USB: xhci: Allocate and address USB devices
[deliverable/linux.git] / drivers / usb / host / xhci-mem.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25
26 #include "xhci.h"
27
28 /*
29 * Allocates a generic ring segment from the ring pool, sets the dma address,
30 * initializes the segment to zero, and sets the private next pointer to NULL.
31 *
32 * Section 4.11.1.1:
33 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
34 */
35 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
36 {
37 struct xhci_segment *seg;
38 dma_addr_t dma;
39
40 seg = kzalloc(sizeof *seg, flags);
41 if (!seg)
42 return 0;
43 xhci_dbg(xhci, "Allocating priv segment structure at 0x%x\n",
44 (unsigned int) seg);
45
46 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
47 if (!seg->trbs) {
48 kfree(seg);
49 return 0;
50 }
51 xhci_dbg(xhci, "// Allocating segment at 0x%x (virtual) 0x%x (DMA)\n",
52 (unsigned int) seg->trbs, (u32) dma);
53
54 memset(seg->trbs, 0, SEGMENT_SIZE);
55 seg->dma = dma;
56 seg->next = NULL;
57
58 return seg;
59 }
60
61 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
62 {
63 if (!seg)
64 return;
65 if (seg->trbs) {
66 xhci_dbg(xhci, "Freeing DMA segment at 0x%x"
67 " (virtual) 0x%x (DMA)\n",
68 (unsigned int) seg->trbs, (u32) seg->dma);
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
72 xhci_dbg(xhci, "Freeing priv segment structure at 0x%x\n",
73 (unsigned int) seg);
74 kfree(seg);
75 }
76
77 /*
78 * Make the prev segment point to the next segment.
79 *
80 * Change the last TRB in the prev segment to be a Link TRB which points to the
81 * DMA address of the next segment. The caller needs to set any Link TRB
82 * related flags, such as End TRB, Toggle Cycle, and no snoop.
83 */
84 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
85 struct xhci_segment *next, bool link_trbs)
86 {
87 u32 val;
88
89 if (!prev || !next)
90 return;
91 prev->next = next;
92 if (link_trbs) {
93 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr[0] = next->dma;
94
95 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
96 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
97 val &= ~TRB_TYPE_BITMASK;
98 val |= TRB_TYPE(TRB_LINK);
99 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
100 }
101 xhci_dbg(xhci, "Linking segment 0x%x to segment 0x%x (DMA)\n",
102 prev->dma, next->dma);
103 }
104
105 /* XXX: Do we need the hcd structure in all these functions? */
106 static void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
107 {
108 struct xhci_segment *seg;
109 struct xhci_segment *first_seg;
110
111 if (!ring || !ring->first_seg)
112 return;
113 first_seg = ring->first_seg;
114 seg = first_seg->next;
115 xhci_dbg(xhci, "Freeing ring at 0x%x\n", (unsigned int) ring);
116 while (seg != first_seg) {
117 struct xhci_segment *next = seg->next;
118 xhci_segment_free(xhci, seg);
119 seg = next;
120 }
121 xhci_segment_free(xhci, first_seg);
122 ring->first_seg = NULL;
123 kfree(ring);
124 }
125
126 /**
127 * Create a new ring with zero or more segments.
128 *
129 * Link each segment together into a ring.
130 * Set the end flag and the cycle toggle bit on the last segment.
131 * See section 4.9.1 and figures 15 and 16.
132 */
133 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
134 unsigned int num_segs, bool link_trbs, gfp_t flags)
135 {
136 struct xhci_ring *ring;
137 struct xhci_segment *prev;
138
139 ring = kzalloc(sizeof *(ring), flags);
140 xhci_dbg(xhci, "Allocating ring at 0x%x\n", (unsigned int) ring);
141 if (!ring)
142 return 0;
143
144 if (num_segs == 0)
145 return ring;
146
147 ring->first_seg = xhci_segment_alloc(xhci, flags);
148 if (!ring->first_seg)
149 goto fail;
150 num_segs--;
151
152 prev = ring->first_seg;
153 while (num_segs > 0) {
154 struct xhci_segment *next;
155
156 next = xhci_segment_alloc(xhci, flags);
157 if (!next)
158 goto fail;
159 xhci_link_segments(xhci, prev, next, link_trbs);
160
161 prev = next;
162 num_segs--;
163 }
164 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
165
166 if (link_trbs) {
167 /* See section 4.9.2.1 and 6.4.4.1 */
168 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
169 xhci_dbg(xhci, "Wrote link toggle flag to"
170 " segment 0x%x (virtual), 0x%x (DMA)\n",
171 (unsigned int) prev, (u32) prev->dma);
172 }
173 /* The ring is empty, so the enqueue pointer == dequeue pointer */
174 ring->enqueue = ring->first_seg->trbs;
175 ring->enq_seg = ring->first_seg;
176 ring->dequeue = ring->enqueue;
177 ring->deq_seg = ring->first_seg;
178 /* The ring is initialized to 0. The producer must write 1 to the cycle
179 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
180 * compare CCS to the cycle bit to check ownership, so CCS = 1.
181 */
182 ring->cycle_state = 1;
183
184 return ring;
185
186 fail:
187 xhci_ring_free(xhci, ring);
188 return 0;
189 }
190
191 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
192 {
193 struct xhci_virt_device *dev;
194 int i;
195
196 /* Slot ID 0 is reserved */
197 if (slot_id == 0 || !xhci->devs[slot_id])
198 return;
199
200 dev = xhci->devs[slot_id];
201 xhci->dcbaa->dev_context_ptrs[2*slot_id] = 0;
202 xhci->dcbaa->dev_context_ptrs[2*slot_id + 1] = 0;
203 if (!dev)
204 return;
205
206 for (i = 0; i < 31; ++i)
207 if (dev->ep_rings[i])
208 xhci_ring_free(xhci, dev->ep_rings[i]);
209
210 if (dev->in_ctx)
211 dma_pool_free(xhci->device_pool,
212 dev->in_ctx, dev->in_ctx_dma);
213 if (dev->out_ctx)
214 dma_pool_free(xhci->device_pool,
215 dev->out_ctx, dev->out_ctx_dma);
216 kfree(xhci->devs[slot_id]);
217 xhci->devs[slot_id] = 0;
218 }
219
220 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
221 struct usb_device *udev, gfp_t flags)
222 {
223 dma_addr_t dma;
224 struct xhci_virt_device *dev;
225
226 /* Slot ID 0 is reserved */
227 if (slot_id == 0 || xhci->devs[slot_id]) {
228 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
229 return 0;
230 }
231
232 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
233 if (!xhci->devs[slot_id])
234 return 0;
235 dev = xhci->devs[slot_id];
236
237 /* Allocate the (output) device context that will be used in the HC */
238 dev->out_ctx = dma_pool_alloc(xhci->device_pool, flags, &dma);
239 if (!dev->out_ctx)
240 goto fail;
241 dev->out_ctx_dma = dma;
242 xhci_dbg(xhci, "Slot %d output ctx = 0x%x (dma)\n", slot_id, dma);
243 memset(dev->out_ctx, 0, sizeof(*dev->out_ctx));
244
245 /* Allocate the (input) device context for address device command */
246 dev->in_ctx = dma_pool_alloc(xhci->device_pool, flags, &dma);
247 if (!dev->in_ctx)
248 goto fail;
249 dev->in_ctx_dma = dma;
250 xhci_dbg(xhci, "Slot %d input ctx = 0x%x (dma)\n", slot_id, dma);
251 memset(dev->in_ctx, 0, sizeof(*dev->in_ctx));
252
253 /* Allocate endpoint 0 ring */
254 dev->ep_rings[0] = xhci_ring_alloc(xhci, 1, true, flags);
255 if (!dev->ep_rings[0])
256 goto fail;
257
258 /*
259 * Point to output device context in dcbaa; skip the output control
260 * context, which is eight 32 bit fields (or 32 bytes long)
261 */
262 xhci->dcbaa->dev_context_ptrs[2*slot_id] =
263 (u32) dev->out_ctx_dma + (32);
264 xhci_dbg(xhci, "Set slot id %d dcbaa entry 0x%x to 0x%x\n",
265 slot_id,
266 (unsigned int) &xhci->dcbaa->dev_context_ptrs[2*slot_id],
267 dev->out_ctx_dma);
268 xhci->dcbaa->dev_context_ptrs[2*slot_id + 1] = 0;
269
270 return 1;
271 fail:
272 xhci_free_virt_device(xhci, slot_id);
273 return 0;
274 }
275
276 /* Setup an xHCI virtual device for a Set Address command */
277 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
278 {
279 struct xhci_virt_device *dev;
280 struct xhci_ep_ctx *ep0_ctx;
281 struct usb_device *top_dev;
282
283 dev = xhci->devs[udev->slot_id];
284 /* Slot ID 0 is reserved */
285 if (udev->slot_id == 0 || !dev) {
286 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
287 udev->slot_id);
288 return -EINVAL;
289 }
290 ep0_ctx = &dev->in_ctx->ep[0];
291
292 /* 2) New slot context and endpoint 0 context are valid*/
293 dev->in_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
294
295 /* 3) Only the control endpoint is valid - one endpoint context */
296 dev->in_ctx->slot.dev_info |= LAST_CTX(1);
297
298 switch (udev->speed) {
299 case USB_SPEED_SUPER:
300 dev->in_ctx->slot.dev_info |= (u32) udev->route;
301 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_SS;
302 break;
303 case USB_SPEED_HIGH:
304 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_HS;
305 break;
306 case USB_SPEED_FULL:
307 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_FS;
308 break;
309 case USB_SPEED_LOW:
310 dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_LS;
311 break;
312 case USB_SPEED_VARIABLE:
313 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
314 return -EINVAL;
315 break;
316 default:
317 /* Speed was set earlier, this shouldn't happen. */
318 BUG();
319 }
320 /* Find the root hub port this device is under */
321 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
322 top_dev = top_dev->parent)
323 /* Found device below root hub */;
324 dev->in_ctx->slot.dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
325 xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
326
327 /* Is this a LS/FS device under a HS hub? */
328 /*
329 * FIXME: I don't think this is right, where does the TT info for the
330 * roothub or parent hub come from?
331 */
332 if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
333 udev->tt) {
334 dev->in_ctx->slot.tt_info = udev->tt->hub->slot_id;
335 dev->in_ctx->slot.tt_info |= udev->ttport << 8;
336 }
337 xhci_dbg(xhci, "udev->tt = 0x%x\n", (unsigned int) udev->tt);
338 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
339
340 /* Step 4 - ring already allocated */
341 /* Step 5 */
342 ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
343 /*
344 * See section 4.3 bullet 6:
345 * The default Max Packet size for ep0 is "8 bytes for a USB2
346 * LS/FS/HS device or 512 bytes for a USB3 SS device"
347 * XXX: Not sure about wireless USB devices.
348 */
349 if (udev->speed == USB_SPEED_SUPER)
350 ep0_ctx->ep_info2 |= MAX_PACKET(512);
351 else
352 ep0_ctx->ep_info2 |= MAX_PACKET(8);
353 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
354 ep0_ctx->ep_info2 |= MAX_BURST(0);
355 ep0_ctx->ep_info2 |= ERROR_COUNT(3);
356
357 ep0_ctx->deq[0] =
358 dev->ep_rings[0]->first_seg->dma;
359 ep0_ctx->deq[0] |= dev->ep_rings[0]->cycle_state;
360 ep0_ctx->deq[1] = 0;
361
362 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
363
364 return 0;
365 }
366
367 void xhci_mem_cleanup(struct xhci_hcd *xhci)
368 {
369 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
370 int size;
371 int i;
372
373 /* Free the Event Ring Segment Table and the actual Event Ring */
374 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
375 xhci_writel(xhci, 0, &xhci->ir_set->erst_base[1]);
376 xhci_writel(xhci, 0, &xhci->ir_set->erst_base[0]);
377 xhci_writel(xhci, 0, &xhci->ir_set->erst_dequeue[1]);
378 xhci_writel(xhci, 0, &xhci->ir_set->erst_dequeue[0]);
379 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
380 if (xhci->erst.entries)
381 pci_free_consistent(pdev, size,
382 xhci->erst.entries, xhci->erst.erst_dma_addr);
383 xhci->erst.entries = NULL;
384 xhci_dbg(xhci, "Freed ERST\n");
385 if (xhci->event_ring)
386 xhci_ring_free(xhci, xhci->event_ring);
387 xhci->event_ring = NULL;
388 xhci_dbg(xhci, "Freed event ring\n");
389
390 xhci_writel(xhci, 0, &xhci->op_regs->cmd_ring[1]);
391 xhci_writel(xhci, 0, &xhci->op_regs->cmd_ring[0]);
392 if (xhci->cmd_ring)
393 xhci_ring_free(xhci, xhci->cmd_ring);
394 xhci->cmd_ring = NULL;
395 xhci_dbg(xhci, "Freed command ring\n");
396
397 for (i = 1; i < MAX_HC_SLOTS; ++i)
398 xhci_free_virt_device(xhci, i);
399
400 if (xhci->segment_pool)
401 dma_pool_destroy(xhci->segment_pool);
402 xhci->segment_pool = NULL;
403 xhci_dbg(xhci, "Freed segment pool\n");
404
405 if (xhci->device_pool)
406 dma_pool_destroy(xhci->device_pool);
407 xhci->device_pool = NULL;
408 xhci_dbg(xhci, "Freed device context pool\n");
409
410 xhci_writel(xhci, 0, &xhci->op_regs->dcbaa_ptr[1]);
411 xhci_writel(xhci, 0, &xhci->op_regs->dcbaa_ptr[0]);
412 if (xhci->dcbaa)
413 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
414 xhci->dcbaa, xhci->dcbaa->dma);
415 xhci->dcbaa = NULL;
416
417 xhci->page_size = 0;
418 xhci->page_shift = 0;
419 }
420
421 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
422 {
423 dma_addr_t dma;
424 struct device *dev = xhci_to_hcd(xhci)->self.controller;
425 unsigned int val, val2;
426 struct xhci_segment *seg;
427 u32 page_size;
428 int i;
429
430 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
431 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
432 for (i = 0; i < 16; i++) {
433 if ((0x1 & page_size) != 0)
434 break;
435 page_size = page_size >> 1;
436 }
437 if (i < 16)
438 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
439 else
440 xhci_warn(xhci, "WARN: no supported page size\n");
441 /* Use 4K pages, since that's common and the minimum the HC supports */
442 xhci->page_shift = 12;
443 xhci->page_size = 1 << xhci->page_shift;
444 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
445
446 /*
447 * Program the Number of Device Slots Enabled field in the CONFIG
448 * register with the max value of slots the HC can handle.
449 */
450 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
451 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
452 (unsigned int) val);
453 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
454 val |= (val2 & ~HCS_SLOTS_MASK);
455 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
456 (unsigned int) val);
457 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
458
459 /*
460 * Section 5.4.8 - doorbell array must be
461 * "physically contiguous and 64-byte (cache line) aligned".
462 */
463 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
464 sizeof(*xhci->dcbaa), &dma);
465 if (!xhci->dcbaa)
466 goto fail;
467 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
468 xhci->dcbaa->dma = dma;
469 xhci_dbg(xhci, "// Device context base array address = 0x%x (DMA), 0x%x (virt)\n",
470 xhci->dcbaa->dma, (unsigned int) xhci->dcbaa);
471 xhci_writel(xhci, (u32) 0, &xhci->op_regs->dcbaa_ptr[1]);
472 xhci_writel(xhci, dma, &xhci->op_regs->dcbaa_ptr[0]);
473
474 /*
475 * Initialize the ring segment pool. The ring must be a contiguous
476 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
477 * however, the command ring segment needs 64-byte aligned segments,
478 * so we pick the greater alignment need.
479 */
480 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
481 SEGMENT_SIZE, 64, xhci->page_size);
482 /* See Table 46 and Note on Figure 55 */
483 /* FIXME support 64-byte contexts */
484 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
485 sizeof(struct xhci_device_control),
486 64, xhci->page_size);
487 if (!xhci->segment_pool || !xhci->device_pool)
488 goto fail;
489
490 /* Set up the command ring to have one segments for now. */
491 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
492 if (!xhci->cmd_ring)
493 goto fail;
494 xhci_dbg(xhci, "Allocated command ring at 0x%x\n", (unsigned int) xhci->cmd_ring);
495 xhci_dbg(xhci, "First segment DMA is 0x%x\n", (unsigned int) xhci->cmd_ring->first_seg->dma);
496
497 /* Set the address in the Command Ring Control register */
498 val = xhci_readl(xhci, &xhci->op_regs->cmd_ring[0]);
499 val = (val & ~CMD_RING_ADDR_MASK) |
500 (xhci->cmd_ring->first_seg->dma & CMD_RING_ADDR_MASK) |
501 xhci->cmd_ring->cycle_state;
502 xhci_dbg(xhci, "// Setting command ring address high bits to 0x0\n");
503 xhci_writel(xhci, (u32) 0, &xhci->op_regs->cmd_ring[1]);
504 xhci_dbg(xhci, "// Setting command ring address low bits to 0x%x\n", val);
505 xhci_writel(xhci, val, &xhci->op_regs->cmd_ring[0]);
506 xhci_dbg_cmd_ptrs(xhci);
507
508 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
509 val &= DBOFF_MASK;
510 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
511 " from cap regs base addr\n", val);
512 xhci->dba = (void *) xhci->cap_regs + val;
513 xhci_dbg_regs(xhci);
514 xhci_print_run_regs(xhci);
515 /* Set ir_set to interrupt register set 0 */
516 xhci->ir_set = (void *) xhci->run_regs->ir_set;
517
518 /*
519 * Event ring setup: Allocate a normal ring, but also setup
520 * the event ring segment table (ERST). Section 4.9.3.
521 */
522 xhci_dbg(xhci, "// Allocating event ring\n");
523 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
524 if (!xhci->event_ring)
525 goto fail;
526
527 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
528 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
529 if (!xhci->erst.entries)
530 goto fail;
531 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%x\n", dma);
532
533 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
534 xhci->erst.num_entries = ERST_NUM_SEGS;
535 xhci->erst.erst_dma_addr = dma;
536 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = 0x%x, dma addr = 0x%x\n",
537 xhci->erst.num_entries,
538 (unsigned int) xhci->erst.entries,
539 xhci->erst.erst_dma_addr);
540
541 /* set ring base address and size for each segment table entry */
542 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
543 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
544 entry->seg_addr[1] = 0;
545 entry->seg_addr[0] = seg->dma;
546 entry->seg_size = TRBS_PER_SEGMENT;
547 entry->rsvd = 0;
548 seg = seg->next;
549 }
550
551 /* set ERST count with the number of entries in the segment table */
552 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
553 val &= ERST_SIZE_MASK;
554 val |= ERST_NUM_SEGS;
555 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
556 val);
557 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
558
559 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
560 /* set the segment table base address */
561 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%x\n",
562 xhci->erst.erst_dma_addr);
563 xhci_writel(xhci, 0, &xhci->ir_set->erst_base[1]);
564 val = xhci_readl(xhci, &xhci->ir_set->erst_base[0]);
565 val &= ERST_PTR_MASK;
566 val |= (xhci->erst.erst_dma_addr & ~ERST_PTR_MASK);
567 xhci_writel(xhci, val, &xhci->ir_set->erst_base[0]);
568
569 /* Set the event ring dequeue address */
570 set_hc_event_deq(xhci);
571 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
572 xhci_print_ir_set(xhci, xhci->ir_set, 0);
573
574 /*
575 * XXX: Might need to set the Interrupter Moderation Register to
576 * something other than the default (~1ms minimum between interrupts).
577 * See section 5.5.1.2.
578 */
579 init_completion(&xhci->addr_dev);
580 for (i = 0; i < MAX_HC_SLOTS; ++i)
581 xhci->devs[i] = 0;
582
583 return 0;
584 fail:
585 xhci_warn(xhci, "Couldn't initialize memory\n");
586 xhci_mem_cleanup(xhci);
587 return -ENOMEM;
588 }
This page took 0.1625 seconds and 5 git commands to generate.