USB: xhci: Setup HW retries correctly.
[deliverable/linux.git] / drivers / usb / host / xhci-mem.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/dmapool.h>
26
27 #include "xhci.h"
28
29 /*
30 * Allocates a generic ring segment from the ring pool, sets the dma address,
31 * initializes the segment to zero, and sets the private next pointer to NULL.
32 *
33 * Section 4.11.1.1:
34 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
35 */
36 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
37 {
38 struct xhci_segment *seg;
39 dma_addr_t dma;
40
41 seg = kzalloc(sizeof *seg, flags);
42 if (!seg)
43 return 0;
44 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
45
46 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
47 if (!seg->trbs) {
48 kfree(seg);
49 return 0;
50 }
51 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
52 seg->trbs, (unsigned long long)dma);
53
54 memset(seg->trbs, 0, SEGMENT_SIZE);
55 seg->dma = dma;
56 seg->next = NULL;
57
58 return seg;
59 }
60
61 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
62 {
63 if (!seg)
64 return;
65 if (seg->trbs) {
66 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
67 seg->trbs, (unsigned long long)seg->dma);
68 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
69 seg->trbs = NULL;
70 }
71 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
72 kfree(seg);
73 }
74
75 /*
76 * Make the prev segment point to the next segment.
77 *
78 * Change the last TRB in the prev segment to be a Link TRB which points to the
79 * DMA address of the next segment. The caller needs to set any Link TRB
80 * related flags, such as End TRB, Toggle Cycle, and no snoop.
81 */
82 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
83 struct xhci_segment *next, bool link_trbs)
84 {
85 u32 val;
86
87 if (!prev || !next)
88 return;
89 prev->next = next;
90 if (link_trbs) {
91 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
92
93 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
94 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
95 val &= ~TRB_TYPE_BITMASK;
96 val |= TRB_TYPE(TRB_LINK);
97 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
98 }
99 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
100 (unsigned long long)prev->dma,
101 (unsigned long long)next->dma);
102 }
103
104 /* XXX: Do we need the hcd structure in all these functions? */
105 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
106 {
107 struct xhci_segment *seg;
108 struct xhci_segment *first_seg;
109
110 if (!ring || !ring->first_seg)
111 return;
112 first_seg = ring->first_seg;
113 seg = first_seg->next;
114 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
115 while (seg != first_seg) {
116 struct xhci_segment *next = seg->next;
117 xhci_segment_free(xhci, seg);
118 seg = next;
119 }
120 xhci_segment_free(xhci, first_seg);
121 ring->first_seg = NULL;
122 kfree(ring);
123 }
124
125 /**
126 * Create a new ring with zero or more segments.
127 *
128 * Link each segment together into a ring.
129 * Set the end flag and the cycle toggle bit on the last segment.
130 * See section 4.9.1 and figures 15 and 16.
131 */
132 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
133 unsigned int num_segs, bool link_trbs, gfp_t flags)
134 {
135 struct xhci_ring *ring;
136 struct xhci_segment *prev;
137
138 ring = kzalloc(sizeof *(ring), flags);
139 xhci_dbg(xhci, "Allocating ring at %p\n", ring);
140 if (!ring)
141 return 0;
142
143 INIT_LIST_HEAD(&ring->td_list);
144 INIT_LIST_HEAD(&ring->cancelled_td_list);
145 if (num_segs == 0)
146 return ring;
147
148 ring->first_seg = xhci_segment_alloc(xhci, flags);
149 if (!ring->first_seg)
150 goto fail;
151 num_segs--;
152
153 prev = ring->first_seg;
154 while (num_segs > 0) {
155 struct xhci_segment *next;
156
157 next = xhci_segment_alloc(xhci, flags);
158 if (!next)
159 goto fail;
160 xhci_link_segments(xhci, prev, next, link_trbs);
161
162 prev = next;
163 num_segs--;
164 }
165 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
166
167 if (link_trbs) {
168 /* See section 4.9.2.1 and 6.4.4.1 */
169 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
170 xhci_dbg(xhci, "Wrote link toggle flag to"
171 " segment %p (virtual), 0x%llx (DMA)\n",
172 prev, (unsigned long long)prev->dma);
173 }
174 /* The ring is empty, so the enqueue pointer == dequeue pointer */
175 ring->enqueue = ring->first_seg->trbs;
176 ring->enq_seg = ring->first_seg;
177 ring->dequeue = ring->enqueue;
178 ring->deq_seg = ring->first_seg;
179 /* The ring is initialized to 0. The producer must write 1 to the cycle
180 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
181 * compare CCS to the cycle bit to check ownership, so CCS = 1.
182 */
183 ring->cycle_state = 1;
184
185 return ring;
186
187 fail:
188 xhci_ring_free(xhci, ring);
189 return 0;
190 }
191
192 /* All the xhci_tds in the ring's TD list should be freed at this point */
193 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
194 {
195 struct xhci_virt_device *dev;
196 int i;
197
198 /* Slot ID 0 is reserved */
199 if (slot_id == 0 || !xhci->devs[slot_id])
200 return;
201
202 dev = xhci->devs[slot_id];
203 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
204 if (!dev)
205 return;
206
207 for (i = 0; i < 31; ++i)
208 if (dev->ep_rings[i])
209 xhci_ring_free(xhci, dev->ep_rings[i]);
210
211 if (dev->in_ctx)
212 dma_pool_free(xhci->device_pool,
213 dev->in_ctx, dev->in_ctx_dma);
214 if (dev->out_ctx)
215 dma_pool_free(xhci->device_pool,
216 dev->out_ctx, dev->out_ctx_dma);
217 kfree(xhci->devs[slot_id]);
218 xhci->devs[slot_id] = 0;
219 }
220
221 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
222 struct usb_device *udev, gfp_t flags)
223 {
224 dma_addr_t dma;
225 struct xhci_virt_device *dev;
226
227 /* Slot ID 0 is reserved */
228 if (slot_id == 0 || xhci->devs[slot_id]) {
229 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
230 return 0;
231 }
232
233 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
234 if (!xhci->devs[slot_id])
235 return 0;
236 dev = xhci->devs[slot_id];
237
238 /* Allocate the (output) device context that will be used in the HC */
239 dev->out_ctx = dma_pool_alloc(xhci->device_pool, flags, &dma);
240 if (!dev->out_ctx)
241 goto fail;
242 dev->out_ctx_dma = dma;
243 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
244 (unsigned long long)dma);
245 memset(dev->out_ctx, 0, sizeof(*dev->out_ctx));
246
247 /* Allocate the (input) device context for address device command */
248 dev->in_ctx = dma_pool_alloc(xhci->device_pool, flags, &dma);
249 if (!dev->in_ctx)
250 goto fail;
251 dev->in_ctx_dma = dma;
252 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
253 (unsigned long long)dma);
254 memset(dev->in_ctx, 0, sizeof(*dev->in_ctx));
255
256 /* Allocate endpoint 0 ring */
257 dev->ep_rings[0] = xhci_ring_alloc(xhci, 1, true, flags);
258 if (!dev->ep_rings[0])
259 goto fail;
260
261 init_completion(&dev->cmd_completion);
262
263 /*
264 * Point to output device context in dcbaa; skip the output control
265 * context, which is eight 32 bit fields (or 32 bytes long)
266 */
267 xhci->dcbaa->dev_context_ptrs[slot_id] =
268 (u32) dev->out_ctx_dma + (32);
269 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
270 slot_id,
271 &xhci->dcbaa->dev_context_ptrs[slot_id],
272 (unsigned long long)dev->out_ctx_dma);
273
274 return 1;
275 fail:
276 xhci_free_virt_device(xhci, slot_id);
277 return 0;
278 }
279
280 /* Setup an xHCI virtual device for a Set Address command */
281 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
282 {
283 struct xhci_virt_device *dev;
284 struct xhci_ep_ctx *ep0_ctx;
285 struct usb_device *top_dev;
286
287 dev = xhci->devs[udev->slot_id];
288 /* Slot ID 0 is reserved */
289 if (udev->slot_id == 0 || !dev) {
290 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
291 udev->slot_id);
292 return -EINVAL;
293 }
294 ep0_ctx = &dev->in_ctx->ep[0];
295
296 /* 2) New slot context and endpoint 0 context are valid*/
297 dev->in_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
298
299 /* 3) Only the control endpoint is valid - one endpoint context */
300 dev->in_ctx->slot.dev_info |= LAST_CTX(1);
301
302 switch (udev->speed) {
303 case USB_SPEED_SUPER:
304 dev->in_ctx->slot.dev_info |= (u32) udev->route;
305 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_SS;
306 break;
307 case USB_SPEED_HIGH:
308 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_HS;
309 break;
310 case USB_SPEED_FULL:
311 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_FS;
312 break;
313 case USB_SPEED_LOW:
314 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_LS;
315 break;
316 case USB_SPEED_VARIABLE:
317 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
318 return -EINVAL;
319 break;
320 default:
321 /* Speed was set earlier, this shouldn't happen. */
322 BUG();
323 }
324 /* Find the root hub port this device is under */
325 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
326 top_dev = top_dev->parent)
327 /* Found device below root hub */;
328 dev->in_ctx->slot.dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
329 xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
330
331 /* Is this a LS/FS device under a HS hub? */
332 /*
333 * FIXME: I don't think this is right, where does the TT info for the
334 * roothub or parent hub come from?
335 */
336 if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
337 udev->tt) {
338 dev->in_ctx->slot.tt_info = udev->tt->hub->slot_id;
339 dev->in_ctx->slot.tt_info |= udev->ttport << 8;
340 }
341 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
342 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
343
344 /* Step 4 - ring already allocated */
345 /* Step 5 */
346 ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
347 /*
348 * See section 4.3 bullet 6:
349 * The default Max Packet size for ep0 is "8 bytes for a USB2
350 * LS/FS/HS device or 512 bytes for a USB3 SS device"
351 * XXX: Not sure about wireless USB devices.
352 */
353 if (udev->speed == USB_SPEED_SUPER)
354 ep0_ctx->ep_info2 |= MAX_PACKET(512);
355 else
356 ep0_ctx->ep_info2 |= MAX_PACKET(8);
357 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
358 ep0_ctx->ep_info2 |= MAX_BURST(0);
359 ep0_ctx->ep_info2 |= ERROR_COUNT(3);
360
361 ep0_ctx->deq =
362 dev->ep_rings[0]->first_seg->dma;
363 ep0_ctx->deq |= dev->ep_rings[0]->cycle_state;
364
365 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
366
367 return 0;
368 }
369
370 /* Return the polling or NAK interval.
371 *
372 * The polling interval is expressed in "microframes". If xHCI's Interval field
373 * is set to N, it will service the endpoint every 2^(Interval)*125us.
374 *
375 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
376 * is set to 0.
377 */
378 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
379 struct usb_host_endpoint *ep)
380 {
381 unsigned int interval = 0;
382
383 switch (udev->speed) {
384 case USB_SPEED_HIGH:
385 /* Max NAK rate */
386 if (usb_endpoint_xfer_control(&ep->desc) ||
387 usb_endpoint_xfer_bulk(&ep->desc))
388 interval = ep->desc.bInterval;
389 /* Fall through - SS and HS isoc/int have same decoding */
390 case USB_SPEED_SUPER:
391 if (usb_endpoint_xfer_int(&ep->desc) ||
392 usb_endpoint_xfer_isoc(&ep->desc)) {
393 if (ep->desc.bInterval == 0)
394 interval = 0;
395 else
396 interval = ep->desc.bInterval - 1;
397 if (interval > 15)
398 interval = 15;
399 if (interval != ep->desc.bInterval + 1)
400 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
401 ep->desc.bEndpointAddress, 1 << interval);
402 }
403 break;
404 /* Convert bInterval (in 1-255 frames) to microframes and round down to
405 * nearest power of 2.
406 */
407 case USB_SPEED_FULL:
408 case USB_SPEED_LOW:
409 if (usb_endpoint_xfer_int(&ep->desc) ||
410 usb_endpoint_xfer_isoc(&ep->desc)) {
411 interval = fls(8*ep->desc.bInterval) - 1;
412 if (interval > 10)
413 interval = 10;
414 if (interval < 3)
415 interval = 3;
416 if ((1 << interval) != 8*ep->desc.bInterval)
417 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
418 ep->desc.bEndpointAddress, 1 << interval);
419 }
420 break;
421 default:
422 BUG();
423 }
424 return EP_INTERVAL(interval);
425 }
426
427 static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
428 struct usb_host_endpoint *ep)
429 {
430 int in;
431 u32 type;
432
433 in = usb_endpoint_dir_in(&ep->desc);
434 if (usb_endpoint_xfer_control(&ep->desc)) {
435 type = EP_TYPE(CTRL_EP);
436 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
437 if (in)
438 type = EP_TYPE(BULK_IN_EP);
439 else
440 type = EP_TYPE(BULK_OUT_EP);
441 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
442 if (in)
443 type = EP_TYPE(ISOC_IN_EP);
444 else
445 type = EP_TYPE(ISOC_OUT_EP);
446 } else if (usb_endpoint_xfer_int(&ep->desc)) {
447 if (in)
448 type = EP_TYPE(INT_IN_EP);
449 else
450 type = EP_TYPE(INT_OUT_EP);
451 } else {
452 BUG();
453 }
454 return type;
455 }
456
457 int xhci_endpoint_init(struct xhci_hcd *xhci,
458 struct xhci_virt_device *virt_dev,
459 struct usb_device *udev,
460 struct usb_host_endpoint *ep,
461 gfp_t mem_flags)
462 {
463 unsigned int ep_index;
464 struct xhci_ep_ctx *ep_ctx;
465 struct xhci_ring *ep_ring;
466 unsigned int max_packet;
467 unsigned int max_burst;
468
469 ep_index = xhci_get_endpoint_index(&ep->desc);
470 ep_ctx = &virt_dev->in_ctx->ep[ep_index];
471
472 /* Set up the endpoint ring */
473 virt_dev->new_ep_rings[ep_index] = xhci_ring_alloc(xhci, 1, true, mem_flags);
474 if (!virt_dev->new_ep_rings[ep_index])
475 return -ENOMEM;
476 ep_ring = virt_dev->new_ep_rings[ep_index];
477 ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
478
479 ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
480
481 /* FIXME dig Mult and streams info out of ep companion desc */
482
483 /* Allow 3 retries for everything but isoc;
484 * error count = 0 means infinite retries.
485 */
486 if (!usb_endpoint_xfer_isoc(&ep->desc))
487 ep_ctx->ep_info2 = ERROR_COUNT(3);
488 else
489 ep_ctx->ep_info2 = ERROR_COUNT(1);
490
491 ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
492
493 /* Set the max packet size and max burst */
494 switch (udev->speed) {
495 case USB_SPEED_SUPER:
496 max_packet = ep->desc.wMaxPacketSize;
497 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
498 /* dig out max burst from ep companion desc */
499 max_packet = ep->ss_ep_comp->desc.bMaxBurst;
500 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
501 break;
502 case USB_SPEED_HIGH:
503 /* bits 11:12 specify the number of additional transaction
504 * opportunities per microframe (USB 2.0, section 9.6.6)
505 */
506 if (usb_endpoint_xfer_isoc(&ep->desc) ||
507 usb_endpoint_xfer_int(&ep->desc)) {
508 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
509 ep_ctx->ep_info2 |= MAX_BURST(max_burst);
510 }
511 /* Fall through */
512 case USB_SPEED_FULL:
513 case USB_SPEED_LOW:
514 max_packet = ep->desc.wMaxPacketSize & 0x3ff;
515 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
516 break;
517 default:
518 BUG();
519 }
520 /* FIXME Debug endpoint context */
521 return 0;
522 }
523
524 void xhci_endpoint_zero(struct xhci_hcd *xhci,
525 struct xhci_virt_device *virt_dev,
526 struct usb_host_endpoint *ep)
527 {
528 unsigned int ep_index;
529 struct xhci_ep_ctx *ep_ctx;
530
531 ep_index = xhci_get_endpoint_index(&ep->desc);
532 ep_ctx = &virt_dev->in_ctx->ep[ep_index];
533
534 ep_ctx->ep_info = 0;
535 ep_ctx->ep_info2 = 0;
536 ep_ctx->deq = 0;
537 ep_ctx->tx_info = 0;
538 /* Don't free the endpoint ring until the set interface or configuration
539 * request succeeds.
540 */
541 }
542
543 void xhci_mem_cleanup(struct xhci_hcd *xhci)
544 {
545 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
546 int size;
547 int i;
548
549 /* Free the Event Ring Segment Table and the actual Event Ring */
550 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
551 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
552 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
553 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
554 if (xhci->erst.entries)
555 pci_free_consistent(pdev, size,
556 xhci->erst.entries, xhci->erst.erst_dma_addr);
557 xhci->erst.entries = NULL;
558 xhci_dbg(xhci, "Freed ERST\n");
559 if (xhci->event_ring)
560 xhci_ring_free(xhci, xhci->event_ring);
561 xhci->event_ring = NULL;
562 xhci_dbg(xhci, "Freed event ring\n");
563
564 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
565 if (xhci->cmd_ring)
566 xhci_ring_free(xhci, xhci->cmd_ring);
567 xhci->cmd_ring = NULL;
568 xhci_dbg(xhci, "Freed command ring\n");
569
570 for (i = 1; i < MAX_HC_SLOTS; ++i)
571 xhci_free_virt_device(xhci, i);
572
573 if (xhci->segment_pool)
574 dma_pool_destroy(xhci->segment_pool);
575 xhci->segment_pool = NULL;
576 xhci_dbg(xhci, "Freed segment pool\n");
577
578 if (xhci->device_pool)
579 dma_pool_destroy(xhci->device_pool);
580 xhci->device_pool = NULL;
581 xhci_dbg(xhci, "Freed device context pool\n");
582
583 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
584 if (xhci->dcbaa)
585 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
586 xhci->dcbaa, xhci->dcbaa->dma);
587 xhci->dcbaa = NULL;
588
589 xhci->page_size = 0;
590 xhci->page_shift = 0;
591 }
592
593 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
594 {
595 dma_addr_t dma;
596 struct device *dev = xhci_to_hcd(xhci)->self.controller;
597 unsigned int val, val2;
598 u64 val_64;
599 struct xhci_segment *seg;
600 u32 page_size;
601 int i;
602
603 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
604 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
605 for (i = 0; i < 16; i++) {
606 if ((0x1 & page_size) != 0)
607 break;
608 page_size = page_size >> 1;
609 }
610 if (i < 16)
611 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
612 else
613 xhci_warn(xhci, "WARN: no supported page size\n");
614 /* Use 4K pages, since that's common and the minimum the HC supports */
615 xhci->page_shift = 12;
616 xhci->page_size = 1 << xhci->page_shift;
617 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
618
619 /*
620 * Program the Number of Device Slots Enabled field in the CONFIG
621 * register with the max value of slots the HC can handle.
622 */
623 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
624 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
625 (unsigned int) val);
626 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
627 val |= (val2 & ~HCS_SLOTS_MASK);
628 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
629 (unsigned int) val);
630 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
631
632 /*
633 * Section 5.4.8 - doorbell array must be
634 * "physically contiguous and 64-byte (cache line) aligned".
635 */
636 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
637 sizeof(*xhci->dcbaa), &dma);
638 if (!xhci->dcbaa)
639 goto fail;
640 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
641 xhci->dcbaa->dma = dma;
642 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
643 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
644 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
645
646 /*
647 * Initialize the ring segment pool. The ring must be a contiguous
648 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
649 * however, the command ring segment needs 64-byte aligned segments,
650 * so we pick the greater alignment need.
651 */
652 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
653 SEGMENT_SIZE, 64, xhci->page_size);
654 /* See Table 46 and Note on Figure 55 */
655 /* FIXME support 64-byte contexts */
656 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
657 sizeof(struct xhci_device_control),
658 64, xhci->page_size);
659 if (!xhci->segment_pool || !xhci->device_pool)
660 goto fail;
661
662 /* Set up the command ring to have one segments for now. */
663 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
664 if (!xhci->cmd_ring)
665 goto fail;
666 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
667 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
668 (unsigned long long)xhci->cmd_ring->first_seg->dma);
669
670 /* Set the address in the Command Ring Control register */
671 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
672 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
673 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
674 xhci->cmd_ring->cycle_state;
675 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
676 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
677 xhci_dbg_cmd_ptrs(xhci);
678
679 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
680 val &= DBOFF_MASK;
681 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
682 " from cap regs base addr\n", val);
683 xhci->dba = (void *) xhci->cap_regs + val;
684 xhci_dbg_regs(xhci);
685 xhci_print_run_regs(xhci);
686 /* Set ir_set to interrupt register set 0 */
687 xhci->ir_set = (void *) xhci->run_regs->ir_set;
688
689 /*
690 * Event ring setup: Allocate a normal ring, but also setup
691 * the event ring segment table (ERST). Section 4.9.3.
692 */
693 xhci_dbg(xhci, "// Allocating event ring\n");
694 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
695 if (!xhci->event_ring)
696 goto fail;
697
698 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
699 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
700 if (!xhci->erst.entries)
701 goto fail;
702 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
703 (unsigned long long)dma);
704
705 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
706 xhci->erst.num_entries = ERST_NUM_SEGS;
707 xhci->erst.erst_dma_addr = dma;
708 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
709 xhci->erst.num_entries,
710 xhci->erst.entries,
711 (unsigned long long)xhci->erst.erst_dma_addr);
712
713 /* set ring base address and size for each segment table entry */
714 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
715 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
716 entry->seg_addr = seg->dma;
717 entry->seg_size = TRBS_PER_SEGMENT;
718 entry->rsvd = 0;
719 seg = seg->next;
720 }
721
722 /* set ERST count with the number of entries in the segment table */
723 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
724 val &= ERST_SIZE_MASK;
725 val |= ERST_NUM_SEGS;
726 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
727 val);
728 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
729
730 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
731 /* set the segment table base address */
732 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
733 (unsigned long long)xhci->erst.erst_dma_addr);
734 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
735 val_64 &= ERST_PTR_MASK;
736 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
737 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
738
739 /* Set the event ring dequeue address */
740 xhci_set_hc_event_deq(xhci);
741 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
742 xhci_print_ir_set(xhci, xhci->ir_set, 0);
743
744 /*
745 * XXX: Might need to set the Interrupter Moderation Register to
746 * something other than the default (~1ms minimum between interrupts).
747 * See section 5.5.1.2.
748 */
749 init_completion(&xhci->addr_dev);
750 for (i = 0; i < MAX_HC_SLOTS; ++i)
751 xhci->devs[i] = 0;
752
753 return 0;
754 fail:
755 xhci_warn(xhci, "Couldn't initialize memory\n");
756 xhci_mem_cleanup(xhci);
757 return -ENOMEM;
758 }
This page took 0.075631 seconds and 5 git commands to generate.