regmap-i2c: Use i2c block command only if register value width is 8 bit
[deliverable/linux.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70 #include "xhci-trace.h"
71 #include "xhci-mtk.h"
72
73 /*
74 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
75 * address of the TRB.
76 */
77 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
78 union xhci_trb *trb)
79 {
80 unsigned long segment_offset;
81
82 if (!seg || !trb || trb < seg->trbs)
83 return 0;
84 /* offset in TRBs */
85 segment_offset = trb - seg->trbs;
86 if (segment_offset >= TRBS_PER_SEGMENT)
87 return 0;
88 return seg->dma + (segment_offset * sizeof(*trb));
89 }
90
91 /* Does this link TRB point to the first segment in a ring,
92 * or was the previous TRB the last TRB on the last segment in the ERST?
93 */
94 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
95 struct xhci_segment *seg, union xhci_trb *trb)
96 {
97 if (ring == xhci->event_ring)
98 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
99 (seg->next == xhci->event_ring->first_seg);
100 else
101 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
102 }
103
104 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
105 * segment? I.e. would the updated event TRB pointer step off the end of the
106 * event seg?
107 */
108 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
109 struct xhci_segment *seg, union xhci_trb *trb)
110 {
111 if (ring == xhci->event_ring)
112 return trb == &seg->trbs[TRBS_PER_SEGMENT];
113 else
114 return TRB_TYPE_LINK_LE32(trb->link.control);
115 }
116
117 static int enqueue_is_link_trb(struct xhci_ring *ring)
118 {
119 struct xhci_link_trb *link = &ring->enqueue->link;
120 return TRB_TYPE_LINK_LE32(link->control);
121 }
122
123 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
124 * TRB is in a new segment. This does not skip over link TRBs, and it does not
125 * effect the ring dequeue or enqueue pointers.
126 */
127 static void next_trb(struct xhci_hcd *xhci,
128 struct xhci_ring *ring,
129 struct xhci_segment **seg,
130 union xhci_trb **trb)
131 {
132 if (last_trb(xhci, ring, *seg, *trb)) {
133 *seg = (*seg)->next;
134 *trb = ((*seg)->trbs);
135 } else {
136 (*trb)++;
137 }
138 }
139
140 /*
141 * See Cycle bit rules. SW is the consumer for the event ring only.
142 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
143 */
144 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
145 {
146 ring->deq_updates++;
147
148 /*
149 * If this is not event ring, and the dequeue pointer
150 * is not on a link TRB, there is one more usable TRB
151 */
152 if (ring->type != TYPE_EVENT &&
153 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
154 ring->num_trbs_free++;
155
156 do {
157 /*
158 * Update the dequeue pointer further if that was a link TRB or
159 * we're at the end of an event ring segment (which doesn't have
160 * link TRBS)
161 */
162 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
163 if (ring->type == TYPE_EVENT &&
164 last_trb_on_last_seg(xhci, ring,
165 ring->deq_seg, ring->dequeue)) {
166 ring->cycle_state ^= 1;
167 }
168 ring->deq_seg = ring->deq_seg->next;
169 ring->dequeue = ring->deq_seg->trbs;
170 } else {
171 ring->dequeue++;
172 }
173 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
174 }
175
176 /*
177 * See Cycle bit rules. SW is the consumer for the event ring only.
178 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
179 *
180 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
181 * chain bit is set), then set the chain bit in all the following link TRBs.
182 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
183 * have their chain bit cleared (so that each Link TRB is a separate TD).
184 *
185 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
186 * set, but other sections talk about dealing with the chain bit set. This was
187 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
188 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
189 *
190 * @more_trbs_coming: Will you enqueue more TRBs before calling
191 * prepare_transfer()?
192 */
193 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
194 bool more_trbs_coming)
195 {
196 u32 chain;
197 union xhci_trb *next;
198
199 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
200 /* If this is not event ring, there is one less usable TRB */
201 if (ring->type != TYPE_EVENT &&
202 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
203 ring->num_trbs_free--;
204 next = ++(ring->enqueue);
205
206 ring->enq_updates++;
207 /* Update the dequeue pointer further if that was a link TRB or we're at
208 * the end of an event ring segment (which doesn't have link TRBS)
209 */
210 while (last_trb(xhci, ring, ring->enq_seg, next)) {
211 if (ring->type != TYPE_EVENT) {
212 /*
213 * If the caller doesn't plan on enqueueing more
214 * TDs before ringing the doorbell, then we
215 * don't want to give the link TRB to the
216 * hardware just yet. We'll give the link TRB
217 * back in prepare_ring() just before we enqueue
218 * the TD at the top of the ring.
219 */
220 if (!chain && !more_trbs_coming)
221 break;
222
223 /* If we're not dealing with 0.95 hardware or
224 * isoc rings on AMD 0.96 host,
225 * carry over the chain bit of the previous TRB
226 * (which may mean the chain bit is cleared).
227 */
228 if (!(ring->type == TYPE_ISOC &&
229 (xhci->quirks & XHCI_AMD_0x96_HOST))
230 && !xhci_link_trb_quirk(xhci)) {
231 next->link.control &=
232 cpu_to_le32(~TRB_CHAIN);
233 next->link.control |=
234 cpu_to_le32(chain);
235 }
236 /* Give this link TRB to the hardware */
237 wmb();
238 next->link.control ^= cpu_to_le32(TRB_CYCLE);
239
240 /* Toggle the cycle bit after the last ring segment. */
241 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
242 ring->cycle_state ^= 1;
243 }
244 }
245 ring->enq_seg = ring->enq_seg->next;
246 ring->enqueue = ring->enq_seg->trbs;
247 next = ring->enqueue;
248 }
249 }
250
251 /*
252 * Check to see if there's room to enqueue num_trbs on the ring and make sure
253 * enqueue pointer will not advance into dequeue segment. See rules above.
254 */
255 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
256 unsigned int num_trbs)
257 {
258 int num_trbs_in_deq_seg;
259
260 if (ring->num_trbs_free < num_trbs)
261 return 0;
262
263 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
264 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
265 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
266 return 0;
267 }
268
269 return 1;
270 }
271
272 /* Ring the host controller doorbell after placing a command on the ring */
273 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
274 {
275 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
276 return;
277
278 xhci_dbg(xhci, "// Ding dong!\n");
279 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
280 /* Flush PCI posted writes */
281 readl(&xhci->dba->doorbell[0]);
282 }
283
284 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
285 {
286 u64 temp_64;
287 int ret;
288
289 xhci_dbg(xhci, "Abort command ring\n");
290
291 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
292 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
293 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
294 &xhci->op_regs->cmd_ring);
295
296 /* Section 4.6.1.2 of xHCI 1.0 spec says software should
297 * time the completion od all xHCI commands, including
298 * the Command Abort operation. If software doesn't see
299 * CRR negated in a timely manner (e.g. longer than 5
300 * seconds), then it should assume that the there are
301 * larger problems with the xHC and assert HCRST.
302 */
303 ret = xhci_handshake(&xhci->op_regs->cmd_ring,
304 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
305 if (ret < 0) {
306 /* we are about to kill xhci, give it one more chance */
307 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
308 &xhci->op_regs->cmd_ring);
309 udelay(1000);
310 ret = xhci_handshake(&xhci->op_regs->cmd_ring,
311 CMD_RING_RUNNING, 0, 3 * 1000 * 1000);
312 if (ret == 0)
313 return 0;
314
315 xhci_err(xhci, "Stopped the command ring failed, "
316 "maybe the host is dead\n");
317 xhci->xhc_state |= XHCI_STATE_DYING;
318 xhci_quiesce(xhci);
319 xhci_halt(xhci);
320 return -ESHUTDOWN;
321 }
322
323 return 0;
324 }
325
326 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
327 unsigned int slot_id,
328 unsigned int ep_index,
329 unsigned int stream_id)
330 {
331 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
332 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
333 unsigned int ep_state = ep->ep_state;
334
335 /* Don't ring the doorbell for this endpoint if there are pending
336 * cancellations because we don't want to interrupt processing.
337 * We don't want to restart any stream rings if there's a set dequeue
338 * pointer command pending because the device can choose to start any
339 * stream once the endpoint is on the HW schedule.
340 */
341 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
342 (ep_state & EP_HALTED))
343 return;
344 writel(DB_VALUE(ep_index, stream_id), db_addr);
345 /* The CPU has better things to do at this point than wait for a
346 * write-posting flush. It'll get there soon enough.
347 */
348 }
349
350 /* Ring the doorbell for any rings with pending URBs */
351 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
352 unsigned int slot_id,
353 unsigned int ep_index)
354 {
355 unsigned int stream_id;
356 struct xhci_virt_ep *ep;
357
358 ep = &xhci->devs[slot_id]->eps[ep_index];
359
360 /* A ring has pending URBs if its TD list is not empty */
361 if (!(ep->ep_state & EP_HAS_STREAMS)) {
362 if (ep->ring && !(list_empty(&ep->ring->td_list)))
363 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
364 return;
365 }
366
367 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
368 stream_id++) {
369 struct xhci_stream_info *stream_info = ep->stream_info;
370 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
371 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
372 stream_id);
373 }
374 }
375
376 /* Get the right ring for the given slot_id, ep_index and stream_id.
377 * If the endpoint supports streams, boundary check the URB's stream ID.
378 * If the endpoint doesn't support streams, return the singular endpoint ring.
379 */
380 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
381 unsigned int slot_id, unsigned int ep_index,
382 unsigned int stream_id)
383 {
384 struct xhci_virt_ep *ep;
385
386 ep = &xhci->devs[slot_id]->eps[ep_index];
387 /* Common case: no streams */
388 if (!(ep->ep_state & EP_HAS_STREAMS))
389 return ep->ring;
390
391 if (stream_id == 0) {
392 xhci_warn(xhci,
393 "WARN: Slot ID %u, ep index %u has streams, "
394 "but URB has no stream ID.\n",
395 slot_id, ep_index);
396 return NULL;
397 }
398
399 if (stream_id < ep->stream_info->num_streams)
400 return ep->stream_info->stream_rings[stream_id];
401
402 xhci_warn(xhci,
403 "WARN: Slot ID %u, ep index %u has "
404 "stream IDs 1 to %u allocated, "
405 "but stream ID %u is requested.\n",
406 slot_id, ep_index,
407 ep->stream_info->num_streams - 1,
408 stream_id);
409 return NULL;
410 }
411
412 /*
413 * Move the xHC's endpoint ring dequeue pointer past cur_td.
414 * Record the new state of the xHC's endpoint ring dequeue segment,
415 * dequeue pointer, and new consumer cycle state in state.
416 * Update our internal representation of the ring's dequeue pointer.
417 *
418 * We do this in three jumps:
419 * - First we update our new ring state to be the same as when the xHC stopped.
420 * - Then we traverse the ring to find the segment that contains
421 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
422 * any link TRBs with the toggle cycle bit set.
423 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
424 * if we've moved it past a link TRB with the toggle cycle bit set.
425 *
426 * Some of the uses of xhci_generic_trb are grotty, but if they're done
427 * with correct __le32 accesses they should work fine. Only users of this are
428 * in here.
429 */
430 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
431 unsigned int slot_id, unsigned int ep_index,
432 unsigned int stream_id, struct xhci_td *cur_td,
433 struct xhci_dequeue_state *state)
434 {
435 struct xhci_virt_device *dev = xhci->devs[slot_id];
436 struct xhci_virt_ep *ep = &dev->eps[ep_index];
437 struct xhci_ring *ep_ring;
438 struct xhci_segment *new_seg;
439 union xhci_trb *new_deq;
440 dma_addr_t addr;
441 u64 hw_dequeue;
442 bool cycle_found = false;
443 bool td_last_trb_found = false;
444
445 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
446 ep_index, stream_id);
447 if (!ep_ring) {
448 xhci_warn(xhci, "WARN can't find new dequeue state "
449 "for invalid stream ID %u.\n",
450 stream_id);
451 return;
452 }
453
454 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
455 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
456 "Finding endpoint context");
457 /* 4.6.9 the css flag is written to the stream context for streams */
458 if (ep->ep_state & EP_HAS_STREAMS) {
459 struct xhci_stream_ctx *ctx =
460 &ep->stream_info->stream_ctx_array[stream_id];
461 hw_dequeue = le64_to_cpu(ctx->stream_ring);
462 } else {
463 struct xhci_ep_ctx *ep_ctx
464 = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
465 hw_dequeue = le64_to_cpu(ep_ctx->deq);
466 }
467
468 new_seg = ep_ring->deq_seg;
469 new_deq = ep_ring->dequeue;
470 state->new_cycle_state = hw_dequeue & 0x1;
471
472 /*
473 * We want to find the pointer, segment and cycle state of the new trb
474 * (the one after current TD's last_trb). We know the cycle state at
475 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
476 * found.
477 */
478 do {
479 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
480 == (dma_addr_t)(hw_dequeue & ~0xf)) {
481 cycle_found = true;
482 if (td_last_trb_found)
483 break;
484 }
485 if (new_deq == cur_td->last_trb)
486 td_last_trb_found = true;
487
488 if (cycle_found &&
489 TRB_TYPE_LINK_LE32(new_deq->generic.field[3]) &&
490 new_deq->generic.field[3] & cpu_to_le32(LINK_TOGGLE))
491 state->new_cycle_state ^= 0x1;
492
493 next_trb(xhci, ep_ring, &new_seg, &new_deq);
494
495 /* Search wrapped around, bail out */
496 if (new_deq == ep->ring->dequeue) {
497 xhci_err(xhci, "Error: Failed finding new dequeue state\n");
498 state->new_deq_seg = NULL;
499 state->new_deq_ptr = NULL;
500 return;
501 }
502
503 } while (!cycle_found || !td_last_trb_found);
504
505 state->new_deq_seg = new_seg;
506 state->new_deq_ptr = new_deq;
507
508 /* Don't update the ring cycle state for the producer (us). */
509 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
510 "Cycle state = 0x%x", state->new_cycle_state);
511
512 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
513 "New dequeue segment = %p (virtual)",
514 state->new_deq_seg);
515 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
516 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
517 "New dequeue pointer = 0x%llx (DMA)",
518 (unsigned long long) addr);
519 }
520
521 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
522 * (The last TRB actually points to the ring enqueue pointer, which is not part
523 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
524 */
525 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
526 struct xhci_td *cur_td, bool flip_cycle)
527 {
528 struct xhci_segment *cur_seg;
529 union xhci_trb *cur_trb;
530
531 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
532 true;
533 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
534 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
535 /* Unchain any chained Link TRBs, but
536 * leave the pointers intact.
537 */
538 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
539 /* Flip the cycle bit (link TRBs can't be the first
540 * or last TRB).
541 */
542 if (flip_cycle)
543 cur_trb->generic.field[3] ^=
544 cpu_to_le32(TRB_CYCLE);
545 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
546 "Cancel (unchain) link TRB");
547 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
548 "Address = %p (0x%llx dma); "
549 "in seg %p (0x%llx dma)",
550 cur_trb,
551 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
552 cur_seg,
553 (unsigned long long)cur_seg->dma);
554 } else {
555 cur_trb->generic.field[0] = 0;
556 cur_trb->generic.field[1] = 0;
557 cur_trb->generic.field[2] = 0;
558 /* Preserve only the cycle bit of this TRB */
559 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
560 /* Flip the cycle bit except on the first or last TRB */
561 if (flip_cycle && cur_trb != cur_td->first_trb &&
562 cur_trb != cur_td->last_trb)
563 cur_trb->generic.field[3] ^=
564 cpu_to_le32(TRB_CYCLE);
565 cur_trb->generic.field[3] |= cpu_to_le32(
566 TRB_TYPE(TRB_TR_NOOP));
567 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
568 "TRB to noop at offset 0x%llx",
569 (unsigned long long)
570 xhci_trb_virt_to_dma(cur_seg, cur_trb));
571 }
572 if (cur_trb == cur_td->last_trb)
573 break;
574 }
575 }
576
577 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
578 struct xhci_virt_ep *ep)
579 {
580 ep->ep_state &= ~EP_HALT_PENDING;
581 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
582 * timer is running on another CPU, we don't decrement stop_cmds_pending
583 * (since we didn't successfully stop the watchdog timer).
584 */
585 if (del_timer(&ep->stop_cmd_timer))
586 ep->stop_cmds_pending--;
587 }
588
589 /* Must be called with xhci->lock held in interrupt context */
590 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
591 struct xhci_td *cur_td, int status)
592 {
593 struct usb_hcd *hcd;
594 struct urb *urb;
595 struct urb_priv *urb_priv;
596
597 urb = cur_td->urb;
598 urb_priv = urb->hcpriv;
599 urb_priv->td_cnt++;
600 hcd = bus_to_hcd(urb->dev->bus);
601
602 /* Only giveback urb when this is the last td in urb */
603 if (urb_priv->td_cnt == urb_priv->length) {
604 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
605 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
606 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
607 if (xhci->quirks & XHCI_AMD_PLL_FIX)
608 usb_amd_quirk_pll_enable();
609 }
610 }
611 usb_hcd_unlink_urb_from_ep(hcd, urb);
612
613 spin_unlock(&xhci->lock);
614 usb_hcd_giveback_urb(hcd, urb, status);
615 xhci_urb_free_priv(urb_priv);
616 spin_lock(&xhci->lock);
617 }
618 }
619
620 /*
621 * When we get a command completion for a Stop Endpoint Command, we need to
622 * unlink any cancelled TDs from the ring. There are two ways to do that:
623 *
624 * 1. If the HW was in the middle of processing the TD that needs to be
625 * cancelled, then we must move the ring's dequeue pointer past the last TRB
626 * in the TD with a Set Dequeue Pointer Command.
627 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
628 * bit cleared) so that the HW will skip over them.
629 */
630 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
631 union xhci_trb *trb, struct xhci_event_cmd *event)
632 {
633 unsigned int ep_index;
634 struct xhci_ring *ep_ring;
635 struct xhci_virt_ep *ep;
636 struct list_head *entry;
637 struct xhci_td *cur_td = NULL;
638 struct xhci_td *last_unlinked_td;
639
640 struct xhci_dequeue_state deq_state;
641
642 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
643 if (!xhci->devs[slot_id])
644 xhci_warn(xhci, "Stop endpoint command "
645 "completion for disabled slot %u\n",
646 slot_id);
647 return;
648 }
649
650 memset(&deq_state, 0, sizeof(deq_state));
651 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
652 ep = &xhci->devs[slot_id]->eps[ep_index];
653
654 if (list_empty(&ep->cancelled_td_list)) {
655 xhci_stop_watchdog_timer_in_irq(xhci, ep);
656 ep->stopped_td = NULL;
657 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
658 return;
659 }
660
661 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
662 * We have the xHCI lock, so nothing can modify this list until we drop
663 * it. We're also in the event handler, so we can't get re-interrupted
664 * if another Stop Endpoint command completes
665 */
666 list_for_each(entry, &ep->cancelled_td_list) {
667 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
668 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
669 "Removing canceled TD starting at 0x%llx (dma).",
670 (unsigned long long)xhci_trb_virt_to_dma(
671 cur_td->start_seg, cur_td->first_trb));
672 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
673 if (!ep_ring) {
674 /* This shouldn't happen unless a driver is mucking
675 * with the stream ID after submission. This will
676 * leave the TD on the hardware ring, and the hardware
677 * will try to execute it, and may access a buffer
678 * that has already been freed. In the best case, the
679 * hardware will execute it, and the event handler will
680 * ignore the completion event for that TD, since it was
681 * removed from the td_list for that endpoint. In
682 * short, don't muck with the stream ID after
683 * submission.
684 */
685 xhci_warn(xhci, "WARN Cancelled URB %p "
686 "has invalid stream ID %u.\n",
687 cur_td->urb,
688 cur_td->urb->stream_id);
689 goto remove_finished_td;
690 }
691 /*
692 * If we stopped on the TD we need to cancel, then we have to
693 * move the xHC endpoint ring dequeue pointer past this TD.
694 */
695 if (cur_td == ep->stopped_td)
696 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
697 cur_td->urb->stream_id,
698 cur_td, &deq_state);
699 else
700 td_to_noop(xhci, ep_ring, cur_td, false);
701 remove_finished_td:
702 /*
703 * The event handler won't see a completion for this TD anymore,
704 * so remove it from the endpoint ring's TD list. Keep it in
705 * the cancelled TD list for URB completion later.
706 */
707 list_del_init(&cur_td->td_list);
708 }
709 last_unlinked_td = cur_td;
710 xhci_stop_watchdog_timer_in_irq(xhci, ep);
711
712 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
713 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
714 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
715 ep->stopped_td->urb->stream_id, &deq_state);
716 xhci_ring_cmd_db(xhci);
717 } else {
718 /* Otherwise ring the doorbell(s) to restart queued transfers */
719 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
720 }
721
722 ep->stopped_td = NULL;
723
724 /*
725 * Drop the lock and complete the URBs in the cancelled TD list.
726 * New TDs to be cancelled might be added to the end of the list before
727 * we can complete all the URBs for the TDs we already unlinked.
728 * So stop when we've completed the URB for the last TD we unlinked.
729 */
730 do {
731 cur_td = list_entry(ep->cancelled_td_list.next,
732 struct xhci_td, cancelled_td_list);
733 list_del_init(&cur_td->cancelled_td_list);
734
735 /* Clean up the cancelled URB */
736 /* Doesn't matter what we pass for status, since the core will
737 * just overwrite it (because the URB has been unlinked).
738 */
739 xhci_giveback_urb_in_irq(xhci, cur_td, 0);
740
741 /* Stop processing the cancelled list if the watchdog timer is
742 * running.
743 */
744 if (xhci->xhc_state & XHCI_STATE_DYING)
745 return;
746 } while (cur_td != last_unlinked_td);
747
748 /* Return to the event handler with xhci->lock re-acquired */
749 }
750
751 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
752 {
753 struct xhci_td *cur_td;
754
755 while (!list_empty(&ring->td_list)) {
756 cur_td = list_first_entry(&ring->td_list,
757 struct xhci_td, td_list);
758 list_del_init(&cur_td->td_list);
759 if (!list_empty(&cur_td->cancelled_td_list))
760 list_del_init(&cur_td->cancelled_td_list);
761 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
762 }
763 }
764
765 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
766 int slot_id, int ep_index)
767 {
768 struct xhci_td *cur_td;
769 struct xhci_virt_ep *ep;
770 struct xhci_ring *ring;
771
772 ep = &xhci->devs[slot_id]->eps[ep_index];
773 if ((ep->ep_state & EP_HAS_STREAMS) ||
774 (ep->ep_state & EP_GETTING_NO_STREAMS)) {
775 int stream_id;
776
777 for (stream_id = 0; stream_id < ep->stream_info->num_streams;
778 stream_id++) {
779 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
780 "Killing URBs for slot ID %u, ep index %u, stream %u",
781 slot_id, ep_index, stream_id + 1);
782 xhci_kill_ring_urbs(xhci,
783 ep->stream_info->stream_rings[stream_id]);
784 }
785 } else {
786 ring = ep->ring;
787 if (!ring)
788 return;
789 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
790 "Killing URBs for slot ID %u, ep index %u",
791 slot_id, ep_index);
792 xhci_kill_ring_urbs(xhci, ring);
793 }
794 while (!list_empty(&ep->cancelled_td_list)) {
795 cur_td = list_first_entry(&ep->cancelled_td_list,
796 struct xhci_td, cancelled_td_list);
797 list_del_init(&cur_td->cancelled_td_list);
798 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
799 }
800 }
801
802 /* Watchdog timer function for when a stop endpoint command fails to complete.
803 * In this case, we assume the host controller is broken or dying or dead. The
804 * host may still be completing some other events, so we have to be careful to
805 * let the event ring handler and the URB dequeueing/enqueueing functions know
806 * through xhci->state.
807 *
808 * The timer may also fire if the host takes a very long time to respond to the
809 * command, and the stop endpoint command completion handler cannot delete the
810 * timer before the timer function is called. Another endpoint cancellation may
811 * sneak in before the timer function can grab the lock, and that may queue
812 * another stop endpoint command and add the timer back. So we cannot use a
813 * simple flag to say whether there is a pending stop endpoint command for a
814 * particular endpoint.
815 *
816 * Instead we use a combination of that flag and a counter for the number of
817 * pending stop endpoint commands. If the timer is the tail end of the last
818 * stop endpoint command, and the endpoint's command is still pending, we assume
819 * the host is dying.
820 */
821 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
822 {
823 struct xhci_hcd *xhci;
824 struct xhci_virt_ep *ep;
825 int ret, i, j;
826 unsigned long flags;
827
828 ep = (struct xhci_virt_ep *) arg;
829 xhci = ep->xhci;
830
831 spin_lock_irqsave(&xhci->lock, flags);
832
833 ep->stop_cmds_pending--;
834 if (xhci->xhc_state & XHCI_STATE_DYING) {
835 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
836 "Stop EP timer ran, but another timer marked "
837 "xHCI as DYING, exiting.");
838 spin_unlock_irqrestore(&xhci->lock, flags);
839 return;
840 }
841 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
842 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
843 "Stop EP timer ran, but no command pending, "
844 "exiting.");
845 spin_unlock_irqrestore(&xhci->lock, flags);
846 return;
847 }
848
849 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
850 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
851 /* Oops, HC is dead or dying or at least not responding to the stop
852 * endpoint command.
853 */
854 xhci->xhc_state |= XHCI_STATE_DYING;
855 /* Disable interrupts from the host controller and start halting it */
856 xhci_quiesce(xhci);
857 spin_unlock_irqrestore(&xhci->lock, flags);
858
859 ret = xhci_halt(xhci);
860
861 spin_lock_irqsave(&xhci->lock, flags);
862 if (ret < 0) {
863 /* This is bad; the host is not responding to commands and it's
864 * not allowing itself to be halted. At least interrupts are
865 * disabled. If we call usb_hc_died(), it will attempt to
866 * disconnect all device drivers under this host. Those
867 * disconnect() methods will wait for all URBs to be unlinked,
868 * so we must complete them.
869 */
870 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
871 xhci_warn(xhci, "Completing active URBs anyway.\n");
872 /* We could turn all TDs on the rings to no-ops. This won't
873 * help if the host has cached part of the ring, and is slow if
874 * we want to preserve the cycle bit. Skip it and hope the host
875 * doesn't touch the memory.
876 */
877 }
878 for (i = 0; i < MAX_HC_SLOTS; i++) {
879 if (!xhci->devs[i])
880 continue;
881 for (j = 0; j < 31; j++)
882 xhci_kill_endpoint_urbs(xhci, i, j);
883 }
884 spin_unlock_irqrestore(&xhci->lock, flags);
885 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
886 "Calling usb_hc_died()");
887 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
888 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
889 "xHCI host controller is dead.");
890 }
891
892
893 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
894 struct xhci_virt_device *dev,
895 struct xhci_ring *ep_ring,
896 unsigned int ep_index)
897 {
898 union xhci_trb *dequeue_temp;
899 int num_trbs_free_temp;
900 bool revert = false;
901
902 num_trbs_free_temp = ep_ring->num_trbs_free;
903 dequeue_temp = ep_ring->dequeue;
904
905 /* If we get two back-to-back stalls, and the first stalled transfer
906 * ends just before a link TRB, the dequeue pointer will be left on
907 * the link TRB by the code in the while loop. So we have to update
908 * the dequeue pointer one segment further, or we'll jump off
909 * the segment into la-la-land.
910 */
911 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
912 ep_ring->deq_seg = ep_ring->deq_seg->next;
913 ep_ring->dequeue = ep_ring->deq_seg->trbs;
914 }
915
916 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
917 /* We have more usable TRBs */
918 ep_ring->num_trbs_free++;
919 ep_ring->dequeue++;
920 if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
921 ep_ring->dequeue)) {
922 if (ep_ring->dequeue ==
923 dev->eps[ep_index].queued_deq_ptr)
924 break;
925 ep_ring->deq_seg = ep_ring->deq_seg->next;
926 ep_ring->dequeue = ep_ring->deq_seg->trbs;
927 }
928 if (ep_ring->dequeue == dequeue_temp) {
929 revert = true;
930 break;
931 }
932 }
933
934 if (revert) {
935 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
936 ep_ring->num_trbs_free = num_trbs_free_temp;
937 }
938 }
939
940 /*
941 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
942 * we need to clear the set deq pending flag in the endpoint ring state, so that
943 * the TD queueing code can ring the doorbell again. We also need to ring the
944 * endpoint doorbell to restart the ring, but only if there aren't more
945 * cancellations pending.
946 */
947 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
948 union xhci_trb *trb, u32 cmd_comp_code)
949 {
950 unsigned int ep_index;
951 unsigned int stream_id;
952 struct xhci_ring *ep_ring;
953 struct xhci_virt_device *dev;
954 struct xhci_virt_ep *ep;
955 struct xhci_ep_ctx *ep_ctx;
956 struct xhci_slot_ctx *slot_ctx;
957
958 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
959 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
960 dev = xhci->devs[slot_id];
961 ep = &dev->eps[ep_index];
962
963 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
964 if (!ep_ring) {
965 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
966 stream_id);
967 /* XXX: Harmless??? */
968 goto cleanup;
969 }
970
971 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
972 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
973
974 if (cmd_comp_code != COMP_SUCCESS) {
975 unsigned int ep_state;
976 unsigned int slot_state;
977
978 switch (cmd_comp_code) {
979 case COMP_TRB_ERR:
980 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
981 break;
982 case COMP_CTX_STATE:
983 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
984 ep_state = le32_to_cpu(ep_ctx->ep_info);
985 ep_state &= EP_STATE_MASK;
986 slot_state = le32_to_cpu(slot_ctx->dev_state);
987 slot_state = GET_SLOT_STATE(slot_state);
988 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
989 "Slot state = %u, EP state = %u",
990 slot_state, ep_state);
991 break;
992 case COMP_EBADSLT:
993 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
994 slot_id);
995 break;
996 default:
997 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
998 cmd_comp_code);
999 break;
1000 }
1001 /* OK what do we do now? The endpoint state is hosed, and we
1002 * should never get to this point if the synchronization between
1003 * queueing, and endpoint state are correct. This might happen
1004 * if the device gets disconnected after we've finished
1005 * cancelling URBs, which might not be an error...
1006 */
1007 } else {
1008 u64 deq;
1009 /* 4.6.10 deq ptr is written to the stream ctx for streams */
1010 if (ep->ep_state & EP_HAS_STREAMS) {
1011 struct xhci_stream_ctx *ctx =
1012 &ep->stream_info->stream_ctx_array[stream_id];
1013 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1014 } else {
1015 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1016 }
1017 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1018 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1019 if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1020 ep->queued_deq_ptr) == deq) {
1021 /* Update the ring's dequeue segment and dequeue pointer
1022 * to reflect the new position.
1023 */
1024 update_ring_for_set_deq_completion(xhci, dev,
1025 ep_ring, ep_index);
1026 } else {
1027 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1028 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1029 ep->queued_deq_seg, ep->queued_deq_ptr);
1030 }
1031 }
1032
1033 cleanup:
1034 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1035 dev->eps[ep_index].queued_deq_seg = NULL;
1036 dev->eps[ep_index].queued_deq_ptr = NULL;
1037 /* Restart any rings with pending URBs */
1038 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1039 }
1040
1041 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1042 union xhci_trb *trb, u32 cmd_comp_code)
1043 {
1044 unsigned int ep_index;
1045
1046 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1047 /* This command will only fail if the endpoint wasn't halted,
1048 * but we don't care.
1049 */
1050 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1051 "Ignoring reset ep completion code of %u", cmd_comp_code);
1052
1053 /* HW with the reset endpoint quirk needs to have a configure endpoint
1054 * command complete before the endpoint can be used. Queue that here
1055 * because the HW can't handle two commands being queued in a row.
1056 */
1057 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1058 struct xhci_command *command;
1059 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1060 if (!command) {
1061 xhci_warn(xhci, "WARN Cannot submit cfg ep: ENOMEM\n");
1062 return;
1063 }
1064 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1065 "Queueing configure endpoint command");
1066 xhci_queue_configure_endpoint(xhci, command,
1067 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1068 false);
1069 xhci_ring_cmd_db(xhci);
1070 } else {
1071 /* Clear our internal halted state */
1072 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1073 }
1074 }
1075
1076 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1077 u32 cmd_comp_code)
1078 {
1079 if (cmd_comp_code == COMP_SUCCESS)
1080 xhci->slot_id = slot_id;
1081 else
1082 xhci->slot_id = 0;
1083 }
1084
1085 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1086 {
1087 struct xhci_virt_device *virt_dev;
1088
1089 virt_dev = xhci->devs[slot_id];
1090 if (!virt_dev)
1091 return;
1092 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1093 /* Delete default control endpoint resources */
1094 xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1095 xhci_free_virt_device(xhci, slot_id);
1096 }
1097
1098 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1099 struct xhci_event_cmd *event, u32 cmd_comp_code)
1100 {
1101 struct xhci_virt_device *virt_dev;
1102 struct xhci_input_control_ctx *ctrl_ctx;
1103 unsigned int ep_index;
1104 unsigned int ep_state;
1105 u32 add_flags, drop_flags;
1106
1107 /*
1108 * Configure endpoint commands can come from the USB core
1109 * configuration or alt setting changes, or because the HW
1110 * needed an extra configure endpoint command after a reset
1111 * endpoint command or streams were being configured.
1112 * If the command was for a halted endpoint, the xHCI driver
1113 * is not waiting on the configure endpoint command.
1114 */
1115 virt_dev = xhci->devs[slot_id];
1116 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1117 if (!ctrl_ctx) {
1118 xhci_warn(xhci, "Could not get input context, bad type.\n");
1119 return;
1120 }
1121
1122 add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1123 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1124 /* Input ctx add_flags are the endpoint index plus one */
1125 ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1126
1127 /* A usb_set_interface() call directly after clearing a halted
1128 * condition may race on this quirky hardware. Not worth
1129 * worrying about, since this is prototype hardware. Not sure
1130 * if this will work for streams, but streams support was
1131 * untested on this prototype.
1132 */
1133 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1134 ep_index != (unsigned int) -1 &&
1135 add_flags - SLOT_FLAG == drop_flags) {
1136 ep_state = virt_dev->eps[ep_index].ep_state;
1137 if (!(ep_state & EP_HALTED))
1138 return;
1139 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1140 "Completed config ep cmd - "
1141 "last ep index = %d, state = %d",
1142 ep_index, ep_state);
1143 /* Clear internal halted state and restart ring(s) */
1144 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1145 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1146 return;
1147 }
1148 return;
1149 }
1150
1151 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1152 struct xhci_event_cmd *event)
1153 {
1154 xhci_dbg(xhci, "Completed reset device command.\n");
1155 if (!xhci->devs[slot_id])
1156 xhci_warn(xhci, "Reset device command completion "
1157 "for disabled slot %u\n", slot_id);
1158 }
1159
1160 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1161 struct xhci_event_cmd *event)
1162 {
1163 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1164 xhci->error_bitmask |= 1 << 6;
1165 return;
1166 }
1167 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1168 "NEC firmware version %2x.%02x",
1169 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1170 NEC_FW_MINOR(le32_to_cpu(event->status)));
1171 }
1172
1173 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1174 {
1175 list_del(&cmd->cmd_list);
1176
1177 if (cmd->completion) {
1178 cmd->status = status;
1179 complete(cmd->completion);
1180 } else {
1181 kfree(cmd);
1182 }
1183 }
1184
1185 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1186 {
1187 struct xhci_command *cur_cmd, *tmp_cmd;
1188 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1189 xhci_complete_del_and_free_cmd(cur_cmd, COMP_CMD_ABORT);
1190 }
1191
1192 /*
1193 * Turn all commands on command ring with status set to "aborted" to no-op trbs.
1194 * If there are other commands waiting then restart the ring and kick the timer.
1195 * This must be called with command ring stopped and xhci->lock held.
1196 */
1197 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1198 struct xhci_command *cur_cmd)
1199 {
1200 struct xhci_command *i_cmd, *tmp_cmd;
1201 u32 cycle_state;
1202
1203 /* Turn all aborted commands in list to no-ops, then restart */
1204 list_for_each_entry_safe(i_cmd, tmp_cmd, &xhci->cmd_list,
1205 cmd_list) {
1206
1207 if (i_cmd->status != COMP_CMD_ABORT)
1208 continue;
1209
1210 i_cmd->status = COMP_CMD_STOP;
1211
1212 xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
1213 i_cmd->command_trb);
1214 /* get cycle state from the original cmd trb */
1215 cycle_state = le32_to_cpu(
1216 i_cmd->command_trb->generic.field[3]) & TRB_CYCLE;
1217 /* modify the command trb to no-op command */
1218 i_cmd->command_trb->generic.field[0] = 0;
1219 i_cmd->command_trb->generic.field[1] = 0;
1220 i_cmd->command_trb->generic.field[2] = 0;
1221 i_cmd->command_trb->generic.field[3] = cpu_to_le32(
1222 TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1223
1224 /*
1225 * caller waiting for completion is called when command
1226 * completion event is received for these no-op commands
1227 */
1228 }
1229
1230 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1231
1232 /* ring command ring doorbell to restart the command ring */
1233 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
1234 !(xhci->xhc_state & XHCI_STATE_DYING)) {
1235 xhci->current_cmd = cur_cmd;
1236 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1237 xhci_ring_cmd_db(xhci);
1238 }
1239 return;
1240 }
1241
1242
1243 void xhci_handle_command_timeout(unsigned long data)
1244 {
1245 struct xhci_hcd *xhci;
1246 int ret;
1247 unsigned long flags;
1248 u64 hw_ring_state;
1249 struct xhci_command *cur_cmd = NULL;
1250 xhci = (struct xhci_hcd *) data;
1251
1252 /* mark this command to be cancelled */
1253 spin_lock_irqsave(&xhci->lock, flags);
1254 if (xhci->current_cmd) {
1255 cur_cmd = xhci->current_cmd;
1256 cur_cmd->status = COMP_CMD_ABORT;
1257 }
1258
1259
1260 /* Make sure command ring is running before aborting it */
1261 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1262 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1263 (hw_ring_state & CMD_RING_RUNNING)) {
1264
1265 spin_unlock_irqrestore(&xhci->lock, flags);
1266 xhci_dbg(xhci, "Command timeout\n");
1267 ret = xhci_abort_cmd_ring(xhci);
1268 if (unlikely(ret == -ESHUTDOWN)) {
1269 xhci_err(xhci, "Abort command ring failed\n");
1270 xhci_cleanup_command_queue(xhci);
1271 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1272 xhci_dbg(xhci, "xHCI host controller is dead.\n");
1273 }
1274 return;
1275 }
1276 /* command timeout on stopped ring, ring can't be aborted */
1277 xhci_dbg(xhci, "Command timeout on stopped ring\n");
1278 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1279 spin_unlock_irqrestore(&xhci->lock, flags);
1280 return;
1281 }
1282
1283 static void handle_cmd_completion(struct xhci_hcd *xhci,
1284 struct xhci_event_cmd *event)
1285 {
1286 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1287 u64 cmd_dma;
1288 dma_addr_t cmd_dequeue_dma;
1289 u32 cmd_comp_code;
1290 union xhci_trb *cmd_trb;
1291 struct xhci_command *cmd;
1292 u32 cmd_type;
1293
1294 cmd_dma = le64_to_cpu(event->cmd_trb);
1295 cmd_trb = xhci->cmd_ring->dequeue;
1296 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1297 cmd_trb);
1298 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1299 if (cmd_dequeue_dma == 0) {
1300 xhci->error_bitmask |= 1 << 4;
1301 return;
1302 }
1303 /* Does the DMA address match our internal dequeue pointer address? */
1304 if (cmd_dma != (u64) cmd_dequeue_dma) {
1305 xhci->error_bitmask |= 1 << 5;
1306 return;
1307 }
1308
1309 cmd = list_entry(xhci->cmd_list.next, struct xhci_command, cmd_list);
1310
1311 if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1312 xhci_err(xhci,
1313 "Command completion event does not match command\n");
1314 return;
1315 }
1316
1317 del_timer(&xhci->cmd_timer);
1318
1319 trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event);
1320
1321 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1322
1323 /* If CMD ring stopped we own the trbs between enqueue and dequeue */
1324 if (cmd_comp_code == COMP_CMD_STOP) {
1325 xhci_handle_stopped_cmd_ring(xhci, cmd);
1326 return;
1327 }
1328 /*
1329 * Host aborted the command ring, check if the current command was
1330 * supposed to be aborted, otherwise continue normally.
1331 * The command ring is stopped now, but the xHC will issue a Command
1332 * Ring Stopped event which will cause us to restart it.
1333 */
1334 if (cmd_comp_code == COMP_CMD_ABORT) {
1335 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1336 if (cmd->status == COMP_CMD_ABORT)
1337 goto event_handled;
1338 }
1339
1340 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1341 switch (cmd_type) {
1342 case TRB_ENABLE_SLOT:
1343 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code);
1344 break;
1345 case TRB_DISABLE_SLOT:
1346 xhci_handle_cmd_disable_slot(xhci, slot_id);
1347 break;
1348 case TRB_CONFIG_EP:
1349 if (!cmd->completion)
1350 xhci_handle_cmd_config_ep(xhci, slot_id, event,
1351 cmd_comp_code);
1352 break;
1353 case TRB_EVAL_CONTEXT:
1354 break;
1355 case TRB_ADDR_DEV:
1356 break;
1357 case TRB_STOP_RING:
1358 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1359 le32_to_cpu(cmd_trb->generic.field[3])));
1360 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1361 break;
1362 case TRB_SET_DEQ:
1363 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1364 le32_to_cpu(cmd_trb->generic.field[3])));
1365 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1366 break;
1367 case TRB_CMD_NOOP:
1368 /* Is this an aborted command turned to NO-OP? */
1369 if (cmd->status == COMP_CMD_STOP)
1370 cmd_comp_code = COMP_CMD_STOP;
1371 break;
1372 case TRB_RESET_EP:
1373 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1374 le32_to_cpu(cmd_trb->generic.field[3])));
1375 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1376 break;
1377 case TRB_RESET_DEV:
1378 /* SLOT_ID field in reset device cmd completion event TRB is 0.
1379 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1380 */
1381 slot_id = TRB_TO_SLOT_ID(
1382 le32_to_cpu(cmd_trb->generic.field[3]));
1383 xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1384 break;
1385 case TRB_NEC_GET_FW:
1386 xhci_handle_cmd_nec_get_fw(xhci, event);
1387 break;
1388 default:
1389 /* Skip over unknown commands on the event ring */
1390 xhci->error_bitmask |= 1 << 6;
1391 break;
1392 }
1393
1394 /* restart timer if this wasn't the last command */
1395 if (cmd->cmd_list.next != &xhci->cmd_list) {
1396 xhci->current_cmd = list_entry(cmd->cmd_list.next,
1397 struct xhci_command, cmd_list);
1398 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
1399 }
1400
1401 event_handled:
1402 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1403
1404 inc_deq(xhci, xhci->cmd_ring);
1405 }
1406
1407 static void handle_vendor_event(struct xhci_hcd *xhci,
1408 union xhci_trb *event)
1409 {
1410 u32 trb_type;
1411
1412 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1413 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1414 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1415 handle_cmd_completion(xhci, &event->event_cmd);
1416 }
1417
1418 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1419 * port registers -- USB 3.0 and USB 2.0).
1420 *
1421 * Returns a zero-based port number, which is suitable for indexing into each of
1422 * the split roothubs' port arrays and bus state arrays.
1423 * Add one to it in order to call xhci_find_slot_id_by_port.
1424 */
1425 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1426 struct xhci_hcd *xhci, u32 port_id)
1427 {
1428 unsigned int i;
1429 unsigned int num_similar_speed_ports = 0;
1430
1431 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1432 * and usb2_ports are 0-based indexes. Count the number of similar
1433 * speed ports, up to 1 port before this port.
1434 */
1435 for (i = 0; i < (port_id - 1); i++) {
1436 u8 port_speed = xhci->port_array[i];
1437
1438 /*
1439 * Skip ports that don't have known speeds, or have duplicate
1440 * Extended Capabilities port speed entries.
1441 */
1442 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1443 continue;
1444
1445 /*
1446 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1447 * 1.1 ports are under the USB 2.0 hub. If the port speed
1448 * matches the device speed, it's a similar speed port.
1449 */
1450 if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
1451 num_similar_speed_ports++;
1452 }
1453 return num_similar_speed_ports;
1454 }
1455
1456 static void handle_device_notification(struct xhci_hcd *xhci,
1457 union xhci_trb *event)
1458 {
1459 u32 slot_id;
1460 struct usb_device *udev;
1461
1462 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1463 if (!xhci->devs[slot_id]) {
1464 xhci_warn(xhci, "Device Notification event for "
1465 "unused slot %u\n", slot_id);
1466 return;
1467 }
1468
1469 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1470 slot_id);
1471 udev = xhci->devs[slot_id]->udev;
1472 if (udev && udev->parent)
1473 usb_wakeup_notification(udev->parent, udev->portnum);
1474 }
1475
1476 static void handle_port_status(struct xhci_hcd *xhci,
1477 union xhci_trb *event)
1478 {
1479 struct usb_hcd *hcd;
1480 u32 port_id;
1481 u32 temp, temp1;
1482 int max_ports;
1483 int slot_id;
1484 unsigned int faked_port_index;
1485 u8 major_revision;
1486 struct xhci_bus_state *bus_state;
1487 __le32 __iomem **port_array;
1488 bool bogus_port_status = false;
1489
1490 /* Port status change events always have a successful completion code */
1491 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1492 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1493 xhci->error_bitmask |= 1 << 8;
1494 }
1495 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1496 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1497
1498 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1499 if ((port_id <= 0) || (port_id > max_ports)) {
1500 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1501 inc_deq(xhci, xhci->event_ring);
1502 return;
1503 }
1504
1505 /* Figure out which usb_hcd this port is attached to:
1506 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1507 */
1508 major_revision = xhci->port_array[port_id - 1];
1509
1510 /* Find the right roothub. */
1511 hcd = xhci_to_hcd(xhci);
1512 if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
1513 hcd = xhci->shared_hcd;
1514
1515 if (major_revision == 0) {
1516 xhci_warn(xhci, "Event for port %u not in "
1517 "Extended Capabilities, ignoring.\n",
1518 port_id);
1519 bogus_port_status = true;
1520 goto cleanup;
1521 }
1522 if (major_revision == DUPLICATE_ENTRY) {
1523 xhci_warn(xhci, "Event for port %u duplicated in"
1524 "Extended Capabilities, ignoring.\n",
1525 port_id);
1526 bogus_port_status = true;
1527 goto cleanup;
1528 }
1529
1530 /*
1531 * Hardware port IDs reported by a Port Status Change Event include USB
1532 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1533 * resume event, but we first need to translate the hardware port ID
1534 * into the index into the ports on the correct split roothub, and the
1535 * correct bus_state structure.
1536 */
1537 bus_state = &xhci->bus_state[hcd_index(hcd)];
1538 if (hcd->speed >= HCD_USB3)
1539 port_array = xhci->usb3_ports;
1540 else
1541 port_array = xhci->usb2_ports;
1542 /* Find the faked port hub number */
1543 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1544 port_id);
1545
1546 temp = readl(port_array[faked_port_index]);
1547 if (hcd->state == HC_STATE_SUSPENDED) {
1548 xhci_dbg(xhci, "resume root hub\n");
1549 usb_hcd_resume_root_hub(hcd);
1550 }
1551
1552 if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE)
1553 bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
1554
1555 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1556 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1557
1558 temp1 = readl(&xhci->op_regs->command);
1559 if (!(temp1 & CMD_RUN)) {
1560 xhci_warn(xhci, "xHC is not running.\n");
1561 goto cleanup;
1562 }
1563
1564 if (DEV_SUPERSPEED_ANY(temp)) {
1565 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1566 /* Set a flag to say the port signaled remote wakeup,
1567 * so we can tell the difference between the end of
1568 * device and host initiated resume.
1569 */
1570 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1571 xhci_test_and_clear_bit(xhci, port_array,
1572 faked_port_index, PORT_PLC);
1573 xhci_set_link_state(xhci, port_array, faked_port_index,
1574 XDEV_U0);
1575 /* Need to wait until the next link state change
1576 * indicates the device is actually in U0.
1577 */
1578 bogus_port_status = true;
1579 goto cleanup;
1580 } else if (!test_bit(faked_port_index,
1581 &bus_state->resuming_ports)) {
1582 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1583 bus_state->resume_done[faked_port_index] = jiffies +
1584 msecs_to_jiffies(USB_RESUME_TIMEOUT);
1585 set_bit(faked_port_index, &bus_state->resuming_ports);
1586 mod_timer(&hcd->rh_timer,
1587 bus_state->resume_done[faked_port_index]);
1588 /* Do the rest in GetPortStatus */
1589 }
1590 }
1591
1592 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1593 DEV_SUPERSPEED_ANY(temp)) {
1594 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1595 /* We've just brought the device into U0 through either the
1596 * Resume state after a device remote wakeup, or through the
1597 * U3Exit state after a host-initiated resume. If it's a device
1598 * initiated remote wake, don't pass up the link state change,
1599 * so the roothub behavior is consistent with external
1600 * USB 3.0 hub behavior.
1601 */
1602 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1603 faked_port_index + 1);
1604 if (slot_id && xhci->devs[slot_id])
1605 xhci_ring_device(xhci, slot_id);
1606 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1607 bus_state->port_remote_wakeup &=
1608 ~(1 << faked_port_index);
1609 xhci_test_and_clear_bit(xhci, port_array,
1610 faked_port_index, PORT_PLC);
1611 usb_wakeup_notification(hcd->self.root_hub,
1612 faked_port_index + 1);
1613 bogus_port_status = true;
1614 goto cleanup;
1615 }
1616 }
1617
1618 /*
1619 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1620 * RExit to a disconnect state). If so, let the the driver know it's
1621 * out of the RExit state.
1622 */
1623 if (!DEV_SUPERSPEED_ANY(temp) &&
1624 test_and_clear_bit(faked_port_index,
1625 &bus_state->rexit_ports)) {
1626 complete(&bus_state->rexit_done[faked_port_index]);
1627 bogus_port_status = true;
1628 goto cleanup;
1629 }
1630
1631 if (hcd->speed < HCD_USB3)
1632 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1633 PORT_PLC);
1634
1635 cleanup:
1636 /* Update event ring dequeue pointer before dropping the lock */
1637 inc_deq(xhci, xhci->event_ring);
1638
1639 /* Don't make the USB core poll the roothub if we got a bad port status
1640 * change event. Besides, at that point we can't tell which roothub
1641 * (USB 2.0 or USB 3.0) to kick.
1642 */
1643 if (bogus_port_status)
1644 return;
1645
1646 /*
1647 * xHCI port-status-change events occur when the "or" of all the
1648 * status-change bits in the portsc register changes from 0 to 1.
1649 * New status changes won't cause an event if any other change
1650 * bits are still set. When an event occurs, switch over to
1651 * polling to avoid losing status changes.
1652 */
1653 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1654 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1655 spin_unlock(&xhci->lock);
1656 /* Pass this up to the core */
1657 usb_hcd_poll_rh_status(hcd);
1658 spin_lock(&xhci->lock);
1659 }
1660
1661 /*
1662 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1663 * at end_trb, which may be in another segment. If the suspect DMA address is a
1664 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1665 * returns 0.
1666 */
1667 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1668 struct xhci_segment *start_seg,
1669 union xhci_trb *start_trb,
1670 union xhci_trb *end_trb,
1671 dma_addr_t suspect_dma,
1672 bool debug)
1673 {
1674 dma_addr_t start_dma;
1675 dma_addr_t end_seg_dma;
1676 dma_addr_t end_trb_dma;
1677 struct xhci_segment *cur_seg;
1678
1679 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1680 cur_seg = start_seg;
1681
1682 do {
1683 if (start_dma == 0)
1684 return NULL;
1685 /* We may get an event for a Link TRB in the middle of a TD */
1686 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1687 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1688 /* If the end TRB isn't in this segment, this is set to 0 */
1689 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1690
1691 if (debug)
1692 xhci_warn(xhci,
1693 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1694 (unsigned long long)suspect_dma,
1695 (unsigned long long)start_dma,
1696 (unsigned long long)end_trb_dma,
1697 (unsigned long long)cur_seg->dma,
1698 (unsigned long long)end_seg_dma);
1699
1700 if (end_trb_dma > 0) {
1701 /* The end TRB is in this segment, so suspect should be here */
1702 if (start_dma <= end_trb_dma) {
1703 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1704 return cur_seg;
1705 } else {
1706 /* Case for one segment with
1707 * a TD wrapped around to the top
1708 */
1709 if ((suspect_dma >= start_dma &&
1710 suspect_dma <= end_seg_dma) ||
1711 (suspect_dma >= cur_seg->dma &&
1712 suspect_dma <= end_trb_dma))
1713 return cur_seg;
1714 }
1715 return NULL;
1716 } else {
1717 /* Might still be somewhere in this segment */
1718 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1719 return cur_seg;
1720 }
1721 cur_seg = cur_seg->next;
1722 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1723 } while (cur_seg != start_seg);
1724
1725 return NULL;
1726 }
1727
1728 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1729 unsigned int slot_id, unsigned int ep_index,
1730 unsigned int stream_id,
1731 struct xhci_td *td, union xhci_trb *event_trb)
1732 {
1733 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1734 struct xhci_command *command;
1735 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1736 if (!command)
1737 return;
1738
1739 ep->ep_state |= EP_HALTED;
1740 ep->stopped_stream = stream_id;
1741
1742 xhci_queue_reset_ep(xhci, command, slot_id, ep_index);
1743 xhci_cleanup_stalled_ring(xhci, ep_index, td);
1744
1745 ep->stopped_stream = 0;
1746
1747 xhci_ring_cmd_db(xhci);
1748 }
1749
1750 /* Check if an error has halted the endpoint ring. The class driver will
1751 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1752 * However, a babble and other errors also halt the endpoint ring, and the class
1753 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1754 * Ring Dequeue Pointer command manually.
1755 */
1756 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1757 struct xhci_ep_ctx *ep_ctx,
1758 unsigned int trb_comp_code)
1759 {
1760 /* TRB completion codes that may require a manual halt cleanup */
1761 if (trb_comp_code == COMP_TX_ERR ||
1762 trb_comp_code == COMP_BABBLE ||
1763 trb_comp_code == COMP_SPLIT_ERR)
1764 /* The 0.95 spec says a babbling control endpoint
1765 * is not halted. The 0.96 spec says it is. Some HW
1766 * claims to be 0.95 compliant, but it halts the control
1767 * endpoint anyway. Check if a babble halted the
1768 * endpoint.
1769 */
1770 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1771 cpu_to_le32(EP_STATE_HALTED))
1772 return 1;
1773
1774 return 0;
1775 }
1776
1777 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1778 {
1779 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1780 /* Vendor defined "informational" completion code,
1781 * treat as not-an-error.
1782 */
1783 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1784 trb_comp_code);
1785 xhci_dbg(xhci, "Treating code as success.\n");
1786 return 1;
1787 }
1788 return 0;
1789 }
1790
1791 /*
1792 * Finish the td processing, remove the td from td list;
1793 * Return 1 if the urb can be given back.
1794 */
1795 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1796 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1797 struct xhci_virt_ep *ep, int *status, bool skip)
1798 {
1799 struct xhci_virt_device *xdev;
1800 struct xhci_ring *ep_ring;
1801 unsigned int slot_id;
1802 int ep_index;
1803 struct urb *urb = NULL;
1804 struct xhci_ep_ctx *ep_ctx;
1805 int ret = 0;
1806 struct urb_priv *urb_priv;
1807 u32 trb_comp_code;
1808
1809 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1810 xdev = xhci->devs[slot_id];
1811 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1812 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1813 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1814 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1815
1816 if (skip)
1817 goto td_cleanup;
1818
1819 if (trb_comp_code == COMP_STOP_INVAL ||
1820 trb_comp_code == COMP_STOP ||
1821 trb_comp_code == COMP_STOP_SHORT) {
1822 /* The Endpoint Stop Command completion will take care of any
1823 * stopped TDs. A stopped TD may be restarted, so don't update
1824 * the ring dequeue pointer or take this TD off any lists yet.
1825 */
1826 ep->stopped_td = td;
1827 return 0;
1828 }
1829 if (trb_comp_code == COMP_STALL ||
1830 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1831 trb_comp_code)) {
1832 /* Issue a reset endpoint command to clear the host side
1833 * halt, followed by a set dequeue command to move the
1834 * dequeue pointer past the TD.
1835 * The class driver clears the device side halt later.
1836 */
1837 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1838 ep_ring->stream_id, td, event_trb);
1839 } else {
1840 /* Update ring dequeue pointer */
1841 while (ep_ring->dequeue != td->last_trb)
1842 inc_deq(xhci, ep_ring);
1843 inc_deq(xhci, ep_ring);
1844 }
1845
1846 td_cleanup:
1847 /* Clean up the endpoint's TD list */
1848 urb = td->urb;
1849 urb_priv = urb->hcpriv;
1850
1851 /* Do one last check of the actual transfer length.
1852 * If the host controller said we transferred more data than the buffer
1853 * length, urb->actual_length will be a very big number (since it's
1854 * unsigned). Play it safe and say we didn't transfer anything.
1855 */
1856 if (urb->actual_length > urb->transfer_buffer_length) {
1857 xhci_warn(xhci, "URB transfer length is wrong, xHC issue? req. len = %u, act. len = %u\n",
1858 urb->transfer_buffer_length,
1859 urb->actual_length);
1860 urb->actual_length = 0;
1861 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1862 *status = -EREMOTEIO;
1863 else
1864 *status = 0;
1865 }
1866 list_del_init(&td->td_list);
1867 /* Was this TD slated to be cancelled but completed anyway? */
1868 if (!list_empty(&td->cancelled_td_list))
1869 list_del_init(&td->cancelled_td_list);
1870
1871 urb_priv->td_cnt++;
1872 /* Giveback the urb when all the tds are completed */
1873 if (urb_priv->td_cnt == urb_priv->length) {
1874 ret = 1;
1875 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1876 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1877 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
1878 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1879 usb_amd_quirk_pll_enable();
1880 }
1881 }
1882 }
1883
1884 return ret;
1885 }
1886
1887 /*
1888 * Process control tds, update urb status and actual_length.
1889 */
1890 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1891 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1892 struct xhci_virt_ep *ep, int *status)
1893 {
1894 struct xhci_virt_device *xdev;
1895 struct xhci_ring *ep_ring;
1896 unsigned int slot_id;
1897 int ep_index;
1898 struct xhci_ep_ctx *ep_ctx;
1899 u32 trb_comp_code;
1900
1901 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1902 xdev = xhci->devs[slot_id];
1903 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1904 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1905 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1906 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1907
1908 switch (trb_comp_code) {
1909 case COMP_SUCCESS:
1910 if (event_trb == ep_ring->dequeue) {
1911 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1912 "without IOC set??\n");
1913 *status = -ESHUTDOWN;
1914 } else if (event_trb != td->last_trb) {
1915 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1916 "without IOC set??\n");
1917 *status = -ESHUTDOWN;
1918 } else {
1919 *status = 0;
1920 }
1921 break;
1922 case COMP_SHORT_TX:
1923 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1924 *status = -EREMOTEIO;
1925 else
1926 *status = 0;
1927 break;
1928 case COMP_STOP_SHORT:
1929 if (event_trb == ep_ring->dequeue || event_trb == td->last_trb)
1930 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
1931 else
1932 td->urb->actual_length =
1933 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1934
1935 return finish_td(xhci, td, event_trb, event, ep, status, false);
1936 case COMP_STOP:
1937 /* Did we stop at data stage? */
1938 if (event_trb != ep_ring->dequeue && event_trb != td->last_trb)
1939 td->urb->actual_length =
1940 td->urb->transfer_buffer_length -
1941 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1942 /* fall through */
1943 case COMP_STOP_INVAL:
1944 return finish_td(xhci, td, event_trb, event, ep, status, false);
1945 default:
1946 if (!xhci_requires_manual_halt_cleanup(xhci,
1947 ep_ctx, trb_comp_code))
1948 break;
1949 xhci_dbg(xhci, "TRB error code %u, "
1950 "halted endpoint index = %u\n",
1951 trb_comp_code, ep_index);
1952 /* else fall through */
1953 case COMP_STALL:
1954 /* Did we transfer part of the data (middle) phase? */
1955 if (event_trb != ep_ring->dequeue &&
1956 event_trb != td->last_trb)
1957 td->urb->actual_length =
1958 td->urb->transfer_buffer_length -
1959 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1960 else if (!td->urb_length_set)
1961 td->urb->actual_length = 0;
1962
1963 return finish_td(xhci, td, event_trb, event, ep, status, false);
1964 }
1965 /*
1966 * Did we transfer any data, despite the errors that might have
1967 * happened? I.e. did we get past the setup stage?
1968 */
1969 if (event_trb != ep_ring->dequeue) {
1970 /* The event was for the status stage */
1971 if (event_trb == td->last_trb) {
1972 if (td->urb_length_set) {
1973 /* Don't overwrite a previously set error code
1974 */
1975 if ((*status == -EINPROGRESS || *status == 0) &&
1976 (td->urb->transfer_flags
1977 & URB_SHORT_NOT_OK))
1978 /* Did we already see a short data
1979 * stage? */
1980 *status = -EREMOTEIO;
1981 } else {
1982 td->urb->actual_length =
1983 td->urb->transfer_buffer_length;
1984 }
1985 } else {
1986 /*
1987 * Maybe the event was for the data stage? If so, update
1988 * already the actual_length of the URB and flag it as
1989 * set, so that it is not overwritten in the event for
1990 * the last TRB.
1991 */
1992 td->urb_length_set = true;
1993 td->urb->actual_length =
1994 td->urb->transfer_buffer_length -
1995 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1996 xhci_dbg(xhci, "Waiting for status "
1997 "stage event\n");
1998 return 0;
1999 }
2000 }
2001
2002 return finish_td(xhci, td, event_trb, event, ep, status, false);
2003 }
2004
2005 /*
2006 * Process isochronous tds, update urb packet status and actual_length.
2007 */
2008 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2009 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2010 struct xhci_virt_ep *ep, int *status)
2011 {
2012 struct xhci_ring *ep_ring;
2013 struct urb_priv *urb_priv;
2014 int idx;
2015 int len = 0;
2016 union xhci_trb *cur_trb;
2017 struct xhci_segment *cur_seg;
2018 struct usb_iso_packet_descriptor *frame;
2019 u32 trb_comp_code;
2020 bool skip_td = false;
2021
2022 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2023 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2024 urb_priv = td->urb->hcpriv;
2025 idx = urb_priv->td_cnt;
2026 frame = &td->urb->iso_frame_desc[idx];
2027
2028 /* handle completion code */
2029 switch (trb_comp_code) {
2030 case COMP_SUCCESS:
2031 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2032 frame->status = 0;
2033 break;
2034 }
2035 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2036 trb_comp_code = COMP_SHORT_TX;
2037 /* fallthrough */
2038 case COMP_STOP_SHORT:
2039 case COMP_SHORT_TX:
2040 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2041 -EREMOTEIO : 0;
2042 break;
2043 case COMP_BW_OVER:
2044 frame->status = -ECOMM;
2045 skip_td = true;
2046 break;
2047 case COMP_BUFF_OVER:
2048 case COMP_BABBLE:
2049 frame->status = -EOVERFLOW;
2050 skip_td = true;
2051 break;
2052 case COMP_DEV_ERR:
2053 case COMP_STALL:
2054 frame->status = -EPROTO;
2055 skip_td = true;
2056 break;
2057 case COMP_TX_ERR:
2058 frame->status = -EPROTO;
2059 if (event_trb != td->last_trb)
2060 return 0;
2061 skip_td = true;
2062 break;
2063 case COMP_STOP:
2064 case COMP_STOP_INVAL:
2065 break;
2066 default:
2067 frame->status = -1;
2068 break;
2069 }
2070
2071 if (trb_comp_code == COMP_SUCCESS || skip_td) {
2072 frame->actual_length = frame->length;
2073 td->urb->actual_length += frame->length;
2074 } else if (trb_comp_code == COMP_STOP_SHORT) {
2075 frame->actual_length =
2076 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2077 td->urb->actual_length += frame->actual_length;
2078 } else {
2079 for (cur_trb = ep_ring->dequeue,
2080 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2081 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2082 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2083 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2084 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2085 }
2086 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2087 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2088
2089 if (trb_comp_code != COMP_STOP_INVAL) {
2090 frame->actual_length = len;
2091 td->urb->actual_length += len;
2092 }
2093 }
2094
2095 return finish_td(xhci, td, event_trb, event, ep, status, false);
2096 }
2097
2098 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2099 struct xhci_transfer_event *event,
2100 struct xhci_virt_ep *ep, int *status)
2101 {
2102 struct xhci_ring *ep_ring;
2103 struct urb_priv *urb_priv;
2104 struct usb_iso_packet_descriptor *frame;
2105 int idx;
2106
2107 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2108 urb_priv = td->urb->hcpriv;
2109 idx = urb_priv->td_cnt;
2110 frame = &td->urb->iso_frame_desc[idx];
2111
2112 /* The transfer is partly done. */
2113 frame->status = -EXDEV;
2114
2115 /* calc actual length */
2116 frame->actual_length = 0;
2117
2118 /* Update ring dequeue pointer */
2119 while (ep_ring->dequeue != td->last_trb)
2120 inc_deq(xhci, ep_ring);
2121 inc_deq(xhci, ep_ring);
2122
2123 return finish_td(xhci, td, NULL, event, ep, status, true);
2124 }
2125
2126 /*
2127 * Process bulk and interrupt tds, update urb status and actual_length.
2128 */
2129 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2130 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2131 struct xhci_virt_ep *ep, int *status)
2132 {
2133 struct xhci_ring *ep_ring;
2134 union xhci_trb *cur_trb;
2135 struct xhci_segment *cur_seg;
2136 u32 trb_comp_code;
2137
2138 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2139 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2140
2141 switch (trb_comp_code) {
2142 case COMP_SUCCESS:
2143 /* Double check that the HW transferred everything. */
2144 if (event_trb != td->last_trb ||
2145 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2146 xhci_warn(xhci, "WARN Successful completion "
2147 "on short TX\n");
2148 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2149 *status = -EREMOTEIO;
2150 else
2151 *status = 0;
2152 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2153 trb_comp_code = COMP_SHORT_TX;
2154 } else {
2155 *status = 0;
2156 }
2157 break;
2158 case COMP_STOP_SHORT:
2159 case COMP_SHORT_TX:
2160 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2161 *status = -EREMOTEIO;
2162 else
2163 *status = 0;
2164 break;
2165 default:
2166 /* Others already handled above */
2167 break;
2168 }
2169 if (trb_comp_code == COMP_SHORT_TX)
2170 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2171 "%d bytes untransferred\n",
2172 td->urb->ep->desc.bEndpointAddress,
2173 td->urb->transfer_buffer_length,
2174 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2175 /* Stopped - short packet completion */
2176 if (trb_comp_code == COMP_STOP_SHORT) {
2177 td->urb->actual_length =
2178 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2179
2180 if (td->urb->transfer_buffer_length <
2181 td->urb->actual_length) {
2182 xhci_warn(xhci, "HC gave bad length of %d bytes txed\n",
2183 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2184 td->urb->actual_length = 0;
2185 /* status will be set by usb core for canceled urbs */
2186 }
2187 /* Fast path - was this the last TRB in the TD for this URB? */
2188 } else if (event_trb == td->last_trb) {
2189 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2190 td->urb->actual_length =
2191 td->urb->transfer_buffer_length -
2192 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2193 if (td->urb->transfer_buffer_length <
2194 td->urb->actual_length) {
2195 xhci_warn(xhci, "HC gave bad length "
2196 "of %d bytes left\n",
2197 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2198 td->urb->actual_length = 0;
2199 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2200 *status = -EREMOTEIO;
2201 else
2202 *status = 0;
2203 }
2204 /* Don't overwrite a previously set error code */
2205 if (*status == -EINPROGRESS) {
2206 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2207 *status = -EREMOTEIO;
2208 else
2209 *status = 0;
2210 }
2211 } else {
2212 td->urb->actual_length =
2213 td->urb->transfer_buffer_length;
2214 /* Ignore a short packet completion if the
2215 * untransferred length was zero.
2216 */
2217 if (*status == -EREMOTEIO)
2218 *status = 0;
2219 }
2220 } else {
2221 /* Slow path - walk the list, starting from the dequeue
2222 * pointer, to get the actual length transferred.
2223 */
2224 td->urb->actual_length = 0;
2225 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2226 cur_trb != event_trb;
2227 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2228 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2229 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2230 td->urb->actual_length +=
2231 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2232 }
2233 /* If the ring didn't stop on a Link or No-op TRB, add
2234 * in the actual bytes transferred from the Normal TRB
2235 */
2236 if (trb_comp_code != COMP_STOP_INVAL)
2237 td->urb->actual_length +=
2238 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2239 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2240 }
2241
2242 return finish_td(xhci, td, event_trb, event, ep, status, false);
2243 }
2244
2245 /*
2246 * If this function returns an error condition, it means it got a Transfer
2247 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2248 * At this point, the host controller is probably hosed and should be reset.
2249 */
2250 static int handle_tx_event(struct xhci_hcd *xhci,
2251 struct xhci_transfer_event *event)
2252 __releases(&xhci->lock)
2253 __acquires(&xhci->lock)
2254 {
2255 struct xhci_virt_device *xdev;
2256 struct xhci_virt_ep *ep;
2257 struct xhci_ring *ep_ring;
2258 unsigned int slot_id;
2259 int ep_index;
2260 struct xhci_td *td = NULL;
2261 dma_addr_t event_dma;
2262 struct xhci_segment *event_seg;
2263 union xhci_trb *event_trb;
2264 struct urb *urb = NULL;
2265 int status = -EINPROGRESS;
2266 struct urb_priv *urb_priv;
2267 struct xhci_ep_ctx *ep_ctx;
2268 struct list_head *tmp;
2269 u32 trb_comp_code;
2270 int ret = 0;
2271 int td_num = 0;
2272 bool handling_skipped_tds = false;
2273
2274 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2275 xdev = xhci->devs[slot_id];
2276 if (!xdev) {
2277 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2278 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2279 (unsigned long long) xhci_trb_virt_to_dma(
2280 xhci->event_ring->deq_seg,
2281 xhci->event_ring->dequeue),
2282 lower_32_bits(le64_to_cpu(event->buffer)),
2283 upper_32_bits(le64_to_cpu(event->buffer)),
2284 le32_to_cpu(event->transfer_len),
2285 le32_to_cpu(event->flags));
2286 xhci_dbg(xhci, "Event ring:\n");
2287 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2288 return -ENODEV;
2289 }
2290
2291 /* Endpoint ID is 1 based, our index is zero based */
2292 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2293 ep = &xdev->eps[ep_index];
2294 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2295 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2296 if (!ep_ring ||
2297 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2298 EP_STATE_DISABLED) {
2299 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2300 "or incorrect stream ring\n");
2301 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2302 (unsigned long long) xhci_trb_virt_to_dma(
2303 xhci->event_ring->deq_seg,
2304 xhci->event_ring->dequeue),
2305 lower_32_bits(le64_to_cpu(event->buffer)),
2306 upper_32_bits(le64_to_cpu(event->buffer)),
2307 le32_to_cpu(event->transfer_len),
2308 le32_to_cpu(event->flags));
2309 xhci_dbg(xhci, "Event ring:\n");
2310 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2311 return -ENODEV;
2312 }
2313
2314 /* Count current td numbers if ep->skip is set */
2315 if (ep->skip) {
2316 list_for_each(tmp, &ep_ring->td_list)
2317 td_num++;
2318 }
2319
2320 event_dma = le64_to_cpu(event->buffer);
2321 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2322 /* Look for common error cases */
2323 switch (trb_comp_code) {
2324 /* Skip codes that require special handling depending on
2325 * transfer type
2326 */
2327 case COMP_SUCCESS:
2328 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2329 break;
2330 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2331 trb_comp_code = COMP_SHORT_TX;
2332 else
2333 xhci_warn_ratelimited(xhci,
2334 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2335 case COMP_SHORT_TX:
2336 break;
2337 case COMP_STOP:
2338 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2339 break;
2340 case COMP_STOP_INVAL:
2341 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2342 break;
2343 case COMP_STOP_SHORT:
2344 xhci_dbg(xhci, "Stopped with short packet transfer detected\n");
2345 break;
2346 case COMP_STALL:
2347 xhci_dbg(xhci, "Stalled endpoint\n");
2348 ep->ep_state |= EP_HALTED;
2349 status = -EPIPE;
2350 break;
2351 case COMP_TRB_ERR:
2352 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2353 status = -EILSEQ;
2354 break;
2355 case COMP_SPLIT_ERR:
2356 case COMP_TX_ERR:
2357 xhci_dbg(xhci, "Transfer error on endpoint\n");
2358 status = -EPROTO;
2359 break;
2360 case COMP_BABBLE:
2361 xhci_dbg(xhci, "Babble error on endpoint\n");
2362 status = -EOVERFLOW;
2363 break;
2364 case COMP_DB_ERR:
2365 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2366 status = -ENOSR;
2367 break;
2368 case COMP_BW_OVER:
2369 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2370 break;
2371 case COMP_BUFF_OVER:
2372 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2373 break;
2374 case COMP_UNDERRUN:
2375 /*
2376 * When the Isoch ring is empty, the xHC will generate
2377 * a Ring Overrun Event for IN Isoch endpoint or Ring
2378 * Underrun Event for OUT Isoch endpoint.
2379 */
2380 xhci_dbg(xhci, "underrun event on endpoint\n");
2381 if (!list_empty(&ep_ring->td_list))
2382 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2383 "still with TDs queued?\n",
2384 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2385 ep_index);
2386 goto cleanup;
2387 case COMP_OVERRUN:
2388 xhci_dbg(xhci, "overrun event on endpoint\n");
2389 if (!list_empty(&ep_ring->td_list))
2390 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2391 "still with TDs queued?\n",
2392 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2393 ep_index);
2394 goto cleanup;
2395 case COMP_DEV_ERR:
2396 xhci_warn(xhci, "WARN: detect an incompatible device");
2397 status = -EPROTO;
2398 break;
2399 case COMP_MISSED_INT:
2400 /*
2401 * When encounter missed service error, one or more isoc tds
2402 * may be missed by xHC.
2403 * Set skip flag of the ep_ring; Complete the missed tds as
2404 * short transfer when process the ep_ring next time.
2405 */
2406 ep->skip = true;
2407 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2408 goto cleanup;
2409 case COMP_PING_ERR:
2410 ep->skip = true;
2411 xhci_dbg(xhci, "No Ping response error, Skip one Isoc TD\n");
2412 goto cleanup;
2413 default:
2414 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2415 status = 0;
2416 break;
2417 }
2418 xhci_warn(xhci, "ERROR Unknown event condition %u, HC probably busted\n",
2419 trb_comp_code);
2420 goto cleanup;
2421 }
2422
2423 do {
2424 /* This TRB should be in the TD at the head of this ring's
2425 * TD list.
2426 */
2427 if (list_empty(&ep_ring->td_list)) {
2428 /*
2429 * A stopped endpoint may generate an extra completion
2430 * event if the device was suspended. Don't print
2431 * warnings.
2432 */
2433 if (!(trb_comp_code == COMP_STOP ||
2434 trb_comp_code == COMP_STOP_INVAL)) {
2435 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2436 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2437 ep_index);
2438 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2439 (le32_to_cpu(event->flags) &
2440 TRB_TYPE_BITMASK)>>10);
2441 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2442 }
2443 if (ep->skip) {
2444 ep->skip = false;
2445 xhci_dbg(xhci, "td_list is empty while skip "
2446 "flag set. Clear skip flag.\n");
2447 }
2448 ret = 0;
2449 goto cleanup;
2450 }
2451
2452 /* We've skipped all the TDs on the ep ring when ep->skip set */
2453 if (ep->skip && td_num == 0) {
2454 ep->skip = false;
2455 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2456 "Clear skip flag.\n");
2457 ret = 0;
2458 goto cleanup;
2459 }
2460
2461 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2462 if (ep->skip)
2463 td_num--;
2464
2465 /* Is this a TRB in the currently executing TD? */
2466 event_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2467 td->last_trb, event_dma, false);
2468
2469 /*
2470 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2471 * is not in the current TD pointed by ep_ring->dequeue because
2472 * that the hardware dequeue pointer still at the previous TRB
2473 * of the current TD. The previous TRB maybe a Link TD or the
2474 * last TRB of the previous TD. The command completion handle
2475 * will take care the rest.
2476 */
2477 if (!event_seg && (trb_comp_code == COMP_STOP ||
2478 trb_comp_code == COMP_STOP_INVAL)) {
2479 ret = 0;
2480 goto cleanup;
2481 }
2482
2483 if (!event_seg) {
2484 if (!ep->skip ||
2485 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2486 /* Some host controllers give a spurious
2487 * successful event after a short transfer.
2488 * Ignore it.
2489 */
2490 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2491 ep_ring->last_td_was_short) {
2492 ep_ring->last_td_was_short = false;
2493 ret = 0;
2494 goto cleanup;
2495 }
2496 /* HC is busted, give up! */
2497 xhci_err(xhci,
2498 "ERROR Transfer event TRB DMA ptr not "
2499 "part of current TD ep_index %d "
2500 "comp_code %u\n", ep_index,
2501 trb_comp_code);
2502 trb_in_td(xhci, ep_ring->deq_seg,
2503 ep_ring->dequeue, td->last_trb,
2504 event_dma, true);
2505 return -ESHUTDOWN;
2506 }
2507
2508 ret = skip_isoc_td(xhci, td, event, ep, &status);
2509 goto cleanup;
2510 }
2511 if (trb_comp_code == COMP_SHORT_TX)
2512 ep_ring->last_td_was_short = true;
2513 else
2514 ep_ring->last_td_was_short = false;
2515
2516 if (ep->skip) {
2517 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2518 ep->skip = false;
2519 }
2520
2521 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2522 sizeof(*event_trb)];
2523 /*
2524 * No-op TRB should not trigger interrupts.
2525 * If event_trb is a no-op TRB, it means the
2526 * corresponding TD has been cancelled. Just ignore
2527 * the TD.
2528 */
2529 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2530 xhci_dbg(xhci,
2531 "event_trb is a no-op TRB. Skip it\n");
2532 goto cleanup;
2533 }
2534
2535 /* Now update the urb's actual_length and give back to
2536 * the core
2537 */
2538 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2539 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2540 &status);
2541 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2542 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2543 &status);
2544 else
2545 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2546 ep, &status);
2547
2548 cleanup:
2549
2550
2551 handling_skipped_tds = ep->skip &&
2552 trb_comp_code != COMP_MISSED_INT &&
2553 trb_comp_code != COMP_PING_ERR;
2554
2555 /*
2556 * Do not update event ring dequeue pointer if we're in a loop
2557 * processing missed tds.
2558 */
2559 if (!handling_skipped_tds)
2560 inc_deq(xhci, xhci->event_ring);
2561
2562 if (ret) {
2563 urb = td->urb;
2564 urb_priv = urb->hcpriv;
2565
2566 xhci_urb_free_priv(urb_priv);
2567
2568 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2569 if ((urb->actual_length != urb->transfer_buffer_length &&
2570 (urb->transfer_flags &
2571 URB_SHORT_NOT_OK)) ||
2572 (status != 0 &&
2573 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2574 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2575 "expected = %d, status = %d\n",
2576 urb, urb->actual_length,
2577 urb->transfer_buffer_length,
2578 status);
2579 spin_unlock(&xhci->lock);
2580 /* EHCI, UHCI, and OHCI always unconditionally set the
2581 * urb->status of an isochronous endpoint to 0.
2582 */
2583 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2584 status = 0;
2585 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2586 spin_lock(&xhci->lock);
2587 }
2588
2589 /*
2590 * If ep->skip is set, it means there are missed tds on the
2591 * endpoint ring need to take care of.
2592 * Process them as short transfer until reach the td pointed by
2593 * the event.
2594 */
2595 } while (handling_skipped_tds);
2596
2597 return 0;
2598 }
2599
2600 /*
2601 * This function handles all OS-owned events on the event ring. It may drop
2602 * xhci->lock between event processing (e.g. to pass up port status changes).
2603 * Returns >0 for "possibly more events to process" (caller should call again),
2604 * otherwise 0 if done. In future, <0 returns should indicate error code.
2605 */
2606 static int xhci_handle_event(struct xhci_hcd *xhci)
2607 {
2608 union xhci_trb *event;
2609 int update_ptrs = 1;
2610 int ret;
2611
2612 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2613 xhci->error_bitmask |= 1 << 1;
2614 return 0;
2615 }
2616
2617 event = xhci->event_ring->dequeue;
2618 /* Does the HC or OS own the TRB? */
2619 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2620 xhci->event_ring->cycle_state) {
2621 xhci->error_bitmask |= 1 << 2;
2622 return 0;
2623 }
2624
2625 /*
2626 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2627 * speculative reads of the event's flags/data below.
2628 */
2629 rmb();
2630 /* FIXME: Handle more event types. */
2631 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2632 case TRB_TYPE(TRB_COMPLETION):
2633 handle_cmd_completion(xhci, &event->event_cmd);
2634 break;
2635 case TRB_TYPE(TRB_PORT_STATUS):
2636 handle_port_status(xhci, event);
2637 update_ptrs = 0;
2638 break;
2639 case TRB_TYPE(TRB_TRANSFER):
2640 ret = handle_tx_event(xhci, &event->trans_event);
2641 if (ret < 0)
2642 xhci->error_bitmask |= 1 << 9;
2643 else
2644 update_ptrs = 0;
2645 break;
2646 case TRB_TYPE(TRB_DEV_NOTE):
2647 handle_device_notification(xhci, event);
2648 break;
2649 default:
2650 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2651 TRB_TYPE(48))
2652 handle_vendor_event(xhci, event);
2653 else
2654 xhci->error_bitmask |= 1 << 3;
2655 }
2656 /* Any of the above functions may drop and re-acquire the lock, so check
2657 * to make sure a watchdog timer didn't mark the host as non-responsive.
2658 */
2659 if (xhci->xhc_state & XHCI_STATE_DYING) {
2660 xhci_dbg(xhci, "xHCI host dying, returning from "
2661 "event handler.\n");
2662 return 0;
2663 }
2664
2665 if (update_ptrs)
2666 /* Update SW event ring dequeue pointer */
2667 inc_deq(xhci, xhci->event_ring);
2668
2669 /* Are there more items on the event ring? Caller will call us again to
2670 * check.
2671 */
2672 return 1;
2673 }
2674
2675 /*
2676 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2677 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2678 * indicators of an event TRB error, but we check the status *first* to be safe.
2679 */
2680 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2681 {
2682 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2683 u32 status;
2684 u64 temp_64;
2685 union xhci_trb *event_ring_deq;
2686 dma_addr_t deq;
2687
2688 spin_lock(&xhci->lock);
2689 /* Check if the xHC generated the interrupt, or the irq is shared */
2690 status = readl(&xhci->op_regs->status);
2691 if (status == 0xffffffff)
2692 goto hw_died;
2693
2694 if (!(status & STS_EINT)) {
2695 spin_unlock(&xhci->lock);
2696 return IRQ_NONE;
2697 }
2698 if (status & STS_FATAL) {
2699 xhci_warn(xhci, "WARNING: Host System Error\n");
2700 xhci_halt(xhci);
2701 hw_died:
2702 spin_unlock(&xhci->lock);
2703 return IRQ_HANDLED;
2704 }
2705
2706 /*
2707 * Clear the op reg interrupt status first,
2708 * so we can receive interrupts from other MSI-X interrupters.
2709 * Write 1 to clear the interrupt status.
2710 */
2711 status |= STS_EINT;
2712 writel(status, &xhci->op_regs->status);
2713 /* FIXME when MSI-X is supported and there are multiple vectors */
2714 /* Clear the MSI-X event interrupt status */
2715
2716 if (hcd->irq) {
2717 u32 irq_pending;
2718 /* Acknowledge the PCI interrupt */
2719 irq_pending = readl(&xhci->ir_set->irq_pending);
2720 irq_pending |= IMAN_IP;
2721 writel(irq_pending, &xhci->ir_set->irq_pending);
2722 }
2723
2724 if (xhci->xhc_state & XHCI_STATE_DYING) {
2725 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2726 "Shouldn't IRQs be disabled?\n");
2727 /* Clear the event handler busy flag (RW1C);
2728 * the event ring should be empty.
2729 */
2730 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2731 xhci_write_64(xhci, temp_64 | ERST_EHB,
2732 &xhci->ir_set->erst_dequeue);
2733 spin_unlock(&xhci->lock);
2734
2735 return IRQ_HANDLED;
2736 }
2737
2738 event_ring_deq = xhci->event_ring->dequeue;
2739 /* FIXME this should be a delayed service routine
2740 * that clears the EHB.
2741 */
2742 while (xhci_handle_event(xhci) > 0) {}
2743
2744 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2745 /* If necessary, update the HW's version of the event ring deq ptr. */
2746 if (event_ring_deq != xhci->event_ring->dequeue) {
2747 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2748 xhci->event_ring->dequeue);
2749 if (deq == 0)
2750 xhci_warn(xhci, "WARN something wrong with SW event "
2751 "ring dequeue ptr.\n");
2752 /* Update HC event ring dequeue pointer */
2753 temp_64 &= ERST_PTR_MASK;
2754 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2755 }
2756
2757 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2758 temp_64 |= ERST_EHB;
2759 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2760
2761 spin_unlock(&xhci->lock);
2762
2763 return IRQ_HANDLED;
2764 }
2765
2766 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2767 {
2768 return xhci_irq(hcd);
2769 }
2770
2771 /**** Endpoint Ring Operations ****/
2772
2773 /*
2774 * Generic function for queueing a TRB on a ring.
2775 * The caller must have checked to make sure there's room on the ring.
2776 *
2777 * @more_trbs_coming: Will you enqueue more TRBs before calling
2778 * prepare_transfer()?
2779 */
2780 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2781 bool more_trbs_coming,
2782 u32 field1, u32 field2, u32 field3, u32 field4)
2783 {
2784 struct xhci_generic_trb *trb;
2785
2786 trb = &ring->enqueue->generic;
2787 trb->field[0] = cpu_to_le32(field1);
2788 trb->field[1] = cpu_to_le32(field2);
2789 trb->field[2] = cpu_to_le32(field3);
2790 trb->field[3] = cpu_to_le32(field4);
2791 inc_enq(xhci, ring, more_trbs_coming);
2792 }
2793
2794 /*
2795 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2796 * FIXME allocate segments if the ring is full.
2797 */
2798 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2799 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2800 {
2801 unsigned int num_trbs_needed;
2802
2803 /* Make sure the endpoint has been added to xHC schedule */
2804 switch (ep_state) {
2805 case EP_STATE_DISABLED:
2806 /*
2807 * USB core changed config/interfaces without notifying us,
2808 * or hardware is reporting the wrong state.
2809 */
2810 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2811 return -ENOENT;
2812 case EP_STATE_ERROR:
2813 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2814 /* FIXME event handling code for error needs to clear it */
2815 /* XXX not sure if this should be -ENOENT or not */
2816 return -EINVAL;
2817 case EP_STATE_HALTED:
2818 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2819 case EP_STATE_STOPPED:
2820 case EP_STATE_RUNNING:
2821 break;
2822 default:
2823 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2824 /*
2825 * FIXME issue Configure Endpoint command to try to get the HC
2826 * back into a known state.
2827 */
2828 return -EINVAL;
2829 }
2830
2831 while (1) {
2832 if (room_on_ring(xhci, ep_ring, num_trbs))
2833 break;
2834
2835 if (ep_ring == xhci->cmd_ring) {
2836 xhci_err(xhci, "Do not support expand command ring\n");
2837 return -ENOMEM;
2838 }
2839
2840 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2841 "ERROR no room on ep ring, try ring expansion");
2842 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2843 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2844 mem_flags)) {
2845 xhci_err(xhci, "Ring expansion failed\n");
2846 return -ENOMEM;
2847 }
2848 }
2849
2850 if (enqueue_is_link_trb(ep_ring)) {
2851 struct xhci_ring *ring = ep_ring;
2852 union xhci_trb *next;
2853
2854 next = ring->enqueue;
2855
2856 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2857 /* If we're not dealing with 0.95 hardware or isoc rings
2858 * on AMD 0.96 host, clear the chain bit.
2859 */
2860 if (!xhci_link_trb_quirk(xhci) &&
2861 !(ring->type == TYPE_ISOC &&
2862 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2863 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2864 else
2865 next->link.control |= cpu_to_le32(TRB_CHAIN);
2866
2867 wmb();
2868 next->link.control ^= cpu_to_le32(TRB_CYCLE);
2869
2870 /* Toggle the cycle bit after the last ring segment. */
2871 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2872 ring->cycle_state ^= 1;
2873 }
2874 ring->enq_seg = ring->enq_seg->next;
2875 ring->enqueue = ring->enq_seg->trbs;
2876 next = ring->enqueue;
2877 }
2878 }
2879
2880 return 0;
2881 }
2882
2883 static int prepare_transfer(struct xhci_hcd *xhci,
2884 struct xhci_virt_device *xdev,
2885 unsigned int ep_index,
2886 unsigned int stream_id,
2887 unsigned int num_trbs,
2888 struct urb *urb,
2889 unsigned int td_index,
2890 gfp_t mem_flags)
2891 {
2892 int ret;
2893 struct urb_priv *urb_priv;
2894 struct xhci_td *td;
2895 struct xhci_ring *ep_ring;
2896 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2897
2898 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2899 if (!ep_ring) {
2900 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2901 stream_id);
2902 return -EINVAL;
2903 }
2904
2905 ret = prepare_ring(xhci, ep_ring,
2906 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2907 num_trbs, mem_flags);
2908 if (ret)
2909 return ret;
2910
2911 urb_priv = urb->hcpriv;
2912 td = urb_priv->td[td_index];
2913
2914 INIT_LIST_HEAD(&td->td_list);
2915 INIT_LIST_HEAD(&td->cancelled_td_list);
2916
2917 if (td_index == 0) {
2918 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2919 if (unlikely(ret))
2920 return ret;
2921 }
2922
2923 td->urb = urb;
2924 /* Add this TD to the tail of the endpoint ring's TD list */
2925 list_add_tail(&td->td_list, &ep_ring->td_list);
2926 td->start_seg = ep_ring->enq_seg;
2927 td->first_trb = ep_ring->enqueue;
2928
2929 urb_priv->td[td_index] = td;
2930
2931 return 0;
2932 }
2933
2934 static unsigned int count_trbs(u64 addr, u64 len)
2935 {
2936 unsigned int num_trbs;
2937
2938 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
2939 TRB_MAX_BUFF_SIZE);
2940 if (num_trbs == 0)
2941 num_trbs++;
2942
2943 return num_trbs;
2944 }
2945
2946 static inline unsigned int count_trbs_needed(struct urb *urb)
2947 {
2948 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
2949 }
2950
2951 static unsigned int count_sg_trbs_needed(struct urb *urb)
2952 {
2953 struct scatterlist *sg;
2954 unsigned int i, len, full_len, num_trbs = 0;
2955
2956 full_len = urb->transfer_buffer_length;
2957
2958 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
2959 len = sg_dma_len(sg);
2960 num_trbs += count_trbs(sg_dma_address(sg), len);
2961 len = min_t(unsigned int, len, full_len);
2962 full_len -= len;
2963 if (full_len == 0)
2964 break;
2965 }
2966
2967 return num_trbs;
2968 }
2969
2970 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
2971 {
2972 u64 addr, len;
2973
2974 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
2975 len = urb->iso_frame_desc[i].length;
2976
2977 return count_trbs(addr, len);
2978 }
2979
2980 static void check_trb_math(struct urb *urb, int running_total)
2981 {
2982 if (unlikely(running_total != urb->transfer_buffer_length))
2983 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2984 "queued %#x (%d), asked for %#x (%d)\n",
2985 __func__,
2986 urb->ep->desc.bEndpointAddress,
2987 running_total, running_total,
2988 urb->transfer_buffer_length,
2989 urb->transfer_buffer_length);
2990 }
2991
2992 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2993 unsigned int ep_index, unsigned int stream_id, int start_cycle,
2994 struct xhci_generic_trb *start_trb)
2995 {
2996 /*
2997 * Pass all the TRBs to the hardware at once and make sure this write
2998 * isn't reordered.
2999 */
3000 wmb();
3001 if (start_cycle)
3002 start_trb->field[3] |= cpu_to_le32(start_cycle);
3003 else
3004 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3005 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3006 }
3007
3008 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
3009 struct xhci_ep_ctx *ep_ctx)
3010 {
3011 int xhci_interval;
3012 int ep_interval;
3013
3014 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3015 ep_interval = urb->interval;
3016
3017 /* Convert to microframes */
3018 if (urb->dev->speed == USB_SPEED_LOW ||
3019 urb->dev->speed == USB_SPEED_FULL)
3020 ep_interval *= 8;
3021
3022 /* FIXME change this to a warning and a suggestion to use the new API
3023 * to set the polling interval (once the API is added).
3024 */
3025 if (xhci_interval != ep_interval) {
3026 dev_dbg_ratelimited(&urb->dev->dev,
3027 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3028 ep_interval, ep_interval == 1 ? "" : "s",
3029 xhci_interval, xhci_interval == 1 ? "" : "s");
3030 urb->interval = xhci_interval;
3031 /* Convert back to frames for LS/FS devices */
3032 if (urb->dev->speed == USB_SPEED_LOW ||
3033 urb->dev->speed == USB_SPEED_FULL)
3034 urb->interval /= 8;
3035 }
3036 }
3037
3038 /*
3039 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3040 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3041 * (comprised of sg list entries) can take several service intervals to
3042 * transmit.
3043 */
3044 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3045 struct urb *urb, int slot_id, unsigned int ep_index)
3046 {
3047 struct xhci_ep_ctx *ep_ctx;
3048
3049 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3050 check_interval(xhci, urb, ep_ctx);
3051
3052 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3053 }
3054
3055 /*
3056 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3057 * packets remaining in the TD (*not* including this TRB).
3058 *
3059 * Total TD packet count = total_packet_count =
3060 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3061 *
3062 * Packets transferred up to and including this TRB = packets_transferred =
3063 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3064 *
3065 * TD size = total_packet_count - packets_transferred
3066 *
3067 * For xHCI 0.96 and older, TD size field should be the remaining bytes
3068 * including this TRB, right shifted by 10
3069 *
3070 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3071 * This is taken care of in the TRB_TD_SIZE() macro
3072 *
3073 * The last TRB in a TD must have the TD size set to zero.
3074 */
3075 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3076 int trb_buff_len, unsigned int td_total_len,
3077 struct urb *urb, unsigned int num_trbs_left)
3078 {
3079 u32 maxp, total_packet_count;
3080
3081 /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */
3082 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3083 return ((td_total_len - transferred) >> 10);
3084
3085 /* One TRB with a zero-length data packet. */
3086 if (num_trbs_left == 0 || (transferred == 0 && trb_buff_len == 0) ||
3087 trb_buff_len == td_total_len)
3088 return 0;
3089
3090 /* for MTK xHCI, TD size doesn't include this TRB */
3091 if (xhci->quirks & XHCI_MTK_HOST)
3092 trb_buff_len = 0;
3093
3094 maxp = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3095 total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3096
3097 /* Queueing functions don't count the current TRB into transferred */
3098 return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3099 }
3100
3101 /* This is very similar to what ehci-q.c qtd_fill() does */
3102 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3103 struct urb *urb, int slot_id, unsigned int ep_index)
3104 {
3105 struct xhci_ring *ep_ring;
3106 struct urb_priv *urb_priv;
3107 struct xhci_td *td;
3108 struct xhci_generic_trb *start_trb;
3109 struct scatterlist *sg = NULL;
3110 bool more_trbs_coming;
3111 bool zero_length_needed;
3112 unsigned int num_trbs, last_trb_num, i;
3113 unsigned int start_cycle, num_sgs = 0;
3114 unsigned int running_total, block_len, trb_buff_len;
3115 unsigned int full_len;
3116 int ret;
3117 u32 field, length_field, remainder;
3118 u64 addr;
3119
3120 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3121 if (!ep_ring)
3122 return -EINVAL;
3123
3124 /* If we have scatter/gather list, we use it. */
3125 if (urb->num_sgs) {
3126 num_sgs = urb->num_mapped_sgs;
3127 sg = urb->sg;
3128 num_trbs = count_sg_trbs_needed(urb);
3129 } else
3130 num_trbs = count_trbs_needed(urb);
3131
3132 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3133 ep_index, urb->stream_id,
3134 num_trbs, urb, 0, mem_flags);
3135 if (unlikely(ret < 0))
3136 return ret;
3137
3138 urb_priv = urb->hcpriv;
3139
3140 last_trb_num = num_trbs - 1;
3141
3142 /* Deal with URB_ZERO_PACKET - need one more td/trb */
3143 zero_length_needed = urb->transfer_flags & URB_ZERO_PACKET &&
3144 urb_priv->length == 2;
3145 if (zero_length_needed) {
3146 num_trbs++;
3147 xhci_dbg(xhci, "Creating zero length td.\n");
3148 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3149 ep_index, urb->stream_id,
3150 1, urb, 1, mem_flags);
3151 if (unlikely(ret < 0))
3152 return ret;
3153 }
3154
3155 td = urb_priv->td[0];
3156
3157 /*
3158 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3159 * until we've finished creating all the other TRBs. The ring's cycle
3160 * state may change as we enqueue the other TRBs, so save it too.
3161 */
3162 start_trb = &ep_ring->enqueue->generic;
3163 start_cycle = ep_ring->cycle_state;
3164
3165 full_len = urb->transfer_buffer_length;
3166 running_total = 0;
3167 block_len = 0;
3168
3169 /* Queue the TRBs, even if they are zero-length */
3170 for (i = 0; i < num_trbs; i++) {
3171 field = TRB_TYPE(TRB_NORMAL);
3172
3173 if (block_len == 0) {
3174 /* A new contiguous block. */
3175 if (sg) {
3176 addr = (u64) sg_dma_address(sg);
3177 block_len = sg_dma_len(sg);
3178 } else {
3179 addr = (u64) urb->transfer_dma;
3180 block_len = full_len;
3181 }
3182 /* TRB buffer should not cross 64KB boundaries */
3183 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3184 trb_buff_len = min_t(unsigned int,
3185 trb_buff_len,
3186 block_len);
3187 } else {
3188 /* Further through the contiguous block. */
3189 trb_buff_len = block_len;
3190 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3191 trb_buff_len = TRB_MAX_BUFF_SIZE;
3192 }
3193
3194 if (running_total + trb_buff_len > full_len)
3195 trb_buff_len = full_len - running_total;
3196
3197 /* Don't change the cycle bit of the first TRB until later */
3198 if (i == 0) {
3199 if (start_cycle == 0)
3200 field |= TRB_CYCLE;
3201 } else
3202 field |= ep_ring->cycle_state;
3203
3204 /* Chain all the TRBs together; clear the chain bit in the last
3205 * TRB to indicate it's the last TRB in the chain.
3206 */
3207 if (i < last_trb_num) {
3208 field |= TRB_CHAIN;
3209 } else {
3210 field |= TRB_IOC;
3211 if (i == last_trb_num)
3212 td->last_trb = ep_ring->enqueue;
3213 else if (zero_length_needed) {
3214 trb_buff_len = 0;
3215 urb_priv->td[1]->last_trb = ep_ring->enqueue;
3216 }
3217 }
3218
3219 /* Only set interrupt on short packet for IN endpoints */
3220 if (usb_urb_dir_in(urb))
3221 field |= TRB_ISP;
3222
3223 /* Set the TRB length, TD size, and interrupter fields. */
3224 remainder = xhci_td_remainder(xhci, running_total,
3225 trb_buff_len, full_len,
3226 urb, num_trbs - i - 1);
3227
3228 length_field = TRB_LEN(trb_buff_len) |
3229 TRB_TD_SIZE(remainder) |
3230 TRB_INTR_TARGET(0);
3231
3232 if (i < num_trbs - 1)
3233 more_trbs_coming = true;
3234 else
3235 more_trbs_coming = false;
3236 queue_trb(xhci, ep_ring, more_trbs_coming,
3237 lower_32_bits(addr),
3238 upper_32_bits(addr),
3239 length_field,
3240 field);
3241
3242 running_total += trb_buff_len;
3243 addr += trb_buff_len;
3244 block_len -= trb_buff_len;
3245
3246 if (sg) {
3247 if (block_len == 0) {
3248 /* New sg entry */
3249 --num_sgs;
3250 if (num_sgs == 0)
3251 break;
3252 sg = sg_next(sg);
3253 }
3254 }
3255 }
3256
3257 check_trb_math(urb, running_total);
3258 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3259 start_cycle, start_trb);
3260 return 0;
3261 }
3262
3263 /* Caller must have locked xhci->lock */
3264 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3265 struct urb *urb, int slot_id, unsigned int ep_index)
3266 {
3267 struct xhci_ring *ep_ring;
3268 int num_trbs;
3269 int ret;
3270 struct usb_ctrlrequest *setup;
3271 struct xhci_generic_trb *start_trb;
3272 int start_cycle;
3273 u32 field, length_field, remainder;
3274 struct urb_priv *urb_priv;
3275 struct xhci_td *td;
3276
3277 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3278 if (!ep_ring)
3279 return -EINVAL;
3280
3281 /*
3282 * Need to copy setup packet into setup TRB, so we can't use the setup
3283 * DMA address.
3284 */
3285 if (!urb->setup_packet)
3286 return -EINVAL;
3287
3288 /* 1 TRB for setup, 1 for status */
3289 num_trbs = 2;
3290 /*
3291 * Don't need to check if we need additional event data and normal TRBs,
3292 * since data in control transfers will never get bigger than 16MB
3293 * XXX: can we get a buffer that crosses 64KB boundaries?
3294 */
3295 if (urb->transfer_buffer_length > 0)
3296 num_trbs++;
3297 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3298 ep_index, urb->stream_id,
3299 num_trbs, urb, 0, mem_flags);
3300 if (ret < 0)
3301 return ret;
3302
3303 urb_priv = urb->hcpriv;
3304 td = urb_priv->td[0];
3305
3306 /*
3307 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3308 * until we've finished creating all the other TRBs. The ring's cycle
3309 * state may change as we enqueue the other TRBs, so save it too.
3310 */
3311 start_trb = &ep_ring->enqueue->generic;
3312 start_cycle = ep_ring->cycle_state;
3313
3314 /* Queue setup TRB - see section 6.4.1.2.1 */
3315 /* FIXME better way to translate setup_packet into two u32 fields? */
3316 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3317 field = 0;
3318 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3319 if (start_cycle == 0)
3320 field |= 0x1;
3321
3322 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3323 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3324 if (urb->transfer_buffer_length > 0) {
3325 if (setup->bRequestType & USB_DIR_IN)
3326 field |= TRB_TX_TYPE(TRB_DATA_IN);
3327 else
3328 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3329 }
3330 }
3331
3332 queue_trb(xhci, ep_ring, true,
3333 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3334 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3335 TRB_LEN(8) | TRB_INTR_TARGET(0),
3336 /* Immediate data in pointer */
3337 field);
3338
3339 /* If there's data, queue data TRBs */
3340 /* Only set interrupt on short packet for IN endpoints */
3341 if (usb_urb_dir_in(urb))
3342 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3343 else
3344 field = TRB_TYPE(TRB_DATA);
3345
3346 remainder = xhci_td_remainder(xhci, 0,
3347 urb->transfer_buffer_length,
3348 urb->transfer_buffer_length,
3349 urb, 1);
3350
3351 length_field = TRB_LEN(urb->transfer_buffer_length) |
3352 TRB_TD_SIZE(remainder) |
3353 TRB_INTR_TARGET(0);
3354
3355 if (urb->transfer_buffer_length > 0) {
3356 if (setup->bRequestType & USB_DIR_IN)
3357 field |= TRB_DIR_IN;
3358 queue_trb(xhci, ep_ring, true,
3359 lower_32_bits(urb->transfer_dma),
3360 upper_32_bits(urb->transfer_dma),
3361 length_field,
3362 field | ep_ring->cycle_state);
3363 }
3364
3365 /* Save the DMA address of the last TRB in the TD */
3366 td->last_trb = ep_ring->enqueue;
3367
3368 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3369 /* If the device sent data, the status stage is an OUT transfer */
3370 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3371 field = 0;
3372 else
3373 field = TRB_DIR_IN;
3374 queue_trb(xhci, ep_ring, false,
3375 0,
3376 0,
3377 TRB_INTR_TARGET(0),
3378 /* Event on completion */
3379 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3380
3381 giveback_first_trb(xhci, slot_id, ep_index, 0,
3382 start_cycle, start_trb);
3383 return 0;
3384 }
3385
3386 /*
3387 * The transfer burst count field of the isochronous TRB defines the number of
3388 * bursts that are required to move all packets in this TD. Only SuperSpeed
3389 * devices can burst up to bMaxBurst number of packets per service interval.
3390 * This field is zero based, meaning a value of zero in the field means one
3391 * burst. Basically, for everything but SuperSpeed devices, this field will be
3392 * zero. Only xHCI 1.0 host controllers support this field.
3393 */
3394 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3395 struct urb *urb, unsigned int total_packet_count)
3396 {
3397 unsigned int max_burst;
3398
3399 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3400 return 0;
3401
3402 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3403 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3404 }
3405
3406 /*
3407 * Returns the number of packets in the last "burst" of packets. This field is
3408 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3409 * the last burst packet count is equal to the total number of packets in the
3410 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3411 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3412 * contain 1 to (bMaxBurst + 1) packets.
3413 */
3414 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3415 struct urb *urb, unsigned int total_packet_count)
3416 {
3417 unsigned int max_burst;
3418 unsigned int residue;
3419
3420 if (xhci->hci_version < 0x100)
3421 return 0;
3422
3423 if (urb->dev->speed >= USB_SPEED_SUPER) {
3424 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3425 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3426 residue = total_packet_count % (max_burst + 1);
3427 /* If residue is zero, the last burst contains (max_burst + 1)
3428 * number of packets, but the TLBPC field is zero-based.
3429 */
3430 if (residue == 0)
3431 return max_burst;
3432 return residue - 1;
3433 }
3434 if (total_packet_count == 0)
3435 return 0;
3436 return total_packet_count - 1;
3437 }
3438
3439 /*
3440 * Calculates Frame ID field of the isochronous TRB identifies the
3441 * target frame that the Interval associated with this Isochronous
3442 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3443 *
3444 * Returns actual frame id on success, negative value on error.
3445 */
3446 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3447 struct urb *urb, int index)
3448 {
3449 int start_frame, ist, ret = 0;
3450 int start_frame_id, end_frame_id, current_frame_id;
3451
3452 if (urb->dev->speed == USB_SPEED_LOW ||
3453 urb->dev->speed == USB_SPEED_FULL)
3454 start_frame = urb->start_frame + index * urb->interval;
3455 else
3456 start_frame = (urb->start_frame + index * urb->interval) >> 3;
3457
3458 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3459 *
3460 * If bit [3] of IST is cleared to '0', software can add a TRB no
3461 * later than IST[2:0] Microframes before that TRB is scheduled to
3462 * be executed.
3463 * If bit [3] of IST is set to '1', software can add a TRB no later
3464 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3465 */
3466 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3467 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3468 ist <<= 3;
3469
3470 /* Software shall not schedule an Isoch TD with a Frame ID value that
3471 * is less than the Start Frame ID or greater than the End Frame ID,
3472 * where:
3473 *
3474 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3475 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3476 *
3477 * Both the End Frame ID and Start Frame ID values are calculated
3478 * in microframes. When software determines the valid Frame ID value;
3479 * The End Frame ID value should be rounded down to the nearest Frame
3480 * boundary, and the Start Frame ID value should be rounded up to the
3481 * nearest Frame boundary.
3482 */
3483 current_frame_id = readl(&xhci->run_regs->microframe_index);
3484 start_frame_id = roundup(current_frame_id + ist + 1, 8);
3485 end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3486
3487 start_frame &= 0x7ff;
3488 start_frame_id = (start_frame_id >> 3) & 0x7ff;
3489 end_frame_id = (end_frame_id >> 3) & 0x7ff;
3490
3491 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3492 __func__, index, readl(&xhci->run_regs->microframe_index),
3493 start_frame_id, end_frame_id, start_frame);
3494
3495 if (start_frame_id < end_frame_id) {
3496 if (start_frame > end_frame_id ||
3497 start_frame < start_frame_id)
3498 ret = -EINVAL;
3499 } else if (start_frame_id > end_frame_id) {
3500 if ((start_frame > end_frame_id &&
3501 start_frame < start_frame_id))
3502 ret = -EINVAL;
3503 } else {
3504 ret = -EINVAL;
3505 }
3506
3507 if (index == 0) {
3508 if (ret == -EINVAL || start_frame == start_frame_id) {
3509 start_frame = start_frame_id + 1;
3510 if (urb->dev->speed == USB_SPEED_LOW ||
3511 urb->dev->speed == USB_SPEED_FULL)
3512 urb->start_frame = start_frame;
3513 else
3514 urb->start_frame = start_frame << 3;
3515 ret = 0;
3516 }
3517 }
3518
3519 if (ret) {
3520 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3521 start_frame, current_frame_id, index,
3522 start_frame_id, end_frame_id);
3523 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3524 return ret;
3525 }
3526
3527 return start_frame;
3528 }
3529
3530 /* This is for isoc transfer */
3531 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3532 struct urb *urb, int slot_id, unsigned int ep_index)
3533 {
3534 struct xhci_ring *ep_ring;
3535 struct urb_priv *urb_priv;
3536 struct xhci_td *td;
3537 int num_tds, trbs_per_td;
3538 struct xhci_generic_trb *start_trb;
3539 bool first_trb;
3540 int start_cycle;
3541 u32 field, length_field;
3542 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3543 u64 start_addr, addr;
3544 int i, j;
3545 bool more_trbs_coming;
3546 struct xhci_virt_ep *xep;
3547 int frame_id;
3548
3549 xep = &xhci->devs[slot_id]->eps[ep_index];
3550 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3551
3552 num_tds = urb->number_of_packets;
3553 if (num_tds < 1) {
3554 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3555 return -EINVAL;
3556 }
3557 start_addr = (u64) urb->transfer_dma;
3558 start_trb = &ep_ring->enqueue->generic;
3559 start_cycle = ep_ring->cycle_state;
3560
3561 urb_priv = urb->hcpriv;
3562 /* Queue the TRBs for each TD, even if they are zero-length */
3563 for (i = 0; i < num_tds; i++) {
3564 unsigned int total_pkt_count, max_pkt;
3565 unsigned int burst_count, last_burst_pkt_count;
3566 u32 sia_frame_id;
3567
3568 first_trb = true;
3569 running_total = 0;
3570 addr = start_addr + urb->iso_frame_desc[i].offset;
3571 td_len = urb->iso_frame_desc[i].length;
3572 td_remain_len = td_len;
3573 max_pkt = GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3574 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3575
3576 /* A zero-length transfer still involves at least one packet. */
3577 if (total_pkt_count == 0)
3578 total_pkt_count++;
3579 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3580 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3581 urb, total_pkt_count);
3582
3583 trbs_per_td = count_isoc_trbs_needed(urb, i);
3584
3585 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3586 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3587 if (ret < 0) {
3588 if (i == 0)
3589 return ret;
3590 goto cleanup;
3591 }
3592 td = urb_priv->td[i];
3593
3594 /* use SIA as default, if frame id is used overwrite it */
3595 sia_frame_id = TRB_SIA;
3596 if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3597 HCC_CFC(xhci->hcc_params)) {
3598 frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3599 if (frame_id >= 0)
3600 sia_frame_id = TRB_FRAME_ID(frame_id);
3601 }
3602 /*
3603 * Set isoc specific data for the first TRB in a TD.
3604 * Prevent HW from getting the TRBs by keeping the cycle state
3605 * inverted in the first TDs isoc TRB.
3606 */
3607 field = TRB_TYPE(TRB_ISOC) |
3608 TRB_TLBPC(last_burst_pkt_count) |
3609 sia_frame_id |
3610 (i ? ep_ring->cycle_state : !start_cycle);
3611
3612 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3613 if (!xep->use_extended_tbc)
3614 field |= TRB_TBC(burst_count);
3615
3616 /* fill the rest of the TRB fields, and remaining normal TRBs */
3617 for (j = 0; j < trbs_per_td; j++) {
3618 u32 remainder = 0;
3619
3620 /* only first TRB is isoc, overwrite otherwise */
3621 if (!first_trb)
3622 field = TRB_TYPE(TRB_NORMAL) |
3623 ep_ring->cycle_state;
3624
3625 /* Only set interrupt on short packet for IN EPs */
3626 if (usb_urb_dir_in(urb))
3627 field |= TRB_ISP;
3628
3629 /* Set the chain bit for all except the last TRB */
3630 if (j < trbs_per_td - 1) {
3631 more_trbs_coming = true;
3632 field |= TRB_CHAIN;
3633 } else {
3634 more_trbs_coming = false;
3635 td->last_trb = ep_ring->enqueue;
3636 field |= TRB_IOC;
3637 /* set BEI, except for the last TD */
3638 if (xhci->hci_version >= 0x100 &&
3639 !(xhci->quirks & XHCI_AVOID_BEI) &&
3640 i < num_tds - 1)
3641 field |= TRB_BEI;
3642 }
3643 /* Calculate TRB length */
3644 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3645 if (trb_buff_len > td_remain_len)
3646 trb_buff_len = td_remain_len;
3647
3648 /* Set the TRB length, TD size, & interrupter fields. */
3649 remainder = xhci_td_remainder(xhci, running_total,
3650 trb_buff_len, td_len,
3651 urb, trbs_per_td - j - 1);
3652
3653 length_field = TRB_LEN(trb_buff_len) |
3654 TRB_INTR_TARGET(0);
3655
3656 /* xhci 1.1 with ETE uses TD Size field for TBC */
3657 if (first_trb && xep->use_extended_tbc)
3658 length_field |= TRB_TD_SIZE_TBC(burst_count);
3659 else
3660 length_field |= TRB_TD_SIZE(remainder);
3661 first_trb = false;
3662
3663 queue_trb(xhci, ep_ring, more_trbs_coming,
3664 lower_32_bits(addr),
3665 upper_32_bits(addr),
3666 length_field,
3667 field);
3668 running_total += trb_buff_len;
3669
3670 addr += trb_buff_len;
3671 td_remain_len -= trb_buff_len;
3672 }
3673
3674 /* Check TD length */
3675 if (running_total != td_len) {
3676 xhci_err(xhci, "ISOC TD length unmatch\n");
3677 ret = -EINVAL;
3678 goto cleanup;
3679 }
3680 }
3681
3682 /* store the next frame id */
3683 if (HCC_CFC(xhci->hcc_params))
3684 xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3685
3686 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3687 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3688 usb_amd_quirk_pll_disable();
3689 }
3690 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3691
3692 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3693 start_cycle, start_trb);
3694 return 0;
3695 cleanup:
3696 /* Clean up a partially enqueued isoc transfer. */
3697
3698 for (i--; i >= 0; i--)
3699 list_del_init(&urb_priv->td[i]->td_list);
3700
3701 /* Use the first TD as a temporary variable to turn the TDs we've queued
3702 * into No-ops with a software-owned cycle bit. That way the hardware
3703 * won't accidentally start executing bogus TDs when we partially
3704 * overwrite them. td->first_trb and td->start_seg are already set.
3705 */
3706 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3707 /* Every TRB except the first & last will have its cycle bit flipped. */
3708 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3709
3710 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3711 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3712 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3713 ep_ring->cycle_state = start_cycle;
3714 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3715 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3716 return ret;
3717 }
3718
3719 /*
3720 * Check transfer ring to guarantee there is enough room for the urb.
3721 * Update ISO URB start_frame and interval.
3722 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3723 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3724 * Contiguous Frame ID is not supported by HC.
3725 */
3726 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3727 struct urb *urb, int slot_id, unsigned int ep_index)
3728 {
3729 struct xhci_virt_device *xdev;
3730 struct xhci_ring *ep_ring;
3731 struct xhci_ep_ctx *ep_ctx;
3732 int start_frame;
3733 int num_tds, num_trbs, i;
3734 int ret;
3735 struct xhci_virt_ep *xep;
3736 int ist;
3737
3738 xdev = xhci->devs[slot_id];
3739 xep = &xhci->devs[slot_id]->eps[ep_index];
3740 ep_ring = xdev->eps[ep_index].ring;
3741 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3742
3743 num_trbs = 0;
3744 num_tds = urb->number_of_packets;
3745 for (i = 0; i < num_tds; i++)
3746 num_trbs += count_isoc_trbs_needed(urb, i);
3747
3748 /* Check the ring to guarantee there is enough room for the whole urb.
3749 * Do not insert any td of the urb to the ring if the check failed.
3750 */
3751 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3752 num_trbs, mem_flags);
3753 if (ret)
3754 return ret;
3755
3756 /*
3757 * Check interval value. This should be done before we start to
3758 * calculate the start frame value.
3759 */
3760 check_interval(xhci, urb, ep_ctx);
3761
3762 /* Calculate the start frame and put it in urb->start_frame. */
3763 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3764 if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
3765 EP_STATE_RUNNING) {
3766 urb->start_frame = xep->next_frame_id;
3767 goto skip_start_over;
3768 }
3769 }
3770
3771 start_frame = readl(&xhci->run_regs->microframe_index);
3772 start_frame &= 0x3fff;
3773 /*
3774 * Round up to the next frame and consider the time before trb really
3775 * gets scheduled by hardare.
3776 */
3777 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3778 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3779 ist <<= 3;
3780 start_frame += ist + XHCI_CFC_DELAY;
3781 start_frame = roundup(start_frame, 8);
3782
3783 /*
3784 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3785 * is greate than 8 microframes.
3786 */
3787 if (urb->dev->speed == USB_SPEED_LOW ||
3788 urb->dev->speed == USB_SPEED_FULL) {
3789 start_frame = roundup(start_frame, urb->interval << 3);
3790 urb->start_frame = start_frame >> 3;
3791 } else {
3792 start_frame = roundup(start_frame, urb->interval);
3793 urb->start_frame = start_frame;
3794 }
3795
3796 skip_start_over:
3797 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3798
3799 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3800 }
3801
3802 /**** Command Ring Operations ****/
3803
3804 /* Generic function for queueing a command TRB on the command ring.
3805 * Check to make sure there's room on the command ring for one command TRB.
3806 * Also check that there's room reserved for commands that must not fail.
3807 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3808 * then only check for the number of reserved spots.
3809 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3810 * because the command event handler may want to resubmit a failed command.
3811 */
3812 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3813 u32 field1, u32 field2,
3814 u32 field3, u32 field4, bool command_must_succeed)
3815 {
3816 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3817 int ret;
3818
3819 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3820 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3821 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3822 return -ESHUTDOWN;
3823 }
3824
3825 if (!command_must_succeed)
3826 reserved_trbs++;
3827
3828 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3829 reserved_trbs, GFP_ATOMIC);
3830 if (ret < 0) {
3831 xhci_err(xhci, "ERR: No room for command on command ring\n");
3832 if (command_must_succeed)
3833 xhci_err(xhci, "ERR: Reserved TRB counting for "
3834 "unfailable commands failed.\n");
3835 return ret;
3836 }
3837
3838 cmd->command_trb = xhci->cmd_ring->enqueue;
3839 list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3840
3841 /* if there are no other commands queued we start the timeout timer */
3842 if (xhci->cmd_list.next == &cmd->cmd_list &&
3843 !timer_pending(&xhci->cmd_timer)) {
3844 xhci->current_cmd = cmd;
3845 mod_timer(&xhci->cmd_timer, jiffies + XHCI_CMD_DEFAULT_TIMEOUT);
3846 }
3847
3848 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3849 field4 | xhci->cmd_ring->cycle_state);
3850 return 0;
3851 }
3852
3853 /* Queue a slot enable or disable request on the command ring */
3854 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3855 u32 trb_type, u32 slot_id)
3856 {
3857 return queue_command(xhci, cmd, 0, 0, 0,
3858 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3859 }
3860
3861 /* Queue an address device command TRB */
3862 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3863 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3864 {
3865 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3866 upper_32_bits(in_ctx_ptr), 0,
3867 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
3868 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
3869 }
3870
3871 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3872 u32 field1, u32 field2, u32 field3, u32 field4)
3873 {
3874 return queue_command(xhci, cmd, field1, field2, field3, field4, false);
3875 }
3876
3877 /* Queue a reset device command TRB */
3878 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3879 u32 slot_id)
3880 {
3881 return queue_command(xhci, cmd, 0, 0, 0,
3882 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3883 false);
3884 }
3885
3886 /* Queue a configure endpoint command TRB */
3887 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
3888 struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
3889 u32 slot_id, bool command_must_succeed)
3890 {
3891 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3892 upper_32_bits(in_ctx_ptr), 0,
3893 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3894 command_must_succeed);
3895 }
3896
3897 /* Queue an evaluate context command TRB */
3898 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
3899 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
3900 {
3901 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3902 upper_32_bits(in_ctx_ptr), 0,
3903 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3904 command_must_succeed);
3905 }
3906
3907 /*
3908 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3909 * activity on an endpoint that is about to be suspended.
3910 */
3911 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
3912 int slot_id, unsigned int ep_index, int suspend)
3913 {
3914 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3915 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3916 u32 type = TRB_TYPE(TRB_STOP_RING);
3917 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3918
3919 return queue_command(xhci, cmd, 0, 0, 0,
3920 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3921 }
3922
3923 /* Set Transfer Ring Dequeue Pointer command */
3924 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
3925 unsigned int slot_id, unsigned int ep_index,
3926 unsigned int stream_id,
3927 struct xhci_dequeue_state *deq_state)
3928 {
3929 dma_addr_t addr;
3930 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3931 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3932 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3933 u32 trb_sct = 0;
3934 u32 type = TRB_TYPE(TRB_SET_DEQ);
3935 struct xhci_virt_ep *ep;
3936 struct xhci_command *cmd;
3937 int ret;
3938
3939 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
3940 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
3941 deq_state->new_deq_seg,
3942 (unsigned long long)deq_state->new_deq_seg->dma,
3943 deq_state->new_deq_ptr,
3944 (unsigned long long)xhci_trb_virt_to_dma(
3945 deq_state->new_deq_seg, deq_state->new_deq_ptr),
3946 deq_state->new_cycle_state);
3947
3948 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3949 deq_state->new_deq_ptr);
3950 if (addr == 0) {
3951 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3952 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3953 deq_state->new_deq_seg, deq_state->new_deq_ptr);
3954 return;
3955 }
3956 ep = &xhci->devs[slot_id]->eps[ep_index];
3957 if ((ep->ep_state & SET_DEQ_PENDING)) {
3958 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3959 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3960 return;
3961 }
3962
3963 /* This function gets called from contexts where it cannot sleep */
3964 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
3965 if (!cmd) {
3966 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr: ENOMEM\n");
3967 return;
3968 }
3969
3970 ep->queued_deq_seg = deq_state->new_deq_seg;
3971 ep->queued_deq_ptr = deq_state->new_deq_ptr;
3972 if (stream_id)
3973 trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
3974 ret = queue_command(xhci, cmd,
3975 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
3976 upper_32_bits(addr), trb_stream_id,
3977 trb_slot_id | trb_ep_index | type, false);
3978 if (ret < 0) {
3979 xhci_free_command(xhci, cmd);
3980 return;
3981 }
3982
3983 /* Stop the TD queueing code from ringing the doorbell until
3984 * this command completes. The HC won't set the dequeue pointer
3985 * if the ring is running, and ringing the doorbell starts the
3986 * ring running.
3987 */
3988 ep->ep_state |= SET_DEQ_PENDING;
3989 }
3990
3991 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
3992 int slot_id, unsigned int ep_index)
3993 {
3994 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3995 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3996 u32 type = TRB_TYPE(TRB_RESET_EP);
3997
3998 return queue_command(xhci, cmd, 0, 0, 0,
3999 trb_slot_id | trb_ep_index | type, false);
4000 }
This page took 0.157368 seconds and 5 git commands to generate.