Merge tag 'renesas-fixes-for-v4.5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / usb / host / xhci-mem.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28
29 #include "xhci.h"
30 #include "xhci-trace.h"
31
32 /*
33 * Allocates a generic ring segment from the ring pool, sets the dma address,
34 * initializes the segment to zero, and sets the private next pointer to NULL.
35 *
36 * Section 4.11.1.1:
37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38 */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40 unsigned int cycle_state, gfp_t flags)
41 {
42 struct xhci_segment *seg;
43 dma_addr_t dma;
44 int i;
45
46 seg = kzalloc(sizeof *seg, flags);
47 if (!seg)
48 return NULL;
49
50 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
51 if (!seg->trbs) {
52 kfree(seg);
53 return NULL;
54 }
55
56 memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
57 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58 if (cycle_state == 0) {
59 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60 seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61 }
62 seg->dma = dma;
63 seg->next = NULL;
64
65 return seg;
66 }
67
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70 if (seg->trbs) {
71 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72 seg->trbs = NULL;
73 }
74 kfree(seg);
75 }
76
77 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
78 struct xhci_segment *first)
79 {
80 struct xhci_segment *seg;
81
82 seg = first->next;
83 while (seg != first) {
84 struct xhci_segment *next = seg->next;
85 xhci_segment_free(xhci, seg);
86 seg = next;
87 }
88 xhci_segment_free(xhci, first);
89 }
90
91 /*
92 * Make the prev segment point to the next segment.
93 *
94 * Change the last TRB in the prev segment to be a Link TRB which points to the
95 * DMA address of the next segment. The caller needs to set any Link TRB
96 * related flags, such as End TRB, Toggle Cycle, and no snoop.
97 */
98 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
99 struct xhci_segment *next, enum xhci_ring_type type)
100 {
101 u32 val;
102
103 if (!prev || !next)
104 return;
105 prev->next = next;
106 if (type != TYPE_EVENT) {
107 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
108 cpu_to_le64(next->dma);
109
110 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
111 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
112 val &= ~TRB_TYPE_BITMASK;
113 val |= TRB_TYPE(TRB_LINK);
114 /* Always set the chain bit with 0.95 hardware */
115 /* Set chain bit for isoc rings on AMD 0.96 host */
116 if (xhci_link_trb_quirk(xhci) ||
117 (type == TYPE_ISOC &&
118 (xhci->quirks & XHCI_AMD_0x96_HOST)))
119 val |= TRB_CHAIN;
120 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
121 }
122 }
123
124 /*
125 * Link the ring to the new segments.
126 * Set Toggle Cycle for the new ring if needed.
127 */
128 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
129 struct xhci_segment *first, struct xhci_segment *last,
130 unsigned int num_segs)
131 {
132 struct xhci_segment *next;
133
134 if (!ring || !first || !last)
135 return;
136
137 next = ring->enq_seg->next;
138 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
139 xhci_link_segments(xhci, last, next, ring->type);
140 ring->num_segs += num_segs;
141 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
142
143 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
144 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
145 &= ~cpu_to_le32(LINK_TOGGLE);
146 last->trbs[TRBS_PER_SEGMENT-1].link.control
147 |= cpu_to_le32(LINK_TOGGLE);
148 ring->last_seg = last;
149 }
150 }
151
152 /*
153 * We need a radix tree for mapping physical addresses of TRBs to which stream
154 * ID they belong to. We need to do this because the host controller won't tell
155 * us which stream ring the TRB came from. We could store the stream ID in an
156 * event data TRB, but that doesn't help us for the cancellation case, since the
157 * endpoint may stop before it reaches that event data TRB.
158 *
159 * The radix tree maps the upper portion of the TRB DMA address to a ring
160 * segment that has the same upper portion of DMA addresses. For example, say I
161 * have segments of size 1KB, that are always 1KB aligned. A segment may
162 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
163 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
164 * pass the radix tree a key to get the right stream ID:
165 *
166 * 0x10c90fff >> 10 = 0x43243
167 * 0x10c912c0 >> 10 = 0x43244
168 * 0x10c91400 >> 10 = 0x43245
169 *
170 * Obviously, only those TRBs with DMA addresses that are within the segment
171 * will make the radix tree return the stream ID for that ring.
172 *
173 * Caveats for the radix tree:
174 *
175 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
176 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
177 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
178 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
179 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
180 * extended systems (where the DMA address can be bigger than 32-bits),
181 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
182 */
183 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
184 struct xhci_ring *ring,
185 struct xhci_segment *seg,
186 gfp_t mem_flags)
187 {
188 unsigned long key;
189 int ret;
190
191 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
192 /* Skip any segments that were already added. */
193 if (radix_tree_lookup(trb_address_map, key))
194 return 0;
195
196 ret = radix_tree_maybe_preload(mem_flags);
197 if (ret)
198 return ret;
199 ret = radix_tree_insert(trb_address_map,
200 key, ring);
201 radix_tree_preload_end();
202 return ret;
203 }
204
205 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
206 struct xhci_segment *seg)
207 {
208 unsigned long key;
209
210 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
211 if (radix_tree_lookup(trb_address_map, key))
212 radix_tree_delete(trb_address_map, key);
213 }
214
215 static int xhci_update_stream_segment_mapping(
216 struct radix_tree_root *trb_address_map,
217 struct xhci_ring *ring,
218 struct xhci_segment *first_seg,
219 struct xhci_segment *last_seg,
220 gfp_t mem_flags)
221 {
222 struct xhci_segment *seg;
223 struct xhci_segment *failed_seg;
224 int ret;
225
226 if (WARN_ON_ONCE(trb_address_map == NULL))
227 return 0;
228
229 seg = first_seg;
230 do {
231 ret = xhci_insert_segment_mapping(trb_address_map,
232 ring, seg, mem_flags);
233 if (ret)
234 goto remove_streams;
235 if (seg == last_seg)
236 return 0;
237 seg = seg->next;
238 } while (seg != first_seg);
239
240 return 0;
241
242 remove_streams:
243 failed_seg = seg;
244 seg = first_seg;
245 do {
246 xhci_remove_segment_mapping(trb_address_map, seg);
247 if (seg == failed_seg)
248 return ret;
249 seg = seg->next;
250 } while (seg != first_seg);
251
252 return ret;
253 }
254
255 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
256 {
257 struct xhci_segment *seg;
258
259 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
260 return;
261
262 seg = ring->first_seg;
263 do {
264 xhci_remove_segment_mapping(ring->trb_address_map, seg);
265 seg = seg->next;
266 } while (seg != ring->first_seg);
267 }
268
269 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
270 {
271 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
272 ring->first_seg, ring->last_seg, mem_flags);
273 }
274
275 /* XXX: Do we need the hcd structure in all these functions? */
276 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
277 {
278 if (!ring)
279 return;
280
281 if (ring->first_seg) {
282 if (ring->type == TYPE_STREAM)
283 xhci_remove_stream_mapping(ring);
284 xhci_free_segments_for_ring(xhci, ring->first_seg);
285 }
286
287 kfree(ring);
288 }
289
290 static void xhci_initialize_ring_info(struct xhci_ring *ring,
291 unsigned int cycle_state)
292 {
293 /* The ring is empty, so the enqueue pointer == dequeue pointer */
294 ring->enqueue = ring->first_seg->trbs;
295 ring->enq_seg = ring->first_seg;
296 ring->dequeue = ring->enqueue;
297 ring->deq_seg = ring->first_seg;
298 /* The ring is initialized to 0. The producer must write 1 to the cycle
299 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
300 * compare CCS to the cycle bit to check ownership, so CCS = 1.
301 *
302 * New rings are initialized with cycle state equal to 1; if we are
303 * handling ring expansion, set the cycle state equal to the old ring.
304 */
305 ring->cycle_state = cycle_state;
306 /* Not necessary for new rings, but needed for re-initialized rings */
307 ring->enq_updates = 0;
308 ring->deq_updates = 0;
309
310 /*
311 * Each segment has a link TRB, and leave an extra TRB for SW
312 * accounting purpose
313 */
314 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
315 }
316
317 /* Allocate segments and link them for a ring */
318 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
319 struct xhci_segment **first, struct xhci_segment **last,
320 unsigned int num_segs, unsigned int cycle_state,
321 enum xhci_ring_type type, gfp_t flags)
322 {
323 struct xhci_segment *prev;
324
325 prev = xhci_segment_alloc(xhci, cycle_state, flags);
326 if (!prev)
327 return -ENOMEM;
328 num_segs--;
329
330 *first = prev;
331 while (num_segs > 0) {
332 struct xhci_segment *next;
333
334 next = xhci_segment_alloc(xhci, cycle_state, flags);
335 if (!next) {
336 prev = *first;
337 while (prev) {
338 next = prev->next;
339 xhci_segment_free(xhci, prev);
340 prev = next;
341 }
342 return -ENOMEM;
343 }
344 xhci_link_segments(xhci, prev, next, type);
345
346 prev = next;
347 num_segs--;
348 }
349 xhci_link_segments(xhci, prev, *first, type);
350 *last = prev;
351
352 return 0;
353 }
354
355 /**
356 * Create a new ring with zero or more segments.
357 *
358 * Link each segment together into a ring.
359 * Set the end flag and the cycle toggle bit on the last segment.
360 * See section 4.9.1 and figures 15 and 16.
361 */
362 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
363 unsigned int num_segs, unsigned int cycle_state,
364 enum xhci_ring_type type, gfp_t flags)
365 {
366 struct xhci_ring *ring;
367 int ret;
368
369 ring = kzalloc(sizeof *(ring), flags);
370 if (!ring)
371 return NULL;
372
373 ring->num_segs = num_segs;
374 INIT_LIST_HEAD(&ring->td_list);
375 ring->type = type;
376 if (num_segs == 0)
377 return ring;
378
379 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
380 &ring->last_seg, num_segs, cycle_state, type, flags);
381 if (ret)
382 goto fail;
383
384 /* Only event ring does not use link TRB */
385 if (type != TYPE_EVENT) {
386 /* See section 4.9.2.1 and 6.4.4.1 */
387 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
388 cpu_to_le32(LINK_TOGGLE);
389 }
390 xhci_initialize_ring_info(ring, cycle_state);
391 return ring;
392
393 fail:
394 kfree(ring);
395 return NULL;
396 }
397
398 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
399 struct xhci_virt_device *virt_dev,
400 unsigned int ep_index)
401 {
402 int rings_cached;
403
404 rings_cached = virt_dev->num_rings_cached;
405 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
406 virt_dev->ring_cache[rings_cached] =
407 virt_dev->eps[ep_index].ring;
408 virt_dev->num_rings_cached++;
409 xhci_dbg(xhci, "Cached old ring, "
410 "%d ring%s cached\n",
411 virt_dev->num_rings_cached,
412 (virt_dev->num_rings_cached > 1) ? "s" : "");
413 } else {
414 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
415 xhci_dbg(xhci, "Ring cache full (%d rings), "
416 "freeing ring\n",
417 virt_dev->num_rings_cached);
418 }
419 virt_dev->eps[ep_index].ring = NULL;
420 }
421
422 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
423 * pointers to the beginning of the ring.
424 */
425 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
426 struct xhci_ring *ring, unsigned int cycle_state,
427 enum xhci_ring_type type)
428 {
429 struct xhci_segment *seg = ring->first_seg;
430 int i;
431
432 do {
433 memset(seg->trbs, 0,
434 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
435 if (cycle_state == 0) {
436 for (i = 0; i < TRBS_PER_SEGMENT; i++)
437 seg->trbs[i].link.control |=
438 cpu_to_le32(TRB_CYCLE);
439 }
440 /* All endpoint rings have link TRBs */
441 xhci_link_segments(xhci, seg, seg->next, type);
442 seg = seg->next;
443 } while (seg != ring->first_seg);
444 ring->type = type;
445 xhci_initialize_ring_info(ring, cycle_state);
446 /* td list should be empty since all URBs have been cancelled,
447 * but just in case...
448 */
449 INIT_LIST_HEAD(&ring->td_list);
450 }
451
452 /*
453 * Expand an existing ring.
454 * Look for a cached ring or allocate a new ring which has same segment numbers
455 * and link the two rings.
456 */
457 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
458 unsigned int num_trbs, gfp_t flags)
459 {
460 struct xhci_segment *first;
461 struct xhci_segment *last;
462 unsigned int num_segs;
463 unsigned int num_segs_needed;
464 int ret;
465
466 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
467 (TRBS_PER_SEGMENT - 1);
468
469 /* Allocate number of segments we needed, or double the ring size */
470 num_segs = ring->num_segs > num_segs_needed ?
471 ring->num_segs : num_segs_needed;
472
473 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
474 num_segs, ring->cycle_state, ring->type, flags);
475 if (ret)
476 return -ENOMEM;
477
478 if (ring->type == TYPE_STREAM)
479 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
480 ring, first, last, flags);
481 if (ret) {
482 struct xhci_segment *next;
483 do {
484 next = first->next;
485 xhci_segment_free(xhci, first);
486 if (first == last)
487 break;
488 first = next;
489 } while (true);
490 return ret;
491 }
492
493 xhci_link_rings(xhci, ring, first, last, num_segs);
494 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
495 "ring expansion succeed, now has %d segments",
496 ring->num_segs);
497
498 return 0;
499 }
500
501 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
502
503 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
504 int type, gfp_t flags)
505 {
506 struct xhci_container_ctx *ctx;
507
508 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
509 return NULL;
510
511 ctx = kzalloc(sizeof(*ctx), flags);
512 if (!ctx)
513 return NULL;
514
515 ctx->type = type;
516 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
517 if (type == XHCI_CTX_TYPE_INPUT)
518 ctx->size += CTX_SIZE(xhci->hcc_params);
519
520 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
521 if (!ctx->bytes) {
522 kfree(ctx);
523 return NULL;
524 }
525 memset(ctx->bytes, 0, ctx->size);
526 return ctx;
527 }
528
529 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
530 struct xhci_container_ctx *ctx)
531 {
532 if (!ctx)
533 return;
534 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
535 kfree(ctx);
536 }
537
538 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
539 struct xhci_container_ctx *ctx)
540 {
541 if (ctx->type != XHCI_CTX_TYPE_INPUT)
542 return NULL;
543
544 return (struct xhci_input_control_ctx *)ctx->bytes;
545 }
546
547 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
548 struct xhci_container_ctx *ctx)
549 {
550 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
551 return (struct xhci_slot_ctx *)ctx->bytes;
552
553 return (struct xhci_slot_ctx *)
554 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
555 }
556
557 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
558 struct xhci_container_ctx *ctx,
559 unsigned int ep_index)
560 {
561 /* increment ep index by offset of start of ep ctx array */
562 ep_index++;
563 if (ctx->type == XHCI_CTX_TYPE_INPUT)
564 ep_index++;
565
566 return (struct xhci_ep_ctx *)
567 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
568 }
569
570
571 /***************** Streams structures manipulation *************************/
572
573 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
574 unsigned int num_stream_ctxs,
575 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
576 {
577 struct device *dev = xhci_to_hcd(xhci)->self.controller;
578 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
579
580 if (size > MEDIUM_STREAM_ARRAY_SIZE)
581 dma_free_coherent(dev, size,
582 stream_ctx, dma);
583 else if (size <= SMALL_STREAM_ARRAY_SIZE)
584 return dma_pool_free(xhci->small_streams_pool,
585 stream_ctx, dma);
586 else
587 return dma_pool_free(xhci->medium_streams_pool,
588 stream_ctx, dma);
589 }
590
591 /*
592 * The stream context array for each endpoint with bulk streams enabled can
593 * vary in size, based on:
594 * - how many streams the endpoint supports,
595 * - the maximum primary stream array size the host controller supports,
596 * - and how many streams the device driver asks for.
597 *
598 * The stream context array must be a power of 2, and can be as small as
599 * 64 bytes or as large as 1MB.
600 */
601 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
602 unsigned int num_stream_ctxs, dma_addr_t *dma,
603 gfp_t mem_flags)
604 {
605 struct device *dev = xhci_to_hcd(xhci)->self.controller;
606 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
607
608 if (size > MEDIUM_STREAM_ARRAY_SIZE)
609 return dma_alloc_coherent(dev, size,
610 dma, mem_flags);
611 else if (size <= SMALL_STREAM_ARRAY_SIZE)
612 return dma_pool_alloc(xhci->small_streams_pool,
613 mem_flags, dma);
614 else
615 return dma_pool_alloc(xhci->medium_streams_pool,
616 mem_flags, dma);
617 }
618
619 struct xhci_ring *xhci_dma_to_transfer_ring(
620 struct xhci_virt_ep *ep,
621 u64 address)
622 {
623 if (ep->ep_state & EP_HAS_STREAMS)
624 return radix_tree_lookup(&ep->stream_info->trb_address_map,
625 address >> TRB_SEGMENT_SHIFT);
626 return ep->ring;
627 }
628
629 struct xhci_ring *xhci_stream_id_to_ring(
630 struct xhci_virt_device *dev,
631 unsigned int ep_index,
632 unsigned int stream_id)
633 {
634 struct xhci_virt_ep *ep = &dev->eps[ep_index];
635
636 if (stream_id == 0)
637 return ep->ring;
638 if (!ep->stream_info)
639 return NULL;
640
641 if (stream_id > ep->stream_info->num_streams)
642 return NULL;
643 return ep->stream_info->stream_rings[stream_id];
644 }
645
646 /*
647 * Change an endpoint's internal structure so it supports stream IDs. The
648 * number of requested streams includes stream 0, which cannot be used by device
649 * drivers.
650 *
651 * The number of stream contexts in the stream context array may be bigger than
652 * the number of streams the driver wants to use. This is because the number of
653 * stream context array entries must be a power of two.
654 */
655 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
656 unsigned int num_stream_ctxs,
657 unsigned int num_streams, gfp_t mem_flags)
658 {
659 struct xhci_stream_info *stream_info;
660 u32 cur_stream;
661 struct xhci_ring *cur_ring;
662 u64 addr;
663 int ret;
664
665 xhci_dbg(xhci, "Allocating %u streams and %u "
666 "stream context array entries.\n",
667 num_streams, num_stream_ctxs);
668 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
669 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
670 return NULL;
671 }
672 xhci->cmd_ring_reserved_trbs++;
673
674 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
675 if (!stream_info)
676 goto cleanup_trbs;
677
678 stream_info->num_streams = num_streams;
679 stream_info->num_stream_ctxs = num_stream_ctxs;
680
681 /* Initialize the array of virtual pointers to stream rings. */
682 stream_info->stream_rings = kzalloc(
683 sizeof(struct xhci_ring *)*num_streams,
684 mem_flags);
685 if (!stream_info->stream_rings)
686 goto cleanup_info;
687
688 /* Initialize the array of DMA addresses for stream rings for the HW. */
689 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
690 num_stream_ctxs, &stream_info->ctx_array_dma,
691 mem_flags);
692 if (!stream_info->stream_ctx_array)
693 goto cleanup_ctx;
694 memset(stream_info->stream_ctx_array, 0,
695 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
696
697 /* Allocate everything needed to free the stream rings later */
698 stream_info->free_streams_command =
699 xhci_alloc_command(xhci, true, true, mem_flags);
700 if (!stream_info->free_streams_command)
701 goto cleanup_ctx;
702
703 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
704
705 /* Allocate rings for all the streams that the driver will use,
706 * and add their segment DMA addresses to the radix tree.
707 * Stream 0 is reserved.
708 */
709 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
710 stream_info->stream_rings[cur_stream] =
711 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
712 cur_ring = stream_info->stream_rings[cur_stream];
713 if (!cur_ring)
714 goto cleanup_rings;
715 cur_ring->stream_id = cur_stream;
716 cur_ring->trb_address_map = &stream_info->trb_address_map;
717 /* Set deq ptr, cycle bit, and stream context type */
718 addr = cur_ring->first_seg->dma |
719 SCT_FOR_CTX(SCT_PRI_TR) |
720 cur_ring->cycle_state;
721 stream_info->stream_ctx_array[cur_stream].stream_ring =
722 cpu_to_le64(addr);
723 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
724 cur_stream, (unsigned long long) addr);
725
726 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
727 if (ret) {
728 xhci_ring_free(xhci, cur_ring);
729 stream_info->stream_rings[cur_stream] = NULL;
730 goto cleanup_rings;
731 }
732 }
733 /* Leave the other unused stream ring pointers in the stream context
734 * array initialized to zero. This will cause the xHC to give us an
735 * error if the device asks for a stream ID we don't have setup (if it
736 * was any other way, the host controller would assume the ring is
737 * "empty" and wait forever for data to be queued to that stream ID).
738 */
739
740 return stream_info;
741
742 cleanup_rings:
743 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
744 cur_ring = stream_info->stream_rings[cur_stream];
745 if (cur_ring) {
746 xhci_ring_free(xhci, cur_ring);
747 stream_info->stream_rings[cur_stream] = NULL;
748 }
749 }
750 xhci_free_command(xhci, stream_info->free_streams_command);
751 cleanup_ctx:
752 kfree(stream_info->stream_rings);
753 cleanup_info:
754 kfree(stream_info);
755 cleanup_trbs:
756 xhci->cmd_ring_reserved_trbs--;
757 return NULL;
758 }
759 /*
760 * Sets the MaxPStreams field and the Linear Stream Array field.
761 * Sets the dequeue pointer to the stream context array.
762 */
763 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
764 struct xhci_ep_ctx *ep_ctx,
765 struct xhci_stream_info *stream_info)
766 {
767 u32 max_primary_streams;
768 /* MaxPStreams is the number of stream context array entries, not the
769 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
770 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
771 */
772 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
773 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
774 "Setting number of stream ctx array entries to %u",
775 1 << (max_primary_streams + 1));
776 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
777 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
778 | EP_HAS_LSA);
779 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
780 }
781
782 /*
783 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
784 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
785 * not at the beginning of the ring).
786 */
787 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
788 struct xhci_virt_ep *ep)
789 {
790 dma_addr_t addr;
791 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
792 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
793 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
794 }
795
796 /* Frees all stream contexts associated with the endpoint,
797 *
798 * Caller should fix the endpoint context streams fields.
799 */
800 void xhci_free_stream_info(struct xhci_hcd *xhci,
801 struct xhci_stream_info *stream_info)
802 {
803 int cur_stream;
804 struct xhci_ring *cur_ring;
805
806 if (!stream_info)
807 return;
808
809 for (cur_stream = 1; cur_stream < stream_info->num_streams;
810 cur_stream++) {
811 cur_ring = stream_info->stream_rings[cur_stream];
812 if (cur_ring) {
813 xhci_ring_free(xhci, cur_ring);
814 stream_info->stream_rings[cur_stream] = NULL;
815 }
816 }
817 xhci_free_command(xhci, stream_info->free_streams_command);
818 xhci->cmd_ring_reserved_trbs--;
819 if (stream_info->stream_ctx_array)
820 xhci_free_stream_ctx(xhci,
821 stream_info->num_stream_ctxs,
822 stream_info->stream_ctx_array,
823 stream_info->ctx_array_dma);
824
825 kfree(stream_info->stream_rings);
826 kfree(stream_info);
827 }
828
829
830 /***************** Device context manipulation *************************/
831
832 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
833 struct xhci_virt_ep *ep)
834 {
835 setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
836 (unsigned long)ep);
837 ep->xhci = xhci;
838 }
839
840 static void xhci_free_tt_info(struct xhci_hcd *xhci,
841 struct xhci_virt_device *virt_dev,
842 int slot_id)
843 {
844 struct list_head *tt_list_head;
845 struct xhci_tt_bw_info *tt_info, *next;
846 bool slot_found = false;
847
848 /* If the device never made it past the Set Address stage,
849 * it may not have the real_port set correctly.
850 */
851 if (virt_dev->real_port == 0 ||
852 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
853 xhci_dbg(xhci, "Bad real port.\n");
854 return;
855 }
856
857 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
858 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
859 /* Multi-TT hubs will have more than one entry */
860 if (tt_info->slot_id == slot_id) {
861 slot_found = true;
862 list_del(&tt_info->tt_list);
863 kfree(tt_info);
864 } else if (slot_found) {
865 break;
866 }
867 }
868 }
869
870 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
871 struct xhci_virt_device *virt_dev,
872 struct usb_device *hdev,
873 struct usb_tt *tt, gfp_t mem_flags)
874 {
875 struct xhci_tt_bw_info *tt_info;
876 unsigned int num_ports;
877 int i, j;
878
879 if (!tt->multi)
880 num_ports = 1;
881 else
882 num_ports = hdev->maxchild;
883
884 for (i = 0; i < num_ports; i++, tt_info++) {
885 struct xhci_interval_bw_table *bw_table;
886
887 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
888 if (!tt_info)
889 goto free_tts;
890 INIT_LIST_HEAD(&tt_info->tt_list);
891 list_add(&tt_info->tt_list,
892 &xhci->rh_bw[virt_dev->real_port - 1].tts);
893 tt_info->slot_id = virt_dev->udev->slot_id;
894 if (tt->multi)
895 tt_info->ttport = i+1;
896 bw_table = &tt_info->bw_table;
897 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
898 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
899 }
900 return 0;
901
902 free_tts:
903 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
904 return -ENOMEM;
905 }
906
907
908 /* All the xhci_tds in the ring's TD list should be freed at this point.
909 * Should be called with xhci->lock held if there is any chance the TT lists
910 * will be manipulated by the configure endpoint, allocate device, or update
911 * hub functions while this function is removing the TT entries from the list.
912 */
913 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
914 {
915 struct xhci_virt_device *dev;
916 int i;
917 int old_active_eps = 0;
918
919 /* Slot ID 0 is reserved */
920 if (slot_id == 0 || !xhci->devs[slot_id])
921 return;
922
923 dev = xhci->devs[slot_id];
924 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
925 if (!dev)
926 return;
927
928 if (dev->tt_info)
929 old_active_eps = dev->tt_info->active_eps;
930
931 for (i = 0; i < 31; ++i) {
932 if (dev->eps[i].ring)
933 xhci_ring_free(xhci, dev->eps[i].ring);
934 if (dev->eps[i].stream_info)
935 xhci_free_stream_info(xhci,
936 dev->eps[i].stream_info);
937 /* Endpoints on the TT/root port lists should have been removed
938 * when usb_disable_device() was called for the device.
939 * We can't drop them anyway, because the udev might have gone
940 * away by this point, and we can't tell what speed it was.
941 */
942 if (!list_empty(&dev->eps[i].bw_endpoint_list))
943 xhci_warn(xhci, "Slot %u endpoint %u "
944 "not removed from BW list!\n",
945 slot_id, i);
946 }
947 /* If this is a hub, free the TT(s) from the TT list */
948 xhci_free_tt_info(xhci, dev, slot_id);
949 /* If necessary, update the number of active TTs on this root port */
950 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
951
952 if (dev->ring_cache) {
953 for (i = 0; i < dev->num_rings_cached; i++)
954 xhci_ring_free(xhci, dev->ring_cache[i]);
955 kfree(dev->ring_cache);
956 }
957
958 if (dev->in_ctx)
959 xhci_free_container_ctx(xhci, dev->in_ctx);
960 if (dev->out_ctx)
961 xhci_free_container_ctx(xhci, dev->out_ctx);
962
963 kfree(xhci->devs[slot_id]);
964 xhci->devs[slot_id] = NULL;
965 }
966
967 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
968 struct usb_device *udev, gfp_t flags)
969 {
970 struct xhci_virt_device *dev;
971 int i;
972
973 /* Slot ID 0 is reserved */
974 if (slot_id == 0 || xhci->devs[slot_id]) {
975 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
976 return 0;
977 }
978
979 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
980 if (!xhci->devs[slot_id])
981 return 0;
982 dev = xhci->devs[slot_id];
983
984 /* Allocate the (output) device context that will be used in the HC. */
985 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
986 if (!dev->out_ctx)
987 goto fail;
988
989 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
990 (unsigned long long)dev->out_ctx->dma);
991
992 /* Allocate the (input) device context for address device command */
993 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
994 if (!dev->in_ctx)
995 goto fail;
996
997 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
998 (unsigned long long)dev->in_ctx->dma);
999
1000 /* Initialize the cancellation list and watchdog timers for each ep */
1001 for (i = 0; i < 31; i++) {
1002 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1003 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1004 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1005 }
1006
1007 /* Allocate endpoint 0 ring */
1008 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
1009 if (!dev->eps[0].ring)
1010 goto fail;
1011
1012 /* Allocate pointers to the ring cache */
1013 dev->ring_cache = kzalloc(
1014 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1015 flags);
1016 if (!dev->ring_cache)
1017 goto fail;
1018 dev->num_rings_cached = 0;
1019
1020 init_completion(&dev->cmd_completion);
1021 dev->udev = udev;
1022
1023 /* Point to output device context in dcbaa. */
1024 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1025 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1026 slot_id,
1027 &xhci->dcbaa->dev_context_ptrs[slot_id],
1028 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1029
1030 return 1;
1031 fail:
1032 xhci_free_virt_device(xhci, slot_id);
1033 return 0;
1034 }
1035
1036 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1037 struct usb_device *udev)
1038 {
1039 struct xhci_virt_device *virt_dev;
1040 struct xhci_ep_ctx *ep0_ctx;
1041 struct xhci_ring *ep_ring;
1042
1043 virt_dev = xhci->devs[udev->slot_id];
1044 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1045 ep_ring = virt_dev->eps[0].ring;
1046 /*
1047 * FIXME we don't keep track of the dequeue pointer very well after a
1048 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1049 * host to our enqueue pointer. This should only be called after a
1050 * configured device has reset, so all control transfers should have
1051 * been completed or cancelled before the reset.
1052 */
1053 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1054 ep_ring->enqueue)
1055 | ep_ring->cycle_state);
1056 }
1057
1058 /*
1059 * The xHCI roothub may have ports of differing speeds in any order in the port
1060 * status registers. xhci->port_array provides an array of the port speed for
1061 * each offset into the port status registers.
1062 *
1063 * The xHCI hardware wants to know the roothub port number that the USB device
1064 * is attached to (or the roothub port its ancestor hub is attached to). All we
1065 * know is the index of that port under either the USB 2.0 or the USB 3.0
1066 * roothub, but that doesn't give us the real index into the HW port status
1067 * registers. Call xhci_find_raw_port_number() to get real index.
1068 */
1069 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1070 struct usb_device *udev)
1071 {
1072 struct usb_device *top_dev;
1073 struct usb_hcd *hcd;
1074
1075 if (udev->speed == USB_SPEED_SUPER)
1076 hcd = xhci->shared_hcd;
1077 else
1078 hcd = xhci->main_hcd;
1079
1080 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1081 top_dev = top_dev->parent)
1082 /* Found device below root hub */;
1083
1084 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1085 }
1086
1087 /* Setup an xHCI virtual device for a Set Address command */
1088 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1089 {
1090 struct xhci_virt_device *dev;
1091 struct xhci_ep_ctx *ep0_ctx;
1092 struct xhci_slot_ctx *slot_ctx;
1093 u32 port_num;
1094 u32 max_packets;
1095 struct usb_device *top_dev;
1096
1097 dev = xhci->devs[udev->slot_id];
1098 /* Slot ID 0 is reserved */
1099 if (udev->slot_id == 0 || !dev) {
1100 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1101 udev->slot_id);
1102 return -EINVAL;
1103 }
1104 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1105 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1106
1107 /* 3) Only the control endpoint is valid - one endpoint context */
1108 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1109 switch (udev->speed) {
1110 case USB_SPEED_SUPER:
1111 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1112 max_packets = MAX_PACKET(512);
1113 break;
1114 case USB_SPEED_HIGH:
1115 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1116 max_packets = MAX_PACKET(64);
1117 break;
1118 /* USB core guesses at a 64-byte max packet first for FS devices */
1119 case USB_SPEED_FULL:
1120 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1121 max_packets = MAX_PACKET(64);
1122 break;
1123 case USB_SPEED_LOW:
1124 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1125 max_packets = MAX_PACKET(8);
1126 break;
1127 case USB_SPEED_WIRELESS:
1128 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1129 return -EINVAL;
1130 break;
1131 default:
1132 /* Speed was set earlier, this shouldn't happen. */
1133 return -EINVAL;
1134 }
1135 /* Find the root hub port this device is under */
1136 port_num = xhci_find_real_port_number(xhci, udev);
1137 if (!port_num)
1138 return -EINVAL;
1139 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1140 /* Set the port number in the virtual_device to the faked port number */
1141 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1142 top_dev = top_dev->parent)
1143 /* Found device below root hub */;
1144 dev->fake_port = top_dev->portnum;
1145 dev->real_port = port_num;
1146 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1147 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1148
1149 /* Find the right bandwidth table that this device will be a part of.
1150 * If this is a full speed device attached directly to a root port (or a
1151 * decendent of one), it counts as a primary bandwidth domain, not a
1152 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1153 * will never be created for the HS root hub.
1154 */
1155 if (!udev->tt || !udev->tt->hub->parent) {
1156 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1157 } else {
1158 struct xhci_root_port_bw_info *rh_bw;
1159 struct xhci_tt_bw_info *tt_bw;
1160
1161 rh_bw = &xhci->rh_bw[port_num - 1];
1162 /* Find the right TT. */
1163 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1164 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1165 continue;
1166
1167 if (!dev->udev->tt->multi ||
1168 (udev->tt->multi &&
1169 tt_bw->ttport == dev->udev->ttport)) {
1170 dev->bw_table = &tt_bw->bw_table;
1171 dev->tt_info = tt_bw;
1172 break;
1173 }
1174 }
1175 if (!dev->tt_info)
1176 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1177 }
1178
1179 /* Is this a LS/FS device under an external HS hub? */
1180 if (udev->tt && udev->tt->hub->parent) {
1181 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1182 (udev->ttport << 8));
1183 if (udev->tt->multi)
1184 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1185 }
1186 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1187 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1188
1189 /* Step 4 - ring already allocated */
1190 /* Step 5 */
1191 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1192
1193 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1194 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1195 max_packets);
1196
1197 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1198 dev->eps[0].ring->cycle_state);
1199
1200 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1201
1202 return 0;
1203 }
1204
1205 /*
1206 * Convert interval expressed as 2^(bInterval - 1) == interval into
1207 * straight exponent value 2^n == interval.
1208 *
1209 */
1210 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1211 struct usb_host_endpoint *ep)
1212 {
1213 unsigned int interval;
1214
1215 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1216 if (interval != ep->desc.bInterval - 1)
1217 dev_warn(&udev->dev,
1218 "ep %#x - rounding interval to %d %sframes\n",
1219 ep->desc.bEndpointAddress,
1220 1 << interval,
1221 udev->speed == USB_SPEED_FULL ? "" : "micro");
1222
1223 if (udev->speed == USB_SPEED_FULL) {
1224 /*
1225 * Full speed isoc endpoints specify interval in frames,
1226 * not microframes. We are using microframes everywhere,
1227 * so adjust accordingly.
1228 */
1229 interval += 3; /* 1 frame = 2^3 uframes */
1230 }
1231
1232 return interval;
1233 }
1234
1235 /*
1236 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1237 * microframes, rounded down to nearest power of 2.
1238 */
1239 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1240 struct usb_host_endpoint *ep, unsigned int desc_interval,
1241 unsigned int min_exponent, unsigned int max_exponent)
1242 {
1243 unsigned int interval;
1244
1245 interval = fls(desc_interval) - 1;
1246 interval = clamp_val(interval, min_exponent, max_exponent);
1247 if ((1 << interval) != desc_interval)
1248 dev_warn(&udev->dev,
1249 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1250 ep->desc.bEndpointAddress,
1251 1 << interval,
1252 desc_interval);
1253
1254 return interval;
1255 }
1256
1257 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1258 struct usb_host_endpoint *ep)
1259 {
1260 if (ep->desc.bInterval == 0)
1261 return 0;
1262 return xhci_microframes_to_exponent(udev, ep,
1263 ep->desc.bInterval, 0, 15);
1264 }
1265
1266
1267 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1268 struct usb_host_endpoint *ep)
1269 {
1270 return xhci_microframes_to_exponent(udev, ep,
1271 ep->desc.bInterval * 8, 3, 10);
1272 }
1273
1274 /* Return the polling or NAK interval.
1275 *
1276 * The polling interval is expressed in "microframes". If xHCI's Interval field
1277 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1278 *
1279 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1280 * is set to 0.
1281 */
1282 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1283 struct usb_host_endpoint *ep)
1284 {
1285 unsigned int interval = 0;
1286
1287 switch (udev->speed) {
1288 case USB_SPEED_HIGH:
1289 /* Max NAK rate */
1290 if (usb_endpoint_xfer_control(&ep->desc) ||
1291 usb_endpoint_xfer_bulk(&ep->desc)) {
1292 interval = xhci_parse_microframe_interval(udev, ep);
1293 break;
1294 }
1295 /* Fall through - SS and HS isoc/int have same decoding */
1296
1297 case USB_SPEED_SUPER:
1298 if (usb_endpoint_xfer_int(&ep->desc) ||
1299 usb_endpoint_xfer_isoc(&ep->desc)) {
1300 interval = xhci_parse_exponent_interval(udev, ep);
1301 }
1302 break;
1303
1304 case USB_SPEED_FULL:
1305 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1306 interval = xhci_parse_exponent_interval(udev, ep);
1307 break;
1308 }
1309 /*
1310 * Fall through for interrupt endpoint interval decoding
1311 * since it uses the same rules as low speed interrupt
1312 * endpoints.
1313 */
1314
1315 case USB_SPEED_LOW:
1316 if (usb_endpoint_xfer_int(&ep->desc) ||
1317 usb_endpoint_xfer_isoc(&ep->desc)) {
1318
1319 interval = xhci_parse_frame_interval(udev, ep);
1320 }
1321 break;
1322
1323 default:
1324 BUG();
1325 }
1326 return EP_INTERVAL(interval);
1327 }
1328
1329 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1330 * High speed endpoint descriptors can define "the number of additional
1331 * transaction opportunities per microframe", but that goes in the Max Burst
1332 * endpoint context field.
1333 */
1334 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1335 struct usb_host_endpoint *ep)
1336 {
1337 if (udev->speed != USB_SPEED_SUPER ||
1338 !usb_endpoint_xfer_isoc(&ep->desc))
1339 return 0;
1340 return ep->ss_ep_comp.bmAttributes;
1341 }
1342
1343 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1344 {
1345 int in;
1346 u32 type;
1347
1348 in = usb_endpoint_dir_in(&ep->desc);
1349 if (usb_endpoint_xfer_control(&ep->desc)) {
1350 type = EP_TYPE(CTRL_EP);
1351 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1352 if (in)
1353 type = EP_TYPE(BULK_IN_EP);
1354 else
1355 type = EP_TYPE(BULK_OUT_EP);
1356 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1357 if (in)
1358 type = EP_TYPE(ISOC_IN_EP);
1359 else
1360 type = EP_TYPE(ISOC_OUT_EP);
1361 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1362 if (in)
1363 type = EP_TYPE(INT_IN_EP);
1364 else
1365 type = EP_TYPE(INT_OUT_EP);
1366 } else {
1367 type = 0;
1368 }
1369 return type;
1370 }
1371
1372 /* Return the maximum endpoint service interval time (ESIT) payload.
1373 * Basically, this is the maxpacket size, multiplied by the burst size
1374 * and mult size.
1375 */
1376 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1377 struct usb_host_endpoint *ep)
1378 {
1379 int max_burst;
1380 int max_packet;
1381
1382 /* Only applies for interrupt or isochronous endpoints */
1383 if (usb_endpoint_xfer_control(&ep->desc) ||
1384 usb_endpoint_xfer_bulk(&ep->desc))
1385 return 0;
1386
1387 if (udev->speed == USB_SPEED_SUPER)
1388 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1389
1390 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1391 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1392 /* A 0 in max burst means 1 transfer per ESIT */
1393 return max_packet * (max_burst + 1);
1394 }
1395
1396 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1397 * Drivers will have to call usb_alloc_streams() to do that.
1398 */
1399 int xhci_endpoint_init(struct xhci_hcd *xhci,
1400 struct xhci_virt_device *virt_dev,
1401 struct usb_device *udev,
1402 struct usb_host_endpoint *ep,
1403 gfp_t mem_flags)
1404 {
1405 unsigned int ep_index;
1406 struct xhci_ep_ctx *ep_ctx;
1407 struct xhci_ring *ep_ring;
1408 unsigned int max_packet;
1409 unsigned int max_burst;
1410 enum xhci_ring_type type;
1411 u32 max_esit_payload;
1412 u32 endpoint_type;
1413
1414 ep_index = xhci_get_endpoint_index(&ep->desc);
1415 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1416
1417 endpoint_type = xhci_get_endpoint_type(ep);
1418 if (!endpoint_type)
1419 return -EINVAL;
1420 ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1421
1422 type = usb_endpoint_type(&ep->desc);
1423 /* Set up the endpoint ring */
1424 virt_dev->eps[ep_index].new_ring =
1425 xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1426 if (!virt_dev->eps[ep_index].new_ring) {
1427 /* Attempt to use the ring cache */
1428 if (virt_dev->num_rings_cached == 0)
1429 return -ENOMEM;
1430 virt_dev->num_rings_cached--;
1431 virt_dev->eps[ep_index].new_ring =
1432 virt_dev->ring_cache[virt_dev->num_rings_cached];
1433 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1434 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1435 1, type);
1436 }
1437 virt_dev->eps[ep_index].skip = false;
1438 ep_ring = virt_dev->eps[ep_index].new_ring;
1439 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1440
1441 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1442 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1443
1444 /* FIXME dig Mult and streams info out of ep companion desc */
1445
1446 /* Allow 3 retries for everything but isoc;
1447 * CErr shall be set to 0 for Isoch endpoints.
1448 */
1449 if (!usb_endpoint_xfer_isoc(&ep->desc))
1450 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1451 else
1452 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1453
1454 /* Set the max packet size and max burst */
1455 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1456 max_burst = 0;
1457 switch (udev->speed) {
1458 case USB_SPEED_SUPER:
1459 /* dig out max burst from ep companion desc */
1460 max_burst = ep->ss_ep_comp.bMaxBurst;
1461 break;
1462 case USB_SPEED_HIGH:
1463 /* Some devices get this wrong */
1464 if (usb_endpoint_xfer_bulk(&ep->desc))
1465 max_packet = 512;
1466 /* bits 11:12 specify the number of additional transaction
1467 * opportunities per microframe (USB 2.0, section 9.6.6)
1468 */
1469 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1470 usb_endpoint_xfer_int(&ep->desc)) {
1471 max_burst = (usb_endpoint_maxp(&ep->desc)
1472 & 0x1800) >> 11;
1473 }
1474 break;
1475 case USB_SPEED_FULL:
1476 case USB_SPEED_LOW:
1477 break;
1478 default:
1479 BUG();
1480 }
1481 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1482 MAX_BURST(max_burst));
1483 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1484 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1485
1486 /*
1487 * XXX no idea how to calculate the average TRB buffer length for bulk
1488 * endpoints, as the driver gives us no clue how big each scatter gather
1489 * list entry (or buffer) is going to be.
1490 *
1491 * For isochronous and interrupt endpoints, we set it to the max
1492 * available, until we have new API in the USB core to allow drivers to
1493 * declare how much bandwidth they actually need.
1494 *
1495 * Normally, it would be calculated by taking the total of the buffer
1496 * lengths in the TD and then dividing by the number of TRBs in a TD,
1497 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1498 * use Event Data TRBs, and we don't chain in a link TRB on short
1499 * transfers, we're basically dividing by 1.
1500 *
1501 * xHCI 1.0 and 1.1 specification indicates that the Average TRB Length
1502 * should be set to 8 for control endpoints.
1503 */
1504 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1505 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1506 else
1507 ep_ctx->tx_info |=
1508 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1509
1510 /* FIXME Debug endpoint context */
1511 return 0;
1512 }
1513
1514 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1515 struct xhci_virt_device *virt_dev,
1516 struct usb_host_endpoint *ep)
1517 {
1518 unsigned int ep_index;
1519 struct xhci_ep_ctx *ep_ctx;
1520
1521 ep_index = xhci_get_endpoint_index(&ep->desc);
1522 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1523
1524 ep_ctx->ep_info = 0;
1525 ep_ctx->ep_info2 = 0;
1526 ep_ctx->deq = 0;
1527 ep_ctx->tx_info = 0;
1528 /* Don't free the endpoint ring until the set interface or configuration
1529 * request succeeds.
1530 */
1531 }
1532
1533 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1534 {
1535 bw_info->ep_interval = 0;
1536 bw_info->mult = 0;
1537 bw_info->num_packets = 0;
1538 bw_info->max_packet_size = 0;
1539 bw_info->type = 0;
1540 bw_info->max_esit_payload = 0;
1541 }
1542
1543 void xhci_update_bw_info(struct xhci_hcd *xhci,
1544 struct xhci_container_ctx *in_ctx,
1545 struct xhci_input_control_ctx *ctrl_ctx,
1546 struct xhci_virt_device *virt_dev)
1547 {
1548 struct xhci_bw_info *bw_info;
1549 struct xhci_ep_ctx *ep_ctx;
1550 unsigned int ep_type;
1551 int i;
1552
1553 for (i = 1; i < 31; ++i) {
1554 bw_info = &virt_dev->eps[i].bw_info;
1555
1556 /* We can't tell what endpoint type is being dropped, but
1557 * unconditionally clearing the bandwidth info for non-periodic
1558 * endpoints should be harmless because the info will never be
1559 * set in the first place.
1560 */
1561 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1562 /* Dropped endpoint */
1563 xhci_clear_endpoint_bw_info(bw_info);
1564 continue;
1565 }
1566
1567 if (EP_IS_ADDED(ctrl_ctx, i)) {
1568 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1569 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1570
1571 /* Ignore non-periodic endpoints */
1572 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1573 ep_type != ISOC_IN_EP &&
1574 ep_type != INT_IN_EP)
1575 continue;
1576
1577 /* Added or changed endpoint */
1578 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1579 le32_to_cpu(ep_ctx->ep_info));
1580 /* Number of packets and mult are zero-based in the
1581 * input context, but we want one-based for the
1582 * interval table.
1583 */
1584 bw_info->mult = CTX_TO_EP_MULT(
1585 le32_to_cpu(ep_ctx->ep_info)) + 1;
1586 bw_info->num_packets = CTX_TO_MAX_BURST(
1587 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1588 bw_info->max_packet_size = MAX_PACKET_DECODED(
1589 le32_to_cpu(ep_ctx->ep_info2));
1590 bw_info->type = ep_type;
1591 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1592 le32_to_cpu(ep_ctx->tx_info));
1593 }
1594 }
1595 }
1596
1597 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1598 * Useful when you want to change one particular aspect of the endpoint and then
1599 * issue a configure endpoint command.
1600 */
1601 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1602 struct xhci_container_ctx *in_ctx,
1603 struct xhci_container_ctx *out_ctx,
1604 unsigned int ep_index)
1605 {
1606 struct xhci_ep_ctx *out_ep_ctx;
1607 struct xhci_ep_ctx *in_ep_ctx;
1608
1609 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1610 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1611
1612 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1613 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1614 in_ep_ctx->deq = out_ep_ctx->deq;
1615 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1616 }
1617
1618 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1619 * Useful when you want to change one particular aspect of the endpoint and then
1620 * issue a configure endpoint command. Only the context entries field matters,
1621 * but we'll copy the whole thing anyway.
1622 */
1623 void xhci_slot_copy(struct xhci_hcd *xhci,
1624 struct xhci_container_ctx *in_ctx,
1625 struct xhci_container_ctx *out_ctx)
1626 {
1627 struct xhci_slot_ctx *in_slot_ctx;
1628 struct xhci_slot_ctx *out_slot_ctx;
1629
1630 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1631 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1632
1633 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1634 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1635 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1636 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1637 }
1638
1639 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1640 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1641 {
1642 int i;
1643 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1644 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1645
1646 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1647 "Allocating %d scratchpad buffers", num_sp);
1648
1649 if (!num_sp)
1650 return 0;
1651
1652 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1653 if (!xhci->scratchpad)
1654 goto fail_sp;
1655
1656 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1657 num_sp * sizeof(u64),
1658 &xhci->scratchpad->sp_dma, flags);
1659 if (!xhci->scratchpad->sp_array)
1660 goto fail_sp2;
1661
1662 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1663 if (!xhci->scratchpad->sp_buffers)
1664 goto fail_sp3;
1665
1666 xhci->scratchpad->sp_dma_buffers =
1667 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1668
1669 if (!xhci->scratchpad->sp_dma_buffers)
1670 goto fail_sp4;
1671
1672 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1673 for (i = 0; i < num_sp; i++) {
1674 dma_addr_t dma;
1675 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1676 flags);
1677 if (!buf)
1678 goto fail_sp5;
1679
1680 xhci->scratchpad->sp_array[i] = dma;
1681 xhci->scratchpad->sp_buffers[i] = buf;
1682 xhci->scratchpad->sp_dma_buffers[i] = dma;
1683 }
1684
1685 return 0;
1686
1687 fail_sp5:
1688 for (i = i - 1; i >= 0; i--) {
1689 dma_free_coherent(dev, xhci->page_size,
1690 xhci->scratchpad->sp_buffers[i],
1691 xhci->scratchpad->sp_dma_buffers[i]);
1692 }
1693 kfree(xhci->scratchpad->sp_dma_buffers);
1694
1695 fail_sp4:
1696 kfree(xhci->scratchpad->sp_buffers);
1697
1698 fail_sp3:
1699 dma_free_coherent(dev, num_sp * sizeof(u64),
1700 xhci->scratchpad->sp_array,
1701 xhci->scratchpad->sp_dma);
1702
1703 fail_sp2:
1704 kfree(xhci->scratchpad);
1705 xhci->scratchpad = NULL;
1706
1707 fail_sp:
1708 return -ENOMEM;
1709 }
1710
1711 static void scratchpad_free(struct xhci_hcd *xhci)
1712 {
1713 int num_sp;
1714 int i;
1715 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1716
1717 if (!xhci->scratchpad)
1718 return;
1719
1720 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1721
1722 for (i = 0; i < num_sp; i++) {
1723 dma_free_coherent(dev, xhci->page_size,
1724 xhci->scratchpad->sp_buffers[i],
1725 xhci->scratchpad->sp_dma_buffers[i]);
1726 }
1727 kfree(xhci->scratchpad->sp_dma_buffers);
1728 kfree(xhci->scratchpad->sp_buffers);
1729 dma_free_coherent(dev, num_sp * sizeof(u64),
1730 xhci->scratchpad->sp_array,
1731 xhci->scratchpad->sp_dma);
1732 kfree(xhci->scratchpad);
1733 xhci->scratchpad = NULL;
1734 }
1735
1736 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1737 bool allocate_in_ctx, bool allocate_completion,
1738 gfp_t mem_flags)
1739 {
1740 struct xhci_command *command;
1741
1742 command = kzalloc(sizeof(*command), mem_flags);
1743 if (!command)
1744 return NULL;
1745
1746 if (allocate_in_ctx) {
1747 command->in_ctx =
1748 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1749 mem_flags);
1750 if (!command->in_ctx) {
1751 kfree(command);
1752 return NULL;
1753 }
1754 }
1755
1756 if (allocate_completion) {
1757 command->completion =
1758 kzalloc(sizeof(struct completion), mem_flags);
1759 if (!command->completion) {
1760 xhci_free_container_ctx(xhci, command->in_ctx);
1761 kfree(command);
1762 return NULL;
1763 }
1764 init_completion(command->completion);
1765 }
1766
1767 command->status = 0;
1768 INIT_LIST_HEAD(&command->cmd_list);
1769 return command;
1770 }
1771
1772 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1773 {
1774 if (urb_priv) {
1775 kfree(urb_priv->td[0]);
1776 kfree(urb_priv);
1777 }
1778 }
1779
1780 void xhci_free_command(struct xhci_hcd *xhci,
1781 struct xhci_command *command)
1782 {
1783 xhci_free_container_ctx(xhci,
1784 command->in_ctx);
1785 kfree(command->completion);
1786 kfree(command);
1787 }
1788
1789 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1790 {
1791 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1792 int size;
1793 int i, j, num_ports;
1794
1795 del_timer_sync(&xhci->cmd_timer);
1796
1797 /* Free the Event Ring Segment Table and the actual Event Ring */
1798 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1799 if (xhci->erst.entries)
1800 dma_free_coherent(dev, size,
1801 xhci->erst.entries, xhci->erst.erst_dma_addr);
1802 xhci->erst.entries = NULL;
1803 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1804 if (xhci->event_ring)
1805 xhci_ring_free(xhci, xhci->event_ring);
1806 xhci->event_ring = NULL;
1807 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1808
1809 if (xhci->lpm_command)
1810 xhci_free_command(xhci, xhci->lpm_command);
1811 xhci->lpm_command = NULL;
1812 if (xhci->cmd_ring)
1813 xhci_ring_free(xhci, xhci->cmd_ring);
1814 xhci->cmd_ring = NULL;
1815 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1816 xhci_cleanup_command_queue(xhci);
1817
1818 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1819 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1820 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1821 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1822 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1823 while (!list_empty(ep))
1824 list_del_init(ep->next);
1825 }
1826 }
1827
1828 for (i = 1; i < MAX_HC_SLOTS; ++i)
1829 xhci_free_virt_device(xhci, i);
1830
1831 dma_pool_destroy(xhci->segment_pool);
1832 xhci->segment_pool = NULL;
1833 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1834
1835 dma_pool_destroy(xhci->device_pool);
1836 xhci->device_pool = NULL;
1837 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1838
1839 dma_pool_destroy(xhci->small_streams_pool);
1840 xhci->small_streams_pool = NULL;
1841 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1842 "Freed small stream array pool");
1843
1844 dma_pool_destroy(xhci->medium_streams_pool);
1845 xhci->medium_streams_pool = NULL;
1846 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1847 "Freed medium stream array pool");
1848
1849 if (xhci->dcbaa)
1850 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1851 xhci->dcbaa, xhci->dcbaa->dma);
1852 xhci->dcbaa = NULL;
1853
1854 scratchpad_free(xhci);
1855
1856 if (!xhci->rh_bw)
1857 goto no_bw;
1858
1859 for (i = 0; i < num_ports; i++) {
1860 struct xhci_tt_bw_info *tt, *n;
1861 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1862 list_del(&tt->tt_list);
1863 kfree(tt);
1864 }
1865 }
1866
1867 no_bw:
1868 xhci->cmd_ring_reserved_trbs = 0;
1869 xhci->num_usb2_ports = 0;
1870 xhci->num_usb3_ports = 0;
1871 xhci->num_active_eps = 0;
1872 kfree(xhci->usb2_ports);
1873 kfree(xhci->usb3_ports);
1874 kfree(xhci->port_array);
1875 kfree(xhci->rh_bw);
1876 kfree(xhci->ext_caps);
1877
1878 xhci->page_size = 0;
1879 xhci->page_shift = 0;
1880 xhci->bus_state[0].bus_suspended = 0;
1881 xhci->bus_state[1].bus_suspended = 0;
1882 }
1883
1884 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1885 struct xhci_segment *input_seg,
1886 union xhci_trb *start_trb,
1887 union xhci_trb *end_trb,
1888 dma_addr_t input_dma,
1889 struct xhci_segment *result_seg,
1890 char *test_name, int test_number)
1891 {
1892 unsigned long long start_dma;
1893 unsigned long long end_dma;
1894 struct xhci_segment *seg;
1895
1896 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1897 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1898
1899 seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1900 if (seg != result_seg) {
1901 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1902 test_name, test_number);
1903 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1904 "input DMA 0x%llx\n",
1905 input_seg,
1906 (unsigned long long) input_dma);
1907 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1908 "ending TRB %p (0x%llx DMA)\n",
1909 start_trb, start_dma,
1910 end_trb, end_dma);
1911 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1912 result_seg, seg);
1913 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1914 true);
1915 return -1;
1916 }
1917 return 0;
1918 }
1919
1920 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1921 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1922 {
1923 struct {
1924 dma_addr_t input_dma;
1925 struct xhci_segment *result_seg;
1926 } simple_test_vector [] = {
1927 /* A zeroed DMA field should fail */
1928 { 0, NULL },
1929 /* One TRB before the ring start should fail */
1930 { xhci->event_ring->first_seg->dma - 16, NULL },
1931 /* One byte before the ring start should fail */
1932 { xhci->event_ring->first_seg->dma - 1, NULL },
1933 /* Starting TRB should succeed */
1934 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1935 /* Ending TRB should succeed */
1936 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1937 xhci->event_ring->first_seg },
1938 /* One byte after the ring end should fail */
1939 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1940 /* One TRB after the ring end should fail */
1941 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1942 /* An address of all ones should fail */
1943 { (dma_addr_t) (~0), NULL },
1944 };
1945 struct {
1946 struct xhci_segment *input_seg;
1947 union xhci_trb *start_trb;
1948 union xhci_trb *end_trb;
1949 dma_addr_t input_dma;
1950 struct xhci_segment *result_seg;
1951 } complex_test_vector [] = {
1952 /* Test feeding a valid DMA address from a different ring */
1953 { .input_seg = xhci->event_ring->first_seg,
1954 .start_trb = xhci->event_ring->first_seg->trbs,
1955 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1956 .input_dma = xhci->cmd_ring->first_seg->dma,
1957 .result_seg = NULL,
1958 },
1959 /* Test feeding a valid end TRB from a different ring */
1960 { .input_seg = xhci->event_ring->first_seg,
1961 .start_trb = xhci->event_ring->first_seg->trbs,
1962 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1963 .input_dma = xhci->cmd_ring->first_seg->dma,
1964 .result_seg = NULL,
1965 },
1966 /* Test feeding a valid start and end TRB from a different ring */
1967 { .input_seg = xhci->event_ring->first_seg,
1968 .start_trb = xhci->cmd_ring->first_seg->trbs,
1969 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1970 .input_dma = xhci->cmd_ring->first_seg->dma,
1971 .result_seg = NULL,
1972 },
1973 /* TRB in this ring, but after this TD */
1974 { .input_seg = xhci->event_ring->first_seg,
1975 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1976 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1977 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1978 .result_seg = NULL,
1979 },
1980 /* TRB in this ring, but before this TD */
1981 { .input_seg = xhci->event_ring->first_seg,
1982 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1983 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1984 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1985 .result_seg = NULL,
1986 },
1987 /* TRB in this ring, but after this wrapped TD */
1988 { .input_seg = xhci->event_ring->first_seg,
1989 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1990 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1991 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1992 .result_seg = NULL,
1993 },
1994 /* TRB in this ring, but before this wrapped TD */
1995 { .input_seg = xhci->event_ring->first_seg,
1996 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1997 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1998 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1999 .result_seg = NULL,
2000 },
2001 /* TRB not in this ring, and we have a wrapped TD */
2002 { .input_seg = xhci->event_ring->first_seg,
2003 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2004 .end_trb = &xhci->event_ring->first_seg->trbs[1],
2005 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2006 .result_seg = NULL,
2007 },
2008 };
2009
2010 unsigned int num_tests;
2011 int i, ret;
2012
2013 num_tests = ARRAY_SIZE(simple_test_vector);
2014 for (i = 0; i < num_tests; i++) {
2015 ret = xhci_test_trb_in_td(xhci,
2016 xhci->event_ring->first_seg,
2017 xhci->event_ring->first_seg->trbs,
2018 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2019 simple_test_vector[i].input_dma,
2020 simple_test_vector[i].result_seg,
2021 "Simple", i);
2022 if (ret < 0)
2023 return ret;
2024 }
2025
2026 num_tests = ARRAY_SIZE(complex_test_vector);
2027 for (i = 0; i < num_tests; i++) {
2028 ret = xhci_test_trb_in_td(xhci,
2029 complex_test_vector[i].input_seg,
2030 complex_test_vector[i].start_trb,
2031 complex_test_vector[i].end_trb,
2032 complex_test_vector[i].input_dma,
2033 complex_test_vector[i].result_seg,
2034 "Complex", i);
2035 if (ret < 0)
2036 return ret;
2037 }
2038 xhci_dbg(xhci, "TRB math tests passed.\n");
2039 return 0;
2040 }
2041
2042 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2043 {
2044 u64 temp;
2045 dma_addr_t deq;
2046
2047 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2048 xhci->event_ring->dequeue);
2049 if (deq == 0 && !in_interrupt())
2050 xhci_warn(xhci, "WARN something wrong with SW event ring "
2051 "dequeue ptr.\n");
2052 /* Update HC event ring dequeue pointer */
2053 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2054 temp &= ERST_PTR_MASK;
2055 /* Don't clear the EHB bit (which is RW1C) because
2056 * there might be more events to service.
2057 */
2058 temp &= ~ERST_EHB;
2059 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2060 "// Write event ring dequeue pointer, "
2061 "preserving EHB bit");
2062 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2063 &xhci->ir_set->erst_dequeue);
2064 }
2065
2066 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2067 __le32 __iomem *addr, u8 major_revision, int max_caps)
2068 {
2069 u32 temp, port_offset, port_count;
2070 int i;
2071 struct xhci_hub *rhub;
2072
2073 temp = readl(addr);
2074
2075 if (XHCI_EXT_PORT_MAJOR(temp) == 0x03) {
2076 rhub = &xhci->usb3_rhub;
2077 } else if (XHCI_EXT_PORT_MAJOR(temp) <= 0x02) {
2078 rhub = &xhci->usb2_rhub;
2079 } else {
2080 xhci_warn(xhci, "Ignoring unknown port speed, "
2081 "Ext Cap %p, revision = 0x%x\n",
2082 addr, major_revision);
2083 /* Ignoring port protocol we can't understand. FIXME */
2084 return;
2085 }
2086 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2087 rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2088
2089 /* Port offset and count in the third dword, see section 7.2 */
2090 temp = readl(addr + 2);
2091 port_offset = XHCI_EXT_PORT_OFF(temp);
2092 port_count = XHCI_EXT_PORT_COUNT(temp);
2093 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2094 "Ext Cap %p, port offset = %u, "
2095 "count = %u, revision = 0x%x",
2096 addr, port_offset, port_count, major_revision);
2097 /* Port count includes the current port offset */
2098 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2099 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2100 return;
2101
2102 rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2103 if (rhub->psi_count) {
2104 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2105 GFP_KERNEL);
2106 if (!rhub->psi)
2107 rhub->psi_count = 0;
2108
2109 rhub->psi_uid_count++;
2110 for (i = 0; i < rhub->psi_count; i++) {
2111 rhub->psi[i] = readl(addr + 4 + i);
2112
2113 /* count unique ID values, two consecutive entries can
2114 * have the same ID if link is assymetric
2115 */
2116 if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2117 XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2118 rhub->psi_uid_count++;
2119
2120 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2121 XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2122 XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2123 XHCI_EXT_PORT_PLT(rhub->psi[i]),
2124 XHCI_EXT_PORT_PFD(rhub->psi[i]),
2125 XHCI_EXT_PORT_LP(rhub->psi[i]),
2126 XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2127 }
2128 }
2129 /* cache usb2 port capabilities */
2130 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2131 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2132
2133 /* Check the host's USB2 LPM capability */
2134 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2135 (temp & XHCI_L1C)) {
2136 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2137 "xHCI 0.96: support USB2 software lpm");
2138 xhci->sw_lpm_support = 1;
2139 }
2140
2141 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2142 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2143 "xHCI 1.0: support USB2 software lpm");
2144 xhci->sw_lpm_support = 1;
2145 if (temp & XHCI_HLC) {
2146 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2147 "xHCI 1.0: support USB2 hardware lpm");
2148 xhci->hw_lpm_support = 1;
2149 }
2150 }
2151
2152 port_offset--;
2153 for (i = port_offset; i < (port_offset + port_count); i++) {
2154 /* Duplicate entry. Ignore the port if the revisions differ. */
2155 if (xhci->port_array[i] != 0) {
2156 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2157 " port %u\n", addr, i);
2158 xhci_warn(xhci, "Port was marked as USB %u, "
2159 "duplicated as USB %u\n",
2160 xhci->port_array[i], major_revision);
2161 /* Only adjust the roothub port counts if we haven't
2162 * found a similar duplicate.
2163 */
2164 if (xhci->port_array[i] != major_revision &&
2165 xhci->port_array[i] != DUPLICATE_ENTRY) {
2166 if (xhci->port_array[i] == 0x03)
2167 xhci->num_usb3_ports--;
2168 else
2169 xhci->num_usb2_ports--;
2170 xhci->port_array[i] = DUPLICATE_ENTRY;
2171 }
2172 /* FIXME: Should we disable the port? */
2173 continue;
2174 }
2175 xhci->port_array[i] = major_revision;
2176 if (major_revision == 0x03)
2177 xhci->num_usb3_ports++;
2178 else
2179 xhci->num_usb2_ports++;
2180 }
2181 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2182 }
2183
2184 /*
2185 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2186 * specify what speeds each port is supposed to be. We can't count on the port
2187 * speed bits in the PORTSC register being correct until a device is connected,
2188 * but we need to set up the two fake roothubs with the correct number of USB
2189 * 3.0 and USB 2.0 ports at host controller initialization time.
2190 */
2191 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2192 {
2193 __le32 __iomem *addr, *tmp_addr;
2194 u32 offset, tmp_offset;
2195 unsigned int num_ports;
2196 int i, j, port_index;
2197 int cap_count = 0;
2198
2199 addr = &xhci->cap_regs->hcc_params;
2200 offset = XHCI_HCC_EXT_CAPS(readl(addr));
2201 if (offset == 0) {
2202 xhci_err(xhci, "No Extended Capability registers, "
2203 "unable to set up roothub.\n");
2204 return -ENODEV;
2205 }
2206
2207 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2208 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2209 if (!xhci->port_array)
2210 return -ENOMEM;
2211
2212 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2213 if (!xhci->rh_bw)
2214 return -ENOMEM;
2215 for (i = 0; i < num_ports; i++) {
2216 struct xhci_interval_bw_table *bw_table;
2217
2218 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2219 bw_table = &xhci->rh_bw[i].bw_table;
2220 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2221 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2222 }
2223
2224 /*
2225 * For whatever reason, the first capability offset is from the
2226 * capability register base, not from the HCCPARAMS register.
2227 * See section 5.3.6 for offset calculation.
2228 */
2229 addr = &xhci->cap_regs->hc_capbase + offset;
2230
2231 tmp_addr = addr;
2232 tmp_offset = offset;
2233
2234 /* count extended protocol capability entries for later caching */
2235 do {
2236 u32 cap_id;
2237 cap_id = readl(tmp_addr);
2238 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2239 cap_count++;
2240 tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2241 tmp_addr += tmp_offset;
2242 } while (tmp_offset);
2243
2244 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2245 if (!xhci->ext_caps)
2246 return -ENOMEM;
2247
2248 while (1) {
2249 u32 cap_id;
2250
2251 cap_id = readl(addr);
2252 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2253 xhci_add_in_port(xhci, num_ports, addr,
2254 (u8) XHCI_EXT_PORT_MAJOR(cap_id),
2255 cap_count);
2256 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2257 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2258 == num_ports)
2259 break;
2260 /*
2261 * Once you're into the Extended Capabilities, the offset is
2262 * always relative to the register holding the offset.
2263 */
2264 addr += offset;
2265 }
2266
2267 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2268 xhci_warn(xhci, "No ports on the roothubs?\n");
2269 return -ENODEV;
2270 }
2271 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2272 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2273 xhci->num_usb2_ports, xhci->num_usb3_ports);
2274
2275 /* Place limits on the number of roothub ports so that the hub
2276 * descriptors aren't longer than the USB core will allocate.
2277 */
2278 if (xhci->num_usb3_ports > 15) {
2279 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2280 "Limiting USB 3.0 roothub ports to 15.");
2281 xhci->num_usb3_ports = 15;
2282 }
2283 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2284 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2285 "Limiting USB 2.0 roothub ports to %u.",
2286 USB_MAXCHILDREN);
2287 xhci->num_usb2_ports = USB_MAXCHILDREN;
2288 }
2289
2290 /*
2291 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2292 * Not sure how the USB core will handle a hub with no ports...
2293 */
2294 if (xhci->num_usb2_ports) {
2295 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2296 xhci->num_usb2_ports, flags);
2297 if (!xhci->usb2_ports)
2298 return -ENOMEM;
2299
2300 port_index = 0;
2301 for (i = 0; i < num_ports; i++) {
2302 if (xhci->port_array[i] == 0x03 ||
2303 xhci->port_array[i] == 0 ||
2304 xhci->port_array[i] == DUPLICATE_ENTRY)
2305 continue;
2306
2307 xhci->usb2_ports[port_index] =
2308 &xhci->op_regs->port_status_base +
2309 NUM_PORT_REGS*i;
2310 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2311 "USB 2.0 port at index %u, "
2312 "addr = %p", i,
2313 xhci->usb2_ports[port_index]);
2314 port_index++;
2315 if (port_index == xhci->num_usb2_ports)
2316 break;
2317 }
2318 }
2319 if (xhci->num_usb3_ports) {
2320 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2321 xhci->num_usb3_ports, flags);
2322 if (!xhci->usb3_ports)
2323 return -ENOMEM;
2324
2325 port_index = 0;
2326 for (i = 0; i < num_ports; i++)
2327 if (xhci->port_array[i] == 0x03) {
2328 xhci->usb3_ports[port_index] =
2329 &xhci->op_regs->port_status_base +
2330 NUM_PORT_REGS*i;
2331 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2332 "USB 3.0 port at index %u, "
2333 "addr = %p", i,
2334 xhci->usb3_ports[port_index]);
2335 port_index++;
2336 if (port_index == xhci->num_usb3_ports)
2337 break;
2338 }
2339 }
2340 return 0;
2341 }
2342
2343 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2344 {
2345 dma_addr_t dma;
2346 struct device *dev = xhci_to_hcd(xhci)->self.controller;
2347 unsigned int val, val2;
2348 u64 val_64;
2349 struct xhci_segment *seg;
2350 u32 page_size, temp;
2351 int i;
2352
2353 INIT_LIST_HEAD(&xhci->cmd_list);
2354
2355 /* init command timeout timer */
2356 setup_timer(&xhci->cmd_timer, xhci_handle_command_timeout,
2357 (unsigned long)xhci);
2358
2359 page_size = readl(&xhci->op_regs->page_size);
2360 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2361 "Supported page size register = 0x%x", page_size);
2362 for (i = 0; i < 16; i++) {
2363 if ((0x1 & page_size) != 0)
2364 break;
2365 page_size = page_size >> 1;
2366 }
2367 if (i < 16)
2368 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2369 "Supported page size of %iK", (1 << (i+12)) / 1024);
2370 else
2371 xhci_warn(xhci, "WARN: no supported page size\n");
2372 /* Use 4K pages, since that's common and the minimum the HC supports */
2373 xhci->page_shift = 12;
2374 xhci->page_size = 1 << xhci->page_shift;
2375 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2376 "HCD page size set to %iK", xhci->page_size / 1024);
2377
2378 /*
2379 * Program the Number of Device Slots Enabled field in the CONFIG
2380 * register with the max value of slots the HC can handle.
2381 */
2382 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2383 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2384 "// xHC can handle at most %d device slots.", val);
2385 val2 = readl(&xhci->op_regs->config_reg);
2386 val |= (val2 & ~HCS_SLOTS_MASK);
2387 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2388 "// Setting Max device slots reg = 0x%x.", val);
2389 writel(val, &xhci->op_regs->config_reg);
2390
2391 /*
2392 * Section 5.4.8 - doorbell array must be
2393 * "physically contiguous and 64-byte (cache line) aligned".
2394 */
2395 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2396 GFP_KERNEL);
2397 if (!xhci->dcbaa)
2398 goto fail;
2399 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2400 xhci->dcbaa->dma = dma;
2401 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2402 "// Device context base array address = 0x%llx (DMA), %p (virt)",
2403 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2404 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2405
2406 /*
2407 * Initialize the ring segment pool. The ring must be a contiguous
2408 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2409 * however, the command ring segment needs 64-byte aligned segments
2410 * and our use of dma addresses in the trb_address_map radix tree needs
2411 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2412 */
2413 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2414 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2415
2416 /* See Table 46 and Note on Figure 55 */
2417 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2418 2112, 64, xhci->page_size);
2419 if (!xhci->segment_pool || !xhci->device_pool)
2420 goto fail;
2421
2422 /* Linear stream context arrays don't have any boundary restrictions,
2423 * and only need to be 16-byte aligned.
2424 */
2425 xhci->small_streams_pool =
2426 dma_pool_create("xHCI 256 byte stream ctx arrays",
2427 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2428 xhci->medium_streams_pool =
2429 dma_pool_create("xHCI 1KB stream ctx arrays",
2430 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2431 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2432 * will be allocated with dma_alloc_coherent()
2433 */
2434
2435 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2436 goto fail;
2437
2438 /* Set up the command ring to have one segments for now. */
2439 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2440 if (!xhci->cmd_ring)
2441 goto fail;
2442 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2443 "Allocated command ring at %p", xhci->cmd_ring);
2444 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2445 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2446
2447 /* Set the address in the Command Ring Control register */
2448 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2449 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2450 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2451 xhci->cmd_ring->cycle_state;
2452 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2453 "// Setting command ring address to 0x%x", val);
2454 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2455 xhci_dbg_cmd_ptrs(xhci);
2456
2457 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2458 if (!xhci->lpm_command)
2459 goto fail;
2460
2461 /* Reserve one command ring TRB for disabling LPM.
2462 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2463 * disabling LPM, we only need to reserve one TRB for all devices.
2464 */
2465 xhci->cmd_ring_reserved_trbs++;
2466
2467 val = readl(&xhci->cap_regs->db_off);
2468 val &= DBOFF_MASK;
2469 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2470 "// Doorbell array is located at offset 0x%x"
2471 " from cap regs base addr", val);
2472 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2473 xhci_dbg_regs(xhci);
2474 xhci_print_run_regs(xhci);
2475 /* Set ir_set to interrupt register set 0 */
2476 xhci->ir_set = &xhci->run_regs->ir_set[0];
2477
2478 /*
2479 * Event ring setup: Allocate a normal ring, but also setup
2480 * the event ring segment table (ERST). Section 4.9.3.
2481 */
2482 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2483 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2484 flags);
2485 if (!xhci->event_ring)
2486 goto fail;
2487 if (xhci_check_trb_in_td_math(xhci) < 0)
2488 goto fail;
2489
2490 xhci->erst.entries = dma_alloc_coherent(dev,
2491 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2492 GFP_KERNEL);
2493 if (!xhci->erst.entries)
2494 goto fail;
2495 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2496 "// Allocated event ring segment table at 0x%llx",
2497 (unsigned long long)dma);
2498
2499 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2500 xhci->erst.num_entries = ERST_NUM_SEGS;
2501 xhci->erst.erst_dma_addr = dma;
2502 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2503 "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2504 xhci->erst.num_entries,
2505 xhci->erst.entries,
2506 (unsigned long long)xhci->erst.erst_dma_addr);
2507
2508 /* set ring base address and size for each segment table entry */
2509 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2510 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2511 entry->seg_addr = cpu_to_le64(seg->dma);
2512 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2513 entry->rsvd = 0;
2514 seg = seg->next;
2515 }
2516
2517 /* set ERST count with the number of entries in the segment table */
2518 val = readl(&xhci->ir_set->erst_size);
2519 val &= ERST_SIZE_MASK;
2520 val |= ERST_NUM_SEGS;
2521 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2522 "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2523 val);
2524 writel(val, &xhci->ir_set->erst_size);
2525
2526 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2527 "// Set ERST entries to point to event ring.");
2528 /* set the segment table base address */
2529 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2530 "// Set ERST base address for ir_set 0 = 0x%llx",
2531 (unsigned long long)xhci->erst.erst_dma_addr);
2532 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2533 val_64 &= ERST_PTR_MASK;
2534 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2535 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2536
2537 /* Set the event ring dequeue address */
2538 xhci_set_hc_event_deq(xhci);
2539 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2540 "Wrote ERST address to ir_set 0.");
2541 xhci_print_ir_set(xhci, 0);
2542
2543 /*
2544 * XXX: Might need to set the Interrupter Moderation Register to
2545 * something other than the default (~1ms minimum between interrupts).
2546 * See section 5.5.1.2.
2547 */
2548 init_completion(&xhci->addr_dev);
2549 for (i = 0; i < MAX_HC_SLOTS; ++i)
2550 xhci->devs[i] = NULL;
2551 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2552 xhci->bus_state[0].resume_done[i] = 0;
2553 xhci->bus_state[1].resume_done[i] = 0;
2554 /* Only the USB 2.0 completions will ever be used. */
2555 init_completion(&xhci->bus_state[1].rexit_done[i]);
2556 }
2557
2558 if (scratchpad_alloc(xhci, flags))
2559 goto fail;
2560 if (xhci_setup_port_arrays(xhci, flags))
2561 goto fail;
2562
2563 /* Enable USB 3.0 device notifications for function remote wake, which
2564 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2565 * U3 (device suspend).
2566 */
2567 temp = readl(&xhci->op_regs->dev_notification);
2568 temp &= ~DEV_NOTE_MASK;
2569 temp |= DEV_NOTE_FWAKE;
2570 writel(temp, &xhci->op_regs->dev_notification);
2571
2572 return 0;
2573
2574 fail:
2575 xhci_warn(xhci, "Couldn't initialize memory\n");
2576 xhci_halt(xhci);
2577 xhci_reset(xhci);
2578 xhci_mem_cleanup(xhci);
2579 return -ENOMEM;
2580 }
This page took 0.130239 seconds and 5 git commands to generate.