Merge tag 'pm+acpi-4.5-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[deliverable/linux.git] / drivers / usb / host / xhci-mem.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28
29 #include "xhci.h"
30 #include "xhci-trace.h"
31
32 /*
33 * Allocates a generic ring segment from the ring pool, sets the dma address,
34 * initializes the segment to zero, and sets the private next pointer to NULL.
35 *
36 * Section 4.11.1.1:
37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38 */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 unsigned int cycle_state, gfp_t flags)
41 {
42 struct xhci_segment *seg;
43 dma_addr_t dma;
44 int i;
45
46 seg = kzalloc(sizeof *seg, flags);
47 if (!seg)
48 return NULL;
49
50 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
51 if (!seg->trbs) {
52 kfree(seg);
53 return NULL;
54 }
55
56 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
57 if (cycle_state == 0) {
58 for (i = 0; i < TRBS_PER_SEGMENT; i++)
59 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
60 }
61 seg->dma = dma;
62 seg->next = NULL;
63
64 return seg;
65 }
66
67 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
68 {
69 if (seg->trbs) {
70 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
71 seg->trbs = NULL;
72 }
73 kfree(seg);
74 }
75
76 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
77 struct xhci_segment *first)
78 {
79 struct xhci_segment *seg;
80
81 seg = first->next;
82 while (seg != first) {
83 struct xhci_segment *next = seg->next;
84 xhci_segment_free(xhci, seg);
85 seg = next;
86 }
87 xhci_segment_free(xhci, first);
88 }
89
90 /*
91 * Make the prev segment point to the next segment.
92 *
93 * Change the last TRB in the prev segment to be a Link TRB which points to the
94 * DMA address of the next segment. The caller needs to set any Link TRB
95 * related flags, such as End TRB, Toggle Cycle, and no snoop.
96 */
97 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
98 struct xhci_segment *next, enum xhci_ring_type type)
99 {
100 u32 val;
101
102 if (!prev || !next)
103 return;
104 prev->next = next;
105 if (type != TYPE_EVENT) {
106 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
107 cpu_to_le64(next->dma);
108
109 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
110 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
111 val &= ~TRB_TYPE_BITMASK;
112 val |= TRB_TYPE(TRB_LINK);
113 /* Always set the chain bit with 0.95 hardware */
114 /* Set chain bit for isoc rings on AMD 0.96 host */
115 if (xhci_link_trb_quirk(xhci) ||
116 (type == TYPE_ISOC &&
117 (xhci->quirks & XHCI_AMD_0x96_HOST)))
118 val |= TRB_CHAIN;
119 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
120 }
121 }
122
123 /*
124 * Link the ring to the new segments.
125 * Set Toggle Cycle for the new ring if needed.
126 */
127 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
128 struct xhci_segment *first, struct xhci_segment *last,
129 unsigned int num_segs)
130 {
131 struct xhci_segment *next;
132
133 if (!ring || !first || !last)
134 return;
135
136 next = ring->enq_seg->next;
137 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
138 xhci_link_segments(xhci, last, next, ring->type);
139 ring->num_segs += num_segs;
140 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
141
142 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
143 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
144 &= ~cpu_to_le32(LINK_TOGGLE);
145 last->trbs[TRBS_PER_SEGMENT-1].link.control
146 |= cpu_to_le32(LINK_TOGGLE);
147 ring->last_seg = last;
148 }
149 }
150
151 /*
152 * We need a radix tree for mapping physical addresses of TRBs to which stream
153 * ID they belong to. We need to do this because the host controller won't tell
154 * us which stream ring the TRB came from. We could store the stream ID in an
155 * event data TRB, but that doesn't help us for the cancellation case, since the
156 * endpoint may stop before it reaches that event data TRB.
157 *
158 * The radix tree maps the upper portion of the TRB DMA address to a ring
159 * segment that has the same upper portion of DMA addresses. For example, say I
160 * have segments of size 1KB, that are always 1KB aligned. A segment may
161 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
162 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
163 * pass the radix tree a key to get the right stream ID:
164 *
165 * 0x10c90fff >> 10 = 0x43243
166 * 0x10c912c0 >> 10 = 0x43244
167 * 0x10c91400 >> 10 = 0x43245
168 *
169 * Obviously, only those TRBs with DMA addresses that are within the segment
170 * will make the radix tree return the stream ID for that ring.
171 *
172 * Caveats for the radix tree:
173 *
174 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
175 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
176 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
177 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
178 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
179 * extended systems (where the DMA address can be bigger than 32-bits),
180 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
181 */
182 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
183 struct xhci_ring *ring,
184 struct xhci_segment *seg,
185 gfp_t mem_flags)
186 {
187 unsigned long key;
188 int ret;
189
190 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
191 /* Skip any segments that were already added. */
192 if (radix_tree_lookup(trb_address_map, key))
193 return 0;
194
195 ret = radix_tree_maybe_preload(mem_flags);
196 if (ret)
197 return ret;
198 ret = radix_tree_insert(trb_address_map,
199 key, ring);
200 radix_tree_preload_end();
201 return ret;
202 }
203
204 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
205 struct xhci_segment *seg)
206 {
207 unsigned long key;
208
209 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
210 if (radix_tree_lookup(trb_address_map, key))
211 radix_tree_delete(trb_address_map, key);
212 }
213
214 static int xhci_update_stream_segment_mapping(
215 struct radix_tree_root *trb_address_map,
216 struct xhci_ring *ring,
217 struct xhci_segment *first_seg,
218 struct xhci_segment *last_seg,
219 gfp_t mem_flags)
220 {
221 struct xhci_segment *seg;
222 struct xhci_segment *failed_seg;
223 int ret;
224
225 if (WARN_ON_ONCE(trb_address_map == NULL))
226 return 0;
227
228 seg = first_seg;
229 do {
230 ret = xhci_insert_segment_mapping(trb_address_map,
231 ring, seg, mem_flags);
232 if (ret)
233 goto remove_streams;
234 if (seg == last_seg)
235 return 0;
236 seg = seg->next;
237 } while (seg != first_seg);
238
239 return 0;
240
241 remove_streams:
242 failed_seg = seg;
243 seg = first_seg;
244 do {
245 xhci_remove_segment_mapping(trb_address_map, seg);
246 if (seg == failed_seg)
247 return ret;
248 seg = seg->next;
249 } while (seg != first_seg);
250
251 return ret;
252 }
253
254 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
255 {
256 struct xhci_segment *seg;
257
258 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
259 return;
260
261 seg = ring->first_seg;
262 do {
263 xhci_remove_segment_mapping(ring->trb_address_map, seg);
264 seg = seg->next;
265 } while (seg != ring->first_seg);
266 }
267
268 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
269 {
270 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
271 ring->first_seg, ring->last_seg, mem_flags);
272 }
273
274 /* XXX: Do we need the hcd structure in all these functions? */
275 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
276 {
277 if (!ring)
278 return;
279
280 if (ring->first_seg) {
281 if (ring->type == TYPE_STREAM)
282 xhci_remove_stream_mapping(ring);
283 xhci_free_segments_for_ring(xhci, ring->first_seg);
284 }
285
286 kfree(ring);
287 }
288
289 static void xhci_initialize_ring_info(struct xhci_ring *ring,
290 unsigned int cycle_state)
291 {
292 /* The ring is empty, so the enqueue pointer == dequeue pointer */
293 ring->enqueue = ring->first_seg->trbs;
294 ring->enq_seg = ring->first_seg;
295 ring->dequeue = ring->enqueue;
296 ring->deq_seg = ring->first_seg;
297 /* The ring is initialized to 0. The producer must write 1 to the cycle
298 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
299 * compare CCS to the cycle bit to check ownership, so CCS = 1.
300 *
301 * New rings are initialized with cycle state equal to 1; if we are
302 * handling ring expansion, set the cycle state equal to the old ring.
303 */
304 ring->cycle_state = cycle_state;
305 /* Not necessary for new rings, but needed for re-initialized rings */
306 ring->enq_updates = 0;
307 ring->deq_updates = 0;
308
309 /*
310 * Each segment has a link TRB, and leave an extra TRB for SW
311 * accounting purpose
312 */
313 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
314 }
315
316 /* Allocate segments and link them for a ring */
317 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
318 struct xhci_segment **first, struct xhci_segment **last,
319 unsigned int num_segs, unsigned int cycle_state,
320 enum xhci_ring_type type, gfp_t flags)
321 {
322 struct xhci_segment *prev;
323
324 prev = xhci_segment_alloc(xhci, cycle_state, flags);
325 if (!prev)
326 return -ENOMEM;
327 num_segs--;
328
329 *first = prev;
330 while (num_segs > 0) {
331 struct xhci_segment *next;
332
333 next = xhci_segment_alloc(xhci, cycle_state, flags);
334 if (!next) {
335 prev = *first;
336 while (prev) {
337 next = prev->next;
338 xhci_segment_free(xhci, prev);
339 prev = next;
340 }
341 return -ENOMEM;
342 }
343 xhci_link_segments(xhci, prev, next, type);
344
345 prev = next;
346 num_segs--;
347 }
348 xhci_link_segments(xhci, prev, *first, type);
349 *last = prev;
350
351 return 0;
352 }
353
354 /**
355 * Create a new ring with zero or more segments.
356 *
357 * Link each segment together into a ring.
358 * Set the end flag and the cycle toggle bit on the last segment.
359 * See section 4.9.1 and figures 15 and 16.
360 */
361 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
362 unsigned int num_segs, unsigned int cycle_state,
363 enum xhci_ring_type type, gfp_t flags)
364 {
365 struct xhci_ring *ring;
366 int ret;
367
368 ring = kzalloc(sizeof *(ring), flags);
369 if (!ring)
370 return NULL;
371
372 ring->num_segs = num_segs;
373 INIT_LIST_HEAD(&ring->td_list);
374 ring->type = type;
375 if (num_segs == 0)
376 return ring;
377
378 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
379 &ring->last_seg, num_segs, cycle_state, type, flags);
380 if (ret)
381 goto fail;
382
383 /* Only event ring does not use link TRB */
384 if (type != TYPE_EVENT) {
385 /* See section 4.9.2.1 and 6.4.4.1 */
386 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
387 cpu_to_le32(LINK_TOGGLE);
388 }
389 xhci_initialize_ring_info(ring, cycle_state);
390 return ring;
391
392 fail:
393 kfree(ring);
394 return NULL;
395 }
396
397 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
398 struct xhci_virt_device *virt_dev,
399 unsigned int ep_index)
400 {
401 int rings_cached;
402
403 rings_cached = virt_dev->num_rings_cached;
404 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
405 virt_dev->ring_cache[rings_cached] =
406 virt_dev->eps[ep_index].ring;
407 virt_dev->num_rings_cached++;
408 xhci_dbg(xhci, "Cached old ring, "
409 "%d ring%s cached\n",
410 virt_dev->num_rings_cached,
411 (virt_dev->num_rings_cached > 1) ? "s" : "");
412 } else {
413 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
414 xhci_dbg(xhci, "Ring cache full (%d rings), "
415 "freeing ring\n",
416 virt_dev->num_rings_cached);
417 }
418 virt_dev->eps[ep_index].ring = NULL;
419 }
420
421 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
422 * pointers to the beginning of the ring.
423 */
424 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
425 struct xhci_ring *ring, unsigned int cycle_state,
426 enum xhci_ring_type type)
427 {
428 struct xhci_segment *seg = ring->first_seg;
429 int i;
430
431 do {
432 memset(seg->trbs, 0,
433 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
434 if (cycle_state == 0) {
435 for (i = 0; i < TRBS_PER_SEGMENT; i++)
436 seg->trbs[i].link.control |=
437 cpu_to_le32(TRB_CYCLE);
438 }
439 /* All endpoint rings have link TRBs */
440 xhci_link_segments(xhci, seg, seg->next, type);
441 seg = seg->next;
442 } while (seg != ring->first_seg);
443 ring->type = type;
444 xhci_initialize_ring_info(ring, cycle_state);
445 /* td list should be empty since all URBs have been cancelled,
446 * but just in case...
447 */
448 INIT_LIST_HEAD(&ring->td_list);
449 }
450
451 /*
452 * Expand an existing ring.
453 * Look for a cached ring or allocate a new ring which has same segment numbers
454 * and link the two rings.
455 */
456 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
457 unsigned int num_trbs, gfp_t flags)
458 {
459 struct xhci_segment *first;
460 struct xhci_segment *last;
461 unsigned int num_segs;
462 unsigned int num_segs_needed;
463 int ret;
464
465 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
466 (TRBS_PER_SEGMENT - 1);
467
468 /* Allocate number of segments we needed, or double the ring size */
469 num_segs = ring->num_segs > num_segs_needed ?
470 ring->num_segs : num_segs_needed;
471
472 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
473 num_segs, ring->cycle_state, ring->type, flags);
474 if (ret)
475 return -ENOMEM;
476
477 if (ring->type == TYPE_STREAM)
478 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
479 ring, first, last, flags);
480 if (ret) {
481 struct xhci_segment *next;
482 do {
483 next = first->next;
484 xhci_segment_free(xhci, first);
485 if (first == last)
486 break;
487 first = next;
488 } while (true);
489 return ret;
490 }
491
492 xhci_link_rings(xhci, ring, first, last, num_segs);
493 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
494 "ring expansion succeed, now has %d segments",
495 ring->num_segs);
496
497 return 0;
498 }
499
500 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
501
502 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
503 int type, gfp_t flags)
504 {
505 struct xhci_container_ctx *ctx;
506
507 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
508 return NULL;
509
510 ctx = kzalloc(sizeof(*ctx), flags);
511 if (!ctx)
512 return NULL;
513
514 ctx->type = type;
515 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
516 if (type == XHCI_CTX_TYPE_INPUT)
517 ctx->size += CTX_SIZE(xhci->hcc_params);
518
519 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
520 if (!ctx->bytes) {
521 kfree(ctx);
522 return NULL;
523 }
524 return ctx;
525 }
526
527 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
528 struct xhci_container_ctx *ctx)
529 {
530 if (!ctx)
531 return;
532 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
533 kfree(ctx);
534 }
535
536 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
537 struct xhci_container_ctx *ctx)
538 {
539 if (ctx->type != XHCI_CTX_TYPE_INPUT)
540 return NULL;
541
542 return (struct xhci_input_control_ctx *)ctx->bytes;
543 }
544
545 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
546 struct xhci_container_ctx *ctx)
547 {
548 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
549 return (struct xhci_slot_ctx *)ctx->bytes;
550
551 return (struct xhci_slot_ctx *)
552 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
553 }
554
555 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
556 struct xhci_container_ctx *ctx,
557 unsigned int ep_index)
558 {
559 /* increment ep index by offset of start of ep ctx array */
560 ep_index++;
561 if (ctx->type == XHCI_CTX_TYPE_INPUT)
562 ep_index++;
563
564 return (struct xhci_ep_ctx *)
565 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
566 }
567
568
569 /***************** Streams structures manipulation *************************/
570
571 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
572 unsigned int num_stream_ctxs,
573 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
574 {
575 struct device *dev = xhci_to_hcd(xhci)->self.controller;
576 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
577
578 if (size > MEDIUM_STREAM_ARRAY_SIZE)
579 dma_free_coherent(dev, size,
580 stream_ctx, dma);
581 else if (size <= SMALL_STREAM_ARRAY_SIZE)
582 return dma_pool_free(xhci->small_streams_pool,
583 stream_ctx, dma);
584 else
585 return dma_pool_free(xhci->medium_streams_pool,
586 stream_ctx, dma);
587 }
588
589 /*
590 * The stream context array for each endpoint with bulk streams enabled can
591 * vary in size, based on:
592 * - how many streams the endpoint supports,
593 * - the maximum primary stream array size the host controller supports,
594 * - and how many streams the device driver asks for.
595 *
596 * The stream context array must be a power of 2, and can be as small as
597 * 64 bytes or as large as 1MB.
598 */
599 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
600 unsigned int num_stream_ctxs, dma_addr_t *dma,
601 gfp_t mem_flags)
602 {
603 struct device *dev = xhci_to_hcd(xhci)->self.controller;
604 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
605
606 if (size > MEDIUM_STREAM_ARRAY_SIZE)
607 return dma_alloc_coherent(dev, size,
608 dma, mem_flags);
609 else if (size <= SMALL_STREAM_ARRAY_SIZE)
610 return dma_pool_alloc(xhci->small_streams_pool,
611 mem_flags, dma);
612 else
613 return dma_pool_alloc(xhci->medium_streams_pool,
614 mem_flags, dma);
615 }
616
617 struct xhci_ring *xhci_dma_to_transfer_ring(
618 struct xhci_virt_ep *ep,
619 u64 address)
620 {
621 if (ep->ep_state & EP_HAS_STREAMS)
622 return radix_tree_lookup(&ep->stream_info->trb_address_map,
623 address >> TRB_SEGMENT_SHIFT);
624 return ep->ring;
625 }
626
627 struct xhci_ring *xhci_stream_id_to_ring(
628 struct xhci_virt_device *dev,
629 unsigned int ep_index,
630 unsigned int stream_id)
631 {
632 struct xhci_virt_ep *ep = &dev->eps[ep_index];
633
634 if (stream_id == 0)
635 return ep->ring;
636 if (!ep->stream_info)
637 return NULL;
638
639 if (stream_id > ep->stream_info->num_streams)
640 return NULL;
641 return ep->stream_info->stream_rings[stream_id];
642 }
643
644 /*
645 * Change an endpoint's internal structure so it supports stream IDs. The
646 * number of requested streams includes stream 0, which cannot be used by device
647 * drivers.
648 *
649 * The number of stream contexts in the stream context array may be bigger than
650 * the number of streams the driver wants to use. This is because the number of
651 * stream context array entries must be a power of two.
652 */
653 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
654 unsigned int num_stream_ctxs,
655 unsigned int num_streams, gfp_t mem_flags)
656 {
657 struct xhci_stream_info *stream_info;
658 u32 cur_stream;
659 struct xhci_ring *cur_ring;
660 u64 addr;
661 int ret;
662
663 xhci_dbg(xhci, "Allocating %u streams and %u "
664 "stream context array entries.\n",
665 num_streams, num_stream_ctxs);
666 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
667 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
668 return NULL;
669 }
670 xhci->cmd_ring_reserved_trbs++;
671
672 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
673 if (!stream_info)
674 goto cleanup_trbs;
675
676 stream_info->num_streams = num_streams;
677 stream_info->num_stream_ctxs = num_stream_ctxs;
678
679 /* Initialize the array of virtual pointers to stream rings. */
680 stream_info->stream_rings = kzalloc(
681 sizeof(struct xhci_ring *)*num_streams,
682 mem_flags);
683 if (!stream_info->stream_rings)
684 goto cleanup_info;
685
686 /* Initialize the array of DMA addresses for stream rings for the HW. */
687 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
688 num_stream_ctxs, &stream_info->ctx_array_dma,
689 mem_flags);
690 if (!stream_info->stream_ctx_array)
691 goto cleanup_ctx;
692 memset(stream_info->stream_ctx_array, 0,
693 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
694
695 /* Allocate everything needed to free the stream rings later */
696 stream_info->free_streams_command =
697 xhci_alloc_command(xhci, true, true, mem_flags);
698 if (!stream_info->free_streams_command)
699 goto cleanup_ctx;
700
701 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
702
703 /* Allocate rings for all the streams that the driver will use,
704 * and add their segment DMA addresses to the radix tree.
705 * Stream 0 is reserved.
706 */
707 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
708 stream_info->stream_rings[cur_stream] =
709 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
710 cur_ring = stream_info->stream_rings[cur_stream];
711 if (!cur_ring)
712 goto cleanup_rings;
713 cur_ring->stream_id = cur_stream;
714 cur_ring->trb_address_map = &stream_info->trb_address_map;
715 /* Set deq ptr, cycle bit, and stream context type */
716 addr = cur_ring->first_seg->dma |
717 SCT_FOR_CTX(SCT_PRI_TR) |
718 cur_ring->cycle_state;
719 stream_info->stream_ctx_array[cur_stream].stream_ring =
720 cpu_to_le64(addr);
721 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
722 cur_stream, (unsigned long long) addr);
723
724 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
725 if (ret) {
726 xhci_ring_free(xhci, cur_ring);
727 stream_info->stream_rings[cur_stream] = NULL;
728 goto cleanup_rings;
729 }
730 }
731 /* Leave the other unused stream ring pointers in the stream context
732 * array initialized to zero. This will cause the xHC to give us an
733 * error if the device asks for a stream ID we don't have setup (if it
734 * was any other way, the host controller would assume the ring is
735 * "empty" and wait forever for data to be queued to that stream ID).
736 */
737
738 return stream_info;
739
740 cleanup_rings:
741 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
742 cur_ring = stream_info->stream_rings[cur_stream];
743 if (cur_ring) {
744 xhci_ring_free(xhci, cur_ring);
745 stream_info->stream_rings[cur_stream] = NULL;
746 }
747 }
748 xhci_free_command(xhci, stream_info->free_streams_command);
749 cleanup_ctx:
750 kfree(stream_info->stream_rings);
751 cleanup_info:
752 kfree(stream_info);
753 cleanup_trbs:
754 xhci->cmd_ring_reserved_trbs--;
755 return NULL;
756 }
757 /*
758 * Sets the MaxPStreams field and the Linear Stream Array field.
759 * Sets the dequeue pointer to the stream context array.
760 */
761 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
762 struct xhci_ep_ctx *ep_ctx,
763 struct xhci_stream_info *stream_info)
764 {
765 u32 max_primary_streams;
766 /* MaxPStreams is the number of stream context array entries, not the
767 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
768 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
769 */
770 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
771 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
772 "Setting number of stream ctx array entries to %u",
773 1 << (max_primary_streams + 1));
774 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
775 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
776 | EP_HAS_LSA);
777 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
778 }
779
780 /*
781 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
782 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
783 * not at the beginning of the ring).
784 */
785 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
786 struct xhci_virt_ep *ep)
787 {
788 dma_addr_t addr;
789 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
790 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
791 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
792 }
793
794 /* Frees all stream contexts associated with the endpoint,
795 *
796 * Caller should fix the endpoint context streams fields.
797 */
798 void xhci_free_stream_info(struct xhci_hcd *xhci,
799 struct xhci_stream_info *stream_info)
800 {
801 int cur_stream;
802 struct xhci_ring *cur_ring;
803
804 if (!stream_info)
805 return;
806
807 for (cur_stream = 1; cur_stream < stream_info->num_streams;
808 cur_stream++) {
809 cur_ring = stream_info->stream_rings[cur_stream];
810 if (cur_ring) {
811 xhci_ring_free(xhci, cur_ring);
812 stream_info->stream_rings[cur_stream] = NULL;
813 }
814 }
815 xhci_free_command(xhci, stream_info->free_streams_command);
816 xhci->cmd_ring_reserved_trbs--;
817 if (stream_info->stream_ctx_array)
818 xhci_free_stream_ctx(xhci,
819 stream_info->num_stream_ctxs,
820 stream_info->stream_ctx_array,
821 stream_info->ctx_array_dma);
822
823 kfree(stream_info->stream_rings);
824 kfree(stream_info);
825 }
826
827
828 /***************** Device context manipulation *************************/
829
830 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
831 struct xhci_virt_ep *ep)
832 {
833 setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
834 (unsigned long)ep);
835 ep->xhci = xhci;
836 }
837
838 static void xhci_free_tt_info(struct xhci_hcd *xhci,
839 struct xhci_virt_device *virt_dev,
840 int slot_id)
841 {
842 struct list_head *tt_list_head;
843 struct xhci_tt_bw_info *tt_info, *next;
844 bool slot_found = false;
845
846 /* If the device never made it past the Set Address stage,
847 * it may not have the real_port set correctly.
848 */
849 if (virt_dev->real_port == 0 ||
850 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
851 xhci_dbg(xhci, "Bad real port.\n");
852 return;
853 }
854
855 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
856 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
857 /* Multi-TT hubs will have more than one entry */
858 if (tt_info->slot_id == slot_id) {
859 slot_found = true;
860 list_del(&tt_info->tt_list);
861 kfree(tt_info);
862 } else if (slot_found) {
863 break;
864 }
865 }
866 }
867
868 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
869 struct xhci_virt_device *virt_dev,
870 struct usb_device *hdev,
871 struct usb_tt *tt, gfp_t mem_flags)
872 {
873 struct xhci_tt_bw_info *tt_info;
874 unsigned int num_ports;
875 int i, j;
876
877 if (!tt->multi)
878 num_ports = 1;
879 else
880 num_ports = hdev->maxchild;
881
882 for (i = 0; i < num_ports; i++, tt_info++) {
883 struct xhci_interval_bw_table *bw_table;
884
885 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
886 if (!tt_info)
887 goto free_tts;
888 INIT_LIST_HEAD(&tt_info->tt_list);
889 list_add(&tt_info->tt_list,
890 &xhci->rh_bw[virt_dev->real_port - 1].tts);
891 tt_info->slot_id = virt_dev->udev->slot_id;
892 if (tt->multi)
893 tt_info->ttport = i+1;
894 bw_table = &tt_info->bw_table;
895 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
896 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
897 }
898 return 0;
899
900 free_tts:
901 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
902 return -ENOMEM;
903 }
904
905
906 /* All the xhci_tds in the ring's TD list should be freed at this point.
907 * Should be called with xhci->lock held if there is any chance the TT lists
908 * will be manipulated by the configure endpoint, allocate device, or update
909 * hub functions while this function is removing the TT entries from the list.
910 */
911 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
912 {
913 struct xhci_virt_device *dev;
914 int i;
915 int old_active_eps = 0;
916
917 /* Slot ID 0 is reserved */
918 if (slot_id == 0 || !xhci->devs[slot_id])
919 return;
920
921 dev = xhci->devs[slot_id];
922 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
923 if (!dev)
924 return;
925
926 if (dev->tt_info)
927 old_active_eps = dev->tt_info->active_eps;
928
929 for (i = 0; i < 31; ++i) {
930 if (dev->eps[i].ring)
931 xhci_ring_free(xhci, dev->eps[i].ring);
932 if (dev->eps[i].stream_info)
933 xhci_free_stream_info(xhci,
934 dev->eps[i].stream_info);
935 /* Endpoints on the TT/root port lists should have been removed
936 * when usb_disable_device() was called for the device.
937 * We can't drop them anyway, because the udev might have gone
938 * away by this point, and we can't tell what speed it was.
939 */
940 if (!list_empty(&dev->eps[i].bw_endpoint_list))
941 xhci_warn(xhci, "Slot %u endpoint %u "
942 "not removed from BW list!\n",
943 slot_id, i);
944 }
945 /* If this is a hub, free the TT(s) from the TT list */
946 xhci_free_tt_info(xhci, dev, slot_id);
947 /* If necessary, update the number of active TTs on this root port */
948 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
949
950 if (dev->ring_cache) {
951 for (i = 0; i < dev->num_rings_cached; i++)
952 xhci_ring_free(xhci, dev->ring_cache[i]);
953 kfree(dev->ring_cache);
954 }
955
956 if (dev->in_ctx)
957 xhci_free_container_ctx(xhci, dev->in_ctx);
958 if (dev->out_ctx)
959 xhci_free_container_ctx(xhci, dev->out_ctx);
960
961 kfree(xhci->devs[slot_id]);
962 xhci->devs[slot_id] = NULL;
963 }
964
965 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
966 struct usb_device *udev, gfp_t flags)
967 {
968 struct xhci_virt_device *dev;
969 int i;
970
971 /* Slot ID 0 is reserved */
972 if (slot_id == 0 || xhci->devs[slot_id]) {
973 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
974 return 0;
975 }
976
977 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
978 if (!xhci->devs[slot_id])
979 return 0;
980 dev = xhci->devs[slot_id];
981
982 /* Allocate the (output) device context that will be used in the HC. */
983 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
984 if (!dev->out_ctx)
985 goto fail;
986
987 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
988 (unsigned long long)dev->out_ctx->dma);
989
990 /* Allocate the (input) device context for address device command */
991 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
992 if (!dev->in_ctx)
993 goto fail;
994
995 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
996 (unsigned long long)dev->in_ctx->dma);
997
998 /* Initialize the cancellation list and watchdog timers for each ep */
999 for (i = 0; i < 31; i++) {
1000 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1001 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1002 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1003 }
1004
1005 /* Allocate endpoint 0 ring */
1006 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
1007 if (!dev->eps[0].ring)
1008 goto fail;
1009
1010 /* Allocate pointers to the ring cache */
1011 dev->ring_cache = kzalloc(
1012 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1013 flags);
1014 if (!dev->ring_cache)
1015 goto fail;
1016 dev->num_rings_cached = 0;
1017
1018 init_completion(&dev->cmd_completion);
1019 dev->udev = udev;
1020
1021 /* Point to output device context in dcbaa. */
1022 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1023 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1024 slot_id,
1025 &xhci->dcbaa->dev_context_ptrs[slot_id],
1026 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1027
1028 return 1;
1029 fail:
1030 xhci_free_virt_device(xhci, slot_id);
1031 return 0;
1032 }
1033
1034 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1035 struct usb_device *udev)
1036 {
1037 struct xhci_virt_device *virt_dev;
1038 struct xhci_ep_ctx *ep0_ctx;
1039 struct xhci_ring *ep_ring;
1040
1041 virt_dev = xhci->devs[udev->slot_id];
1042 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1043 ep_ring = virt_dev->eps[0].ring;
1044 /*
1045 * FIXME we don't keep track of the dequeue pointer very well after a
1046 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1047 * host to our enqueue pointer. This should only be called after a
1048 * configured device has reset, so all control transfers should have
1049 * been completed or cancelled before the reset.
1050 */
1051 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1052 ep_ring->enqueue)
1053 | ep_ring->cycle_state);
1054 }
1055
1056 /*
1057 * The xHCI roothub may have ports of differing speeds in any order in the port
1058 * status registers. xhci->port_array provides an array of the port speed for
1059 * each offset into the port status registers.
1060 *
1061 * The xHCI hardware wants to know the roothub port number that the USB device
1062 * is attached to (or the roothub port its ancestor hub is attached to). All we
1063 * know is the index of that port under either the USB 2.0 or the USB 3.0
1064 * roothub, but that doesn't give us the real index into the HW port status
1065 * registers. Call xhci_find_raw_port_number() to get real index.
1066 */
1067 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1068 struct usb_device *udev)
1069 {
1070 struct usb_device *top_dev;
1071 struct usb_hcd *hcd;
1072
1073 if (udev->speed == USB_SPEED_SUPER)
1074 hcd = xhci->shared_hcd;
1075 else
1076 hcd = xhci->main_hcd;
1077
1078 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1079 top_dev = top_dev->parent)
1080 /* Found device below root hub */;
1081
1082 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1083 }
1084
1085 /* Setup an xHCI virtual device for a Set Address command */
1086 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1087 {
1088 struct xhci_virt_device *dev;
1089 struct xhci_ep_ctx *ep0_ctx;
1090 struct xhci_slot_ctx *slot_ctx;
1091 u32 port_num;
1092 u32 max_packets;
1093 struct usb_device *top_dev;
1094
1095 dev = xhci->devs[udev->slot_id];
1096 /* Slot ID 0 is reserved */
1097 if (udev->slot_id == 0 || !dev) {
1098 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1099 udev->slot_id);
1100 return -EINVAL;
1101 }
1102 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1103 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1104
1105 /* 3) Only the control endpoint is valid - one endpoint context */
1106 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1107 switch (udev->speed) {
1108 case USB_SPEED_SUPER:
1109 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1110 max_packets = MAX_PACKET(512);
1111 break;
1112 case USB_SPEED_HIGH:
1113 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1114 max_packets = MAX_PACKET(64);
1115 break;
1116 /* USB core guesses at a 64-byte max packet first for FS devices */
1117 case USB_SPEED_FULL:
1118 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1119 max_packets = MAX_PACKET(64);
1120 break;
1121 case USB_SPEED_LOW:
1122 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1123 max_packets = MAX_PACKET(8);
1124 break;
1125 case USB_SPEED_WIRELESS:
1126 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1127 return -EINVAL;
1128 break;
1129 default:
1130 /* Speed was set earlier, this shouldn't happen. */
1131 return -EINVAL;
1132 }
1133 /* Find the root hub port this device is under */
1134 port_num = xhci_find_real_port_number(xhci, udev);
1135 if (!port_num)
1136 return -EINVAL;
1137 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1138 /* Set the port number in the virtual_device to the faked port number */
1139 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1140 top_dev = top_dev->parent)
1141 /* Found device below root hub */;
1142 dev->fake_port = top_dev->portnum;
1143 dev->real_port = port_num;
1144 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1145 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1146
1147 /* Find the right bandwidth table that this device will be a part of.
1148 * If this is a full speed device attached directly to a root port (or a
1149 * decendent of one), it counts as a primary bandwidth domain, not a
1150 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1151 * will never be created for the HS root hub.
1152 */
1153 if (!udev->tt || !udev->tt->hub->parent) {
1154 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1155 } else {
1156 struct xhci_root_port_bw_info *rh_bw;
1157 struct xhci_tt_bw_info *tt_bw;
1158
1159 rh_bw = &xhci->rh_bw[port_num - 1];
1160 /* Find the right TT. */
1161 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1162 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1163 continue;
1164
1165 if (!dev->udev->tt->multi ||
1166 (udev->tt->multi &&
1167 tt_bw->ttport == dev->udev->ttport)) {
1168 dev->bw_table = &tt_bw->bw_table;
1169 dev->tt_info = tt_bw;
1170 break;
1171 }
1172 }
1173 if (!dev->tt_info)
1174 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1175 }
1176
1177 /* Is this a LS/FS device under an external HS hub? */
1178 if (udev->tt && udev->tt->hub->parent) {
1179 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1180 (udev->ttport << 8));
1181 if (udev->tt->multi)
1182 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1183 }
1184 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1185 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1186
1187 /* Step 4 - ring already allocated */
1188 /* Step 5 */
1189 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1190
1191 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1192 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1193 max_packets);
1194
1195 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1196 dev->eps[0].ring->cycle_state);
1197
1198 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1199
1200 return 0;
1201 }
1202
1203 /*
1204 * Convert interval expressed as 2^(bInterval - 1) == interval into
1205 * straight exponent value 2^n == interval.
1206 *
1207 */
1208 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1209 struct usb_host_endpoint *ep)
1210 {
1211 unsigned int interval;
1212
1213 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1214 if (interval != ep->desc.bInterval - 1)
1215 dev_warn(&udev->dev,
1216 "ep %#x - rounding interval to %d %sframes\n",
1217 ep->desc.bEndpointAddress,
1218 1 << interval,
1219 udev->speed == USB_SPEED_FULL ? "" : "micro");
1220
1221 if (udev->speed == USB_SPEED_FULL) {
1222 /*
1223 * Full speed isoc endpoints specify interval in frames,
1224 * not microframes. We are using microframes everywhere,
1225 * so adjust accordingly.
1226 */
1227 interval += 3; /* 1 frame = 2^3 uframes */
1228 }
1229
1230 return interval;
1231 }
1232
1233 /*
1234 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1235 * microframes, rounded down to nearest power of 2.
1236 */
1237 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1238 struct usb_host_endpoint *ep, unsigned int desc_interval,
1239 unsigned int min_exponent, unsigned int max_exponent)
1240 {
1241 unsigned int interval;
1242
1243 interval = fls(desc_interval) - 1;
1244 interval = clamp_val(interval, min_exponent, max_exponent);
1245 if ((1 << interval) != desc_interval)
1246 dev_dbg(&udev->dev,
1247 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1248 ep->desc.bEndpointAddress,
1249 1 << interval,
1250 desc_interval);
1251
1252 return interval;
1253 }
1254
1255 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1256 struct usb_host_endpoint *ep)
1257 {
1258 if (ep->desc.bInterval == 0)
1259 return 0;
1260 return xhci_microframes_to_exponent(udev, ep,
1261 ep->desc.bInterval, 0, 15);
1262 }
1263
1264
1265 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1266 struct usb_host_endpoint *ep)
1267 {
1268 return xhci_microframes_to_exponent(udev, ep,
1269 ep->desc.bInterval * 8, 3, 10);
1270 }
1271
1272 /* Return the polling or NAK interval.
1273 *
1274 * The polling interval is expressed in "microframes". If xHCI's Interval field
1275 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1276 *
1277 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1278 * is set to 0.
1279 */
1280 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1281 struct usb_host_endpoint *ep)
1282 {
1283 unsigned int interval = 0;
1284
1285 switch (udev->speed) {
1286 case USB_SPEED_HIGH:
1287 /* Max NAK rate */
1288 if (usb_endpoint_xfer_control(&ep->desc) ||
1289 usb_endpoint_xfer_bulk(&ep->desc)) {
1290 interval = xhci_parse_microframe_interval(udev, ep);
1291 break;
1292 }
1293 /* Fall through - SS and HS isoc/int have same decoding */
1294
1295 case USB_SPEED_SUPER:
1296 if (usb_endpoint_xfer_int(&ep->desc) ||
1297 usb_endpoint_xfer_isoc(&ep->desc)) {
1298 interval = xhci_parse_exponent_interval(udev, ep);
1299 }
1300 break;
1301
1302 case USB_SPEED_FULL:
1303 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1304 interval = xhci_parse_exponent_interval(udev, ep);
1305 break;
1306 }
1307 /*
1308 * Fall through for interrupt endpoint interval decoding
1309 * since it uses the same rules as low speed interrupt
1310 * endpoints.
1311 */
1312
1313 case USB_SPEED_LOW:
1314 if (usb_endpoint_xfer_int(&ep->desc) ||
1315 usb_endpoint_xfer_isoc(&ep->desc)) {
1316
1317 interval = xhci_parse_frame_interval(udev, ep);
1318 }
1319 break;
1320
1321 default:
1322 BUG();
1323 }
1324 return EP_INTERVAL(interval);
1325 }
1326
1327 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1328 * High speed endpoint descriptors can define "the number of additional
1329 * transaction opportunities per microframe", but that goes in the Max Burst
1330 * endpoint context field.
1331 */
1332 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1333 struct usb_host_endpoint *ep)
1334 {
1335 if (udev->speed != USB_SPEED_SUPER ||
1336 !usb_endpoint_xfer_isoc(&ep->desc))
1337 return 0;
1338 return ep->ss_ep_comp.bmAttributes;
1339 }
1340
1341 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1342 {
1343 int in;
1344 u32 type;
1345
1346 in = usb_endpoint_dir_in(&ep->desc);
1347 if (usb_endpoint_xfer_control(&ep->desc)) {
1348 type = EP_TYPE(CTRL_EP);
1349 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1350 if (in)
1351 type = EP_TYPE(BULK_IN_EP);
1352 else
1353 type = EP_TYPE(BULK_OUT_EP);
1354 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1355 if (in)
1356 type = EP_TYPE(ISOC_IN_EP);
1357 else
1358 type = EP_TYPE(ISOC_OUT_EP);
1359 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1360 if (in)
1361 type = EP_TYPE(INT_IN_EP);
1362 else
1363 type = EP_TYPE(INT_OUT_EP);
1364 } else {
1365 type = 0;
1366 }
1367 return type;
1368 }
1369
1370 /* Return the maximum endpoint service interval time (ESIT) payload.
1371 * Basically, this is the maxpacket size, multiplied by the burst size
1372 * and mult size.
1373 */
1374 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1375 struct usb_host_endpoint *ep)
1376 {
1377 int max_burst;
1378 int max_packet;
1379
1380 /* Only applies for interrupt or isochronous endpoints */
1381 if (usb_endpoint_xfer_control(&ep->desc) ||
1382 usb_endpoint_xfer_bulk(&ep->desc))
1383 return 0;
1384
1385 if (udev->speed == USB_SPEED_SUPER)
1386 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1387
1388 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1389 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1390 /* A 0 in max burst means 1 transfer per ESIT */
1391 return max_packet * (max_burst + 1);
1392 }
1393
1394 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1395 * Drivers will have to call usb_alloc_streams() to do that.
1396 */
1397 int xhci_endpoint_init(struct xhci_hcd *xhci,
1398 struct xhci_virt_device *virt_dev,
1399 struct usb_device *udev,
1400 struct usb_host_endpoint *ep,
1401 gfp_t mem_flags)
1402 {
1403 unsigned int ep_index;
1404 struct xhci_ep_ctx *ep_ctx;
1405 struct xhci_ring *ep_ring;
1406 unsigned int max_packet;
1407 unsigned int max_burst;
1408 enum xhci_ring_type type;
1409 u32 max_esit_payload;
1410 u32 endpoint_type;
1411
1412 ep_index = xhci_get_endpoint_index(&ep->desc);
1413 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1414
1415 endpoint_type = xhci_get_endpoint_type(ep);
1416 if (!endpoint_type)
1417 return -EINVAL;
1418 ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1419
1420 type = usb_endpoint_type(&ep->desc);
1421 /* Set up the endpoint ring */
1422 virt_dev->eps[ep_index].new_ring =
1423 xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1424 if (!virt_dev->eps[ep_index].new_ring) {
1425 /* Attempt to use the ring cache */
1426 if (virt_dev->num_rings_cached == 0)
1427 return -ENOMEM;
1428 virt_dev->num_rings_cached--;
1429 virt_dev->eps[ep_index].new_ring =
1430 virt_dev->ring_cache[virt_dev->num_rings_cached];
1431 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1432 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1433 1, type);
1434 }
1435 virt_dev->eps[ep_index].skip = false;
1436 ep_ring = virt_dev->eps[ep_index].new_ring;
1437 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1438
1439 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1440 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1441
1442 /* FIXME dig Mult and streams info out of ep companion desc */
1443
1444 /* Allow 3 retries for everything but isoc;
1445 * CErr shall be set to 0 for Isoch endpoints.
1446 */
1447 if (!usb_endpoint_xfer_isoc(&ep->desc))
1448 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1449 else
1450 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1451
1452 /* Set the max packet size and max burst */
1453 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1454 max_burst = 0;
1455 switch (udev->speed) {
1456 case USB_SPEED_SUPER:
1457 /* dig out max burst from ep companion desc */
1458 max_burst = ep->ss_ep_comp.bMaxBurst;
1459 break;
1460 case USB_SPEED_HIGH:
1461 /* Some devices get this wrong */
1462 if (usb_endpoint_xfer_bulk(&ep->desc))
1463 max_packet = 512;
1464 /* bits 11:12 specify the number of additional transaction
1465 * opportunities per microframe (USB 2.0, section 9.6.6)
1466 */
1467 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1468 usb_endpoint_xfer_int(&ep->desc)) {
1469 max_burst = (usb_endpoint_maxp(&ep->desc)
1470 & 0x1800) >> 11;
1471 }
1472 break;
1473 case USB_SPEED_FULL:
1474 case USB_SPEED_LOW:
1475 break;
1476 default:
1477 BUG();
1478 }
1479 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1480 MAX_BURST(max_burst));
1481 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1482 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1483
1484 /*
1485 * XXX no idea how to calculate the average TRB buffer length for bulk
1486 * endpoints, as the driver gives us no clue how big each scatter gather
1487 * list entry (or buffer) is going to be.
1488 *
1489 * For isochronous and interrupt endpoints, we set it to the max
1490 * available, until we have new API in the USB core to allow drivers to
1491 * declare how much bandwidth they actually need.
1492 *
1493 * Normally, it would be calculated by taking the total of the buffer
1494 * lengths in the TD and then dividing by the number of TRBs in a TD,
1495 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1496 * use Event Data TRBs, and we don't chain in a link TRB on short
1497 * transfers, we're basically dividing by 1.
1498 *
1499 * xHCI 1.0 and 1.1 specification indicates that the Average TRB Length
1500 * should be set to 8 for control endpoints.
1501 */
1502 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1503 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1504 else
1505 ep_ctx->tx_info |=
1506 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1507
1508 /* FIXME Debug endpoint context */
1509 return 0;
1510 }
1511
1512 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1513 struct xhci_virt_device *virt_dev,
1514 struct usb_host_endpoint *ep)
1515 {
1516 unsigned int ep_index;
1517 struct xhci_ep_ctx *ep_ctx;
1518
1519 ep_index = xhci_get_endpoint_index(&ep->desc);
1520 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1521
1522 ep_ctx->ep_info = 0;
1523 ep_ctx->ep_info2 = 0;
1524 ep_ctx->deq = 0;
1525 ep_ctx->tx_info = 0;
1526 /* Don't free the endpoint ring until the set interface or configuration
1527 * request succeeds.
1528 */
1529 }
1530
1531 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1532 {
1533 bw_info->ep_interval = 0;
1534 bw_info->mult = 0;
1535 bw_info->num_packets = 0;
1536 bw_info->max_packet_size = 0;
1537 bw_info->type = 0;
1538 bw_info->max_esit_payload = 0;
1539 }
1540
1541 void xhci_update_bw_info(struct xhci_hcd *xhci,
1542 struct xhci_container_ctx *in_ctx,
1543 struct xhci_input_control_ctx *ctrl_ctx,
1544 struct xhci_virt_device *virt_dev)
1545 {
1546 struct xhci_bw_info *bw_info;
1547 struct xhci_ep_ctx *ep_ctx;
1548 unsigned int ep_type;
1549 int i;
1550
1551 for (i = 1; i < 31; ++i) {
1552 bw_info = &virt_dev->eps[i].bw_info;
1553
1554 /* We can't tell what endpoint type is being dropped, but
1555 * unconditionally clearing the bandwidth info for non-periodic
1556 * endpoints should be harmless because the info will never be
1557 * set in the first place.
1558 */
1559 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1560 /* Dropped endpoint */
1561 xhci_clear_endpoint_bw_info(bw_info);
1562 continue;
1563 }
1564
1565 if (EP_IS_ADDED(ctrl_ctx, i)) {
1566 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1567 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1568
1569 /* Ignore non-periodic endpoints */
1570 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1571 ep_type != ISOC_IN_EP &&
1572 ep_type != INT_IN_EP)
1573 continue;
1574
1575 /* Added or changed endpoint */
1576 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1577 le32_to_cpu(ep_ctx->ep_info));
1578 /* Number of packets and mult are zero-based in the
1579 * input context, but we want one-based for the
1580 * interval table.
1581 */
1582 bw_info->mult = CTX_TO_EP_MULT(
1583 le32_to_cpu(ep_ctx->ep_info)) + 1;
1584 bw_info->num_packets = CTX_TO_MAX_BURST(
1585 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1586 bw_info->max_packet_size = MAX_PACKET_DECODED(
1587 le32_to_cpu(ep_ctx->ep_info2));
1588 bw_info->type = ep_type;
1589 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1590 le32_to_cpu(ep_ctx->tx_info));
1591 }
1592 }
1593 }
1594
1595 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1596 * Useful when you want to change one particular aspect of the endpoint and then
1597 * issue a configure endpoint command.
1598 */
1599 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1600 struct xhci_container_ctx *in_ctx,
1601 struct xhci_container_ctx *out_ctx,
1602 unsigned int ep_index)
1603 {
1604 struct xhci_ep_ctx *out_ep_ctx;
1605 struct xhci_ep_ctx *in_ep_ctx;
1606
1607 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1608 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1609
1610 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1611 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1612 in_ep_ctx->deq = out_ep_ctx->deq;
1613 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1614 }
1615
1616 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1617 * Useful when you want to change one particular aspect of the endpoint and then
1618 * issue a configure endpoint command. Only the context entries field matters,
1619 * but we'll copy the whole thing anyway.
1620 */
1621 void xhci_slot_copy(struct xhci_hcd *xhci,
1622 struct xhci_container_ctx *in_ctx,
1623 struct xhci_container_ctx *out_ctx)
1624 {
1625 struct xhci_slot_ctx *in_slot_ctx;
1626 struct xhci_slot_ctx *out_slot_ctx;
1627
1628 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1629 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1630
1631 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1632 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1633 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1634 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1635 }
1636
1637 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1638 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1639 {
1640 int i;
1641 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1642 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1643
1644 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1645 "Allocating %d scratchpad buffers", num_sp);
1646
1647 if (!num_sp)
1648 return 0;
1649
1650 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1651 if (!xhci->scratchpad)
1652 goto fail_sp;
1653
1654 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1655 num_sp * sizeof(u64),
1656 &xhci->scratchpad->sp_dma, flags);
1657 if (!xhci->scratchpad->sp_array)
1658 goto fail_sp2;
1659
1660 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1661 if (!xhci->scratchpad->sp_buffers)
1662 goto fail_sp3;
1663
1664 xhci->scratchpad->sp_dma_buffers =
1665 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1666
1667 if (!xhci->scratchpad->sp_dma_buffers)
1668 goto fail_sp4;
1669
1670 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1671 for (i = 0; i < num_sp; i++) {
1672 dma_addr_t dma;
1673 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1674 flags);
1675 if (!buf)
1676 goto fail_sp5;
1677
1678 xhci->scratchpad->sp_array[i] = dma;
1679 xhci->scratchpad->sp_buffers[i] = buf;
1680 xhci->scratchpad->sp_dma_buffers[i] = dma;
1681 }
1682
1683 return 0;
1684
1685 fail_sp5:
1686 for (i = i - 1; i >= 0; i--) {
1687 dma_free_coherent(dev, xhci->page_size,
1688 xhci->scratchpad->sp_buffers[i],
1689 xhci->scratchpad->sp_dma_buffers[i]);
1690 }
1691 kfree(xhci->scratchpad->sp_dma_buffers);
1692
1693 fail_sp4:
1694 kfree(xhci->scratchpad->sp_buffers);
1695
1696 fail_sp3:
1697 dma_free_coherent(dev, num_sp * sizeof(u64),
1698 xhci->scratchpad->sp_array,
1699 xhci->scratchpad->sp_dma);
1700
1701 fail_sp2:
1702 kfree(xhci->scratchpad);
1703 xhci->scratchpad = NULL;
1704
1705 fail_sp:
1706 return -ENOMEM;
1707 }
1708
1709 static void scratchpad_free(struct xhci_hcd *xhci)
1710 {
1711 int num_sp;
1712 int i;
1713 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1714
1715 if (!xhci->scratchpad)
1716 return;
1717
1718 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1719
1720 for (i = 0; i < num_sp; i++) {
1721 dma_free_coherent(dev, xhci->page_size,
1722 xhci->scratchpad->sp_buffers[i],
1723 xhci->scratchpad->sp_dma_buffers[i]);
1724 }
1725 kfree(xhci->scratchpad->sp_dma_buffers);
1726 kfree(xhci->scratchpad->sp_buffers);
1727 dma_free_coherent(dev, num_sp * sizeof(u64),
1728 xhci->scratchpad->sp_array,
1729 xhci->scratchpad->sp_dma);
1730 kfree(xhci->scratchpad);
1731 xhci->scratchpad = NULL;
1732 }
1733
1734 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1735 bool allocate_in_ctx, bool allocate_completion,
1736 gfp_t mem_flags)
1737 {
1738 struct xhci_command *command;
1739
1740 command = kzalloc(sizeof(*command), mem_flags);
1741 if (!command)
1742 return NULL;
1743
1744 if (allocate_in_ctx) {
1745 command->in_ctx =
1746 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1747 mem_flags);
1748 if (!command->in_ctx) {
1749 kfree(command);
1750 return NULL;
1751 }
1752 }
1753
1754 if (allocate_completion) {
1755 command->completion =
1756 kzalloc(sizeof(struct completion), mem_flags);
1757 if (!command->completion) {
1758 xhci_free_container_ctx(xhci, command->in_ctx);
1759 kfree(command);
1760 return NULL;
1761 }
1762 init_completion(command->completion);
1763 }
1764
1765 command->status = 0;
1766 INIT_LIST_HEAD(&command->cmd_list);
1767 return command;
1768 }
1769
1770 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1771 {
1772 if (urb_priv) {
1773 kfree(urb_priv->td[0]);
1774 kfree(urb_priv);
1775 }
1776 }
1777
1778 void xhci_free_command(struct xhci_hcd *xhci,
1779 struct xhci_command *command)
1780 {
1781 xhci_free_container_ctx(xhci,
1782 command->in_ctx);
1783 kfree(command->completion);
1784 kfree(command);
1785 }
1786
1787 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1788 {
1789 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1790 int size;
1791 int i, j, num_ports;
1792
1793 del_timer_sync(&xhci->cmd_timer);
1794
1795 /* Free the Event Ring Segment Table and the actual Event Ring */
1796 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1797 if (xhci->erst.entries)
1798 dma_free_coherent(dev, size,
1799 xhci->erst.entries, xhci->erst.erst_dma_addr);
1800 xhci->erst.entries = NULL;
1801 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1802 if (xhci->event_ring)
1803 xhci_ring_free(xhci, xhci->event_ring);
1804 xhci->event_ring = NULL;
1805 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1806
1807 if (xhci->lpm_command)
1808 xhci_free_command(xhci, xhci->lpm_command);
1809 xhci->lpm_command = NULL;
1810 if (xhci->cmd_ring)
1811 xhci_ring_free(xhci, xhci->cmd_ring);
1812 xhci->cmd_ring = NULL;
1813 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1814 xhci_cleanup_command_queue(xhci);
1815
1816 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1817 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1818 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1819 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1820 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1821 while (!list_empty(ep))
1822 list_del_init(ep->next);
1823 }
1824 }
1825
1826 for (i = 1; i < MAX_HC_SLOTS; ++i)
1827 xhci_free_virt_device(xhci, i);
1828
1829 dma_pool_destroy(xhci->segment_pool);
1830 xhci->segment_pool = NULL;
1831 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1832
1833 dma_pool_destroy(xhci->device_pool);
1834 xhci->device_pool = NULL;
1835 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1836
1837 dma_pool_destroy(xhci->small_streams_pool);
1838 xhci->small_streams_pool = NULL;
1839 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1840 "Freed small stream array pool");
1841
1842 dma_pool_destroy(xhci->medium_streams_pool);
1843 xhci->medium_streams_pool = NULL;
1844 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1845 "Freed medium stream array pool");
1846
1847 if (xhci->dcbaa)
1848 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1849 xhci->dcbaa, xhci->dcbaa->dma);
1850 xhci->dcbaa = NULL;
1851
1852 scratchpad_free(xhci);
1853
1854 if (!xhci->rh_bw)
1855 goto no_bw;
1856
1857 for (i = 0; i < num_ports; i++) {
1858 struct xhci_tt_bw_info *tt, *n;
1859 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1860 list_del(&tt->tt_list);
1861 kfree(tt);
1862 }
1863 }
1864
1865 no_bw:
1866 xhci->cmd_ring_reserved_trbs = 0;
1867 xhci->num_usb2_ports = 0;
1868 xhci->num_usb3_ports = 0;
1869 xhci->num_active_eps = 0;
1870 kfree(xhci->usb2_ports);
1871 kfree(xhci->usb3_ports);
1872 kfree(xhci->port_array);
1873 kfree(xhci->rh_bw);
1874 kfree(xhci->ext_caps);
1875
1876 xhci->page_size = 0;
1877 xhci->page_shift = 0;
1878 xhci->bus_state[0].bus_suspended = 0;
1879 xhci->bus_state[1].bus_suspended = 0;
1880 }
1881
1882 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1883 struct xhci_segment *input_seg,
1884 union xhci_trb *start_trb,
1885 union xhci_trb *end_trb,
1886 dma_addr_t input_dma,
1887 struct xhci_segment *result_seg,
1888 char *test_name, int test_number)
1889 {
1890 unsigned long long start_dma;
1891 unsigned long long end_dma;
1892 struct xhci_segment *seg;
1893
1894 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1895 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1896
1897 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1898 if (seg != result_seg) {
1899 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1900 test_name, test_number);
1901 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1902 "input DMA 0x%llx\n",
1903 input_seg,
1904 (unsigned long long) input_dma);
1905 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1906 "ending TRB %p (0x%llx DMA)\n",
1907 start_trb, start_dma,
1908 end_trb, end_dma);
1909 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1910 result_seg, seg);
1911 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1912 true);
1913 return -1;
1914 }
1915 return 0;
1916 }
1917
1918 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1919 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1920 {
1921 struct {
1922 dma_addr_t input_dma;
1923 struct xhci_segment *result_seg;
1924 } simple_test_vector [] = {
1925 /* A zeroed DMA field should fail */
1926 { 0, NULL },
1927 /* One TRB before the ring start should fail */
1928 { xhci->event_ring->first_seg->dma - 16, NULL },
1929 /* One byte before the ring start should fail */
1930 { xhci->event_ring->first_seg->dma - 1, NULL },
1931 /* Starting TRB should succeed */
1932 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1933 /* Ending TRB should succeed */
1934 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1935 xhci->event_ring->first_seg },
1936 /* One byte after the ring end should fail */
1937 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1938 /* One TRB after the ring end should fail */
1939 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1940 /* An address of all ones should fail */
1941 { (dma_addr_t) (~0), NULL },
1942 };
1943 struct {
1944 struct xhci_segment *input_seg;
1945 union xhci_trb *start_trb;
1946 union xhci_trb *end_trb;
1947 dma_addr_t input_dma;
1948 struct xhci_segment *result_seg;
1949 } complex_test_vector [] = {
1950 /* Test feeding a valid DMA address from a different ring */
1951 { .input_seg = xhci->event_ring->first_seg,
1952 .start_trb = xhci->event_ring->first_seg->trbs,
1953 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1954 .input_dma = xhci->cmd_ring->first_seg->dma,
1955 .result_seg = NULL,
1956 },
1957 /* Test feeding a valid end TRB from a different ring */
1958 { .input_seg = xhci->event_ring->first_seg,
1959 .start_trb = xhci->event_ring->first_seg->trbs,
1960 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1961 .input_dma = xhci->cmd_ring->first_seg->dma,
1962 .result_seg = NULL,
1963 },
1964 /* Test feeding a valid start and end TRB from a different ring */
1965 { .input_seg = xhci->event_ring->first_seg,
1966 .start_trb = xhci->cmd_ring->first_seg->trbs,
1967 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1968 .input_dma = xhci->cmd_ring->first_seg->dma,
1969 .result_seg = NULL,
1970 },
1971 /* TRB in this ring, but after this TD */
1972 { .input_seg = xhci->event_ring->first_seg,
1973 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1974 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1975 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1976 .result_seg = NULL,
1977 },
1978 /* TRB in this ring, but before this TD */
1979 { .input_seg = xhci->event_ring->first_seg,
1980 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1981 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1982 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1983 .result_seg = NULL,
1984 },
1985 /* TRB in this ring, but after this wrapped TD */
1986 { .input_seg = xhci->event_ring->first_seg,
1987 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1988 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1989 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1990 .result_seg = NULL,
1991 },
1992 /* TRB in this ring, but before this wrapped TD */
1993 { .input_seg = xhci->event_ring->first_seg,
1994 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1995 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1996 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1997 .result_seg = NULL,
1998 },
1999 /* TRB not in this ring, and we have a wrapped TD */
2000 { .input_seg = xhci->event_ring->first_seg,
2001 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2002 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2003 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2004 .result_seg = NULL,
2005 },
2006 };
2007
2008 unsigned int num_tests;
2009 int i, ret;
2010
2011 num_tests = ARRAY_SIZE(simple_test_vector);
2012 for (i = 0; i < num_tests; i++) {
2013 ret = xhci_test_trb_in_td(xhci,
2014 xhci->event_ring->first_seg,
2015 xhci->event_ring->first_seg->trbs,
2016 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2017 simple_test_vector[i].input_dma,
2018 simple_test_vector[i].result_seg,
2019 "Simple", i);
2020 if (ret < 0)
2021 return ret;
2022 }
2023
2024 num_tests = ARRAY_SIZE(complex_test_vector);
2025 for (i = 0; i < num_tests; i++) {
2026 ret = xhci_test_trb_in_td(xhci,
2027 complex_test_vector[i].input_seg,
2028 complex_test_vector[i].start_trb,
2029 complex_test_vector[i].end_trb,
2030 complex_test_vector[i].input_dma,
2031 complex_test_vector[i].result_seg,
2032 "Complex", i);
2033 if (ret < 0)
2034 return ret;
2035 }
2036 xhci_dbg(xhci, "TRB math tests passed.\n");
2037 return 0;
2038 }
2039
2040 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2041 {
2042 u64 temp;
2043 dma_addr_t deq;
2044
2045 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2046 xhci->event_ring->dequeue);
2047 if (deq == 0 && !in_interrupt())
2048 xhci_warn(xhci, "WARN something wrong with SW event ring "
2049 "dequeue ptr.\n");
2050 /* Update HC event ring dequeue pointer */
2051 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2052 temp &= ERST_PTR_MASK;
2053 /* Don't clear the EHB bit (which is RW1C) because
2054 * there might be more events to service.
2055 */
2056 temp &= ~ERST_EHB;
2057 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2058 "// Write event ring dequeue pointer, "
2059 "preserving EHB bit");
2060 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2061 &xhci->ir_set->erst_dequeue);
2062 }
2063
2064 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2065 __le32 __iomem *addr, int max_caps)
2066 {
2067 u32 temp, port_offset, port_count;
2068 int i;
2069 u8 major_revision;
2070 struct xhci_hub *rhub;
2071
2072 temp = readl(addr);
2073 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2074
2075 if (major_revision == 0x03) {
2076 rhub = &xhci->usb3_rhub;
2077 } else if (major_revision <= 0x02) {
2078 rhub = &xhci->usb2_rhub;
2079 } else {
2080 xhci_warn(xhci, "Ignoring unknown port speed, "
2081 "Ext Cap %p, revision = 0x%x\n",
2082 addr, major_revision);
2083 /* Ignoring port protocol we can't understand. FIXME */
2084 return;
2085 }
2086 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2087 rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2088
2089 /* Port offset and count in the third dword, see section 7.2 */
2090 temp = readl(addr + 2);
2091 port_offset = XHCI_EXT_PORT_OFF(temp);
2092 port_count = XHCI_EXT_PORT_COUNT(temp);
2093 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2094 "Ext Cap %p, port offset = %u, "
2095 "count = %u, revision = 0x%x",
2096 addr, port_offset, port_count, major_revision);
2097 /* Port count includes the current port offset */
2098 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2099 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2100 return;
2101
2102 rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2103 if (rhub->psi_count) {
2104 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2105 GFP_KERNEL);
2106 if (!rhub->psi)
2107 rhub->psi_count = 0;
2108
2109 rhub->psi_uid_count++;
2110 for (i = 0; i < rhub->psi_count; i++) {
2111 rhub->psi[i] = readl(addr + 4 + i);
2112
2113 /* count unique ID values, two consecutive entries can
2114 * have the same ID if link is assymetric
2115 */
2116 if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2117 XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2118 rhub->psi_uid_count++;
2119
2120 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2121 XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2122 XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2123 XHCI_EXT_PORT_PLT(rhub->psi[i]),
2124 XHCI_EXT_PORT_PFD(rhub->psi[i]),
2125 XHCI_EXT_PORT_LP(rhub->psi[i]),
2126 XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2127 }
2128 }
2129 /* cache usb2 port capabilities */
2130 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2131 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2132
2133 /* Check the host's USB2 LPM capability */
2134 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2135 (temp & XHCI_L1C)) {
2136 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2137 "xHCI 0.96: support USB2 software lpm");
2138 xhci->sw_lpm_support = 1;
2139 }
2140
2141 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2142 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2143 "xHCI 1.0: support USB2 software lpm");
2144 xhci->sw_lpm_support = 1;
2145 if (temp & XHCI_HLC) {
2146 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2147 "xHCI 1.0: support USB2 hardware lpm");
2148 xhci->hw_lpm_support = 1;
2149 }
2150 }
2151
2152 port_offset--;
2153 for (i = port_offset; i < (port_offset + port_count); i++) {
2154 /* Duplicate entry. Ignore the port if the revisions differ. */
2155 if (xhci->port_array[i] != 0) {
2156 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2157 " port %u\n", addr, i);
2158 xhci_warn(xhci, "Port was marked as USB %u, "
2159 "duplicated as USB %u\n",
2160 xhci->port_array[i], major_revision);
2161 /* Only adjust the roothub port counts if we haven't
2162 * found a similar duplicate.
2163 */
2164 if (xhci->port_array[i] != major_revision &&
2165 xhci->port_array[i] != DUPLICATE_ENTRY) {
2166 if (xhci->port_array[i] == 0x03)
2167 xhci->num_usb3_ports--;
2168 else
2169 xhci->num_usb2_ports--;
2170 xhci->port_array[i] = DUPLICATE_ENTRY;
2171 }
2172 /* FIXME: Should we disable the port? */
2173 continue;
2174 }
2175 xhci->port_array[i] = major_revision;
2176 if (major_revision == 0x03)
2177 xhci->num_usb3_ports++;
2178 else
2179 xhci->num_usb2_ports++;
2180 }
2181 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2182 }
2183
2184 /*
2185 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2186 * specify what speeds each port is supposed to be. We can't count on the port
2187 * speed bits in the PORTSC register being correct until a device is connected,
2188 * but we need to set up the two fake roothubs with the correct number of USB
2189 * 3.0 and USB 2.0 ports at host controller initialization time.
2190 */
2191 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2192 {
2193 void __iomem *base;
2194 u32 offset;
2195 unsigned int num_ports;
2196 int i, j, port_index;
2197 int cap_count = 0;
2198 u32 cap_start;
2199
2200 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2201 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2202 if (!xhci->port_array)
2203 return -ENOMEM;
2204
2205 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2206 if (!xhci->rh_bw)
2207 return -ENOMEM;
2208 for (i = 0; i < num_ports; i++) {
2209 struct xhci_interval_bw_table *bw_table;
2210
2211 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2212 bw_table = &xhci->rh_bw[i].bw_table;
2213 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2214 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2215 }
2216 base = &xhci->cap_regs->hc_capbase;
2217
2218 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2219 if (!cap_start) {
2220 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2221 return -ENODEV;
2222 }
2223
2224 offset = cap_start;
2225 /* count extended protocol capability entries for later caching */
2226 while (offset) {
2227 cap_count++;
2228 offset = xhci_find_next_ext_cap(base, offset,
2229 XHCI_EXT_CAPS_PROTOCOL);
2230 }
2231
2232 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2233 if (!xhci->ext_caps)
2234 return -ENOMEM;
2235
2236 offset = cap_start;
2237
2238 while (offset) {
2239 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2240 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2241 break;
2242 offset = xhci_find_next_ext_cap(base, offset,
2243 XHCI_EXT_CAPS_PROTOCOL);
2244 }
2245
2246 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2247 xhci_warn(xhci, "No ports on the roothubs?\n");
2248 return -ENODEV;
2249 }
2250 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2251 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2252 xhci->num_usb2_ports, xhci->num_usb3_ports);
2253
2254 /* Place limits on the number of roothub ports so that the hub
2255 * descriptors aren't longer than the USB core will allocate.
2256 */
2257 if (xhci->num_usb3_ports > 15) {
2258 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2259 "Limiting USB 3.0 roothub ports to 15.");
2260 xhci->num_usb3_ports = 15;
2261 }
2262 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2263 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2264 "Limiting USB 2.0 roothub ports to %u.",
2265 USB_MAXCHILDREN);
2266 xhci->num_usb2_ports = USB_MAXCHILDREN;
2267 }
2268
2269 /*
2270 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2271 * Not sure how the USB core will handle a hub with no ports...
2272 */
2273 if (xhci->num_usb2_ports) {
2274 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2275 xhci->num_usb2_ports, flags);
2276 if (!xhci->usb2_ports)
2277 return -ENOMEM;
2278
2279 port_index = 0;
2280 for (i = 0; i < num_ports; i++) {
2281 if (xhci->port_array[i] == 0x03 ||
2282 xhci->port_array[i] == 0 ||
2283 xhci->port_array[i] == DUPLICATE_ENTRY)
2284 continue;
2285
2286 xhci->usb2_ports[port_index] =
2287 &xhci->op_regs->port_status_base +
2288 NUM_PORT_REGS*i;
2289 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2290 "USB 2.0 port at index %u, "
2291 "addr = %p", i,
2292 xhci->usb2_ports[port_index]);
2293 port_index++;
2294 if (port_index == xhci->num_usb2_ports)
2295 break;
2296 }
2297 }
2298 if (xhci->num_usb3_ports) {
2299 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2300 xhci->num_usb3_ports, flags);
2301 if (!xhci->usb3_ports)
2302 return -ENOMEM;
2303
2304 port_index = 0;
2305 for (i = 0; i < num_ports; i++)
2306 if (xhci->port_array[i] == 0x03) {
2307 xhci->usb3_ports[port_index] =
2308 &xhci->op_regs->port_status_base +
2309 NUM_PORT_REGS*i;
2310 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2311 "USB 3.0 port at index %u, "
2312 "addr = %p", i,
2313 xhci->usb3_ports[port_index]);
2314 port_index++;
2315 if (port_index == xhci->num_usb3_ports)
2316 break;
2317 }
2318 }
2319 return 0;
2320 }
2321
2322 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2323 {
2324 dma_addr_t dma;
2325 struct device *dev = xhci_to_hcd(xhci)->self.controller;
2326 unsigned int val, val2;
2327 u64 val_64;
2328 struct xhci_segment *seg;
2329 u32 page_size, temp;
2330 int i;
2331
2332 INIT_LIST_HEAD(&xhci->cmd_list);
2333
2334 /* init command timeout timer */
2335 setup_timer(&xhci->cmd_timer, xhci_handle_command_timeout,
2336 (unsigned long)xhci);
2337
2338 page_size = readl(&xhci->op_regs->page_size);
2339 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2340 "Supported page size register = 0x%x", page_size);
2341 for (i = 0; i < 16; i++) {
2342 if ((0x1 & page_size) != 0)
2343 break;
2344 page_size = page_size >> 1;
2345 }
2346 if (i < 16)
2347 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2348 "Supported page size of %iK", (1 << (i+12)) / 1024);
2349 else
2350 xhci_warn(xhci, "WARN: no supported page size\n");
2351 /* Use 4K pages, since that's common and the minimum the HC supports */
2352 xhci->page_shift = 12;
2353 xhci->page_size = 1 << xhci->page_shift;
2354 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2355 "HCD page size set to %iK", xhci->page_size / 1024);
2356
2357 /*
2358 * Program the Number of Device Slots Enabled field in the CONFIG
2359 * register with the max value of slots the HC can handle.
2360 */
2361 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2362 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2363 "// xHC can handle at most %d device slots.", val);
2364 val2 = readl(&xhci->op_regs->config_reg);
2365 val |= (val2 & ~HCS_SLOTS_MASK);
2366 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2367 "// Setting Max device slots reg = 0x%x.", val);
2368 writel(val, &xhci->op_regs->config_reg);
2369
2370 /*
2371 * Section 5.4.8 - doorbell array must be
2372 * "physically contiguous and 64-byte (cache line) aligned".
2373 */
2374 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2375 GFP_KERNEL);
2376 if (!xhci->dcbaa)
2377 goto fail;
2378 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2379 xhci->dcbaa->dma = dma;
2380 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2381 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2382 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2383 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2384
2385 /*
2386 * Initialize the ring segment pool. The ring must be a contiguous
2387 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2388 * however, the command ring segment needs 64-byte aligned segments
2389 * and our use of dma addresses in the trb_address_map radix tree needs
2390 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2391 */
2392 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2393 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2394
2395 /* See Table 46 and Note on Figure 55 */
2396 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2397 2112, 64, xhci->page_size);
2398 if (!xhci->segment_pool || !xhci->device_pool)
2399 goto fail;
2400
2401 /* Linear stream context arrays don't have any boundary restrictions,
2402 * and only need to be 16-byte aligned.
2403 */
2404 xhci->small_streams_pool =
2405 dma_pool_create("xHCI 256 byte stream ctx arrays",
2406 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2407 xhci->medium_streams_pool =
2408 dma_pool_create("xHCI 1KB stream ctx arrays",
2409 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2410 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2411 * will be allocated with dma_alloc_coherent()
2412 */
2413
2414 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2415 goto fail;
2416
2417 /* Set up the command ring to have one segments for now. */
2418 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2419 if (!xhci->cmd_ring)
2420 goto fail;
2421 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2422 "Allocated command ring at %p", xhci->cmd_ring);
2423 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2424 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2425
2426 /* Set the address in the Command Ring Control register */
2427 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2428 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2429 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2430 xhci->cmd_ring->cycle_state;
2431 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2432 "// Setting command ring address to 0x%x", val);
2433 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2434 xhci_dbg_cmd_ptrs(xhci);
2435
2436 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2437 if (!xhci->lpm_command)
2438 goto fail;
2439
2440 /* Reserve one command ring TRB for disabling LPM.
2441 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2442 * disabling LPM, we only need to reserve one TRB for all devices.
2443 */
2444 xhci->cmd_ring_reserved_trbs++;
2445
2446 val = readl(&xhci->cap_regs->db_off);
2447 val &= DBOFF_MASK;
2448 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2449 "// Doorbell array is located at offset 0x%x"
2450 " from cap regs base addr", val);
2451 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2452 xhci_dbg_regs(xhci);
2453 xhci_print_run_regs(xhci);
2454 /* Set ir_set to interrupt register set 0 */
2455 xhci->ir_set = &xhci->run_regs->ir_set[0];
2456
2457 /*
2458 * Event ring setup: Allocate a normal ring, but also setup
2459 * the event ring segment table (ERST). Section 4.9.3.
2460 */
2461 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2462 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2463 flags);
2464 if (!xhci->event_ring)
2465 goto fail;
2466 if (xhci_check_trb_in_td_math(xhci) < 0)
2467 goto fail;
2468
2469 xhci->erst.entries = dma_alloc_coherent(dev,
2470 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2471 GFP_KERNEL);
2472 if (!xhci->erst.entries)
2473 goto fail;
2474 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2475 "// Allocated event ring segment table at 0x%llx",
2476 (unsigned long long)dma);
2477
2478 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2479 xhci->erst.num_entries = ERST_NUM_SEGS;
2480 xhci->erst.erst_dma_addr = dma;
2481 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2482 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2483 xhci->erst.num_entries,
2484 xhci->erst.entries,
2485 (unsigned long long)xhci->erst.erst_dma_addr);
2486
2487 /* set ring base address and size for each segment table entry */
2488 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2489 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2490 entry->seg_addr = cpu_to_le64(seg->dma);
2491 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2492 entry->rsvd = 0;
2493 seg = seg->next;
2494 }
2495
2496 /* set ERST count with the number of entries in the segment table */
2497 val = readl(&xhci->ir_set->erst_size);
2498 val &= ERST_SIZE_MASK;
2499 val |= ERST_NUM_SEGS;
2500 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2501 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2502 val);
2503 writel(val, &xhci->ir_set->erst_size);
2504
2505 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2506 "// Set ERST entries to point to event ring.");
2507 /* set the segment table base address */
2508 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2509 "// Set ERST base address for ir_set 0 = 0x%llx",
2510 (unsigned long long)xhci->erst.erst_dma_addr);
2511 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2512 val_64 &= ERST_PTR_MASK;
2513 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2514 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2515
2516 /* Set the event ring dequeue address */
2517 xhci_set_hc_event_deq(xhci);
2518 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2519 "Wrote ERST address to ir_set 0.");
2520 xhci_print_ir_set(xhci, 0);
2521
2522 /*
2523 * XXX: Might need to set the Interrupter Moderation Register to
2524 * something other than the default (~1ms minimum between interrupts).
2525 * See section 5.5.1.2.
2526 */
2527 init_completion(&xhci->addr_dev);
2528 for (i = 0; i < MAX_HC_SLOTS; ++i)
2529 xhci->devs[i] = NULL;
2530 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2531 xhci->bus_state[0].resume_done[i] = 0;
2532 xhci->bus_state[1].resume_done[i] = 0;
2533 /* Only the USB 2.0 completions will ever be used. */
2534 init_completion(&xhci->bus_state[1].rexit_done[i]);
2535 }
2536
2537 if (scratchpad_alloc(xhci, flags))
2538 goto fail;
2539 if (xhci_setup_port_arrays(xhci, flags))
2540 goto fail;
2541
2542 /* Enable USB 3.0 device notifications for function remote wake, which
2543 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2544 * U3 (device suspend).
2545 */
2546 temp = readl(&xhci->op_regs->dev_notification);
2547 temp &= ~DEV_NOTE_MASK;
2548 temp |= DEV_NOTE_FWAKE;
2549 writel(temp, &xhci->op_regs->dev_notification);
2550
2551 return 0;
2552
2553 fail:
2554 xhci_warn(xhci, "Couldn't initialize memory\n");
2555 xhci_halt(xhci);
2556 xhci_reset(xhci);
2557 xhci_mem_cleanup(xhci);
2558 return -ENOMEM;
2559 }
This page took 0.097287 seconds and 5 git commands to generate.