ASoC: fsl: Add S/PDIF CPU DAI driver
[deliverable/linux.git] / drivers / usb / host / xhci-mem.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27
28 #include "xhci.h"
29
30 /*
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
33 *
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 */
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
38 unsigned int cycle_state, gfp_t flags)
39 {
40 struct xhci_segment *seg;
41 dma_addr_t dma;
42 int i;
43
44 seg = kzalloc(sizeof *seg, flags);
45 if (!seg)
46 return NULL;
47
48 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
49 if (!seg->trbs) {
50 kfree(seg);
51 return NULL;
52 }
53
54 memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
55 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56 if (cycle_state == 0) {
57 for (i = 0; i < TRBS_PER_SEGMENT; i++)
58 seg->trbs[i].link.control |= TRB_CYCLE;
59 }
60 seg->dma = dma;
61 seg->next = NULL;
62
63 return seg;
64 }
65
66 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67 {
68 if (seg->trbs) {
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
71 }
72 kfree(seg);
73 }
74
75 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
76 struct xhci_segment *first)
77 {
78 struct xhci_segment *seg;
79
80 seg = first->next;
81 while (seg != first) {
82 struct xhci_segment *next = seg->next;
83 xhci_segment_free(xhci, seg);
84 seg = next;
85 }
86 xhci_segment_free(xhci, first);
87 }
88
89 /*
90 * Make the prev segment point to the next segment.
91 *
92 * Change the last TRB in the prev segment to be a Link TRB which points to the
93 * DMA address of the next segment. The caller needs to set any Link TRB
94 * related flags, such as End TRB, Toggle Cycle, and no snoop.
95 */
96 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
97 struct xhci_segment *next, enum xhci_ring_type type)
98 {
99 u32 val;
100
101 if (!prev || !next)
102 return;
103 prev->next = next;
104 if (type != TYPE_EVENT) {
105 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
106 cpu_to_le64(next->dma);
107
108 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
109 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
110 val &= ~TRB_TYPE_BITMASK;
111 val |= TRB_TYPE(TRB_LINK);
112 /* Always set the chain bit with 0.95 hardware */
113 /* Set chain bit for isoc rings on AMD 0.96 host */
114 if (xhci_link_trb_quirk(xhci) ||
115 (type == TYPE_ISOC &&
116 (xhci->quirks & XHCI_AMD_0x96_HOST)))
117 val |= TRB_CHAIN;
118 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119 }
120 }
121
122 /*
123 * Link the ring to the new segments.
124 * Set Toggle Cycle for the new ring if needed.
125 */
126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127 struct xhci_segment *first, struct xhci_segment *last,
128 unsigned int num_segs)
129 {
130 struct xhci_segment *next;
131
132 if (!ring || !first || !last)
133 return;
134
135 next = ring->enq_seg->next;
136 xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
137 xhci_link_segments(xhci, last, next, ring->type);
138 ring->num_segs += num_segs;
139 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
140
141 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
142 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
143 &= ~cpu_to_le32(LINK_TOGGLE);
144 last->trbs[TRBS_PER_SEGMENT-1].link.control
145 |= cpu_to_le32(LINK_TOGGLE);
146 ring->last_seg = last;
147 }
148 }
149
150 /* XXX: Do we need the hcd structure in all these functions? */
151 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
152 {
153 if (!ring)
154 return;
155
156 if (ring->first_seg)
157 xhci_free_segments_for_ring(xhci, ring->first_seg);
158
159 kfree(ring);
160 }
161
162 static void xhci_initialize_ring_info(struct xhci_ring *ring,
163 unsigned int cycle_state)
164 {
165 /* The ring is empty, so the enqueue pointer == dequeue pointer */
166 ring->enqueue = ring->first_seg->trbs;
167 ring->enq_seg = ring->first_seg;
168 ring->dequeue = ring->enqueue;
169 ring->deq_seg = ring->first_seg;
170 /* The ring is initialized to 0. The producer must write 1 to the cycle
171 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
172 * compare CCS to the cycle bit to check ownership, so CCS = 1.
173 *
174 * New rings are initialized with cycle state equal to 1; if we are
175 * handling ring expansion, set the cycle state equal to the old ring.
176 */
177 ring->cycle_state = cycle_state;
178 /* Not necessary for new rings, but needed for re-initialized rings */
179 ring->enq_updates = 0;
180 ring->deq_updates = 0;
181
182 /*
183 * Each segment has a link TRB, and leave an extra TRB for SW
184 * accounting purpose
185 */
186 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
187 }
188
189 /* Allocate segments and link them for a ring */
190 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
191 struct xhci_segment **first, struct xhci_segment **last,
192 unsigned int num_segs, unsigned int cycle_state,
193 enum xhci_ring_type type, gfp_t flags)
194 {
195 struct xhci_segment *prev;
196
197 prev = xhci_segment_alloc(xhci, cycle_state, flags);
198 if (!prev)
199 return -ENOMEM;
200 num_segs--;
201
202 *first = prev;
203 while (num_segs > 0) {
204 struct xhci_segment *next;
205
206 next = xhci_segment_alloc(xhci, cycle_state, flags);
207 if (!next) {
208 prev = *first;
209 while (prev) {
210 next = prev->next;
211 xhci_segment_free(xhci, prev);
212 prev = next;
213 }
214 return -ENOMEM;
215 }
216 xhci_link_segments(xhci, prev, next, type);
217
218 prev = next;
219 num_segs--;
220 }
221 xhci_link_segments(xhci, prev, *first, type);
222 *last = prev;
223
224 return 0;
225 }
226
227 /**
228 * Create a new ring with zero or more segments.
229 *
230 * Link each segment together into a ring.
231 * Set the end flag and the cycle toggle bit on the last segment.
232 * See section 4.9.1 and figures 15 and 16.
233 */
234 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
235 unsigned int num_segs, unsigned int cycle_state,
236 enum xhci_ring_type type, gfp_t flags)
237 {
238 struct xhci_ring *ring;
239 int ret;
240
241 ring = kzalloc(sizeof *(ring), flags);
242 if (!ring)
243 return NULL;
244
245 ring->num_segs = num_segs;
246 INIT_LIST_HEAD(&ring->td_list);
247 ring->type = type;
248 if (num_segs == 0)
249 return ring;
250
251 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
252 &ring->last_seg, num_segs, cycle_state, type, flags);
253 if (ret)
254 goto fail;
255
256 /* Only event ring does not use link TRB */
257 if (type != TYPE_EVENT) {
258 /* See section 4.9.2.1 and 6.4.4.1 */
259 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
260 cpu_to_le32(LINK_TOGGLE);
261 }
262 xhci_initialize_ring_info(ring, cycle_state);
263 return ring;
264
265 fail:
266 kfree(ring);
267 return NULL;
268 }
269
270 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
271 struct xhci_virt_device *virt_dev,
272 unsigned int ep_index)
273 {
274 int rings_cached;
275
276 rings_cached = virt_dev->num_rings_cached;
277 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
278 virt_dev->ring_cache[rings_cached] =
279 virt_dev->eps[ep_index].ring;
280 virt_dev->num_rings_cached++;
281 xhci_dbg(xhci, "Cached old ring, "
282 "%d ring%s cached\n",
283 virt_dev->num_rings_cached,
284 (virt_dev->num_rings_cached > 1) ? "s" : "");
285 } else {
286 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
287 xhci_dbg(xhci, "Ring cache full (%d rings), "
288 "freeing ring\n",
289 virt_dev->num_rings_cached);
290 }
291 virt_dev->eps[ep_index].ring = NULL;
292 }
293
294 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
295 * pointers to the beginning of the ring.
296 */
297 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
298 struct xhci_ring *ring, unsigned int cycle_state,
299 enum xhci_ring_type type)
300 {
301 struct xhci_segment *seg = ring->first_seg;
302 int i;
303
304 do {
305 memset(seg->trbs, 0,
306 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
307 if (cycle_state == 0) {
308 for (i = 0; i < TRBS_PER_SEGMENT; i++)
309 seg->trbs[i].link.control |= TRB_CYCLE;
310 }
311 /* All endpoint rings have link TRBs */
312 xhci_link_segments(xhci, seg, seg->next, type);
313 seg = seg->next;
314 } while (seg != ring->first_seg);
315 ring->type = type;
316 xhci_initialize_ring_info(ring, cycle_state);
317 /* td list should be empty since all URBs have been cancelled,
318 * but just in case...
319 */
320 INIT_LIST_HEAD(&ring->td_list);
321 }
322
323 /*
324 * Expand an existing ring.
325 * Look for a cached ring or allocate a new ring which has same segment numbers
326 * and link the two rings.
327 */
328 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
329 unsigned int num_trbs, gfp_t flags)
330 {
331 struct xhci_segment *first;
332 struct xhci_segment *last;
333 unsigned int num_segs;
334 unsigned int num_segs_needed;
335 int ret;
336
337 num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
338 (TRBS_PER_SEGMENT - 1);
339
340 /* Allocate number of segments we needed, or double the ring size */
341 num_segs = ring->num_segs > num_segs_needed ?
342 ring->num_segs : num_segs_needed;
343
344 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
345 num_segs, ring->cycle_state, ring->type, flags);
346 if (ret)
347 return -ENOMEM;
348
349 xhci_link_rings(xhci, ring, first, last, num_segs);
350 xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
351 ring->num_segs);
352
353 return 0;
354 }
355
356 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
357
358 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
359 int type, gfp_t flags)
360 {
361 struct xhci_container_ctx *ctx;
362
363 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
364 return NULL;
365
366 ctx = kzalloc(sizeof(*ctx), flags);
367 if (!ctx)
368 return NULL;
369
370 ctx->type = type;
371 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
372 if (type == XHCI_CTX_TYPE_INPUT)
373 ctx->size += CTX_SIZE(xhci->hcc_params);
374
375 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
376 if (!ctx->bytes) {
377 kfree(ctx);
378 return NULL;
379 }
380 memset(ctx->bytes, 0, ctx->size);
381 return ctx;
382 }
383
384 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
385 struct xhci_container_ctx *ctx)
386 {
387 if (!ctx)
388 return;
389 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
390 kfree(ctx);
391 }
392
393 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
394 struct xhci_container_ctx *ctx)
395 {
396 if (ctx->type != XHCI_CTX_TYPE_INPUT)
397 return NULL;
398
399 return (struct xhci_input_control_ctx *)ctx->bytes;
400 }
401
402 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
403 struct xhci_container_ctx *ctx)
404 {
405 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
406 return (struct xhci_slot_ctx *)ctx->bytes;
407
408 return (struct xhci_slot_ctx *)
409 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
410 }
411
412 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
413 struct xhci_container_ctx *ctx,
414 unsigned int ep_index)
415 {
416 /* increment ep index by offset of start of ep ctx array */
417 ep_index++;
418 if (ctx->type == XHCI_CTX_TYPE_INPUT)
419 ep_index++;
420
421 return (struct xhci_ep_ctx *)
422 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
423 }
424
425
426 /***************** Streams structures manipulation *************************/
427
428 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
429 unsigned int num_stream_ctxs,
430 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
431 {
432 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
433
434 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
435 dma_free_coherent(&pdev->dev,
436 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
437 stream_ctx, dma);
438 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
439 return dma_pool_free(xhci->small_streams_pool,
440 stream_ctx, dma);
441 else
442 return dma_pool_free(xhci->medium_streams_pool,
443 stream_ctx, dma);
444 }
445
446 /*
447 * The stream context array for each endpoint with bulk streams enabled can
448 * vary in size, based on:
449 * - how many streams the endpoint supports,
450 * - the maximum primary stream array size the host controller supports,
451 * - and how many streams the device driver asks for.
452 *
453 * The stream context array must be a power of 2, and can be as small as
454 * 64 bytes or as large as 1MB.
455 */
456 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
457 unsigned int num_stream_ctxs, dma_addr_t *dma,
458 gfp_t mem_flags)
459 {
460 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
461
462 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
463 return dma_alloc_coherent(&pdev->dev,
464 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
465 dma, mem_flags);
466 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
467 return dma_pool_alloc(xhci->small_streams_pool,
468 mem_flags, dma);
469 else
470 return dma_pool_alloc(xhci->medium_streams_pool,
471 mem_flags, dma);
472 }
473
474 struct xhci_ring *xhci_dma_to_transfer_ring(
475 struct xhci_virt_ep *ep,
476 u64 address)
477 {
478 if (ep->ep_state & EP_HAS_STREAMS)
479 return radix_tree_lookup(&ep->stream_info->trb_address_map,
480 address >> TRB_SEGMENT_SHIFT);
481 return ep->ring;
482 }
483
484 /* Only use this when you know stream_info is valid */
485 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
486 static struct xhci_ring *dma_to_stream_ring(
487 struct xhci_stream_info *stream_info,
488 u64 address)
489 {
490 return radix_tree_lookup(&stream_info->trb_address_map,
491 address >> TRB_SEGMENT_SHIFT);
492 }
493 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
494
495 struct xhci_ring *xhci_stream_id_to_ring(
496 struct xhci_virt_device *dev,
497 unsigned int ep_index,
498 unsigned int stream_id)
499 {
500 struct xhci_virt_ep *ep = &dev->eps[ep_index];
501
502 if (stream_id == 0)
503 return ep->ring;
504 if (!ep->stream_info)
505 return NULL;
506
507 if (stream_id > ep->stream_info->num_streams)
508 return NULL;
509 return ep->stream_info->stream_rings[stream_id];
510 }
511
512 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
513 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
514 unsigned int num_streams,
515 struct xhci_stream_info *stream_info)
516 {
517 u32 cur_stream;
518 struct xhci_ring *cur_ring;
519 u64 addr;
520
521 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
522 struct xhci_ring *mapped_ring;
523 int trb_size = sizeof(union xhci_trb);
524
525 cur_ring = stream_info->stream_rings[cur_stream];
526 for (addr = cur_ring->first_seg->dma;
527 addr < cur_ring->first_seg->dma + TRB_SEGMENT_SIZE;
528 addr += trb_size) {
529 mapped_ring = dma_to_stream_ring(stream_info, addr);
530 if (cur_ring != mapped_ring) {
531 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
532 "didn't map to stream ID %u; "
533 "mapped to ring %p\n",
534 (unsigned long long) addr,
535 cur_stream,
536 mapped_ring);
537 return -EINVAL;
538 }
539 }
540 /* One TRB after the end of the ring segment shouldn't return a
541 * pointer to the current ring (although it may be a part of a
542 * different ring).
543 */
544 mapped_ring = dma_to_stream_ring(stream_info, addr);
545 if (mapped_ring != cur_ring) {
546 /* One TRB before should also fail */
547 addr = cur_ring->first_seg->dma - trb_size;
548 mapped_ring = dma_to_stream_ring(stream_info, addr);
549 }
550 if (mapped_ring == cur_ring) {
551 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
552 "mapped to valid stream ID %u; "
553 "mapped ring = %p\n",
554 (unsigned long long) addr,
555 cur_stream,
556 mapped_ring);
557 return -EINVAL;
558 }
559 }
560 return 0;
561 }
562 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
563
564 /*
565 * Change an endpoint's internal structure so it supports stream IDs. The
566 * number of requested streams includes stream 0, which cannot be used by device
567 * drivers.
568 *
569 * The number of stream contexts in the stream context array may be bigger than
570 * the number of streams the driver wants to use. This is because the number of
571 * stream context array entries must be a power of two.
572 *
573 * We need a radix tree for mapping physical addresses of TRBs to which stream
574 * ID they belong to. We need to do this because the host controller won't tell
575 * us which stream ring the TRB came from. We could store the stream ID in an
576 * event data TRB, but that doesn't help us for the cancellation case, since the
577 * endpoint may stop before it reaches that event data TRB.
578 *
579 * The radix tree maps the upper portion of the TRB DMA address to a ring
580 * segment that has the same upper portion of DMA addresses. For example, say I
581 * have segments of size 1KB, that are always 64-byte aligned. A segment may
582 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
583 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
584 * pass the radix tree a key to get the right stream ID:
585 *
586 * 0x10c90fff >> 10 = 0x43243
587 * 0x10c912c0 >> 10 = 0x43244
588 * 0x10c91400 >> 10 = 0x43245
589 *
590 * Obviously, only those TRBs with DMA addresses that are within the segment
591 * will make the radix tree return the stream ID for that ring.
592 *
593 * Caveats for the radix tree:
594 *
595 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
596 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
597 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
598 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
599 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
600 * extended systems (where the DMA address can be bigger than 32-bits),
601 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
602 */
603 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
604 unsigned int num_stream_ctxs,
605 unsigned int num_streams, gfp_t mem_flags)
606 {
607 struct xhci_stream_info *stream_info;
608 u32 cur_stream;
609 struct xhci_ring *cur_ring;
610 unsigned long key;
611 u64 addr;
612 int ret;
613
614 xhci_dbg(xhci, "Allocating %u streams and %u "
615 "stream context array entries.\n",
616 num_streams, num_stream_ctxs);
617 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
618 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
619 return NULL;
620 }
621 xhci->cmd_ring_reserved_trbs++;
622
623 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
624 if (!stream_info)
625 goto cleanup_trbs;
626
627 stream_info->num_streams = num_streams;
628 stream_info->num_stream_ctxs = num_stream_ctxs;
629
630 /* Initialize the array of virtual pointers to stream rings. */
631 stream_info->stream_rings = kzalloc(
632 sizeof(struct xhci_ring *)*num_streams,
633 mem_flags);
634 if (!stream_info->stream_rings)
635 goto cleanup_info;
636
637 /* Initialize the array of DMA addresses for stream rings for the HW. */
638 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
639 num_stream_ctxs, &stream_info->ctx_array_dma,
640 mem_flags);
641 if (!stream_info->stream_ctx_array)
642 goto cleanup_ctx;
643 memset(stream_info->stream_ctx_array, 0,
644 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
645
646 /* Allocate everything needed to free the stream rings later */
647 stream_info->free_streams_command =
648 xhci_alloc_command(xhci, true, true, mem_flags);
649 if (!stream_info->free_streams_command)
650 goto cleanup_ctx;
651
652 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
653
654 /* Allocate rings for all the streams that the driver will use,
655 * and add their segment DMA addresses to the radix tree.
656 * Stream 0 is reserved.
657 */
658 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
659 stream_info->stream_rings[cur_stream] =
660 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
661 cur_ring = stream_info->stream_rings[cur_stream];
662 if (!cur_ring)
663 goto cleanup_rings;
664 cur_ring->stream_id = cur_stream;
665 /* Set deq ptr, cycle bit, and stream context type */
666 addr = cur_ring->first_seg->dma |
667 SCT_FOR_CTX(SCT_PRI_TR) |
668 cur_ring->cycle_state;
669 stream_info->stream_ctx_array[cur_stream].stream_ring =
670 cpu_to_le64(addr);
671 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
672 cur_stream, (unsigned long long) addr);
673
674 key = (unsigned long)
675 (cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT);
676 ret = radix_tree_insert(&stream_info->trb_address_map,
677 key, cur_ring);
678 if (ret) {
679 xhci_ring_free(xhci, cur_ring);
680 stream_info->stream_rings[cur_stream] = NULL;
681 goto cleanup_rings;
682 }
683 }
684 /* Leave the other unused stream ring pointers in the stream context
685 * array initialized to zero. This will cause the xHC to give us an
686 * error if the device asks for a stream ID we don't have setup (if it
687 * was any other way, the host controller would assume the ring is
688 * "empty" and wait forever for data to be queued to that stream ID).
689 */
690 #if XHCI_DEBUG
691 /* Do a little test on the radix tree to make sure it returns the
692 * correct values.
693 */
694 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
695 goto cleanup_rings;
696 #endif
697
698 return stream_info;
699
700 cleanup_rings:
701 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
702 cur_ring = stream_info->stream_rings[cur_stream];
703 if (cur_ring) {
704 addr = cur_ring->first_seg->dma;
705 radix_tree_delete(&stream_info->trb_address_map,
706 addr >> TRB_SEGMENT_SHIFT);
707 xhci_ring_free(xhci, cur_ring);
708 stream_info->stream_rings[cur_stream] = NULL;
709 }
710 }
711 xhci_free_command(xhci, stream_info->free_streams_command);
712 cleanup_ctx:
713 kfree(stream_info->stream_rings);
714 cleanup_info:
715 kfree(stream_info);
716 cleanup_trbs:
717 xhci->cmd_ring_reserved_trbs--;
718 return NULL;
719 }
720 /*
721 * Sets the MaxPStreams field and the Linear Stream Array field.
722 * Sets the dequeue pointer to the stream context array.
723 */
724 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
725 struct xhci_ep_ctx *ep_ctx,
726 struct xhci_stream_info *stream_info)
727 {
728 u32 max_primary_streams;
729 /* MaxPStreams is the number of stream context array entries, not the
730 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
731 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
732 */
733 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
734 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
735 1 << (max_primary_streams + 1));
736 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
737 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
738 | EP_HAS_LSA);
739 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
740 }
741
742 /*
743 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
744 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
745 * not at the beginning of the ring).
746 */
747 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
748 struct xhci_ep_ctx *ep_ctx,
749 struct xhci_virt_ep *ep)
750 {
751 dma_addr_t addr;
752 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
753 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
754 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
755 }
756
757 /* Frees all stream contexts associated with the endpoint,
758 *
759 * Caller should fix the endpoint context streams fields.
760 */
761 void xhci_free_stream_info(struct xhci_hcd *xhci,
762 struct xhci_stream_info *stream_info)
763 {
764 int cur_stream;
765 struct xhci_ring *cur_ring;
766 dma_addr_t addr;
767
768 if (!stream_info)
769 return;
770
771 for (cur_stream = 1; cur_stream < stream_info->num_streams;
772 cur_stream++) {
773 cur_ring = stream_info->stream_rings[cur_stream];
774 if (cur_ring) {
775 addr = cur_ring->first_seg->dma;
776 radix_tree_delete(&stream_info->trb_address_map,
777 addr >> TRB_SEGMENT_SHIFT);
778 xhci_ring_free(xhci, cur_ring);
779 stream_info->stream_rings[cur_stream] = NULL;
780 }
781 }
782 xhci_free_command(xhci, stream_info->free_streams_command);
783 xhci->cmd_ring_reserved_trbs--;
784 if (stream_info->stream_ctx_array)
785 xhci_free_stream_ctx(xhci,
786 stream_info->num_stream_ctxs,
787 stream_info->stream_ctx_array,
788 stream_info->ctx_array_dma);
789
790 if (stream_info)
791 kfree(stream_info->stream_rings);
792 kfree(stream_info);
793 }
794
795
796 /***************** Device context manipulation *************************/
797
798 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
799 struct xhci_virt_ep *ep)
800 {
801 init_timer(&ep->stop_cmd_timer);
802 ep->stop_cmd_timer.data = (unsigned long) ep;
803 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
804 ep->xhci = xhci;
805 }
806
807 static void xhci_free_tt_info(struct xhci_hcd *xhci,
808 struct xhci_virt_device *virt_dev,
809 int slot_id)
810 {
811 struct list_head *tt_list_head;
812 struct xhci_tt_bw_info *tt_info, *next;
813 bool slot_found = false;
814
815 /* If the device never made it past the Set Address stage,
816 * it may not have the real_port set correctly.
817 */
818 if (virt_dev->real_port == 0 ||
819 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
820 xhci_dbg(xhci, "Bad real port.\n");
821 return;
822 }
823
824 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
825 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
826 /* Multi-TT hubs will have more than one entry */
827 if (tt_info->slot_id == slot_id) {
828 slot_found = true;
829 list_del(&tt_info->tt_list);
830 kfree(tt_info);
831 } else if (slot_found) {
832 break;
833 }
834 }
835 }
836
837 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
838 struct xhci_virt_device *virt_dev,
839 struct usb_device *hdev,
840 struct usb_tt *tt, gfp_t mem_flags)
841 {
842 struct xhci_tt_bw_info *tt_info;
843 unsigned int num_ports;
844 int i, j;
845
846 if (!tt->multi)
847 num_ports = 1;
848 else
849 num_ports = hdev->maxchild;
850
851 for (i = 0; i < num_ports; i++, tt_info++) {
852 struct xhci_interval_bw_table *bw_table;
853
854 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
855 if (!tt_info)
856 goto free_tts;
857 INIT_LIST_HEAD(&tt_info->tt_list);
858 list_add(&tt_info->tt_list,
859 &xhci->rh_bw[virt_dev->real_port - 1].tts);
860 tt_info->slot_id = virt_dev->udev->slot_id;
861 if (tt->multi)
862 tt_info->ttport = i+1;
863 bw_table = &tt_info->bw_table;
864 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
865 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
866 }
867 return 0;
868
869 free_tts:
870 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
871 return -ENOMEM;
872 }
873
874
875 /* All the xhci_tds in the ring's TD list should be freed at this point.
876 * Should be called with xhci->lock held if there is any chance the TT lists
877 * will be manipulated by the configure endpoint, allocate device, or update
878 * hub functions while this function is removing the TT entries from the list.
879 */
880 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
881 {
882 struct xhci_virt_device *dev;
883 int i;
884 int old_active_eps = 0;
885
886 /* Slot ID 0 is reserved */
887 if (slot_id == 0 || !xhci->devs[slot_id])
888 return;
889
890 dev = xhci->devs[slot_id];
891 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
892 if (!dev)
893 return;
894
895 if (dev->tt_info)
896 old_active_eps = dev->tt_info->active_eps;
897
898 for (i = 0; i < 31; ++i) {
899 if (dev->eps[i].ring)
900 xhci_ring_free(xhci, dev->eps[i].ring);
901 if (dev->eps[i].stream_info)
902 xhci_free_stream_info(xhci,
903 dev->eps[i].stream_info);
904 /* Endpoints on the TT/root port lists should have been removed
905 * when usb_disable_device() was called for the device.
906 * We can't drop them anyway, because the udev might have gone
907 * away by this point, and we can't tell what speed it was.
908 */
909 if (!list_empty(&dev->eps[i].bw_endpoint_list))
910 xhci_warn(xhci, "Slot %u endpoint %u "
911 "not removed from BW list!\n",
912 slot_id, i);
913 }
914 /* If this is a hub, free the TT(s) from the TT list */
915 xhci_free_tt_info(xhci, dev, slot_id);
916 /* If necessary, update the number of active TTs on this root port */
917 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
918
919 if (dev->ring_cache) {
920 for (i = 0; i < dev->num_rings_cached; i++)
921 xhci_ring_free(xhci, dev->ring_cache[i]);
922 kfree(dev->ring_cache);
923 }
924
925 if (dev->in_ctx)
926 xhci_free_container_ctx(xhci, dev->in_ctx);
927 if (dev->out_ctx)
928 xhci_free_container_ctx(xhci, dev->out_ctx);
929
930 kfree(xhci->devs[slot_id]);
931 xhci->devs[slot_id] = NULL;
932 }
933
934 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
935 struct usb_device *udev, gfp_t flags)
936 {
937 struct xhci_virt_device *dev;
938 int i;
939
940 /* Slot ID 0 is reserved */
941 if (slot_id == 0 || xhci->devs[slot_id]) {
942 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
943 return 0;
944 }
945
946 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
947 if (!xhci->devs[slot_id])
948 return 0;
949 dev = xhci->devs[slot_id];
950
951 /* Allocate the (output) device context that will be used in the HC. */
952 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
953 if (!dev->out_ctx)
954 goto fail;
955
956 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
957 (unsigned long long)dev->out_ctx->dma);
958
959 /* Allocate the (input) device context for address device command */
960 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
961 if (!dev->in_ctx)
962 goto fail;
963
964 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
965 (unsigned long long)dev->in_ctx->dma);
966
967 /* Initialize the cancellation list and watchdog timers for each ep */
968 for (i = 0; i < 31; i++) {
969 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
970 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
971 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
972 }
973
974 /* Allocate endpoint 0 ring */
975 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
976 if (!dev->eps[0].ring)
977 goto fail;
978
979 /* Allocate pointers to the ring cache */
980 dev->ring_cache = kzalloc(
981 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
982 flags);
983 if (!dev->ring_cache)
984 goto fail;
985 dev->num_rings_cached = 0;
986
987 init_completion(&dev->cmd_completion);
988 INIT_LIST_HEAD(&dev->cmd_list);
989 dev->udev = udev;
990
991 /* Point to output device context in dcbaa. */
992 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
993 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
994 slot_id,
995 &xhci->dcbaa->dev_context_ptrs[slot_id],
996 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
997
998 return 1;
999 fail:
1000 xhci_free_virt_device(xhci, slot_id);
1001 return 0;
1002 }
1003
1004 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1005 struct usb_device *udev)
1006 {
1007 struct xhci_virt_device *virt_dev;
1008 struct xhci_ep_ctx *ep0_ctx;
1009 struct xhci_ring *ep_ring;
1010
1011 virt_dev = xhci->devs[udev->slot_id];
1012 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1013 ep_ring = virt_dev->eps[0].ring;
1014 /*
1015 * FIXME we don't keep track of the dequeue pointer very well after a
1016 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1017 * host to our enqueue pointer. This should only be called after a
1018 * configured device has reset, so all control transfers should have
1019 * been completed or cancelled before the reset.
1020 */
1021 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1022 ep_ring->enqueue)
1023 | ep_ring->cycle_state);
1024 }
1025
1026 /*
1027 * The xHCI roothub may have ports of differing speeds in any order in the port
1028 * status registers. xhci->port_array provides an array of the port speed for
1029 * each offset into the port status registers.
1030 *
1031 * The xHCI hardware wants to know the roothub port number that the USB device
1032 * is attached to (or the roothub port its ancestor hub is attached to). All we
1033 * know is the index of that port under either the USB 2.0 or the USB 3.0
1034 * roothub, but that doesn't give us the real index into the HW port status
1035 * registers. Call xhci_find_raw_port_number() to get real index.
1036 */
1037 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1038 struct usb_device *udev)
1039 {
1040 struct usb_device *top_dev;
1041 struct usb_hcd *hcd;
1042
1043 if (udev->speed == USB_SPEED_SUPER)
1044 hcd = xhci->shared_hcd;
1045 else
1046 hcd = xhci->main_hcd;
1047
1048 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1049 top_dev = top_dev->parent)
1050 /* Found device below root hub */;
1051
1052 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1053 }
1054
1055 /* Setup an xHCI virtual device for a Set Address command */
1056 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1057 {
1058 struct xhci_virt_device *dev;
1059 struct xhci_ep_ctx *ep0_ctx;
1060 struct xhci_slot_ctx *slot_ctx;
1061 u32 port_num;
1062 u32 max_packets;
1063 struct usb_device *top_dev;
1064
1065 dev = xhci->devs[udev->slot_id];
1066 /* Slot ID 0 is reserved */
1067 if (udev->slot_id == 0 || !dev) {
1068 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1069 udev->slot_id);
1070 return -EINVAL;
1071 }
1072 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1073 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1074
1075 /* 3) Only the control endpoint is valid - one endpoint context */
1076 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1077 switch (udev->speed) {
1078 case USB_SPEED_SUPER:
1079 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1080 max_packets = MAX_PACKET(512);
1081 break;
1082 case USB_SPEED_HIGH:
1083 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1084 max_packets = MAX_PACKET(64);
1085 break;
1086 /* USB core guesses at a 64-byte max packet first for FS devices */
1087 case USB_SPEED_FULL:
1088 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1089 max_packets = MAX_PACKET(64);
1090 break;
1091 case USB_SPEED_LOW:
1092 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1093 max_packets = MAX_PACKET(8);
1094 break;
1095 case USB_SPEED_WIRELESS:
1096 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1097 return -EINVAL;
1098 break;
1099 default:
1100 /* Speed was set earlier, this shouldn't happen. */
1101 return -EINVAL;
1102 }
1103 /* Find the root hub port this device is under */
1104 port_num = xhci_find_real_port_number(xhci, udev);
1105 if (!port_num)
1106 return -EINVAL;
1107 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1108 /* Set the port number in the virtual_device to the faked port number */
1109 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1110 top_dev = top_dev->parent)
1111 /* Found device below root hub */;
1112 dev->fake_port = top_dev->portnum;
1113 dev->real_port = port_num;
1114 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1115 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1116
1117 /* Find the right bandwidth table that this device will be a part of.
1118 * If this is a full speed device attached directly to a root port (or a
1119 * decendent of one), it counts as a primary bandwidth domain, not a
1120 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1121 * will never be created for the HS root hub.
1122 */
1123 if (!udev->tt || !udev->tt->hub->parent) {
1124 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1125 } else {
1126 struct xhci_root_port_bw_info *rh_bw;
1127 struct xhci_tt_bw_info *tt_bw;
1128
1129 rh_bw = &xhci->rh_bw[port_num - 1];
1130 /* Find the right TT. */
1131 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1132 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1133 continue;
1134
1135 if (!dev->udev->tt->multi ||
1136 (udev->tt->multi &&
1137 tt_bw->ttport == dev->udev->ttport)) {
1138 dev->bw_table = &tt_bw->bw_table;
1139 dev->tt_info = tt_bw;
1140 break;
1141 }
1142 }
1143 if (!dev->tt_info)
1144 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1145 }
1146
1147 /* Is this a LS/FS device under an external HS hub? */
1148 if (udev->tt && udev->tt->hub->parent) {
1149 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1150 (udev->ttport << 8));
1151 if (udev->tt->multi)
1152 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1153 }
1154 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1155 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1156
1157 /* Step 4 - ring already allocated */
1158 /* Step 5 */
1159 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1160
1161 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1162 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1163 max_packets);
1164
1165 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1166 dev->eps[0].ring->cycle_state);
1167
1168 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1169
1170 return 0;
1171 }
1172
1173 /*
1174 * Convert interval expressed as 2^(bInterval - 1) == interval into
1175 * straight exponent value 2^n == interval.
1176 *
1177 */
1178 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1179 struct usb_host_endpoint *ep)
1180 {
1181 unsigned int interval;
1182
1183 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1184 if (interval != ep->desc.bInterval - 1)
1185 dev_warn(&udev->dev,
1186 "ep %#x - rounding interval to %d %sframes\n",
1187 ep->desc.bEndpointAddress,
1188 1 << interval,
1189 udev->speed == USB_SPEED_FULL ? "" : "micro");
1190
1191 if (udev->speed == USB_SPEED_FULL) {
1192 /*
1193 * Full speed isoc endpoints specify interval in frames,
1194 * not microframes. We are using microframes everywhere,
1195 * so adjust accordingly.
1196 */
1197 interval += 3; /* 1 frame = 2^3 uframes */
1198 }
1199
1200 return interval;
1201 }
1202
1203 /*
1204 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1205 * microframes, rounded down to nearest power of 2.
1206 */
1207 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1208 struct usb_host_endpoint *ep, unsigned int desc_interval,
1209 unsigned int min_exponent, unsigned int max_exponent)
1210 {
1211 unsigned int interval;
1212
1213 interval = fls(desc_interval) - 1;
1214 interval = clamp_val(interval, min_exponent, max_exponent);
1215 if ((1 << interval) != desc_interval)
1216 dev_warn(&udev->dev,
1217 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1218 ep->desc.bEndpointAddress,
1219 1 << interval,
1220 desc_interval);
1221
1222 return interval;
1223 }
1224
1225 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1226 struct usb_host_endpoint *ep)
1227 {
1228 if (ep->desc.bInterval == 0)
1229 return 0;
1230 return xhci_microframes_to_exponent(udev, ep,
1231 ep->desc.bInterval, 0, 15);
1232 }
1233
1234
1235 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1236 struct usb_host_endpoint *ep)
1237 {
1238 return xhci_microframes_to_exponent(udev, ep,
1239 ep->desc.bInterval * 8, 3, 10);
1240 }
1241
1242 /* Return the polling or NAK interval.
1243 *
1244 * The polling interval is expressed in "microframes". If xHCI's Interval field
1245 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1246 *
1247 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1248 * is set to 0.
1249 */
1250 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1251 struct usb_host_endpoint *ep)
1252 {
1253 unsigned int interval = 0;
1254
1255 switch (udev->speed) {
1256 case USB_SPEED_HIGH:
1257 /* Max NAK rate */
1258 if (usb_endpoint_xfer_control(&ep->desc) ||
1259 usb_endpoint_xfer_bulk(&ep->desc)) {
1260 interval = xhci_parse_microframe_interval(udev, ep);
1261 break;
1262 }
1263 /* Fall through - SS and HS isoc/int have same decoding */
1264
1265 case USB_SPEED_SUPER:
1266 if (usb_endpoint_xfer_int(&ep->desc) ||
1267 usb_endpoint_xfer_isoc(&ep->desc)) {
1268 interval = xhci_parse_exponent_interval(udev, ep);
1269 }
1270 break;
1271
1272 case USB_SPEED_FULL:
1273 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1274 interval = xhci_parse_exponent_interval(udev, ep);
1275 break;
1276 }
1277 /*
1278 * Fall through for interrupt endpoint interval decoding
1279 * since it uses the same rules as low speed interrupt
1280 * endpoints.
1281 */
1282
1283 case USB_SPEED_LOW:
1284 if (usb_endpoint_xfer_int(&ep->desc) ||
1285 usb_endpoint_xfer_isoc(&ep->desc)) {
1286
1287 interval = xhci_parse_frame_interval(udev, ep);
1288 }
1289 break;
1290
1291 default:
1292 BUG();
1293 }
1294 return EP_INTERVAL(interval);
1295 }
1296
1297 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1298 * High speed endpoint descriptors can define "the number of additional
1299 * transaction opportunities per microframe", but that goes in the Max Burst
1300 * endpoint context field.
1301 */
1302 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1303 struct usb_host_endpoint *ep)
1304 {
1305 if (udev->speed != USB_SPEED_SUPER ||
1306 !usb_endpoint_xfer_isoc(&ep->desc))
1307 return 0;
1308 return ep->ss_ep_comp.bmAttributes;
1309 }
1310
1311 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1312 struct usb_host_endpoint *ep)
1313 {
1314 int in;
1315 u32 type;
1316
1317 in = usb_endpoint_dir_in(&ep->desc);
1318 if (usb_endpoint_xfer_control(&ep->desc)) {
1319 type = EP_TYPE(CTRL_EP);
1320 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1321 if (in)
1322 type = EP_TYPE(BULK_IN_EP);
1323 else
1324 type = EP_TYPE(BULK_OUT_EP);
1325 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1326 if (in)
1327 type = EP_TYPE(ISOC_IN_EP);
1328 else
1329 type = EP_TYPE(ISOC_OUT_EP);
1330 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1331 if (in)
1332 type = EP_TYPE(INT_IN_EP);
1333 else
1334 type = EP_TYPE(INT_OUT_EP);
1335 } else {
1336 type = 0;
1337 }
1338 return type;
1339 }
1340
1341 /* Return the maximum endpoint service interval time (ESIT) payload.
1342 * Basically, this is the maxpacket size, multiplied by the burst size
1343 * and mult size.
1344 */
1345 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1346 struct usb_device *udev,
1347 struct usb_host_endpoint *ep)
1348 {
1349 int max_burst;
1350 int max_packet;
1351
1352 /* Only applies for interrupt or isochronous endpoints */
1353 if (usb_endpoint_xfer_control(&ep->desc) ||
1354 usb_endpoint_xfer_bulk(&ep->desc))
1355 return 0;
1356
1357 if (udev->speed == USB_SPEED_SUPER)
1358 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1359
1360 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1361 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1362 /* A 0 in max burst means 1 transfer per ESIT */
1363 return max_packet * (max_burst + 1);
1364 }
1365
1366 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1367 * Drivers will have to call usb_alloc_streams() to do that.
1368 */
1369 int xhci_endpoint_init(struct xhci_hcd *xhci,
1370 struct xhci_virt_device *virt_dev,
1371 struct usb_device *udev,
1372 struct usb_host_endpoint *ep,
1373 gfp_t mem_flags)
1374 {
1375 unsigned int ep_index;
1376 struct xhci_ep_ctx *ep_ctx;
1377 struct xhci_ring *ep_ring;
1378 unsigned int max_packet;
1379 unsigned int max_burst;
1380 enum xhci_ring_type type;
1381 u32 max_esit_payload;
1382 u32 endpoint_type;
1383
1384 ep_index = xhci_get_endpoint_index(&ep->desc);
1385 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1386
1387 endpoint_type = xhci_get_endpoint_type(udev, ep);
1388 if (!endpoint_type)
1389 return -EINVAL;
1390 ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1391
1392 type = usb_endpoint_type(&ep->desc);
1393 /* Set up the endpoint ring */
1394 virt_dev->eps[ep_index].new_ring =
1395 xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1396 if (!virt_dev->eps[ep_index].new_ring) {
1397 /* Attempt to use the ring cache */
1398 if (virt_dev->num_rings_cached == 0)
1399 return -ENOMEM;
1400 virt_dev->eps[ep_index].new_ring =
1401 virt_dev->ring_cache[virt_dev->num_rings_cached];
1402 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1403 virt_dev->num_rings_cached--;
1404 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1405 1, type);
1406 }
1407 virt_dev->eps[ep_index].skip = false;
1408 ep_ring = virt_dev->eps[ep_index].new_ring;
1409 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1410
1411 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1412 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1413
1414 /* FIXME dig Mult and streams info out of ep companion desc */
1415
1416 /* Allow 3 retries for everything but isoc;
1417 * CErr shall be set to 0 for Isoch endpoints.
1418 */
1419 if (!usb_endpoint_xfer_isoc(&ep->desc))
1420 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1421 else
1422 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1423
1424 /* Set the max packet size and max burst */
1425 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1426 max_burst = 0;
1427 switch (udev->speed) {
1428 case USB_SPEED_SUPER:
1429 /* dig out max burst from ep companion desc */
1430 max_burst = ep->ss_ep_comp.bMaxBurst;
1431 break;
1432 case USB_SPEED_HIGH:
1433 /* Some devices get this wrong */
1434 if (usb_endpoint_xfer_bulk(&ep->desc))
1435 max_packet = 512;
1436 /* bits 11:12 specify the number of additional transaction
1437 * opportunities per microframe (USB 2.0, section 9.6.6)
1438 */
1439 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1440 usb_endpoint_xfer_int(&ep->desc)) {
1441 max_burst = (usb_endpoint_maxp(&ep->desc)
1442 & 0x1800) >> 11;
1443 }
1444 break;
1445 case USB_SPEED_FULL:
1446 case USB_SPEED_LOW:
1447 break;
1448 default:
1449 BUG();
1450 }
1451 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1452 MAX_BURST(max_burst));
1453 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1454 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1455
1456 /*
1457 * XXX no idea how to calculate the average TRB buffer length for bulk
1458 * endpoints, as the driver gives us no clue how big each scatter gather
1459 * list entry (or buffer) is going to be.
1460 *
1461 * For isochronous and interrupt endpoints, we set it to the max
1462 * available, until we have new API in the USB core to allow drivers to
1463 * declare how much bandwidth they actually need.
1464 *
1465 * Normally, it would be calculated by taking the total of the buffer
1466 * lengths in the TD and then dividing by the number of TRBs in a TD,
1467 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1468 * use Event Data TRBs, and we don't chain in a link TRB on short
1469 * transfers, we're basically dividing by 1.
1470 *
1471 * xHCI 1.0 specification indicates that the Average TRB Length should
1472 * be set to 8 for control endpoints.
1473 */
1474 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1475 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1476 else
1477 ep_ctx->tx_info |=
1478 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1479
1480 /* FIXME Debug endpoint context */
1481 return 0;
1482 }
1483
1484 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1485 struct xhci_virt_device *virt_dev,
1486 struct usb_host_endpoint *ep)
1487 {
1488 unsigned int ep_index;
1489 struct xhci_ep_ctx *ep_ctx;
1490
1491 ep_index = xhci_get_endpoint_index(&ep->desc);
1492 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1493
1494 ep_ctx->ep_info = 0;
1495 ep_ctx->ep_info2 = 0;
1496 ep_ctx->deq = 0;
1497 ep_ctx->tx_info = 0;
1498 /* Don't free the endpoint ring until the set interface or configuration
1499 * request succeeds.
1500 */
1501 }
1502
1503 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1504 {
1505 bw_info->ep_interval = 0;
1506 bw_info->mult = 0;
1507 bw_info->num_packets = 0;
1508 bw_info->max_packet_size = 0;
1509 bw_info->type = 0;
1510 bw_info->max_esit_payload = 0;
1511 }
1512
1513 void xhci_update_bw_info(struct xhci_hcd *xhci,
1514 struct xhci_container_ctx *in_ctx,
1515 struct xhci_input_control_ctx *ctrl_ctx,
1516 struct xhci_virt_device *virt_dev)
1517 {
1518 struct xhci_bw_info *bw_info;
1519 struct xhci_ep_ctx *ep_ctx;
1520 unsigned int ep_type;
1521 int i;
1522
1523 for (i = 1; i < 31; ++i) {
1524 bw_info = &virt_dev->eps[i].bw_info;
1525
1526 /* We can't tell what endpoint type is being dropped, but
1527 * unconditionally clearing the bandwidth info for non-periodic
1528 * endpoints should be harmless because the info will never be
1529 * set in the first place.
1530 */
1531 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1532 /* Dropped endpoint */
1533 xhci_clear_endpoint_bw_info(bw_info);
1534 continue;
1535 }
1536
1537 if (EP_IS_ADDED(ctrl_ctx, i)) {
1538 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1539 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1540
1541 /* Ignore non-periodic endpoints */
1542 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1543 ep_type != ISOC_IN_EP &&
1544 ep_type != INT_IN_EP)
1545 continue;
1546
1547 /* Added or changed endpoint */
1548 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1549 le32_to_cpu(ep_ctx->ep_info));
1550 /* Number of packets and mult are zero-based in the
1551 * input context, but we want one-based for the
1552 * interval table.
1553 */
1554 bw_info->mult = CTX_TO_EP_MULT(
1555 le32_to_cpu(ep_ctx->ep_info)) + 1;
1556 bw_info->num_packets = CTX_TO_MAX_BURST(
1557 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1558 bw_info->max_packet_size = MAX_PACKET_DECODED(
1559 le32_to_cpu(ep_ctx->ep_info2));
1560 bw_info->type = ep_type;
1561 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1562 le32_to_cpu(ep_ctx->tx_info));
1563 }
1564 }
1565 }
1566
1567 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1568 * Useful when you want to change one particular aspect of the endpoint and then
1569 * issue a configure endpoint command.
1570 */
1571 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1572 struct xhci_container_ctx *in_ctx,
1573 struct xhci_container_ctx *out_ctx,
1574 unsigned int ep_index)
1575 {
1576 struct xhci_ep_ctx *out_ep_ctx;
1577 struct xhci_ep_ctx *in_ep_ctx;
1578
1579 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1580 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1581
1582 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1583 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1584 in_ep_ctx->deq = out_ep_ctx->deq;
1585 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1586 }
1587
1588 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1589 * Useful when you want to change one particular aspect of the endpoint and then
1590 * issue a configure endpoint command. Only the context entries field matters,
1591 * but we'll copy the whole thing anyway.
1592 */
1593 void xhci_slot_copy(struct xhci_hcd *xhci,
1594 struct xhci_container_ctx *in_ctx,
1595 struct xhci_container_ctx *out_ctx)
1596 {
1597 struct xhci_slot_ctx *in_slot_ctx;
1598 struct xhci_slot_ctx *out_slot_ctx;
1599
1600 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1601 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1602
1603 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1604 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1605 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1606 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1607 }
1608
1609 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1610 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1611 {
1612 int i;
1613 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1614 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1615
1616 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1617
1618 if (!num_sp)
1619 return 0;
1620
1621 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1622 if (!xhci->scratchpad)
1623 goto fail_sp;
1624
1625 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1626 num_sp * sizeof(u64),
1627 &xhci->scratchpad->sp_dma, flags);
1628 if (!xhci->scratchpad->sp_array)
1629 goto fail_sp2;
1630
1631 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1632 if (!xhci->scratchpad->sp_buffers)
1633 goto fail_sp3;
1634
1635 xhci->scratchpad->sp_dma_buffers =
1636 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1637
1638 if (!xhci->scratchpad->sp_dma_buffers)
1639 goto fail_sp4;
1640
1641 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1642 for (i = 0; i < num_sp; i++) {
1643 dma_addr_t dma;
1644 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1645 flags);
1646 if (!buf)
1647 goto fail_sp5;
1648
1649 xhci->scratchpad->sp_array[i] = dma;
1650 xhci->scratchpad->sp_buffers[i] = buf;
1651 xhci->scratchpad->sp_dma_buffers[i] = dma;
1652 }
1653
1654 return 0;
1655
1656 fail_sp5:
1657 for (i = i - 1; i >= 0; i--) {
1658 dma_free_coherent(dev, xhci->page_size,
1659 xhci->scratchpad->sp_buffers[i],
1660 xhci->scratchpad->sp_dma_buffers[i]);
1661 }
1662 kfree(xhci->scratchpad->sp_dma_buffers);
1663
1664 fail_sp4:
1665 kfree(xhci->scratchpad->sp_buffers);
1666
1667 fail_sp3:
1668 dma_free_coherent(dev, num_sp * sizeof(u64),
1669 xhci->scratchpad->sp_array,
1670 xhci->scratchpad->sp_dma);
1671
1672 fail_sp2:
1673 kfree(xhci->scratchpad);
1674 xhci->scratchpad = NULL;
1675
1676 fail_sp:
1677 return -ENOMEM;
1678 }
1679
1680 static void scratchpad_free(struct xhci_hcd *xhci)
1681 {
1682 int num_sp;
1683 int i;
1684 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1685
1686 if (!xhci->scratchpad)
1687 return;
1688
1689 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1690
1691 for (i = 0; i < num_sp; i++) {
1692 dma_free_coherent(&pdev->dev, xhci->page_size,
1693 xhci->scratchpad->sp_buffers[i],
1694 xhci->scratchpad->sp_dma_buffers[i]);
1695 }
1696 kfree(xhci->scratchpad->sp_dma_buffers);
1697 kfree(xhci->scratchpad->sp_buffers);
1698 dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1699 xhci->scratchpad->sp_array,
1700 xhci->scratchpad->sp_dma);
1701 kfree(xhci->scratchpad);
1702 xhci->scratchpad = NULL;
1703 }
1704
1705 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1706 bool allocate_in_ctx, bool allocate_completion,
1707 gfp_t mem_flags)
1708 {
1709 struct xhci_command *command;
1710
1711 command = kzalloc(sizeof(*command), mem_flags);
1712 if (!command)
1713 return NULL;
1714
1715 if (allocate_in_ctx) {
1716 command->in_ctx =
1717 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1718 mem_flags);
1719 if (!command->in_ctx) {
1720 kfree(command);
1721 return NULL;
1722 }
1723 }
1724
1725 if (allocate_completion) {
1726 command->completion =
1727 kzalloc(sizeof(struct completion), mem_flags);
1728 if (!command->completion) {
1729 xhci_free_container_ctx(xhci, command->in_ctx);
1730 kfree(command);
1731 return NULL;
1732 }
1733 init_completion(command->completion);
1734 }
1735
1736 command->status = 0;
1737 INIT_LIST_HEAD(&command->cmd_list);
1738 return command;
1739 }
1740
1741 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1742 {
1743 if (urb_priv) {
1744 kfree(urb_priv->td[0]);
1745 kfree(urb_priv);
1746 }
1747 }
1748
1749 void xhci_free_command(struct xhci_hcd *xhci,
1750 struct xhci_command *command)
1751 {
1752 xhci_free_container_ctx(xhci,
1753 command->in_ctx);
1754 kfree(command->completion);
1755 kfree(command);
1756 }
1757
1758 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1759 {
1760 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1761 struct dev_info *dev_info, *next;
1762 struct xhci_cd *cur_cd, *next_cd;
1763 unsigned long flags;
1764 int size;
1765 int i, j, num_ports;
1766
1767 /* Free the Event Ring Segment Table and the actual Event Ring */
1768 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1769 if (xhci->erst.entries)
1770 dma_free_coherent(&pdev->dev, size,
1771 xhci->erst.entries, xhci->erst.erst_dma_addr);
1772 xhci->erst.entries = NULL;
1773 xhci_dbg(xhci, "Freed ERST\n");
1774 if (xhci->event_ring)
1775 xhci_ring_free(xhci, xhci->event_ring);
1776 xhci->event_ring = NULL;
1777 xhci_dbg(xhci, "Freed event ring\n");
1778
1779 if (xhci->lpm_command)
1780 xhci_free_command(xhci, xhci->lpm_command);
1781 xhci->cmd_ring_reserved_trbs = 0;
1782 if (xhci->cmd_ring)
1783 xhci_ring_free(xhci, xhci->cmd_ring);
1784 xhci->cmd_ring = NULL;
1785 xhci_dbg(xhci, "Freed command ring\n");
1786 list_for_each_entry_safe(cur_cd, next_cd,
1787 &xhci->cancel_cmd_list, cancel_cmd_list) {
1788 list_del(&cur_cd->cancel_cmd_list);
1789 kfree(cur_cd);
1790 }
1791
1792 for (i = 1; i < MAX_HC_SLOTS; ++i)
1793 xhci_free_virt_device(xhci, i);
1794
1795 if (xhci->segment_pool)
1796 dma_pool_destroy(xhci->segment_pool);
1797 xhci->segment_pool = NULL;
1798 xhci_dbg(xhci, "Freed segment pool\n");
1799
1800 if (xhci->device_pool)
1801 dma_pool_destroy(xhci->device_pool);
1802 xhci->device_pool = NULL;
1803 xhci_dbg(xhci, "Freed device context pool\n");
1804
1805 if (xhci->small_streams_pool)
1806 dma_pool_destroy(xhci->small_streams_pool);
1807 xhci->small_streams_pool = NULL;
1808 xhci_dbg(xhci, "Freed small stream array pool\n");
1809
1810 if (xhci->medium_streams_pool)
1811 dma_pool_destroy(xhci->medium_streams_pool);
1812 xhci->medium_streams_pool = NULL;
1813 xhci_dbg(xhci, "Freed medium stream array pool\n");
1814
1815 if (xhci->dcbaa)
1816 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1817 xhci->dcbaa, xhci->dcbaa->dma);
1818 xhci->dcbaa = NULL;
1819
1820 scratchpad_free(xhci);
1821
1822 spin_lock_irqsave(&xhci->lock, flags);
1823 list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1824 list_del(&dev_info->list);
1825 kfree(dev_info);
1826 }
1827 spin_unlock_irqrestore(&xhci->lock, flags);
1828
1829 if (!xhci->rh_bw)
1830 goto no_bw;
1831
1832 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1833 for (i = 0; i < num_ports; i++) {
1834 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1835 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1836 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1837 while (!list_empty(ep))
1838 list_del_init(ep->next);
1839 }
1840 }
1841
1842 for (i = 0; i < num_ports; i++) {
1843 struct xhci_tt_bw_info *tt, *n;
1844 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1845 list_del(&tt->tt_list);
1846 kfree(tt);
1847 }
1848 }
1849
1850 no_bw:
1851 xhci->num_usb2_ports = 0;
1852 xhci->num_usb3_ports = 0;
1853 xhci->num_active_eps = 0;
1854 kfree(xhci->usb2_ports);
1855 kfree(xhci->usb3_ports);
1856 kfree(xhci->port_array);
1857 kfree(xhci->rh_bw);
1858 kfree(xhci->ext_caps);
1859
1860 xhci->page_size = 0;
1861 xhci->page_shift = 0;
1862 xhci->bus_state[0].bus_suspended = 0;
1863 xhci->bus_state[1].bus_suspended = 0;
1864 }
1865
1866 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1867 struct xhci_segment *input_seg,
1868 union xhci_trb *start_trb,
1869 union xhci_trb *end_trb,
1870 dma_addr_t input_dma,
1871 struct xhci_segment *result_seg,
1872 char *test_name, int test_number)
1873 {
1874 unsigned long long start_dma;
1875 unsigned long long end_dma;
1876 struct xhci_segment *seg;
1877
1878 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1879 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1880
1881 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1882 if (seg != result_seg) {
1883 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1884 test_name, test_number);
1885 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1886 "input DMA 0x%llx\n",
1887 input_seg,
1888 (unsigned long long) input_dma);
1889 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1890 "ending TRB %p (0x%llx DMA)\n",
1891 start_trb, start_dma,
1892 end_trb, end_dma);
1893 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1894 result_seg, seg);
1895 return -1;
1896 }
1897 return 0;
1898 }
1899
1900 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1901 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1902 {
1903 struct {
1904 dma_addr_t input_dma;
1905 struct xhci_segment *result_seg;
1906 } simple_test_vector [] = {
1907 /* A zeroed DMA field should fail */
1908 { 0, NULL },
1909 /* One TRB before the ring start should fail */
1910 { xhci->event_ring->first_seg->dma - 16, NULL },
1911 /* One byte before the ring start should fail */
1912 { xhci->event_ring->first_seg->dma - 1, NULL },
1913 /* Starting TRB should succeed */
1914 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1915 /* Ending TRB should succeed */
1916 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1917 xhci->event_ring->first_seg },
1918 /* One byte after the ring end should fail */
1919 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1920 /* One TRB after the ring end should fail */
1921 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1922 /* An address of all ones should fail */
1923 { (dma_addr_t) (~0), NULL },
1924 };
1925 struct {
1926 struct xhci_segment *input_seg;
1927 union xhci_trb *start_trb;
1928 union xhci_trb *end_trb;
1929 dma_addr_t input_dma;
1930 struct xhci_segment *result_seg;
1931 } complex_test_vector [] = {
1932 /* Test feeding a valid DMA address from a different ring */
1933 { .input_seg = xhci->event_ring->first_seg,
1934 .start_trb = xhci->event_ring->first_seg->trbs,
1935 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1936 .input_dma = xhci->cmd_ring->first_seg->dma,
1937 .result_seg = NULL,
1938 },
1939 /* Test feeding a valid end TRB from a different ring */
1940 { .input_seg = xhci->event_ring->first_seg,
1941 .start_trb = xhci->event_ring->first_seg->trbs,
1942 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1943 .input_dma = xhci->cmd_ring->first_seg->dma,
1944 .result_seg = NULL,
1945 },
1946 /* Test feeding a valid start and end TRB from a different ring */
1947 { .input_seg = xhci->event_ring->first_seg,
1948 .start_trb = xhci->cmd_ring->first_seg->trbs,
1949 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1950 .input_dma = xhci->cmd_ring->first_seg->dma,
1951 .result_seg = NULL,
1952 },
1953 /* TRB in this ring, but after this TD */
1954 { .input_seg = xhci->event_ring->first_seg,
1955 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1956 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1957 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1958 .result_seg = NULL,
1959 },
1960 /* TRB in this ring, but before this TD */
1961 { .input_seg = xhci->event_ring->first_seg,
1962 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1963 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1964 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1965 .result_seg = NULL,
1966 },
1967 /* TRB in this ring, but after this wrapped TD */
1968 { .input_seg = xhci->event_ring->first_seg,
1969 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1970 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1971 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1972 .result_seg = NULL,
1973 },
1974 /* TRB in this ring, but before this wrapped TD */
1975 { .input_seg = xhci->event_ring->first_seg,
1976 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1977 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1978 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1979 .result_seg = NULL,
1980 },
1981 /* TRB not in this ring, and we have a wrapped TD */
1982 { .input_seg = xhci->event_ring->first_seg,
1983 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1984 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1985 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1986 .result_seg = NULL,
1987 },
1988 };
1989
1990 unsigned int num_tests;
1991 int i, ret;
1992
1993 num_tests = ARRAY_SIZE(simple_test_vector);
1994 for (i = 0; i < num_tests; i++) {
1995 ret = xhci_test_trb_in_td(xhci,
1996 xhci->event_ring->first_seg,
1997 xhci->event_ring->first_seg->trbs,
1998 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1999 simple_test_vector[i].input_dma,
2000 simple_test_vector[i].result_seg,
2001 "Simple", i);
2002 if (ret < 0)
2003 return ret;
2004 }
2005
2006 num_tests = ARRAY_SIZE(complex_test_vector);
2007 for (i = 0; i < num_tests; i++) {
2008 ret = xhci_test_trb_in_td(xhci,
2009 complex_test_vector[i].input_seg,
2010 complex_test_vector[i].start_trb,
2011 complex_test_vector[i].end_trb,
2012 complex_test_vector[i].input_dma,
2013 complex_test_vector[i].result_seg,
2014 "Complex", i);
2015 if (ret < 0)
2016 return ret;
2017 }
2018 xhci_dbg(xhci, "TRB math tests passed.\n");
2019 return 0;
2020 }
2021
2022 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2023 {
2024 u64 temp;
2025 dma_addr_t deq;
2026
2027 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2028 xhci->event_ring->dequeue);
2029 if (deq == 0 && !in_interrupt())
2030 xhci_warn(xhci, "WARN something wrong with SW event ring "
2031 "dequeue ptr.\n");
2032 /* Update HC event ring dequeue pointer */
2033 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2034 temp &= ERST_PTR_MASK;
2035 /* Don't clear the EHB bit (which is RW1C) because
2036 * there might be more events to service.
2037 */
2038 temp &= ~ERST_EHB;
2039 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
2040 "preserving EHB bit\n");
2041 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2042 &xhci->ir_set->erst_dequeue);
2043 }
2044
2045 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2046 __le32 __iomem *addr, u8 major_revision, int max_caps)
2047 {
2048 u32 temp, port_offset, port_count;
2049 int i;
2050
2051 if (major_revision > 0x03) {
2052 xhci_warn(xhci, "Ignoring unknown port speed, "
2053 "Ext Cap %p, revision = 0x%x\n",
2054 addr, major_revision);
2055 /* Ignoring port protocol we can't understand. FIXME */
2056 return;
2057 }
2058
2059 /* Port offset and count in the third dword, see section 7.2 */
2060 temp = xhci_readl(xhci, addr + 2);
2061 port_offset = XHCI_EXT_PORT_OFF(temp);
2062 port_count = XHCI_EXT_PORT_COUNT(temp);
2063 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
2064 "count = %u, revision = 0x%x\n",
2065 addr, port_offset, port_count, major_revision);
2066 /* Port count includes the current port offset */
2067 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2068 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2069 return;
2070
2071 /* cache usb2 port capabilities */
2072 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2073 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2074
2075 /* Check the host's USB2 LPM capability */
2076 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2077 (temp & XHCI_L1C)) {
2078 xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
2079 xhci->sw_lpm_support = 1;
2080 }
2081
2082 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2083 xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
2084 xhci->sw_lpm_support = 1;
2085 if (temp & XHCI_HLC) {
2086 xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
2087 xhci->hw_lpm_support = 1;
2088 }
2089 }
2090
2091 port_offset--;
2092 for (i = port_offset; i < (port_offset + port_count); i++) {
2093 /* Duplicate entry. Ignore the port if the revisions differ. */
2094 if (xhci->port_array[i] != 0) {
2095 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2096 " port %u\n", addr, i);
2097 xhci_warn(xhci, "Port was marked as USB %u, "
2098 "duplicated as USB %u\n",
2099 xhci->port_array[i], major_revision);
2100 /* Only adjust the roothub port counts if we haven't
2101 * found a similar duplicate.
2102 */
2103 if (xhci->port_array[i] != major_revision &&
2104 xhci->port_array[i] != DUPLICATE_ENTRY) {
2105 if (xhci->port_array[i] == 0x03)
2106 xhci->num_usb3_ports--;
2107 else
2108 xhci->num_usb2_ports--;
2109 xhci->port_array[i] = DUPLICATE_ENTRY;
2110 }
2111 /* FIXME: Should we disable the port? */
2112 continue;
2113 }
2114 xhci->port_array[i] = major_revision;
2115 if (major_revision == 0x03)
2116 xhci->num_usb3_ports++;
2117 else
2118 xhci->num_usb2_ports++;
2119 }
2120 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2121 }
2122
2123 /*
2124 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2125 * specify what speeds each port is supposed to be. We can't count on the port
2126 * speed bits in the PORTSC register being correct until a device is connected,
2127 * but we need to set up the two fake roothubs with the correct number of USB
2128 * 3.0 and USB 2.0 ports at host controller initialization time.
2129 */
2130 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2131 {
2132 __le32 __iomem *addr, *tmp_addr;
2133 u32 offset, tmp_offset;
2134 unsigned int num_ports;
2135 int i, j, port_index;
2136 int cap_count = 0;
2137
2138 addr = &xhci->cap_regs->hcc_params;
2139 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2140 if (offset == 0) {
2141 xhci_err(xhci, "No Extended Capability registers, "
2142 "unable to set up roothub.\n");
2143 return -ENODEV;
2144 }
2145
2146 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2147 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2148 if (!xhci->port_array)
2149 return -ENOMEM;
2150
2151 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2152 if (!xhci->rh_bw)
2153 return -ENOMEM;
2154 for (i = 0; i < num_ports; i++) {
2155 struct xhci_interval_bw_table *bw_table;
2156
2157 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2158 bw_table = &xhci->rh_bw[i].bw_table;
2159 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2160 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2161 }
2162
2163 /*
2164 * For whatever reason, the first capability offset is from the
2165 * capability register base, not from the HCCPARAMS register.
2166 * See section 5.3.6 for offset calculation.
2167 */
2168 addr = &xhci->cap_regs->hc_capbase + offset;
2169
2170 tmp_addr = addr;
2171 tmp_offset = offset;
2172
2173 /* count extended protocol capability entries for later caching */
2174 do {
2175 u32 cap_id;
2176 cap_id = xhci_readl(xhci, tmp_addr);
2177 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2178 cap_count++;
2179 tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2180 tmp_addr += tmp_offset;
2181 } while (tmp_offset);
2182
2183 xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2184 if (!xhci->ext_caps)
2185 return -ENOMEM;
2186
2187 while (1) {
2188 u32 cap_id;
2189
2190 cap_id = xhci_readl(xhci, addr);
2191 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2192 xhci_add_in_port(xhci, num_ports, addr,
2193 (u8) XHCI_EXT_PORT_MAJOR(cap_id),
2194 cap_count);
2195 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2196 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2197 == num_ports)
2198 break;
2199 /*
2200 * Once you're into the Extended Capabilities, the offset is
2201 * always relative to the register holding the offset.
2202 */
2203 addr += offset;
2204 }
2205
2206 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2207 xhci_warn(xhci, "No ports on the roothubs?\n");
2208 return -ENODEV;
2209 }
2210 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2211 xhci->num_usb2_ports, xhci->num_usb3_ports);
2212
2213 /* Place limits on the number of roothub ports so that the hub
2214 * descriptors aren't longer than the USB core will allocate.
2215 */
2216 if (xhci->num_usb3_ports > 15) {
2217 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2218 xhci->num_usb3_ports = 15;
2219 }
2220 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2221 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2222 USB_MAXCHILDREN);
2223 xhci->num_usb2_ports = USB_MAXCHILDREN;
2224 }
2225
2226 /*
2227 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2228 * Not sure how the USB core will handle a hub with no ports...
2229 */
2230 if (xhci->num_usb2_ports) {
2231 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2232 xhci->num_usb2_ports, flags);
2233 if (!xhci->usb2_ports)
2234 return -ENOMEM;
2235
2236 port_index = 0;
2237 for (i = 0; i < num_ports; i++) {
2238 if (xhci->port_array[i] == 0x03 ||
2239 xhci->port_array[i] == 0 ||
2240 xhci->port_array[i] == DUPLICATE_ENTRY)
2241 continue;
2242
2243 xhci->usb2_ports[port_index] =
2244 &xhci->op_regs->port_status_base +
2245 NUM_PORT_REGS*i;
2246 xhci_dbg(xhci, "USB 2.0 port at index %u, "
2247 "addr = %p\n", i,
2248 xhci->usb2_ports[port_index]);
2249 port_index++;
2250 if (port_index == xhci->num_usb2_ports)
2251 break;
2252 }
2253 }
2254 if (xhci->num_usb3_ports) {
2255 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2256 xhci->num_usb3_ports, flags);
2257 if (!xhci->usb3_ports)
2258 return -ENOMEM;
2259
2260 port_index = 0;
2261 for (i = 0; i < num_ports; i++)
2262 if (xhci->port_array[i] == 0x03) {
2263 xhci->usb3_ports[port_index] =
2264 &xhci->op_regs->port_status_base +
2265 NUM_PORT_REGS*i;
2266 xhci_dbg(xhci, "USB 3.0 port at index %u, "
2267 "addr = %p\n", i,
2268 xhci->usb3_ports[port_index]);
2269 port_index++;
2270 if (port_index == xhci->num_usb3_ports)
2271 break;
2272 }
2273 }
2274 return 0;
2275 }
2276
2277 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2278 {
2279 dma_addr_t dma;
2280 struct device *dev = xhci_to_hcd(xhci)->self.controller;
2281 unsigned int val, val2;
2282 u64 val_64;
2283 struct xhci_segment *seg;
2284 u32 page_size, temp;
2285 int i;
2286
2287 INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2288 INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2289
2290 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2291 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2292 for (i = 0; i < 16; i++) {
2293 if ((0x1 & page_size) != 0)
2294 break;
2295 page_size = page_size >> 1;
2296 }
2297 if (i < 16)
2298 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2299 else
2300 xhci_warn(xhci, "WARN: no supported page size\n");
2301 /* Use 4K pages, since that's common and the minimum the HC supports */
2302 xhci->page_shift = 12;
2303 xhci->page_size = 1 << xhci->page_shift;
2304 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2305
2306 /*
2307 * Program the Number of Device Slots Enabled field in the CONFIG
2308 * register with the max value of slots the HC can handle.
2309 */
2310 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2311 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2312 (unsigned int) val);
2313 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2314 val |= (val2 & ~HCS_SLOTS_MASK);
2315 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2316 (unsigned int) val);
2317 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2318
2319 /*
2320 * Section 5.4.8 - doorbell array must be
2321 * "physically contiguous and 64-byte (cache line) aligned".
2322 */
2323 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2324 GFP_KERNEL);
2325 if (!xhci->dcbaa)
2326 goto fail;
2327 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2328 xhci->dcbaa->dma = dma;
2329 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2330 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2331 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2332
2333 /*
2334 * Initialize the ring segment pool. The ring must be a contiguous
2335 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2336 * however, the command ring segment needs 64-byte aligned segments,
2337 * so we pick the greater alignment need.
2338 */
2339 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2340 TRB_SEGMENT_SIZE, 64, xhci->page_size);
2341
2342 /* See Table 46 and Note on Figure 55 */
2343 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2344 2112, 64, xhci->page_size);
2345 if (!xhci->segment_pool || !xhci->device_pool)
2346 goto fail;
2347
2348 /* Linear stream context arrays don't have any boundary restrictions,
2349 * and only need to be 16-byte aligned.
2350 */
2351 xhci->small_streams_pool =
2352 dma_pool_create("xHCI 256 byte stream ctx arrays",
2353 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2354 xhci->medium_streams_pool =
2355 dma_pool_create("xHCI 1KB stream ctx arrays",
2356 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2357 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2358 * will be allocated with dma_alloc_coherent()
2359 */
2360
2361 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2362 goto fail;
2363
2364 /* Set up the command ring to have one segments for now. */
2365 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2366 if (!xhci->cmd_ring)
2367 goto fail;
2368 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2369 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2370 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2371
2372 /* Set the address in the Command Ring Control register */
2373 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2374 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2375 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2376 xhci->cmd_ring->cycle_state;
2377 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2378 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2379 xhci_dbg_cmd_ptrs(xhci);
2380
2381 xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2382 if (!xhci->lpm_command)
2383 goto fail;
2384
2385 /* Reserve one command ring TRB for disabling LPM.
2386 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2387 * disabling LPM, we only need to reserve one TRB for all devices.
2388 */
2389 xhci->cmd_ring_reserved_trbs++;
2390
2391 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2392 val &= DBOFF_MASK;
2393 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2394 " from cap regs base addr\n", val);
2395 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2396 xhci_dbg_regs(xhci);
2397 xhci_print_run_regs(xhci);
2398 /* Set ir_set to interrupt register set 0 */
2399 xhci->ir_set = &xhci->run_regs->ir_set[0];
2400
2401 /*
2402 * Event ring setup: Allocate a normal ring, but also setup
2403 * the event ring segment table (ERST). Section 4.9.3.
2404 */
2405 xhci_dbg(xhci, "// Allocating event ring\n");
2406 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2407 flags);
2408 if (!xhci->event_ring)
2409 goto fail;
2410 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2411 goto fail;
2412
2413 xhci->erst.entries = dma_alloc_coherent(dev,
2414 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2415 GFP_KERNEL);
2416 if (!xhci->erst.entries)
2417 goto fail;
2418 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2419 (unsigned long long)dma);
2420
2421 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2422 xhci->erst.num_entries = ERST_NUM_SEGS;
2423 xhci->erst.erst_dma_addr = dma;
2424 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2425 xhci->erst.num_entries,
2426 xhci->erst.entries,
2427 (unsigned long long)xhci->erst.erst_dma_addr);
2428
2429 /* set ring base address and size for each segment table entry */
2430 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2431 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2432 entry->seg_addr = cpu_to_le64(seg->dma);
2433 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2434 entry->rsvd = 0;
2435 seg = seg->next;
2436 }
2437
2438 /* set ERST count with the number of entries in the segment table */
2439 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2440 val &= ERST_SIZE_MASK;
2441 val |= ERST_NUM_SEGS;
2442 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2443 val);
2444 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2445
2446 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2447 /* set the segment table base address */
2448 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2449 (unsigned long long)xhci->erst.erst_dma_addr);
2450 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2451 val_64 &= ERST_PTR_MASK;
2452 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2453 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2454
2455 /* Set the event ring dequeue address */
2456 xhci_set_hc_event_deq(xhci);
2457 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2458 xhci_print_ir_set(xhci, 0);
2459
2460 /*
2461 * XXX: Might need to set the Interrupter Moderation Register to
2462 * something other than the default (~1ms minimum between interrupts).
2463 * See section 5.5.1.2.
2464 */
2465 init_completion(&xhci->addr_dev);
2466 for (i = 0; i < MAX_HC_SLOTS; ++i)
2467 xhci->devs[i] = NULL;
2468 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2469 xhci->bus_state[0].resume_done[i] = 0;
2470 xhci->bus_state[1].resume_done[i] = 0;
2471 }
2472
2473 if (scratchpad_alloc(xhci, flags))
2474 goto fail;
2475 if (xhci_setup_port_arrays(xhci, flags))
2476 goto fail;
2477
2478 /* Enable USB 3.0 device notifications for function remote wake, which
2479 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2480 * U3 (device suspend).
2481 */
2482 temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2483 temp &= ~DEV_NOTE_MASK;
2484 temp |= DEV_NOTE_FWAKE;
2485 xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2486
2487 return 0;
2488
2489 fail:
2490 xhci_warn(xhci, "Couldn't initialize memory\n");
2491 xhci_halt(xhci);
2492 xhci_reset(xhci);
2493 xhci_mem_cleanup(xhci);
2494 return -ENOMEM;
2495 }
This page took 0.122386 seconds and 5 git commands to generate.