xHCI: set link state
[deliverable/linux.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 struct xhci_virt_device *virt_dev,
73 struct xhci_event_cmd *event);
74
75 /*
76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77 * address of the TRB.
78 */
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 union xhci_trb *trb)
81 {
82 unsigned long segment_offset;
83
84 if (!seg || !trb || trb < seg->trbs)
85 return 0;
86 /* offset in TRBs */
87 segment_offset = trb - seg->trbs;
88 if (segment_offset > TRBS_PER_SEGMENT)
89 return 0;
90 return seg->dma + (segment_offset * sizeof(*trb));
91 }
92
93 /* Does this link TRB point to the first segment in a ring,
94 * or was the previous TRB the last TRB on the last segment in the ERST?
95 */
96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 struct xhci_segment *seg, union xhci_trb *trb)
98 {
99 if (ring == xhci->event_ring)
100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 (seg->next == xhci->event_ring->first_seg);
102 else
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
104 }
105
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107 * segment? I.e. would the updated event TRB pointer step off the end of the
108 * event seg?
109 */
110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 struct xhci_segment *seg, union xhci_trb *trb)
112 {
113 if (ring == xhci->event_ring)
114 return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 else
116 return TRB_TYPE_LINK_LE32(trb->link.control);
117 }
118
119 static int enqueue_is_link_trb(struct xhci_ring *ring)
120 {
121 struct xhci_link_trb *link = &ring->enqueue->link;
122 return TRB_TYPE_LINK_LE32(link->control);
123 }
124
125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
126 * TRB is in a new segment. This does not skip over link TRBs, and it does not
127 * effect the ring dequeue or enqueue pointers.
128 */
129 static void next_trb(struct xhci_hcd *xhci,
130 struct xhci_ring *ring,
131 struct xhci_segment **seg,
132 union xhci_trb **trb)
133 {
134 if (last_trb(xhci, ring, *seg, *trb)) {
135 *seg = (*seg)->next;
136 *trb = ((*seg)->trbs);
137 } else {
138 (*trb)++;
139 }
140 }
141
142 /*
143 * See Cycle bit rules. SW is the consumer for the event ring only.
144 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
145 */
146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer)
147 {
148 union xhci_trb *next = ++(ring->dequeue);
149 unsigned long long addr;
150
151 ring->deq_updates++;
152 /* Update the dequeue pointer further if that was a link TRB or we're at
153 * the end of an event ring segment (which doesn't have link TRBS)
154 */
155 while (last_trb(xhci, ring, ring->deq_seg, next)) {
156 if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) {
157 ring->cycle_state = (ring->cycle_state ? 0 : 1);
158 if (!in_interrupt())
159 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
160 ring,
161 (unsigned int) ring->cycle_state);
162 }
163 ring->deq_seg = ring->deq_seg->next;
164 ring->dequeue = ring->deq_seg->trbs;
165 next = ring->dequeue;
166 }
167 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
168 }
169
170 /*
171 * See Cycle bit rules. SW is the consumer for the event ring only.
172 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
173 *
174 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
175 * chain bit is set), then set the chain bit in all the following link TRBs.
176 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
177 * have their chain bit cleared (so that each Link TRB is a separate TD).
178 *
179 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
180 * set, but other sections talk about dealing with the chain bit set. This was
181 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
182 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
183 *
184 * @more_trbs_coming: Will you enqueue more TRBs before calling
185 * prepare_transfer()?
186 */
187 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
188 bool consumer, bool more_trbs_coming)
189 {
190 u32 chain;
191 union xhci_trb *next;
192 unsigned long long addr;
193
194 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
195 next = ++(ring->enqueue);
196
197 ring->enq_updates++;
198 /* Update the dequeue pointer further if that was a link TRB or we're at
199 * the end of an event ring segment (which doesn't have link TRBS)
200 */
201 while (last_trb(xhci, ring, ring->enq_seg, next)) {
202 if (!consumer) {
203 if (ring != xhci->event_ring) {
204 /*
205 * If the caller doesn't plan on enqueueing more
206 * TDs before ringing the doorbell, then we
207 * don't want to give the link TRB to the
208 * hardware just yet. We'll give the link TRB
209 * back in prepare_ring() just before we enqueue
210 * the TD at the top of the ring.
211 */
212 if (!chain && !more_trbs_coming)
213 break;
214
215 /* If we're not dealing with 0.95 hardware,
216 * carry over the chain bit of the previous TRB
217 * (which may mean the chain bit is cleared).
218 */
219 if (!xhci_link_trb_quirk(xhci)) {
220 next->link.control &=
221 cpu_to_le32(~TRB_CHAIN);
222 next->link.control |=
223 cpu_to_le32(chain);
224 }
225 /* Give this link TRB to the hardware */
226 wmb();
227 next->link.control ^= cpu_to_le32(TRB_CYCLE);
228 }
229 /* Toggle the cycle bit after the last ring segment. */
230 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
231 ring->cycle_state = (ring->cycle_state ? 0 : 1);
232 if (!in_interrupt())
233 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
234 ring,
235 (unsigned int) ring->cycle_state);
236 }
237 }
238 ring->enq_seg = ring->enq_seg->next;
239 ring->enqueue = ring->enq_seg->trbs;
240 next = ring->enqueue;
241 }
242 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
243 }
244
245 /*
246 * Check to see if there's room to enqueue num_trbs on the ring. See rules
247 * above.
248 * FIXME: this would be simpler and faster if we just kept track of the number
249 * of free TRBs in a ring.
250 */
251 static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
252 unsigned int num_trbs)
253 {
254 int i;
255 union xhci_trb *enq = ring->enqueue;
256 struct xhci_segment *enq_seg = ring->enq_seg;
257 struct xhci_segment *cur_seg;
258 unsigned int left_on_ring;
259
260 /* If we are currently pointing to a link TRB, advance the
261 * enqueue pointer before checking for space */
262 while (last_trb(xhci, ring, enq_seg, enq)) {
263 enq_seg = enq_seg->next;
264 enq = enq_seg->trbs;
265 }
266
267 /* Check if ring is empty */
268 if (enq == ring->dequeue) {
269 /* Can't use link trbs */
270 left_on_ring = TRBS_PER_SEGMENT - 1;
271 for (cur_seg = enq_seg->next; cur_seg != enq_seg;
272 cur_seg = cur_seg->next)
273 left_on_ring += TRBS_PER_SEGMENT - 1;
274
275 /* Always need one TRB free in the ring. */
276 left_on_ring -= 1;
277 if (num_trbs > left_on_ring) {
278 xhci_warn(xhci, "Not enough room on ring; "
279 "need %u TRBs, %u TRBs left\n",
280 num_trbs, left_on_ring);
281 return 0;
282 }
283 return 1;
284 }
285 /* Make sure there's an extra empty TRB available */
286 for (i = 0; i <= num_trbs; ++i) {
287 if (enq == ring->dequeue)
288 return 0;
289 enq++;
290 while (last_trb(xhci, ring, enq_seg, enq)) {
291 enq_seg = enq_seg->next;
292 enq = enq_seg->trbs;
293 }
294 }
295 return 1;
296 }
297
298 /* Ring the host controller doorbell after placing a command on the ring */
299 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
300 {
301 xhci_dbg(xhci, "// Ding dong!\n");
302 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
303 /* Flush PCI posted writes */
304 xhci_readl(xhci, &xhci->dba->doorbell[0]);
305 }
306
307 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
308 unsigned int slot_id,
309 unsigned int ep_index,
310 unsigned int stream_id)
311 {
312 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
313 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
314 unsigned int ep_state = ep->ep_state;
315
316 /* Don't ring the doorbell for this endpoint if there are pending
317 * cancellations because we don't want to interrupt processing.
318 * We don't want to restart any stream rings if there's a set dequeue
319 * pointer command pending because the device can choose to start any
320 * stream once the endpoint is on the HW schedule.
321 * FIXME - check all the stream rings for pending cancellations.
322 */
323 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
324 (ep_state & EP_HALTED))
325 return;
326 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
327 /* The CPU has better things to do at this point than wait for a
328 * write-posting flush. It'll get there soon enough.
329 */
330 }
331
332 /* Ring the doorbell for any rings with pending URBs */
333 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
334 unsigned int slot_id,
335 unsigned int ep_index)
336 {
337 unsigned int stream_id;
338 struct xhci_virt_ep *ep;
339
340 ep = &xhci->devs[slot_id]->eps[ep_index];
341
342 /* A ring has pending URBs if its TD list is not empty */
343 if (!(ep->ep_state & EP_HAS_STREAMS)) {
344 if (!(list_empty(&ep->ring->td_list)))
345 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
346 return;
347 }
348
349 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
350 stream_id++) {
351 struct xhci_stream_info *stream_info = ep->stream_info;
352 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
353 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
354 stream_id);
355 }
356 }
357
358 /*
359 * Find the segment that trb is in. Start searching in start_seg.
360 * If we must move past a segment that has a link TRB with a toggle cycle state
361 * bit set, then we will toggle the value pointed at by cycle_state.
362 */
363 static struct xhci_segment *find_trb_seg(
364 struct xhci_segment *start_seg,
365 union xhci_trb *trb, int *cycle_state)
366 {
367 struct xhci_segment *cur_seg = start_seg;
368 struct xhci_generic_trb *generic_trb;
369
370 while (cur_seg->trbs > trb ||
371 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
372 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
373 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
374 *cycle_state ^= 0x1;
375 cur_seg = cur_seg->next;
376 if (cur_seg == start_seg)
377 /* Looped over the entire list. Oops! */
378 return NULL;
379 }
380 return cur_seg;
381 }
382
383
384 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
385 unsigned int slot_id, unsigned int ep_index,
386 unsigned int stream_id)
387 {
388 struct xhci_virt_ep *ep;
389
390 ep = &xhci->devs[slot_id]->eps[ep_index];
391 /* Common case: no streams */
392 if (!(ep->ep_state & EP_HAS_STREAMS))
393 return ep->ring;
394
395 if (stream_id == 0) {
396 xhci_warn(xhci,
397 "WARN: Slot ID %u, ep index %u has streams, "
398 "but URB has no stream ID.\n",
399 slot_id, ep_index);
400 return NULL;
401 }
402
403 if (stream_id < ep->stream_info->num_streams)
404 return ep->stream_info->stream_rings[stream_id];
405
406 xhci_warn(xhci,
407 "WARN: Slot ID %u, ep index %u has "
408 "stream IDs 1 to %u allocated, "
409 "but stream ID %u is requested.\n",
410 slot_id, ep_index,
411 ep->stream_info->num_streams - 1,
412 stream_id);
413 return NULL;
414 }
415
416 /* Get the right ring for the given URB.
417 * If the endpoint supports streams, boundary check the URB's stream ID.
418 * If the endpoint doesn't support streams, return the singular endpoint ring.
419 */
420 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
421 struct urb *urb)
422 {
423 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
424 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
425 }
426
427 /*
428 * Move the xHC's endpoint ring dequeue pointer past cur_td.
429 * Record the new state of the xHC's endpoint ring dequeue segment,
430 * dequeue pointer, and new consumer cycle state in state.
431 * Update our internal representation of the ring's dequeue pointer.
432 *
433 * We do this in three jumps:
434 * - First we update our new ring state to be the same as when the xHC stopped.
435 * - Then we traverse the ring to find the segment that contains
436 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
437 * any link TRBs with the toggle cycle bit set.
438 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
439 * if we've moved it past a link TRB with the toggle cycle bit set.
440 *
441 * Some of the uses of xhci_generic_trb are grotty, but if they're done
442 * with correct __le32 accesses they should work fine. Only users of this are
443 * in here.
444 */
445 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
446 unsigned int slot_id, unsigned int ep_index,
447 unsigned int stream_id, struct xhci_td *cur_td,
448 struct xhci_dequeue_state *state)
449 {
450 struct xhci_virt_device *dev = xhci->devs[slot_id];
451 struct xhci_ring *ep_ring;
452 struct xhci_generic_trb *trb;
453 struct xhci_ep_ctx *ep_ctx;
454 dma_addr_t addr;
455
456 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
457 ep_index, stream_id);
458 if (!ep_ring) {
459 xhci_warn(xhci, "WARN can't find new dequeue state "
460 "for invalid stream ID %u.\n",
461 stream_id);
462 return;
463 }
464 state->new_cycle_state = 0;
465 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
466 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
467 dev->eps[ep_index].stopped_trb,
468 &state->new_cycle_state);
469 if (!state->new_deq_seg) {
470 WARN_ON(1);
471 return;
472 }
473
474 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
475 xhci_dbg(xhci, "Finding endpoint context\n");
476 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
477 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
478
479 state->new_deq_ptr = cur_td->last_trb;
480 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
481 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
482 state->new_deq_ptr,
483 &state->new_cycle_state);
484 if (!state->new_deq_seg) {
485 WARN_ON(1);
486 return;
487 }
488
489 trb = &state->new_deq_ptr->generic;
490 if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
491 (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
492 state->new_cycle_state ^= 0x1;
493 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
494
495 /*
496 * If there is only one segment in a ring, find_trb_seg()'s while loop
497 * will not run, and it will return before it has a chance to see if it
498 * needs to toggle the cycle bit. It can't tell if the stalled transfer
499 * ended just before the link TRB on a one-segment ring, or if the TD
500 * wrapped around the top of the ring, because it doesn't have the TD in
501 * question. Look for the one-segment case where stalled TRB's address
502 * is greater than the new dequeue pointer address.
503 */
504 if (ep_ring->first_seg == ep_ring->first_seg->next &&
505 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
506 state->new_cycle_state ^= 0x1;
507 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
508
509 /* Don't update the ring cycle state for the producer (us). */
510 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
511 state->new_deq_seg);
512 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
513 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
514 (unsigned long long) addr);
515 }
516
517 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
518 * (The last TRB actually points to the ring enqueue pointer, which is not part
519 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
520 */
521 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
522 struct xhci_td *cur_td, bool flip_cycle)
523 {
524 struct xhci_segment *cur_seg;
525 union xhci_trb *cur_trb;
526
527 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
528 true;
529 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
530 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
531 /* Unchain any chained Link TRBs, but
532 * leave the pointers intact.
533 */
534 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
535 /* Flip the cycle bit (link TRBs can't be the first
536 * or last TRB).
537 */
538 if (flip_cycle)
539 cur_trb->generic.field[3] ^=
540 cpu_to_le32(TRB_CYCLE);
541 xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
542 xhci_dbg(xhci, "Address = %p (0x%llx dma); "
543 "in seg %p (0x%llx dma)\n",
544 cur_trb,
545 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
546 cur_seg,
547 (unsigned long long)cur_seg->dma);
548 } else {
549 cur_trb->generic.field[0] = 0;
550 cur_trb->generic.field[1] = 0;
551 cur_trb->generic.field[2] = 0;
552 /* Preserve only the cycle bit of this TRB */
553 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
554 /* Flip the cycle bit except on the first or last TRB */
555 if (flip_cycle && cur_trb != cur_td->first_trb &&
556 cur_trb != cur_td->last_trb)
557 cur_trb->generic.field[3] ^=
558 cpu_to_le32(TRB_CYCLE);
559 cur_trb->generic.field[3] |= cpu_to_le32(
560 TRB_TYPE(TRB_TR_NOOP));
561 xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) "
562 "in seg %p (0x%llx dma)\n",
563 cur_trb,
564 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
565 cur_seg,
566 (unsigned long long)cur_seg->dma);
567 }
568 if (cur_trb == cur_td->last_trb)
569 break;
570 }
571 }
572
573 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
574 unsigned int ep_index, unsigned int stream_id,
575 struct xhci_segment *deq_seg,
576 union xhci_trb *deq_ptr, u32 cycle_state);
577
578 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
579 unsigned int slot_id, unsigned int ep_index,
580 unsigned int stream_id,
581 struct xhci_dequeue_state *deq_state)
582 {
583 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
584
585 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
586 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
587 deq_state->new_deq_seg,
588 (unsigned long long)deq_state->new_deq_seg->dma,
589 deq_state->new_deq_ptr,
590 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
591 deq_state->new_cycle_state);
592 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
593 deq_state->new_deq_seg,
594 deq_state->new_deq_ptr,
595 (u32) deq_state->new_cycle_state);
596 /* Stop the TD queueing code from ringing the doorbell until
597 * this command completes. The HC won't set the dequeue pointer
598 * if the ring is running, and ringing the doorbell starts the
599 * ring running.
600 */
601 ep->ep_state |= SET_DEQ_PENDING;
602 }
603
604 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
605 struct xhci_virt_ep *ep)
606 {
607 ep->ep_state &= ~EP_HALT_PENDING;
608 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
609 * timer is running on another CPU, we don't decrement stop_cmds_pending
610 * (since we didn't successfully stop the watchdog timer).
611 */
612 if (del_timer(&ep->stop_cmd_timer))
613 ep->stop_cmds_pending--;
614 }
615
616 /* Must be called with xhci->lock held in interrupt context */
617 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
618 struct xhci_td *cur_td, int status, char *adjective)
619 {
620 struct usb_hcd *hcd;
621 struct urb *urb;
622 struct urb_priv *urb_priv;
623
624 urb = cur_td->urb;
625 urb_priv = urb->hcpriv;
626 urb_priv->td_cnt++;
627 hcd = bus_to_hcd(urb->dev->bus);
628
629 /* Only giveback urb when this is the last td in urb */
630 if (urb_priv->td_cnt == urb_priv->length) {
631 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
632 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
633 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
634 if (xhci->quirks & XHCI_AMD_PLL_FIX)
635 usb_amd_quirk_pll_enable();
636 }
637 }
638 usb_hcd_unlink_urb_from_ep(hcd, urb);
639
640 spin_unlock(&xhci->lock);
641 usb_hcd_giveback_urb(hcd, urb, status);
642 xhci_urb_free_priv(xhci, urb_priv);
643 spin_lock(&xhci->lock);
644 }
645 }
646
647 /*
648 * When we get a command completion for a Stop Endpoint Command, we need to
649 * unlink any cancelled TDs from the ring. There are two ways to do that:
650 *
651 * 1. If the HW was in the middle of processing the TD that needs to be
652 * cancelled, then we must move the ring's dequeue pointer past the last TRB
653 * in the TD with a Set Dequeue Pointer Command.
654 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
655 * bit cleared) so that the HW will skip over them.
656 */
657 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
658 union xhci_trb *trb, struct xhci_event_cmd *event)
659 {
660 unsigned int slot_id;
661 unsigned int ep_index;
662 struct xhci_virt_device *virt_dev;
663 struct xhci_ring *ep_ring;
664 struct xhci_virt_ep *ep;
665 struct list_head *entry;
666 struct xhci_td *cur_td = NULL;
667 struct xhci_td *last_unlinked_td;
668
669 struct xhci_dequeue_state deq_state;
670
671 if (unlikely(TRB_TO_SUSPEND_PORT(
672 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
673 slot_id = TRB_TO_SLOT_ID(
674 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
675 virt_dev = xhci->devs[slot_id];
676 if (virt_dev)
677 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
678 event);
679 else
680 xhci_warn(xhci, "Stop endpoint command "
681 "completion for disabled slot %u\n",
682 slot_id);
683 return;
684 }
685
686 memset(&deq_state, 0, sizeof(deq_state));
687 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
688 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
689 ep = &xhci->devs[slot_id]->eps[ep_index];
690
691 if (list_empty(&ep->cancelled_td_list)) {
692 xhci_stop_watchdog_timer_in_irq(xhci, ep);
693 ep->stopped_td = NULL;
694 ep->stopped_trb = NULL;
695 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
696 return;
697 }
698
699 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
700 * We have the xHCI lock, so nothing can modify this list until we drop
701 * it. We're also in the event handler, so we can't get re-interrupted
702 * if another Stop Endpoint command completes
703 */
704 list_for_each(entry, &ep->cancelled_td_list) {
705 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
706 xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n",
707 cur_td->first_trb,
708 (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb));
709 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
710 if (!ep_ring) {
711 /* This shouldn't happen unless a driver is mucking
712 * with the stream ID after submission. This will
713 * leave the TD on the hardware ring, and the hardware
714 * will try to execute it, and may access a buffer
715 * that has already been freed. In the best case, the
716 * hardware will execute it, and the event handler will
717 * ignore the completion event for that TD, since it was
718 * removed from the td_list for that endpoint. In
719 * short, don't muck with the stream ID after
720 * submission.
721 */
722 xhci_warn(xhci, "WARN Cancelled URB %p "
723 "has invalid stream ID %u.\n",
724 cur_td->urb,
725 cur_td->urb->stream_id);
726 goto remove_finished_td;
727 }
728 /*
729 * If we stopped on the TD we need to cancel, then we have to
730 * move the xHC endpoint ring dequeue pointer past this TD.
731 */
732 if (cur_td == ep->stopped_td)
733 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
734 cur_td->urb->stream_id,
735 cur_td, &deq_state);
736 else
737 td_to_noop(xhci, ep_ring, cur_td, false);
738 remove_finished_td:
739 /*
740 * The event handler won't see a completion for this TD anymore,
741 * so remove it from the endpoint ring's TD list. Keep it in
742 * the cancelled TD list for URB completion later.
743 */
744 list_del_init(&cur_td->td_list);
745 }
746 last_unlinked_td = cur_td;
747 xhci_stop_watchdog_timer_in_irq(xhci, ep);
748
749 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
750 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
751 xhci_queue_new_dequeue_state(xhci,
752 slot_id, ep_index,
753 ep->stopped_td->urb->stream_id,
754 &deq_state);
755 xhci_ring_cmd_db(xhci);
756 } else {
757 /* Otherwise ring the doorbell(s) to restart queued transfers */
758 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
759 }
760 ep->stopped_td = NULL;
761 ep->stopped_trb = NULL;
762
763 /*
764 * Drop the lock and complete the URBs in the cancelled TD list.
765 * New TDs to be cancelled might be added to the end of the list before
766 * we can complete all the URBs for the TDs we already unlinked.
767 * So stop when we've completed the URB for the last TD we unlinked.
768 */
769 do {
770 cur_td = list_entry(ep->cancelled_td_list.next,
771 struct xhci_td, cancelled_td_list);
772 list_del_init(&cur_td->cancelled_td_list);
773
774 /* Clean up the cancelled URB */
775 /* Doesn't matter what we pass for status, since the core will
776 * just overwrite it (because the URB has been unlinked).
777 */
778 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
779
780 /* Stop processing the cancelled list if the watchdog timer is
781 * running.
782 */
783 if (xhci->xhc_state & XHCI_STATE_DYING)
784 return;
785 } while (cur_td != last_unlinked_td);
786
787 /* Return to the event handler with xhci->lock re-acquired */
788 }
789
790 /* Watchdog timer function for when a stop endpoint command fails to complete.
791 * In this case, we assume the host controller is broken or dying or dead. The
792 * host may still be completing some other events, so we have to be careful to
793 * let the event ring handler and the URB dequeueing/enqueueing functions know
794 * through xhci->state.
795 *
796 * The timer may also fire if the host takes a very long time to respond to the
797 * command, and the stop endpoint command completion handler cannot delete the
798 * timer before the timer function is called. Another endpoint cancellation may
799 * sneak in before the timer function can grab the lock, and that may queue
800 * another stop endpoint command and add the timer back. So we cannot use a
801 * simple flag to say whether there is a pending stop endpoint command for a
802 * particular endpoint.
803 *
804 * Instead we use a combination of that flag and a counter for the number of
805 * pending stop endpoint commands. If the timer is the tail end of the last
806 * stop endpoint command, and the endpoint's command is still pending, we assume
807 * the host is dying.
808 */
809 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
810 {
811 struct xhci_hcd *xhci;
812 struct xhci_virt_ep *ep;
813 struct xhci_virt_ep *temp_ep;
814 struct xhci_ring *ring;
815 struct xhci_td *cur_td;
816 int ret, i, j;
817
818 ep = (struct xhci_virt_ep *) arg;
819 xhci = ep->xhci;
820
821 spin_lock(&xhci->lock);
822
823 ep->stop_cmds_pending--;
824 if (xhci->xhc_state & XHCI_STATE_DYING) {
825 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
826 "xHCI as DYING, exiting.\n");
827 spin_unlock(&xhci->lock);
828 return;
829 }
830 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
831 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
832 "exiting.\n");
833 spin_unlock(&xhci->lock);
834 return;
835 }
836
837 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
838 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
839 /* Oops, HC is dead or dying or at least not responding to the stop
840 * endpoint command.
841 */
842 xhci->xhc_state |= XHCI_STATE_DYING;
843 /* Disable interrupts from the host controller and start halting it */
844 xhci_quiesce(xhci);
845 spin_unlock(&xhci->lock);
846
847 ret = xhci_halt(xhci);
848
849 spin_lock(&xhci->lock);
850 if (ret < 0) {
851 /* This is bad; the host is not responding to commands and it's
852 * not allowing itself to be halted. At least interrupts are
853 * disabled. If we call usb_hc_died(), it will attempt to
854 * disconnect all device drivers under this host. Those
855 * disconnect() methods will wait for all URBs to be unlinked,
856 * so we must complete them.
857 */
858 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
859 xhci_warn(xhci, "Completing active URBs anyway.\n");
860 /* We could turn all TDs on the rings to no-ops. This won't
861 * help if the host has cached part of the ring, and is slow if
862 * we want to preserve the cycle bit. Skip it and hope the host
863 * doesn't touch the memory.
864 */
865 }
866 for (i = 0; i < MAX_HC_SLOTS; i++) {
867 if (!xhci->devs[i])
868 continue;
869 for (j = 0; j < 31; j++) {
870 temp_ep = &xhci->devs[i]->eps[j];
871 ring = temp_ep->ring;
872 if (!ring)
873 continue;
874 xhci_dbg(xhci, "Killing URBs for slot ID %u, "
875 "ep index %u\n", i, j);
876 while (!list_empty(&ring->td_list)) {
877 cur_td = list_first_entry(&ring->td_list,
878 struct xhci_td,
879 td_list);
880 list_del_init(&cur_td->td_list);
881 if (!list_empty(&cur_td->cancelled_td_list))
882 list_del_init(&cur_td->cancelled_td_list);
883 xhci_giveback_urb_in_irq(xhci, cur_td,
884 -ESHUTDOWN, "killed");
885 }
886 while (!list_empty(&temp_ep->cancelled_td_list)) {
887 cur_td = list_first_entry(
888 &temp_ep->cancelled_td_list,
889 struct xhci_td,
890 cancelled_td_list);
891 list_del_init(&cur_td->cancelled_td_list);
892 xhci_giveback_urb_in_irq(xhci, cur_td,
893 -ESHUTDOWN, "killed");
894 }
895 }
896 }
897 spin_unlock(&xhci->lock);
898 xhci_dbg(xhci, "Calling usb_hc_died()\n");
899 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
900 xhci_dbg(xhci, "xHCI host controller is dead.\n");
901 }
902
903 /*
904 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
905 * we need to clear the set deq pending flag in the endpoint ring state, so that
906 * the TD queueing code can ring the doorbell again. We also need to ring the
907 * endpoint doorbell to restart the ring, but only if there aren't more
908 * cancellations pending.
909 */
910 static void handle_set_deq_completion(struct xhci_hcd *xhci,
911 struct xhci_event_cmd *event,
912 union xhci_trb *trb)
913 {
914 unsigned int slot_id;
915 unsigned int ep_index;
916 unsigned int stream_id;
917 struct xhci_ring *ep_ring;
918 struct xhci_virt_device *dev;
919 struct xhci_ep_ctx *ep_ctx;
920 struct xhci_slot_ctx *slot_ctx;
921
922 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
923 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
924 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
925 dev = xhci->devs[slot_id];
926
927 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
928 if (!ep_ring) {
929 xhci_warn(xhci, "WARN Set TR deq ptr command for "
930 "freed stream ID %u\n",
931 stream_id);
932 /* XXX: Harmless??? */
933 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
934 return;
935 }
936
937 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
938 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
939
940 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
941 unsigned int ep_state;
942 unsigned int slot_state;
943
944 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
945 case COMP_TRB_ERR:
946 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
947 "of stream ID configuration\n");
948 break;
949 case COMP_CTX_STATE:
950 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
951 "to incorrect slot or ep state.\n");
952 ep_state = le32_to_cpu(ep_ctx->ep_info);
953 ep_state &= EP_STATE_MASK;
954 slot_state = le32_to_cpu(slot_ctx->dev_state);
955 slot_state = GET_SLOT_STATE(slot_state);
956 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
957 slot_state, ep_state);
958 break;
959 case COMP_EBADSLT:
960 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
961 "slot %u was not enabled.\n", slot_id);
962 break;
963 default:
964 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
965 "completion code of %u.\n",
966 GET_COMP_CODE(le32_to_cpu(event->status)));
967 break;
968 }
969 /* OK what do we do now? The endpoint state is hosed, and we
970 * should never get to this point if the synchronization between
971 * queueing, and endpoint state are correct. This might happen
972 * if the device gets disconnected after we've finished
973 * cancelling URBs, which might not be an error...
974 */
975 } else {
976 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
977 le64_to_cpu(ep_ctx->deq));
978 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
979 dev->eps[ep_index].queued_deq_ptr) ==
980 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
981 /* Update the ring's dequeue segment and dequeue pointer
982 * to reflect the new position.
983 */
984 ep_ring->deq_seg = dev->eps[ep_index].queued_deq_seg;
985 ep_ring->dequeue = dev->eps[ep_index].queued_deq_ptr;
986 } else {
987 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
988 "Ptr command & xHCI internal state.\n");
989 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
990 dev->eps[ep_index].queued_deq_seg,
991 dev->eps[ep_index].queued_deq_ptr);
992 }
993 }
994
995 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
996 dev->eps[ep_index].queued_deq_seg = NULL;
997 dev->eps[ep_index].queued_deq_ptr = NULL;
998 /* Restart any rings with pending URBs */
999 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1000 }
1001
1002 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1003 struct xhci_event_cmd *event,
1004 union xhci_trb *trb)
1005 {
1006 int slot_id;
1007 unsigned int ep_index;
1008
1009 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1010 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1011 /* This command will only fail if the endpoint wasn't halted,
1012 * but we don't care.
1013 */
1014 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1015 GET_COMP_CODE(le32_to_cpu(event->status)));
1016
1017 /* HW with the reset endpoint quirk needs to have a configure endpoint
1018 * command complete before the endpoint can be used. Queue that here
1019 * because the HW can't handle two commands being queued in a row.
1020 */
1021 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1022 xhci_dbg(xhci, "Queueing configure endpoint command\n");
1023 xhci_queue_configure_endpoint(xhci,
1024 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1025 false);
1026 xhci_ring_cmd_db(xhci);
1027 } else {
1028 /* Clear our internal halted state and restart the ring(s) */
1029 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1030 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1031 }
1032 }
1033
1034 /* Check to see if a command in the device's command queue matches this one.
1035 * Signal the completion or free the command, and return 1. Return 0 if the
1036 * completed command isn't at the head of the command list.
1037 */
1038 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1039 struct xhci_virt_device *virt_dev,
1040 struct xhci_event_cmd *event)
1041 {
1042 struct xhci_command *command;
1043
1044 if (list_empty(&virt_dev->cmd_list))
1045 return 0;
1046
1047 command = list_entry(virt_dev->cmd_list.next,
1048 struct xhci_command, cmd_list);
1049 if (xhci->cmd_ring->dequeue != command->command_trb)
1050 return 0;
1051
1052 command->status = GET_COMP_CODE(le32_to_cpu(event->status));
1053 list_del(&command->cmd_list);
1054 if (command->completion)
1055 complete(command->completion);
1056 else
1057 xhci_free_command(xhci, command);
1058 return 1;
1059 }
1060
1061 static void handle_cmd_completion(struct xhci_hcd *xhci,
1062 struct xhci_event_cmd *event)
1063 {
1064 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1065 u64 cmd_dma;
1066 dma_addr_t cmd_dequeue_dma;
1067 struct xhci_input_control_ctx *ctrl_ctx;
1068 struct xhci_virt_device *virt_dev;
1069 unsigned int ep_index;
1070 struct xhci_ring *ep_ring;
1071 unsigned int ep_state;
1072
1073 cmd_dma = le64_to_cpu(event->cmd_trb);
1074 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1075 xhci->cmd_ring->dequeue);
1076 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1077 if (cmd_dequeue_dma == 0) {
1078 xhci->error_bitmask |= 1 << 4;
1079 return;
1080 }
1081 /* Does the DMA address match our internal dequeue pointer address? */
1082 if (cmd_dma != (u64) cmd_dequeue_dma) {
1083 xhci->error_bitmask |= 1 << 5;
1084 return;
1085 }
1086 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1087 & TRB_TYPE_BITMASK) {
1088 case TRB_TYPE(TRB_ENABLE_SLOT):
1089 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1090 xhci->slot_id = slot_id;
1091 else
1092 xhci->slot_id = 0;
1093 complete(&xhci->addr_dev);
1094 break;
1095 case TRB_TYPE(TRB_DISABLE_SLOT):
1096 if (xhci->devs[slot_id]) {
1097 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1098 /* Delete default control endpoint resources */
1099 xhci_free_device_endpoint_resources(xhci,
1100 xhci->devs[slot_id], true);
1101 xhci_free_virt_device(xhci, slot_id);
1102 }
1103 break;
1104 case TRB_TYPE(TRB_CONFIG_EP):
1105 virt_dev = xhci->devs[slot_id];
1106 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1107 break;
1108 /*
1109 * Configure endpoint commands can come from the USB core
1110 * configuration or alt setting changes, or because the HW
1111 * needed an extra configure endpoint command after a reset
1112 * endpoint command or streams were being configured.
1113 * If the command was for a halted endpoint, the xHCI driver
1114 * is not waiting on the configure endpoint command.
1115 */
1116 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1117 virt_dev->in_ctx);
1118 /* Input ctx add_flags are the endpoint index plus one */
1119 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1120 /* A usb_set_interface() call directly after clearing a halted
1121 * condition may race on this quirky hardware. Not worth
1122 * worrying about, since this is prototype hardware. Not sure
1123 * if this will work for streams, but streams support was
1124 * untested on this prototype.
1125 */
1126 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1127 ep_index != (unsigned int) -1 &&
1128 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1129 le32_to_cpu(ctrl_ctx->drop_flags)) {
1130 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1131 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1132 if (!(ep_state & EP_HALTED))
1133 goto bandwidth_change;
1134 xhci_dbg(xhci, "Completed config ep cmd - "
1135 "last ep index = %d, state = %d\n",
1136 ep_index, ep_state);
1137 /* Clear internal halted state and restart ring(s) */
1138 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1139 ~EP_HALTED;
1140 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1141 break;
1142 }
1143 bandwidth_change:
1144 xhci_dbg(xhci, "Completed config ep cmd\n");
1145 xhci->devs[slot_id]->cmd_status =
1146 GET_COMP_CODE(le32_to_cpu(event->status));
1147 complete(&xhci->devs[slot_id]->cmd_completion);
1148 break;
1149 case TRB_TYPE(TRB_EVAL_CONTEXT):
1150 virt_dev = xhci->devs[slot_id];
1151 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1152 break;
1153 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1154 complete(&xhci->devs[slot_id]->cmd_completion);
1155 break;
1156 case TRB_TYPE(TRB_ADDR_DEV):
1157 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1158 complete(&xhci->addr_dev);
1159 break;
1160 case TRB_TYPE(TRB_STOP_RING):
1161 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1162 break;
1163 case TRB_TYPE(TRB_SET_DEQ):
1164 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1165 break;
1166 case TRB_TYPE(TRB_CMD_NOOP):
1167 break;
1168 case TRB_TYPE(TRB_RESET_EP):
1169 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1170 break;
1171 case TRB_TYPE(TRB_RESET_DEV):
1172 xhci_dbg(xhci, "Completed reset device command.\n");
1173 slot_id = TRB_TO_SLOT_ID(
1174 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1175 virt_dev = xhci->devs[slot_id];
1176 if (virt_dev)
1177 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1178 else
1179 xhci_warn(xhci, "Reset device command completion "
1180 "for disabled slot %u\n", slot_id);
1181 break;
1182 case TRB_TYPE(TRB_NEC_GET_FW):
1183 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1184 xhci->error_bitmask |= 1 << 6;
1185 break;
1186 }
1187 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1188 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1189 NEC_FW_MINOR(le32_to_cpu(event->status)));
1190 break;
1191 default:
1192 /* Skip over unknown commands on the event ring */
1193 xhci->error_bitmask |= 1 << 6;
1194 break;
1195 }
1196 inc_deq(xhci, xhci->cmd_ring, false);
1197 }
1198
1199 static void handle_vendor_event(struct xhci_hcd *xhci,
1200 union xhci_trb *event)
1201 {
1202 u32 trb_type;
1203
1204 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1205 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1206 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1207 handle_cmd_completion(xhci, &event->event_cmd);
1208 }
1209
1210 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1211 * port registers -- USB 3.0 and USB 2.0).
1212 *
1213 * Returns a zero-based port number, which is suitable for indexing into each of
1214 * the split roothubs' port arrays and bus state arrays.
1215 */
1216 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1217 struct xhci_hcd *xhci, u32 port_id)
1218 {
1219 unsigned int i;
1220 unsigned int num_similar_speed_ports = 0;
1221
1222 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1223 * and usb2_ports are 0-based indexes. Count the number of similar
1224 * speed ports, up to 1 port before this port.
1225 */
1226 for (i = 0; i < (port_id - 1); i++) {
1227 u8 port_speed = xhci->port_array[i];
1228
1229 /*
1230 * Skip ports that don't have known speeds, or have duplicate
1231 * Extended Capabilities port speed entries.
1232 */
1233 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1234 continue;
1235
1236 /*
1237 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1238 * 1.1 ports are under the USB 2.0 hub. If the port speed
1239 * matches the device speed, it's a similar speed port.
1240 */
1241 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1242 num_similar_speed_ports++;
1243 }
1244 return num_similar_speed_ports;
1245 }
1246
1247 static void handle_port_status(struct xhci_hcd *xhci,
1248 union xhci_trb *event)
1249 {
1250 struct usb_hcd *hcd;
1251 u32 port_id;
1252 u32 temp, temp1;
1253 int max_ports;
1254 int slot_id;
1255 unsigned int faked_port_index;
1256 u8 major_revision;
1257 struct xhci_bus_state *bus_state;
1258 __le32 __iomem **port_array;
1259 bool bogus_port_status = false;
1260
1261 /* Port status change events always have a successful completion code */
1262 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1263 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1264 xhci->error_bitmask |= 1 << 8;
1265 }
1266 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1267 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1268
1269 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1270 if ((port_id <= 0) || (port_id > max_ports)) {
1271 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1272 bogus_port_status = true;
1273 goto cleanup;
1274 }
1275
1276 /* Figure out which usb_hcd this port is attached to:
1277 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1278 */
1279 major_revision = xhci->port_array[port_id - 1];
1280 if (major_revision == 0) {
1281 xhci_warn(xhci, "Event for port %u not in "
1282 "Extended Capabilities, ignoring.\n",
1283 port_id);
1284 bogus_port_status = true;
1285 goto cleanup;
1286 }
1287 if (major_revision == DUPLICATE_ENTRY) {
1288 xhci_warn(xhci, "Event for port %u duplicated in"
1289 "Extended Capabilities, ignoring.\n",
1290 port_id);
1291 bogus_port_status = true;
1292 goto cleanup;
1293 }
1294
1295 /*
1296 * Hardware port IDs reported by a Port Status Change Event include USB
1297 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1298 * resume event, but we first need to translate the hardware port ID
1299 * into the index into the ports on the correct split roothub, and the
1300 * correct bus_state structure.
1301 */
1302 /* Find the right roothub. */
1303 hcd = xhci_to_hcd(xhci);
1304 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1305 hcd = xhci->shared_hcd;
1306 bus_state = &xhci->bus_state[hcd_index(hcd)];
1307 if (hcd->speed == HCD_USB3)
1308 port_array = xhci->usb3_ports;
1309 else
1310 port_array = xhci->usb2_ports;
1311 /* Find the faked port hub number */
1312 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1313 port_id);
1314
1315 temp = xhci_readl(xhci, port_array[faked_port_index]);
1316 if (hcd->state == HC_STATE_SUSPENDED) {
1317 xhci_dbg(xhci, "resume root hub\n");
1318 usb_hcd_resume_root_hub(hcd);
1319 }
1320
1321 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1322 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1323
1324 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1325 if (!(temp1 & CMD_RUN)) {
1326 xhci_warn(xhci, "xHC is not running.\n");
1327 goto cleanup;
1328 }
1329
1330 if (DEV_SUPERSPEED(temp)) {
1331 xhci_dbg(xhci, "resume SS port %d\n", port_id);
1332 xhci_set_link_state(xhci, port_array, faked_port_index,
1333 XDEV_U0);
1334 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1335 faked_port_index);
1336 if (!slot_id) {
1337 xhci_dbg(xhci, "slot_id is zero\n");
1338 goto cleanup;
1339 }
1340 xhci_ring_device(xhci, slot_id);
1341 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1342 /* Clear PORT_PLC */
1343 temp = xhci_readl(xhci, port_array[faked_port_index]);
1344 temp = xhci_port_state_to_neutral(temp);
1345 temp |= PORT_PLC;
1346 xhci_writel(xhci, temp, port_array[faked_port_index]);
1347 } else {
1348 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1349 bus_state->resume_done[faked_port_index] = jiffies +
1350 msecs_to_jiffies(20);
1351 mod_timer(&hcd->rh_timer,
1352 bus_state->resume_done[faked_port_index]);
1353 /* Do the rest in GetPortStatus */
1354 }
1355 }
1356
1357 cleanup:
1358 /* Update event ring dequeue pointer before dropping the lock */
1359 inc_deq(xhci, xhci->event_ring, true);
1360
1361 /* Don't make the USB core poll the roothub if we got a bad port status
1362 * change event. Besides, at that point we can't tell which roothub
1363 * (USB 2.0 or USB 3.0) to kick.
1364 */
1365 if (bogus_port_status)
1366 return;
1367
1368 spin_unlock(&xhci->lock);
1369 /* Pass this up to the core */
1370 usb_hcd_poll_rh_status(hcd);
1371 spin_lock(&xhci->lock);
1372 }
1373
1374 /*
1375 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1376 * at end_trb, which may be in another segment. If the suspect DMA address is a
1377 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1378 * returns 0.
1379 */
1380 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1381 union xhci_trb *start_trb,
1382 union xhci_trb *end_trb,
1383 dma_addr_t suspect_dma)
1384 {
1385 dma_addr_t start_dma;
1386 dma_addr_t end_seg_dma;
1387 dma_addr_t end_trb_dma;
1388 struct xhci_segment *cur_seg;
1389
1390 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1391 cur_seg = start_seg;
1392
1393 do {
1394 if (start_dma == 0)
1395 return NULL;
1396 /* We may get an event for a Link TRB in the middle of a TD */
1397 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1398 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1399 /* If the end TRB isn't in this segment, this is set to 0 */
1400 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1401
1402 if (end_trb_dma > 0) {
1403 /* The end TRB is in this segment, so suspect should be here */
1404 if (start_dma <= end_trb_dma) {
1405 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1406 return cur_seg;
1407 } else {
1408 /* Case for one segment with
1409 * a TD wrapped around to the top
1410 */
1411 if ((suspect_dma >= start_dma &&
1412 suspect_dma <= end_seg_dma) ||
1413 (suspect_dma >= cur_seg->dma &&
1414 suspect_dma <= end_trb_dma))
1415 return cur_seg;
1416 }
1417 return NULL;
1418 } else {
1419 /* Might still be somewhere in this segment */
1420 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1421 return cur_seg;
1422 }
1423 cur_seg = cur_seg->next;
1424 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1425 } while (cur_seg != start_seg);
1426
1427 return NULL;
1428 }
1429
1430 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1431 unsigned int slot_id, unsigned int ep_index,
1432 unsigned int stream_id,
1433 struct xhci_td *td, union xhci_trb *event_trb)
1434 {
1435 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1436 ep->ep_state |= EP_HALTED;
1437 ep->stopped_td = td;
1438 ep->stopped_trb = event_trb;
1439 ep->stopped_stream = stream_id;
1440
1441 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1442 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1443
1444 ep->stopped_td = NULL;
1445 ep->stopped_trb = NULL;
1446 ep->stopped_stream = 0;
1447
1448 xhci_ring_cmd_db(xhci);
1449 }
1450
1451 /* Check if an error has halted the endpoint ring. The class driver will
1452 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1453 * However, a babble and other errors also halt the endpoint ring, and the class
1454 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1455 * Ring Dequeue Pointer command manually.
1456 */
1457 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1458 struct xhci_ep_ctx *ep_ctx,
1459 unsigned int trb_comp_code)
1460 {
1461 /* TRB completion codes that may require a manual halt cleanup */
1462 if (trb_comp_code == COMP_TX_ERR ||
1463 trb_comp_code == COMP_BABBLE ||
1464 trb_comp_code == COMP_SPLIT_ERR)
1465 /* The 0.96 spec says a babbling control endpoint
1466 * is not halted. The 0.96 spec says it is. Some HW
1467 * claims to be 0.95 compliant, but it halts the control
1468 * endpoint anyway. Check if a babble halted the
1469 * endpoint.
1470 */
1471 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1472 cpu_to_le32(EP_STATE_HALTED))
1473 return 1;
1474
1475 return 0;
1476 }
1477
1478 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1479 {
1480 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1481 /* Vendor defined "informational" completion code,
1482 * treat as not-an-error.
1483 */
1484 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1485 trb_comp_code);
1486 xhci_dbg(xhci, "Treating code as success.\n");
1487 return 1;
1488 }
1489 return 0;
1490 }
1491
1492 /*
1493 * Finish the td processing, remove the td from td list;
1494 * Return 1 if the urb can be given back.
1495 */
1496 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1497 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1498 struct xhci_virt_ep *ep, int *status, bool skip)
1499 {
1500 struct xhci_virt_device *xdev;
1501 struct xhci_ring *ep_ring;
1502 unsigned int slot_id;
1503 int ep_index;
1504 struct urb *urb = NULL;
1505 struct xhci_ep_ctx *ep_ctx;
1506 int ret = 0;
1507 struct urb_priv *urb_priv;
1508 u32 trb_comp_code;
1509
1510 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1511 xdev = xhci->devs[slot_id];
1512 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1513 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1514 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1515 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1516
1517 if (skip)
1518 goto td_cleanup;
1519
1520 if (trb_comp_code == COMP_STOP_INVAL ||
1521 trb_comp_code == COMP_STOP) {
1522 /* The Endpoint Stop Command completion will take care of any
1523 * stopped TDs. A stopped TD may be restarted, so don't update
1524 * the ring dequeue pointer or take this TD off any lists yet.
1525 */
1526 ep->stopped_td = td;
1527 ep->stopped_trb = event_trb;
1528 return 0;
1529 } else {
1530 if (trb_comp_code == COMP_STALL) {
1531 /* The transfer is completed from the driver's
1532 * perspective, but we need to issue a set dequeue
1533 * command for this stalled endpoint to move the dequeue
1534 * pointer past the TD. We can't do that here because
1535 * the halt condition must be cleared first. Let the
1536 * USB class driver clear the stall later.
1537 */
1538 ep->stopped_td = td;
1539 ep->stopped_trb = event_trb;
1540 ep->stopped_stream = ep_ring->stream_id;
1541 } else if (xhci_requires_manual_halt_cleanup(xhci,
1542 ep_ctx, trb_comp_code)) {
1543 /* Other types of errors halt the endpoint, but the
1544 * class driver doesn't call usb_reset_endpoint() unless
1545 * the error is -EPIPE. Clear the halted status in the
1546 * xHCI hardware manually.
1547 */
1548 xhci_cleanup_halted_endpoint(xhci,
1549 slot_id, ep_index, ep_ring->stream_id,
1550 td, event_trb);
1551 } else {
1552 /* Update ring dequeue pointer */
1553 while (ep_ring->dequeue != td->last_trb)
1554 inc_deq(xhci, ep_ring, false);
1555 inc_deq(xhci, ep_ring, false);
1556 }
1557
1558 td_cleanup:
1559 /* Clean up the endpoint's TD list */
1560 urb = td->urb;
1561 urb_priv = urb->hcpriv;
1562
1563 /* Do one last check of the actual transfer length.
1564 * If the host controller said we transferred more data than
1565 * the buffer length, urb->actual_length will be a very big
1566 * number (since it's unsigned). Play it safe and say we didn't
1567 * transfer anything.
1568 */
1569 if (urb->actual_length > urb->transfer_buffer_length) {
1570 xhci_warn(xhci, "URB transfer length is wrong, "
1571 "xHC issue? req. len = %u, "
1572 "act. len = %u\n",
1573 urb->transfer_buffer_length,
1574 urb->actual_length);
1575 urb->actual_length = 0;
1576 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1577 *status = -EREMOTEIO;
1578 else
1579 *status = 0;
1580 }
1581 list_del_init(&td->td_list);
1582 /* Was this TD slated to be cancelled but completed anyway? */
1583 if (!list_empty(&td->cancelled_td_list))
1584 list_del_init(&td->cancelled_td_list);
1585
1586 urb_priv->td_cnt++;
1587 /* Giveback the urb when all the tds are completed */
1588 if (urb_priv->td_cnt == urb_priv->length) {
1589 ret = 1;
1590 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1591 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1592 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1593 == 0) {
1594 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1595 usb_amd_quirk_pll_enable();
1596 }
1597 }
1598 }
1599 }
1600
1601 return ret;
1602 }
1603
1604 /*
1605 * Process control tds, update urb status and actual_length.
1606 */
1607 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1608 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1609 struct xhci_virt_ep *ep, int *status)
1610 {
1611 struct xhci_virt_device *xdev;
1612 struct xhci_ring *ep_ring;
1613 unsigned int slot_id;
1614 int ep_index;
1615 struct xhci_ep_ctx *ep_ctx;
1616 u32 trb_comp_code;
1617
1618 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1619 xdev = xhci->devs[slot_id];
1620 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1621 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1622 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1623 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1624
1625 xhci_debug_trb(xhci, xhci->event_ring->dequeue);
1626 switch (trb_comp_code) {
1627 case COMP_SUCCESS:
1628 if (event_trb == ep_ring->dequeue) {
1629 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1630 "without IOC set??\n");
1631 *status = -ESHUTDOWN;
1632 } else if (event_trb != td->last_trb) {
1633 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1634 "without IOC set??\n");
1635 *status = -ESHUTDOWN;
1636 } else {
1637 *status = 0;
1638 }
1639 break;
1640 case COMP_SHORT_TX:
1641 xhci_warn(xhci, "WARN: short transfer on control ep\n");
1642 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1643 *status = -EREMOTEIO;
1644 else
1645 *status = 0;
1646 break;
1647 case COMP_STOP_INVAL:
1648 case COMP_STOP:
1649 return finish_td(xhci, td, event_trb, event, ep, status, false);
1650 default:
1651 if (!xhci_requires_manual_halt_cleanup(xhci,
1652 ep_ctx, trb_comp_code))
1653 break;
1654 xhci_dbg(xhci, "TRB error code %u, "
1655 "halted endpoint index = %u\n",
1656 trb_comp_code, ep_index);
1657 /* else fall through */
1658 case COMP_STALL:
1659 /* Did we transfer part of the data (middle) phase? */
1660 if (event_trb != ep_ring->dequeue &&
1661 event_trb != td->last_trb)
1662 td->urb->actual_length =
1663 td->urb->transfer_buffer_length
1664 - TRB_LEN(le32_to_cpu(event->transfer_len));
1665 else
1666 td->urb->actual_length = 0;
1667
1668 xhci_cleanup_halted_endpoint(xhci,
1669 slot_id, ep_index, 0, td, event_trb);
1670 return finish_td(xhci, td, event_trb, event, ep, status, true);
1671 }
1672 /*
1673 * Did we transfer any data, despite the errors that might have
1674 * happened? I.e. did we get past the setup stage?
1675 */
1676 if (event_trb != ep_ring->dequeue) {
1677 /* The event was for the status stage */
1678 if (event_trb == td->last_trb) {
1679 if (td->urb->actual_length != 0) {
1680 /* Don't overwrite a previously set error code
1681 */
1682 if ((*status == -EINPROGRESS || *status == 0) &&
1683 (td->urb->transfer_flags
1684 & URB_SHORT_NOT_OK))
1685 /* Did we already see a short data
1686 * stage? */
1687 *status = -EREMOTEIO;
1688 } else {
1689 td->urb->actual_length =
1690 td->urb->transfer_buffer_length;
1691 }
1692 } else {
1693 /* Maybe the event was for the data stage? */
1694 td->urb->actual_length =
1695 td->urb->transfer_buffer_length -
1696 TRB_LEN(le32_to_cpu(event->transfer_len));
1697 xhci_dbg(xhci, "Waiting for status "
1698 "stage event\n");
1699 return 0;
1700 }
1701 }
1702
1703 return finish_td(xhci, td, event_trb, event, ep, status, false);
1704 }
1705
1706 /*
1707 * Process isochronous tds, update urb packet status and actual_length.
1708 */
1709 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1710 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1711 struct xhci_virt_ep *ep, int *status)
1712 {
1713 struct xhci_ring *ep_ring;
1714 struct urb_priv *urb_priv;
1715 int idx;
1716 int len = 0;
1717 union xhci_trb *cur_trb;
1718 struct xhci_segment *cur_seg;
1719 struct usb_iso_packet_descriptor *frame;
1720 u32 trb_comp_code;
1721 bool skip_td = false;
1722
1723 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1724 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1725 urb_priv = td->urb->hcpriv;
1726 idx = urb_priv->td_cnt;
1727 frame = &td->urb->iso_frame_desc[idx];
1728
1729 /* handle completion code */
1730 switch (trb_comp_code) {
1731 case COMP_SUCCESS:
1732 frame->status = 0;
1733 break;
1734 case COMP_SHORT_TX:
1735 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
1736 -EREMOTEIO : 0;
1737 break;
1738 case COMP_BW_OVER:
1739 frame->status = -ECOMM;
1740 skip_td = true;
1741 break;
1742 case COMP_BUFF_OVER:
1743 case COMP_BABBLE:
1744 frame->status = -EOVERFLOW;
1745 skip_td = true;
1746 break;
1747 case COMP_DEV_ERR:
1748 case COMP_STALL:
1749 frame->status = -EPROTO;
1750 skip_td = true;
1751 break;
1752 case COMP_STOP:
1753 case COMP_STOP_INVAL:
1754 break;
1755 default:
1756 frame->status = -1;
1757 break;
1758 }
1759
1760 if (trb_comp_code == COMP_SUCCESS || skip_td) {
1761 frame->actual_length = frame->length;
1762 td->urb->actual_length += frame->length;
1763 } else {
1764 for (cur_trb = ep_ring->dequeue,
1765 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
1766 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1767 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1768 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1769 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1770 }
1771 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1772 TRB_LEN(le32_to_cpu(event->transfer_len));
1773
1774 if (trb_comp_code != COMP_STOP_INVAL) {
1775 frame->actual_length = len;
1776 td->urb->actual_length += len;
1777 }
1778 }
1779
1780 return finish_td(xhci, td, event_trb, event, ep, status, false);
1781 }
1782
1783 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1784 struct xhci_transfer_event *event,
1785 struct xhci_virt_ep *ep, int *status)
1786 {
1787 struct xhci_ring *ep_ring;
1788 struct urb_priv *urb_priv;
1789 struct usb_iso_packet_descriptor *frame;
1790 int idx;
1791
1792 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1793 urb_priv = td->urb->hcpriv;
1794 idx = urb_priv->td_cnt;
1795 frame = &td->urb->iso_frame_desc[idx];
1796
1797 /* The transfer is partly done. */
1798 frame->status = -EXDEV;
1799
1800 /* calc actual length */
1801 frame->actual_length = 0;
1802
1803 /* Update ring dequeue pointer */
1804 while (ep_ring->dequeue != td->last_trb)
1805 inc_deq(xhci, ep_ring, false);
1806 inc_deq(xhci, ep_ring, false);
1807
1808 return finish_td(xhci, td, NULL, event, ep, status, true);
1809 }
1810
1811 /*
1812 * Process bulk and interrupt tds, update urb status and actual_length.
1813 */
1814 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
1815 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1816 struct xhci_virt_ep *ep, int *status)
1817 {
1818 struct xhci_ring *ep_ring;
1819 union xhci_trb *cur_trb;
1820 struct xhci_segment *cur_seg;
1821 u32 trb_comp_code;
1822
1823 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1824 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1825
1826 switch (trb_comp_code) {
1827 case COMP_SUCCESS:
1828 /* Double check that the HW transferred everything. */
1829 if (event_trb != td->last_trb) {
1830 xhci_warn(xhci, "WARN Successful completion "
1831 "on short TX\n");
1832 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1833 *status = -EREMOTEIO;
1834 else
1835 *status = 0;
1836 } else {
1837 *status = 0;
1838 }
1839 break;
1840 case COMP_SHORT_TX:
1841 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1842 *status = -EREMOTEIO;
1843 else
1844 *status = 0;
1845 break;
1846 default:
1847 /* Others already handled above */
1848 break;
1849 }
1850 if (trb_comp_code == COMP_SHORT_TX)
1851 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
1852 "%d bytes untransferred\n",
1853 td->urb->ep->desc.bEndpointAddress,
1854 td->urb->transfer_buffer_length,
1855 TRB_LEN(le32_to_cpu(event->transfer_len)));
1856 /* Fast path - was this the last TRB in the TD for this URB? */
1857 if (event_trb == td->last_trb) {
1858 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
1859 td->urb->actual_length =
1860 td->urb->transfer_buffer_length -
1861 TRB_LEN(le32_to_cpu(event->transfer_len));
1862 if (td->urb->transfer_buffer_length <
1863 td->urb->actual_length) {
1864 xhci_warn(xhci, "HC gave bad length "
1865 "of %d bytes left\n",
1866 TRB_LEN(le32_to_cpu(event->transfer_len)));
1867 td->urb->actual_length = 0;
1868 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1869 *status = -EREMOTEIO;
1870 else
1871 *status = 0;
1872 }
1873 /* Don't overwrite a previously set error code */
1874 if (*status == -EINPROGRESS) {
1875 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1876 *status = -EREMOTEIO;
1877 else
1878 *status = 0;
1879 }
1880 } else {
1881 td->urb->actual_length =
1882 td->urb->transfer_buffer_length;
1883 /* Ignore a short packet completion if the
1884 * untransferred length was zero.
1885 */
1886 if (*status == -EREMOTEIO)
1887 *status = 0;
1888 }
1889 } else {
1890 /* Slow path - walk the list, starting from the dequeue
1891 * pointer, to get the actual length transferred.
1892 */
1893 td->urb->actual_length = 0;
1894 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
1895 cur_trb != event_trb;
1896 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1897 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1898 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1899 td->urb->actual_length +=
1900 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1901 }
1902 /* If the ring didn't stop on a Link or No-op TRB, add
1903 * in the actual bytes transferred from the Normal TRB
1904 */
1905 if (trb_comp_code != COMP_STOP_INVAL)
1906 td->urb->actual_length +=
1907 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1908 TRB_LEN(le32_to_cpu(event->transfer_len));
1909 }
1910
1911 return finish_td(xhci, td, event_trb, event, ep, status, false);
1912 }
1913
1914 /*
1915 * If this function returns an error condition, it means it got a Transfer
1916 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
1917 * At this point, the host controller is probably hosed and should be reset.
1918 */
1919 static int handle_tx_event(struct xhci_hcd *xhci,
1920 struct xhci_transfer_event *event)
1921 {
1922 struct xhci_virt_device *xdev;
1923 struct xhci_virt_ep *ep;
1924 struct xhci_ring *ep_ring;
1925 unsigned int slot_id;
1926 int ep_index;
1927 struct xhci_td *td = NULL;
1928 dma_addr_t event_dma;
1929 struct xhci_segment *event_seg;
1930 union xhci_trb *event_trb;
1931 struct urb *urb = NULL;
1932 int status = -EINPROGRESS;
1933 struct urb_priv *urb_priv;
1934 struct xhci_ep_ctx *ep_ctx;
1935 u32 trb_comp_code;
1936 int ret = 0;
1937
1938 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1939 xdev = xhci->devs[slot_id];
1940 if (!xdev) {
1941 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
1942 return -ENODEV;
1943 }
1944
1945 /* Endpoint ID is 1 based, our index is zero based */
1946 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1947 ep = &xdev->eps[ep_index];
1948 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1949 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1950 if (!ep_ring ||
1951 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
1952 EP_STATE_DISABLED) {
1953 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
1954 "or incorrect stream ring\n");
1955 return -ENODEV;
1956 }
1957
1958 event_dma = le64_to_cpu(event->buffer);
1959 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1960 /* Look for common error cases */
1961 switch (trb_comp_code) {
1962 /* Skip codes that require special handling depending on
1963 * transfer type
1964 */
1965 case COMP_SUCCESS:
1966 case COMP_SHORT_TX:
1967 break;
1968 case COMP_STOP:
1969 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
1970 break;
1971 case COMP_STOP_INVAL:
1972 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
1973 break;
1974 case COMP_STALL:
1975 xhci_warn(xhci, "WARN: Stalled endpoint\n");
1976 ep->ep_state |= EP_HALTED;
1977 status = -EPIPE;
1978 break;
1979 case COMP_TRB_ERR:
1980 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
1981 status = -EILSEQ;
1982 break;
1983 case COMP_SPLIT_ERR:
1984 case COMP_TX_ERR:
1985 xhci_warn(xhci, "WARN: transfer error on endpoint\n");
1986 status = -EPROTO;
1987 break;
1988 case COMP_BABBLE:
1989 xhci_warn(xhci, "WARN: babble error on endpoint\n");
1990 status = -EOVERFLOW;
1991 break;
1992 case COMP_DB_ERR:
1993 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
1994 status = -ENOSR;
1995 break;
1996 case COMP_BW_OVER:
1997 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
1998 break;
1999 case COMP_BUFF_OVER:
2000 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2001 break;
2002 case COMP_UNDERRUN:
2003 /*
2004 * When the Isoch ring is empty, the xHC will generate
2005 * a Ring Overrun Event for IN Isoch endpoint or Ring
2006 * Underrun Event for OUT Isoch endpoint.
2007 */
2008 xhci_dbg(xhci, "underrun event on endpoint\n");
2009 if (!list_empty(&ep_ring->td_list))
2010 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2011 "still with TDs queued?\n",
2012 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2013 ep_index);
2014 goto cleanup;
2015 case COMP_OVERRUN:
2016 xhci_dbg(xhci, "overrun event on endpoint\n");
2017 if (!list_empty(&ep_ring->td_list))
2018 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2019 "still with TDs queued?\n",
2020 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2021 ep_index);
2022 goto cleanup;
2023 case COMP_DEV_ERR:
2024 xhci_warn(xhci, "WARN: detect an incompatible device");
2025 status = -EPROTO;
2026 break;
2027 case COMP_MISSED_INT:
2028 /*
2029 * When encounter missed service error, one or more isoc tds
2030 * may be missed by xHC.
2031 * Set skip flag of the ep_ring; Complete the missed tds as
2032 * short transfer when process the ep_ring next time.
2033 */
2034 ep->skip = true;
2035 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2036 goto cleanup;
2037 default:
2038 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2039 status = 0;
2040 break;
2041 }
2042 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2043 "busted\n");
2044 goto cleanup;
2045 }
2046
2047 do {
2048 /* This TRB should be in the TD at the head of this ring's
2049 * TD list.
2050 */
2051 if (list_empty(&ep_ring->td_list)) {
2052 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d "
2053 "with no TDs queued?\n",
2054 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2055 ep_index);
2056 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2057 (le32_to_cpu(event->flags) &
2058 TRB_TYPE_BITMASK)>>10);
2059 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2060 if (ep->skip) {
2061 ep->skip = false;
2062 xhci_dbg(xhci, "td_list is empty while skip "
2063 "flag set. Clear skip flag.\n");
2064 }
2065 ret = 0;
2066 goto cleanup;
2067 }
2068
2069 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2070
2071 /* Is this a TRB in the currently executing TD? */
2072 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2073 td->last_trb, event_dma);
2074
2075 /*
2076 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2077 * is not in the current TD pointed by ep_ring->dequeue because
2078 * that the hardware dequeue pointer still at the previous TRB
2079 * of the current TD. The previous TRB maybe a Link TD or the
2080 * last TRB of the previous TD. The command completion handle
2081 * will take care the rest.
2082 */
2083 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2084 ret = 0;
2085 goto cleanup;
2086 }
2087
2088 if (!event_seg) {
2089 if (!ep->skip ||
2090 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2091 /* Some host controllers give a spurious
2092 * successful event after a short transfer.
2093 * Ignore it.
2094 */
2095 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2096 ep_ring->last_td_was_short) {
2097 ep_ring->last_td_was_short = false;
2098 ret = 0;
2099 goto cleanup;
2100 }
2101 /* HC is busted, give up! */
2102 xhci_err(xhci,
2103 "ERROR Transfer event TRB DMA ptr not "
2104 "part of current TD\n");
2105 return -ESHUTDOWN;
2106 }
2107
2108 ret = skip_isoc_td(xhci, td, event, ep, &status);
2109 goto cleanup;
2110 }
2111 if (trb_comp_code == COMP_SHORT_TX)
2112 ep_ring->last_td_was_short = true;
2113 else
2114 ep_ring->last_td_was_short = false;
2115
2116 if (ep->skip) {
2117 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2118 ep->skip = false;
2119 }
2120
2121 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2122 sizeof(*event_trb)];
2123 /*
2124 * No-op TRB should not trigger interrupts.
2125 * If event_trb is a no-op TRB, it means the
2126 * corresponding TD has been cancelled. Just ignore
2127 * the TD.
2128 */
2129 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2130 xhci_dbg(xhci,
2131 "event_trb is a no-op TRB. Skip it\n");
2132 goto cleanup;
2133 }
2134
2135 /* Now update the urb's actual_length and give back to
2136 * the core
2137 */
2138 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2139 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2140 &status);
2141 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2142 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2143 &status);
2144 else
2145 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2146 ep, &status);
2147
2148 cleanup:
2149 /*
2150 * Do not update event ring dequeue pointer if ep->skip is set.
2151 * Will roll back to continue process missed tds.
2152 */
2153 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2154 inc_deq(xhci, xhci->event_ring, true);
2155 }
2156
2157 if (ret) {
2158 urb = td->urb;
2159 urb_priv = urb->hcpriv;
2160 /* Leave the TD around for the reset endpoint function
2161 * to use(but only if it's not a control endpoint,
2162 * since we already queued the Set TR dequeue pointer
2163 * command for stalled control endpoints).
2164 */
2165 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2166 (trb_comp_code != COMP_STALL &&
2167 trb_comp_code != COMP_BABBLE))
2168 xhci_urb_free_priv(xhci, urb_priv);
2169
2170 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2171 if ((urb->actual_length != urb->transfer_buffer_length &&
2172 (urb->transfer_flags &
2173 URB_SHORT_NOT_OK)) ||
2174 (status != 0 &&
2175 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2176 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2177 "expected = %x, status = %d\n",
2178 urb, urb->actual_length,
2179 urb->transfer_buffer_length,
2180 status);
2181 spin_unlock(&xhci->lock);
2182 /* EHCI, UHCI, and OHCI always unconditionally set the
2183 * urb->status of an isochronous endpoint to 0.
2184 */
2185 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2186 status = 0;
2187 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2188 spin_lock(&xhci->lock);
2189 }
2190
2191 /*
2192 * If ep->skip is set, it means there are missed tds on the
2193 * endpoint ring need to take care of.
2194 * Process them as short transfer until reach the td pointed by
2195 * the event.
2196 */
2197 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2198
2199 return 0;
2200 }
2201
2202 /*
2203 * This function handles all OS-owned events on the event ring. It may drop
2204 * xhci->lock between event processing (e.g. to pass up port status changes).
2205 * Returns >0 for "possibly more events to process" (caller should call again),
2206 * otherwise 0 if done. In future, <0 returns should indicate error code.
2207 */
2208 static int xhci_handle_event(struct xhci_hcd *xhci)
2209 {
2210 union xhci_trb *event;
2211 int update_ptrs = 1;
2212 int ret;
2213
2214 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2215 xhci->error_bitmask |= 1 << 1;
2216 return 0;
2217 }
2218
2219 event = xhci->event_ring->dequeue;
2220 /* Does the HC or OS own the TRB? */
2221 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2222 xhci->event_ring->cycle_state) {
2223 xhci->error_bitmask |= 1 << 2;
2224 return 0;
2225 }
2226
2227 /*
2228 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2229 * speculative reads of the event's flags/data below.
2230 */
2231 rmb();
2232 /* FIXME: Handle more event types. */
2233 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2234 case TRB_TYPE(TRB_COMPLETION):
2235 handle_cmd_completion(xhci, &event->event_cmd);
2236 break;
2237 case TRB_TYPE(TRB_PORT_STATUS):
2238 handle_port_status(xhci, event);
2239 update_ptrs = 0;
2240 break;
2241 case TRB_TYPE(TRB_TRANSFER):
2242 ret = handle_tx_event(xhci, &event->trans_event);
2243 if (ret < 0)
2244 xhci->error_bitmask |= 1 << 9;
2245 else
2246 update_ptrs = 0;
2247 break;
2248 default:
2249 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2250 TRB_TYPE(48))
2251 handle_vendor_event(xhci, event);
2252 else
2253 xhci->error_bitmask |= 1 << 3;
2254 }
2255 /* Any of the above functions may drop and re-acquire the lock, so check
2256 * to make sure a watchdog timer didn't mark the host as non-responsive.
2257 */
2258 if (xhci->xhc_state & XHCI_STATE_DYING) {
2259 xhci_dbg(xhci, "xHCI host dying, returning from "
2260 "event handler.\n");
2261 return 0;
2262 }
2263
2264 if (update_ptrs)
2265 /* Update SW event ring dequeue pointer */
2266 inc_deq(xhci, xhci->event_ring, true);
2267
2268 /* Are there more items on the event ring? Caller will call us again to
2269 * check.
2270 */
2271 return 1;
2272 }
2273
2274 /*
2275 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2276 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2277 * indicators of an event TRB error, but we check the status *first* to be safe.
2278 */
2279 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2280 {
2281 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2282 u32 status;
2283 union xhci_trb *trb;
2284 u64 temp_64;
2285 union xhci_trb *event_ring_deq;
2286 dma_addr_t deq;
2287
2288 spin_lock(&xhci->lock);
2289 trb = xhci->event_ring->dequeue;
2290 /* Check if the xHC generated the interrupt, or the irq is shared */
2291 status = xhci_readl(xhci, &xhci->op_regs->status);
2292 if (status == 0xffffffff)
2293 goto hw_died;
2294
2295 if (!(status & STS_EINT)) {
2296 spin_unlock(&xhci->lock);
2297 return IRQ_NONE;
2298 }
2299 if (status & STS_FATAL) {
2300 xhci_warn(xhci, "WARNING: Host System Error\n");
2301 xhci_halt(xhci);
2302 hw_died:
2303 spin_unlock(&xhci->lock);
2304 return -ESHUTDOWN;
2305 }
2306
2307 /*
2308 * Clear the op reg interrupt status first,
2309 * so we can receive interrupts from other MSI-X interrupters.
2310 * Write 1 to clear the interrupt status.
2311 */
2312 status |= STS_EINT;
2313 xhci_writel(xhci, status, &xhci->op_regs->status);
2314 /* FIXME when MSI-X is supported and there are multiple vectors */
2315 /* Clear the MSI-X event interrupt status */
2316
2317 if (hcd->irq != -1) {
2318 u32 irq_pending;
2319 /* Acknowledge the PCI interrupt */
2320 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2321 irq_pending |= 0x3;
2322 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2323 }
2324
2325 if (xhci->xhc_state & XHCI_STATE_DYING) {
2326 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2327 "Shouldn't IRQs be disabled?\n");
2328 /* Clear the event handler busy flag (RW1C);
2329 * the event ring should be empty.
2330 */
2331 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2332 xhci_write_64(xhci, temp_64 | ERST_EHB,
2333 &xhci->ir_set->erst_dequeue);
2334 spin_unlock(&xhci->lock);
2335
2336 return IRQ_HANDLED;
2337 }
2338
2339 event_ring_deq = xhci->event_ring->dequeue;
2340 /* FIXME this should be a delayed service routine
2341 * that clears the EHB.
2342 */
2343 while (xhci_handle_event(xhci) > 0) {}
2344
2345 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2346 /* If necessary, update the HW's version of the event ring deq ptr. */
2347 if (event_ring_deq != xhci->event_ring->dequeue) {
2348 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2349 xhci->event_ring->dequeue);
2350 if (deq == 0)
2351 xhci_warn(xhci, "WARN something wrong with SW event "
2352 "ring dequeue ptr.\n");
2353 /* Update HC event ring dequeue pointer */
2354 temp_64 &= ERST_PTR_MASK;
2355 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2356 }
2357
2358 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2359 temp_64 |= ERST_EHB;
2360 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2361
2362 spin_unlock(&xhci->lock);
2363
2364 return IRQ_HANDLED;
2365 }
2366
2367 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2368 {
2369 irqreturn_t ret;
2370 struct xhci_hcd *xhci;
2371
2372 xhci = hcd_to_xhci(hcd);
2373 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2374 if (xhci->shared_hcd)
2375 set_bit(HCD_FLAG_SAW_IRQ, &xhci->shared_hcd->flags);
2376
2377 ret = xhci_irq(hcd);
2378
2379 return ret;
2380 }
2381
2382 /**** Endpoint Ring Operations ****/
2383
2384 /*
2385 * Generic function for queueing a TRB on a ring.
2386 * The caller must have checked to make sure there's room on the ring.
2387 *
2388 * @more_trbs_coming: Will you enqueue more TRBs before calling
2389 * prepare_transfer()?
2390 */
2391 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2392 bool consumer, bool more_trbs_coming,
2393 u32 field1, u32 field2, u32 field3, u32 field4)
2394 {
2395 struct xhci_generic_trb *trb;
2396
2397 trb = &ring->enqueue->generic;
2398 trb->field[0] = cpu_to_le32(field1);
2399 trb->field[1] = cpu_to_le32(field2);
2400 trb->field[2] = cpu_to_le32(field3);
2401 trb->field[3] = cpu_to_le32(field4);
2402 inc_enq(xhci, ring, consumer, more_trbs_coming);
2403 }
2404
2405 /*
2406 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2407 * FIXME allocate segments if the ring is full.
2408 */
2409 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2410 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2411 {
2412 /* Make sure the endpoint has been added to xHC schedule */
2413 switch (ep_state) {
2414 case EP_STATE_DISABLED:
2415 /*
2416 * USB core changed config/interfaces without notifying us,
2417 * or hardware is reporting the wrong state.
2418 */
2419 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2420 return -ENOENT;
2421 case EP_STATE_ERROR:
2422 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2423 /* FIXME event handling code for error needs to clear it */
2424 /* XXX not sure if this should be -ENOENT or not */
2425 return -EINVAL;
2426 case EP_STATE_HALTED:
2427 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2428 case EP_STATE_STOPPED:
2429 case EP_STATE_RUNNING:
2430 break;
2431 default:
2432 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2433 /*
2434 * FIXME issue Configure Endpoint command to try to get the HC
2435 * back into a known state.
2436 */
2437 return -EINVAL;
2438 }
2439 if (!room_on_ring(xhci, ep_ring, num_trbs)) {
2440 /* FIXME allocate more room */
2441 xhci_err(xhci, "ERROR no room on ep ring\n");
2442 return -ENOMEM;
2443 }
2444
2445 if (enqueue_is_link_trb(ep_ring)) {
2446 struct xhci_ring *ring = ep_ring;
2447 union xhci_trb *next;
2448
2449 next = ring->enqueue;
2450
2451 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2452 /* If we're not dealing with 0.95 hardware,
2453 * clear the chain bit.
2454 */
2455 if (!xhci_link_trb_quirk(xhci))
2456 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2457 else
2458 next->link.control |= cpu_to_le32(TRB_CHAIN);
2459
2460 wmb();
2461 next->link.control ^= cpu_to_le32(TRB_CYCLE);
2462
2463 /* Toggle the cycle bit after the last ring segment. */
2464 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2465 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2466 if (!in_interrupt()) {
2467 xhci_dbg(xhci, "queue_trb: Toggle cycle "
2468 "state for ring %p = %i\n",
2469 ring, (unsigned int)ring->cycle_state);
2470 }
2471 }
2472 ring->enq_seg = ring->enq_seg->next;
2473 ring->enqueue = ring->enq_seg->trbs;
2474 next = ring->enqueue;
2475 }
2476 }
2477
2478 return 0;
2479 }
2480
2481 static int prepare_transfer(struct xhci_hcd *xhci,
2482 struct xhci_virt_device *xdev,
2483 unsigned int ep_index,
2484 unsigned int stream_id,
2485 unsigned int num_trbs,
2486 struct urb *urb,
2487 unsigned int td_index,
2488 gfp_t mem_flags)
2489 {
2490 int ret;
2491 struct urb_priv *urb_priv;
2492 struct xhci_td *td;
2493 struct xhci_ring *ep_ring;
2494 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2495
2496 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2497 if (!ep_ring) {
2498 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2499 stream_id);
2500 return -EINVAL;
2501 }
2502
2503 ret = prepare_ring(xhci, ep_ring,
2504 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2505 num_trbs, mem_flags);
2506 if (ret)
2507 return ret;
2508
2509 urb_priv = urb->hcpriv;
2510 td = urb_priv->td[td_index];
2511
2512 INIT_LIST_HEAD(&td->td_list);
2513 INIT_LIST_HEAD(&td->cancelled_td_list);
2514
2515 if (td_index == 0) {
2516 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2517 if (unlikely(ret))
2518 return ret;
2519 }
2520
2521 td->urb = urb;
2522 /* Add this TD to the tail of the endpoint ring's TD list */
2523 list_add_tail(&td->td_list, &ep_ring->td_list);
2524 td->start_seg = ep_ring->enq_seg;
2525 td->first_trb = ep_ring->enqueue;
2526
2527 urb_priv->td[td_index] = td;
2528
2529 return 0;
2530 }
2531
2532 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2533 {
2534 int num_sgs, num_trbs, running_total, temp, i;
2535 struct scatterlist *sg;
2536
2537 sg = NULL;
2538 num_sgs = urb->num_sgs;
2539 temp = urb->transfer_buffer_length;
2540
2541 xhci_dbg(xhci, "count sg list trbs: \n");
2542 num_trbs = 0;
2543 for_each_sg(urb->sg, sg, num_sgs, i) {
2544 unsigned int previous_total_trbs = num_trbs;
2545 unsigned int len = sg_dma_len(sg);
2546
2547 /* Scatter gather list entries may cross 64KB boundaries */
2548 running_total = TRB_MAX_BUFF_SIZE -
2549 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2550 running_total &= TRB_MAX_BUFF_SIZE - 1;
2551 if (running_total != 0)
2552 num_trbs++;
2553
2554 /* How many more 64KB chunks to transfer, how many more TRBs? */
2555 while (running_total < sg_dma_len(sg) && running_total < temp) {
2556 num_trbs++;
2557 running_total += TRB_MAX_BUFF_SIZE;
2558 }
2559 xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n",
2560 i, (unsigned long long)sg_dma_address(sg),
2561 len, len, num_trbs - previous_total_trbs);
2562
2563 len = min_t(int, len, temp);
2564 temp -= len;
2565 if (temp == 0)
2566 break;
2567 }
2568 xhci_dbg(xhci, "\n");
2569 if (!in_interrupt())
2570 xhci_dbg(xhci, "ep %#x - urb len = %d, sglist used, "
2571 "num_trbs = %d\n",
2572 urb->ep->desc.bEndpointAddress,
2573 urb->transfer_buffer_length,
2574 num_trbs);
2575 return num_trbs;
2576 }
2577
2578 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2579 {
2580 if (num_trbs != 0)
2581 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2582 "TRBs, %d left\n", __func__,
2583 urb->ep->desc.bEndpointAddress, num_trbs);
2584 if (running_total != urb->transfer_buffer_length)
2585 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2586 "queued %#x (%d), asked for %#x (%d)\n",
2587 __func__,
2588 urb->ep->desc.bEndpointAddress,
2589 running_total, running_total,
2590 urb->transfer_buffer_length,
2591 urb->transfer_buffer_length);
2592 }
2593
2594 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2595 unsigned int ep_index, unsigned int stream_id, int start_cycle,
2596 struct xhci_generic_trb *start_trb)
2597 {
2598 /*
2599 * Pass all the TRBs to the hardware at once and make sure this write
2600 * isn't reordered.
2601 */
2602 wmb();
2603 if (start_cycle)
2604 start_trb->field[3] |= cpu_to_le32(start_cycle);
2605 else
2606 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2607 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2608 }
2609
2610 /*
2611 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
2612 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
2613 * (comprised of sg list entries) can take several service intervals to
2614 * transmit.
2615 */
2616 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2617 struct urb *urb, int slot_id, unsigned int ep_index)
2618 {
2619 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
2620 xhci->devs[slot_id]->out_ctx, ep_index);
2621 int xhci_interval;
2622 int ep_interval;
2623
2624 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2625 ep_interval = urb->interval;
2626 /* Convert to microframes */
2627 if (urb->dev->speed == USB_SPEED_LOW ||
2628 urb->dev->speed == USB_SPEED_FULL)
2629 ep_interval *= 8;
2630 /* FIXME change this to a warning and a suggestion to use the new API
2631 * to set the polling interval (once the API is added).
2632 */
2633 if (xhci_interval != ep_interval) {
2634 if (printk_ratelimit())
2635 dev_dbg(&urb->dev->dev, "Driver uses different interval"
2636 " (%d microframe%s) than xHCI "
2637 "(%d microframe%s)\n",
2638 ep_interval,
2639 ep_interval == 1 ? "" : "s",
2640 xhci_interval,
2641 xhci_interval == 1 ? "" : "s");
2642 urb->interval = xhci_interval;
2643 /* Convert back to frames for LS/FS devices */
2644 if (urb->dev->speed == USB_SPEED_LOW ||
2645 urb->dev->speed == USB_SPEED_FULL)
2646 urb->interval /= 8;
2647 }
2648 return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
2649 }
2650
2651 /*
2652 * The TD size is the number of bytes remaining in the TD (including this TRB),
2653 * right shifted by 10.
2654 * It must fit in bits 21:17, so it can't be bigger than 31.
2655 */
2656 static u32 xhci_td_remainder(unsigned int remainder)
2657 {
2658 u32 max = (1 << (21 - 17 + 1)) - 1;
2659
2660 if ((remainder >> 10) >= max)
2661 return max << 17;
2662 else
2663 return (remainder >> 10) << 17;
2664 }
2665
2666 /*
2667 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in
2668 * the TD (*not* including this TRB).
2669 *
2670 * Total TD packet count = total_packet_count =
2671 * roundup(TD size in bytes / wMaxPacketSize)
2672 *
2673 * Packets transferred up to and including this TRB = packets_transferred =
2674 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2675 *
2676 * TD size = total_packet_count - packets_transferred
2677 *
2678 * It must fit in bits 21:17, so it can't be bigger than 31.
2679 */
2680
2681 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
2682 unsigned int total_packet_count, struct urb *urb)
2683 {
2684 int packets_transferred;
2685
2686 /* One TRB with a zero-length data packet. */
2687 if (running_total == 0 && trb_buff_len == 0)
2688 return 0;
2689
2690 /* All the TRB queueing functions don't count the current TRB in
2691 * running_total.
2692 */
2693 packets_transferred = (running_total + trb_buff_len) /
2694 usb_endpoint_maxp(&urb->ep->desc);
2695
2696 return xhci_td_remainder(total_packet_count - packets_transferred);
2697 }
2698
2699 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2700 struct urb *urb, int slot_id, unsigned int ep_index)
2701 {
2702 struct xhci_ring *ep_ring;
2703 unsigned int num_trbs;
2704 struct urb_priv *urb_priv;
2705 struct xhci_td *td;
2706 struct scatterlist *sg;
2707 int num_sgs;
2708 int trb_buff_len, this_sg_len, running_total;
2709 unsigned int total_packet_count;
2710 bool first_trb;
2711 u64 addr;
2712 bool more_trbs_coming;
2713
2714 struct xhci_generic_trb *start_trb;
2715 int start_cycle;
2716
2717 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2718 if (!ep_ring)
2719 return -EINVAL;
2720
2721 num_trbs = count_sg_trbs_needed(xhci, urb);
2722 num_sgs = urb->num_sgs;
2723 total_packet_count = roundup(urb->transfer_buffer_length,
2724 usb_endpoint_maxp(&urb->ep->desc));
2725
2726 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
2727 ep_index, urb->stream_id,
2728 num_trbs, urb, 0, mem_flags);
2729 if (trb_buff_len < 0)
2730 return trb_buff_len;
2731
2732 urb_priv = urb->hcpriv;
2733 td = urb_priv->td[0];
2734
2735 /*
2736 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2737 * until we've finished creating all the other TRBs. The ring's cycle
2738 * state may change as we enqueue the other TRBs, so save it too.
2739 */
2740 start_trb = &ep_ring->enqueue->generic;
2741 start_cycle = ep_ring->cycle_state;
2742
2743 running_total = 0;
2744 /*
2745 * How much data is in the first TRB?
2746 *
2747 * There are three forces at work for TRB buffer pointers and lengths:
2748 * 1. We don't want to walk off the end of this sg-list entry buffer.
2749 * 2. The transfer length that the driver requested may be smaller than
2750 * the amount of memory allocated for this scatter-gather list.
2751 * 3. TRBs buffers can't cross 64KB boundaries.
2752 */
2753 sg = urb->sg;
2754 addr = (u64) sg_dma_address(sg);
2755 this_sg_len = sg_dma_len(sg);
2756 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
2757 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2758 if (trb_buff_len > urb->transfer_buffer_length)
2759 trb_buff_len = urb->transfer_buffer_length;
2760 xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n",
2761 trb_buff_len);
2762
2763 first_trb = true;
2764 /* Queue the first TRB, even if it's zero-length */
2765 do {
2766 u32 field = 0;
2767 u32 length_field = 0;
2768 u32 remainder = 0;
2769
2770 /* Don't change the cycle bit of the first TRB until later */
2771 if (first_trb) {
2772 first_trb = false;
2773 if (start_cycle == 0)
2774 field |= 0x1;
2775 } else
2776 field |= ep_ring->cycle_state;
2777
2778 /* Chain all the TRBs together; clear the chain bit in the last
2779 * TRB to indicate it's the last TRB in the chain.
2780 */
2781 if (num_trbs > 1) {
2782 field |= TRB_CHAIN;
2783 } else {
2784 /* FIXME - add check for ZERO_PACKET flag before this */
2785 td->last_trb = ep_ring->enqueue;
2786 field |= TRB_IOC;
2787 }
2788
2789 /* Only set interrupt on short packet for IN endpoints */
2790 if (usb_urb_dir_in(urb))
2791 field |= TRB_ISP;
2792
2793 xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), "
2794 "64KB boundary at %#x, end dma = %#x\n",
2795 (unsigned int) addr, trb_buff_len, trb_buff_len,
2796 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2797 (unsigned int) addr + trb_buff_len);
2798 if (TRB_MAX_BUFF_SIZE -
2799 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
2800 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
2801 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
2802 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2803 (unsigned int) addr + trb_buff_len);
2804 }
2805
2806 /* Set the TRB length, TD size, and interrupter fields. */
2807 if (xhci->hci_version < 0x100) {
2808 remainder = xhci_td_remainder(
2809 urb->transfer_buffer_length -
2810 running_total);
2811 } else {
2812 remainder = xhci_v1_0_td_remainder(running_total,
2813 trb_buff_len, total_packet_count, urb);
2814 }
2815 length_field = TRB_LEN(trb_buff_len) |
2816 remainder |
2817 TRB_INTR_TARGET(0);
2818
2819 if (num_trbs > 1)
2820 more_trbs_coming = true;
2821 else
2822 more_trbs_coming = false;
2823 queue_trb(xhci, ep_ring, false, more_trbs_coming,
2824 lower_32_bits(addr),
2825 upper_32_bits(addr),
2826 length_field,
2827 field | TRB_TYPE(TRB_NORMAL));
2828 --num_trbs;
2829 running_total += trb_buff_len;
2830
2831 /* Calculate length for next transfer --
2832 * Are we done queueing all the TRBs for this sg entry?
2833 */
2834 this_sg_len -= trb_buff_len;
2835 if (this_sg_len == 0) {
2836 --num_sgs;
2837 if (num_sgs == 0)
2838 break;
2839 sg = sg_next(sg);
2840 addr = (u64) sg_dma_address(sg);
2841 this_sg_len = sg_dma_len(sg);
2842 } else {
2843 addr += trb_buff_len;
2844 }
2845
2846 trb_buff_len = TRB_MAX_BUFF_SIZE -
2847 (addr & (TRB_MAX_BUFF_SIZE - 1));
2848 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2849 if (running_total + trb_buff_len > urb->transfer_buffer_length)
2850 trb_buff_len =
2851 urb->transfer_buffer_length - running_total;
2852 } while (running_total < urb->transfer_buffer_length);
2853
2854 check_trb_math(urb, num_trbs, running_total);
2855 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2856 start_cycle, start_trb);
2857 return 0;
2858 }
2859
2860 /* This is very similar to what ehci-q.c qtd_fill() does */
2861 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2862 struct urb *urb, int slot_id, unsigned int ep_index)
2863 {
2864 struct xhci_ring *ep_ring;
2865 struct urb_priv *urb_priv;
2866 struct xhci_td *td;
2867 int num_trbs;
2868 struct xhci_generic_trb *start_trb;
2869 bool first_trb;
2870 bool more_trbs_coming;
2871 int start_cycle;
2872 u32 field, length_field;
2873
2874 int running_total, trb_buff_len, ret;
2875 unsigned int total_packet_count;
2876 u64 addr;
2877
2878 if (urb->num_sgs)
2879 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
2880
2881 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2882 if (!ep_ring)
2883 return -EINVAL;
2884
2885 num_trbs = 0;
2886 /* How much data is (potentially) left before the 64KB boundary? */
2887 running_total = TRB_MAX_BUFF_SIZE -
2888 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2889 running_total &= TRB_MAX_BUFF_SIZE - 1;
2890
2891 /* If there's some data on this 64KB chunk, or we have to send a
2892 * zero-length transfer, we need at least one TRB
2893 */
2894 if (running_total != 0 || urb->transfer_buffer_length == 0)
2895 num_trbs++;
2896 /* How many more 64KB chunks to transfer, how many more TRBs? */
2897 while (running_total < urb->transfer_buffer_length) {
2898 num_trbs++;
2899 running_total += TRB_MAX_BUFF_SIZE;
2900 }
2901 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
2902
2903 if (!in_interrupt())
2904 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d), "
2905 "addr = %#llx, num_trbs = %d\n",
2906 urb->ep->desc.bEndpointAddress,
2907 urb->transfer_buffer_length,
2908 urb->transfer_buffer_length,
2909 (unsigned long long)urb->transfer_dma,
2910 num_trbs);
2911
2912 ret = prepare_transfer(xhci, xhci->devs[slot_id],
2913 ep_index, urb->stream_id,
2914 num_trbs, urb, 0, mem_flags);
2915 if (ret < 0)
2916 return ret;
2917
2918 urb_priv = urb->hcpriv;
2919 td = urb_priv->td[0];
2920
2921 /*
2922 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2923 * until we've finished creating all the other TRBs. The ring's cycle
2924 * state may change as we enqueue the other TRBs, so save it too.
2925 */
2926 start_trb = &ep_ring->enqueue->generic;
2927 start_cycle = ep_ring->cycle_state;
2928
2929 running_total = 0;
2930 total_packet_count = roundup(urb->transfer_buffer_length,
2931 usb_endpoint_maxp(&urb->ep->desc));
2932 /* How much data is in the first TRB? */
2933 addr = (u64) urb->transfer_dma;
2934 trb_buff_len = TRB_MAX_BUFF_SIZE -
2935 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2936 if (trb_buff_len > urb->transfer_buffer_length)
2937 trb_buff_len = urb->transfer_buffer_length;
2938
2939 first_trb = true;
2940
2941 /* Queue the first TRB, even if it's zero-length */
2942 do {
2943 u32 remainder = 0;
2944 field = 0;
2945
2946 /* Don't change the cycle bit of the first TRB until later */
2947 if (first_trb) {
2948 first_trb = false;
2949 if (start_cycle == 0)
2950 field |= 0x1;
2951 } else
2952 field |= ep_ring->cycle_state;
2953
2954 /* Chain all the TRBs together; clear the chain bit in the last
2955 * TRB to indicate it's the last TRB in the chain.
2956 */
2957 if (num_trbs > 1) {
2958 field |= TRB_CHAIN;
2959 } else {
2960 /* FIXME - add check for ZERO_PACKET flag before this */
2961 td->last_trb = ep_ring->enqueue;
2962 field |= TRB_IOC;
2963 }
2964
2965 /* Only set interrupt on short packet for IN endpoints */
2966 if (usb_urb_dir_in(urb))
2967 field |= TRB_ISP;
2968
2969 /* Set the TRB length, TD size, and interrupter fields. */
2970 if (xhci->hci_version < 0x100) {
2971 remainder = xhci_td_remainder(
2972 urb->transfer_buffer_length -
2973 running_total);
2974 } else {
2975 remainder = xhci_v1_0_td_remainder(running_total,
2976 trb_buff_len, total_packet_count, urb);
2977 }
2978 length_field = TRB_LEN(trb_buff_len) |
2979 remainder |
2980 TRB_INTR_TARGET(0);
2981
2982 if (num_trbs > 1)
2983 more_trbs_coming = true;
2984 else
2985 more_trbs_coming = false;
2986 queue_trb(xhci, ep_ring, false, more_trbs_coming,
2987 lower_32_bits(addr),
2988 upper_32_bits(addr),
2989 length_field,
2990 field | TRB_TYPE(TRB_NORMAL));
2991 --num_trbs;
2992 running_total += trb_buff_len;
2993
2994 /* Calculate length for next transfer */
2995 addr += trb_buff_len;
2996 trb_buff_len = urb->transfer_buffer_length - running_total;
2997 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
2998 trb_buff_len = TRB_MAX_BUFF_SIZE;
2999 } while (running_total < urb->transfer_buffer_length);
3000
3001 check_trb_math(urb, num_trbs, running_total);
3002 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3003 start_cycle, start_trb);
3004 return 0;
3005 }
3006
3007 /* Caller must have locked xhci->lock */
3008 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3009 struct urb *urb, int slot_id, unsigned int ep_index)
3010 {
3011 struct xhci_ring *ep_ring;
3012 int num_trbs;
3013 int ret;
3014 struct usb_ctrlrequest *setup;
3015 struct xhci_generic_trb *start_trb;
3016 int start_cycle;
3017 u32 field, length_field;
3018 struct urb_priv *urb_priv;
3019 struct xhci_td *td;
3020
3021 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3022 if (!ep_ring)
3023 return -EINVAL;
3024
3025 /*
3026 * Need to copy setup packet into setup TRB, so we can't use the setup
3027 * DMA address.
3028 */
3029 if (!urb->setup_packet)
3030 return -EINVAL;
3031
3032 if (!in_interrupt())
3033 xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n",
3034 slot_id, ep_index);
3035 /* 1 TRB for setup, 1 for status */
3036 num_trbs = 2;
3037 /*
3038 * Don't need to check if we need additional event data and normal TRBs,
3039 * since data in control transfers will never get bigger than 16MB
3040 * XXX: can we get a buffer that crosses 64KB boundaries?
3041 */
3042 if (urb->transfer_buffer_length > 0)
3043 num_trbs++;
3044 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3045 ep_index, urb->stream_id,
3046 num_trbs, urb, 0, mem_flags);
3047 if (ret < 0)
3048 return ret;
3049
3050 urb_priv = urb->hcpriv;
3051 td = urb_priv->td[0];
3052
3053 /*
3054 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3055 * until we've finished creating all the other TRBs. The ring's cycle
3056 * state may change as we enqueue the other TRBs, so save it too.
3057 */
3058 start_trb = &ep_ring->enqueue->generic;
3059 start_cycle = ep_ring->cycle_state;
3060
3061 /* Queue setup TRB - see section 6.4.1.2.1 */
3062 /* FIXME better way to translate setup_packet into two u32 fields? */
3063 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3064 field = 0;
3065 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3066 if (start_cycle == 0)
3067 field |= 0x1;
3068
3069 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3070 if (xhci->hci_version == 0x100) {
3071 if (urb->transfer_buffer_length > 0) {
3072 if (setup->bRequestType & USB_DIR_IN)
3073 field |= TRB_TX_TYPE(TRB_DATA_IN);
3074 else
3075 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3076 }
3077 }
3078
3079 queue_trb(xhci, ep_ring, false, true,
3080 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3081 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3082 TRB_LEN(8) | TRB_INTR_TARGET(0),
3083 /* Immediate data in pointer */
3084 field);
3085
3086 /* If there's data, queue data TRBs */
3087 /* Only set interrupt on short packet for IN endpoints */
3088 if (usb_urb_dir_in(urb))
3089 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3090 else
3091 field = TRB_TYPE(TRB_DATA);
3092
3093 length_field = TRB_LEN(urb->transfer_buffer_length) |
3094 xhci_td_remainder(urb->transfer_buffer_length) |
3095 TRB_INTR_TARGET(0);
3096 if (urb->transfer_buffer_length > 0) {
3097 if (setup->bRequestType & USB_DIR_IN)
3098 field |= TRB_DIR_IN;
3099 queue_trb(xhci, ep_ring, false, true,
3100 lower_32_bits(urb->transfer_dma),
3101 upper_32_bits(urb->transfer_dma),
3102 length_field,
3103 field | ep_ring->cycle_state);
3104 }
3105
3106 /* Save the DMA address of the last TRB in the TD */
3107 td->last_trb = ep_ring->enqueue;
3108
3109 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3110 /* If the device sent data, the status stage is an OUT transfer */
3111 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3112 field = 0;
3113 else
3114 field = TRB_DIR_IN;
3115 queue_trb(xhci, ep_ring, false, false,
3116 0,
3117 0,
3118 TRB_INTR_TARGET(0),
3119 /* Event on completion */
3120 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3121
3122 giveback_first_trb(xhci, slot_id, ep_index, 0,
3123 start_cycle, start_trb);
3124 return 0;
3125 }
3126
3127 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3128 struct urb *urb, int i)
3129 {
3130 int num_trbs = 0;
3131 u64 addr, td_len;
3132
3133 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3134 td_len = urb->iso_frame_desc[i].length;
3135
3136 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3137 TRB_MAX_BUFF_SIZE);
3138 if (num_trbs == 0)
3139 num_trbs++;
3140
3141 return num_trbs;
3142 }
3143
3144 /*
3145 * The transfer burst count field of the isochronous TRB defines the number of
3146 * bursts that are required to move all packets in this TD. Only SuperSpeed
3147 * devices can burst up to bMaxBurst number of packets per service interval.
3148 * This field is zero based, meaning a value of zero in the field means one
3149 * burst. Basically, for everything but SuperSpeed devices, this field will be
3150 * zero. Only xHCI 1.0 host controllers support this field.
3151 */
3152 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3153 struct usb_device *udev,
3154 struct urb *urb, unsigned int total_packet_count)
3155 {
3156 unsigned int max_burst;
3157
3158 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3159 return 0;
3160
3161 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3162 return roundup(total_packet_count, max_burst + 1) - 1;
3163 }
3164
3165 /*
3166 * Returns the number of packets in the last "burst" of packets. This field is
3167 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3168 * the last burst packet count is equal to the total number of packets in the
3169 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3170 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3171 * contain 1 to (bMaxBurst + 1) packets.
3172 */
3173 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3174 struct usb_device *udev,
3175 struct urb *urb, unsigned int total_packet_count)
3176 {
3177 unsigned int max_burst;
3178 unsigned int residue;
3179
3180 if (xhci->hci_version < 0x100)
3181 return 0;
3182
3183 switch (udev->speed) {
3184 case USB_SPEED_SUPER:
3185 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3186 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3187 residue = total_packet_count % (max_burst + 1);
3188 /* If residue is zero, the last burst contains (max_burst + 1)
3189 * number of packets, but the TLBPC field is zero-based.
3190 */
3191 if (residue == 0)
3192 return max_burst;
3193 return residue - 1;
3194 default:
3195 if (total_packet_count == 0)
3196 return 0;
3197 return total_packet_count - 1;
3198 }
3199 }
3200
3201 /* This is for isoc transfer */
3202 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3203 struct urb *urb, int slot_id, unsigned int ep_index)
3204 {
3205 struct xhci_ring *ep_ring;
3206 struct urb_priv *urb_priv;
3207 struct xhci_td *td;
3208 int num_tds, trbs_per_td;
3209 struct xhci_generic_trb *start_trb;
3210 bool first_trb;
3211 int start_cycle;
3212 u32 field, length_field;
3213 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3214 u64 start_addr, addr;
3215 int i, j;
3216 bool more_trbs_coming;
3217
3218 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3219
3220 num_tds = urb->number_of_packets;
3221 if (num_tds < 1) {
3222 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3223 return -EINVAL;
3224 }
3225
3226 if (!in_interrupt())
3227 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d),"
3228 " addr = %#llx, num_tds = %d\n",
3229 urb->ep->desc.bEndpointAddress,
3230 urb->transfer_buffer_length,
3231 urb->transfer_buffer_length,
3232 (unsigned long long)urb->transfer_dma,
3233 num_tds);
3234
3235 start_addr = (u64) urb->transfer_dma;
3236 start_trb = &ep_ring->enqueue->generic;
3237 start_cycle = ep_ring->cycle_state;
3238
3239 urb_priv = urb->hcpriv;
3240 /* Queue the first TRB, even if it's zero-length */
3241 for (i = 0; i < num_tds; i++) {
3242 unsigned int total_packet_count;
3243 unsigned int burst_count;
3244 unsigned int residue;
3245
3246 first_trb = true;
3247 running_total = 0;
3248 addr = start_addr + urb->iso_frame_desc[i].offset;
3249 td_len = urb->iso_frame_desc[i].length;
3250 td_remain_len = td_len;
3251 total_packet_count = roundup(td_len,
3252 usb_endpoint_maxp(&urb->ep->desc));
3253 /* A zero-length transfer still involves at least one packet. */
3254 if (total_packet_count == 0)
3255 total_packet_count++;
3256 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3257 total_packet_count);
3258 residue = xhci_get_last_burst_packet_count(xhci,
3259 urb->dev, urb, total_packet_count);
3260
3261 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3262
3263 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3264 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3265 if (ret < 0) {
3266 if (i == 0)
3267 return ret;
3268 goto cleanup;
3269 }
3270
3271 td = urb_priv->td[i];
3272 for (j = 0; j < trbs_per_td; j++) {
3273 u32 remainder = 0;
3274 field = TRB_TBC(burst_count) | TRB_TLBPC(residue);
3275
3276 if (first_trb) {
3277 /* Queue the isoc TRB */
3278 field |= TRB_TYPE(TRB_ISOC);
3279 /* Assume URB_ISO_ASAP is set */
3280 field |= TRB_SIA;
3281 if (i == 0) {
3282 if (start_cycle == 0)
3283 field |= 0x1;
3284 } else
3285 field |= ep_ring->cycle_state;
3286 first_trb = false;
3287 } else {
3288 /* Queue other normal TRBs */
3289 field |= TRB_TYPE(TRB_NORMAL);
3290 field |= ep_ring->cycle_state;
3291 }
3292
3293 /* Only set interrupt on short packet for IN EPs */
3294 if (usb_urb_dir_in(urb))
3295 field |= TRB_ISP;
3296
3297 /* Chain all the TRBs together; clear the chain bit in
3298 * the last TRB to indicate it's the last TRB in the
3299 * chain.
3300 */
3301 if (j < trbs_per_td - 1) {
3302 field |= TRB_CHAIN;
3303 more_trbs_coming = true;
3304 } else {
3305 td->last_trb = ep_ring->enqueue;
3306 field |= TRB_IOC;
3307 if (xhci->hci_version == 0x100) {
3308 /* Set BEI bit except for the last td */
3309 if (i < num_tds - 1)
3310 field |= TRB_BEI;
3311 }
3312 more_trbs_coming = false;
3313 }
3314
3315 /* Calculate TRB length */
3316 trb_buff_len = TRB_MAX_BUFF_SIZE -
3317 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3318 if (trb_buff_len > td_remain_len)
3319 trb_buff_len = td_remain_len;
3320
3321 /* Set the TRB length, TD size, & interrupter fields. */
3322 if (xhci->hci_version < 0x100) {
3323 remainder = xhci_td_remainder(
3324 td_len - running_total);
3325 } else {
3326 remainder = xhci_v1_0_td_remainder(
3327 running_total, trb_buff_len,
3328 total_packet_count, urb);
3329 }
3330 length_field = TRB_LEN(trb_buff_len) |
3331 remainder |
3332 TRB_INTR_TARGET(0);
3333
3334 queue_trb(xhci, ep_ring, false, more_trbs_coming,
3335 lower_32_bits(addr),
3336 upper_32_bits(addr),
3337 length_field,
3338 field);
3339 running_total += trb_buff_len;
3340
3341 addr += trb_buff_len;
3342 td_remain_len -= trb_buff_len;
3343 }
3344
3345 /* Check TD length */
3346 if (running_total != td_len) {
3347 xhci_err(xhci, "ISOC TD length unmatch\n");
3348 return -EINVAL;
3349 }
3350 }
3351
3352 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3353 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3354 usb_amd_quirk_pll_disable();
3355 }
3356 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3357
3358 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3359 start_cycle, start_trb);
3360 return 0;
3361 cleanup:
3362 /* Clean up a partially enqueued isoc transfer. */
3363
3364 for (i--; i >= 0; i--)
3365 list_del_init(&urb_priv->td[i]->td_list);
3366
3367 /* Use the first TD as a temporary variable to turn the TDs we've queued
3368 * into No-ops with a software-owned cycle bit. That way the hardware
3369 * won't accidentally start executing bogus TDs when we partially
3370 * overwrite them. td->first_trb and td->start_seg are already set.
3371 */
3372 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3373 /* Every TRB except the first & last will have its cycle bit flipped. */
3374 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3375
3376 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3377 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3378 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3379 ep_ring->cycle_state = start_cycle;
3380 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3381 return ret;
3382 }
3383
3384 /*
3385 * Check transfer ring to guarantee there is enough room for the urb.
3386 * Update ISO URB start_frame and interval.
3387 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3388 * update the urb->start_frame by now.
3389 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3390 */
3391 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3392 struct urb *urb, int slot_id, unsigned int ep_index)
3393 {
3394 struct xhci_virt_device *xdev;
3395 struct xhci_ring *ep_ring;
3396 struct xhci_ep_ctx *ep_ctx;
3397 int start_frame;
3398 int xhci_interval;
3399 int ep_interval;
3400 int num_tds, num_trbs, i;
3401 int ret;
3402
3403 xdev = xhci->devs[slot_id];
3404 ep_ring = xdev->eps[ep_index].ring;
3405 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3406
3407 num_trbs = 0;
3408 num_tds = urb->number_of_packets;
3409 for (i = 0; i < num_tds; i++)
3410 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3411
3412 /* Check the ring to guarantee there is enough room for the whole urb.
3413 * Do not insert any td of the urb to the ring if the check failed.
3414 */
3415 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3416 num_trbs, mem_flags);
3417 if (ret)
3418 return ret;
3419
3420 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3421 start_frame &= 0x3fff;
3422
3423 urb->start_frame = start_frame;
3424 if (urb->dev->speed == USB_SPEED_LOW ||
3425 urb->dev->speed == USB_SPEED_FULL)
3426 urb->start_frame >>= 3;
3427
3428 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3429 ep_interval = urb->interval;
3430 /* Convert to microframes */
3431 if (urb->dev->speed == USB_SPEED_LOW ||
3432 urb->dev->speed == USB_SPEED_FULL)
3433 ep_interval *= 8;
3434 /* FIXME change this to a warning and a suggestion to use the new API
3435 * to set the polling interval (once the API is added).
3436 */
3437 if (xhci_interval != ep_interval) {
3438 if (printk_ratelimit())
3439 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3440 " (%d microframe%s) than xHCI "
3441 "(%d microframe%s)\n",
3442 ep_interval,
3443 ep_interval == 1 ? "" : "s",
3444 xhci_interval,
3445 xhci_interval == 1 ? "" : "s");
3446 urb->interval = xhci_interval;
3447 /* Convert back to frames for LS/FS devices */
3448 if (urb->dev->speed == USB_SPEED_LOW ||
3449 urb->dev->speed == USB_SPEED_FULL)
3450 urb->interval /= 8;
3451 }
3452 return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
3453 }
3454
3455 /**** Command Ring Operations ****/
3456
3457 /* Generic function for queueing a command TRB on the command ring.
3458 * Check to make sure there's room on the command ring for one command TRB.
3459 * Also check that there's room reserved for commands that must not fail.
3460 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3461 * then only check for the number of reserved spots.
3462 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3463 * because the command event handler may want to resubmit a failed command.
3464 */
3465 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3466 u32 field3, u32 field4, bool command_must_succeed)
3467 {
3468 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3469 int ret;
3470
3471 if (!command_must_succeed)
3472 reserved_trbs++;
3473
3474 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3475 reserved_trbs, GFP_ATOMIC);
3476 if (ret < 0) {
3477 xhci_err(xhci, "ERR: No room for command on command ring\n");
3478 if (command_must_succeed)
3479 xhci_err(xhci, "ERR: Reserved TRB counting for "
3480 "unfailable commands failed.\n");
3481 return ret;
3482 }
3483 queue_trb(xhci, xhci->cmd_ring, false, false, field1, field2, field3,
3484 field4 | xhci->cmd_ring->cycle_state);
3485 return 0;
3486 }
3487
3488 /* Queue a slot enable or disable request on the command ring */
3489 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3490 {
3491 return queue_command(xhci, 0, 0, 0,
3492 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3493 }
3494
3495 /* Queue an address device command TRB */
3496 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3497 u32 slot_id)
3498 {
3499 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3500 upper_32_bits(in_ctx_ptr), 0,
3501 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3502 false);
3503 }
3504
3505 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3506 u32 field1, u32 field2, u32 field3, u32 field4)
3507 {
3508 return queue_command(xhci, field1, field2, field3, field4, false);
3509 }
3510
3511 /* Queue a reset device command TRB */
3512 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3513 {
3514 return queue_command(xhci, 0, 0, 0,
3515 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3516 false);
3517 }
3518
3519 /* Queue a configure endpoint command TRB */
3520 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3521 u32 slot_id, bool command_must_succeed)
3522 {
3523 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3524 upper_32_bits(in_ctx_ptr), 0,
3525 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3526 command_must_succeed);
3527 }
3528
3529 /* Queue an evaluate context command TRB */
3530 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3531 u32 slot_id)
3532 {
3533 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3534 upper_32_bits(in_ctx_ptr), 0,
3535 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3536 false);
3537 }
3538
3539 /*
3540 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3541 * activity on an endpoint that is about to be suspended.
3542 */
3543 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3544 unsigned int ep_index, int suspend)
3545 {
3546 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3547 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3548 u32 type = TRB_TYPE(TRB_STOP_RING);
3549 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3550
3551 return queue_command(xhci, 0, 0, 0,
3552 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3553 }
3554
3555 /* Set Transfer Ring Dequeue Pointer command.
3556 * This should not be used for endpoints that have streams enabled.
3557 */
3558 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3559 unsigned int ep_index, unsigned int stream_id,
3560 struct xhci_segment *deq_seg,
3561 union xhci_trb *deq_ptr, u32 cycle_state)
3562 {
3563 dma_addr_t addr;
3564 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3565 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3566 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3567 u32 type = TRB_TYPE(TRB_SET_DEQ);
3568 struct xhci_virt_ep *ep;
3569
3570 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
3571 if (addr == 0) {
3572 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3573 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3574 deq_seg, deq_ptr);
3575 return 0;
3576 }
3577 ep = &xhci->devs[slot_id]->eps[ep_index];
3578 if ((ep->ep_state & SET_DEQ_PENDING)) {
3579 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3580 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3581 return 0;
3582 }
3583 ep->queued_deq_seg = deq_seg;
3584 ep->queued_deq_ptr = deq_ptr;
3585 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
3586 upper_32_bits(addr), trb_stream_id,
3587 trb_slot_id | trb_ep_index | type, false);
3588 }
3589
3590 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
3591 unsigned int ep_index)
3592 {
3593 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3594 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3595 u32 type = TRB_TYPE(TRB_RESET_EP);
3596
3597 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
3598 false);
3599 }
This page took 0.109485 seconds and 5 git commands to generate.