safe(entry, tmp, &qh->qtd_list) {
1008 struct ehci_qtd *qtd;
1009 struct urb *urb;
1010 u32 token = 0;
1011
1012 qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1013 urb = qtd->urb;
1014
1015 /* Clean up any state from previous QTD ...*/
1016 if (last) {
1017 if (likely(last->urb != urb)) {
1018 if (last->urb->complete == NULL) {
1019 murb = (struct oxu_murb *) last->urb;
1020 last->urb = murb->main;
1021 if (murb->last) {
1022 ehci_urb_done(oxu, last->urb);
1023 count++;
1024 }
1025 oxu_murb_free(oxu, murb);
1026 } else {
1027 ehci_urb_done(oxu, last->urb);
1028 count++;
1029 }
1030 }
1031 oxu_qtd_free(oxu, last);
1032 last = NULL;
1033 }
1034
1035 /* ignore urbs submitted during completions we reported */
1036 if (qtd == end)
1037 break;
1038
1039 /* hardware copies qtd out of qh overlay */
1040 rmb();
1041 token = le32_to_cpu(qtd->hw_token);
1042
1043 /* always clean up qtds the hc de-activated */
1044 if ((token & QTD_STS_ACTIVE) == 0) {
1045
1046 if ((token & QTD_STS_HALT) != 0) {
1047 stopped = 1;
1048
1049 /* magic dummy for some short reads; qh won't advance.
1050 * that silicon quirk can kick in with this dummy too.
1051 */
1052 } else if (IS_SHORT_READ(token) &&
1053 !(qtd->hw_alt_next & EHCI_LIST_END)) {
1054 stopped = 1;
1055 goto halt;
1056 }
1057
1058 /* stop scanning when we reach qtds the hc is using */
1059 } else if (likely(!stopped &&
1060 HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
1061 break;
1062
1063 } else {
1064 stopped = 1;
1065
1066 if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
1067 urb->status = -ESHUTDOWN;
1068
1069 /* ignore active urbs unless some previous qtd
1070 * for the urb faulted (including short read) or
1071 * its urb was canceled. we may patch qh or qtds.
1072 */
1073 if (likely(urb->status == -EINPROGRESS))
1074 continue;
1075
1076 /* issue status after short control reads */
1077 if (unlikely(do_status != 0)
1078 && QTD_PID(token) == 0 /* OUT */) {
1079 do_status = 0;
1080 continue;
1081 }
1082
1083 /* token in overlay may be most current */
1084 if (state == QH_STATE_IDLE
1085 && cpu_to_le32(qtd->qtd_dma)
1086 == qh->hw_current)
1087 token = le32_to_cpu(qh->hw_token);
1088
1089 /* force halt for unlinked or blocked qh, so we'll
1090 * patch the qh later and so that completions can't
1091 * activate it while we "know" it's stopped.
1092 */
1093 if ((HALT_BIT & qh->hw_token) == 0) {
1094 halt:
1095 qh->hw_token |= HALT_BIT;
1096 wmb();
1097 }
1098 }
1099
1100 /* Remove it from the queue */
1101 qtd_copy_status(oxu, urb->complete ?
1102 urb : ((struct oxu_murb *) urb)->main,
1103 qtd->length, token);
1104 if ((usb_pipein(qtd->urb->pipe)) &&
1105 (NULL != qtd->transfer_buffer))
1106 memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
1107 do_status = (urb->status == -EREMOTEIO)
1108 && usb_pipecontrol(urb->pipe);
1109
1110 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
1111 last = list_entry(qtd->qtd_list.prev,
1112 struct ehci_qtd, qtd_list);
1113 last->hw_next = qtd->hw_next;
1114 }
1115 list_del(&qtd->qtd_list);
1116 last = qtd;
1117 }
1118
1119 /* last urb's completion might still need calling */
1120 if (likely(last != NULL)) {
1121 if (last->urb->complete == NULL) {
1122 murb = (struct oxu_murb *) last->urb;
1123 last->urb = murb->main;
1124 if (murb->last) {
1125 ehci_urb_done(oxu, last->urb);
1126 count++;
1127 }
1128 oxu_murb_free(oxu, murb);
1129 } else {
1130 ehci_urb_done(oxu, last->urb);
1131 count++;
1132 }
1133 oxu_qtd_free(oxu, last);
1134 }
1135
1136 /* restore original state; caller must unlink or relink */
1137 qh->qh_state = state;
1138
1139 /* be sure the hardware's done with the qh before refreshing
1140 * it after fault cleanup, or recovering from silicon wrongly
1141 * overlaying the dummy qtd (which reduces DMA chatter).
1142 */
1143 if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
1144 switch (state) {
1145 case QH_STATE_IDLE:
1146 qh_refresh(oxu, qh);
1147 break;
1148 case QH_STATE_LINKED:
1149 /* should be rare for periodic transfers,
1150 * except maybe high bandwidth ...
1151 */
1152 if ((cpu_to_le32(QH_SMASK)
1153 & qh->hw_info2) != 0) {
1154 intr_deschedule(oxu, qh);
1155 (void) qh_schedule(oxu, qh);
1156 } else
1157 unlink_async(oxu, qh);
1158 break;
1159 /* otherwise, unlink already started */
1160 }
1161 }
1162
1163 return count;
1164 }
1165
1166 /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
1167 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
1168 /* ... and packet size, for any kind of endpoint descriptor */
1169 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
1170
1171 /* Reverse of qh_urb_transaction: free a list of TDs.
1172 * used for cleanup after errors, before HC sees an URB's TDs.
1173 */
1174 static void qtd_list_free(struct oxu_hcd *oxu,
1175 struct urb *urb, struct list_head *qtd_list)
1176 {
1177 struct list_head *entry, *temp;
1178
1179 list_for_each_safe(entry, temp, qtd_list) {
1180 struct ehci_qtd *qtd;
1181
1182 qtd = list_entry(entry, struct ehci_qtd, qtd_list);
1183 list_del(&qtd->qtd_list);
1184 oxu_qtd_free(oxu, qtd);
1185 }
1186 }
1187
1188 /* Create a list of filled qtds for this URB; won't link into qh.
1189 */
1190 static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
1191 struct urb *urb,
1192 struct list_head *head,
1193 gfp_t flags)
1194 {
1195 struct ehci_qtd *qtd, *qtd_prev;
1196 dma_addr_t buf;
1197 int len, maxpacket;
1198 int is_input;
1199 u32 token;
1200 void *transfer_buf = NULL;
1201 int ret;
1202
1203 /*
1204 * URBs map to sequences of QTDs: one logical transaction
1205 */
1206 qtd = ehci_qtd_alloc(oxu);
1207 if (unlikely(!qtd))
1208 return NULL;
1209 list_add_tail(&qtd->qtd_list, head);
1210 qtd->urb = urb;
1211
1212 token = QTD_STS_ACTIVE;
1213 token |= (EHCI_TUNE_CERR << 10);
1214 /* for split transactions, SplitXState initialized to zero */
1215
1216 len = urb->transfer_buffer_length;
1217 is_input = usb_pipein(urb->pipe);
1218 if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
1219 urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
1220
1221 if (usb_pipecontrol(urb->pipe)) {
1222 /* SETUP pid */
1223 ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
1224 if (ret)
1225 goto cleanup;
1226
1227 qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
1228 token | (2 /* "setup" */ << 8), 8);
1229 memcpy(qtd->buffer, qtd->urb->setup_packet,
1230 sizeof(struct usb_ctrlrequest));
1231
1232 /* ... and always at least one more pid */
1233 token ^= QTD_TOGGLE;
1234 qtd_prev = qtd;
1235 qtd = ehci_qtd_alloc(oxu);
1236 if (unlikely(!qtd))
1237 goto cleanup;
1238 qtd->urb = urb;
1239 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1240 list_add_tail(&qtd->qtd_list, head);
1241
1242 /* for zero length DATA stages, STATUS is always IN */
1243 if (len == 0)
1244 token |= (1 /* "in" */ << 8);
1245 }
1246
1247 /*
1248 * Data transfer stage: buffer setup
1249 */
1250
1251 ret = oxu_buf_alloc(oxu, qtd, len);
1252 if (ret)
1253 goto cleanup;
1254
1255 buf = qtd->buffer_dma;
1256 transfer_buf = urb->transfer_buffer;
1257
1258 if (!is_input)
1259 memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
1260
1261 if (is_input)
1262 token |= (1 /* "in" */ << 8);
1263 /* else it's already initted to "out" pid (0 << 8) */
1264
1265 maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
1266
1267 /*
1268 * buffer gets wrapped in one or more qtds;
1269 * last one may be "short" (including zero len)
1270 * and may serve as a control status ack
1271 */
1272 for (;;) {
1273 int this_qtd_len;
1274
1275 this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
1276 qtd->transfer_buffer = transfer_buf;
1277 len -= this_qtd_len;
1278 buf += this_qtd_len;
1279 transfer_buf += this_qtd_len;
1280 if (is_input)
1281 qtd->hw_alt_next = oxu->async->hw_alt_next;
1282
1283 /* qh makes control packets use qtd toggle; maybe switch it */
1284 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
1285 token ^= QTD_TOGGLE;
1286
1287 if (likely(len <= 0))
1288 break;
1289
1290 qtd_prev = qtd;
1291 qtd = ehci_qtd_alloc(oxu);
1292 if (unlikely(!qtd))
1293 goto cleanup;
1294 if (likely(len > 0)) {
1295 ret = oxu_buf_alloc(oxu, qtd, len);
1296 if (ret)
1297 goto cleanup;
1298 }
1299 qtd->urb = urb;
1300 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1301 list_add_tail(&qtd->qtd_list, head);
1302 }
1303
1304 /* unless the bulk/interrupt caller wants a chance to clean
1305 * up after short reads, hc should advance qh past this urb
1306 */
1307 if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
1308 || usb_pipecontrol(urb->pipe)))
1309 qtd->hw_alt_next = EHCI_LIST_END;
1310
1311 /*
1312 * control requests may need a terminating data "status" ack;
1313 * bulk ones may need a terminating short packet (zero length).
1314 */
1315 if (likely(urb->transfer_buffer_length != 0)) {
1316 int one_more = 0;
1317
1318 if (usb_pipecontrol(urb->pipe)) {
1319 one_more = 1;
1320 token ^= 0x0100; /* "in" <--> "out" */
1321 token |= QTD_TOGGLE; /* force DATA1 */
1322 } else if (usb_pipebulk(urb->pipe)
1323 && (urb->transfer_flags & URB_ZERO_PACKET)
1324 && !(urb->transfer_buffer_length % maxpacket)) {
1325 one_more = 1;
1326 }
1327 if (one_more) {
1328 qtd_prev = qtd;
1329 qtd = ehci_qtd_alloc(oxu);
1330 if (unlikely(!qtd))
1331 goto cleanup;
1332 qtd->urb = urb;
1333 qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
1334 list_add_tail(&qtd->qtd_list, head);
1335
1336 /* never any data in such packets */
1337 qtd_fill(qtd, 0, 0, token, 0);
1338 }
1339 }
1340
1341 /* by default, enable interrupt on urb completion */
1342 qtd->hw_token |= cpu_to_le32(QTD_IOC);
1343 return head;
1344
1345 cleanup:
1346 qtd_list_free(oxu, urb, head);
1347 return NULL;
1348 }
1349
1350 /* Each QH holds a qtd list; a QH is used for everything except iso.
1351 *
1352 * For interrupt urbs, the scheduler must set the microframe scheduling
1353 * mask(s) each time the QH gets scheduled. For highspeed, that's
1354 * just one microframe in the s-mask. For split interrupt transactions
1355 * there are additional complications: c-mask, maybe FSTNs.
1356 */
1357 static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
1358 struct urb *urb, gfp_t flags)
1359 {
1360 struct ehci_qh *qh = oxu_qh_alloc(oxu);
1361 u32 info1 = 0, info2 = 0;
1362 int is_input, type;
1363 int maxp = 0;
1364
1365 if (!qh)
1366 return qh;
1367
1368 /*
1369 * init endpoint/device data for this QH
1370 */
1371 info1 |= usb_pipeendpoint(urb->pipe) << 8;
1372 info1 |= usb_pipedevice(urb->pipe) << 0;
1373
1374 is_input = usb_pipein(urb->pipe);
1375 type = usb_pipetype(urb->pipe);
1376 maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
1377
1378 /* Compute interrupt scheduling parameters just once, and save.
1379 * - allowing for high bandwidth, how many nsec/uframe are used?
1380 * - split transactions need a second CSPLIT uframe; same question
1381 * - splits also need a schedule gap (for full/low speed I/O)
1382 * - qh has a polling interval
1383 *
1384 * For control/bulk requests, the HC or TT handles these.
1385 */
1386 if (type == PIPE_INTERRUPT) {
1387 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
1388 is_input, 0,
1389 hb_mult(maxp) * max_packet(maxp)));
1390 qh->start = NO_FRAME;
1391
1392 if (urb->dev->speed == USB_SPEED_HIGH) {
1393 qh->c_usecs = 0;
1394 qh->gap_uf = 0;
1395
1396 qh->period = urb->interval >> 3;
1397 if (qh->period == 0 && urb->interval != 1) {
1398 /* NOTE interval 2 or 4 uframes could work.
1399 * But interval 1 scheduling is simpler, and
1400 * includes high bandwidth.
1401 */
1402 dbg("intr period %d uframes, NYET!",
1403 urb->interval);
1404 goto done;
1405 }
1406 } else {
1407 struct usb_tt *tt = urb->dev->tt;
1408 int think_time;
1409
1410 /* gap is f(FS/LS transfer times) */
1411 qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
1412 is_input, 0, maxp) / (125 * 1000);
1413
1414 /* FIXME this just approximates SPLIT/CSPLIT times */
1415 if (is_input) { /* SPLIT, gap, CSPLIT+DATA */
1416 qh->c_usecs = qh->usecs + HS_USECS(0);
1417 qh->usecs = HS_USECS(1);
1418 } else { /* SPLIT+DATA, gap, CSPLIT */
1419 qh->usecs += HS_USECS(1);
1420 qh->c_usecs = HS_USECS(0);
1421 }
1422
1423 think_time = tt ? tt->think_time : 0;
1424 qh->tt_usecs = NS_TO_US(think_time +
1425 usb_calc_bus_time(urb->dev->speed,
1426 is_input, 0, max_packet(maxp)));
1427 qh->period = urb->interval;
1428 }
1429 }
1430
1431 /* support for tt scheduling, and access to toggles */
1432 qh->dev = urb->dev;
1433
1434 /* using TT? */
1435 switch (urb->dev->speed) {
1436 case USB_SPEED_LOW:
1437 info1 |= (1 << 12); /* EPS "low" */
1438 /* FALL THROUGH */
1439
1440 case USB_SPEED_FULL:
1441 /* EPS 0 means "full" */
1442 if (type != PIPE_INTERRUPT)
1443 info1 |= (EHCI_TUNE_RL_TT << 28);
1444 if (type == PIPE_CONTROL) {
1445 info1 |= (1 << 27); /* for TT */
1446 info1 |= 1 << 14; /* toggle from qtd */
1447 }
1448 info1 |= maxp << 16;
1449
1450 info2 |= (EHCI_TUNE_MULT_TT << 30);
1451 info2 |= urb->dev->ttport << 23;
1452
1453 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
1454
1455 break;
1456
1457 case USB_SPEED_HIGH: /* no TT involved */
1458 info1 |= (2 << 12); /* EPS "high" */
1459 if (type == PIPE_CONTROL) {
1460 info1 |= (EHCI_TUNE_RL_HS << 28);
1461 info1 |= 64 << 16; /* usb2 fixed maxpacket */
1462 info1 |= 1 << 14; /* toggle from qtd */
1463 info2 |= (EHCI_TUNE_MULT_HS << 30);
1464 } else if (type == PIPE_BULK) {
1465 info1 |= (EHCI_TUNE_RL_HS << 28);
1466 info1 |= 512 << 16; /* usb2 fixed maxpacket */
1467 info2 |= (EHCI_TUNE_MULT_HS << 30);
1468 } else { /* PIPE_INTERRUPT */
1469 info1 |= max_packet(maxp) << 16;
1470 info2 |= hb_mult(maxp) << 30;
1471 }
1472 break;
1473 default:
1474 dbg("bogus dev %p speed %d", urb->dev, urb->dev->speed);
1475 done:
1476 qh_put(qh);
1477 return NULL;
1478 }
1479
1480 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
1481
1482 /* init as live, toggle clear, advance to dummy */
1483 qh->qh_state = QH_STATE_IDLE;
1484 qh->hw_info1 = cpu_to_le32(info1);
1485 qh->hw_info2 = cpu_to_le32(info2);
1486 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
1487 qh_refresh(oxu, qh);
1488 return qh;
1489 }
1490
1491 /* Move qh (and its qtds) onto async queue; maybe enable queue.
1492 */
1493 static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1494 {
1495 __le32 dma = QH_NEXT(qh->qh_dma);
1496 struct ehci_qh *head;
1497
1498 /* (re)start the async schedule? */
1499 head = oxu->async;
1500 timer_action_done(oxu, TIMER_ASYNC_OFF);
1501 if (!head->qh_next.qh) {
1502 u32 cmd = readl(&oxu->regs->command);
1503
1504 if (!(cmd & CMD_ASE)) {
1505 /* in case a clear of CMD_ASE didn't take yet */
1506 (void)handshake(oxu, &oxu->regs->status,
1507 STS_ASS, 0, 150);
1508 cmd |= CMD_ASE | CMD_RUN;
1509 writel(cmd, &oxu->regs->command);
1510 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1511 /* posted write need not be known to HC yet ... */
1512 }
1513 }
1514
1515 /* clear halt and/or toggle; and maybe recover from silicon quirk */
1516 if (qh->qh_state == QH_STATE_IDLE)
1517 qh_refresh(oxu, qh);
1518
1519 /* splice right after start */
1520 qh->qh_next = head->qh_next;
1521 qh->hw_next = head->hw_next;
1522 wmb();
1523
1524 head->qh_next.qh = qh;
1525 head->hw_next = dma;
1526
1527 qh->qh_state = QH_STATE_LINKED;
1528 /* qtd completions reported later by interrupt */
1529 }
1530
1531 #define QH_ADDR_MASK cpu_to_le32(0x7f)
1532
1533 /*
1534 * For control/bulk/interrupt, return QH with these TDs appended.
1535 * Allocates and initializes the QH if necessary.
1536 * Returns null if it can't allocate a QH it needs to.
1537 * If the QH has TDs (urbs) already, that's great.
1538 */
1539 static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
1540 struct urb *urb, struct list_head *qtd_list,
1541 int epnum, void **ptr)
1542 {
1543 struct ehci_qh *qh = NULL;
1544
1545 qh = (struct ehci_qh *) *ptr;
1546 if (unlikely(qh == NULL)) {
1547 /* can't sleep here, we have oxu->lock... */
1548 qh = qh_make(oxu, urb, GFP_ATOMIC);
1549 *ptr = qh;
1550 }
1551 if (likely(qh != NULL)) {
1552 struct ehci_qtd *qtd;
1553
1554 if (unlikely(list_empty(qtd_list)))
1555 qtd = NULL;
1556 else
1557 qtd = list_entry(qtd_list->next, struct ehci_qtd,
1558 qtd_list);
1559
1560 /* control qh may need patching ... */
1561 if (unlikely(epnum == 0)) {
1562
1563 /* usb_reset_device() briefly reverts to address 0 */
1564 if (usb_pipedevice(urb->pipe) == 0)
1565 qh->hw_info1 &= ~QH_ADDR_MASK;
1566 }
1567
1568 /* just one way to queue requests: swap with the dummy qtd.
1569 * only hc or qh_refresh() ever modify the overlay.
1570 */
1571 if (likely(qtd != NULL)) {
1572 struct ehci_qtd *dummy;
1573 dma_addr_t dma;
1574 __le32 token;
1575
1576 /* to avoid racing the HC, use the dummy td instead of
1577 * the first td of our list (becomes new dummy). both
1578 * tds stay deactivated until we're done, when the
1579 * HC is allowed to fetch the old dummy (4.10.2).
1580 */
1581 token = qtd->hw_token;
1582 qtd->hw_token = HALT_BIT;
1583 wmb();
1584 dummy = qh->dummy;
1585
1586 dma = dummy->qtd_dma;
1587 *dummy = *qtd;
1588 dummy->qtd_dma = dma;
1589
1590 list_del(&qtd->qtd_list);
1591 list_add(&dummy->qtd_list, qtd_list);
1592 list_splice(qtd_list, qh->qtd_list.prev);
1593
1594 ehci_qtd_init(qtd, qtd->qtd_dma);
1595 qh->dummy = qtd;
1596
1597 /* hc must see the new dummy at list end */
1598 dma = qtd->qtd_dma;
1599 qtd = list_entry(qh->qtd_list.prev,
1600 struct ehci_qtd, qtd_list);
1601 qtd->hw_next = QTD_NEXT(dma);
1602
1603 /* let the hc process these next qtds */
1604 dummy->hw_token = (token & ~(0x80));
1605 wmb();
1606 dummy->hw_token = token;
1607
1608 urb->hcpriv = qh_get(qh);
1609 }
1610 }
1611 return qh;
1612 }
1613
1614 static int submit_async(struct oxu_hcd *oxu, struct urb *urb,
1615 struct list_head *qtd_list, gfp_t mem_flags)
1616 {
1617 struct ehci_qtd *qtd;
1618 int epnum;
1619 unsigned long flags;
1620 struct ehci_qh *qh = NULL;
1621 int rc = 0;
1622
1623 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1624 epnum = urb->ep->desc.bEndpointAddress;
1625
1626 #ifdef OXU_URB_TRACE
1627 oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1628 __func__, urb->dev->devpath, urb,
1629 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1630 urb->transfer_buffer_length,
1631 qtd, urb->ep->hcpriv);
1632 #endif
1633
1634 spin_lock_irqsave(&oxu->lock, flags);
1635 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
1636 rc = -ESHUTDOWN;
1637 goto done;
1638 }
1639
1640 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
1641 if (unlikely(qh == NULL)) {
1642 rc = -ENOMEM;
1643 goto done;
1644 }
1645
1646 /* Control/bulk operations through TTs don't need scheduling,
1647 * the HC and TT handle it when the TT has a buffer ready.
1648 */
1649 if (likely(qh->qh_state == QH_STATE_IDLE))
1650 qh_link_async(oxu, qh_get(qh));
1651 done:
1652 spin_unlock_irqrestore(&oxu->lock, flags);
1653 if (unlikely(qh == NULL))
1654 qtd_list_free(oxu, urb, qtd_list);
1655 return rc;
1656 }
1657
1658 /* The async qh for the qtds being reclaimed are now unlinked from the HC */
1659
1660 static void end_unlink_async(struct oxu_hcd *oxu)
1661 {
1662 struct ehci_qh *qh = oxu->reclaim;
1663 struct ehci_qh *next;
1664
1665 timer_action_done(oxu, TIMER_IAA_WATCHDOG);
1666
1667 qh->qh_state = QH_STATE_IDLE;
1668 qh->qh_next.qh = NULL;
1669 qh_put(qh); /* refcount from reclaim */
1670
1671 /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
1672 next = qh->reclaim;
1673 oxu->reclaim = next;
1674 oxu->reclaim_ready = 0;
1675 qh->reclaim = NULL;
1676
1677 qh_completions(oxu, qh);
1678
1679 if (!list_empty(&qh->qtd_list)
1680 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
1681 qh_link_async(oxu, qh);
1682 else {
1683 qh_put(qh); /* refcount from async list */
1684
1685 /* it's not free to turn the async schedule on/off; leave it
1686 * active but idle for a while once it empties.
1687 */
1688 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
1689 && oxu->async->qh_next.qh == NULL)
1690 timer_action(oxu, TIMER_ASYNC_OFF);
1691 }
1692
1693 if (next) {
1694 oxu->reclaim = NULL;
1695 start_unlink_async(oxu, next);
1696 }
1697 }
1698
1699 /* makes sure the async qh will become idle */
1700 /* caller must own oxu->lock */
1701
1702 static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
1703 {
1704 int cmd = readl(&oxu->regs->command);
1705 struct ehci_qh *prev;
1706
1707 #ifdef DEBUG
1708 assert_spin_locked(&oxu->lock);
1709 if (oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
1710 && qh->qh_state != QH_STATE_UNLINK_WAIT))
1711 BUG();
1712 #endif
1713
1714 /* stop async schedule right now? */
1715 if (unlikely(qh == oxu->async)) {
1716 /* can't get here without STS_ASS set */
1717 if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
1718 && !oxu->reclaim) {
1719 /* ... and CMD_IAAD clear */
1720 writel(cmd & ~CMD_ASE, &oxu->regs->command);
1721 wmb();
1722 /* handshake later, if we need to */
1723 timer_action_done(oxu, TIMER_ASYNC_OFF);
1724 }
1725 return;
1726 }
1727
1728 qh->qh_state = QH_STATE_UNLINK;
1729 oxu->reclaim = qh = qh_get(qh);
1730
1731 prev = oxu->async;
1732 while (prev->qh_next.qh != qh)
1733 prev = prev->qh_next.qh;
1734
1735 prev->hw_next = qh->hw_next;
1736 prev->qh_next = qh->qh_next;
1737 wmb();
1738
1739 if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
1740 /* if (unlikely(qh->reclaim != 0))
1741 * this will recurse, probably not much
1742 */
1743 end_unlink_async(oxu);
1744 return;
1745 }
1746
1747 oxu->reclaim_ready = 0;
1748 cmd |= CMD_IAAD;
1749 writel(cmd, &oxu->regs->command);
1750 (void) readl(&oxu->regs->command);
1751 timer_action(oxu, TIMER_IAA_WATCHDOG);
1752 }
1753
1754 static void scan_async(struct oxu_hcd *oxu)
1755 {
1756 struct ehci_qh *qh;
1757 enum ehci_timer_action action = TIMER_IO_WATCHDOG;
1758
1759 if (!++(oxu->stamp))
1760 oxu->stamp++;
1761 timer_action_done(oxu, TIMER_ASYNC_SHRINK);
1762 rescan:
1763 qh = oxu->async->qh_next.qh;
1764 if (likely(qh != NULL)) {
1765 do {
1766 /* clean any finished work for this qh */
1767 if (!list_empty(&qh->qtd_list)
1768 && qh->stamp != oxu->stamp) {
1769 int temp;
1770
1771 /* unlinks could happen here; completion
1772 * reporting drops the lock. rescan using
1773 * the latest schedule, but don't rescan
1774 * qhs we already finished (no looping).
1775 */
1776 qh = qh_get(qh);
1777 qh->stamp = oxu->stamp;
1778 temp = qh_completions(oxu, qh);
1779 qh_put(qh);
1780 if (temp != 0)
1781 goto rescan;
1782 }
1783
1784 /* unlink idle entries, reducing HC PCI usage as well
1785 * as HCD schedule-scanning costs. delay for any qh
1786 * we just scanned, there's a not-unusual case that it
1787 * doesn't stay idle for long.
1788 * (plus, avoids some kind of re-activation race.)
1789 */
1790 if (list_empty(&qh->qtd_list)) {
1791 if (qh->stamp == oxu->stamp)
1792 action = TIMER_ASYNC_SHRINK;
1793 else if (!oxu->reclaim
1794 && qh->qh_state == QH_STATE_LINKED)
1795 start_unlink_async(oxu, qh);
1796 }
1797
1798 qh = qh->qh_next.qh;
1799 } while (qh);
1800 }
1801 if (action == TIMER_ASYNC_SHRINK)
1802 timer_action(oxu, TIMER_ASYNC_SHRINK);
1803 }
1804
1805 /*
1806 * periodic_next_shadow - return "next" pointer on shadow list
1807 * @periodic: host pointer to qh/itd/sitd
1808 * @tag: hardware tag for type of this record
1809 */
1810 static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
1811 __le32 tag)
1812 {
1813 switch (tag) {
1814 default:
1815 case Q_TYPE_QH:
1816 return &periodic->qh->qh_next;
1817 }
1818 }
1819
1820 /* caller must hold oxu->lock */
1821 static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
1822 {
1823 union ehci_shadow *prev_p = &oxu->pshadow[frame];
1824 __le32 *hw_p = &oxu->periodic[frame];
1825 union ehci_shadow here = *prev_p;
1826
1827 /* find predecessor of "ptr"; hw and shadow lists are in sync */
1828 while (here.ptr && here.ptr != ptr) {
1829 prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
1830 hw_p = here.hw_next;
1831 here = *prev_p;
1832 }
1833 /* an interrupt entry (at list end) could have been shared */
1834 if (!here.ptr)
1835 return;
1836
1837 /* update shadow and hardware lists ... the old "next" pointers
1838 * from ptr may still be in use, the caller updates them.
1839 */
1840 *prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
1841 *hw_p = *here.hw_next;
1842 }
1843
1844 /* how many of the uframe's 125 usecs are allocated? */
1845 static unsigned short periodic_usecs(struct oxu_hcd *oxu,
1846 unsigned frame, unsigned uframe)
1847 {
1848 __le32 *hw_p = &oxu->periodic[frame];
1849 union ehci_shadow *q = &oxu->pshadow[frame];
1850 unsigned usecs = 0;
1851
1852 while (q->ptr) {
1853 switch (Q_NEXT_TYPE(*hw_p)) {
1854 case Q_TYPE_QH:
1855 default:
1856 /* is it in the S-mask? */
1857 if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
1858 usecs += q->qh->usecs;
1859 /* ... or C-mask? */
1860 if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
1861 usecs += q->qh->c_usecs;
1862 hw_p = &q->qh->hw_next;
1863 q = &q->qh->qh_next;
1864 break;
1865 }
1866 }
1867 #ifdef DEBUG
1868 if (usecs > 100)
1869 oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
1870 frame * 8 + uframe, usecs);
1871 #endif
1872 return usecs;
1873 }
1874
1875 static int enable_periodic(struct oxu_hcd *oxu)
1876 {
1877 u32 cmd;
1878 int status;
1879
1880 /* did clearing PSE did take effect yet?
1881 * takes effect only at frame boundaries...
1882 */
1883 status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
1884 if (status != 0) {
1885 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1886 usb_hc_died(oxu_to_hcd(oxu));
1887 return status;
1888 }
1889
1890 cmd = readl(&oxu->regs->command) | CMD_PSE;
1891 writel(cmd, &oxu->regs->command);
1892 /* posted write ... PSS happens later */
1893 oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
1894
1895 /* make sure ehci_work scans these */
1896 oxu->next_uframe = readl(&oxu->regs->frame_index)
1897 % (oxu->periodic_size << 3);
1898 return 0;
1899 }
1900
1901 static int disable_periodic(struct oxu_hcd *oxu)
1902 {
1903 u32 cmd;
1904 int status;
1905
1906 /* did setting PSE not take effect yet?
1907 * takes effect only at frame boundaries...
1908 */
1909 status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
1910 if (status != 0) {
1911 oxu_to_hcd(oxu)->state = HC_STATE_HALT;
1912 usb_hc_died(oxu_to_hcd(oxu));
1913 return status;
1914 }
1915
1916 cmd = readl(&oxu->regs->command) & ~CMD_PSE;
1917 writel(cmd, &oxu->regs->command);
1918 /* posted write ... */
1919
1920 oxu->next_uframe = -1;
1921 return 0;
1922 }
1923
1924 /* periodic schedule slots have iso tds (normal or split) first, then a
1925 * sparse tree for active interrupt transfers.
1926 *
1927 * this just links in a qh; caller guarantees uframe masks are set right.
1928 * no FSTN support (yet; oxu 0.96+)
1929 */
1930 static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1931 {
1932 unsigned i;
1933 unsigned period = qh->period;
1934
1935 dev_dbg(&qh->dev->dev,
1936 "link qh%d-%04x/%p start %d [%d/%d us]\n",
1937 period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
1938 qh, qh->start, qh->usecs, qh->c_usecs);
1939
1940 /* high bandwidth, or otherwise every microframe */
1941 if (period == 0)
1942 period = 1;
1943
1944 for (i = qh->start; i < oxu->periodic_size; i += period) {
1945 union ehci_shadow *prev = &oxu->pshadow[i];
1946 __le32 *hw_p = &oxu->periodic[i];
1947 union ehci_shadow here = *prev;
1948 __le32 type = 0;
1949
1950 /* skip the iso nodes at list head */
1951 while (here.ptr) {
1952 type = Q_NEXT_TYPE(*hw_p);
1953 if (type == Q_TYPE_QH)
1954 break;
1955 prev = periodic_next_shadow(prev, type);
1956 hw_p = &here.qh->hw_next;
1957 here = *prev;
1958 }
1959
1960 /* sorting each branch by period (slow-->fast)
1961 * enables sharing interior tree nodes
1962 */
1963 while (here.ptr && qh != here.qh) {
1964 if (qh->period > here.qh->period)
1965 break;
1966 prev = &here.qh->qh_next;
1967 hw_p = &here.qh->hw_next;
1968 here = *prev;
1969 }
1970 /* link in this qh, unless some earlier pass did that */
1971 if (qh != here.qh) {
1972 qh->qh_next = here;
1973 if (here.qh)
1974 qh->hw_next = *hw_p;
1975 wmb();
1976 prev->qh = qh;
1977 *hw_p = QH_NEXT(qh->qh_dma);
1978 }
1979 }
1980 qh->qh_state = QH_STATE_LINKED;
1981 qh_get(qh);
1982
1983 /* update per-qh bandwidth for usbfs */
1984 oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
1985 ? ((qh->usecs + qh->c_usecs) / qh->period)
1986 : (qh->usecs * 8);
1987
1988 /* maybe enable periodic schedule processing */
1989 if (!oxu->periodic_sched++)
1990 return enable_periodic(oxu);
1991
1992 return 0;
1993 }
1994
1995 static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
1996 {
1997 unsigned i;
1998 unsigned period;
1999
2000 /* FIXME:
2001 * IF this isn't high speed
2002 * and this qh is active in the current uframe
2003 * (and overlay token SplitXstate is false?)
2004 * THEN
2005 * qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
2006 */
2007
2008 /* high bandwidth, or otherwise part of every microframe */
2009 period = qh->period;
2010 if (period == 0)
2011 period = 1;
2012
2013 for (i = qh->start; i < oxu->periodic_size; i += period)
2014 periodic_unlink(oxu, i, qh);
2015
2016 /* update per-qh bandwidth for usbfs */
2017 oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
2018 ? ((qh->usecs + qh->c_usecs) / qh->period)
2019 : (qh->usecs * 8);
2020
2021 dev_dbg(&qh->dev->dev,
2022 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
2023 qh->period,
2024 le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
2025 qh, qh->start, qh->usecs, qh->c_usecs);
2026
2027 /* qh->qh_next still "live" to HC */
2028 qh->qh_state = QH_STATE_UNLINK;
2029 qh->qh_next.ptr = NULL;
2030 qh_put(qh);
2031
2032 /* maybe turn off periodic schedule */
2033 oxu->periodic_sched--;
2034 if (!oxu->periodic_sched)
2035 (void) disable_periodic(oxu);
2036 }
2037
2038 static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2039 {
2040 unsigned wait;
2041
2042 qh_unlink_periodic(oxu, qh);
2043
2044 /* simple/paranoid: always delay, expecting the HC needs to read
2045 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
2046 * expect khubd to clean up after any CSPLITs we won't issue.
2047 * active high speed queues may need bigger delays...
2048 */
2049 if (list_empty(&qh->qtd_list)
2050 || (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
2051 wait = 2;
2052 else
2053 wait = 55; /* worst case: 3 * 1024 */
2054
2055 udelay(wait);
2056 qh->qh_state = QH_STATE_IDLE;
2057 qh->hw_next = EHCI_LIST_END;
2058 wmb();
2059 }
2060
2061 static int check_period(struct oxu_hcd *oxu,
2062 unsigned frame, unsigned uframe,
2063 unsigned period, unsigned usecs)
2064 {
2065 int claimed;
2066
2067 /* complete split running into next frame?
2068 * given FSTN support, we could sometimes check...
2069 */
2070 if (uframe >= 8)
2071 return 0;
2072
2073 /*
2074 * 80% periodic == 100 usec/uframe available
2075 * convert "usecs we need" to "max already claimed"
2076 */
2077 usecs = 100 - usecs;
2078
2079 /* we "know" 2 and 4 uframe intervals were rejected; so
2080 * for period 0, check _every_ microframe in the schedule.
2081 */
2082 if (unlikely(period == 0)) {
2083 do {
2084 for (uframe = 0; uframe < 7; uframe++) {
2085 claimed = periodic_usecs(oxu, frame, uframe);
2086 if (claimed > usecs)
2087 return 0;
2088 }
2089 } while ((frame += 1) < oxu->periodic_size);
2090
2091 /* just check the specified uframe, at that period */
2092 } else {
2093 do {
2094 claimed = periodic_usecs(oxu, frame, uframe);
2095 if (claimed > usecs)
2096 return 0;
2097 } while ((frame += period) < oxu->periodic_size);
2098 }
2099
2100 return 1;
2101 }
2102
2103 static int check_intr_schedule(struct oxu_hcd *oxu,
2104 unsigned frame, unsigned uframe,
2105 const struct ehci_qh *qh, __le32 *c_maskp)
2106 {
2107 int retval = -ENOSPC;
2108
2109 if (qh->c_usecs && uframe >= 6) /* FSTN territory? */
2110 goto done;
2111
2112 if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
2113 goto done;
2114 if (!qh->c_usecs) {
2115 retval = 0;
2116 *c_maskp = 0;
2117 goto done;
2118 }
2119
2120 done:
2121 return retval;
2122 }
2123
2124 /* "first fit" scheduling policy used the first time through,
2125 * or when the previous schedule slot can't be re-used.
2126 */
2127 static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
2128 {
2129 int status;
2130 unsigned uframe;
2131 __le32 c_mask;
2132 unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
2133
2134 qh_refresh(oxu, qh);
2135 qh->hw_next = EHCI_LIST_END;
2136 frame = qh->start;
2137
2138 /* reuse the previous schedule slots, if we can */
2139 if (frame < qh->period) {
2140 uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
2141 status = check_intr_schedule(oxu, frame, --uframe,
2142 qh, &c_mask);
2143 } else {
2144 uframe = 0;
2145 c_mask = 0;
2146 status = -ENOSPC;
2147 }
2148
2149 /* else scan the schedule to find a group of slots such that all
2150 * uframes have enough periodic bandwidth available.
2151 */
2152 if (status) {
2153 /* "normal" case, uframing flexible except with splits */
2154 if (qh->period) {
2155 frame = qh->period - 1;
2156 do {
2157 for (uframe = 0; uframe < 8; uframe++) {
2158 status = check_intr_schedule(oxu,
2159 frame, uframe, qh,
2160 &c_mask);
2161 if (status == 0)
2162 break;
2163 }
2164 } while (status && frame--);
2165
2166 /* qh->period == 0 means every uframe */
2167 } else {
2168 frame = 0;
2169 status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
2170 }
2171 if (status)
2172 goto done;
2173 qh->start = frame;
2174
2175 /* reset S-frame and (maybe) C-frame masks */
2176 qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
2177 qh->hw_info2 |= qh->period
2178 ? cpu_to_le32(1 << uframe)
2179 : cpu_to_le32(QH_SMASK);
2180 qh->hw_info2 |= c_mask;
2181 } else
2182 oxu_dbg(oxu, "reused qh %p schedule\n", qh);
2183
2184 /* stuff into the periodic schedule */
2185 status = qh_link_periodic(oxu, qh);
2186 done:
2187 return status;
2188 }
2189
2190 static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
2191 struct list_head *qtd_list, gfp_t mem_flags)
2192 {
2193 unsigned epnum;
2194 unsigned long flags;
2195 struct ehci_qh *qh;
2196 int status = 0;
2197 struct list_head empty;
2198
2199 /* get endpoint and transfer/schedule data */
2200 epnum = urb->ep->desc.bEndpointAddress;
2201
2202 spin_lock_irqsave(&oxu->lock, flags);
2203
2204 if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
2205 status = -ESHUTDOWN;
2206 goto done;
2207 }
2208
2209 /* get qh and force any scheduling errors */
2210 INIT_LIST_HEAD(&empty);
2211 qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
2212 if (qh == NULL) {
2213 status = -ENOMEM;
2214 goto done;
2215 }
2216 if (qh->qh_state == QH_STATE_IDLE) {
2217 status = qh_schedule(oxu, qh);
2218 if (status != 0)
2219 goto done;
2220 }
2221
2222 /* then queue the urb's tds to the qh */
2223 qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
2224 BUG_ON(qh == NULL);
2225
2226 /* ... update usbfs periodic stats */
2227 oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
2228
2229 done:
2230 spin_unlock_irqrestore(&oxu->lock, flags);
2231 if (status)
2232 qtd_list_free(oxu, urb, qtd_list);
2233
2234 return status;
2235 }
2236
2237 static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
2238 gfp_t mem_flags)
2239 {
2240 oxu_dbg(oxu, "iso support is missing!\n");
2241 return -ENOSYS;
2242 }
2243
2244 static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
2245 gfp_t mem_flags)
2246 {
2247 oxu_dbg(oxu, "split iso support is missing!\n");
2248 return -ENOSYS;
2249 }
2250
2251 static void scan_periodic(struct oxu_hcd *oxu)
2252 {
2253 unsigned frame, clock, now_uframe, mod;
2254 unsigned modified;
2255
2256 mod = oxu->periodic_size << 3;
2257
2258 /*
2259 * When running, scan from last scan point up to "now"
2260 * else clean up by scanning everything that's left.
2261 * Touches as few pages as possible: cache-friendly.
2262 */
2263 now_uframe = oxu->next_uframe;
2264 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2265 clock = readl(&oxu->regs->frame_index);
2266 else
2267 clock = now_uframe + mod - 1;
2268 clock %= mod;
2269
2270 for (;;) {
2271 union ehci_shadow q, *q_p;
2272 __le32 type, *hw_p;
2273 unsigned uframes;
2274
2275 /* don't scan past the live uframe */
2276 frame = now_uframe >> 3;
2277 if (frame == (clock >> 3))
2278 uframes = now_uframe & 0x07;
2279 else {
2280 /* safe to scan the whole frame at once */
2281 now_uframe |= 0x07;
2282 uframes = 8;
2283 }
2284
2285 restart:
2286 /* scan each element in frame's queue for completions */
2287 q_p = &oxu->pshadow[frame];
2288 hw_p = &oxu->periodic[frame];
2289 q.ptr = q_p->ptr;
2290 type = Q_NEXT_TYPE(*hw_p);
2291 modified = 0;
2292
2293 while (q.ptr != NULL) {
2294 union ehci_shadow temp;
2295 int live;
2296
2297 live = HC_IS_RUNNING(oxu_to_hcd(oxu)->state);
2298 switch (type) {
2299 case Q_TYPE_QH:
2300 /* handle any completions */
2301 temp.qh = qh_get(q.qh);
2302 type = Q_NEXT_TYPE(q.qh->hw_next);
2303 q = q.qh->qh_next;
2304 modified = qh_completions(oxu, temp.qh);
2305 if (unlikely(list_empty(&temp.qh->qtd_list)))
2306 intr_deschedule(oxu, temp.qh);
2307 qh_put(temp.qh);
2308 break;
2309 default:
2310 dbg("corrupt type %d frame %d shadow %p",
2311 type, frame, q.ptr);
2312 q.ptr = NULL;
2313 }
2314
2315 /* assume completion callbacks modify the queue */
2316 if (unlikely(modified))
2317 goto restart;
2318 }
2319
2320 /* Stop when we catch up to the HC */
2321
2322 /* FIXME: this assumes we won't get lapped when
2323 * latencies climb; that should be rare, but...
2324 * detect it, and just go all the way around.
2325 * FLR might help detect this case, so long as latencies
2326 * don't exceed periodic_size msec (default 1.024 sec).
2327 */
2328
2329 /* FIXME: likewise assumes HC doesn't halt mid-scan */
2330
2331 if (now_uframe == clock) {
2332 unsigned now;
2333
2334 if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
2335 break;
2336 oxu->next_uframe = now_uframe;
2337 now = readl(&oxu->regs->frame_index) % mod;
2338 if (now_uframe == now)
2339 break;
2340
2341 /* rescan the rest of this frame, then ... */
2342 clock = now;
2343 } else {
2344 now_uframe++;
2345 now_uframe %= mod;
2346 }
2347 }
2348 }
2349
2350 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
2351 * The firmware seems to think that powering off is a wakeup event!
2352 * This routine turns off remote wakeup and everything else, on all ports.
2353 */
2354 static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
2355 {
2356 int port = HCS_N_PORTS(oxu->hcs_params);
2357
2358 while (port--)
2359 writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
2360 }
2361
2362 static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
2363 {
2364 unsigned port;
2365
2366 if (!HCS_PPC(oxu->hcs_params))
2367 return;
2368
2369 oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
2370 for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; )
2371 (void) oxu_hub_control(oxu_to_hcd(oxu),
2372 is_on ? SetPortFeature : ClearPortFeature,
2373 USB_PORT_FEAT_POWER,
2374 port--, NULL, 0);
2375 msleep(20);
2376 }
2377
2378 /* Called from some interrupts, timers, and so on.
2379 * It calls driver completion functions, after dropping oxu->lock.
2380 */
2381 static void ehci_work(struct oxu_hcd *oxu)
2382 {
2383 timer_action_done(oxu, TIMER_IO_WATCHDOG);
2384 if (oxu->reclaim_ready)
2385 end_unlink_async(oxu);
2386
2387 /* another CPU may drop oxu->lock during a schedule scan while
2388 * it reports urb completions. this flag guards against bogus
2389 * attempts at re-entrant schedule scanning.
2390 */
2391 if (oxu->scanning)
2392 return;
2393 oxu->scanning = 1;
2394 scan_async(oxu);
2395 if (oxu->next_uframe != -1)
2396 scan_periodic(oxu);
2397 oxu->scanning = 0;
2398
2399 /* the IO watchdog guards against hardware or driver bugs that
2400 * misplace IRQs, and should let us run completely without IRQs.
2401 * such lossage has been observed on both VT6202 and VT8235.
2402 */
2403 if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
2404 (oxu->async->qh_next.ptr != NULL ||
2405 oxu->periodic_sched != 0))
2406 timer_action(oxu, TIMER_IO_WATCHDOG);
2407 }
2408
2409 static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
2410 {
2411 /* if we need to use IAA and it's busy, defer */
2412 if (qh->qh_state == QH_STATE_LINKED
2413 && oxu->reclaim
2414 && HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
2415 struct ehci_qh *last;
2416
2417 for (last = oxu->reclaim;
2418 last->reclaim;
2419 last = last->reclaim)
2420 continue;
2421 qh->qh_state = QH_STATE_UNLINK_WAIT;
2422 last->reclaim = qh;
2423
2424 /* bypass IAA if the hc can't care */
2425 } else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
2426 end_unlink_async(oxu);
2427
2428 /* something else might have unlinked the qh by now */
2429 if (qh->qh_state == QH_STATE_LINKED)
2430 start_unlink_async(oxu, qh);
2431 }
2432
2433 /*
2434 * USB host controller methods
2435 */
2436
2437 static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
2438 {
2439 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2440 u32 status, pcd_status = 0;
2441 int bh;
2442
2443 spin_lock(&oxu->lock);
2444
2445 status = readl(&oxu->regs->status);
2446
2447 /* e.g. cardbus physical eject */
2448 if (status == ~(u32) 0) {
2449 oxu_dbg(oxu, "device removed\n");
2450 goto dead;
2451 }
2452
2453 /* Shared IRQ? */
2454 status &= INTR_MASK;
2455 if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
2456 spin_unlock(&oxu->lock);
2457 return IRQ_NONE;
2458 }
2459
2460 /* clear (just) interrupts */
2461 writel(status, &oxu->regs->status);
2462 readl(&oxu->regs->command); /* unblock posted write */
2463 bh = 0;
2464
2465 #ifdef OXU_VERBOSE_DEBUG
2466 /* unrequested/ignored: Frame List Rollover */
2467 dbg_status(oxu, "irq", status);
2468 #endif
2469
2470 /* INT, ERR, and IAA interrupt rates can be throttled */
2471
2472 /* normal [4.15.1.2] or error [4.15.1.1] completion */
2473 if (likely((status & (STS_INT|STS_ERR)) != 0))
2474 bh = 1;
2475
2476 /* complete the unlinking of some qh [4.15.2.3] */
2477 if (status & STS_IAA) {
2478 oxu->reclaim_ready = 1;
2479 bh = 1;
2480 }
2481
2482 /* remote wakeup [4.3.1] */
2483 if (status & STS_PCD) {
2484 unsigned i = HCS_N_PORTS(oxu->hcs_params);
2485 pcd_status = status;
2486
2487 /* resume root hub? */
2488 if (!(readl(&oxu->regs->command) & CMD_RUN))
2489 usb_hcd_resume_root_hub(hcd);
2490
2491 while (i--) {
2492 int pstatus = readl(&oxu->regs->port_status[i]);
2493
2494 if (pstatus & PORT_OWNER)
2495 continue;
2496 if (!(pstatus & PORT_RESUME)
2497 || oxu->reset_done[i] != 0)
2498 continue;
2499
2500 /* start 20 msec resume signaling from this port,
2501 * and make khubd collect PORT_STAT_C_SUSPEND to
2502 * stop that signaling.
2503 */
2504 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
2505 oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
2506 mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
2507 }
2508 }
2509
2510 /* PCI errors [4.15.2.4] */
2511 if (unlikely((status & STS_FATAL) != 0)) {
2512 /* bogus "fatal" IRQs appear on some chips... why? */
2513 status = readl(&oxu->regs->status);
2514 dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
2515 dbg_status(oxu, "fatal", status);
2516 if (status & STS_HALT) {
2517 oxu_err(oxu, "fatal error\n");
2518 dead:
2519 ehci_reset(oxu);
2520 writel(0, &oxu->regs->configured_flag);
2521 usb_hc_died(hcd);
2522 /* generic layer kills/unlinks all urbs, then
2523 * uses oxu_stop to clean up the rest
2524 */
2525 bh = 1;
2526 }
2527 }
2528
2529 if (bh)
2530 ehci_work(oxu);
2531 spin_unlock(&oxu->lock);
2532 if (pcd_status & STS_PCD)
2533 usb_hcd_poll_rh_status(hcd);
2534 return IRQ_HANDLED;
2535 }
2536
2537 static irqreturn_t oxu_irq(struct usb_hcd *hcd)
2538 {
2539 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2540 int ret = IRQ_HANDLED;
2541
2542 u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
2543 u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
2544
2545 /* Disable all interrupt */
2546 oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
2547
2548 if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
2549 (!oxu->is_otg && (status & OXU_USBSPHI)))
2550 oxu210_hcd_irq(hcd);
2551 else
2552 ret = IRQ_NONE;
2553
2554 /* Enable all interrupt back */
2555 oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
2556
2557 return ret;
2558 }
2559
2560 static void oxu_watchdog(unsigned long param)
2561 {
2562 struct oxu_hcd *oxu = (struct oxu_hcd *) param;
2563 unsigned long flags;
2564
2565 spin_lock_irqsave(&oxu->lock, flags);
2566
2567 /* lost IAA irqs wedge things badly; seen with a vt8235 */
2568 if (oxu->reclaim) {
2569 u32 status = readl(&oxu->regs->status);
2570 if (status & STS_IAA) {
2571 oxu_vdbg(oxu, "lost IAA\n");
2572 writel(STS_IAA, &oxu->regs->status);
2573 oxu->reclaim_ready = 1;
2574 }
2575 }
2576
2577 /* stop async processing after it's idled a bit */
2578 if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
2579 start_unlink_async(oxu, oxu->async);
2580
2581 /* oxu could run by timer, without IRQs ... */
2582 ehci_work(oxu);
2583
2584 spin_unlock_irqrestore(&oxu->lock, flags);
2585 }
2586
2587 /* One-time init, only for memory state.
2588 */
2589 static int oxu_hcd_init(struct usb_hcd *hcd)
2590 {
2591 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2592 u32 temp;
2593 int retval;
2594 u32 hcc_params;
2595
2596 spin_lock_init(&oxu->lock);
2597
2598 init_timer(&oxu->watchdog);
2599 oxu->watchdog.function = oxu_watchdog;
2600 oxu->watchdog.data = (unsigned long) oxu;
2601
2602 /*
2603 * hw default: 1K periodic list heads, one per frame.
2604 * periodic_size can shrink by USBCMD update if hcc_params allows.
2605 */
2606 oxu->periodic_size = DEFAULT_I_TDPS;
2607 retval = ehci_mem_init(oxu, GFP_KERNEL);
2608 if (retval < 0)
2609 return retval;
2610
2611 /* controllers may cache some of the periodic schedule ... */
2612 hcc_params = readl(&oxu->caps->hcc_params);
2613 if (HCC_ISOC_CACHE(hcc_params)) /* full frame cache */
2614 oxu->i_thresh = 8;
2615 else /* N microframes cached */
2616 oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
2617
2618 oxu->reclaim = NULL;
2619 oxu->reclaim_ready = 0;
2620 oxu->next_uframe = -1;
2621
2622 /*
2623 * dedicate a qh for the async ring head, since we couldn't unlink
2624 * a 'real' qh without stopping the async schedule [4.8]. use it
2625 * as the 'reclamation list head' too.
2626 * its dummy is used in hw_alt_next of many tds, to prevent the qh
2627 * from automatically advancing to the next td after short reads.
2628 */
2629 oxu->async->qh_next.qh = NULL;
2630 oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
2631 oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
2632 oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
2633 oxu->async->hw_qtd_next = EHCI_LIST_END;
2634 oxu->async->qh_state = QH_STATE_LINKED;
2635 oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
2636
2637 /* clear interrupt enables, set irq latency */
2638 if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
2639 log2_irq_thresh = 0;
2640 temp = 1 << (16 + log2_irq_thresh);
2641 if (HCC_CANPARK(hcc_params)) {
2642 /* HW default park == 3, on hardware that supports it (like
2643 * NVidia and ALI silicon), maximizes throughput on the async
2644 * schedule by avoiding QH fetches between transfers.
2645 *
2646 * With fast usb storage devices and NForce2, "park" seems to
2647 * make problems: throughput reduction (!), data errors...
2648 */
2649 if (park) {
2650 park = min(park, (unsigned) 3);
2651 temp |= CMD_PARK;
2652 temp |= park << 8;
2653 }
2654 oxu_dbg(oxu, "park %d\n", park);
2655 }
2656 if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
2657 /* periodic schedule size can be smaller than default */
2658 temp &= ~(3 << 2);
2659 temp |= (EHCI_TUNE_FLS << 2);
2660 }
2661 oxu->command = temp;
2662
2663 return 0;
2664 }
2665
2666 /* Called during probe() after chip reset completes.
2667 */
2668 static int oxu_reset(struct usb_hcd *hcd)
2669 {
2670 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2671 int ret;
2672
2673 spin_lock_init(&oxu->mem_lock);
2674 INIT_LIST_HEAD(&oxu->urb_list);
2675 oxu->urb_len = 0;
2676
2677 /* FIMXE */
2678 hcd->self.controller->dma_mask = NULL;
2679
2680 if (oxu->is_otg) {
2681 oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
2682 oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
2683 HC_LENGTH(readl(&oxu->caps->hc_capbase));
2684
2685 oxu->mem = hcd->regs + OXU_SPH_MEM;
2686 } else {
2687 oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
2688 oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
2689 HC_LENGTH(readl(&oxu->caps->hc_capbase));
2690
2691 oxu->mem = hcd->regs + OXU_OTG_MEM;
2692 }
2693
2694 oxu->hcs_params = readl(&oxu->caps->hcs_params);
2695 oxu->sbrn = 0x20;
2696
2697 ret = oxu_hcd_init(hcd);
2698 if (ret)
2699 return ret;
2700
2701 return 0;
2702 }
2703
2704 static int oxu_run(struct usb_hcd *hcd)
2705 {
2706 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2707 int retval;
2708 u32 temp, hcc_params;
2709
2710 hcd->uses_new_polling = 1;
2711
2712 /* EHCI spec section 4.1 */
2713 retval = ehci_reset(oxu);
2714 if (retval != 0) {
2715 ehci_mem_cleanup(oxu);
2716 return retval;
2717 }
2718 writel(oxu->periodic_dma, &oxu->regs->frame_list);
2719 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
2720
2721 /* hcc_params controls whether oxu->regs->segment must (!!!)
2722 * be used; it constrains QH/ITD/SITD and QTD locations.
2723 * pci_pool consistent memory always uses segment zero.
2724 * streaming mappings for I/O buffers, like pci_map_single(),
2725 * can return segments above 4GB, if the device allows.
2726 *
2727 * NOTE: the dma mask is visible through dma_supported(), so
2728 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
2729 * Scsi_Host.highmem_io, and so forth. It's readonly to all
2730 * host side drivers though.
2731 */
2732 hcc_params = readl(&oxu->caps->hcc_params);
2733 if (HCC_64BIT_ADDR(hcc_params))
2734 writel(0, &oxu->regs->segment);
2735
2736 oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
2737 CMD_ASE | CMD_RESET);
2738 oxu->command |= CMD_RUN;
2739 writel(oxu->command, &oxu->regs->command);
2740 dbg_cmd(oxu, "init", oxu->command);
2741
2742 /*
2743 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
2744 * are explicitly handed to companion controller(s), so no TT is
2745 * involved with the root hub. (Except where one is integrated,
2746 * and there's no companion controller unless maybe for USB OTG.)
2747 */
2748 hcd->state = HC_STATE_RUNNING;
2749 writel(FLAG_CF, &oxu->regs->configured_flag);
2750 readl(&oxu->regs->command); /* unblock posted writes */
2751
2752 temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
2753 oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
2754 ((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
2755 temp >> 8, temp & 0xff, DRIVER_VERSION,
2756 ignore_oc ? ", overcurrent ignored" : "");
2757
2758 writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
2759
2760 return 0;
2761 }
2762
2763 static void oxu_stop(struct usb_hcd *hcd)
2764 {
2765 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2766
2767 /* Turn off port power on all root hub ports. */
2768 ehci_port_power(oxu, 0);
2769
2770 /* no more interrupts ... */
2771 del_timer_sync(&oxu->watchdog);
2772
2773 spin_lock_irq(&oxu->lock);
2774 if (HC_IS_RUNNING(hcd->state))
2775 ehci_quiesce(oxu);
2776
2777 ehci_reset(oxu);
2778 writel(0, &oxu->regs->intr_enable);
2779 spin_unlock_irq(&oxu->lock);
2780
2781 /* let companion controllers work when we aren't */
2782 writel(0, &oxu->regs->configured_flag);
2783
2784 /* root hub is shut down separately (first, when possible) */
2785 spin_lock_irq(&oxu->lock);
2786 if (oxu->async)
2787 ehci_work(oxu);
2788 spin_unlock_irq(&oxu->lock);
2789 ehci_mem_cleanup(oxu);
2790
2791 dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
2792 }
2793
2794 /* Kick in for silicon on any bus (not just pci, etc).
2795 * This forcibly disables dma and IRQs, helping kexec and other cases
2796 * where the next system software may expect clean state.
2797 */
2798 static void oxu_shutdown(struct usb_hcd *hcd)
2799 {
2800 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2801
2802 (void) ehci_halt(oxu);
2803 ehci_turn_off_all_ports(oxu);
2804
2805 /* make BIOS/etc use companion controller during reboot */
2806 writel(0, &oxu->regs->configured_flag);
2807
2808 /* unblock posted writes */
2809 readl(&oxu->regs->configured_flag);
2810 }
2811
2812 /* Non-error returns are a promise to giveback() the urb later
2813 * we drop ownership so next owner (or urb unlink) can get it
2814 *
2815 * urb + dev is in hcd.self.controller.urb_list
2816 * we're queueing TDs onto software and hardware lists
2817 *
2818 * hcd-specific init for hcpriv hasn't been done yet
2819 *
2820 * NOTE: control, bulk, and interrupt share the same code to append TDs
2821 * to a (possibly active) QH, and the same QH scanning code.
2822 */
2823 static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2824 gfp_t mem_flags)
2825 {
2826 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2827 struct list_head qtd_list;
2828
2829 INIT_LIST_HEAD(&qtd_list);
2830
2831 switch (usb_pipetype(urb->pipe)) {
2832 case PIPE_CONTROL:
2833 case PIPE_BULK:
2834 default:
2835 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2836 return -ENOMEM;
2837 return submit_async(oxu, urb, &qtd_list, mem_flags);
2838
2839 case PIPE_INTERRUPT:
2840 if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
2841 return -ENOMEM;
2842 return intr_submit(oxu, urb, &qtd_list, mem_flags);
2843
2844 case PIPE_ISOCHRONOUS:
2845 if (urb->dev->speed == USB_SPEED_HIGH)
2846 return itd_submit(oxu, urb, mem_flags);
2847 else
2848 return sitd_submit(oxu, urb, mem_flags);
2849 }
2850 }
2851
2852 /* This function is responsible for breaking URBs with big data size
2853 * into smaller size and processing small urbs in sequence.
2854 */
2855 static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
2856 gfp_t mem_flags)
2857 {
2858 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2859 int num, rem;
2860 int transfer_buffer_length;
2861 void *transfer_buffer;
2862 struct urb *murb;
2863 int i, ret;
2864
2865 /* If not bulk pipe just enqueue the URB */
2866 if (!usb_pipebulk(urb->pipe))
2867 return __oxu_urb_enqueue(hcd, urb, mem_flags);
2868
2869 /* Otherwise we should verify the USB transfer buffer size! */
2870 transfer_buffer = urb->transfer_buffer;
2871 transfer_buffer_length = urb->transfer_buffer_length;
2872
2873 num = urb->transfer_buffer_length / 4096;
2874 rem = urb->transfer_buffer_length % 4096;
2875 if (rem != 0)
2876 num++;
2877
2878 /* If URB is smaller than 4096 bytes just enqueue it! */
2879 if (num == 1)
2880 return __oxu_urb_enqueue(hcd, urb, mem_flags);
2881
2882 /* Ok, we have more job to do! :) */
2883
2884 for (i = 0; i < num - 1; i++) {
2885 /* Get free micro URB poll till a free urb is received */
2886
2887 do {
2888 murb = (struct urb *) oxu_murb_alloc(oxu);
2889 if (!murb)
2890 schedule();
2891 } while (!murb);
2892
2893 /* Coping the urb */
2894 memcpy(murb, urb, sizeof(struct urb));
2895
2896 murb->transfer_buffer_length = 4096;
2897 murb->transfer_buffer = transfer_buffer + i * 4096;
2898
2899 /* Null pointer for the encodes that this is a micro urb */
2900 murb->complete = NULL;
2901
2902 ((struct oxu_murb *) murb)->main = urb;
2903 ((struct oxu_murb *) murb)->last = 0;
2904
2905 /* This loop is to guarantee urb to be processed when there's
2906 * not enough resources at a particular time by retrying.
2907 */
2908 do {
2909 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
2910 if (ret)
2911 schedule();
2912 } while (ret);
2913 }
2914
2915 /* Last urb requires special handling */
2916
2917 /* Get free micro URB poll till a free urb is received */
2918 do {
2919 murb = (struct urb *) oxu_murb_alloc(oxu);
2920 if (!murb)
2921 schedule();
2922 } while (!murb);
2923
2924 /* Coping the urb */
2925 memcpy(murb, urb, sizeof(struct urb));
2926
2927 murb->transfer_buffer_length = rem > 0 ? rem : 4096;
2928 murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
2929
2930 /* Null pointer for the encodes that this is a micro urb */
2931 murb->complete = NULL;
2932
2933 ((struct oxu_murb *) murb)->main = urb;
2934 ((struct oxu_murb *) murb)->last = 1;
2935
2936 do {
2937 ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
2938 if (ret)
2939 schedule();
2940 } while (ret);
2941
2942 return ret;
2943 }
2944
2945 /* Remove from hardware lists.
2946 * Completions normally happen asynchronously
2947 */
2948 static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
2949 {
2950 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
2951 struct ehci_qh *qh;
2952 unsigned long flags;
2953
2954 spin_lock_irqsave(&oxu->lock, flags);
2955 switch (usb_pipetype(urb->pipe)) {
2956 case PIPE_CONTROL:
2957 case PIPE_BULK:
2958 default:
2959 qh = (struct ehci_qh *) urb->hcpriv;
2960 if (!qh)
2961 break;
2962 unlink_async(oxu, qh);
2963 break;
2964
2965 case PIPE_INTERRUPT:
2966 qh = (struct ehci_qh *) urb->hcpriv;
2967 if (!qh)
2968 break;
2969 switch (qh->qh_state) {
2970 case QH_STATE_LINKED:
2971 intr_deschedule(oxu, qh);
2972 /* FALL THROUGH */
2973 case QH_STATE_IDLE:
2974 qh_completions(oxu, qh);
2975 break;
2976 default:
2977 oxu_dbg(oxu, "bogus qh %p state %d\n",
2978 qh, qh->qh_state);
2979 goto done;
2980 }
2981
2982 /* reschedule QH iff another request is queued */
2983 if (!list_empty(&qh->qtd_list)
2984 && HC_IS_RUNNING(hcd->state)) {
2985 int status;
2986
2987 status = qh_schedule(oxu, qh);
2988 spin_unlock_irqrestore(&oxu->lock, flags);
2989
2990 if (status != 0) {
2991 /* shouldn't happen often, but ...
2992 * FIXME kill those tds' urbs
2993 */
2994 err("can't reschedule qh %p, err %d",
2995 qh, status);
2996 }
2997 return status;
2998 }
2999 break;
3000 }
3001 done:
3002 spin_unlock_irqrestore(&oxu->lock, flags);
3003 return 0;
3004 }
3005
3006 /* Bulk qh holds the data toggle */
3007 static void oxu_endpoint_disable(struct usb_hcd *hcd,
3008 struct usb_host_endpoint *ep)
3009 {
3010 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3011 unsigned long flags;
3012 struct ehci_qh *qh, *tmp;
3013
3014 /* ASSERT: any requests/urbs are being unlinked */
3015 /* ASSERT: nobody can be submitting urbs for this any more */
3016
3017 rescan:
3018 spin_lock_irqsave(&oxu->lock, flags);
3019 qh = ep->hcpriv;
3020 if (!qh)
3021 goto done;
3022
3023 /* endpoints can be iso streams. for now, we don't
3024 * accelerate iso completions ... so spin a while.
3025 */
3026 if (qh->hw_info1 == 0) {
3027 oxu_vdbg(oxu, "iso delay\n");
3028 goto idle_timeout;
3029 }
3030
3031 if (!HC_IS_RUNNING(hcd->state))
3032 qh->qh_state = QH_STATE_IDLE;
3033 switch (qh->qh_state) {
3034 case QH_STATE_LINKED:
3035 for (tmp = oxu->async->qh_next.qh;
3036 tmp && tmp != qh;
3037 tmp = tmp->qh_next.qh)
3038 continue;
3039 /* periodic qh self-unlinks on empty */
3040 if (!tmp)
3041 goto nogood;
3042 unlink_async(oxu, qh);
3043 /* FALL THROUGH */
3044 case QH_STATE_UNLINK: /* wait for hw to finish? */
3045 idle_timeout:
3046 spin_unlock_irqrestore(&oxu->lock, flags);
3047 schedule_timeout_uninterruptible(1);
3048 goto rescan;
3049 case QH_STATE_IDLE: /* fully unlinked */
3050 if (list_empty(&qh->qtd_list)) {
3051 qh_put(qh);
3052 break;
3053 }
3054 /* else FALL THROUGH */
3055 default:
3056 nogood:
3057 /* caller was supposed to have unlinked any requests;
3058 * that's not our job. just leak this memory.
3059 */
3060 oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
3061 qh, ep->desc.bEndpointAddress, qh->qh_state,
3062 list_empty(&qh->qtd_list) ? "" : "(has tds)");
3063 break;
3064 }
3065 ep->hcpriv = NULL;
3066 done:
3067 spin_unlock_irqrestore(&oxu->lock, flags);
3068 }
3069
3070 static int oxu_get_frame(struct usb_hcd *hcd)
3071 {
3072 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3073
3074 return (readl(&oxu->regs->frame_index) >> 3) %
3075 oxu->periodic_size;
3076 }
3077
3078 /* Build "status change" packet (one or two bytes) from HC registers */
3079 static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
3080 {
3081 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3082 u32 temp, mask, status = 0;
3083 int ports, i, retval = 1;
3084 unsigned long flags;
3085
3086 /* if !USB_SUSPEND, root hub timers won't get shut down ... */
3087 if (!HC_IS_RUNNING(hcd->state))
3088 return 0;
3089
3090 /* init status to no-changes */
3091 buf[0] = 0;
3092 ports = HCS_N_PORTS(oxu->hcs_params);
3093 if (ports > 7) {
3094 buf[1] = 0;
3095 retval++;
3096 }
3097
3098 /* Some boards (mostly VIA?) report bogus overcurrent indications,
3099 * causing massive log spam unless we completely ignore them. It
3100 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
3101 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
3102 * PORT_POWER; that's surprising, but maybe within-spec.
3103 */
3104 if (!ignore_oc)
3105 mask = PORT_CSC | PORT_PEC | PORT_OCC;
3106 else
3107 mask = PORT_CSC | PORT_PEC;
3108
3109 /* no hub change reports (bit 0) for now (power, ...) */
3110
3111 /* port N changes (bit N)? */
3112 spin_lock_irqsave(&oxu->lock, flags);
3113 for (i = 0; i < ports; i++) {
3114 temp = readl(&oxu->regs->port_status[i]);
3115
3116 /*
3117 * Return status information even for ports with OWNER set.
3118 * Otherwise khubd wouldn't see the disconnect event when a
3119 * high-speed device is switched over to the companion
3120 * controller by the user.
3121 */
3122
3123 if (!(temp & PORT_CONNECT))
3124 oxu->reset_done[i] = 0;
3125 if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
3126 time_after_eq(jiffies, oxu->reset_done[i]))) {
3127 if (i < 7)
3128 buf[0] |= 1 << (i + 1);
3129 else
3130 buf[1] |= 1 << (i - 7);
3131 status = STS_PCD;
3132 }
3133 }
3134 /* FIXME autosuspend idle root hubs */
3135 spin_unlock_irqrestore(&oxu->lock, flags);
3136 return status ? retval : 0;
3137 }
3138
3139 /* Returns the speed of a device attached to a port on the root hub. */
3140 static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
3141 unsigned int portsc)
3142 {
3143 switch ((portsc >> 26) & 3) {
3144 case 0:
3145 return 0;
3146 case 1:
3147 return USB_PORT_STAT_LOW_SPEED;
3148 case 2:
3149 default:
3150 return USB_PORT_STAT_HIGH_SPEED;
3151 }
3152 }
3153
3154 #define PORT_WAKE_BITS (PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
3155 static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
3156 u16 wValue, u16 wIndex, char *buf, u16 wLength)
3157 {
3158 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3159 int ports = HCS_N_PORTS(oxu->hcs_params);
3160 u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
3161 u32 temp, status;
3162 unsigned long flags;
3163 int retval = 0;
3164 unsigned selector;
3165
3166 /*
3167 * FIXME: support SetPortFeatures USB_PORT_FEAT_INDICATOR.
3168 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
3169 * (track current state ourselves) ... blink for diagnostics,
3170 * power, "this is the one", etc. EHCI spec supports this.
3171 */
3172
3173 spin_lock_irqsave(&oxu->lock, flags);
3174 switch (typeReq) {
3175 case ClearHubFeature:
3176 switch (wValue) {
3177 case C_HUB_LOCAL_POWER:
3178 case C_HUB_OVER_CURRENT:
3179 /* no hub-wide feature/status flags */
3180 break;
3181 default:
3182 goto error;
3183 }
3184 break;
3185 case ClearPortFeature:
3186 if (!wIndex || wIndex > ports)
3187 goto error;
3188 wIndex--;
3189 temp = readl(status_reg);
3190
3191 /*
3192 * Even if OWNER is set, so the port is owned by the
3193 * companion controller, khubd needs to be able to clear
3194 * the port-change status bits (especially
3195 * USB_PORT_STAT_C_CONNECTION).
3196 */
3197
3198 switch (wValue) {
3199 case USB_PORT_FEAT_ENABLE:
3200 writel(temp & ~PORT_PE, status_reg);
3201 break;
3202 case USB_PORT_FEAT_C_ENABLE:
3203 writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
3204 break;
3205 case USB_PORT_FEAT_SUSPEND:
3206 if (temp & PORT_RESET)
3207 goto error;
3208 if (temp & PORT_SUSPEND) {
3209 if ((temp & PORT_PE) == 0)
3210 goto error;
3211 /* resume signaling for 20 msec */
3212 temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
3213 writel(temp | PORT_RESUME, status_reg);
3214 oxu->reset_done[wIndex] = jiffies
3215 + msecs_to_jiffies(20);
3216 }
3217 break;
3218 case USB_PORT_FEAT_C_SUSPEND:
3219 /* we auto-clear this feature */
3220 break;
3221 case USB_PORT_FEAT_POWER:
3222 if (HCS_PPC(oxu->hcs_params))
3223 writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
3224 status_reg);
3225 break;
3226 case USB_PORT_FEAT_C_CONNECTION:
3227 writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
3228 break;
3229 case USB_PORT_FEAT_C_OVER_CURRENT:
3230 writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
3231 break;
3232 case USB_PORT_FEAT_C_RESET:
3233 /* GetPortStatus clears reset */
3234 break;
3235 default:
3236 goto error;
3237 }
3238 readl(&oxu->regs->command); /* unblock posted write */
3239 break;
3240 case GetHubDescriptor:
3241 ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
3242 buf);
3243 break;
3244 case GetHubStatus:
3245 /* no hub-wide feature/status flags */
3246 memset(buf, 0, 4);
3247 break;
3248 case GetPortStatus:
3249 if (!wIndex || wIndex > ports)
3250 goto error;
3251 wIndex--;
3252 status = 0;
3253 temp = readl(status_reg);
3254
3255 /* wPortChange bits */
3256 if (temp & PORT_CSC)
3257 status |= USB_PORT_STAT_C_CONNECTION << 16;
3258 if (temp & PORT_PEC)
3259 status |= USB_PORT_STAT_C_ENABLE << 16;
3260 if ((temp & PORT_OCC) && !ignore_oc)
3261 status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3262
3263 /* whoever resumes must GetPortStatus to complete it!! */
3264 if (temp & PORT_RESUME) {
3265
3266 /* Remote Wakeup received? */
3267 if (!oxu->reset_done[wIndex]) {
3268 /* resume signaling for 20 msec */
3269 oxu->reset_done[wIndex] = jiffies
3270 + msecs_to_jiffies(20);
3271 /* check the port again */
3272 mod_timer(&oxu_to_hcd(oxu)->rh_timer,
3273 oxu->reset_done[wIndex]);
3274 }
3275
3276 /* resume completed? */
3277 else if (time_after_eq(jiffies,
3278 oxu->reset_done[wIndex])) {
3279 status |= USB_PORT_STAT_C_SUSPEND << 16;
3280 oxu->reset_done[wIndex] = 0;
3281
3282 /* stop resume signaling */
3283 temp = readl(status_reg);
3284 writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
3285 status_reg);
3286 retval = handshake(oxu, status_reg,
3287 PORT_RESUME, 0, 2000 /* 2msec */);
3288 if (retval != 0) {
3289 oxu_err(oxu,
3290 "port %d resume error %d\n",
3291 wIndex + 1, retval);
3292 goto error;
3293 }
3294 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
3295 }
3296 }
3297
3298 /* whoever resets must GetPortStatus to complete it!! */
3299 if ((temp & PORT_RESET)
3300 && time_after_eq(jiffies,
3301 oxu->reset_done[wIndex])) {
3302 status |= USB_PORT_STAT_C_RESET << 16;
3303 oxu->reset_done[wIndex] = 0;
3304
3305 /* force reset to complete */
3306 writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
3307 status_reg);
3308 /* REVISIT: some hardware needs 550+ usec to clear
3309 * this bit; seems too long to spin routinely...
3310 */
3311 retval = handshake(oxu, status_reg,
3312 PORT_RESET, 0, 750);
3313 if (retval != 0) {
3314 oxu_err(oxu, "port %d reset error %d\n",
3315 wIndex + 1, retval);
3316 goto error;
3317 }
3318
3319 /* see what we found out */
3320 temp = check_reset_complete(oxu, wIndex, status_reg,
3321 readl(status_reg));
3322 }
3323
3324 /* transfer dedicated ports to the companion hc */
3325 if ((temp & PORT_CONNECT) &&
3326 test_bit(wIndex, &oxu->companion_ports)) {
3327 temp &= ~PORT_RWC_BITS;
3328 temp |= PORT_OWNER;
3329 writel(temp, status_reg);
3330 oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
3331 temp = readl(status_reg);
3332 }
3333
3334 /*
3335 * Even if OWNER is set, there's no harm letting khubd
3336 * see the wPortStatus values (they should all be 0 except
3337 * for PORT_POWER anyway).
3338 */
3339
3340 if (temp & PORT_CONNECT) {
3341 status |= USB_PORT_STAT_CONNECTION;
3342 /* status may be from integrated TT */
3343 status |= oxu_port_speed(oxu, temp);
3344 }
3345 if (temp & PORT_PE)
3346 status |= USB_PORT_STAT_ENABLE;
3347 if (temp & (PORT_SUSPEND|PORT_RESUME))
3348 status |= USB_PORT_STAT_SUSPEND;
3349 if (temp & PORT_OC)
3350 status |= USB_PORT_STAT_OVERCURRENT;
3351 if (temp & PORT_RESET)
3352 status |= USB_PORT_STAT_RESET;
3353 if (temp & PORT_POWER)
3354 status |= USB_PORT_STAT_POWER;
3355
3356 #ifndef OXU_VERBOSE_DEBUG
3357 if (status & ~0xffff) /* only if wPortChange is interesting */
3358 #endif
3359 dbg_port(oxu, "GetStatus", wIndex + 1, temp);
3360 put_unaligned(cpu_to_le32(status), (__le32 *) buf);
3361 break;
3362 case SetHubFeature:
3363 switch (wValue) {
3364 case C_HUB_LOCAL_POWER:
3365 case C_HUB_OVER_CURRENT:
3366 /* no hub-wide feature/status flags */
3367 break;
3368 default:
3369 goto error;
3370 }
3371 break;
3372 case SetPortFeature:
3373 selector = wIndex >> 8;
3374 wIndex &= 0xff;
3375 if (!wIndex || wIndex > ports)
3376 goto error;
3377 wIndex--;
3378 temp = readl(status_reg);
3379 if (temp & PORT_OWNER)
3380 break;
3381
3382 temp &= ~PORT_RWC_BITS;
3383 switch (wValue) {
3384 case USB_PORT_FEAT_SUSPEND:
3385 if ((temp & PORT_PE) == 0
3386 || (temp & PORT_RESET) != 0)
3387 goto error;
3388 if (device_may_wakeup(&hcd->self.root_hub->dev))
3389 temp |= PORT_WAKE_BITS;
3390 writel(temp | PORT_SUSPEND, status_reg);
3391 break;
3392 case USB_PORT_FEAT_POWER:
3393 if (HCS_PPC(oxu->hcs_params))
3394 writel(temp | PORT_POWER, status_reg);
3395 break;
3396 case USB_PORT_FEAT_RESET:
3397 if (temp & PORT_RESUME)
3398 goto error;
3399 /* line status bits may report this as low speed,
3400 * which can be fine if this root hub has a
3401 * transaction translator built in.
3402 */
3403 oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
3404 temp |= PORT_RESET;
3405 temp &= ~PORT_PE;
3406
3407 /*
3408 * caller must wait, then call GetPortStatus
3409 * usb 2.0 spec says 50 ms resets on root
3410 */
3411 oxu->reset_done[wIndex] = jiffies
3412 + msecs_to_jiffies(50);
3413 writel(temp, status_reg);
3414 break;
3415
3416 /* For downstream facing ports (these): one hub port is put
3417 * into test mode according to USB2 11.24.2.13, then the hub
3418 * must be reset (which for root hub now means rmmod+modprobe,
3419 * or else system reboot). See EHCI 2.3.9 and 4.14 for info
3420 * about the EHCI-specific stuff.
3421 */
3422 case USB_PORT_FEAT_TEST:
3423 if (!selector || selector > 5)
3424 goto error;
3425 ehci_quiesce(oxu);
3426 ehci_halt(oxu);
3427 temp |= selector << 16;
3428 writel(temp, status_reg);
3429 break;
3430
3431 default:
3432 goto error;
3433 }
3434 readl(&oxu->regs->command); /* unblock posted writes */
3435 break;
3436
3437 default:
3438 error:
3439 /* "stall" on error */
3440 retval = -EPIPE;
3441 }
3442 spin_unlock_irqrestore(&oxu->lock, flags);
3443 return retval;
3444 }
3445
3446 #ifdef CONFIG_PM
3447
3448 static int oxu_bus_suspend(struct usb_hcd *hcd)
3449 {
3450 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3451 int port;
3452 int mask;
3453
3454 oxu_dbg(oxu, "suspend root hub\n");
3455
3456 if (time_before(jiffies, oxu->next_statechange))
3457 msleep(5);
3458
3459 port = HCS_N_PORTS(oxu->hcs_params);
3460 spin_lock_irq(&oxu->lock);
3461
3462 /* stop schedules, clean any completed work */
3463 if (HC_IS_RUNNING(hcd->state)) {
3464 ehci_quiesce(oxu);
3465 hcd->state = HC_STATE_QUIESCING;
3466 }
3467 oxu->command = readl(&oxu->regs->command);
3468 if (oxu->reclaim)
3469 oxu->reclaim_ready = 1;
3470 ehci_work(oxu);
3471
3472 /* Unlike other USB host controller types, EHCI doesn't have
3473 * any notion of "global" or bus-wide suspend. The driver has
3474 * to manually suspend all the active unsuspended ports, and
3475 * then manually resume them in the bus_resume() routine.
3476 */
3477 oxu->bus_suspended = 0;
3478 while (port--) {
3479 u32 __iomem *reg = &oxu->regs->port_status[port];
3480 u32 t1 = readl(reg) & ~PORT_RWC_BITS;
3481 u32 t2 = t1;
3482
3483 /* keep track of which ports we suspend */
3484 if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
3485 !(t1 & PORT_SUSPEND)) {
3486 t2 |= PORT_SUSPEND;
3487 set_bit(port, &oxu->bus_suspended);
3488 }
3489
3490 /* enable remote wakeup on all ports */
3491 if (device_may_wakeup(&hcd->self.root_hub->dev))
3492 t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
3493 else
3494 t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
3495
3496 if (t1 != t2) {
3497 oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
3498 port + 1, t1, t2);
3499 writel(t2, reg);
3500 }
3501 }
3502
3503 /* turn off now-idle HC */
3504 del_timer_sync(&oxu->watchdog);
3505 ehci_halt(oxu);
3506 hcd->state = HC_STATE_SUSPENDED;
3507
3508 /* allow remote wakeup */
3509 mask = INTR_MASK;
3510 if (!device_may_wakeup(&hcd->self.root_hub->dev))
3511 mask &= ~STS_PCD;
3512 writel(mask, &oxu->regs->intr_enable);
3513 readl(&oxu->regs->intr_enable);
3514
3515 oxu->next_statechange = jiffies + msecs_to_jiffies(10);
3516 spin_unlock_irq(&oxu->lock);
3517 return 0;
3518 }
3519
3520 /* Caller has locked the root hub, and should reset/reinit on error */
3521 static int oxu_bus_resume(struct usb_hcd *hcd)
3522 {
3523 struct oxu_hcd *oxu = hcd_to_oxu(hcd);
3524 u32 temp;
3525 int i;
3526
3527 if (time_before(jiffies, oxu->next_statechange))
3528 msleep(5);
3529 spin_lock_irq(&oxu->lock);
3530
3531 /* Ideally and we've got a real resume here, and no port's power
3532 * was lost. (For PCI, that means Vaux was maintained.) But we
3533 * could instead be restoring a swsusp snapshot -- so that BIOS was
3534 * the last user of the controller, not reset/pm hardware keeping
3535 * state we gave to it.
3536 */
3537 temp = readl(&oxu->regs->intr_enable);
3538 oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
3539
3540 /* at least some APM implementations will try to deliver
3541 * IRQs right away, so delay them until we're ready.
3542 */
3543 writel(0, &oxu->regs->intr_enable);
3544
3545 /* re-init operational registers */
3546 writel(0, &oxu->regs->segment);
3547 writel(oxu->periodic_dma, &oxu->regs->frame_list);
3548 writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
3549
3550 /* restore CMD_RUN, framelist size, and irq threshold */
3551 writel(oxu->command, &oxu->regs->command);
3552
3553 /* Some controller/firmware combinations need a delay during which
3554 * they set up the port statuses. See Bugzilla #8190. */
3555 mdelay(8);
3556
3557 /* manually resume the ports we suspended during bus_suspend() */
3558 i = HCS_N_PORTS(oxu->hcs_params);
3559 while (i--) {
3560 temp = readl(&oxu->regs->port_status[i]);
3561 temp &= ~(PORT_RWC_BITS
3562 | PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
3563 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3564 oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
3565 temp |= PORT_RESUME;
3566 }
3567 writel(temp, &oxu->regs->port_status[i]);
3568 }
3569 i = HCS_N_PORTS(oxu->hcs_params);
3570 mdelay(20);
3571 while (i--) {
3572 temp = readl(&oxu->regs->port_status[i]);
3573 if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
3574 temp &= ~(PORT_RWC_BITS | PORT_RESUME);
3575 writel(temp, &oxu->regs->port_status[i]);
3576 oxu_vdbg(oxu, "resumed port %d\n", i + 1);
3577 }
3578 }
3579 (void) readl(&oxu->regs->command);
3580
3581 /* maybe re-activate the schedule(s) */
3582 temp = 0;
3583 if (oxu->async->qh_next.qh)
3584 temp |= CMD_ASE;
3585 if (oxu->periodic_sched)
3586 temp |= CMD_PSE;
3587 if (temp) {
3588 oxu->command |= temp;
3589 writel(oxu->command, &oxu->regs->command);
3590 }
3591
3592 oxu->next_statechange = jiffies + msecs_to_jiffies(5);
3593 hcd->state = HC_STATE_RUNNING;
3594
3595 /* Now we can safely re-enable irqs */
3596 writel(INTR_MASK, &oxu->regs->intr_enable);
3597
3598 spin_unlock_irq(&oxu->lock);
3599 return 0;
3600 }
3601
3602 #else
3603
3604 static int oxu_bus_suspend(struct usb_hcd *hcd)
3605 {
3606 return 0;
3607 }
3608
3609 static int oxu_bus_resume(struct usb_hcd *hcd)
3610 {
3611 return 0;
3612 }
3613
3614 #endif /* CONFIG_PM */
3615
3616 static const struct hc_driver oxu_hc_driver = {
3617 .description = "oxu210hp_hcd",
3618 .product_desc = "oxu210hp HCD",
3619 .hcd_priv_size = sizeof(struct oxu_hcd),
3620
3621 /*
3622 * Generic hardware linkage
3623 */
3624 .irq = oxu_irq,
3625 .flags = HCD_MEMORY | HCD_USB2,
3626
3627 /*
3628 * Basic lifecycle operations
3629 */
3630 .reset = oxu_reset,
3631 .start = oxu_run,
3632 .stop = oxu_stop,
3633 .shutdown = oxu_shutdown,
3634
3635 /*
3636 * Managing i/o requests and associated device resources
3637 */
3638 .urb_enqueue = oxu_urb_enqueue,
3639 .urb_dequeue = oxu_urb_dequeue,
3640 .endpoint_disable = oxu_endpoint_disable,
3641
3642 /*
3643 * Scheduling support
3644 */
3645 .get_frame_number = oxu_get_frame,
3646
3647 /*
3648 * Root hub support
3649 */
3650 .hub_status_data = oxu_hub_status_data,
3651 .hub_control = oxu_hub_control,
3652 .bus_suspend = oxu_bus_suspend,
3653 .bus_resume = oxu_bus_resume,
3654 };
3655
3656 /*
3657 * Module stuff
3658 */
3659
3660 static void oxu_configuration(struct platform_device *pdev, void *base)
3661 {
3662 u32 tmp;
3663
3664 /* Initialize top level registers.
3665 * First write ever
3666 */
3667 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3668 oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
3669 oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
3670
3671 tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
3672 oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
3673
3674 oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
3675 OXU_COMPARATOR | OXU_ASO_OP);
3676
3677 tmp = oxu_readl(base, OXU_CLKCTRL_SET);
3678 oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
3679
3680 /* Clear all top interrupt enable */
3681 oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
3682
3683 /* Clear all top interrupt status */
3684 oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
3685
3686 /* Enable all needed top interrupt except OTG SPH core */
3687 oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
3688 }
3689
3690 static int oxu_verify_id(struct platform_device *pdev, void *base)
3691 {
3692 u32 id;
3693 static const char * const bo[] = {
3694 "reserved",
3695 "128-pin LQFP",
3696 "84-pin TFBGA",
3697 "reserved",
3698 };
3699
3700 /* Read controller signature register to find a match */
3701 id = oxu_readl(base, OXU_DEVICEID);
3702 dev_info(&pdev->dev, "device ID %x\n", id);
3703 if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
3704 return -1;
3705
3706 dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
3707 id >> OXU_REV_SHIFT,
3708 bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
3709 (id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
3710 (id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
3711
3712 return 0;
3713 }
3714
3715 static const struct hc_driver oxu_hc_driver;
3716 static struct usb_hcd *oxu_create(struct platform_device *pdev,
3717 unsigned long memstart, unsigned long memlen,
3718 void *base, int irq, int otg)
3719 {
3720 struct device *dev = &pdev->dev;
3721
3722 struct usb_hcd *hcd;
3723 struct oxu_hcd *oxu;
3724 int ret;
3725
3726 /* Set endian mode and host mode */
3727 oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
3728 OXU_USBMODE,
3729 OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
3730
3731 hcd = usb_create_hcd(&oxu_hc_driver, dev,
3732 otg ? "oxu210hp_otg" : "oxu210hp_sph");
3733 if (!hcd)
3734 return ERR_PTR(-ENOMEM);
3735
3736 hcd->rsrc_start = memstart;
3737 hcd->rsrc_len = memlen;
3738 hcd->regs = base;
3739 hcd->irq = irq;
3740 hcd->state = HC_STATE_HALT;
3741
3742 oxu = hcd_to_oxu(hcd);
3743 oxu->is_otg = otg;
3744
3745 ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
3746 if (ret < 0)
3747 return ERR_PTR(ret);
3748
3749 return hcd;
3750 }
3751
3752 static int oxu_init(struct platform_device *pdev,
3753 unsigned long memstart, unsigned long memlen,
3754 void *base, int irq)
3755 {
3756 struct oxu_info *info = platform_get_drvdata(pdev);
3757 struct usb_hcd *hcd;
3758 int ret;
3759
3760 /* First time configuration at start up */
3761 oxu_configuration(pdev, base);
3762
3763 ret = oxu_verify_id(pdev, base);
3764 if (ret) {
3765 dev_err(&pdev->dev, "no devices found!\n");
3766 return -ENODEV;
3767 }
3768
3769 /* Create the OTG controller */
3770 hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
3771 if (IS_ERR(hcd)) {
3772 dev_err(&pdev->dev, "cannot create OTG controller!\n");
3773 ret = PTR_ERR(hcd);
3774 goto error_create_otg;
3775 }
3776 info->hcd[0] = hcd;
3777
3778 /* Create the SPH host controller */
3779 hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
3780 if (IS_ERR(hcd)) {
3781 dev_err(&pdev->dev, "cannot create SPH controller!\n");
3782 ret = PTR_ERR(hcd);
3783 goto error_create_sph;
3784 }
3785 info->hcd[1] = hcd;
3786
3787 oxu_writel(base, OXU_CHIPIRQEN_SET,
3788 oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
3789
3790 return 0;
3791
3792 error_create_sph:
3793 usb_remove_hcd(info->hcd[0]);
3794 usb_put_hcd(info->hcd[0]);
3795
3796 error_create_otg:
3797 return ret;
3798 }
3799
3800 static int oxu_drv_probe(struct platform_device *pdev)
3801 {
3802 struct resource *res;
3803 void *base;
3804 unsigned long memstart, memlen;
3805 int irq, ret;
3806 struct oxu_info *info;
3807
3808 if (usb_disabled())
3809 return -ENODEV;
3810
3811 /*
3812 * Get the platform resources
3813 */
3814 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
3815 if (!res) {
3816 dev_err(&pdev->dev,
3817 "no IRQ! Check %s setup!\n", dev_name(&pdev->dev));
3818 return -ENODEV;
3819 }
3820 irq = res->start;
3821 dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
3822
3823 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3824 if (!res) {
3825 dev_err(&pdev->dev, "no registers address! Check %s setup!\n",
3826 dev_name(&pdev->dev));
3827 return -ENODEV;
3828 }
3829 memstart = res->start;
3830 memlen = resource_size(res);
3831 dev_dbg(&pdev->dev, "MEM resource %lx-%lx\n", memstart, memlen);
3832 if (!request_mem_region(memstart, memlen,
3833 oxu_hc_driver.description)) {
3834 dev_dbg(&pdev->dev, "memory area already in use\n");
3835 return -EBUSY;
3836 }
3837
3838 ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
3839 if (ret) {
3840 dev_err(&pdev->dev, "error setting irq type\n");
3841 ret = -EFAULT;
3842 goto error_set_irq_type;
3843 }
3844
3845 base = ioremap(memstart, memlen);
3846 if (!base) {
3847 dev_dbg(&pdev->dev, "error mapping memory\n");
3848 ret = -EFAULT;
3849 goto error_ioremap;
3850 }
3851
3852 /* Allocate a driver data struct to hold useful info for both
3853 * SPH & OTG devices
3854 */
3855 info = kzalloc(sizeof(struct oxu_info), GFP_KERNEL);
3856 if (!info) {
3857 dev_dbg(&pdev->dev, "error allocating memory\n");
3858 ret = -EFAULT;
3859 goto error_alloc;
3860 }
3861 platform_set_drvdata(pdev, info);
3862
3863 ret = oxu_init(pdev, memstart, memlen, base, irq);
3864 if (ret < 0) {
3865 dev_dbg(&pdev->dev, "cannot init USB devices\n");
3866 goto error_init;
3867 }
3868
3869 dev_info(&pdev->dev, "devices enabled and running\n");
3870 platform_set_drvdata(pdev, info);
3871
3872 return 0;
3873
3874 error_init:
3875 kfree(info);
3876 platform_set_drvdata(pdev, NULL);
3877
3878 error_alloc:
3879 iounmap(base);
3880
3881 error_set_irq_type:
3882 error_ioremap:
3883 release_mem_region(memstart, memlen);
3884
3885 dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
3886 return ret;
3887 }
3888
3889 static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
3890 {
3891 usb_remove_hcd(hcd);
3892 usb_put_hcd(hcd);
3893 }
3894
3895 static int oxu_drv_remove(struct platform_device *pdev)
3896 {
3897 struct oxu_info *info = platform_get_drvdata(pdev);
3898 unsigned long memstart = info->hcd[0]->rsrc_start,
3899 memlen = info->hcd[0]->rsrc_len;
3900 void *base = info->hcd[0]->regs;
3901
3902 oxu_remove(pdev, info->hcd[0]);
3903 oxu_remove(pdev, info->hcd[1]);
3904
3905 iounmap(base);
3906 release_mem_region(memstart, memlen);
3907
3908 kfree(info);
3909 platform_set_drvdata(pdev, NULL);
3910
3911 return 0;
3912 }
3913
3914 static void oxu_drv_shutdown(struct platform_device *pdev)
3915 {
3916 oxu_drv_remove(pdev);
3917 }
3918
3919 #if 0
3920 /* FIXME: TODO */
3921 static int oxu_drv_suspend(struct device *dev)
3922 {
3923 struct platform_device *pdev = to_platform_device(dev);
3924 struct usb_hcd *hcd = dev_get_drvdata(dev);
3925
3926 return 0;
3927 }
3928
3929 static int oxu_drv_resume(struct device *dev)
3930 {
3931 struct platform_device *pdev = to_platform_device(dev);
3932 struct usb_hcd *hcd = dev_get_drvdata(dev);
3933
3934 return 0;
3935 }
3936 #else
3937 #define oxu_drv_suspend NULL
3938 #define oxu_drv_resume NULL
3939 #endif
3940
3941 static struct platform_driver oxu_driver = {
3942 .probe = oxu_drv_probe,
3943 .remove = oxu_drv_remove,
3944 .shutdown = oxu_drv_shutdown,
3945 .suspend = oxu_drv_suspend,
3946 .resume = oxu_drv_resume,
3947 .driver = {
3948 .name = "oxu210hp-hcd",
3949 .bus = &platform_bus_type
3950 }
3951 };
3952
3953 module_platform_driver(oxu_driver);
3954
3955 MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
3956 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
3957 MODULE_LICENSE("GPL");
This page took 0.110248 seconds and 6 git commands to generate.