Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 struct xhci_virt_device *virt_dev,
73 struct xhci_event_cmd *event);
74
75 /*
76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77 * address of the TRB.
78 */
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 union xhci_trb *trb)
81 {
82 unsigned long segment_offset;
83
84 if (!seg || !trb || trb < seg->trbs)
85 return 0;
86 /* offset in TRBs */
87 segment_offset = trb - seg->trbs;
88 if (segment_offset > TRBS_PER_SEGMENT)
89 return 0;
90 return seg->dma + (segment_offset * sizeof(*trb));
91 }
92
93 /* Does this link TRB point to the first segment in a ring,
94 * or was the previous TRB the last TRB on the last segment in the ERST?
95 */
96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 struct xhci_segment *seg, union xhci_trb *trb)
98 {
99 if (ring == xhci->event_ring)
100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 (seg->next == xhci->event_ring->first_seg);
102 else
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
104 }
105
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107 * segment? I.e. would the updated event TRB pointer step off the end of the
108 * event seg?
109 */
110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 struct xhci_segment *seg, union xhci_trb *trb)
112 {
113 if (ring == xhci->event_ring)
114 return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 else
116 return TRB_TYPE_LINK_LE32(trb->link.control);
117 }
118
119 static int enqueue_is_link_trb(struct xhci_ring *ring)
120 {
121 struct xhci_link_trb *link = &ring->enqueue->link;
122 return TRB_TYPE_LINK_LE32(link->control);
123 }
124
125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
126 * TRB is in a new segment. This does not skip over link TRBs, and it does not
127 * effect the ring dequeue or enqueue pointers.
128 */
129 static void next_trb(struct xhci_hcd *xhci,
130 struct xhci_ring *ring,
131 struct xhci_segment **seg,
132 union xhci_trb **trb)
133 {
134 if (last_trb(xhci, ring, *seg, *trb)) {
135 *seg = (*seg)->next;
136 *trb = ((*seg)->trbs);
137 } else {
138 (*trb)++;
139 }
140 }
141
142 /*
143 * See Cycle bit rules. SW is the consumer for the event ring only.
144 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
145 */
146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
147 {
148 union xhci_trb *next;
149 unsigned long long addr;
150
151 ring->deq_updates++;
152
153 /* If this is not event ring, there is one more usable TRB */
154 if (ring->type != TYPE_EVENT &&
155 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
156 ring->num_trbs_free++;
157 next = ++(ring->dequeue);
158
159 /* Update the dequeue pointer further if that was a link TRB or we're at
160 * the end of an event ring segment (which doesn't have link TRBS)
161 */
162 while (last_trb(xhci, ring, ring->deq_seg, next)) {
163 if (ring->type == TYPE_EVENT && last_trb_on_last_seg(xhci,
164 ring, ring->deq_seg, next)) {
165 ring->cycle_state = (ring->cycle_state ? 0 : 1);
166 }
167 ring->deq_seg = ring->deq_seg->next;
168 ring->dequeue = ring->deq_seg->trbs;
169 next = ring->dequeue;
170 }
171 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
172 }
173
174 /*
175 * See Cycle bit rules. SW is the consumer for the event ring only.
176 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
177 *
178 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
179 * chain bit is set), then set the chain bit in all the following link TRBs.
180 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
181 * have their chain bit cleared (so that each Link TRB is a separate TD).
182 *
183 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
184 * set, but other sections talk about dealing with the chain bit set. This was
185 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
186 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
187 *
188 * @more_trbs_coming: Will you enqueue more TRBs before calling
189 * prepare_transfer()?
190 */
191 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
192 bool more_trbs_coming)
193 {
194 u32 chain;
195 union xhci_trb *next;
196 unsigned long long addr;
197
198 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
199 /* If this is not event ring, there is one less usable TRB */
200 if (ring->type != TYPE_EVENT &&
201 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
202 ring->num_trbs_free--;
203 next = ++(ring->enqueue);
204
205 ring->enq_updates++;
206 /* Update the dequeue pointer further if that was a link TRB or we're at
207 * the end of an event ring segment (which doesn't have link TRBS)
208 */
209 while (last_trb(xhci, ring, ring->enq_seg, next)) {
210 if (ring->type != TYPE_EVENT) {
211 /*
212 * If the caller doesn't plan on enqueueing more
213 * TDs before ringing the doorbell, then we
214 * don't want to give the link TRB to the
215 * hardware just yet. We'll give the link TRB
216 * back in prepare_ring() just before we enqueue
217 * the TD at the top of the ring.
218 */
219 if (!chain && !more_trbs_coming)
220 break;
221
222 /* If we're not dealing with 0.95 hardware or
223 * isoc rings on AMD 0.96 host,
224 * carry over the chain bit of the previous TRB
225 * (which may mean the chain bit is cleared).
226 */
227 if (!(ring->type == TYPE_ISOC &&
228 (xhci->quirks & XHCI_AMD_0x96_HOST))
229 && !xhci_link_trb_quirk(xhci)) {
230 next->link.control &=
231 cpu_to_le32(~TRB_CHAIN);
232 next->link.control |=
233 cpu_to_le32(chain);
234 }
235 /* Give this link TRB to the hardware */
236 wmb();
237 next->link.control ^= cpu_to_le32(TRB_CYCLE);
238
239 /* Toggle the cycle bit after the last ring segment. */
240 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
241 ring->cycle_state = (ring->cycle_state ? 0 : 1);
242 }
243 }
244 ring->enq_seg = ring->enq_seg->next;
245 ring->enqueue = ring->enq_seg->trbs;
246 next = ring->enqueue;
247 }
248 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
249 }
250
251 /*
252 * Check to see if there's room to enqueue num_trbs on the ring and make sure
253 * enqueue pointer will not advance into dequeue segment. See rules above.
254 */
255 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
256 unsigned int num_trbs)
257 {
258 int num_trbs_in_deq_seg;
259
260 if (ring->num_trbs_free < num_trbs)
261 return 0;
262
263 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
264 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
265 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
266 return 0;
267 }
268
269 return 1;
270 }
271
272 /* Ring the host controller doorbell after placing a command on the ring */
273 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
274 {
275 xhci_dbg(xhci, "// Ding dong!\n");
276 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
277 /* Flush PCI posted writes */
278 xhci_readl(xhci, &xhci->dba->doorbell[0]);
279 }
280
281 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
282 unsigned int slot_id,
283 unsigned int ep_index,
284 unsigned int stream_id)
285 {
286 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
287 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
288 unsigned int ep_state = ep->ep_state;
289
290 /* Don't ring the doorbell for this endpoint if there are pending
291 * cancellations because we don't want to interrupt processing.
292 * We don't want to restart any stream rings if there's a set dequeue
293 * pointer command pending because the device can choose to start any
294 * stream once the endpoint is on the HW schedule.
295 * FIXME - check all the stream rings for pending cancellations.
296 */
297 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
298 (ep_state & EP_HALTED))
299 return;
300 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
301 /* The CPU has better things to do at this point than wait for a
302 * write-posting flush. It'll get there soon enough.
303 */
304 }
305
306 /* Ring the doorbell for any rings with pending URBs */
307 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
308 unsigned int slot_id,
309 unsigned int ep_index)
310 {
311 unsigned int stream_id;
312 struct xhci_virt_ep *ep;
313
314 ep = &xhci->devs[slot_id]->eps[ep_index];
315
316 /* A ring has pending URBs if its TD list is not empty */
317 if (!(ep->ep_state & EP_HAS_STREAMS)) {
318 if (!(list_empty(&ep->ring->td_list)))
319 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
320 return;
321 }
322
323 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
324 stream_id++) {
325 struct xhci_stream_info *stream_info = ep->stream_info;
326 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
327 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
328 stream_id);
329 }
330 }
331
332 /*
333 * Find the segment that trb is in. Start searching in start_seg.
334 * If we must move past a segment that has a link TRB with a toggle cycle state
335 * bit set, then we will toggle the value pointed at by cycle_state.
336 */
337 static struct xhci_segment *find_trb_seg(
338 struct xhci_segment *start_seg,
339 union xhci_trb *trb, int *cycle_state)
340 {
341 struct xhci_segment *cur_seg = start_seg;
342 struct xhci_generic_trb *generic_trb;
343
344 while (cur_seg->trbs > trb ||
345 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
346 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
347 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
348 *cycle_state ^= 0x1;
349 cur_seg = cur_seg->next;
350 if (cur_seg == start_seg)
351 /* Looped over the entire list. Oops! */
352 return NULL;
353 }
354 return cur_seg;
355 }
356
357
358 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
359 unsigned int slot_id, unsigned int ep_index,
360 unsigned int stream_id)
361 {
362 struct xhci_virt_ep *ep;
363
364 ep = &xhci->devs[slot_id]->eps[ep_index];
365 /* Common case: no streams */
366 if (!(ep->ep_state & EP_HAS_STREAMS))
367 return ep->ring;
368
369 if (stream_id == 0) {
370 xhci_warn(xhci,
371 "WARN: Slot ID %u, ep index %u has streams, "
372 "but URB has no stream ID.\n",
373 slot_id, ep_index);
374 return NULL;
375 }
376
377 if (stream_id < ep->stream_info->num_streams)
378 return ep->stream_info->stream_rings[stream_id];
379
380 xhci_warn(xhci,
381 "WARN: Slot ID %u, ep index %u has "
382 "stream IDs 1 to %u allocated, "
383 "but stream ID %u is requested.\n",
384 slot_id, ep_index,
385 ep->stream_info->num_streams - 1,
386 stream_id);
387 return NULL;
388 }
389
390 /* Get the right ring for the given URB.
391 * If the endpoint supports streams, boundary check the URB's stream ID.
392 * If the endpoint doesn't support streams, return the singular endpoint ring.
393 */
394 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
395 struct urb *urb)
396 {
397 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
398 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
399 }
400
401 /*
402 * Move the xHC's endpoint ring dequeue pointer past cur_td.
403 * Record the new state of the xHC's endpoint ring dequeue segment,
404 * dequeue pointer, and new consumer cycle state in state.
405 * Update our internal representation of the ring's dequeue pointer.
406 *
407 * We do this in three jumps:
408 * - First we update our new ring state to be the same as when the xHC stopped.
409 * - Then we traverse the ring to find the segment that contains
410 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
411 * any link TRBs with the toggle cycle bit set.
412 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
413 * if we've moved it past a link TRB with the toggle cycle bit set.
414 *
415 * Some of the uses of xhci_generic_trb are grotty, but if they're done
416 * with correct __le32 accesses they should work fine. Only users of this are
417 * in here.
418 */
419 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
420 unsigned int slot_id, unsigned int ep_index,
421 unsigned int stream_id, struct xhci_td *cur_td,
422 struct xhci_dequeue_state *state)
423 {
424 struct xhci_virt_device *dev = xhci->devs[slot_id];
425 struct xhci_ring *ep_ring;
426 struct xhci_generic_trb *trb;
427 struct xhci_ep_ctx *ep_ctx;
428 dma_addr_t addr;
429
430 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
431 ep_index, stream_id);
432 if (!ep_ring) {
433 xhci_warn(xhci, "WARN can't find new dequeue state "
434 "for invalid stream ID %u.\n",
435 stream_id);
436 return;
437 }
438 state->new_cycle_state = 0;
439 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
440 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
441 dev->eps[ep_index].stopped_trb,
442 &state->new_cycle_state);
443 if (!state->new_deq_seg) {
444 WARN_ON(1);
445 return;
446 }
447
448 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
449 xhci_dbg(xhci, "Finding endpoint context\n");
450 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
451 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
452
453 state->new_deq_ptr = cur_td->last_trb;
454 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
455 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
456 state->new_deq_ptr,
457 &state->new_cycle_state);
458 if (!state->new_deq_seg) {
459 WARN_ON(1);
460 return;
461 }
462
463 trb = &state->new_deq_ptr->generic;
464 if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
465 (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
466 state->new_cycle_state ^= 0x1;
467 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
468
469 /*
470 * If there is only one segment in a ring, find_trb_seg()'s while loop
471 * will not run, and it will return before it has a chance to see if it
472 * needs to toggle the cycle bit. It can't tell if the stalled transfer
473 * ended just before the link TRB on a one-segment ring, or if the TD
474 * wrapped around the top of the ring, because it doesn't have the TD in
475 * question. Look for the one-segment case where stalled TRB's address
476 * is greater than the new dequeue pointer address.
477 */
478 if (ep_ring->first_seg == ep_ring->first_seg->next &&
479 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
480 state->new_cycle_state ^= 0x1;
481 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
482
483 /* Don't update the ring cycle state for the producer (us). */
484 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
485 state->new_deq_seg);
486 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
487 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
488 (unsigned long long) addr);
489 }
490
491 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
492 * (The last TRB actually points to the ring enqueue pointer, which is not part
493 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
494 */
495 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
496 struct xhci_td *cur_td, bool flip_cycle)
497 {
498 struct xhci_segment *cur_seg;
499 union xhci_trb *cur_trb;
500
501 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
502 true;
503 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
504 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
505 /* Unchain any chained Link TRBs, but
506 * leave the pointers intact.
507 */
508 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
509 /* Flip the cycle bit (link TRBs can't be the first
510 * or last TRB).
511 */
512 if (flip_cycle)
513 cur_trb->generic.field[3] ^=
514 cpu_to_le32(TRB_CYCLE);
515 xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
516 xhci_dbg(xhci, "Address = %p (0x%llx dma); "
517 "in seg %p (0x%llx dma)\n",
518 cur_trb,
519 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
520 cur_seg,
521 (unsigned long long)cur_seg->dma);
522 } else {
523 cur_trb->generic.field[0] = 0;
524 cur_trb->generic.field[1] = 0;
525 cur_trb->generic.field[2] = 0;
526 /* Preserve only the cycle bit of this TRB */
527 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
528 /* Flip the cycle bit except on the first or last TRB */
529 if (flip_cycle && cur_trb != cur_td->first_trb &&
530 cur_trb != cur_td->last_trb)
531 cur_trb->generic.field[3] ^=
532 cpu_to_le32(TRB_CYCLE);
533 cur_trb->generic.field[3] |= cpu_to_le32(
534 TRB_TYPE(TRB_TR_NOOP));
535 xhci_dbg(xhci, "TRB to noop at offset 0x%llx\n",
536 (unsigned long long)
537 xhci_trb_virt_to_dma(cur_seg, cur_trb));
538 }
539 if (cur_trb == cur_td->last_trb)
540 break;
541 }
542 }
543
544 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
545 unsigned int ep_index, unsigned int stream_id,
546 struct xhci_segment *deq_seg,
547 union xhci_trb *deq_ptr, u32 cycle_state);
548
549 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
550 unsigned int slot_id, unsigned int ep_index,
551 unsigned int stream_id,
552 struct xhci_dequeue_state *deq_state)
553 {
554 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
555
556 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
557 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
558 deq_state->new_deq_seg,
559 (unsigned long long)deq_state->new_deq_seg->dma,
560 deq_state->new_deq_ptr,
561 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
562 deq_state->new_cycle_state);
563 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
564 deq_state->new_deq_seg,
565 deq_state->new_deq_ptr,
566 (u32) deq_state->new_cycle_state);
567 /* Stop the TD queueing code from ringing the doorbell until
568 * this command completes. The HC won't set the dequeue pointer
569 * if the ring is running, and ringing the doorbell starts the
570 * ring running.
571 */
572 ep->ep_state |= SET_DEQ_PENDING;
573 }
574
575 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
576 struct xhci_virt_ep *ep)
577 {
578 ep->ep_state &= ~EP_HALT_PENDING;
579 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
580 * timer is running on another CPU, we don't decrement stop_cmds_pending
581 * (since we didn't successfully stop the watchdog timer).
582 */
583 if (del_timer(&ep->stop_cmd_timer))
584 ep->stop_cmds_pending--;
585 }
586
587 /* Must be called with xhci->lock held in interrupt context */
588 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
589 struct xhci_td *cur_td, int status, char *adjective)
590 {
591 struct usb_hcd *hcd;
592 struct urb *urb;
593 struct urb_priv *urb_priv;
594
595 urb = cur_td->urb;
596 urb_priv = urb->hcpriv;
597 urb_priv->td_cnt++;
598 hcd = bus_to_hcd(urb->dev->bus);
599
600 /* Only giveback urb when this is the last td in urb */
601 if (urb_priv->td_cnt == urb_priv->length) {
602 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
603 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
604 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
605 if (xhci->quirks & XHCI_AMD_PLL_FIX)
606 usb_amd_quirk_pll_enable();
607 }
608 }
609 usb_hcd_unlink_urb_from_ep(hcd, urb);
610
611 spin_unlock(&xhci->lock);
612 usb_hcd_giveback_urb(hcd, urb, status);
613 xhci_urb_free_priv(xhci, urb_priv);
614 spin_lock(&xhci->lock);
615 }
616 }
617
618 /*
619 * When we get a command completion for a Stop Endpoint Command, we need to
620 * unlink any cancelled TDs from the ring. There are two ways to do that:
621 *
622 * 1. If the HW was in the middle of processing the TD that needs to be
623 * cancelled, then we must move the ring's dequeue pointer past the last TRB
624 * in the TD with a Set Dequeue Pointer Command.
625 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
626 * bit cleared) so that the HW will skip over them.
627 */
628 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
629 union xhci_trb *trb, struct xhci_event_cmd *event)
630 {
631 unsigned int slot_id;
632 unsigned int ep_index;
633 struct xhci_virt_device *virt_dev;
634 struct xhci_ring *ep_ring;
635 struct xhci_virt_ep *ep;
636 struct list_head *entry;
637 struct xhci_td *cur_td = NULL;
638 struct xhci_td *last_unlinked_td;
639
640 struct xhci_dequeue_state deq_state;
641
642 if (unlikely(TRB_TO_SUSPEND_PORT(
643 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
644 slot_id = TRB_TO_SLOT_ID(
645 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
646 virt_dev = xhci->devs[slot_id];
647 if (virt_dev)
648 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
649 event);
650 else
651 xhci_warn(xhci, "Stop endpoint command "
652 "completion for disabled slot %u\n",
653 slot_id);
654 return;
655 }
656
657 memset(&deq_state, 0, sizeof(deq_state));
658 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
659 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
660 ep = &xhci->devs[slot_id]->eps[ep_index];
661
662 if (list_empty(&ep->cancelled_td_list)) {
663 xhci_stop_watchdog_timer_in_irq(xhci, ep);
664 ep->stopped_td = NULL;
665 ep->stopped_trb = NULL;
666 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
667 return;
668 }
669
670 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
671 * We have the xHCI lock, so nothing can modify this list until we drop
672 * it. We're also in the event handler, so we can't get re-interrupted
673 * if another Stop Endpoint command completes
674 */
675 list_for_each(entry, &ep->cancelled_td_list) {
676 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
677 xhci_dbg(xhci, "Removing canceled TD starting at 0x%llx (dma).\n",
678 (unsigned long long)xhci_trb_virt_to_dma(
679 cur_td->start_seg, cur_td->first_trb));
680 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
681 if (!ep_ring) {
682 /* This shouldn't happen unless a driver is mucking
683 * with the stream ID after submission. This will
684 * leave the TD on the hardware ring, and the hardware
685 * will try to execute it, and may access a buffer
686 * that has already been freed. In the best case, the
687 * hardware will execute it, and the event handler will
688 * ignore the completion event for that TD, since it was
689 * removed from the td_list for that endpoint. In
690 * short, don't muck with the stream ID after
691 * submission.
692 */
693 xhci_warn(xhci, "WARN Cancelled URB %p "
694 "has invalid stream ID %u.\n",
695 cur_td->urb,
696 cur_td->urb->stream_id);
697 goto remove_finished_td;
698 }
699 /*
700 * If we stopped on the TD we need to cancel, then we have to
701 * move the xHC endpoint ring dequeue pointer past this TD.
702 */
703 if (cur_td == ep->stopped_td)
704 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
705 cur_td->urb->stream_id,
706 cur_td, &deq_state);
707 else
708 td_to_noop(xhci, ep_ring, cur_td, false);
709 remove_finished_td:
710 /*
711 * The event handler won't see a completion for this TD anymore,
712 * so remove it from the endpoint ring's TD list. Keep it in
713 * the cancelled TD list for URB completion later.
714 */
715 list_del_init(&cur_td->td_list);
716 }
717 last_unlinked_td = cur_td;
718 xhci_stop_watchdog_timer_in_irq(xhci, ep);
719
720 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
721 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
722 xhci_queue_new_dequeue_state(xhci,
723 slot_id, ep_index,
724 ep->stopped_td->urb->stream_id,
725 &deq_state);
726 xhci_ring_cmd_db(xhci);
727 } else {
728 /* Otherwise ring the doorbell(s) to restart queued transfers */
729 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
730 }
731 ep->stopped_td = NULL;
732 ep->stopped_trb = NULL;
733
734 /*
735 * Drop the lock and complete the URBs in the cancelled TD list.
736 * New TDs to be cancelled might be added to the end of the list before
737 * we can complete all the URBs for the TDs we already unlinked.
738 * So stop when we've completed the URB for the last TD we unlinked.
739 */
740 do {
741 cur_td = list_entry(ep->cancelled_td_list.next,
742 struct xhci_td, cancelled_td_list);
743 list_del_init(&cur_td->cancelled_td_list);
744
745 /* Clean up the cancelled URB */
746 /* Doesn't matter what we pass for status, since the core will
747 * just overwrite it (because the URB has been unlinked).
748 */
749 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
750
751 /* Stop processing the cancelled list if the watchdog timer is
752 * running.
753 */
754 if (xhci->xhc_state & XHCI_STATE_DYING)
755 return;
756 } while (cur_td != last_unlinked_td);
757
758 /* Return to the event handler with xhci->lock re-acquired */
759 }
760
761 /* Watchdog timer function for when a stop endpoint command fails to complete.
762 * In this case, we assume the host controller is broken or dying or dead. The
763 * host may still be completing some other events, so we have to be careful to
764 * let the event ring handler and the URB dequeueing/enqueueing functions know
765 * through xhci->state.
766 *
767 * The timer may also fire if the host takes a very long time to respond to the
768 * command, and the stop endpoint command completion handler cannot delete the
769 * timer before the timer function is called. Another endpoint cancellation may
770 * sneak in before the timer function can grab the lock, and that may queue
771 * another stop endpoint command and add the timer back. So we cannot use a
772 * simple flag to say whether there is a pending stop endpoint command for a
773 * particular endpoint.
774 *
775 * Instead we use a combination of that flag and a counter for the number of
776 * pending stop endpoint commands. If the timer is the tail end of the last
777 * stop endpoint command, and the endpoint's command is still pending, we assume
778 * the host is dying.
779 */
780 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
781 {
782 struct xhci_hcd *xhci;
783 struct xhci_virt_ep *ep;
784 struct xhci_virt_ep *temp_ep;
785 struct xhci_ring *ring;
786 struct xhci_td *cur_td;
787 int ret, i, j;
788 unsigned long flags;
789
790 ep = (struct xhci_virt_ep *) arg;
791 xhci = ep->xhci;
792
793 spin_lock_irqsave(&xhci->lock, flags);
794
795 ep->stop_cmds_pending--;
796 if (xhci->xhc_state & XHCI_STATE_DYING) {
797 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
798 "xHCI as DYING, exiting.\n");
799 spin_unlock_irqrestore(&xhci->lock, flags);
800 return;
801 }
802 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
803 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
804 "exiting.\n");
805 spin_unlock_irqrestore(&xhci->lock, flags);
806 return;
807 }
808
809 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
810 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
811 /* Oops, HC is dead or dying or at least not responding to the stop
812 * endpoint command.
813 */
814 xhci->xhc_state |= XHCI_STATE_DYING;
815 /* Disable interrupts from the host controller and start halting it */
816 xhci_quiesce(xhci);
817 spin_unlock_irqrestore(&xhci->lock, flags);
818
819 ret = xhci_halt(xhci);
820
821 spin_lock_irqsave(&xhci->lock, flags);
822 if (ret < 0) {
823 /* This is bad; the host is not responding to commands and it's
824 * not allowing itself to be halted. At least interrupts are
825 * disabled. If we call usb_hc_died(), it will attempt to
826 * disconnect all device drivers under this host. Those
827 * disconnect() methods will wait for all URBs to be unlinked,
828 * so we must complete them.
829 */
830 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
831 xhci_warn(xhci, "Completing active URBs anyway.\n");
832 /* We could turn all TDs on the rings to no-ops. This won't
833 * help if the host has cached part of the ring, and is slow if
834 * we want to preserve the cycle bit. Skip it and hope the host
835 * doesn't touch the memory.
836 */
837 }
838 for (i = 0; i < MAX_HC_SLOTS; i++) {
839 if (!xhci->devs[i])
840 continue;
841 for (j = 0; j < 31; j++) {
842 temp_ep = &xhci->devs[i]->eps[j];
843 ring = temp_ep->ring;
844 if (!ring)
845 continue;
846 xhci_dbg(xhci, "Killing URBs for slot ID %u, "
847 "ep index %u\n", i, j);
848 while (!list_empty(&ring->td_list)) {
849 cur_td = list_first_entry(&ring->td_list,
850 struct xhci_td,
851 td_list);
852 list_del_init(&cur_td->td_list);
853 if (!list_empty(&cur_td->cancelled_td_list))
854 list_del_init(&cur_td->cancelled_td_list);
855 xhci_giveback_urb_in_irq(xhci, cur_td,
856 -ESHUTDOWN, "killed");
857 }
858 while (!list_empty(&temp_ep->cancelled_td_list)) {
859 cur_td = list_first_entry(
860 &temp_ep->cancelled_td_list,
861 struct xhci_td,
862 cancelled_td_list);
863 list_del_init(&cur_td->cancelled_td_list);
864 xhci_giveback_urb_in_irq(xhci, cur_td,
865 -ESHUTDOWN, "killed");
866 }
867 }
868 }
869 spin_unlock_irqrestore(&xhci->lock, flags);
870 xhci_dbg(xhci, "Calling usb_hc_died()\n");
871 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
872 xhci_dbg(xhci, "xHCI host controller is dead.\n");
873 }
874
875
876 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
877 struct xhci_virt_device *dev,
878 struct xhci_ring *ep_ring,
879 unsigned int ep_index)
880 {
881 union xhci_trb *dequeue_temp;
882 int num_trbs_free_temp;
883 bool revert = false;
884
885 num_trbs_free_temp = ep_ring->num_trbs_free;
886 dequeue_temp = ep_ring->dequeue;
887
888 /* If we get two back-to-back stalls, and the first stalled transfer
889 * ends just before a link TRB, the dequeue pointer will be left on
890 * the link TRB by the code in the while loop. So we have to update
891 * the dequeue pointer one segment further, or we'll jump off
892 * the segment into la-la-land.
893 */
894 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
895 ep_ring->deq_seg = ep_ring->deq_seg->next;
896 ep_ring->dequeue = ep_ring->deq_seg->trbs;
897 }
898
899 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
900 /* We have more usable TRBs */
901 ep_ring->num_trbs_free++;
902 ep_ring->dequeue++;
903 if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
904 ep_ring->dequeue)) {
905 if (ep_ring->dequeue ==
906 dev->eps[ep_index].queued_deq_ptr)
907 break;
908 ep_ring->deq_seg = ep_ring->deq_seg->next;
909 ep_ring->dequeue = ep_ring->deq_seg->trbs;
910 }
911 if (ep_ring->dequeue == dequeue_temp) {
912 revert = true;
913 break;
914 }
915 }
916
917 if (revert) {
918 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
919 ep_ring->num_trbs_free = num_trbs_free_temp;
920 }
921 }
922
923 /*
924 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
925 * we need to clear the set deq pending flag in the endpoint ring state, so that
926 * the TD queueing code can ring the doorbell again. We also need to ring the
927 * endpoint doorbell to restart the ring, but only if there aren't more
928 * cancellations pending.
929 */
930 static void handle_set_deq_completion(struct xhci_hcd *xhci,
931 struct xhci_event_cmd *event,
932 union xhci_trb *trb)
933 {
934 unsigned int slot_id;
935 unsigned int ep_index;
936 unsigned int stream_id;
937 struct xhci_ring *ep_ring;
938 struct xhci_virt_device *dev;
939 struct xhci_ep_ctx *ep_ctx;
940 struct xhci_slot_ctx *slot_ctx;
941
942 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
943 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
944 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
945 dev = xhci->devs[slot_id];
946
947 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
948 if (!ep_ring) {
949 xhci_warn(xhci, "WARN Set TR deq ptr command for "
950 "freed stream ID %u\n",
951 stream_id);
952 /* XXX: Harmless??? */
953 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
954 return;
955 }
956
957 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
958 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
959
960 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
961 unsigned int ep_state;
962 unsigned int slot_state;
963
964 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
965 case COMP_TRB_ERR:
966 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
967 "of stream ID configuration\n");
968 break;
969 case COMP_CTX_STATE:
970 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
971 "to incorrect slot or ep state.\n");
972 ep_state = le32_to_cpu(ep_ctx->ep_info);
973 ep_state &= EP_STATE_MASK;
974 slot_state = le32_to_cpu(slot_ctx->dev_state);
975 slot_state = GET_SLOT_STATE(slot_state);
976 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
977 slot_state, ep_state);
978 break;
979 case COMP_EBADSLT:
980 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
981 "slot %u was not enabled.\n", slot_id);
982 break;
983 default:
984 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
985 "completion code of %u.\n",
986 GET_COMP_CODE(le32_to_cpu(event->status)));
987 break;
988 }
989 /* OK what do we do now? The endpoint state is hosed, and we
990 * should never get to this point if the synchronization between
991 * queueing, and endpoint state are correct. This might happen
992 * if the device gets disconnected after we've finished
993 * cancelling URBs, which might not be an error...
994 */
995 } else {
996 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
997 le64_to_cpu(ep_ctx->deq));
998 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
999 dev->eps[ep_index].queued_deq_ptr) ==
1000 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
1001 /* Update the ring's dequeue segment and dequeue pointer
1002 * to reflect the new position.
1003 */
1004 update_ring_for_set_deq_completion(xhci, dev,
1005 ep_ring, ep_index);
1006 } else {
1007 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
1008 "Ptr command & xHCI internal state.\n");
1009 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1010 dev->eps[ep_index].queued_deq_seg,
1011 dev->eps[ep_index].queued_deq_ptr);
1012 }
1013 }
1014
1015 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1016 dev->eps[ep_index].queued_deq_seg = NULL;
1017 dev->eps[ep_index].queued_deq_ptr = NULL;
1018 /* Restart any rings with pending URBs */
1019 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1020 }
1021
1022 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1023 struct xhci_event_cmd *event,
1024 union xhci_trb *trb)
1025 {
1026 int slot_id;
1027 unsigned int ep_index;
1028
1029 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1030 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1031 /* This command will only fail if the endpoint wasn't halted,
1032 * but we don't care.
1033 */
1034 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1035 GET_COMP_CODE(le32_to_cpu(event->status)));
1036
1037 /* HW with the reset endpoint quirk needs to have a configure endpoint
1038 * command complete before the endpoint can be used. Queue that here
1039 * because the HW can't handle two commands being queued in a row.
1040 */
1041 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1042 xhci_dbg(xhci, "Queueing configure endpoint command\n");
1043 xhci_queue_configure_endpoint(xhci,
1044 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1045 false);
1046 xhci_ring_cmd_db(xhci);
1047 } else {
1048 /* Clear our internal halted state and restart the ring(s) */
1049 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1050 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1051 }
1052 }
1053
1054 /* Check to see if a command in the device's command queue matches this one.
1055 * Signal the completion or free the command, and return 1. Return 0 if the
1056 * completed command isn't at the head of the command list.
1057 */
1058 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1059 struct xhci_virt_device *virt_dev,
1060 struct xhci_event_cmd *event)
1061 {
1062 struct xhci_command *command;
1063
1064 if (list_empty(&virt_dev->cmd_list))
1065 return 0;
1066
1067 command = list_entry(virt_dev->cmd_list.next,
1068 struct xhci_command, cmd_list);
1069 if (xhci->cmd_ring->dequeue != command->command_trb)
1070 return 0;
1071
1072 command->status = GET_COMP_CODE(le32_to_cpu(event->status));
1073 list_del(&command->cmd_list);
1074 if (command->completion)
1075 complete(command->completion);
1076 else
1077 xhci_free_command(xhci, command);
1078 return 1;
1079 }
1080
1081 static void handle_cmd_completion(struct xhci_hcd *xhci,
1082 struct xhci_event_cmd *event)
1083 {
1084 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1085 u64 cmd_dma;
1086 dma_addr_t cmd_dequeue_dma;
1087 struct xhci_input_control_ctx *ctrl_ctx;
1088 struct xhci_virt_device *virt_dev;
1089 unsigned int ep_index;
1090 struct xhci_ring *ep_ring;
1091 unsigned int ep_state;
1092
1093 cmd_dma = le64_to_cpu(event->cmd_trb);
1094 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1095 xhci->cmd_ring->dequeue);
1096 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1097 if (cmd_dequeue_dma == 0) {
1098 xhci->error_bitmask |= 1 << 4;
1099 return;
1100 }
1101 /* Does the DMA address match our internal dequeue pointer address? */
1102 if (cmd_dma != (u64) cmd_dequeue_dma) {
1103 xhci->error_bitmask |= 1 << 5;
1104 return;
1105 }
1106 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1107 & TRB_TYPE_BITMASK) {
1108 case TRB_TYPE(TRB_ENABLE_SLOT):
1109 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1110 xhci->slot_id = slot_id;
1111 else
1112 xhci->slot_id = 0;
1113 complete(&xhci->addr_dev);
1114 break;
1115 case TRB_TYPE(TRB_DISABLE_SLOT):
1116 if (xhci->devs[slot_id]) {
1117 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1118 /* Delete default control endpoint resources */
1119 xhci_free_device_endpoint_resources(xhci,
1120 xhci->devs[slot_id], true);
1121 xhci_free_virt_device(xhci, slot_id);
1122 }
1123 break;
1124 case TRB_TYPE(TRB_CONFIG_EP):
1125 virt_dev = xhci->devs[slot_id];
1126 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1127 break;
1128 /*
1129 * Configure endpoint commands can come from the USB core
1130 * configuration or alt setting changes, or because the HW
1131 * needed an extra configure endpoint command after a reset
1132 * endpoint command or streams were being configured.
1133 * If the command was for a halted endpoint, the xHCI driver
1134 * is not waiting on the configure endpoint command.
1135 */
1136 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1137 virt_dev->in_ctx);
1138 /* Input ctx add_flags are the endpoint index plus one */
1139 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1140 /* A usb_set_interface() call directly after clearing a halted
1141 * condition may race on this quirky hardware. Not worth
1142 * worrying about, since this is prototype hardware. Not sure
1143 * if this will work for streams, but streams support was
1144 * untested on this prototype.
1145 */
1146 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1147 ep_index != (unsigned int) -1 &&
1148 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1149 le32_to_cpu(ctrl_ctx->drop_flags)) {
1150 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1151 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1152 if (!(ep_state & EP_HALTED))
1153 goto bandwidth_change;
1154 xhci_dbg(xhci, "Completed config ep cmd - "
1155 "last ep index = %d, state = %d\n",
1156 ep_index, ep_state);
1157 /* Clear internal halted state and restart ring(s) */
1158 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1159 ~EP_HALTED;
1160 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1161 break;
1162 }
1163 bandwidth_change:
1164 xhci_dbg(xhci, "Completed config ep cmd\n");
1165 xhci->devs[slot_id]->cmd_status =
1166 GET_COMP_CODE(le32_to_cpu(event->status));
1167 complete(&xhci->devs[slot_id]->cmd_completion);
1168 break;
1169 case TRB_TYPE(TRB_EVAL_CONTEXT):
1170 virt_dev = xhci->devs[slot_id];
1171 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1172 break;
1173 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1174 complete(&xhci->devs[slot_id]->cmd_completion);
1175 break;
1176 case TRB_TYPE(TRB_ADDR_DEV):
1177 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1178 complete(&xhci->addr_dev);
1179 break;
1180 case TRB_TYPE(TRB_STOP_RING):
1181 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1182 break;
1183 case TRB_TYPE(TRB_SET_DEQ):
1184 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1185 break;
1186 case TRB_TYPE(TRB_CMD_NOOP):
1187 break;
1188 case TRB_TYPE(TRB_RESET_EP):
1189 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1190 break;
1191 case TRB_TYPE(TRB_RESET_DEV):
1192 xhci_dbg(xhci, "Completed reset device command.\n");
1193 slot_id = TRB_TO_SLOT_ID(
1194 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1195 virt_dev = xhci->devs[slot_id];
1196 if (virt_dev)
1197 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1198 else
1199 xhci_warn(xhci, "Reset device command completion "
1200 "for disabled slot %u\n", slot_id);
1201 break;
1202 case TRB_TYPE(TRB_NEC_GET_FW):
1203 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1204 xhci->error_bitmask |= 1 << 6;
1205 break;
1206 }
1207 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1208 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1209 NEC_FW_MINOR(le32_to_cpu(event->status)));
1210 break;
1211 default:
1212 /* Skip over unknown commands on the event ring */
1213 xhci->error_bitmask |= 1 << 6;
1214 break;
1215 }
1216 inc_deq(xhci, xhci->cmd_ring);
1217 }
1218
1219 static void handle_vendor_event(struct xhci_hcd *xhci,
1220 union xhci_trb *event)
1221 {
1222 u32 trb_type;
1223
1224 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1225 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1226 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1227 handle_cmd_completion(xhci, &event->event_cmd);
1228 }
1229
1230 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1231 * port registers -- USB 3.0 and USB 2.0).
1232 *
1233 * Returns a zero-based port number, which is suitable for indexing into each of
1234 * the split roothubs' port arrays and bus state arrays.
1235 * Add one to it in order to call xhci_find_slot_id_by_port.
1236 */
1237 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1238 struct xhci_hcd *xhci, u32 port_id)
1239 {
1240 unsigned int i;
1241 unsigned int num_similar_speed_ports = 0;
1242
1243 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1244 * and usb2_ports are 0-based indexes. Count the number of similar
1245 * speed ports, up to 1 port before this port.
1246 */
1247 for (i = 0; i < (port_id - 1); i++) {
1248 u8 port_speed = xhci->port_array[i];
1249
1250 /*
1251 * Skip ports that don't have known speeds, or have duplicate
1252 * Extended Capabilities port speed entries.
1253 */
1254 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1255 continue;
1256
1257 /*
1258 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1259 * 1.1 ports are under the USB 2.0 hub. If the port speed
1260 * matches the device speed, it's a similar speed port.
1261 */
1262 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1263 num_similar_speed_ports++;
1264 }
1265 return num_similar_speed_ports;
1266 }
1267
1268 static void handle_device_notification(struct xhci_hcd *xhci,
1269 union xhci_trb *event)
1270 {
1271 u32 slot_id;
1272 struct usb_device *udev;
1273
1274 slot_id = TRB_TO_SLOT_ID(event->generic.field[3]);
1275 if (!xhci->devs[slot_id]) {
1276 xhci_warn(xhci, "Device Notification event for "
1277 "unused slot %u\n", slot_id);
1278 return;
1279 }
1280
1281 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1282 slot_id);
1283 udev = xhci->devs[slot_id]->udev;
1284 if (udev && udev->parent)
1285 usb_wakeup_notification(udev->parent, udev->portnum);
1286 }
1287
1288 static void handle_port_status(struct xhci_hcd *xhci,
1289 union xhci_trb *event)
1290 {
1291 struct usb_hcd *hcd;
1292 u32 port_id;
1293 u32 temp, temp1;
1294 int max_ports;
1295 int slot_id;
1296 unsigned int faked_port_index;
1297 u8 major_revision;
1298 struct xhci_bus_state *bus_state;
1299 __le32 __iomem **port_array;
1300 bool bogus_port_status = false;
1301
1302 /* Port status change events always have a successful completion code */
1303 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1304 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1305 xhci->error_bitmask |= 1 << 8;
1306 }
1307 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1308 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1309
1310 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1311 if ((port_id <= 0) || (port_id > max_ports)) {
1312 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1313 bogus_port_status = true;
1314 goto cleanup;
1315 }
1316
1317 /* Figure out which usb_hcd this port is attached to:
1318 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1319 */
1320 major_revision = xhci->port_array[port_id - 1];
1321 if (major_revision == 0) {
1322 xhci_warn(xhci, "Event for port %u not in "
1323 "Extended Capabilities, ignoring.\n",
1324 port_id);
1325 bogus_port_status = true;
1326 goto cleanup;
1327 }
1328 if (major_revision == DUPLICATE_ENTRY) {
1329 xhci_warn(xhci, "Event for port %u duplicated in"
1330 "Extended Capabilities, ignoring.\n",
1331 port_id);
1332 bogus_port_status = true;
1333 goto cleanup;
1334 }
1335
1336 /*
1337 * Hardware port IDs reported by a Port Status Change Event include USB
1338 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1339 * resume event, but we first need to translate the hardware port ID
1340 * into the index into the ports on the correct split roothub, and the
1341 * correct bus_state structure.
1342 */
1343 /* Find the right roothub. */
1344 hcd = xhci_to_hcd(xhci);
1345 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1346 hcd = xhci->shared_hcd;
1347 bus_state = &xhci->bus_state[hcd_index(hcd)];
1348 if (hcd->speed == HCD_USB3)
1349 port_array = xhci->usb3_ports;
1350 else
1351 port_array = xhci->usb2_ports;
1352 /* Find the faked port hub number */
1353 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1354 port_id);
1355
1356 temp = xhci_readl(xhci, port_array[faked_port_index]);
1357 if (hcd->state == HC_STATE_SUSPENDED) {
1358 xhci_dbg(xhci, "resume root hub\n");
1359 usb_hcd_resume_root_hub(hcd);
1360 }
1361
1362 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1363 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1364
1365 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1366 if (!(temp1 & CMD_RUN)) {
1367 xhci_warn(xhci, "xHC is not running.\n");
1368 goto cleanup;
1369 }
1370
1371 if (DEV_SUPERSPEED(temp)) {
1372 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1373 /* Set a flag to say the port signaled remote wakeup,
1374 * so we can tell the difference between the end of
1375 * device and host initiated resume.
1376 */
1377 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1378 xhci_test_and_clear_bit(xhci, port_array,
1379 faked_port_index, PORT_PLC);
1380 xhci_set_link_state(xhci, port_array, faked_port_index,
1381 XDEV_U0);
1382 /* Need to wait until the next link state change
1383 * indicates the device is actually in U0.
1384 */
1385 bogus_port_status = true;
1386 goto cleanup;
1387 } else {
1388 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1389 bus_state->resume_done[faked_port_index] = jiffies +
1390 msecs_to_jiffies(20);
1391 set_bit(faked_port_index, &bus_state->resuming_ports);
1392 mod_timer(&hcd->rh_timer,
1393 bus_state->resume_done[faked_port_index]);
1394 /* Do the rest in GetPortStatus */
1395 }
1396 }
1397
1398 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1399 DEV_SUPERSPEED(temp)) {
1400 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1401 /* We've just brought the device into U0 through either the
1402 * Resume state after a device remote wakeup, or through the
1403 * U3Exit state after a host-initiated resume. If it's a device
1404 * initiated remote wake, don't pass up the link state change,
1405 * so the roothub behavior is consistent with external
1406 * USB 3.0 hub behavior.
1407 */
1408 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1409 faked_port_index + 1);
1410 if (slot_id && xhci->devs[slot_id])
1411 xhci_ring_device(xhci, slot_id);
1412 if (bus_state->port_remote_wakeup && (1 << faked_port_index)) {
1413 bus_state->port_remote_wakeup &=
1414 ~(1 << faked_port_index);
1415 xhci_test_and_clear_bit(xhci, port_array,
1416 faked_port_index, PORT_PLC);
1417 usb_wakeup_notification(hcd->self.root_hub,
1418 faked_port_index + 1);
1419 bogus_port_status = true;
1420 goto cleanup;
1421 }
1422 }
1423
1424 if (hcd->speed != HCD_USB3)
1425 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1426 PORT_PLC);
1427
1428 cleanup:
1429 /* Update event ring dequeue pointer before dropping the lock */
1430 inc_deq(xhci, xhci->event_ring);
1431
1432 /* Don't make the USB core poll the roothub if we got a bad port status
1433 * change event. Besides, at that point we can't tell which roothub
1434 * (USB 2.0 or USB 3.0) to kick.
1435 */
1436 if (bogus_port_status)
1437 return;
1438
1439 spin_unlock(&xhci->lock);
1440 /* Pass this up to the core */
1441 usb_hcd_poll_rh_status(hcd);
1442 spin_lock(&xhci->lock);
1443 }
1444
1445 /*
1446 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1447 * at end_trb, which may be in another segment. If the suspect DMA address is a
1448 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1449 * returns 0.
1450 */
1451 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1452 union xhci_trb *start_trb,
1453 union xhci_trb *end_trb,
1454 dma_addr_t suspect_dma)
1455 {
1456 dma_addr_t start_dma;
1457 dma_addr_t end_seg_dma;
1458 dma_addr_t end_trb_dma;
1459 struct xhci_segment *cur_seg;
1460
1461 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1462 cur_seg = start_seg;
1463
1464 do {
1465 if (start_dma == 0)
1466 return NULL;
1467 /* We may get an event for a Link TRB in the middle of a TD */
1468 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1469 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1470 /* If the end TRB isn't in this segment, this is set to 0 */
1471 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1472
1473 if (end_trb_dma > 0) {
1474 /* The end TRB is in this segment, so suspect should be here */
1475 if (start_dma <= end_trb_dma) {
1476 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1477 return cur_seg;
1478 } else {
1479 /* Case for one segment with
1480 * a TD wrapped around to the top
1481 */
1482 if ((suspect_dma >= start_dma &&
1483 suspect_dma <= end_seg_dma) ||
1484 (suspect_dma >= cur_seg->dma &&
1485 suspect_dma <= end_trb_dma))
1486 return cur_seg;
1487 }
1488 return NULL;
1489 } else {
1490 /* Might still be somewhere in this segment */
1491 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1492 return cur_seg;
1493 }
1494 cur_seg = cur_seg->next;
1495 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1496 } while (cur_seg != start_seg);
1497
1498 return NULL;
1499 }
1500
1501 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1502 unsigned int slot_id, unsigned int ep_index,
1503 unsigned int stream_id,
1504 struct xhci_td *td, union xhci_trb *event_trb)
1505 {
1506 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1507 ep->ep_state |= EP_HALTED;
1508 ep->stopped_td = td;
1509 ep->stopped_trb = event_trb;
1510 ep->stopped_stream = stream_id;
1511
1512 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1513 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1514
1515 ep->stopped_td = NULL;
1516 ep->stopped_trb = NULL;
1517 ep->stopped_stream = 0;
1518
1519 xhci_ring_cmd_db(xhci);
1520 }
1521
1522 /* Check if an error has halted the endpoint ring. The class driver will
1523 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1524 * However, a babble and other errors also halt the endpoint ring, and the class
1525 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1526 * Ring Dequeue Pointer command manually.
1527 */
1528 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1529 struct xhci_ep_ctx *ep_ctx,
1530 unsigned int trb_comp_code)
1531 {
1532 /* TRB completion codes that may require a manual halt cleanup */
1533 if (trb_comp_code == COMP_TX_ERR ||
1534 trb_comp_code == COMP_BABBLE ||
1535 trb_comp_code == COMP_SPLIT_ERR)
1536 /* The 0.96 spec says a babbling control endpoint
1537 * is not halted. The 0.96 spec says it is. Some HW
1538 * claims to be 0.95 compliant, but it halts the control
1539 * endpoint anyway. Check if a babble halted the
1540 * endpoint.
1541 */
1542 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1543 cpu_to_le32(EP_STATE_HALTED))
1544 return 1;
1545
1546 return 0;
1547 }
1548
1549 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1550 {
1551 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1552 /* Vendor defined "informational" completion code,
1553 * treat as not-an-error.
1554 */
1555 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1556 trb_comp_code);
1557 xhci_dbg(xhci, "Treating code as success.\n");
1558 return 1;
1559 }
1560 return 0;
1561 }
1562
1563 /*
1564 * Finish the td processing, remove the td from td list;
1565 * Return 1 if the urb can be given back.
1566 */
1567 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1568 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1569 struct xhci_virt_ep *ep, int *status, bool skip)
1570 {
1571 struct xhci_virt_device *xdev;
1572 struct xhci_ring *ep_ring;
1573 unsigned int slot_id;
1574 int ep_index;
1575 struct urb *urb = NULL;
1576 struct xhci_ep_ctx *ep_ctx;
1577 int ret = 0;
1578 struct urb_priv *urb_priv;
1579 u32 trb_comp_code;
1580
1581 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1582 xdev = xhci->devs[slot_id];
1583 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1584 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1585 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1586 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1587
1588 if (skip)
1589 goto td_cleanup;
1590
1591 if (trb_comp_code == COMP_STOP_INVAL ||
1592 trb_comp_code == COMP_STOP) {
1593 /* The Endpoint Stop Command completion will take care of any
1594 * stopped TDs. A stopped TD may be restarted, so don't update
1595 * the ring dequeue pointer or take this TD off any lists yet.
1596 */
1597 ep->stopped_td = td;
1598 ep->stopped_trb = event_trb;
1599 return 0;
1600 } else {
1601 if (trb_comp_code == COMP_STALL) {
1602 /* The transfer is completed from the driver's
1603 * perspective, but we need to issue a set dequeue
1604 * command for this stalled endpoint to move the dequeue
1605 * pointer past the TD. We can't do that here because
1606 * the halt condition must be cleared first. Let the
1607 * USB class driver clear the stall later.
1608 */
1609 ep->stopped_td = td;
1610 ep->stopped_trb = event_trb;
1611 ep->stopped_stream = ep_ring->stream_id;
1612 } else if (xhci_requires_manual_halt_cleanup(xhci,
1613 ep_ctx, trb_comp_code)) {
1614 /* Other types of errors halt the endpoint, but the
1615 * class driver doesn't call usb_reset_endpoint() unless
1616 * the error is -EPIPE. Clear the halted status in the
1617 * xHCI hardware manually.
1618 */
1619 xhci_cleanup_halted_endpoint(xhci,
1620 slot_id, ep_index, ep_ring->stream_id,
1621 td, event_trb);
1622 } else {
1623 /* Update ring dequeue pointer */
1624 while (ep_ring->dequeue != td->last_trb)
1625 inc_deq(xhci, ep_ring);
1626 inc_deq(xhci, ep_ring);
1627 }
1628
1629 td_cleanup:
1630 /* Clean up the endpoint's TD list */
1631 urb = td->urb;
1632 urb_priv = urb->hcpriv;
1633
1634 /* Do one last check of the actual transfer length.
1635 * If the host controller said we transferred more data than
1636 * the buffer length, urb->actual_length will be a very big
1637 * number (since it's unsigned). Play it safe and say we didn't
1638 * transfer anything.
1639 */
1640 if (urb->actual_length > urb->transfer_buffer_length) {
1641 xhci_warn(xhci, "URB transfer length is wrong, "
1642 "xHC issue? req. len = %u, "
1643 "act. len = %u\n",
1644 urb->transfer_buffer_length,
1645 urb->actual_length);
1646 urb->actual_length = 0;
1647 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1648 *status = -EREMOTEIO;
1649 else
1650 *status = 0;
1651 }
1652 list_del_init(&td->td_list);
1653 /* Was this TD slated to be cancelled but completed anyway? */
1654 if (!list_empty(&td->cancelled_td_list))
1655 list_del_init(&td->cancelled_td_list);
1656
1657 urb_priv->td_cnt++;
1658 /* Giveback the urb when all the tds are completed */
1659 if (urb_priv->td_cnt == urb_priv->length) {
1660 ret = 1;
1661 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1662 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1663 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1664 == 0) {
1665 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1666 usb_amd_quirk_pll_enable();
1667 }
1668 }
1669 }
1670 }
1671
1672 return ret;
1673 }
1674
1675 /*
1676 * Process control tds, update urb status and actual_length.
1677 */
1678 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1679 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1680 struct xhci_virt_ep *ep, int *status)
1681 {
1682 struct xhci_virt_device *xdev;
1683 struct xhci_ring *ep_ring;
1684 unsigned int slot_id;
1685 int ep_index;
1686 struct xhci_ep_ctx *ep_ctx;
1687 u32 trb_comp_code;
1688
1689 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1690 xdev = xhci->devs[slot_id];
1691 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1692 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1693 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1694 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1695
1696 switch (trb_comp_code) {
1697 case COMP_SUCCESS:
1698 if (event_trb == ep_ring->dequeue) {
1699 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1700 "without IOC set??\n");
1701 *status = -ESHUTDOWN;
1702 } else if (event_trb != td->last_trb) {
1703 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1704 "without IOC set??\n");
1705 *status = -ESHUTDOWN;
1706 } else {
1707 *status = 0;
1708 }
1709 break;
1710 case COMP_SHORT_TX:
1711 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1712 *status = -EREMOTEIO;
1713 else
1714 *status = 0;
1715 break;
1716 case COMP_STOP_INVAL:
1717 case COMP_STOP:
1718 return finish_td(xhci, td, event_trb, event, ep, status, false);
1719 default:
1720 if (!xhci_requires_manual_halt_cleanup(xhci,
1721 ep_ctx, trb_comp_code))
1722 break;
1723 xhci_dbg(xhci, "TRB error code %u, "
1724 "halted endpoint index = %u\n",
1725 trb_comp_code, ep_index);
1726 /* else fall through */
1727 case COMP_STALL:
1728 /* Did we transfer part of the data (middle) phase? */
1729 if (event_trb != ep_ring->dequeue &&
1730 event_trb != td->last_trb)
1731 td->urb->actual_length =
1732 td->urb->transfer_buffer_length
1733 - TRB_LEN(le32_to_cpu(event->transfer_len));
1734 else
1735 td->urb->actual_length = 0;
1736
1737 xhci_cleanup_halted_endpoint(xhci,
1738 slot_id, ep_index, 0, td, event_trb);
1739 return finish_td(xhci, td, event_trb, event, ep, status, true);
1740 }
1741 /*
1742 * Did we transfer any data, despite the errors that might have
1743 * happened? I.e. did we get past the setup stage?
1744 */
1745 if (event_trb != ep_ring->dequeue) {
1746 /* The event was for the status stage */
1747 if (event_trb == td->last_trb) {
1748 if (td->urb->actual_length != 0) {
1749 /* Don't overwrite a previously set error code
1750 */
1751 if ((*status == -EINPROGRESS || *status == 0) &&
1752 (td->urb->transfer_flags
1753 & URB_SHORT_NOT_OK))
1754 /* Did we already see a short data
1755 * stage? */
1756 *status = -EREMOTEIO;
1757 } else {
1758 td->urb->actual_length =
1759 td->urb->transfer_buffer_length;
1760 }
1761 } else {
1762 /* Maybe the event was for the data stage? */
1763 td->urb->actual_length =
1764 td->urb->transfer_buffer_length -
1765 TRB_LEN(le32_to_cpu(event->transfer_len));
1766 xhci_dbg(xhci, "Waiting for status "
1767 "stage event\n");
1768 return 0;
1769 }
1770 }
1771
1772 return finish_td(xhci, td, event_trb, event, ep, status, false);
1773 }
1774
1775 /*
1776 * Process isochronous tds, update urb packet status and actual_length.
1777 */
1778 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1779 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1780 struct xhci_virt_ep *ep, int *status)
1781 {
1782 struct xhci_ring *ep_ring;
1783 struct urb_priv *urb_priv;
1784 int idx;
1785 int len = 0;
1786 union xhci_trb *cur_trb;
1787 struct xhci_segment *cur_seg;
1788 struct usb_iso_packet_descriptor *frame;
1789 u32 trb_comp_code;
1790 bool skip_td = false;
1791
1792 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1793 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1794 urb_priv = td->urb->hcpriv;
1795 idx = urb_priv->td_cnt;
1796 frame = &td->urb->iso_frame_desc[idx];
1797
1798 /* handle completion code */
1799 switch (trb_comp_code) {
1800 case COMP_SUCCESS:
1801 if (TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
1802 frame->status = 0;
1803 break;
1804 }
1805 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
1806 trb_comp_code = COMP_SHORT_TX;
1807 case COMP_SHORT_TX:
1808 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
1809 -EREMOTEIO : 0;
1810 break;
1811 case COMP_BW_OVER:
1812 frame->status = -ECOMM;
1813 skip_td = true;
1814 break;
1815 case COMP_BUFF_OVER:
1816 case COMP_BABBLE:
1817 frame->status = -EOVERFLOW;
1818 skip_td = true;
1819 break;
1820 case COMP_DEV_ERR:
1821 case COMP_STALL:
1822 case COMP_TX_ERR:
1823 frame->status = -EPROTO;
1824 skip_td = true;
1825 break;
1826 case COMP_STOP:
1827 case COMP_STOP_INVAL:
1828 break;
1829 default:
1830 frame->status = -1;
1831 break;
1832 }
1833
1834 if (trb_comp_code == COMP_SUCCESS || skip_td) {
1835 frame->actual_length = frame->length;
1836 td->urb->actual_length += frame->length;
1837 } else {
1838 for (cur_trb = ep_ring->dequeue,
1839 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
1840 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1841 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1842 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1843 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1844 }
1845 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1846 TRB_LEN(le32_to_cpu(event->transfer_len));
1847
1848 if (trb_comp_code != COMP_STOP_INVAL) {
1849 frame->actual_length = len;
1850 td->urb->actual_length += len;
1851 }
1852 }
1853
1854 return finish_td(xhci, td, event_trb, event, ep, status, false);
1855 }
1856
1857 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1858 struct xhci_transfer_event *event,
1859 struct xhci_virt_ep *ep, int *status)
1860 {
1861 struct xhci_ring *ep_ring;
1862 struct urb_priv *urb_priv;
1863 struct usb_iso_packet_descriptor *frame;
1864 int idx;
1865
1866 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1867 urb_priv = td->urb->hcpriv;
1868 idx = urb_priv->td_cnt;
1869 frame = &td->urb->iso_frame_desc[idx];
1870
1871 /* The transfer is partly done. */
1872 frame->status = -EXDEV;
1873
1874 /* calc actual length */
1875 frame->actual_length = 0;
1876
1877 /* Update ring dequeue pointer */
1878 while (ep_ring->dequeue != td->last_trb)
1879 inc_deq(xhci, ep_ring);
1880 inc_deq(xhci, ep_ring);
1881
1882 return finish_td(xhci, td, NULL, event, ep, status, true);
1883 }
1884
1885 /*
1886 * Process bulk and interrupt tds, update urb status and actual_length.
1887 */
1888 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
1889 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1890 struct xhci_virt_ep *ep, int *status)
1891 {
1892 struct xhci_ring *ep_ring;
1893 union xhci_trb *cur_trb;
1894 struct xhci_segment *cur_seg;
1895 u32 trb_comp_code;
1896
1897 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1898 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1899
1900 switch (trb_comp_code) {
1901 case COMP_SUCCESS:
1902 /* Double check that the HW transferred everything. */
1903 if (event_trb != td->last_trb ||
1904 TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
1905 xhci_warn(xhci, "WARN Successful completion "
1906 "on short TX\n");
1907 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1908 *status = -EREMOTEIO;
1909 else
1910 *status = 0;
1911 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
1912 trb_comp_code = COMP_SHORT_TX;
1913 } else {
1914 *status = 0;
1915 }
1916 break;
1917 case COMP_SHORT_TX:
1918 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1919 *status = -EREMOTEIO;
1920 else
1921 *status = 0;
1922 break;
1923 default:
1924 /* Others already handled above */
1925 break;
1926 }
1927 if (trb_comp_code == COMP_SHORT_TX)
1928 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
1929 "%d bytes untransferred\n",
1930 td->urb->ep->desc.bEndpointAddress,
1931 td->urb->transfer_buffer_length,
1932 TRB_LEN(le32_to_cpu(event->transfer_len)));
1933 /* Fast path - was this the last TRB in the TD for this URB? */
1934 if (event_trb == td->last_trb) {
1935 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
1936 td->urb->actual_length =
1937 td->urb->transfer_buffer_length -
1938 TRB_LEN(le32_to_cpu(event->transfer_len));
1939 if (td->urb->transfer_buffer_length <
1940 td->urb->actual_length) {
1941 xhci_warn(xhci, "HC gave bad length "
1942 "of %d bytes left\n",
1943 TRB_LEN(le32_to_cpu(event->transfer_len)));
1944 td->urb->actual_length = 0;
1945 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1946 *status = -EREMOTEIO;
1947 else
1948 *status = 0;
1949 }
1950 /* Don't overwrite a previously set error code */
1951 if (*status == -EINPROGRESS) {
1952 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1953 *status = -EREMOTEIO;
1954 else
1955 *status = 0;
1956 }
1957 } else {
1958 td->urb->actual_length =
1959 td->urb->transfer_buffer_length;
1960 /* Ignore a short packet completion if the
1961 * untransferred length was zero.
1962 */
1963 if (*status == -EREMOTEIO)
1964 *status = 0;
1965 }
1966 } else {
1967 /* Slow path - walk the list, starting from the dequeue
1968 * pointer, to get the actual length transferred.
1969 */
1970 td->urb->actual_length = 0;
1971 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
1972 cur_trb != event_trb;
1973 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1974 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1975 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1976 td->urb->actual_length +=
1977 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1978 }
1979 /* If the ring didn't stop on a Link or No-op TRB, add
1980 * in the actual bytes transferred from the Normal TRB
1981 */
1982 if (trb_comp_code != COMP_STOP_INVAL)
1983 td->urb->actual_length +=
1984 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1985 TRB_LEN(le32_to_cpu(event->transfer_len));
1986 }
1987
1988 return finish_td(xhci, td, event_trb, event, ep, status, false);
1989 }
1990
1991 /*
1992 * If this function returns an error condition, it means it got a Transfer
1993 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
1994 * At this point, the host controller is probably hosed and should be reset.
1995 */
1996 static int handle_tx_event(struct xhci_hcd *xhci,
1997 struct xhci_transfer_event *event)
1998 {
1999 struct xhci_virt_device *xdev;
2000 struct xhci_virt_ep *ep;
2001 struct xhci_ring *ep_ring;
2002 unsigned int slot_id;
2003 int ep_index;
2004 struct xhci_td *td = NULL;
2005 dma_addr_t event_dma;
2006 struct xhci_segment *event_seg;
2007 union xhci_trb *event_trb;
2008 struct urb *urb = NULL;
2009 int status = -EINPROGRESS;
2010 struct urb_priv *urb_priv;
2011 struct xhci_ep_ctx *ep_ctx;
2012 struct list_head *tmp;
2013 u32 trb_comp_code;
2014 int ret = 0;
2015 int td_num = 0;
2016
2017 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2018 xdev = xhci->devs[slot_id];
2019 if (!xdev) {
2020 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2021 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2022 (unsigned long long) xhci_trb_virt_to_dma(
2023 xhci->event_ring->deq_seg,
2024 xhci->event_ring->dequeue),
2025 lower_32_bits(le64_to_cpu(event->buffer)),
2026 upper_32_bits(le64_to_cpu(event->buffer)),
2027 le32_to_cpu(event->transfer_len),
2028 le32_to_cpu(event->flags));
2029 xhci_dbg(xhci, "Event ring:\n");
2030 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2031 return -ENODEV;
2032 }
2033
2034 /* Endpoint ID is 1 based, our index is zero based */
2035 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2036 ep = &xdev->eps[ep_index];
2037 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2038 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2039 if (!ep_ring ||
2040 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2041 EP_STATE_DISABLED) {
2042 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2043 "or incorrect stream ring\n");
2044 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2045 (unsigned long long) xhci_trb_virt_to_dma(
2046 xhci->event_ring->deq_seg,
2047 xhci->event_ring->dequeue),
2048 lower_32_bits(le64_to_cpu(event->buffer)),
2049 upper_32_bits(le64_to_cpu(event->buffer)),
2050 le32_to_cpu(event->transfer_len),
2051 le32_to_cpu(event->flags));
2052 xhci_dbg(xhci, "Event ring:\n");
2053 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2054 return -ENODEV;
2055 }
2056
2057 /* Count current td numbers if ep->skip is set */
2058 if (ep->skip) {
2059 list_for_each(tmp, &ep_ring->td_list)
2060 td_num++;
2061 }
2062
2063 event_dma = le64_to_cpu(event->buffer);
2064 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2065 /* Look for common error cases */
2066 switch (trb_comp_code) {
2067 /* Skip codes that require special handling depending on
2068 * transfer type
2069 */
2070 case COMP_SUCCESS:
2071 if (TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2072 break;
2073 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2074 trb_comp_code = COMP_SHORT_TX;
2075 else
2076 xhci_warn(xhci, "WARN Successful completion on short TX: "
2077 "needs XHCI_TRUST_TX_LENGTH quirk?\n");
2078 case COMP_SHORT_TX:
2079 break;
2080 case COMP_STOP:
2081 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2082 break;
2083 case COMP_STOP_INVAL:
2084 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2085 break;
2086 case COMP_STALL:
2087 xhci_dbg(xhci, "Stalled endpoint\n");
2088 ep->ep_state |= EP_HALTED;
2089 status = -EPIPE;
2090 break;
2091 case COMP_TRB_ERR:
2092 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2093 status = -EILSEQ;
2094 break;
2095 case COMP_SPLIT_ERR:
2096 case COMP_TX_ERR:
2097 xhci_dbg(xhci, "Transfer error on endpoint\n");
2098 status = -EPROTO;
2099 break;
2100 case COMP_BABBLE:
2101 xhci_dbg(xhci, "Babble error on endpoint\n");
2102 status = -EOVERFLOW;
2103 break;
2104 case COMP_DB_ERR:
2105 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2106 status = -ENOSR;
2107 break;
2108 case COMP_BW_OVER:
2109 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2110 break;
2111 case COMP_BUFF_OVER:
2112 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2113 break;
2114 case COMP_UNDERRUN:
2115 /*
2116 * When the Isoch ring is empty, the xHC will generate
2117 * a Ring Overrun Event for IN Isoch endpoint or Ring
2118 * Underrun Event for OUT Isoch endpoint.
2119 */
2120 xhci_dbg(xhci, "underrun event on endpoint\n");
2121 if (!list_empty(&ep_ring->td_list))
2122 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2123 "still with TDs queued?\n",
2124 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2125 ep_index);
2126 goto cleanup;
2127 case COMP_OVERRUN:
2128 xhci_dbg(xhci, "overrun event on endpoint\n");
2129 if (!list_empty(&ep_ring->td_list))
2130 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2131 "still with TDs queued?\n",
2132 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2133 ep_index);
2134 goto cleanup;
2135 case COMP_DEV_ERR:
2136 xhci_warn(xhci, "WARN: detect an incompatible device");
2137 status = -EPROTO;
2138 break;
2139 case COMP_MISSED_INT:
2140 /*
2141 * When encounter missed service error, one or more isoc tds
2142 * may be missed by xHC.
2143 * Set skip flag of the ep_ring; Complete the missed tds as
2144 * short transfer when process the ep_ring next time.
2145 */
2146 ep->skip = true;
2147 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2148 goto cleanup;
2149 default:
2150 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2151 status = 0;
2152 break;
2153 }
2154 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2155 "busted\n");
2156 goto cleanup;
2157 }
2158
2159 do {
2160 /* This TRB should be in the TD at the head of this ring's
2161 * TD list.
2162 */
2163 if (list_empty(&ep_ring->td_list)) {
2164 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d "
2165 "with no TDs queued?\n",
2166 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2167 ep_index);
2168 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2169 (le32_to_cpu(event->flags) &
2170 TRB_TYPE_BITMASK)>>10);
2171 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2172 if (ep->skip) {
2173 ep->skip = false;
2174 xhci_dbg(xhci, "td_list is empty while skip "
2175 "flag set. Clear skip flag.\n");
2176 }
2177 ret = 0;
2178 goto cleanup;
2179 }
2180
2181 /* We've skipped all the TDs on the ep ring when ep->skip set */
2182 if (ep->skip && td_num == 0) {
2183 ep->skip = false;
2184 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2185 "Clear skip flag.\n");
2186 ret = 0;
2187 goto cleanup;
2188 }
2189
2190 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2191 if (ep->skip)
2192 td_num--;
2193
2194 /* Is this a TRB in the currently executing TD? */
2195 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2196 td->last_trb, event_dma);
2197
2198 /*
2199 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2200 * is not in the current TD pointed by ep_ring->dequeue because
2201 * that the hardware dequeue pointer still at the previous TRB
2202 * of the current TD. The previous TRB maybe a Link TD or the
2203 * last TRB of the previous TD. The command completion handle
2204 * will take care the rest.
2205 */
2206 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2207 ret = 0;
2208 goto cleanup;
2209 }
2210
2211 if (!event_seg) {
2212 if (!ep->skip ||
2213 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2214 /* Some host controllers give a spurious
2215 * successful event after a short transfer.
2216 * Ignore it.
2217 */
2218 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2219 ep_ring->last_td_was_short) {
2220 ep_ring->last_td_was_short = false;
2221 ret = 0;
2222 goto cleanup;
2223 }
2224 /* HC is busted, give up! */
2225 xhci_err(xhci,
2226 "ERROR Transfer event TRB DMA ptr not "
2227 "part of current TD\n");
2228 return -ESHUTDOWN;
2229 }
2230
2231 ret = skip_isoc_td(xhci, td, event, ep, &status);
2232 goto cleanup;
2233 }
2234 if (trb_comp_code == COMP_SHORT_TX)
2235 ep_ring->last_td_was_short = true;
2236 else
2237 ep_ring->last_td_was_short = false;
2238
2239 if (ep->skip) {
2240 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2241 ep->skip = false;
2242 }
2243
2244 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2245 sizeof(*event_trb)];
2246 /*
2247 * No-op TRB should not trigger interrupts.
2248 * If event_trb is a no-op TRB, it means the
2249 * corresponding TD has been cancelled. Just ignore
2250 * the TD.
2251 */
2252 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2253 xhci_dbg(xhci,
2254 "event_trb is a no-op TRB. Skip it\n");
2255 goto cleanup;
2256 }
2257
2258 /* Now update the urb's actual_length and give back to
2259 * the core
2260 */
2261 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2262 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2263 &status);
2264 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2265 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2266 &status);
2267 else
2268 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2269 ep, &status);
2270
2271 cleanup:
2272 /*
2273 * Do not update event ring dequeue pointer if ep->skip is set.
2274 * Will roll back to continue process missed tds.
2275 */
2276 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2277 inc_deq(xhci, xhci->event_ring);
2278 }
2279
2280 if (ret) {
2281 urb = td->urb;
2282 urb_priv = urb->hcpriv;
2283 /* Leave the TD around for the reset endpoint function
2284 * to use(but only if it's not a control endpoint,
2285 * since we already queued the Set TR dequeue pointer
2286 * command for stalled control endpoints).
2287 */
2288 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2289 (trb_comp_code != COMP_STALL &&
2290 trb_comp_code != COMP_BABBLE))
2291 xhci_urb_free_priv(xhci, urb_priv);
2292
2293 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2294 if ((urb->actual_length != urb->transfer_buffer_length &&
2295 (urb->transfer_flags &
2296 URB_SHORT_NOT_OK)) ||
2297 (status != 0 &&
2298 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2299 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2300 "expected = %d, status = %d\n",
2301 urb, urb->actual_length,
2302 urb->transfer_buffer_length,
2303 status);
2304 spin_unlock(&xhci->lock);
2305 /* EHCI, UHCI, and OHCI always unconditionally set the
2306 * urb->status of an isochronous endpoint to 0.
2307 */
2308 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2309 status = 0;
2310 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2311 spin_lock(&xhci->lock);
2312 }
2313
2314 /*
2315 * If ep->skip is set, it means there are missed tds on the
2316 * endpoint ring need to take care of.
2317 * Process them as short transfer until reach the td pointed by
2318 * the event.
2319 */
2320 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2321
2322 return 0;
2323 }
2324
2325 /*
2326 * This function handles all OS-owned events on the event ring. It may drop
2327 * xhci->lock between event processing (e.g. to pass up port status changes).
2328 * Returns >0 for "possibly more events to process" (caller should call again),
2329 * otherwise 0 if done. In future, <0 returns should indicate error code.
2330 */
2331 static int xhci_handle_event(struct xhci_hcd *xhci)
2332 {
2333 union xhci_trb *event;
2334 int update_ptrs = 1;
2335 int ret;
2336
2337 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2338 xhci->error_bitmask |= 1 << 1;
2339 return 0;
2340 }
2341
2342 event = xhci->event_ring->dequeue;
2343 /* Does the HC or OS own the TRB? */
2344 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2345 xhci->event_ring->cycle_state) {
2346 xhci->error_bitmask |= 1 << 2;
2347 return 0;
2348 }
2349
2350 /*
2351 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2352 * speculative reads of the event's flags/data below.
2353 */
2354 rmb();
2355 /* FIXME: Handle more event types. */
2356 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2357 case TRB_TYPE(TRB_COMPLETION):
2358 handle_cmd_completion(xhci, &event->event_cmd);
2359 break;
2360 case TRB_TYPE(TRB_PORT_STATUS):
2361 handle_port_status(xhci, event);
2362 update_ptrs = 0;
2363 break;
2364 case TRB_TYPE(TRB_TRANSFER):
2365 ret = handle_tx_event(xhci, &event->trans_event);
2366 if (ret < 0)
2367 xhci->error_bitmask |= 1 << 9;
2368 else
2369 update_ptrs = 0;
2370 break;
2371 case TRB_TYPE(TRB_DEV_NOTE):
2372 handle_device_notification(xhci, event);
2373 break;
2374 default:
2375 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2376 TRB_TYPE(48))
2377 handle_vendor_event(xhci, event);
2378 else
2379 xhci->error_bitmask |= 1 << 3;
2380 }
2381 /* Any of the above functions may drop and re-acquire the lock, so check
2382 * to make sure a watchdog timer didn't mark the host as non-responsive.
2383 */
2384 if (xhci->xhc_state & XHCI_STATE_DYING) {
2385 xhci_dbg(xhci, "xHCI host dying, returning from "
2386 "event handler.\n");
2387 return 0;
2388 }
2389
2390 if (update_ptrs)
2391 /* Update SW event ring dequeue pointer */
2392 inc_deq(xhci, xhci->event_ring);
2393
2394 /* Are there more items on the event ring? Caller will call us again to
2395 * check.
2396 */
2397 return 1;
2398 }
2399
2400 /*
2401 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2402 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2403 * indicators of an event TRB error, but we check the status *first* to be safe.
2404 */
2405 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2406 {
2407 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2408 u32 status;
2409 union xhci_trb *trb;
2410 u64 temp_64;
2411 union xhci_trb *event_ring_deq;
2412 dma_addr_t deq;
2413
2414 spin_lock(&xhci->lock);
2415 trb = xhci->event_ring->dequeue;
2416 /* Check if the xHC generated the interrupt, or the irq is shared */
2417 status = xhci_readl(xhci, &xhci->op_regs->status);
2418 if (status == 0xffffffff)
2419 goto hw_died;
2420
2421 if (!(status & STS_EINT)) {
2422 spin_unlock(&xhci->lock);
2423 return IRQ_NONE;
2424 }
2425 if (status & STS_FATAL) {
2426 xhci_warn(xhci, "WARNING: Host System Error\n");
2427 xhci_halt(xhci);
2428 hw_died:
2429 spin_unlock(&xhci->lock);
2430 return -ESHUTDOWN;
2431 }
2432
2433 /*
2434 * Clear the op reg interrupt status first,
2435 * so we can receive interrupts from other MSI-X interrupters.
2436 * Write 1 to clear the interrupt status.
2437 */
2438 status |= STS_EINT;
2439 xhci_writel(xhci, status, &xhci->op_regs->status);
2440 /* FIXME when MSI-X is supported and there are multiple vectors */
2441 /* Clear the MSI-X event interrupt status */
2442
2443 if (hcd->irq) {
2444 u32 irq_pending;
2445 /* Acknowledge the PCI interrupt */
2446 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2447 irq_pending |= IMAN_IP;
2448 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2449 }
2450
2451 if (xhci->xhc_state & XHCI_STATE_DYING) {
2452 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2453 "Shouldn't IRQs be disabled?\n");
2454 /* Clear the event handler busy flag (RW1C);
2455 * the event ring should be empty.
2456 */
2457 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2458 xhci_write_64(xhci, temp_64 | ERST_EHB,
2459 &xhci->ir_set->erst_dequeue);
2460 spin_unlock(&xhci->lock);
2461
2462 return IRQ_HANDLED;
2463 }
2464
2465 event_ring_deq = xhci->event_ring->dequeue;
2466 /* FIXME this should be a delayed service routine
2467 * that clears the EHB.
2468 */
2469 while (xhci_handle_event(xhci) > 0) {}
2470
2471 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2472 /* If necessary, update the HW's version of the event ring deq ptr. */
2473 if (event_ring_deq != xhci->event_ring->dequeue) {
2474 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2475 xhci->event_ring->dequeue);
2476 if (deq == 0)
2477 xhci_warn(xhci, "WARN something wrong with SW event "
2478 "ring dequeue ptr.\n");
2479 /* Update HC event ring dequeue pointer */
2480 temp_64 &= ERST_PTR_MASK;
2481 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2482 }
2483
2484 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2485 temp_64 |= ERST_EHB;
2486 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2487
2488 spin_unlock(&xhci->lock);
2489
2490 return IRQ_HANDLED;
2491 }
2492
2493 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2494 {
2495 return xhci_irq(hcd);
2496 }
2497
2498 /**** Endpoint Ring Operations ****/
2499
2500 /*
2501 * Generic function for queueing a TRB on a ring.
2502 * The caller must have checked to make sure there's room on the ring.
2503 *
2504 * @more_trbs_coming: Will you enqueue more TRBs before calling
2505 * prepare_transfer()?
2506 */
2507 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2508 bool more_trbs_coming,
2509 u32 field1, u32 field2, u32 field3, u32 field4)
2510 {
2511 struct xhci_generic_trb *trb;
2512
2513 trb = &ring->enqueue->generic;
2514 trb->field[0] = cpu_to_le32(field1);
2515 trb->field[1] = cpu_to_le32(field2);
2516 trb->field[2] = cpu_to_le32(field3);
2517 trb->field[3] = cpu_to_le32(field4);
2518 inc_enq(xhci, ring, more_trbs_coming);
2519 }
2520
2521 /*
2522 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2523 * FIXME allocate segments if the ring is full.
2524 */
2525 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2526 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2527 {
2528 unsigned int num_trbs_needed;
2529
2530 /* Make sure the endpoint has been added to xHC schedule */
2531 switch (ep_state) {
2532 case EP_STATE_DISABLED:
2533 /*
2534 * USB core changed config/interfaces without notifying us,
2535 * or hardware is reporting the wrong state.
2536 */
2537 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2538 return -ENOENT;
2539 case EP_STATE_ERROR:
2540 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2541 /* FIXME event handling code for error needs to clear it */
2542 /* XXX not sure if this should be -ENOENT or not */
2543 return -EINVAL;
2544 case EP_STATE_HALTED:
2545 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2546 case EP_STATE_STOPPED:
2547 case EP_STATE_RUNNING:
2548 break;
2549 default:
2550 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2551 /*
2552 * FIXME issue Configure Endpoint command to try to get the HC
2553 * back into a known state.
2554 */
2555 return -EINVAL;
2556 }
2557
2558 while (1) {
2559 if (room_on_ring(xhci, ep_ring, num_trbs))
2560 break;
2561
2562 if (ep_ring == xhci->cmd_ring) {
2563 xhci_err(xhci, "Do not support expand command ring\n");
2564 return -ENOMEM;
2565 }
2566
2567 xhci_dbg(xhci, "ERROR no room on ep ring, "
2568 "try ring expansion\n");
2569 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2570 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2571 mem_flags)) {
2572 xhci_err(xhci, "Ring expansion failed\n");
2573 return -ENOMEM;
2574 }
2575 };
2576
2577 if (enqueue_is_link_trb(ep_ring)) {
2578 struct xhci_ring *ring = ep_ring;
2579 union xhci_trb *next;
2580
2581 next = ring->enqueue;
2582
2583 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2584 /* If we're not dealing with 0.95 hardware or isoc rings
2585 * on AMD 0.96 host, clear the chain bit.
2586 */
2587 if (!xhci_link_trb_quirk(xhci) &&
2588 !(ring->type == TYPE_ISOC &&
2589 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2590 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2591 else
2592 next->link.control |= cpu_to_le32(TRB_CHAIN);
2593
2594 wmb();
2595 next->link.control ^= cpu_to_le32(TRB_CYCLE);
2596
2597 /* Toggle the cycle bit after the last ring segment. */
2598 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2599 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2600 }
2601 ring->enq_seg = ring->enq_seg->next;
2602 ring->enqueue = ring->enq_seg->trbs;
2603 next = ring->enqueue;
2604 }
2605 }
2606
2607 return 0;
2608 }
2609
2610 static int prepare_transfer(struct xhci_hcd *xhci,
2611 struct xhci_virt_device *xdev,
2612 unsigned int ep_index,
2613 unsigned int stream_id,
2614 unsigned int num_trbs,
2615 struct urb *urb,
2616 unsigned int td_index,
2617 gfp_t mem_flags)
2618 {
2619 int ret;
2620 struct urb_priv *urb_priv;
2621 struct xhci_td *td;
2622 struct xhci_ring *ep_ring;
2623 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2624
2625 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2626 if (!ep_ring) {
2627 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2628 stream_id);
2629 return -EINVAL;
2630 }
2631
2632 ret = prepare_ring(xhci, ep_ring,
2633 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2634 num_trbs, mem_flags);
2635 if (ret)
2636 return ret;
2637
2638 urb_priv = urb->hcpriv;
2639 td = urb_priv->td[td_index];
2640
2641 INIT_LIST_HEAD(&td->td_list);
2642 INIT_LIST_HEAD(&td->cancelled_td_list);
2643
2644 if (td_index == 0) {
2645 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2646 if (unlikely(ret))
2647 return ret;
2648 }
2649
2650 td->urb = urb;
2651 /* Add this TD to the tail of the endpoint ring's TD list */
2652 list_add_tail(&td->td_list, &ep_ring->td_list);
2653 td->start_seg = ep_ring->enq_seg;
2654 td->first_trb = ep_ring->enqueue;
2655
2656 urb_priv->td[td_index] = td;
2657
2658 return 0;
2659 }
2660
2661 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2662 {
2663 int num_sgs, num_trbs, running_total, temp, i;
2664 struct scatterlist *sg;
2665
2666 sg = NULL;
2667 num_sgs = urb->num_mapped_sgs;
2668 temp = urb->transfer_buffer_length;
2669
2670 num_trbs = 0;
2671 for_each_sg(urb->sg, sg, num_sgs, i) {
2672 unsigned int len = sg_dma_len(sg);
2673
2674 /* Scatter gather list entries may cross 64KB boundaries */
2675 running_total = TRB_MAX_BUFF_SIZE -
2676 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2677 running_total &= TRB_MAX_BUFF_SIZE - 1;
2678 if (running_total != 0)
2679 num_trbs++;
2680
2681 /* How many more 64KB chunks to transfer, how many more TRBs? */
2682 while (running_total < sg_dma_len(sg) && running_total < temp) {
2683 num_trbs++;
2684 running_total += TRB_MAX_BUFF_SIZE;
2685 }
2686 len = min_t(int, len, temp);
2687 temp -= len;
2688 if (temp == 0)
2689 break;
2690 }
2691 return num_trbs;
2692 }
2693
2694 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2695 {
2696 if (num_trbs != 0)
2697 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2698 "TRBs, %d left\n", __func__,
2699 urb->ep->desc.bEndpointAddress, num_trbs);
2700 if (running_total != urb->transfer_buffer_length)
2701 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2702 "queued %#x (%d), asked for %#x (%d)\n",
2703 __func__,
2704 urb->ep->desc.bEndpointAddress,
2705 running_total, running_total,
2706 urb->transfer_buffer_length,
2707 urb->transfer_buffer_length);
2708 }
2709
2710 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2711 unsigned int ep_index, unsigned int stream_id, int start_cycle,
2712 struct xhci_generic_trb *start_trb)
2713 {
2714 /*
2715 * Pass all the TRBs to the hardware at once and make sure this write
2716 * isn't reordered.
2717 */
2718 wmb();
2719 if (start_cycle)
2720 start_trb->field[3] |= cpu_to_le32(start_cycle);
2721 else
2722 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2723 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2724 }
2725
2726 /*
2727 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
2728 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
2729 * (comprised of sg list entries) can take several service intervals to
2730 * transmit.
2731 */
2732 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2733 struct urb *urb, int slot_id, unsigned int ep_index)
2734 {
2735 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
2736 xhci->devs[slot_id]->out_ctx, ep_index);
2737 int xhci_interval;
2738 int ep_interval;
2739
2740 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2741 ep_interval = urb->interval;
2742 /* Convert to microframes */
2743 if (urb->dev->speed == USB_SPEED_LOW ||
2744 urb->dev->speed == USB_SPEED_FULL)
2745 ep_interval *= 8;
2746 /* FIXME change this to a warning and a suggestion to use the new API
2747 * to set the polling interval (once the API is added).
2748 */
2749 if (xhci_interval != ep_interval) {
2750 if (printk_ratelimit())
2751 dev_dbg(&urb->dev->dev, "Driver uses different interval"
2752 " (%d microframe%s) than xHCI "
2753 "(%d microframe%s)\n",
2754 ep_interval,
2755 ep_interval == 1 ? "" : "s",
2756 xhci_interval,
2757 xhci_interval == 1 ? "" : "s");
2758 urb->interval = xhci_interval;
2759 /* Convert back to frames for LS/FS devices */
2760 if (urb->dev->speed == USB_SPEED_LOW ||
2761 urb->dev->speed == USB_SPEED_FULL)
2762 urb->interval /= 8;
2763 }
2764 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
2765 }
2766
2767 /*
2768 * The TD size is the number of bytes remaining in the TD (including this TRB),
2769 * right shifted by 10.
2770 * It must fit in bits 21:17, so it can't be bigger than 31.
2771 */
2772 static u32 xhci_td_remainder(unsigned int remainder)
2773 {
2774 u32 max = (1 << (21 - 17 + 1)) - 1;
2775
2776 if ((remainder >> 10) >= max)
2777 return max << 17;
2778 else
2779 return (remainder >> 10) << 17;
2780 }
2781
2782 /*
2783 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in
2784 * the TD (*not* including this TRB).
2785 *
2786 * Total TD packet count = total_packet_count =
2787 * roundup(TD size in bytes / wMaxPacketSize)
2788 *
2789 * Packets transferred up to and including this TRB = packets_transferred =
2790 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2791 *
2792 * TD size = total_packet_count - packets_transferred
2793 *
2794 * It must fit in bits 21:17, so it can't be bigger than 31.
2795 */
2796
2797 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
2798 unsigned int total_packet_count, struct urb *urb)
2799 {
2800 int packets_transferred;
2801
2802 /* One TRB with a zero-length data packet. */
2803 if (running_total == 0 && trb_buff_len == 0)
2804 return 0;
2805
2806 /* All the TRB queueing functions don't count the current TRB in
2807 * running_total.
2808 */
2809 packets_transferred = (running_total + trb_buff_len) /
2810 usb_endpoint_maxp(&urb->ep->desc);
2811
2812 return xhci_td_remainder(total_packet_count - packets_transferred);
2813 }
2814
2815 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2816 struct urb *urb, int slot_id, unsigned int ep_index)
2817 {
2818 struct xhci_ring *ep_ring;
2819 unsigned int num_trbs;
2820 struct urb_priv *urb_priv;
2821 struct xhci_td *td;
2822 struct scatterlist *sg;
2823 int num_sgs;
2824 int trb_buff_len, this_sg_len, running_total;
2825 unsigned int total_packet_count;
2826 bool first_trb;
2827 u64 addr;
2828 bool more_trbs_coming;
2829
2830 struct xhci_generic_trb *start_trb;
2831 int start_cycle;
2832
2833 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2834 if (!ep_ring)
2835 return -EINVAL;
2836
2837 num_trbs = count_sg_trbs_needed(xhci, urb);
2838 num_sgs = urb->num_mapped_sgs;
2839 total_packet_count = roundup(urb->transfer_buffer_length,
2840 usb_endpoint_maxp(&urb->ep->desc));
2841
2842 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
2843 ep_index, urb->stream_id,
2844 num_trbs, urb, 0, mem_flags);
2845 if (trb_buff_len < 0)
2846 return trb_buff_len;
2847
2848 urb_priv = urb->hcpriv;
2849 td = urb_priv->td[0];
2850
2851 /*
2852 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2853 * until we've finished creating all the other TRBs. The ring's cycle
2854 * state may change as we enqueue the other TRBs, so save it too.
2855 */
2856 start_trb = &ep_ring->enqueue->generic;
2857 start_cycle = ep_ring->cycle_state;
2858
2859 running_total = 0;
2860 /*
2861 * How much data is in the first TRB?
2862 *
2863 * There are three forces at work for TRB buffer pointers and lengths:
2864 * 1. We don't want to walk off the end of this sg-list entry buffer.
2865 * 2. The transfer length that the driver requested may be smaller than
2866 * the amount of memory allocated for this scatter-gather list.
2867 * 3. TRBs buffers can't cross 64KB boundaries.
2868 */
2869 sg = urb->sg;
2870 addr = (u64) sg_dma_address(sg);
2871 this_sg_len = sg_dma_len(sg);
2872 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
2873 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2874 if (trb_buff_len > urb->transfer_buffer_length)
2875 trb_buff_len = urb->transfer_buffer_length;
2876
2877 first_trb = true;
2878 /* Queue the first TRB, even if it's zero-length */
2879 do {
2880 u32 field = 0;
2881 u32 length_field = 0;
2882 u32 remainder = 0;
2883
2884 /* Don't change the cycle bit of the first TRB until later */
2885 if (first_trb) {
2886 first_trb = false;
2887 if (start_cycle == 0)
2888 field |= 0x1;
2889 } else
2890 field |= ep_ring->cycle_state;
2891
2892 /* Chain all the TRBs together; clear the chain bit in the last
2893 * TRB to indicate it's the last TRB in the chain.
2894 */
2895 if (num_trbs > 1) {
2896 field |= TRB_CHAIN;
2897 } else {
2898 /* FIXME - add check for ZERO_PACKET flag before this */
2899 td->last_trb = ep_ring->enqueue;
2900 field |= TRB_IOC;
2901 }
2902
2903 /* Only set interrupt on short packet for IN endpoints */
2904 if (usb_urb_dir_in(urb))
2905 field |= TRB_ISP;
2906
2907 if (TRB_MAX_BUFF_SIZE -
2908 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
2909 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
2910 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
2911 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2912 (unsigned int) addr + trb_buff_len);
2913 }
2914
2915 /* Set the TRB length, TD size, and interrupter fields. */
2916 if (xhci->hci_version < 0x100) {
2917 remainder = xhci_td_remainder(
2918 urb->transfer_buffer_length -
2919 running_total);
2920 } else {
2921 remainder = xhci_v1_0_td_remainder(running_total,
2922 trb_buff_len, total_packet_count, urb);
2923 }
2924 length_field = TRB_LEN(trb_buff_len) |
2925 remainder |
2926 TRB_INTR_TARGET(0);
2927
2928 if (num_trbs > 1)
2929 more_trbs_coming = true;
2930 else
2931 more_trbs_coming = false;
2932 queue_trb(xhci, ep_ring, more_trbs_coming,
2933 lower_32_bits(addr),
2934 upper_32_bits(addr),
2935 length_field,
2936 field | TRB_TYPE(TRB_NORMAL));
2937 --num_trbs;
2938 running_total += trb_buff_len;
2939
2940 /* Calculate length for next transfer --
2941 * Are we done queueing all the TRBs for this sg entry?
2942 */
2943 this_sg_len -= trb_buff_len;
2944 if (this_sg_len == 0) {
2945 --num_sgs;
2946 if (num_sgs == 0)
2947 break;
2948 sg = sg_next(sg);
2949 addr = (u64) sg_dma_address(sg);
2950 this_sg_len = sg_dma_len(sg);
2951 } else {
2952 addr += trb_buff_len;
2953 }
2954
2955 trb_buff_len = TRB_MAX_BUFF_SIZE -
2956 (addr & (TRB_MAX_BUFF_SIZE - 1));
2957 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2958 if (running_total + trb_buff_len > urb->transfer_buffer_length)
2959 trb_buff_len =
2960 urb->transfer_buffer_length - running_total;
2961 } while (running_total < urb->transfer_buffer_length);
2962
2963 check_trb_math(urb, num_trbs, running_total);
2964 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2965 start_cycle, start_trb);
2966 return 0;
2967 }
2968
2969 /* This is very similar to what ehci-q.c qtd_fill() does */
2970 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2971 struct urb *urb, int slot_id, unsigned int ep_index)
2972 {
2973 struct xhci_ring *ep_ring;
2974 struct urb_priv *urb_priv;
2975 struct xhci_td *td;
2976 int num_trbs;
2977 struct xhci_generic_trb *start_trb;
2978 bool first_trb;
2979 bool more_trbs_coming;
2980 int start_cycle;
2981 u32 field, length_field;
2982
2983 int running_total, trb_buff_len, ret;
2984 unsigned int total_packet_count;
2985 u64 addr;
2986
2987 if (urb->num_sgs)
2988 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
2989
2990 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2991 if (!ep_ring)
2992 return -EINVAL;
2993
2994 num_trbs = 0;
2995 /* How much data is (potentially) left before the 64KB boundary? */
2996 running_total = TRB_MAX_BUFF_SIZE -
2997 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2998 running_total &= TRB_MAX_BUFF_SIZE - 1;
2999
3000 /* If there's some data on this 64KB chunk, or we have to send a
3001 * zero-length transfer, we need at least one TRB
3002 */
3003 if (running_total != 0 || urb->transfer_buffer_length == 0)
3004 num_trbs++;
3005 /* How many more 64KB chunks to transfer, how many more TRBs? */
3006 while (running_total < urb->transfer_buffer_length) {
3007 num_trbs++;
3008 running_total += TRB_MAX_BUFF_SIZE;
3009 }
3010 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
3011
3012 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3013 ep_index, urb->stream_id,
3014 num_trbs, urb, 0, mem_flags);
3015 if (ret < 0)
3016 return ret;
3017
3018 urb_priv = urb->hcpriv;
3019 td = urb_priv->td[0];
3020
3021 /*
3022 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3023 * until we've finished creating all the other TRBs. The ring's cycle
3024 * state may change as we enqueue the other TRBs, so save it too.
3025 */
3026 start_trb = &ep_ring->enqueue->generic;
3027 start_cycle = ep_ring->cycle_state;
3028
3029 running_total = 0;
3030 total_packet_count = roundup(urb->transfer_buffer_length,
3031 usb_endpoint_maxp(&urb->ep->desc));
3032 /* How much data is in the first TRB? */
3033 addr = (u64) urb->transfer_dma;
3034 trb_buff_len = TRB_MAX_BUFF_SIZE -
3035 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3036 if (trb_buff_len > urb->transfer_buffer_length)
3037 trb_buff_len = urb->transfer_buffer_length;
3038
3039 first_trb = true;
3040
3041 /* Queue the first TRB, even if it's zero-length */
3042 do {
3043 u32 remainder = 0;
3044 field = 0;
3045
3046 /* Don't change the cycle bit of the first TRB until later */
3047 if (first_trb) {
3048 first_trb = false;
3049 if (start_cycle == 0)
3050 field |= 0x1;
3051 } else
3052 field |= ep_ring->cycle_state;
3053
3054 /* Chain all the TRBs together; clear the chain bit in the last
3055 * TRB to indicate it's the last TRB in the chain.
3056 */
3057 if (num_trbs > 1) {
3058 field |= TRB_CHAIN;
3059 } else {
3060 /* FIXME - add check for ZERO_PACKET flag before this */
3061 td->last_trb = ep_ring->enqueue;
3062 field |= TRB_IOC;
3063 }
3064
3065 /* Only set interrupt on short packet for IN endpoints */
3066 if (usb_urb_dir_in(urb))
3067 field |= TRB_ISP;
3068
3069 /* Set the TRB length, TD size, and interrupter fields. */
3070 if (xhci->hci_version < 0x100) {
3071 remainder = xhci_td_remainder(
3072 urb->transfer_buffer_length -
3073 running_total);
3074 } else {
3075 remainder = xhci_v1_0_td_remainder(running_total,
3076 trb_buff_len, total_packet_count, urb);
3077 }
3078 length_field = TRB_LEN(trb_buff_len) |
3079 remainder |
3080 TRB_INTR_TARGET(0);
3081
3082 if (num_trbs > 1)
3083 more_trbs_coming = true;
3084 else
3085 more_trbs_coming = false;
3086 queue_trb(xhci, ep_ring, more_trbs_coming,
3087 lower_32_bits(addr),
3088 upper_32_bits(addr),
3089 length_field,
3090 field | TRB_TYPE(TRB_NORMAL));
3091 --num_trbs;
3092 running_total += trb_buff_len;
3093
3094 /* Calculate length for next transfer */
3095 addr += trb_buff_len;
3096 trb_buff_len = urb->transfer_buffer_length - running_total;
3097 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3098 trb_buff_len = TRB_MAX_BUFF_SIZE;
3099 } while (running_total < urb->transfer_buffer_length);
3100
3101 check_trb_math(urb, num_trbs, running_total);
3102 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3103 start_cycle, start_trb);
3104 return 0;
3105 }
3106
3107 /* Caller must have locked xhci->lock */
3108 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3109 struct urb *urb, int slot_id, unsigned int ep_index)
3110 {
3111 struct xhci_ring *ep_ring;
3112 int num_trbs;
3113 int ret;
3114 struct usb_ctrlrequest *setup;
3115 struct xhci_generic_trb *start_trb;
3116 int start_cycle;
3117 u32 field, length_field;
3118 struct urb_priv *urb_priv;
3119 struct xhci_td *td;
3120
3121 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3122 if (!ep_ring)
3123 return -EINVAL;
3124
3125 /*
3126 * Need to copy setup packet into setup TRB, so we can't use the setup
3127 * DMA address.
3128 */
3129 if (!urb->setup_packet)
3130 return -EINVAL;
3131
3132 /* 1 TRB for setup, 1 for status */
3133 num_trbs = 2;
3134 /*
3135 * Don't need to check if we need additional event data and normal TRBs,
3136 * since data in control transfers will never get bigger than 16MB
3137 * XXX: can we get a buffer that crosses 64KB boundaries?
3138 */
3139 if (urb->transfer_buffer_length > 0)
3140 num_trbs++;
3141 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3142 ep_index, urb->stream_id,
3143 num_trbs, urb, 0, mem_flags);
3144 if (ret < 0)
3145 return ret;
3146
3147 urb_priv = urb->hcpriv;
3148 td = urb_priv->td[0];
3149
3150 /*
3151 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3152 * until we've finished creating all the other TRBs. The ring's cycle
3153 * state may change as we enqueue the other TRBs, so save it too.
3154 */
3155 start_trb = &ep_ring->enqueue->generic;
3156 start_cycle = ep_ring->cycle_state;
3157
3158 /* Queue setup TRB - see section 6.4.1.2.1 */
3159 /* FIXME better way to translate setup_packet into two u32 fields? */
3160 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3161 field = 0;
3162 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3163 if (start_cycle == 0)
3164 field |= 0x1;
3165
3166 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3167 if (xhci->hci_version == 0x100) {
3168 if (urb->transfer_buffer_length > 0) {
3169 if (setup->bRequestType & USB_DIR_IN)
3170 field |= TRB_TX_TYPE(TRB_DATA_IN);
3171 else
3172 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3173 }
3174 }
3175
3176 queue_trb(xhci, ep_ring, true,
3177 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3178 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3179 TRB_LEN(8) | TRB_INTR_TARGET(0),
3180 /* Immediate data in pointer */
3181 field);
3182
3183 /* If there's data, queue data TRBs */
3184 /* Only set interrupt on short packet for IN endpoints */
3185 if (usb_urb_dir_in(urb))
3186 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3187 else
3188 field = TRB_TYPE(TRB_DATA);
3189
3190 length_field = TRB_LEN(urb->transfer_buffer_length) |
3191 xhci_td_remainder(urb->transfer_buffer_length) |
3192 TRB_INTR_TARGET(0);
3193 if (urb->transfer_buffer_length > 0) {
3194 if (setup->bRequestType & USB_DIR_IN)
3195 field |= TRB_DIR_IN;
3196 queue_trb(xhci, ep_ring, true,
3197 lower_32_bits(urb->transfer_dma),
3198 upper_32_bits(urb->transfer_dma),
3199 length_field,
3200 field | ep_ring->cycle_state);
3201 }
3202
3203 /* Save the DMA address of the last TRB in the TD */
3204 td->last_trb = ep_ring->enqueue;
3205
3206 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3207 /* If the device sent data, the status stage is an OUT transfer */
3208 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3209 field = 0;
3210 else
3211 field = TRB_DIR_IN;
3212 queue_trb(xhci, ep_ring, false,
3213 0,
3214 0,
3215 TRB_INTR_TARGET(0),
3216 /* Event on completion */
3217 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3218
3219 giveback_first_trb(xhci, slot_id, ep_index, 0,
3220 start_cycle, start_trb);
3221 return 0;
3222 }
3223
3224 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3225 struct urb *urb, int i)
3226 {
3227 int num_trbs = 0;
3228 u64 addr, td_len;
3229
3230 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3231 td_len = urb->iso_frame_desc[i].length;
3232
3233 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3234 TRB_MAX_BUFF_SIZE);
3235 if (num_trbs == 0)
3236 num_trbs++;
3237
3238 return num_trbs;
3239 }
3240
3241 /*
3242 * The transfer burst count field of the isochronous TRB defines the number of
3243 * bursts that are required to move all packets in this TD. Only SuperSpeed
3244 * devices can burst up to bMaxBurst number of packets per service interval.
3245 * This field is zero based, meaning a value of zero in the field means one
3246 * burst. Basically, for everything but SuperSpeed devices, this field will be
3247 * zero. Only xHCI 1.0 host controllers support this field.
3248 */
3249 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3250 struct usb_device *udev,
3251 struct urb *urb, unsigned int total_packet_count)
3252 {
3253 unsigned int max_burst;
3254
3255 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3256 return 0;
3257
3258 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3259 return roundup(total_packet_count, max_burst + 1) - 1;
3260 }
3261
3262 /*
3263 * Returns the number of packets in the last "burst" of packets. This field is
3264 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3265 * the last burst packet count is equal to the total number of packets in the
3266 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3267 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3268 * contain 1 to (bMaxBurst + 1) packets.
3269 */
3270 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3271 struct usb_device *udev,
3272 struct urb *urb, unsigned int total_packet_count)
3273 {
3274 unsigned int max_burst;
3275 unsigned int residue;
3276
3277 if (xhci->hci_version < 0x100)
3278 return 0;
3279
3280 switch (udev->speed) {
3281 case USB_SPEED_SUPER:
3282 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3283 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3284 residue = total_packet_count % (max_burst + 1);
3285 /* If residue is zero, the last burst contains (max_burst + 1)
3286 * number of packets, but the TLBPC field is zero-based.
3287 */
3288 if (residue == 0)
3289 return max_burst;
3290 return residue - 1;
3291 default:
3292 if (total_packet_count == 0)
3293 return 0;
3294 return total_packet_count - 1;
3295 }
3296 }
3297
3298 /* This is for isoc transfer */
3299 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3300 struct urb *urb, int slot_id, unsigned int ep_index)
3301 {
3302 struct xhci_ring *ep_ring;
3303 struct urb_priv *urb_priv;
3304 struct xhci_td *td;
3305 int num_tds, trbs_per_td;
3306 struct xhci_generic_trb *start_trb;
3307 bool first_trb;
3308 int start_cycle;
3309 u32 field, length_field;
3310 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3311 u64 start_addr, addr;
3312 int i, j;
3313 bool more_trbs_coming;
3314
3315 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3316
3317 num_tds = urb->number_of_packets;
3318 if (num_tds < 1) {
3319 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3320 return -EINVAL;
3321 }
3322
3323 start_addr = (u64) urb->transfer_dma;
3324 start_trb = &ep_ring->enqueue->generic;
3325 start_cycle = ep_ring->cycle_state;
3326
3327 urb_priv = urb->hcpriv;
3328 /* Queue the first TRB, even if it's zero-length */
3329 for (i = 0; i < num_tds; i++) {
3330 unsigned int total_packet_count;
3331 unsigned int burst_count;
3332 unsigned int residue;
3333
3334 first_trb = true;
3335 running_total = 0;
3336 addr = start_addr + urb->iso_frame_desc[i].offset;
3337 td_len = urb->iso_frame_desc[i].length;
3338 td_remain_len = td_len;
3339 total_packet_count = roundup(td_len,
3340 usb_endpoint_maxp(&urb->ep->desc));
3341 /* A zero-length transfer still involves at least one packet. */
3342 if (total_packet_count == 0)
3343 total_packet_count++;
3344 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3345 total_packet_count);
3346 residue = xhci_get_last_burst_packet_count(xhci,
3347 urb->dev, urb, total_packet_count);
3348
3349 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3350
3351 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3352 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3353 if (ret < 0) {
3354 if (i == 0)
3355 return ret;
3356 goto cleanup;
3357 }
3358
3359 td = urb_priv->td[i];
3360 for (j = 0; j < trbs_per_td; j++) {
3361 u32 remainder = 0;
3362 field = TRB_TBC(burst_count) | TRB_TLBPC(residue);
3363
3364 if (first_trb) {
3365 /* Queue the isoc TRB */
3366 field |= TRB_TYPE(TRB_ISOC);
3367 /* Assume URB_ISO_ASAP is set */
3368 field |= TRB_SIA;
3369 if (i == 0) {
3370 if (start_cycle == 0)
3371 field |= 0x1;
3372 } else
3373 field |= ep_ring->cycle_state;
3374 first_trb = false;
3375 } else {
3376 /* Queue other normal TRBs */
3377 field |= TRB_TYPE(TRB_NORMAL);
3378 field |= ep_ring->cycle_state;
3379 }
3380
3381 /* Only set interrupt on short packet for IN EPs */
3382 if (usb_urb_dir_in(urb))
3383 field |= TRB_ISP;
3384
3385 /* Chain all the TRBs together; clear the chain bit in
3386 * the last TRB to indicate it's the last TRB in the
3387 * chain.
3388 */
3389 if (j < trbs_per_td - 1) {
3390 field |= TRB_CHAIN;
3391 more_trbs_coming = true;
3392 } else {
3393 td->last_trb = ep_ring->enqueue;
3394 field |= TRB_IOC;
3395 if (xhci->hci_version == 0x100) {
3396 /* Set BEI bit except for the last td */
3397 if (i < num_tds - 1)
3398 field |= TRB_BEI;
3399 }
3400 more_trbs_coming = false;
3401 }
3402
3403 /* Calculate TRB length */
3404 trb_buff_len = TRB_MAX_BUFF_SIZE -
3405 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3406 if (trb_buff_len > td_remain_len)
3407 trb_buff_len = td_remain_len;
3408
3409 /* Set the TRB length, TD size, & interrupter fields. */
3410 if (xhci->hci_version < 0x100) {
3411 remainder = xhci_td_remainder(
3412 td_len - running_total);
3413 } else {
3414 remainder = xhci_v1_0_td_remainder(
3415 running_total, trb_buff_len,
3416 total_packet_count, urb);
3417 }
3418 length_field = TRB_LEN(trb_buff_len) |
3419 remainder |
3420 TRB_INTR_TARGET(0);
3421
3422 queue_trb(xhci, ep_ring, more_trbs_coming,
3423 lower_32_bits(addr),
3424 upper_32_bits(addr),
3425 length_field,
3426 field);
3427 running_total += trb_buff_len;
3428
3429 addr += trb_buff_len;
3430 td_remain_len -= trb_buff_len;
3431 }
3432
3433 /* Check TD length */
3434 if (running_total != td_len) {
3435 xhci_err(xhci, "ISOC TD length unmatch\n");
3436 ret = -EINVAL;
3437 goto cleanup;
3438 }
3439 }
3440
3441 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3442 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3443 usb_amd_quirk_pll_disable();
3444 }
3445 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3446
3447 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3448 start_cycle, start_trb);
3449 return 0;
3450 cleanup:
3451 /* Clean up a partially enqueued isoc transfer. */
3452
3453 for (i--; i >= 0; i--)
3454 list_del_init(&urb_priv->td[i]->td_list);
3455
3456 /* Use the first TD as a temporary variable to turn the TDs we've queued
3457 * into No-ops with a software-owned cycle bit. That way the hardware
3458 * won't accidentally start executing bogus TDs when we partially
3459 * overwrite them. td->first_trb and td->start_seg are already set.
3460 */
3461 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3462 /* Every TRB except the first & last will have its cycle bit flipped. */
3463 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3464
3465 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3466 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3467 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3468 ep_ring->cycle_state = start_cycle;
3469 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3470 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3471 return ret;
3472 }
3473
3474 /*
3475 * Check transfer ring to guarantee there is enough room for the urb.
3476 * Update ISO URB start_frame and interval.
3477 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3478 * update the urb->start_frame by now.
3479 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3480 */
3481 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3482 struct urb *urb, int slot_id, unsigned int ep_index)
3483 {
3484 struct xhci_virt_device *xdev;
3485 struct xhci_ring *ep_ring;
3486 struct xhci_ep_ctx *ep_ctx;
3487 int start_frame;
3488 int xhci_interval;
3489 int ep_interval;
3490 int num_tds, num_trbs, i;
3491 int ret;
3492
3493 xdev = xhci->devs[slot_id];
3494 ep_ring = xdev->eps[ep_index].ring;
3495 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3496
3497 num_trbs = 0;
3498 num_tds = urb->number_of_packets;
3499 for (i = 0; i < num_tds; i++)
3500 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3501
3502 /* Check the ring to guarantee there is enough room for the whole urb.
3503 * Do not insert any td of the urb to the ring if the check failed.
3504 */
3505 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3506 num_trbs, mem_flags);
3507 if (ret)
3508 return ret;
3509
3510 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3511 start_frame &= 0x3fff;
3512
3513 urb->start_frame = start_frame;
3514 if (urb->dev->speed == USB_SPEED_LOW ||
3515 urb->dev->speed == USB_SPEED_FULL)
3516 urb->start_frame >>= 3;
3517
3518 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3519 ep_interval = urb->interval;
3520 /* Convert to microframes */
3521 if (urb->dev->speed == USB_SPEED_LOW ||
3522 urb->dev->speed == USB_SPEED_FULL)
3523 ep_interval *= 8;
3524 /* FIXME change this to a warning and a suggestion to use the new API
3525 * to set the polling interval (once the API is added).
3526 */
3527 if (xhci_interval != ep_interval) {
3528 if (printk_ratelimit())
3529 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3530 " (%d microframe%s) than xHCI "
3531 "(%d microframe%s)\n",
3532 ep_interval,
3533 ep_interval == 1 ? "" : "s",
3534 xhci_interval,
3535 xhci_interval == 1 ? "" : "s");
3536 urb->interval = xhci_interval;
3537 /* Convert back to frames for LS/FS devices */
3538 if (urb->dev->speed == USB_SPEED_LOW ||
3539 urb->dev->speed == USB_SPEED_FULL)
3540 urb->interval /= 8;
3541 }
3542 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3543
3544 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3545 }
3546
3547 /**** Command Ring Operations ****/
3548
3549 /* Generic function for queueing a command TRB on the command ring.
3550 * Check to make sure there's room on the command ring for one command TRB.
3551 * Also check that there's room reserved for commands that must not fail.
3552 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3553 * then only check for the number of reserved spots.
3554 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3555 * because the command event handler may want to resubmit a failed command.
3556 */
3557 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3558 u32 field3, u32 field4, bool command_must_succeed)
3559 {
3560 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3561 int ret;
3562
3563 if (!command_must_succeed)
3564 reserved_trbs++;
3565
3566 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3567 reserved_trbs, GFP_ATOMIC);
3568 if (ret < 0) {
3569 xhci_err(xhci, "ERR: No room for command on command ring\n");
3570 if (command_must_succeed)
3571 xhci_err(xhci, "ERR: Reserved TRB counting for "
3572 "unfailable commands failed.\n");
3573 return ret;
3574 }
3575 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3576 field4 | xhci->cmd_ring->cycle_state);
3577 return 0;
3578 }
3579
3580 /* Queue a slot enable or disable request on the command ring */
3581 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3582 {
3583 return queue_command(xhci, 0, 0, 0,
3584 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3585 }
3586
3587 /* Queue an address device command TRB */
3588 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3589 u32 slot_id)
3590 {
3591 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3592 upper_32_bits(in_ctx_ptr), 0,
3593 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3594 false);
3595 }
3596
3597 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3598 u32 field1, u32 field2, u32 field3, u32 field4)
3599 {
3600 return queue_command(xhci, field1, field2, field3, field4, false);
3601 }
3602
3603 /* Queue a reset device command TRB */
3604 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3605 {
3606 return queue_command(xhci, 0, 0, 0,
3607 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3608 false);
3609 }
3610
3611 /* Queue a configure endpoint command TRB */
3612 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3613 u32 slot_id, bool command_must_succeed)
3614 {
3615 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3616 upper_32_bits(in_ctx_ptr), 0,
3617 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3618 command_must_succeed);
3619 }
3620
3621 /* Queue an evaluate context command TRB */
3622 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3623 u32 slot_id, bool command_must_succeed)
3624 {
3625 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3626 upper_32_bits(in_ctx_ptr), 0,
3627 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3628 command_must_succeed);
3629 }
3630
3631 /*
3632 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3633 * activity on an endpoint that is about to be suspended.
3634 */
3635 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3636 unsigned int ep_index, int suspend)
3637 {
3638 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3639 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3640 u32 type = TRB_TYPE(TRB_STOP_RING);
3641 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3642
3643 return queue_command(xhci, 0, 0, 0,
3644 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3645 }
3646
3647 /* Set Transfer Ring Dequeue Pointer command.
3648 * This should not be used for endpoints that have streams enabled.
3649 */
3650 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3651 unsigned int ep_index, unsigned int stream_id,
3652 struct xhci_segment *deq_seg,
3653 union xhci_trb *deq_ptr, u32 cycle_state)
3654 {
3655 dma_addr_t addr;
3656 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3657 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3658 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3659 u32 type = TRB_TYPE(TRB_SET_DEQ);
3660 struct xhci_virt_ep *ep;
3661
3662 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
3663 if (addr == 0) {
3664 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3665 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3666 deq_seg, deq_ptr);
3667 return 0;
3668 }
3669 ep = &xhci->devs[slot_id]->eps[ep_index];
3670 if ((ep->ep_state & SET_DEQ_PENDING)) {
3671 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3672 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3673 return 0;
3674 }
3675 ep->queued_deq_seg = deq_seg;
3676 ep->queued_deq_ptr = deq_ptr;
3677 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
3678 upper_32_bits(addr), trb_stream_id,
3679 trb_slot_id | trb_ep_index | type, false);
3680 }
3681
3682 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
3683 unsigned int ep_index)
3684 {
3685 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3686 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3687 u32 type = TRB_TYPE(TRB_RESET_EP);
3688
3689 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
3690 false);
3691 }
This page took 0.224602 seconds and 5 git commands to generate.