9ac9672d4498fe2550c2169e8fd46d49dca1ef18
[deliverable/linux.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70 #include "xhci-trace.h"
71
72 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
73 struct xhci_virt_device *virt_dev,
74 struct xhci_event_cmd *event);
75
76 /*
77 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
78 * address of the TRB.
79 */
80 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
81 union xhci_trb *trb)
82 {
83 unsigned long segment_offset;
84
85 if (!seg || !trb || trb < seg->trbs)
86 return 0;
87 /* offset in TRBs */
88 segment_offset = trb - seg->trbs;
89 if (segment_offset > TRBS_PER_SEGMENT)
90 return 0;
91 return seg->dma + (segment_offset * sizeof(*trb));
92 }
93
94 /* Does this link TRB point to the first segment in a ring,
95 * or was the previous TRB the last TRB on the last segment in the ERST?
96 */
97 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
98 struct xhci_segment *seg, union xhci_trb *trb)
99 {
100 if (ring == xhci->event_ring)
101 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
102 (seg->next == xhci->event_ring->first_seg);
103 else
104 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
105 }
106
107 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
108 * segment? I.e. would the updated event TRB pointer step off the end of the
109 * event seg?
110 */
111 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
112 struct xhci_segment *seg, union xhci_trb *trb)
113 {
114 if (ring == xhci->event_ring)
115 return trb == &seg->trbs[TRBS_PER_SEGMENT];
116 else
117 return TRB_TYPE_LINK_LE32(trb->link.control);
118 }
119
120 static int enqueue_is_link_trb(struct xhci_ring *ring)
121 {
122 struct xhci_link_trb *link = &ring->enqueue->link;
123 return TRB_TYPE_LINK_LE32(link->control);
124 }
125
126 union xhci_trb *xhci_find_next_enqueue(struct xhci_ring *ring)
127 {
128 /* Enqueue pointer can be left pointing to the link TRB,
129 * we must handle that
130 */
131 if (TRB_TYPE_LINK_LE32(ring->enqueue->link.control))
132 return ring->enq_seg->next->trbs;
133 return ring->enqueue;
134 }
135
136 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
137 * TRB is in a new segment. This does not skip over link TRBs, and it does not
138 * effect the ring dequeue or enqueue pointers.
139 */
140 static void next_trb(struct xhci_hcd *xhci,
141 struct xhci_ring *ring,
142 struct xhci_segment **seg,
143 union xhci_trb **trb)
144 {
145 if (last_trb(xhci, ring, *seg, *trb)) {
146 *seg = (*seg)->next;
147 *trb = ((*seg)->trbs);
148 } else {
149 (*trb)++;
150 }
151 }
152
153 /*
154 * See Cycle bit rules. SW is the consumer for the event ring only.
155 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
156 */
157 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
158 {
159 unsigned long long addr;
160
161 ring->deq_updates++;
162
163 /*
164 * If this is not event ring, and the dequeue pointer
165 * is not on a link TRB, there is one more usable TRB
166 */
167 if (ring->type != TYPE_EVENT &&
168 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
169 ring->num_trbs_free++;
170
171 do {
172 /*
173 * Update the dequeue pointer further if that was a link TRB or
174 * we're at the end of an event ring segment (which doesn't have
175 * link TRBS)
176 */
177 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
178 if (ring->type == TYPE_EVENT &&
179 last_trb_on_last_seg(xhci, ring,
180 ring->deq_seg, ring->dequeue)) {
181 ring->cycle_state = (ring->cycle_state ? 0 : 1);
182 }
183 ring->deq_seg = ring->deq_seg->next;
184 ring->dequeue = ring->deq_seg->trbs;
185 } else {
186 ring->dequeue++;
187 }
188 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
189
190 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
191 }
192
193 /*
194 * See Cycle bit rules. SW is the consumer for the event ring only.
195 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
196 *
197 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
198 * chain bit is set), then set the chain bit in all the following link TRBs.
199 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
200 * have their chain bit cleared (so that each Link TRB is a separate TD).
201 *
202 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
203 * set, but other sections talk about dealing with the chain bit set. This was
204 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
205 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
206 *
207 * @more_trbs_coming: Will you enqueue more TRBs before calling
208 * prepare_transfer()?
209 */
210 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
211 bool more_trbs_coming)
212 {
213 u32 chain;
214 union xhci_trb *next;
215 unsigned long long addr;
216
217 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
218 /* If this is not event ring, there is one less usable TRB */
219 if (ring->type != TYPE_EVENT &&
220 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
221 ring->num_trbs_free--;
222 next = ++(ring->enqueue);
223
224 ring->enq_updates++;
225 /* Update the dequeue pointer further if that was a link TRB or we're at
226 * the end of an event ring segment (which doesn't have link TRBS)
227 */
228 while (last_trb(xhci, ring, ring->enq_seg, next)) {
229 if (ring->type != TYPE_EVENT) {
230 /*
231 * If the caller doesn't plan on enqueueing more
232 * TDs before ringing the doorbell, then we
233 * don't want to give the link TRB to the
234 * hardware just yet. We'll give the link TRB
235 * back in prepare_ring() just before we enqueue
236 * the TD at the top of the ring.
237 */
238 if (!chain && !more_trbs_coming)
239 break;
240
241 /* If we're not dealing with 0.95 hardware or
242 * isoc rings on AMD 0.96 host,
243 * carry over the chain bit of the previous TRB
244 * (which may mean the chain bit is cleared).
245 */
246 if (!(ring->type == TYPE_ISOC &&
247 (xhci->quirks & XHCI_AMD_0x96_HOST))
248 && !xhci_link_trb_quirk(xhci)) {
249 next->link.control &=
250 cpu_to_le32(~TRB_CHAIN);
251 next->link.control |=
252 cpu_to_le32(chain);
253 }
254 /* Give this link TRB to the hardware */
255 wmb();
256 next->link.control ^= cpu_to_le32(TRB_CYCLE);
257
258 /* Toggle the cycle bit after the last ring segment. */
259 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
260 ring->cycle_state = (ring->cycle_state ? 0 : 1);
261 }
262 }
263 ring->enq_seg = ring->enq_seg->next;
264 ring->enqueue = ring->enq_seg->trbs;
265 next = ring->enqueue;
266 }
267 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
268 }
269
270 /*
271 * Check to see if there's room to enqueue num_trbs on the ring and make sure
272 * enqueue pointer will not advance into dequeue segment. See rules above.
273 */
274 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
275 unsigned int num_trbs)
276 {
277 int num_trbs_in_deq_seg;
278
279 if (ring->num_trbs_free < num_trbs)
280 return 0;
281
282 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
283 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
284 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
285 return 0;
286 }
287
288 return 1;
289 }
290
291 /* Ring the host controller doorbell after placing a command on the ring */
292 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
293 {
294 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
295 return;
296
297 xhci_dbg(xhci, "// Ding dong!\n");
298 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
299 /* Flush PCI posted writes */
300 xhci_readl(xhci, &xhci->dba->doorbell[0]);
301 }
302
303 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
304 {
305 u64 temp_64;
306 int ret;
307
308 xhci_dbg(xhci, "Abort command ring\n");
309
310 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) {
311 xhci_dbg(xhci, "The command ring isn't running, "
312 "Have the command ring been stopped?\n");
313 return 0;
314 }
315
316 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
317 if (!(temp_64 & CMD_RING_RUNNING)) {
318 xhci_dbg(xhci, "Command ring had been stopped\n");
319 return 0;
320 }
321 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
322 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
323 &xhci->op_regs->cmd_ring);
324
325 /* Section 4.6.1.2 of xHCI 1.0 spec says software should
326 * time the completion od all xHCI commands, including
327 * the Command Abort operation. If software doesn't see
328 * CRR negated in a timely manner (e.g. longer than 5
329 * seconds), then it should assume that the there are
330 * larger problems with the xHC and assert HCRST.
331 */
332 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring,
333 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
334 if (ret < 0) {
335 xhci_err(xhci, "Stopped the command ring failed, "
336 "maybe the host is dead\n");
337 xhci->xhc_state |= XHCI_STATE_DYING;
338 xhci_quiesce(xhci);
339 xhci_halt(xhci);
340 return -ESHUTDOWN;
341 }
342
343 return 0;
344 }
345
346 static int xhci_queue_cd(struct xhci_hcd *xhci,
347 struct xhci_command *command,
348 union xhci_trb *cmd_trb)
349 {
350 struct xhci_cd *cd;
351 cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC);
352 if (!cd)
353 return -ENOMEM;
354 INIT_LIST_HEAD(&cd->cancel_cmd_list);
355
356 cd->command = command;
357 cd->cmd_trb = cmd_trb;
358 list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list);
359
360 return 0;
361 }
362
363 /*
364 * Cancel the command which has issue.
365 *
366 * Some commands may hang due to waiting for acknowledgement from
367 * usb device. It is outside of the xHC's ability to control and
368 * will cause the command ring is blocked. When it occurs software
369 * should intervene to recover the command ring.
370 * See Section 4.6.1.1 and 4.6.1.2
371 */
372 int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command,
373 union xhci_trb *cmd_trb)
374 {
375 int retval = 0;
376 unsigned long flags;
377
378 spin_lock_irqsave(&xhci->lock, flags);
379
380 if (xhci->xhc_state & XHCI_STATE_DYING) {
381 xhci_warn(xhci, "Abort the command ring,"
382 " but the xHCI is dead.\n");
383 retval = -ESHUTDOWN;
384 goto fail;
385 }
386
387 /* queue the cmd desriptor to cancel_cmd_list */
388 retval = xhci_queue_cd(xhci, command, cmd_trb);
389 if (retval) {
390 xhci_warn(xhci, "Queuing command descriptor failed.\n");
391 goto fail;
392 }
393
394 /* abort command ring */
395 retval = xhci_abort_cmd_ring(xhci);
396 if (retval) {
397 xhci_err(xhci, "Abort command ring failed\n");
398 if (unlikely(retval == -ESHUTDOWN)) {
399 spin_unlock_irqrestore(&xhci->lock, flags);
400 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
401 xhci_dbg(xhci, "xHCI host controller is dead.\n");
402 return retval;
403 }
404 }
405
406 fail:
407 spin_unlock_irqrestore(&xhci->lock, flags);
408 return retval;
409 }
410
411 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
412 unsigned int slot_id,
413 unsigned int ep_index,
414 unsigned int stream_id)
415 {
416 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
417 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
418 unsigned int ep_state = ep->ep_state;
419
420 /* Don't ring the doorbell for this endpoint if there are pending
421 * cancellations because we don't want to interrupt processing.
422 * We don't want to restart any stream rings if there's a set dequeue
423 * pointer command pending because the device can choose to start any
424 * stream once the endpoint is on the HW schedule.
425 * FIXME - check all the stream rings for pending cancellations.
426 */
427 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
428 (ep_state & EP_HALTED))
429 return;
430 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
431 /* The CPU has better things to do at this point than wait for a
432 * write-posting flush. It'll get there soon enough.
433 */
434 }
435
436 /* Ring the doorbell for any rings with pending URBs */
437 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
438 unsigned int slot_id,
439 unsigned int ep_index)
440 {
441 unsigned int stream_id;
442 struct xhci_virt_ep *ep;
443
444 ep = &xhci->devs[slot_id]->eps[ep_index];
445
446 /* A ring has pending URBs if its TD list is not empty */
447 if (!(ep->ep_state & EP_HAS_STREAMS)) {
448 if (ep->ring && !(list_empty(&ep->ring->td_list)))
449 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
450 return;
451 }
452
453 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
454 stream_id++) {
455 struct xhci_stream_info *stream_info = ep->stream_info;
456 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
457 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
458 stream_id);
459 }
460 }
461
462 /*
463 * Find the segment that trb is in. Start searching in start_seg.
464 * If we must move past a segment that has a link TRB with a toggle cycle state
465 * bit set, then we will toggle the value pointed at by cycle_state.
466 */
467 static struct xhci_segment *find_trb_seg(
468 struct xhci_segment *start_seg,
469 union xhci_trb *trb, int *cycle_state)
470 {
471 struct xhci_segment *cur_seg = start_seg;
472 struct xhci_generic_trb *generic_trb;
473
474 while (cur_seg->trbs > trb ||
475 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
476 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
477 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
478 *cycle_state ^= 0x1;
479 cur_seg = cur_seg->next;
480 if (cur_seg == start_seg)
481 /* Looped over the entire list. Oops! */
482 return NULL;
483 }
484 return cur_seg;
485 }
486
487
488 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
489 unsigned int slot_id, unsigned int ep_index,
490 unsigned int stream_id)
491 {
492 struct xhci_virt_ep *ep;
493
494 ep = &xhci->devs[slot_id]->eps[ep_index];
495 /* Common case: no streams */
496 if (!(ep->ep_state & EP_HAS_STREAMS))
497 return ep->ring;
498
499 if (stream_id == 0) {
500 xhci_warn(xhci,
501 "WARN: Slot ID %u, ep index %u has streams, "
502 "but URB has no stream ID.\n",
503 slot_id, ep_index);
504 return NULL;
505 }
506
507 if (stream_id < ep->stream_info->num_streams)
508 return ep->stream_info->stream_rings[stream_id];
509
510 xhci_warn(xhci,
511 "WARN: Slot ID %u, ep index %u has "
512 "stream IDs 1 to %u allocated, "
513 "but stream ID %u is requested.\n",
514 slot_id, ep_index,
515 ep->stream_info->num_streams - 1,
516 stream_id);
517 return NULL;
518 }
519
520 /* Get the right ring for the given URB.
521 * If the endpoint supports streams, boundary check the URB's stream ID.
522 * If the endpoint doesn't support streams, return the singular endpoint ring.
523 */
524 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
525 struct urb *urb)
526 {
527 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
528 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
529 }
530
531 /*
532 * Move the xHC's endpoint ring dequeue pointer past cur_td.
533 * Record the new state of the xHC's endpoint ring dequeue segment,
534 * dequeue pointer, and new consumer cycle state in state.
535 * Update our internal representation of the ring's dequeue pointer.
536 *
537 * We do this in three jumps:
538 * - First we update our new ring state to be the same as when the xHC stopped.
539 * - Then we traverse the ring to find the segment that contains
540 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
541 * any link TRBs with the toggle cycle bit set.
542 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
543 * if we've moved it past a link TRB with the toggle cycle bit set.
544 *
545 * Some of the uses of xhci_generic_trb are grotty, but if they're done
546 * with correct __le32 accesses they should work fine. Only users of this are
547 * in here.
548 */
549 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
550 unsigned int slot_id, unsigned int ep_index,
551 unsigned int stream_id, struct xhci_td *cur_td,
552 struct xhci_dequeue_state *state)
553 {
554 struct xhci_virt_device *dev = xhci->devs[slot_id];
555 struct xhci_ring *ep_ring;
556 struct xhci_generic_trb *trb;
557 struct xhci_ep_ctx *ep_ctx;
558 dma_addr_t addr;
559
560 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
561 ep_index, stream_id);
562 if (!ep_ring) {
563 xhci_warn(xhci, "WARN can't find new dequeue state "
564 "for invalid stream ID %u.\n",
565 stream_id);
566 return;
567 }
568 state->new_cycle_state = 0;
569 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
570 "Finding segment containing stopped TRB.");
571 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
572 dev->eps[ep_index].stopped_trb,
573 &state->new_cycle_state);
574 if (!state->new_deq_seg) {
575 WARN_ON(1);
576 return;
577 }
578
579 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
580 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
581 "Finding endpoint context");
582 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
583 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
584
585 state->new_deq_ptr = cur_td->last_trb;
586 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
587 "Finding segment containing last TRB in TD.");
588 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
589 state->new_deq_ptr,
590 &state->new_cycle_state);
591 if (!state->new_deq_seg) {
592 WARN_ON(1);
593 return;
594 }
595
596 trb = &state->new_deq_ptr->generic;
597 if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
598 (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
599 state->new_cycle_state ^= 0x1;
600 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
601
602 /*
603 * If there is only one segment in a ring, find_trb_seg()'s while loop
604 * will not run, and it will return before it has a chance to see if it
605 * needs to toggle the cycle bit. It can't tell if the stalled transfer
606 * ended just before the link TRB on a one-segment ring, or if the TD
607 * wrapped around the top of the ring, because it doesn't have the TD in
608 * question. Look for the one-segment case where stalled TRB's address
609 * is greater than the new dequeue pointer address.
610 */
611 if (ep_ring->first_seg == ep_ring->first_seg->next &&
612 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
613 state->new_cycle_state ^= 0x1;
614 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
615 "Cycle state = 0x%x", state->new_cycle_state);
616
617 /* Don't update the ring cycle state for the producer (us). */
618 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
619 "New dequeue segment = %p (virtual)",
620 state->new_deq_seg);
621 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
622 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
623 "New dequeue pointer = 0x%llx (DMA)",
624 (unsigned long long) addr);
625 }
626
627 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
628 * (The last TRB actually points to the ring enqueue pointer, which is not part
629 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
630 */
631 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
632 struct xhci_td *cur_td, bool flip_cycle)
633 {
634 struct xhci_segment *cur_seg;
635 union xhci_trb *cur_trb;
636
637 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
638 true;
639 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
640 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
641 /* Unchain any chained Link TRBs, but
642 * leave the pointers intact.
643 */
644 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
645 /* Flip the cycle bit (link TRBs can't be the first
646 * or last TRB).
647 */
648 if (flip_cycle)
649 cur_trb->generic.field[3] ^=
650 cpu_to_le32(TRB_CYCLE);
651 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
652 "Cancel (unchain) link TRB");
653 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
654 "Address = %p (0x%llx dma); "
655 "in seg %p (0x%llx dma)",
656 cur_trb,
657 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
658 cur_seg,
659 (unsigned long long)cur_seg->dma);
660 } else {
661 cur_trb->generic.field[0] = 0;
662 cur_trb->generic.field[1] = 0;
663 cur_trb->generic.field[2] = 0;
664 /* Preserve only the cycle bit of this TRB */
665 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
666 /* Flip the cycle bit except on the first or last TRB */
667 if (flip_cycle && cur_trb != cur_td->first_trb &&
668 cur_trb != cur_td->last_trb)
669 cur_trb->generic.field[3] ^=
670 cpu_to_le32(TRB_CYCLE);
671 cur_trb->generic.field[3] |= cpu_to_le32(
672 TRB_TYPE(TRB_TR_NOOP));
673 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
674 "TRB to noop at offset 0x%llx",
675 (unsigned long long)
676 xhci_trb_virt_to_dma(cur_seg, cur_trb));
677 }
678 if (cur_trb == cur_td->last_trb)
679 break;
680 }
681 }
682
683 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
684 unsigned int ep_index, unsigned int stream_id,
685 struct xhci_segment *deq_seg,
686 union xhci_trb *deq_ptr, u32 cycle_state);
687
688 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
689 unsigned int slot_id, unsigned int ep_index,
690 unsigned int stream_id,
691 struct xhci_dequeue_state *deq_state)
692 {
693 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
694
695 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
696 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
697 "new deq ptr = %p (0x%llx dma), new cycle = %u",
698 deq_state->new_deq_seg,
699 (unsigned long long)deq_state->new_deq_seg->dma,
700 deq_state->new_deq_ptr,
701 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
702 deq_state->new_cycle_state);
703 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
704 deq_state->new_deq_seg,
705 deq_state->new_deq_ptr,
706 (u32) deq_state->new_cycle_state);
707 /* Stop the TD queueing code from ringing the doorbell until
708 * this command completes. The HC won't set the dequeue pointer
709 * if the ring is running, and ringing the doorbell starts the
710 * ring running.
711 */
712 ep->ep_state |= SET_DEQ_PENDING;
713 }
714
715 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
716 struct xhci_virt_ep *ep)
717 {
718 ep->ep_state &= ~EP_HALT_PENDING;
719 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
720 * timer is running on another CPU, we don't decrement stop_cmds_pending
721 * (since we didn't successfully stop the watchdog timer).
722 */
723 if (del_timer(&ep->stop_cmd_timer))
724 ep->stop_cmds_pending--;
725 }
726
727 /* Must be called with xhci->lock held in interrupt context */
728 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
729 struct xhci_td *cur_td, int status, char *adjective)
730 {
731 struct usb_hcd *hcd;
732 struct urb *urb;
733 struct urb_priv *urb_priv;
734
735 urb = cur_td->urb;
736 urb_priv = urb->hcpriv;
737 urb_priv->td_cnt++;
738 hcd = bus_to_hcd(urb->dev->bus);
739
740 /* Only giveback urb when this is the last td in urb */
741 if (urb_priv->td_cnt == urb_priv->length) {
742 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
743 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
744 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
745 if (xhci->quirks & XHCI_AMD_PLL_FIX)
746 usb_amd_quirk_pll_enable();
747 }
748 }
749 usb_hcd_unlink_urb_from_ep(hcd, urb);
750
751 spin_unlock(&xhci->lock);
752 usb_hcd_giveback_urb(hcd, urb, status);
753 xhci_urb_free_priv(xhci, urb_priv);
754 spin_lock(&xhci->lock);
755 }
756 }
757
758 /*
759 * When we get a command completion for a Stop Endpoint Command, we need to
760 * unlink any cancelled TDs from the ring. There are two ways to do that:
761 *
762 * 1. If the HW was in the middle of processing the TD that needs to be
763 * cancelled, then we must move the ring's dequeue pointer past the last TRB
764 * in the TD with a Set Dequeue Pointer Command.
765 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
766 * bit cleared) so that the HW will skip over them.
767 */
768 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
769 union xhci_trb *trb, struct xhci_event_cmd *event)
770 {
771 unsigned int slot_id;
772 unsigned int ep_index;
773 struct xhci_virt_device *virt_dev;
774 struct xhci_ring *ep_ring;
775 struct xhci_virt_ep *ep;
776 struct list_head *entry;
777 struct xhci_td *cur_td = NULL;
778 struct xhci_td *last_unlinked_td;
779
780 struct xhci_dequeue_state deq_state;
781
782 if (unlikely(TRB_TO_SUSPEND_PORT(
783 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
784 slot_id = TRB_TO_SLOT_ID(
785 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
786 virt_dev = xhci->devs[slot_id];
787 if (virt_dev)
788 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
789 event);
790 else
791 xhci_warn(xhci, "Stop endpoint command "
792 "completion for disabled slot %u\n",
793 slot_id);
794 return;
795 }
796
797 memset(&deq_state, 0, sizeof(deq_state));
798 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
799 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
800 ep = &xhci->devs[slot_id]->eps[ep_index];
801
802 if (list_empty(&ep->cancelled_td_list)) {
803 xhci_stop_watchdog_timer_in_irq(xhci, ep);
804 ep->stopped_td = NULL;
805 ep->stopped_trb = NULL;
806 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
807 return;
808 }
809
810 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
811 * We have the xHCI lock, so nothing can modify this list until we drop
812 * it. We're also in the event handler, so we can't get re-interrupted
813 * if another Stop Endpoint command completes
814 */
815 list_for_each(entry, &ep->cancelled_td_list) {
816 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
817 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
818 "Removing canceled TD starting at 0x%llx (dma).",
819 (unsigned long long)xhci_trb_virt_to_dma(
820 cur_td->start_seg, cur_td->first_trb));
821 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
822 if (!ep_ring) {
823 /* This shouldn't happen unless a driver is mucking
824 * with the stream ID after submission. This will
825 * leave the TD on the hardware ring, and the hardware
826 * will try to execute it, and may access a buffer
827 * that has already been freed. In the best case, the
828 * hardware will execute it, and the event handler will
829 * ignore the completion event for that TD, since it was
830 * removed from the td_list for that endpoint. In
831 * short, don't muck with the stream ID after
832 * submission.
833 */
834 xhci_warn(xhci, "WARN Cancelled URB %p "
835 "has invalid stream ID %u.\n",
836 cur_td->urb,
837 cur_td->urb->stream_id);
838 goto remove_finished_td;
839 }
840 /*
841 * If we stopped on the TD we need to cancel, then we have to
842 * move the xHC endpoint ring dequeue pointer past this TD.
843 */
844 if (cur_td == ep->stopped_td)
845 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
846 cur_td->urb->stream_id,
847 cur_td, &deq_state);
848 else
849 td_to_noop(xhci, ep_ring, cur_td, false);
850 remove_finished_td:
851 /*
852 * The event handler won't see a completion for this TD anymore,
853 * so remove it from the endpoint ring's TD list. Keep it in
854 * the cancelled TD list for URB completion later.
855 */
856 list_del_init(&cur_td->td_list);
857 }
858 last_unlinked_td = cur_td;
859 xhci_stop_watchdog_timer_in_irq(xhci, ep);
860
861 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
862 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
863 xhci_queue_new_dequeue_state(xhci,
864 slot_id, ep_index,
865 ep->stopped_td->urb->stream_id,
866 &deq_state);
867 xhci_ring_cmd_db(xhci);
868 } else {
869 /* Otherwise ring the doorbell(s) to restart queued transfers */
870 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
871 }
872 ep->stopped_td = NULL;
873 ep->stopped_trb = NULL;
874
875 /*
876 * Drop the lock and complete the URBs in the cancelled TD list.
877 * New TDs to be cancelled might be added to the end of the list before
878 * we can complete all the URBs for the TDs we already unlinked.
879 * So stop when we've completed the URB for the last TD we unlinked.
880 */
881 do {
882 cur_td = list_entry(ep->cancelled_td_list.next,
883 struct xhci_td, cancelled_td_list);
884 list_del_init(&cur_td->cancelled_td_list);
885
886 /* Clean up the cancelled URB */
887 /* Doesn't matter what we pass for status, since the core will
888 * just overwrite it (because the URB has been unlinked).
889 */
890 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
891
892 /* Stop processing the cancelled list if the watchdog timer is
893 * running.
894 */
895 if (xhci->xhc_state & XHCI_STATE_DYING)
896 return;
897 } while (cur_td != last_unlinked_td);
898
899 /* Return to the event handler with xhci->lock re-acquired */
900 }
901
902 /* Watchdog timer function for when a stop endpoint command fails to complete.
903 * In this case, we assume the host controller is broken or dying or dead. The
904 * host may still be completing some other events, so we have to be careful to
905 * let the event ring handler and the URB dequeueing/enqueueing functions know
906 * through xhci->state.
907 *
908 * The timer may also fire if the host takes a very long time to respond to the
909 * command, and the stop endpoint command completion handler cannot delete the
910 * timer before the timer function is called. Another endpoint cancellation may
911 * sneak in before the timer function can grab the lock, and that may queue
912 * another stop endpoint command and add the timer back. So we cannot use a
913 * simple flag to say whether there is a pending stop endpoint command for a
914 * particular endpoint.
915 *
916 * Instead we use a combination of that flag and a counter for the number of
917 * pending stop endpoint commands. If the timer is the tail end of the last
918 * stop endpoint command, and the endpoint's command is still pending, we assume
919 * the host is dying.
920 */
921 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
922 {
923 struct xhci_hcd *xhci;
924 struct xhci_virt_ep *ep;
925 struct xhci_virt_ep *temp_ep;
926 struct xhci_ring *ring;
927 struct xhci_td *cur_td;
928 int ret, i, j;
929 unsigned long flags;
930
931 ep = (struct xhci_virt_ep *) arg;
932 xhci = ep->xhci;
933
934 spin_lock_irqsave(&xhci->lock, flags);
935
936 ep->stop_cmds_pending--;
937 if (xhci->xhc_state & XHCI_STATE_DYING) {
938 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
939 "Stop EP timer ran, but another timer marked "
940 "xHCI as DYING, exiting.");
941 spin_unlock_irqrestore(&xhci->lock, flags);
942 return;
943 }
944 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
945 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
946 "Stop EP timer ran, but no command pending, "
947 "exiting.");
948 spin_unlock_irqrestore(&xhci->lock, flags);
949 return;
950 }
951
952 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
953 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
954 /* Oops, HC is dead or dying or at least not responding to the stop
955 * endpoint command.
956 */
957 xhci->xhc_state |= XHCI_STATE_DYING;
958 /* Disable interrupts from the host controller and start halting it */
959 xhci_quiesce(xhci);
960 spin_unlock_irqrestore(&xhci->lock, flags);
961
962 ret = xhci_halt(xhci);
963
964 spin_lock_irqsave(&xhci->lock, flags);
965 if (ret < 0) {
966 /* This is bad; the host is not responding to commands and it's
967 * not allowing itself to be halted. At least interrupts are
968 * disabled. If we call usb_hc_died(), it will attempt to
969 * disconnect all device drivers under this host. Those
970 * disconnect() methods will wait for all URBs to be unlinked,
971 * so we must complete them.
972 */
973 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
974 xhci_warn(xhci, "Completing active URBs anyway.\n");
975 /* We could turn all TDs on the rings to no-ops. This won't
976 * help if the host has cached part of the ring, and is slow if
977 * we want to preserve the cycle bit. Skip it and hope the host
978 * doesn't touch the memory.
979 */
980 }
981 for (i = 0; i < MAX_HC_SLOTS; i++) {
982 if (!xhci->devs[i])
983 continue;
984 for (j = 0; j < 31; j++) {
985 temp_ep = &xhci->devs[i]->eps[j];
986 ring = temp_ep->ring;
987 if (!ring)
988 continue;
989 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
990 "Killing URBs for slot ID %u, "
991 "ep index %u", i, j);
992 while (!list_empty(&ring->td_list)) {
993 cur_td = list_first_entry(&ring->td_list,
994 struct xhci_td,
995 td_list);
996 list_del_init(&cur_td->td_list);
997 if (!list_empty(&cur_td->cancelled_td_list))
998 list_del_init(&cur_td->cancelled_td_list);
999 xhci_giveback_urb_in_irq(xhci, cur_td,
1000 -ESHUTDOWN, "killed");
1001 }
1002 while (!list_empty(&temp_ep->cancelled_td_list)) {
1003 cur_td = list_first_entry(
1004 &temp_ep->cancelled_td_list,
1005 struct xhci_td,
1006 cancelled_td_list);
1007 list_del_init(&cur_td->cancelled_td_list);
1008 xhci_giveback_urb_in_irq(xhci, cur_td,
1009 -ESHUTDOWN, "killed");
1010 }
1011 }
1012 }
1013 spin_unlock_irqrestore(&xhci->lock, flags);
1014 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1015 "Calling usb_hc_died()");
1016 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1017 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1018 "xHCI host controller is dead.");
1019 }
1020
1021
1022 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
1023 struct xhci_virt_device *dev,
1024 struct xhci_ring *ep_ring,
1025 unsigned int ep_index)
1026 {
1027 union xhci_trb *dequeue_temp;
1028 int num_trbs_free_temp;
1029 bool revert = false;
1030
1031 num_trbs_free_temp = ep_ring->num_trbs_free;
1032 dequeue_temp = ep_ring->dequeue;
1033
1034 /* If we get two back-to-back stalls, and the first stalled transfer
1035 * ends just before a link TRB, the dequeue pointer will be left on
1036 * the link TRB by the code in the while loop. So we have to update
1037 * the dequeue pointer one segment further, or we'll jump off
1038 * the segment into la-la-land.
1039 */
1040 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
1041 ep_ring->deq_seg = ep_ring->deq_seg->next;
1042 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1043 }
1044
1045 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1046 /* We have more usable TRBs */
1047 ep_ring->num_trbs_free++;
1048 ep_ring->dequeue++;
1049 if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
1050 ep_ring->dequeue)) {
1051 if (ep_ring->dequeue ==
1052 dev->eps[ep_index].queued_deq_ptr)
1053 break;
1054 ep_ring->deq_seg = ep_ring->deq_seg->next;
1055 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1056 }
1057 if (ep_ring->dequeue == dequeue_temp) {
1058 revert = true;
1059 break;
1060 }
1061 }
1062
1063 if (revert) {
1064 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1065 ep_ring->num_trbs_free = num_trbs_free_temp;
1066 }
1067 }
1068
1069 /*
1070 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1071 * we need to clear the set deq pending flag in the endpoint ring state, so that
1072 * the TD queueing code can ring the doorbell again. We also need to ring the
1073 * endpoint doorbell to restart the ring, but only if there aren't more
1074 * cancellations pending.
1075 */
1076 static void handle_set_deq_completion(struct xhci_hcd *xhci,
1077 struct xhci_event_cmd *event,
1078 union xhci_trb *trb)
1079 {
1080 unsigned int slot_id;
1081 unsigned int ep_index;
1082 unsigned int stream_id;
1083 struct xhci_ring *ep_ring;
1084 struct xhci_virt_device *dev;
1085 struct xhci_ep_ctx *ep_ctx;
1086 struct xhci_slot_ctx *slot_ctx;
1087
1088 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1089 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1090 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1091 dev = xhci->devs[slot_id];
1092
1093 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1094 if (!ep_ring) {
1095 xhci_warn(xhci, "WARN Set TR deq ptr command for "
1096 "freed stream ID %u\n",
1097 stream_id);
1098 /* XXX: Harmless??? */
1099 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1100 return;
1101 }
1102
1103 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1104 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1105
1106 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
1107 unsigned int ep_state;
1108 unsigned int slot_state;
1109
1110 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
1111 case COMP_TRB_ERR:
1112 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
1113 "of stream ID configuration\n");
1114 break;
1115 case COMP_CTX_STATE:
1116 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
1117 "to incorrect slot or ep state.\n");
1118 ep_state = le32_to_cpu(ep_ctx->ep_info);
1119 ep_state &= EP_STATE_MASK;
1120 slot_state = le32_to_cpu(slot_ctx->dev_state);
1121 slot_state = GET_SLOT_STATE(slot_state);
1122 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1123 "Slot state = %u, EP state = %u",
1124 slot_state, ep_state);
1125 break;
1126 case COMP_EBADSLT:
1127 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
1128 "slot %u was not enabled.\n", slot_id);
1129 break;
1130 default:
1131 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
1132 "completion code of %u.\n",
1133 GET_COMP_CODE(le32_to_cpu(event->status)));
1134 break;
1135 }
1136 /* OK what do we do now? The endpoint state is hosed, and we
1137 * should never get to this point if the synchronization between
1138 * queueing, and endpoint state are correct. This might happen
1139 * if the device gets disconnected after we've finished
1140 * cancelling URBs, which might not be an error...
1141 */
1142 } else {
1143 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1144 "Successful Set TR Deq Ptr cmd, deq = @%08llx",
1145 le64_to_cpu(ep_ctx->deq));
1146 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
1147 dev->eps[ep_index].queued_deq_ptr) ==
1148 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
1149 /* Update the ring's dequeue segment and dequeue pointer
1150 * to reflect the new position.
1151 */
1152 update_ring_for_set_deq_completion(xhci, dev,
1153 ep_ring, ep_index);
1154 } else {
1155 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
1156 "Ptr command & xHCI internal state.\n");
1157 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1158 dev->eps[ep_index].queued_deq_seg,
1159 dev->eps[ep_index].queued_deq_ptr);
1160 }
1161 }
1162
1163 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1164 dev->eps[ep_index].queued_deq_seg = NULL;
1165 dev->eps[ep_index].queued_deq_ptr = NULL;
1166 /* Restart any rings with pending URBs */
1167 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1168 }
1169
1170 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1171 struct xhci_event_cmd *event,
1172 union xhci_trb *trb)
1173 {
1174 int slot_id;
1175 unsigned int ep_index;
1176
1177 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1178 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1179 /* This command will only fail if the endpoint wasn't halted,
1180 * but we don't care.
1181 */
1182 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1183 "Ignoring reset ep completion code of %u",
1184 GET_COMP_CODE(le32_to_cpu(event->status)));
1185
1186 /* HW with the reset endpoint quirk needs to have a configure endpoint
1187 * command complete before the endpoint can be used. Queue that here
1188 * because the HW can't handle two commands being queued in a row.
1189 */
1190 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1191 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1192 "Queueing configure endpoint command");
1193 xhci_queue_configure_endpoint(xhci,
1194 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1195 false);
1196 xhci_ring_cmd_db(xhci);
1197 } else {
1198 /* Clear our internal halted state and restart the ring(s) */
1199 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1200 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1201 }
1202 }
1203
1204 /* Complete the command and detele it from the devcie's command queue.
1205 */
1206 static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1207 struct xhci_command *command, u32 status)
1208 {
1209 command->status = status;
1210 list_del(&command->cmd_list);
1211 if (command->completion)
1212 complete(command->completion);
1213 else
1214 xhci_free_command(xhci, command);
1215 }
1216
1217
1218 /* Check to see if a command in the device's command queue matches this one.
1219 * Signal the completion or free the command, and return 1. Return 0 if the
1220 * completed command isn't at the head of the command list.
1221 */
1222 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1223 struct xhci_virt_device *virt_dev,
1224 struct xhci_event_cmd *event)
1225 {
1226 struct xhci_command *command;
1227
1228 if (list_empty(&virt_dev->cmd_list))
1229 return 0;
1230
1231 command = list_entry(virt_dev->cmd_list.next,
1232 struct xhci_command, cmd_list);
1233 if (xhci->cmd_ring->dequeue != command->command_trb)
1234 return 0;
1235
1236 xhci_complete_cmd_in_cmd_wait_list(xhci, command,
1237 GET_COMP_CODE(le32_to_cpu(event->status)));
1238 return 1;
1239 }
1240
1241 /*
1242 * Finding the command trb need to be cancelled and modifying it to
1243 * NO OP command. And if the command is in device's command wait
1244 * list, finishing and freeing it.
1245 *
1246 * If we can't find the command trb, we think it had already been
1247 * executed.
1248 */
1249 static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd)
1250 {
1251 struct xhci_segment *cur_seg;
1252 union xhci_trb *cmd_trb;
1253 u32 cycle_state;
1254
1255 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1256 return;
1257
1258 /* find the current segment of command ring */
1259 cur_seg = find_trb_seg(xhci->cmd_ring->first_seg,
1260 xhci->cmd_ring->dequeue, &cycle_state);
1261
1262 if (!cur_seg) {
1263 xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n",
1264 xhci->cmd_ring->dequeue,
1265 (unsigned long long)
1266 xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1267 xhci->cmd_ring->dequeue));
1268 xhci_debug_ring(xhci, xhci->cmd_ring);
1269 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
1270 return;
1271 }
1272
1273 /* find the command trb matched by cd from command ring */
1274 for (cmd_trb = xhci->cmd_ring->dequeue;
1275 cmd_trb != xhci->cmd_ring->enqueue;
1276 next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) {
1277 /* If the trb is link trb, continue */
1278 if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3]))
1279 continue;
1280
1281 if (cur_cd->cmd_trb == cmd_trb) {
1282
1283 /* If the command in device's command list, we should
1284 * finish it and free the command structure.
1285 */
1286 if (cur_cd->command)
1287 xhci_complete_cmd_in_cmd_wait_list(xhci,
1288 cur_cd->command, COMP_CMD_STOP);
1289
1290 /* get cycle state from the origin command trb */
1291 cycle_state = le32_to_cpu(cmd_trb->generic.field[3])
1292 & TRB_CYCLE;
1293
1294 /* modify the command trb to NO OP command */
1295 cmd_trb->generic.field[0] = 0;
1296 cmd_trb->generic.field[1] = 0;
1297 cmd_trb->generic.field[2] = 0;
1298 cmd_trb->generic.field[3] = cpu_to_le32(
1299 TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1300 break;
1301 }
1302 }
1303 }
1304
1305 static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci)
1306 {
1307 struct xhci_cd *cur_cd, *next_cd;
1308
1309 if (list_empty(&xhci->cancel_cmd_list))
1310 return;
1311
1312 list_for_each_entry_safe(cur_cd, next_cd,
1313 &xhci->cancel_cmd_list, cancel_cmd_list) {
1314 xhci_cmd_to_noop(xhci, cur_cd);
1315 list_del(&cur_cd->cancel_cmd_list);
1316 kfree(cur_cd);
1317 }
1318 }
1319
1320 /*
1321 * traversing the cancel_cmd_list. If the command descriptor according
1322 * to cmd_trb is found, the function free it and return 1, otherwise
1323 * return 0.
1324 */
1325 static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci,
1326 union xhci_trb *cmd_trb)
1327 {
1328 struct xhci_cd *cur_cd, *next_cd;
1329
1330 if (list_empty(&xhci->cancel_cmd_list))
1331 return 0;
1332
1333 list_for_each_entry_safe(cur_cd, next_cd,
1334 &xhci->cancel_cmd_list, cancel_cmd_list) {
1335 if (cur_cd->cmd_trb == cmd_trb) {
1336 if (cur_cd->command)
1337 xhci_complete_cmd_in_cmd_wait_list(xhci,
1338 cur_cd->command, COMP_CMD_STOP);
1339 list_del(&cur_cd->cancel_cmd_list);
1340 kfree(cur_cd);
1341 return 1;
1342 }
1343 }
1344
1345 return 0;
1346 }
1347
1348 /*
1349 * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the
1350 * trb pointed by the command ring dequeue pointer is the trb we want to
1351 * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will
1352 * traverse the cancel_cmd_list to trun the all of the commands according
1353 * to command descriptor to NO-OP trb.
1354 */
1355 static int handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1356 int cmd_trb_comp_code)
1357 {
1358 int cur_trb_is_good = 0;
1359
1360 /* Searching the cmd trb pointed by the command ring dequeue
1361 * pointer in command descriptor list. If it is found, free it.
1362 */
1363 cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci,
1364 xhci->cmd_ring->dequeue);
1365
1366 if (cmd_trb_comp_code == COMP_CMD_ABORT)
1367 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1368 else if (cmd_trb_comp_code == COMP_CMD_STOP) {
1369 /* traversing the cancel_cmd_list and canceling
1370 * the command according to command descriptor
1371 */
1372 xhci_cancel_cmd_in_cd_list(xhci);
1373
1374 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1375 /*
1376 * ring command ring doorbell again to restart the
1377 * command ring
1378 */
1379 if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue)
1380 xhci_ring_cmd_db(xhci);
1381 }
1382 return cur_trb_is_good;
1383 }
1384
1385 static void handle_cmd_completion(struct xhci_hcd *xhci,
1386 struct xhci_event_cmd *event)
1387 {
1388 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1389 u64 cmd_dma;
1390 dma_addr_t cmd_dequeue_dma;
1391 struct xhci_input_control_ctx *ctrl_ctx;
1392 struct xhci_virt_device *virt_dev;
1393 unsigned int ep_index;
1394 struct xhci_ring *ep_ring;
1395 unsigned int ep_state;
1396
1397 cmd_dma = le64_to_cpu(event->cmd_trb);
1398 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1399 xhci->cmd_ring->dequeue);
1400 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1401 if (cmd_dequeue_dma == 0) {
1402 xhci->error_bitmask |= 1 << 4;
1403 return;
1404 }
1405 /* Does the DMA address match our internal dequeue pointer address? */
1406 if (cmd_dma != (u64) cmd_dequeue_dma) {
1407 xhci->error_bitmask |= 1 << 5;
1408 return;
1409 }
1410
1411 trace_xhci_cmd_completion(&xhci->cmd_ring->dequeue->generic,
1412 (struct xhci_generic_trb *) event);
1413
1414 if ((GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_ABORT) ||
1415 (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_STOP)) {
1416 /* If the return value is 0, we think the trb pointed by
1417 * command ring dequeue pointer is a good trb. The good
1418 * trb means we don't want to cancel the trb, but it have
1419 * been stopped by host. So we should handle it normally.
1420 * Otherwise, driver should invoke inc_deq() and return.
1421 */
1422 if (handle_stopped_cmd_ring(xhci,
1423 GET_COMP_CODE(le32_to_cpu(event->status)))) {
1424 inc_deq(xhci, xhci->cmd_ring);
1425 return;
1426 }
1427 /* There is no command to handle if we get a stop event when the
1428 * command ring is empty, event->cmd_trb points to the next
1429 * unset command
1430 */
1431 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1432 return;
1433 }
1434
1435 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1436 & TRB_TYPE_BITMASK) {
1437 case TRB_TYPE(TRB_ENABLE_SLOT):
1438 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1439 xhci->slot_id = slot_id;
1440 else
1441 xhci->slot_id = 0;
1442 complete(&xhci->addr_dev);
1443 break;
1444 case TRB_TYPE(TRB_DISABLE_SLOT):
1445 if (xhci->devs[slot_id]) {
1446 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1447 /* Delete default control endpoint resources */
1448 xhci_free_device_endpoint_resources(xhci,
1449 xhci->devs[slot_id], true);
1450 xhci_free_virt_device(xhci, slot_id);
1451 }
1452 break;
1453 case TRB_TYPE(TRB_CONFIG_EP):
1454 virt_dev = xhci->devs[slot_id];
1455 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1456 break;
1457 /*
1458 * Configure endpoint commands can come from the USB core
1459 * configuration or alt setting changes, or because the HW
1460 * needed an extra configure endpoint command after a reset
1461 * endpoint command or streams were being configured.
1462 * If the command was for a halted endpoint, the xHCI driver
1463 * is not waiting on the configure endpoint command.
1464 */
1465 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1466 virt_dev->in_ctx);
1467 if (!ctrl_ctx) {
1468 xhci_warn(xhci, "Could not get input context, bad type.\n");
1469 break;
1470 }
1471 /* Input ctx add_flags are the endpoint index plus one */
1472 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1473 /* A usb_set_interface() call directly after clearing a halted
1474 * condition may race on this quirky hardware. Not worth
1475 * worrying about, since this is prototype hardware. Not sure
1476 * if this will work for streams, but streams support was
1477 * untested on this prototype.
1478 */
1479 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1480 ep_index != (unsigned int) -1 &&
1481 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1482 le32_to_cpu(ctrl_ctx->drop_flags)) {
1483 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1484 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1485 if (!(ep_state & EP_HALTED))
1486 goto bandwidth_change;
1487 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1488 "Completed config ep cmd - "
1489 "last ep index = %d, state = %d",
1490 ep_index, ep_state);
1491 /* Clear internal halted state and restart ring(s) */
1492 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1493 ~EP_HALTED;
1494 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1495 break;
1496 }
1497 bandwidth_change:
1498 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1499 "Completed config ep cmd");
1500 xhci->devs[slot_id]->cmd_status =
1501 GET_COMP_CODE(le32_to_cpu(event->status));
1502 complete(&xhci->devs[slot_id]->cmd_completion);
1503 break;
1504 case TRB_TYPE(TRB_EVAL_CONTEXT):
1505 virt_dev = xhci->devs[slot_id];
1506 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1507 break;
1508 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1509 complete(&xhci->devs[slot_id]->cmd_completion);
1510 break;
1511 case TRB_TYPE(TRB_ADDR_DEV):
1512 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1513 complete(&xhci->addr_dev);
1514 break;
1515 case TRB_TYPE(TRB_STOP_RING):
1516 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1517 break;
1518 case TRB_TYPE(TRB_SET_DEQ):
1519 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1520 break;
1521 case TRB_TYPE(TRB_CMD_NOOP):
1522 break;
1523 case TRB_TYPE(TRB_RESET_EP):
1524 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1525 break;
1526 case TRB_TYPE(TRB_RESET_DEV):
1527 xhci_dbg(xhci, "Completed reset device command.\n");
1528 slot_id = TRB_TO_SLOT_ID(
1529 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1530 virt_dev = xhci->devs[slot_id];
1531 if (virt_dev)
1532 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1533 else
1534 xhci_warn(xhci, "Reset device command completion "
1535 "for disabled slot %u\n", slot_id);
1536 break;
1537 case TRB_TYPE(TRB_NEC_GET_FW):
1538 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1539 xhci->error_bitmask |= 1 << 6;
1540 break;
1541 }
1542 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1543 "NEC firmware version %2x.%02x",
1544 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1545 NEC_FW_MINOR(le32_to_cpu(event->status)));
1546 break;
1547 default:
1548 /* Skip over unknown commands on the event ring */
1549 xhci->error_bitmask |= 1 << 6;
1550 break;
1551 }
1552 inc_deq(xhci, xhci->cmd_ring);
1553 }
1554
1555 static void handle_vendor_event(struct xhci_hcd *xhci,
1556 union xhci_trb *event)
1557 {
1558 u32 trb_type;
1559
1560 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1561 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1562 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1563 handle_cmd_completion(xhci, &event->event_cmd);
1564 }
1565
1566 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1567 * port registers -- USB 3.0 and USB 2.0).
1568 *
1569 * Returns a zero-based port number, which is suitable for indexing into each of
1570 * the split roothubs' port arrays and bus state arrays.
1571 * Add one to it in order to call xhci_find_slot_id_by_port.
1572 */
1573 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1574 struct xhci_hcd *xhci, u32 port_id)
1575 {
1576 unsigned int i;
1577 unsigned int num_similar_speed_ports = 0;
1578
1579 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1580 * and usb2_ports are 0-based indexes. Count the number of similar
1581 * speed ports, up to 1 port before this port.
1582 */
1583 for (i = 0; i < (port_id - 1); i++) {
1584 u8 port_speed = xhci->port_array[i];
1585
1586 /*
1587 * Skip ports that don't have known speeds, or have duplicate
1588 * Extended Capabilities port speed entries.
1589 */
1590 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1591 continue;
1592
1593 /*
1594 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1595 * 1.1 ports are under the USB 2.0 hub. If the port speed
1596 * matches the device speed, it's a similar speed port.
1597 */
1598 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1599 num_similar_speed_ports++;
1600 }
1601 return num_similar_speed_ports;
1602 }
1603
1604 static void handle_device_notification(struct xhci_hcd *xhci,
1605 union xhci_trb *event)
1606 {
1607 u32 slot_id;
1608 struct usb_device *udev;
1609
1610 slot_id = TRB_TO_SLOT_ID(event->generic.field[3]);
1611 if (!xhci->devs[slot_id]) {
1612 xhci_warn(xhci, "Device Notification event for "
1613 "unused slot %u\n", slot_id);
1614 return;
1615 }
1616
1617 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1618 slot_id);
1619 udev = xhci->devs[slot_id]->udev;
1620 if (udev && udev->parent)
1621 usb_wakeup_notification(udev->parent, udev->portnum);
1622 }
1623
1624 static void handle_port_status(struct xhci_hcd *xhci,
1625 union xhci_trb *event)
1626 {
1627 struct usb_hcd *hcd;
1628 u32 port_id;
1629 u32 temp, temp1;
1630 int max_ports;
1631 int slot_id;
1632 unsigned int faked_port_index;
1633 u8 major_revision;
1634 struct xhci_bus_state *bus_state;
1635 __le32 __iomem **port_array;
1636 bool bogus_port_status = false;
1637
1638 /* Port status change events always have a successful completion code */
1639 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1640 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1641 xhci->error_bitmask |= 1 << 8;
1642 }
1643 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1644 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1645
1646 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1647 if ((port_id <= 0) || (port_id > max_ports)) {
1648 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1649 inc_deq(xhci, xhci->event_ring);
1650 return;
1651 }
1652
1653 /* Figure out which usb_hcd this port is attached to:
1654 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1655 */
1656 major_revision = xhci->port_array[port_id - 1];
1657
1658 /* Find the right roothub. */
1659 hcd = xhci_to_hcd(xhci);
1660 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1661 hcd = xhci->shared_hcd;
1662
1663 if (major_revision == 0) {
1664 xhci_warn(xhci, "Event for port %u not in "
1665 "Extended Capabilities, ignoring.\n",
1666 port_id);
1667 bogus_port_status = true;
1668 goto cleanup;
1669 }
1670 if (major_revision == DUPLICATE_ENTRY) {
1671 xhci_warn(xhci, "Event for port %u duplicated in"
1672 "Extended Capabilities, ignoring.\n",
1673 port_id);
1674 bogus_port_status = true;
1675 goto cleanup;
1676 }
1677
1678 /*
1679 * Hardware port IDs reported by a Port Status Change Event include USB
1680 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1681 * resume event, but we first need to translate the hardware port ID
1682 * into the index into the ports on the correct split roothub, and the
1683 * correct bus_state structure.
1684 */
1685 bus_state = &xhci->bus_state[hcd_index(hcd)];
1686 if (hcd->speed == HCD_USB3)
1687 port_array = xhci->usb3_ports;
1688 else
1689 port_array = xhci->usb2_ports;
1690 /* Find the faked port hub number */
1691 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1692 port_id);
1693
1694 temp = xhci_readl(xhci, port_array[faked_port_index]);
1695 if (hcd->state == HC_STATE_SUSPENDED) {
1696 xhci_dbg(xhci, "resume root hub\n");
1697 usb_hcd_resume_root_hub(hcd);
1698 }
1699
1700 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1701 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1702
1703 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1704 if (!(temp1 & CMD_RUN)) {
1705 xhci_warn(xhci, "xHC is not running.\n");
1706 goto cleanup;
1707 }
1708
1709 if (DEV_SUPERSPEED(temp)) {
1710 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1711 /* Set a flag to say the port signaled remote wakeup,
1712 * so we can tell the difference between the end of
1713 * device and host initiated resume.
1714 */
1715 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1716 xhci_test_and_clear_bit(xhci, port_array,
1717 faked_port_index, PORT_PLC);
1718 xhci_set_link_state(xhci, port_array, faked_port_index,
1719 XDEV_U0);
1720 /* Need to wait until the next link state change
1721 * indicates the device is actually in U0.
1722 */
1723 bogus_port_status = true;
1724 goto cleanup;
1725 } else {
1726 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1727 bus_state->resume_done[faked_port_index] = jiffies +
1728 msecs_to_jiffies(20);
1729 set_bit(faked_port_index, &bus_state->resuming_ports);
1730 mod_timer(&hcd->rh_timer,
1731 bus_state->resume_done[faked_port_index]);
1732 /* Do the rest in GetPortStatus */
1733 }
1734 }
1735
1736 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1737 DEV_SUPERSPEED(temp)) {
1738 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1739 /* We've just brought the device into U0 through either the
1740 * Resume state after a device remote wakeup, or through the
1741 * U3Exit state after a host-initiated resume. If it's a device
1742 * initiated remote wake, don't pass up the link state change,
1743 * so the roothub behavior is consistent with external
1744 * USB 3.0 hub behavior.
1745 */
1746 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1747 faked_port_index + 1);
1748 if (slot_id && xhci->devs[slot_id])
1749 xhci_ring_device(xhci, slot_id);
1750 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1751 bus_state->port_remote_wakeup &=
1752 ~(1 << faked_port_index);
1753 xhci_test_and_clear_bit(xhci, port_array,
1754 faked_port_index, PORT_PLC);
1755 usb_wakeup_notification(hcd->self.root_hub,
1756 faked_port_index + 1);
1757 bogus_port_status = true;
1758 goto cleanup;
1759 }
1760 }
1761
1762 if (hcd->speed != HCD_USB3)
1763 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1764 PORT_PLC);
1765
1766 cleanup:
1767 /* Update event ring dequeue pointer before dropping the lock */
1768 inc_deq(xhci, xhci->event_ring);
1769
1770 /* Don't make the USB core poll the roothub if we got a bad port status
1771 * change event. Besides, at that point we can't tell which roothub
1772 * (USB 2.0 or USB 3.0) to kick.
1773 */
1774 if (bogus_port_status)
1775 return;
1776
1777 /*
1778 * xHCI port-status-change events occur when the "or" of all the
1779 * status-change bits in the portsc register changes from 0 to 1.
1780 * New status changes won't cause an event if any other change
1781 * bits are still set. When an event occurs, switch over to
1782 * polling to avoid losing status changes.
1783 */
1784 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1785 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1786 spin_unlock(&xhci->lock);
1787 /* Pass this up to the core */
1788 usb_hcd_poll_rh_status(hcd);
1789 spin_lock(&xhci->lock);
1790 }
1791
1792 /*
1793 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1794 * at end_trb, which may be in another segment. If the suspect DMA address is a
1795 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1796 * returns 0.
1797 */
1798 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1799 union xhci_trb *start_trb,
1800 union xhci_trb *end_trb,
1801 dma_addr_t suspect_dma)
1802 {
1803 dma_addr_t start_dma;
1804 dma_addr_t end_seg_dma;
1805 dma_addr_t end_trb_dma;
1806 struct xhci_segment *cur_seg;
1807
1808 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1809 cur_seg = start_seg;
1810
1811 do {
1812 if (start_dma == 0)
1813 return NULL;
1814 /* We may get an event for a Link TRB in the middle of a TD */
1815 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1816 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1817 /* If the end TRB isn't in this segment, this is set to 0 */
1818 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1819
1820 if (end_trb_dma > 0) {
1821 /* The end TRB is in this segment, so suspect should be here */
1822 if (start_dma <= end_trb_dma) {
1823 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1824 return cur_seg;
1825 } else {
1826 /* Case for one segment with
1827 * a TD wrapped around to the top
1828 */
1829 if ((suspect_dma >= start_dma &&
1830 suspect_dma <= end_seg_dma) ||
1831 (suspect_dma >= cur_seg->dma &&
1832 suspect_dma <= end_trb_dma))
1833 return cur_seg;
1834 }
1835 return NULL;
1836 } else {
1837 /* Might still be somewhere in this segment */
1838 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1839 return cur_seg;
1840 }
1841 cur_seg = cur_seg->next;
1842 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1843 } while (cur_seg != start_seg);
1844
1845 return NULL;
1846 }
1847
1848 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1849 unsigned int slot_id, unsigned int ep_index,
1850 unsigned int stream_id,
1851 struct xhci_td *td, union xhci_trb *event_trb)
1852 {
1853 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1854 ep->ep_state |= EP_HALTED;
1855 ep->stopped_td = td;
1856 ep->stopped_trb = event_trb;
1857 ep->stopped_stream = stream_id;
1858
1859 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1860 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1861
1862 ep->stopped_td = NULL;
1863 ep->stopped_trb = NULL;
1864 ep->stopped_stream = 0;
1865
1866 xhci_ring_cmd_db(xhci);
1867 }
1868
1869 /* Check if an error has halted the endpoint ring. The class driver will
1870 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1871 * However, a babble and other errors also halt the endpoint ring, and the class
1872 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1873 * Ring Dequeue Pointer command manually.
1874 */
1875 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1876 struct xhci_ep_ctx *ep_ctx,
1877 unsigned int trb_comp_code)
1878 {
1879 /* TRB completion codes that may require a manual halt cleanup */
1880 if (trb_comp_code == COMP_TX_ERR ||
1881 trb_comp_code == COMP_BABBLE ||
1882 trb_comp_code == COMP_SPLIT_ERR)
1883 /* The 0.96 spec says a babbling control endpoint
1884 * is not halted. The 0.96 spec says it is. Some HW
1885 * claims to be 0.95 compliant, but it halts the control
1886 * endpoint anyway. Check if a babble halted the
1887 * endpoint.
1888 */
1889 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1890 cpu_to_le32(EP_STATE_HALTED))
1891 return 1;
1892
1893 return 0;
1894 }
1895
1896 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1897 {
1898 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1899 /* Vendor defined "informational" completion code,
1900 * treat as not-an-error.
1901 */
1902 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1903 trb_comp_code);
1904 xhci_dbg(xhci, "Treating code as success.\n");
1905 return 1;
1906 }
1907 return 0;
1908 }
1909
1910 /*
1911 * Finish the td processing, remove the td from td list;
1912 * Return 1 if the urb can be given back.
1913 */
1914 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1915 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1916 struct xhci_virt_ep *ep, int *status, bool skip)
1917 {
1918 struct xhci_virt_device *xdev;
1919 struct xhci_ring *ep_ring;
1920 unsigned int slot_id;
1921 int ep_index;
1922 struct urb *urb = NULL;
1923 struct xhci_ep_ctx *ep_ctx;
1924 int ret = 0;
1925 struct urb_priv *urb_priv;
1926 u32 trb_comp_code;
1927
1928 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1929 xdev = xhci->devs[slot_id];
1930 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1931 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1932 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1933 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1934
1935 if (skip)
1936 goto td_cleanup;
1937
1938 if (trb_comp_code == COMP_STOP_INVAL ||
1939 trb_comp_code == COMP_STOP) {
1940 /* The Endpoint Stop Command completion will take care of any
1941 * stopped TDs. A stopped TD may be restarted, so don't update
1942 * the ring dequeue pointer or take this TD off any lists yet.
1943 */
1944 ep->stopped_td = td;
1945 ep->stopped_trb = event_trb;
1946 return 0;
1947 } else {
1948 if (trb_comp_code == COMP_STALL) {
1949 /* The transfer is completed from the driver's
1950 * perspective, but we need to issue a set dequeue
1951 * command for this stalled endpoint to move the dequeue
1952 * pointer past the TD. We can't do that here because
1953 * the halt condition must be cleared first. Let the
1954 * USB class driver clear the stall later.
1955 */
1956 ep->stopped_td = td;
1957 ep->stopped_trb = event_trb;
1958 ep->stopped_stream = ep_ring->stream_id;
1959 } else if (xhci_requires_manual_halt_cleanup(xhci,
1960 ep_ctx, trb_comp_code)) {
1961 /* Other types of errors halt the endpoint, but the
1962 * class driver doesn't call usb_reset_endpoint() unless
1963 * the error is -EPIPE. Clear the halted status in the
1964 * xHCI hardware manually.
1965 */
1966 xhci_cleanup_halted_endpoint(xhci,
1967 slot_id, ep_index, ep_ring->stream_id,
1968 td, event_trb);
1969 } else {
1970 /* Update ring dequeue pointer */
1971 while (ep_ring->dequeue != td->last_trb)
1972 inc_deq(xhci, ep_ring);
1973 inc_deq(xhci, ep_ring);
1974 }
1975
1976 td_cleanup:
1977 /* Clean up the endpoint's TD list */
1978 urb = td->urb;
1979 urb_priv = urb->hcpriv;
1980
1981 /* Do one last check of the actual transfer length.
1982 * If the host controller said we transferred more data than
1983 * the buffer length, urb->actual_length will be a very big
1984 * number (since it's unsigned). Play it safe and say we didn't
1985 * transfer anything.
1986 */
1987 if (urb->actual_length > urb->transfer_buffer_length) {
1988 xhci_warn(xhci, "URB transfer length is wrong, "
1989 "xHC issue? req. len = %u, "
1990 "act. len = %u\n",
1991 urb->transfer_buffer_length,
1992 urb->actual_length);
1993 urb->actual_length = 0;
1994 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1995 *status = -EREMOTEIO;
1996 else
1997 *status = 0;
1998 }
1999 list_del_init(&td->td_list);
2000 /* Was this TD slated to be cancelled but completed anyway? */
2001 if (!list_empty(&td->cancelled_td_list))
2002 list_del_init(&td->cancelled_td_list);
2003
2004 urb_priv->td_cnt++;
2005 /* Giveback the urb when all the tds are completed */
2006 if (urb_priv->td_cnt == urb_priv->length) {
2007 ret = 1;
2008 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2009 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
2010 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
2011 == 0) {
2012 if (xhci->quirks & XHCI_AMD_PLL_FIX)
2013 usb_amd_quirk_pll_enable();
2014 }
2015 }
2016 }
2017 }
2018
2019 return ret;
2020 }
2021
2022 /*
2023 * Process control tds, update urb status and actual_length.
2024 */
2025 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
2026 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2027 struct xhci_virt_ep *ep, int *status)
2028 {
2029 struct xhci_virt_device *xdev;
2030 struct xhci_ring *ep_ring;
2031 unsigned int slot_id;
2032 int ep_index;
2033 struct xhci_ep_ctx *ep_ctx;
2034 u32 trb_comp_code;
2035
2036 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2037 xdev = xhci->devs[slot_id];
2038 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2039 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2040 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2041 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2042
2043 switch (trb_comp_code) {
2044 case COMP_SUCCESS:
2045 if (event_trb == ep_ring->dequeue) {
2046 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
2047 "without IOC set??\n");
2048 *status = -ESHUTDOWN;
2049 } else if (event_trb != td->last_trb) {
2050 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
2051 "without IOC set??\n");
2052 *status = -ESHUTDOWN;
2053 } else {
2054 *status = 0;
2055 }
2056 break;
2057 case COMP_SHORT_TX:
2058 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2059 *status = -EREMOTEIO;
2060 else
2061 *status = 0;
2062 break;
2063 case COMP_STOP_INVAL:
2064 case COMP_STOP:
2065 return finish_td(xhci, td, event_trb, event, ep, status, false);
2066 default:
2067 if (!xhci_requires_manual_halt_cleanup(xhci,
2068 ep_ctx, trb_comp_code))
2069 break;
2070 xhci_dbg(xhci, "TRB error code %u, "
2071 "halted endpoint index = %u\n",
2072 trb_comp_code, ep_index);
2073 /* else fall through */
2074 case COMP_STALL:
2075 /* Did we transfer part of the data (middle) phase? */
2076 if (event_trb != ep_ring->dequeue &&
2077 event_trb != td->last_trb)
2078 td->urb->actual_length =
2079 td->urb->transfer_buffer_length -
2080 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2081 else
2082 td->urb->actual_length = 0;
2083
2084 xhci_cleanup_halted_endpoint(xhci,
2085 slot_id, ep_index, 0, td, event_trb);
2086 return finish_td(xhci, td, event_trb, event, ep, status, true);
2087 }
2088 /*
2089 * Did we transfer any data, despite the errors that might have
2090 * happened? I.e. did we get past the setup stage?
2091 */
2092 if (event_trb != ep_ring->dequeue) {
2093 /* The event was for the status stage */
2094 if (event_trb == td->last_trb) {
2095 if (td->urb->actual_length != 0) {
2096 /* Don't overwrite a previously set error code
2097 */
2098 if ((*status == -EINPROGRESS || *status == 0) &&
2099 (td->urb->transfer_flags
2100 & URB_SHORT_NOT_OK))
2101 /* Did we already see a short data
2102 * stage? */
2103 *status = -EREMOTEIO;
2104 } else {
2105 td->urb->actual_length =
2106 td->urb->transfer_buffer_length;
2107 }
2108 } else {
2109 /* Maybe the event was for the data stage? */
2110 td->urb->actual_length =
2111 td->urb->transfer_buffer_length -
2112 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2113 xhci_dbg(xhci, "Waiting for status "
2114 "stage event\n");
2115 return 0;
2116 }
2117 }
2118
2119 return finish_td(xhci, td, event_trb, event, ep, status, false);
2120 }
2121
2122 /*
2123 * Process isochronous tds, update urb packet status and actual_length.
2124 */
2125 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2126 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2127 struct xhci_virt_ep *ep, int *status)
2128 {
2129 struct xhci_ring *ep_ring;
2130 struct urb_priv *urb_priv;
2131 int idx;
2132 int len = 0;
2133 union xhci_trb *cur_trb;
2134 struct xhci_segment *cur_seg;
2135 struct usb_iso_packet_descriptor *frame;
2136 u32 trb_comp_code;
2137 bool skip_td = false;
2138
2139 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2140 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2141 urb_priv = td->urb->hcpriv;
2142 idx = urb_priv->td_cnt;
2143 frame = &td->urb->iso_frame_desc[idx];
2144
2145 /* handle completion code */
2146 switch (trb_comp_code) {
2147 case COMP_SUCCESS:
2148 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2149 frame->status = 0;
2150 break;
2151 }
2152 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2153 trb_comp_code = COMP_SHORT_TX;
2154 case COMP_SHORT_TX:
2155 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2156 -EREMOTEIO : 0;
2157 break;
2158 case COMP_BW_OVER:
2159 frame->status = -ECOMM;
2160 skip_td = true;
2161 break;
2162 case COMP_BUFF_OVER:
2163 case COMP_BABBLE:
2164 frame->status = -EOVERFLOW;
2165 skip_td = true;
2166 break;
2167 case COMP_DEV_ERR:
2168 case COMP_STALL:
2169 case COMP_TX_ERR:
2170 frame->status = -EPROTO;
2171 skip_td = true;
2172 break;
2173 case COMP_STOP:
2174 case COMP_STOP_INVAL:
2175 break;
2176 default:
2177 frame->status = -1;
2178 break;
2179 }
2180
2181 if (trb_comp_code == COMP_SUCCESS || skip_td) {
2182 frame->actual_length = frame->length;
2183 td->urb->actual_length += frame->length;
2184 } else {
2185 for (cur_trb = ep_ring->dequeue,
2186 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2187 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2188 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2189 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2190 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2191 }
2192 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2193 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2194
2195 if (trb_comp_code != COMP_STOP_INVAL) {
2196 frame->actual_length = len;
2197 td->urb->actual_length += len;
2198 }
2199 }
2200
2201 return finish_td(xhci, td, event_trb, event, ep, status, false);
2202 }
2203
2204 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2205 struct xhci_transfer_event *event,
2206 struct xhci_virt_ep *ep, int *status)
2207 {
2208 struct xhci_ring *ep_ring;
2209 struct urb_priv *urb_priv;
2210 struct usb_iso_packet_descriptor *frame;
2211 int idx;
2212
2213 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2214 urb_priv = td->urb->hcpriv;
2215 idx = urb_priv->td_cnt;
2216 frame = &td->urb->iso_frame_desc[idx];
2217
2218 /* The transfer is partly done. */
2219 frame->status = -EXDEV;
2220
2221 /* calc actual length */
2222 frame->actual_length = 0;
2223
2224 /* Update ring dequeue pointer */
2225 while (ep_ring->dequeue != td->last_trb)
2226 inc_deq(xhci, ep_ring);
2227 inc_deq(xhci, ep_ring);
2228
2229 return finish_td(xhci, td, NULL, event, ep, status, true);
2230 }
2231
2232 /*
2233 * Process bulk and interrupt tds, update urb status and actual_length.
2234 */
2235 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2236 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2237 struct xhci_virt_ep *ep, int *status)
2238 {
2239 struct xhci_ring *ep_ring;
2240 union xhci_trb *cur_trb;
2241 struct xhci_segment *cur_seg;
2242 u32 trb_comp_code;
2243
2244 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2245 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2246
2247 switch (trb_comp_code) {
2248 case COMP_SUCCESS:
2249 /* Double check that the HW transferred everything. */
2250 if (event_trb != td->last_trb ||
2251 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2252 xhci_warn(xhci, "WARN Successful completion "
2253 "on short TX\n");
2254 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2255 *status = -EREMOTEIO;
2256 else
2257 *status = 0;
2258 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2259 trb_comp_code = COMP_SHORT_TX;
2260 } else {
2261 *status = 0;
2262 }
2263 break;
2264 case COMP_SHORT_TX:
2265 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2266 *status = -EREMOTEIO;
2267 else
2268 *status = 0;
2269 break;
2270 default:
2271 /* Others already handled above */
2272 break;
2273 }
2274 if (trb_comp_code == COMP_SHORT_TX)
2275 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2276 "%d bytes untransferred\n",
2277 td->urb->ep->desc.bEndpointAddress,
2278 td->urb->transfer_buffer_length,
2279 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2280 /* Fast path - was this the last TRB in the TD for this URB? */
2281 if (event_trb == td->last_trb) {
2282 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2283 td->urb->actual_length =
2284 td->urb->transfer_buffer_length -
2285 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2286 if (td->urb->transfer_buffer_length <
2287 td->urb->actual_length) {
2288 xhci_warn(xhci, "HC gave bad length "
2289 "of %d bytes left\n",
2290 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2291 td->urb->actual_length = 0;
2292 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2293 *status = -EREMOTEIO;
2294 else
2295 *status = 0;
2296 }
2297 /* Don't overwrite a previously set error code */
2298 if (*status == -EINPROGRESS) {
2299 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2300 *status = -EREMOTEIO;
2301 else
2302 *status = 0;
2303 }
2304 } else {
2305 td->urb->actual_length =
2306 td->urb->transfer_buffer_length;
2307 /* Ignore a short packet completion if the
2308 * untransferred length was zero.
2309 */
2310 if (*status == -EREMOTEIO)
2311 *status = 0;
2312 }
2313 } else {
2314 /* Slow path - walk the list, starting from the dequeue
2315 * pointer, to get the actual length transferred.
2316 */
2317 td->urb->actual_length = 0;
2318 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2319 cur_trb != event_trb;
2320 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2321 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2322 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2323 td->urb->actual_length +=
2324 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2325 }
2326 /* If the ring didn't stop on a Link or No-op TRB, add
2327 * in the actual bytes transferred from the Normal TRB
2328 */
2329 if (trb_comp_code != COMP_STOP_INVAL)
2330 td->urb->actual_length +=
2331 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2332 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2333 }
2334
2335 return finish_td(xhci, td, event_trb, event, ep, status, false);
2336 }
2337
2338 /*
2339 * If this function returns an error condition, it means it got a Transfer
2340 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2341 * At this point, the host controller is probably hosed and should be reset.
2342 */
2343 static int handle_tx_event(struct xhci_hcd *xhci,
2344 struct xhci_transfer_event *event)
2345 __releases(&xhci->lock)
2346 __acquires(&xhci->lock)
2347 {
2348 struct xhci_virt_device *xdev;
2349 struct xhci_virt_ep *ep;
2350 struct xhci_ring *ep_ring;
2351 unsigned int slot_id;
2352 int ep_index;
2353 struct xhci_td *td = NULL;
2354 dma_addr_t event_dma;
2355 struct xhci_segment *event_seg;
2356 union xhci_trb *event_trb;
2357 struct urb *urb = NULL;
2358 int status = -EINPROGRESS;
2359 struct urb_priv *urb_priv;
2360 struct xhci_ep_ctx *ep_ctx;
2361 struct list_head *tmp;
2362 u32 trb_comp_code;
2363 int ret = 0;
2364 int td_num = 0;
2365
2366 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2367 xdev = xhci->devs[slot_id];
2368 if (!xdev) {
2369 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2370 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2371 (unsigned long long) xhci_trb_virt_to_dma(
2372 xhci->event_ring->deq_seg,
2373 xhci->event_ring->dequeue),
2374 lower_32_bits(le64_to_cpu(event->buffer)),
2375 upper_32_bits(le64_to_cpu(event->buffer)),
2376 le32_to_cpu(event->transfer_len),
2377 le32_to_cpu(event->flags));
2378 xhci_dbg(xhci, "Event ring:\n");
2379 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2380 return -ENODEV;
2381 }
2382
2383 /* Endpoint ID is 1 based, our index is zero based */
2384 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2385 ep = &xdev->eps[ep_index];
2386 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2387 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2388 if (!ep_ring ||
2389 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2390 EP_STATE_DISABLED) {
2391 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2392 "or incorrect stream ring\n");
2393 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2394 (unsigned long long) xhci_trb_virt_to_dma(
2395 xhci->event_ring->deq_seg,
2396 xhci->event_ring->dequeue),
2397 lower_32_bits(le64_to_cpu(event->buffer)),
2398 upper_32_bits(le64_to_cpu(event->buffer)),
2399 le32_to_cpu(event->transfer_len),
2400 le32_to_cpu(event->flags));
2401 xhci_dbg(xhci, "Event ring:\n");
2402 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2403 return -ENODEV;
2404 }
2405
2406 /* Count current td numbers if ep->skip is set */
2407 if (ep->skip) {
2408 list_for_each(tmp, &ep_ring->td_list)
2409 td_num++;
2410 }
2411
2412 event_dma = le64_to_cpu(event->buffer);
2413 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2414 /* Look for common error cases */
2415 switch (trb_comp_code) {
2416 /* Skip codes that require special handling depending on
2417 * transfer type
2418 */
2419 case COMP_SUCCESS:
2420 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2421 break;
2422 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2423 trb_comp_code = COMP_SHORT_TX;
2424 else
2425 xhci_warn_ratelimited(xhci,
2426 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2427 case COMP_SHORT_TX:
2428 break;
2429 case COMP_STOP:
2430 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2431 break;
2432 case COMP_STOP_INVAL:
2433 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2434 break;
2435 case COMP_STALL:
2436 xhci_dbg(xhci, "Stalled endpoint\n");
2437 ep->ep_state |= EP_HALTED;
2438 status = -EPIPE;
2439 break;
2440 case COMP_TRB_ERR:
2441 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2442 status = -EILSEQ;
2443 break;
2444 case COMP_SPLIT_ERR:
2445 case COMP_TX_ERR:
2446 xhci_dbg(xhci, "Transfer error on endpoint\n");
2447 status = -EPROTO;
2448 break;
2449 case COMP_BABBLE:
2450 xhci_dbg(xhci, "Babble error on endpoint\n");
2451 status = -EOVERFLOW;
2452 break;
2453 case COMP_DB_ERR:
2454 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2455 status = -ENOSR;
2456 break;
2457 case COMP_BW_OVER:
2458 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2459 break;
2460 case COMP_BUFF_OVER:
2461 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2462 break;
2463 case COMP_UNDERRUN:
2464 /*
2465 * When the Isoch ring is empty, the xHC will generate
2466 * a Ring Overrun Event for IN Isoch endpoint or Ring
2467 * Underrun Event for OUT Isoch endpoint.
2468 */
2469 xhci_dbg(xhci, "underrun event on endpoint\n");
2470 if (!list_empty(&ep_ring->td_list))
2471 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2472 "still with TDs queued?\n",
2473 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2474 ep_index);
2475 goto cleanup;
2476 case COMP_OVERRUN:
2477 xhci_dbg(xhci, "overrun event on endpoint\n");
2478 if (!list_empty(&ep_ring->td_list))
2479 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2480 "still with TDs queued?\n",
2481 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2482 ep_index);
2483 goto cleanup;
2484 case COMP_DEV_ERR:
2485 xhci_warn(xhci, "WARN: detect an incompatible device");
2486 status = -EPROTO;
2487 break;
2488 case COMP_MISSED_INT:
2489 /*
2490 * When encounter missed service error, one or more isoc tds
2491 * may be missed by xHC.
2492 * Set skip flag of the ep_ring; Complete the missed tds as
2493 * short transfer when process the ep_ring next time.
2494 */
2495 ep->skip = true;
2496 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2497 goto cleanup;
2498 default:
2499 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2500 status = 0;
2501 break;
2502 }
2503 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2504 "busted\n");
2505 goto cleanup;
2506 }
2507
2508 do {
2509 /* This TRB should be in the TD at the head of this ring's
2510 * TD list.
2511 */
2512 if (list_empty(&ep_ring->td_list)) {
2513 /*
2514 * A stopped endpoint may generate an extra completion
2515 * event if the device was suspended. Don't print
2516 * warnings.
2517 */
2518 if (!(trb_comp_code == COMP_STOP ||
2519 trb_comp_code == COMP_STOP_INVAL)) {
2520 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2521 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2522 ep_index);
2523 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2524 (le32_to_cpu(event->flags) &
2525 TRB_TYPE_BITMASK)>>10);
2526 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2527 }
2528 if (ep->skip) {
2529 ep->skip = false;
2530 xhci_dbg(xhci, "td_list is empty while skip "
2531 "flag set. Clear skip flag.\n");
2532 }
2533 ret = 0;
2534 goto cleanup;
2535 }
2536
2537 /* We've skipped all the TDs on the ep ring when ep->skip set */
2538 if (ep->skip && td_num == 0) {
2539 ep->skip = false;
2540 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2541 "Clear skip flag.\n");
2542 ret = 0;
2543 goto cleanup;
2544 }
2545
2546 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2547 if (ep->skip)
2548 td_num--;
2549
2550 /* Is this a TRB in the currently executing TD? */
2551 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2552 td->last_trb, event_dma);
2553
2554 /*
2555 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2556 * is not in the current TD pointed by ep_ring->dequeue because
2557 * that the hardware dequeue pointer still at the previous TRB
2558 * of the current TD. The previous TRB maybe a Link TD or the
2559 * last TRB of the previous TD. The command completion handle
2560 * will take care the rest.
2561 */
2562 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2563 ret = 0;
2564 goto cleanup;
2565 }
2566
2567 if (!event_seg) {
2568 if (!ep->skip ||
2569 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2570 /* Some host controllers give a spurious
2571 * successful event after a short transfer.
2572 * Ignore it.
2573 */
2574 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2575 ep_ring->last_td_was_short) {
2576 ep_ring->last_td_was_short = false;
2577 ret = 0;
2578 goto cleanup;
2579 }
2580 /* HC is busted, give up! */
2581 xhci_err(xhci,
2582 "ERROR Transfer event TRB DMA ptr not "
2583 "part of current TD\n");
2584 return -ESHUTDOWN;
2585 }
2586
2587 ret = skip_isoc_td(xhci, td, event, ep, &status);
2588 goto cleanup;
2589 }
2590 if (trb_comp_code == COMP_SHORT_TX)
2591 ep_ring->last_td_was_short = true;
2592 else
2593 ep_ring->last_td_was_short = false;
2594
2595 if (ep->skip) {
2596 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2597 ep->skip = false;
2598 }
2599
2600 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2601 sizeof(*event_trb)];
2602 /*
2603 * No-op TRB should not trigger interrupts.
2604 * If event_trb is a no-op TRB, it means the
2605 * corresponding TD has been cancelled. Just ignore
2606 * the TD.
2607 */
2608 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2609 xhci_dbg(xhci,
2610 "event_trb is a no-op TRB. Skip it\n");
2611 goto cleanup;
2612 }
2613
2614 /* Now update the urb's actual_length and give back to
2615 * the core
2616 */
2617 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2618 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2619 &status);
2620 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2621 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2622 &status);
2623 else
2624 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2625 ep, &status);
2626
2627 cleanup:
2628 /*
2629 * Do not update event ring dequeue pointer if ep->skip is set.
2630 * Will roll back to continue process missed tds.
2631 */
2632 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2633 inc_deq(xhci, xhci->event_ring);
2634 }
2635
2636 if (ret) {
2637 urb = td->urb;
2638 urb_priv = urb->hcpriv;
2639 /* Leave the TD around for the reset endpoint function
2640 * to use(but only if it's not a control endpoint,
2641 * since we already queued the Set TR dequeue pointer
2642 * command for stalled control endpoints).
2643 */
2644 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2645 (trb_comp_code != COMP_STALL &&
2646 trb_comp_code != COMP_BABBLE))
2647 xhci_urb_free_priv(xhci, urb_priv);
2648 else
2649 kfree(urb_priv);
2650
2651 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2652 if ((urb->actual_length != urb->transfer_buffer_length &&
2653 (urb->transfer_flags &
2654 URB_SHORT_NOT_OK)) ||
2655 (status != 0 &&
2656 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2657 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2658 "expected = %d, status = %d\n",
2659 urb, urb->actual_length,
2660 urb->transfer_buffer_length,
2661 status);
2662 spin_unlock(&xhci->lock);
2663 /* EHCI, UHCI, and OHCI always unconditionally set the
2664 * urb->status of an isochronous endpoint to 0.
2665 */
2666 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2667 status = 0;
2668 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2669 spin_lock(&xhci->lock);
2670 }
2671
2672 /*
2673 * If ep->skip is set, it means there are missed tds on the
2674 * endpoint ring need to take care of.
2675 * Process them as short transfer until reach the td pointed by
2676 * the event.
2677 */
2678 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2679
2680 return 0;
2681 }
2682
2683 /*
2684 * This function handles all OS-owned events on the event ring. It may drop
2685 * xhci->lock between event processing (e.g. to pass up port status changes).
2686 * Returns >0 for "possibly more events to process" (caller should call again),
2687 * otherwise 0 if done. In future, <0 returns should indicate error code.
2688 */
2689 static int xhci_handle_event(struct xhci_hcd *xhci)
2690 {
2691 union xhci_trb *event;
2692 int update_ptrs = 1;
2693 int ret;
2694
2695 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2696 xhci->error_bitmask |= 1 << 1;
2697 return 0;
2698 }
2699
2700 event = xhci->event_ring->dequeue;
2701 /* Does the HC or OS own the TRB? */
2702 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2703 xhci->event_ring->cycle_state) {
2704 xhci->error_bitmask |= 1 << 2;
2705 return 0;
2706 }
2707
2708 /*
2709 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2710 * speculative reads of the event's flags/data below.
2711 */
2712 rmb();
2713 /* FIXME: Handle more event types. */
2714 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2715 case TRB_TYPE(TRB_COMPLETION):
2716 handle_cmd_completion(xhci, &event->event_cmd);
2717 break;
2718 case TRB_TYPE(TRB_PORT_STATUS):
2719 handle_port_status(xhci, event);
2720 update_ptrs = 0;
2721 break;
2722 case TRB_TYPE(TRB_TRANSFER):
2723 ret = handle_tx_event(xhci, &event->trans_event);
2724 if (ret < 0)
2725 xhci->error_bitmask |= 1 << 9;
2726 else
2727 update_ptrs = 0;
2728 break;
2729 case TRB_TYPE(TRB_DEV_NOTE):
2730 handle_device_notification(xhci, event);
2731 break;
2732 default:
2733 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2734 TRB_TYPE(48))
2735 handle_vendor_event(xhci, event);
2736 else
2737 xhci->error_bitmask |= 1 << 3;
2738 }
2739 /* Any of the above functions may drop and re-acquire the lock, so check
2740 * to make sure a watchdog timer didn't mark the host as non-responsive.
2741 */
2742 if (xhci->xhc_state & XHCI_STATE_DYING) {
2743 xhci_dbg(xhci, "xHCI host dying, returning from "
2744 "event handler.\n");
2745 return 0;
2746 }
2747
2748 if (update_ptrs)
2749 /* Update SW event ring dequeue pointer */
2750 inc_deq(xhci, xhci->event_ring);
2751
2752 /* Are there more items on the event ring? Caller will call us again to
2753 * check.
2754 */
2755 return 1;
2756 }
2757
2758 /*
2759 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2760 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2761 * indicators of an event TRB error, but we check the status *first* to be safe.
2762 */
2763 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2764 {
2765 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2766 u32 status;
2767 u64 temp_64;
2768 union xhci_trb *event_ring_deq;
2769 dma_addr_t deq;
2770
2771 spin_lock(&xhci->lock);
2772 /* Check if the xHC generated the interrupt, or the irq is shared */
2773 status = xhci_readl(xhci, &xhci->op_regs->status);
2774 if (status == 0xffffffff)
2775 goto hw_died;
2776
2777 if (!(status & STS_EINT)) {
2778 spin_unlock(&xhci->lock);
2779 return IRQ_NONE;
2780 }
2781 if (status & STS_FATAL) {
2782 xhci_warn(xhci, "WARNING: Host System Error\n");
2783 xhci_halt(xhci);
2784 hw_died:
2785 spin_unlock(&xhci->lock);
2786 return -ESHUTDOWN;
2787 }
2788
2789 /*
2790 * Clear the op reg interrupt status first,
2791 * so we can receive interrupts from other MSI-X interrupters.
2792 * Write 1 to clear the interrupt status.
2793 */
2794 status |= STS_EINT;
2795 xhci_writel(xhci, status, &xhci->op_regs->status);
2796 /* FIXME when MSI-X is supported and there are multiple vectors */
2797 /* Clear the MSI-X event interrupt status */
2798
2799 if (hcd->irq) {
2800 u32 irq_pending;
2801 /* Acknowledge the PCI interrupt */
2802 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2803 irq_pending |= IMAN_IP;
2804 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2805 }
2806
2807 if (xhci->xhc_state & XHCI_STATE_DYING) {
2808 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2809 "Shouldn't IRQs be disabled?\n");
2810 /* Clear the event handler busy flag (RW1C);
2811 * the event ring should be empty.
2812 */
2813 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2814 xhci_write_64(xhci, temp_64 | ERST_EHB,
2815 &xhci->ir_set->erst_dequeue);
2816 spin_unlock(&xhci->lock);
2817
2818 return IRQ_HANDLED;
2819 }
2820
2821 event_ring_deq = xhci->event_ring->dequeue;
2822 /* FIXME this should be a delayed service routine
2823 * that clears the EHB.
2824 */
2825 while (xhci_handle_event(xhci) > 0) {}
2826
2827 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2828 /* If necessary, update the HW's version of the event ring deq ptr. */
2829 if (event_ring_deq != xhci->event_ring->dequeue) {
2830 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2831 xhci->event_ring->dequeue);
2832 if (deq == 0)
2833 xhci_warn(xhci, "WARN something wrong with SW event "
2834 "ring dequeue ptr.\n");
2835 /* Update HC event ring dequeue pointer */
2836 temp_64 &= ERST_PTR_MASK;
2837 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2838 }
2839
2840 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2841 temp_64 |= ERST_EHB;
2842 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2843
2844 spin_unlock(&xhci->lock);
2845
2846 return IRQ_HANDLED;
2847 }
2848
2849 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2850 {
2851 return xhci_irq(hcd);
2852 }
2853
2854 /**** Endpoint Ring Operations ****/
2855
2856 /*
2857 * Generic function for queueing a TRB on a ring.
2858 * The caller must have checked to make sure there's room on the ring.
2859 *
2860 * @more_trbs_coming: Will you enqueue more TRBs before calling
2861 * prepare_transfer()?
2862 */
2863 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2864 bool more_trbs_coming,
2865 u32 field1, u32 field2, u32 field3, u32 field4)
2866 {
2867 struct xhci_generic_trb *trb;
2868
2869 trb = &ring->enqueue->generic;
2870 trb->field[0] = cpu_to_le32(field1);
2871 trb->field[1] = cpu_to_le32(field2);
2872 trb->field[2] = cpu_to_le32(field3);
2873 trb->field[3] = cpu_to_le32(field4);
2874 inc_enq(xhci, ring, more_trbs_coming);
2875 }
2876
2877 /*
2878 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2879 * FIXME allocate segments if the ring is full.
2880 */
2881 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2882 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2883 {
2884 unsigned int num_trbs_needed;
2885
2886 /* Make sure the endpoint has been added to xHC schedule */
2887 switch (ep_state) {
2888 case EP_STATE_DISABLED:
2889 /*
2890 * USB core changed config/interfaces without notifying us,
2891 * or hardware is reporting the wrong state.
2892 */
2893 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2894 return -ENOENT;
2895 case EP_STATE_ERROR:
2896 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2897 /* FIXME event handling code for error needs to clear it */
2898 /* XXX not sure if this should be -ENOENT or not */
2899 return -EINVAL;
2900 case EP_STATE_HALTED:
2901 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2902 case EP_STATE_STOPPED:
2903 case EP_STATE_RUNNING:
2904 break;
2905 default:
2906 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2907 /*
2908 * FIXME issue Configure Endpoint command to try to get the HC
2909 * back into a known state.
2910 */
2911 return -EINVAL;
2912 }
2913
2914 while (1) {
2915 if (room_on_ring(xhci, ep_ring, num_trbs))
2916 break;
2917
2918 if (ep_ring == xhci->cmd_ring) {
2919 xhci_err(xhci, "Do not support expand command ring\n");
2920 return -ENOMEM;
2921 }
2922
2923 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2924 "ERROR no room on ep ring, try ring expansion");
2925 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2926 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2927 mem_flags)) {
2928 xhci_err(xhci, "Ring expansion failed\n");
2929 return -ENOMEM;
2930 }
2931 }
2932
2933 if (enqueue_is_link_trb(ep_ring)) {
2934 struct xhci_ring *ring = ep_ring;
2935 union xhci_trb *next;
2936
2937 next = ring->enqueue;
2938
2939 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2940 /* If we're not dealing with 0.95 hardware or isoc rings
2941 * on AMD 0.96 host, clear the chain bit.
2942 */
2943 if (!xhci_link_trb_quirk(xhci) &&
2944 !(ring->type == TYPE_ISOC &&
2945 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2946 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2947 else
2948 next->link.control |= cpu_to_le32(TRB_CHAIN);
2949
2950 wmb();
2951 next->link.control ^= cpu_to_le32(TRB_CYCLE);
2952
2953 /* Toggle the cycle bit after the last ring segment. */
2954 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2955 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2956 }
2957 ring->enq_seg = ring->enq_seg->next;
2958 ring->enqueue = ring->enq_seg->trbs;
2959 next = ring->enqueue;
2960 }
2961 }
2962
2963 return 0;
2964 }
2965
2966 static int prepare_transfer(struct xhci_hcd *xhci,
2967 struct xhci_virt_device *xdev,
2968 unsigned int ep_index,
2969 unsigned int stream_id,
2970 unsigned int num_trbs,
2971 struct urb *urb,
2972 unsigned int td_index,
2973 gfp_t mem_flags)
2974 {
2975 int ret;
2976 struct urb_priv *urb_priv;
2977 struct xhci_td *td;
2978 struct xhci_ring *ep_ring;
2979 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2980
2981 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2982 if (!ep_ring) {
2983 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2984 stream_id);
2985 return -EINVAL;
2986 }
2987
2988 ret = prepare_ring(xhci, ep_ring,
2989 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2990 num_trbs, mem_flags);
2991 if (ret)
2992 return ret;
2993
2994 urb_priv = urb->hcpriv;
2995 td = urb_priv->td[td_index];
2996
2997 INIT_LIST_HEAD(&td->td_list);
2998 INIT_LIST_HEAD(&td->cancelled_td_list);
2999
3000 if (td_index == 0) {
3001 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
3002 if (unlikely(ret))
3003 return ret;
3004 }
3005
3006 td->urb = urb;
3007 /* Add this TD to the tail of the endpoint ring's TD list */
3008 list_add_tail(&td->td_list, &ep_ring->td_list);
3009 td->start_seg = ep_ring->enq_seg;
3010 td->first_trb = ep_ring->enqueue;
3011
3012 urb_priv->td[td_index] = td;
3013
3014 return 0;
3015 }
3016
3017 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
3018 {
3019 int num_sgs, num_trbs, running_total, temp, i;
3020 struct scatterlist *sg;
3021
3022 sg = NULL;
3023 num_sgs = urb->num_mapped_sgs;
3024 temp = urb->transfer_buffer_length;
3025
3026 num_trbs = 0;
3027 for_each_sg(urb->sg, sg, num_sgs, i) {
3028 unsigned int len = sg_dma_len(sg);
3029
3030 /* Scatter gather list entries may cross 64KB boundaries */
3031 running_total = TRB_MAX_BUFF_SIZE -
3032 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
3033 running_total &= TRB_MAX_BUFF_SIZE - 1;
3034 if (running_total != 0)
3035 num_trbs++;
3036
3037 /* How many more 64KB chunks to transfer, how many more TRBs? */
3038 while (running_total < sg_dma_len(sg) && running_total < temp) {
3039 num_trbs++;
3040 running_total += TRB_MAX_BUFF_SIZE;
3041 }
3042 len = min_t(int, len, temp);
3043 temp -= len;
3044 if (temp == 0)
3045 break;
3046 }
3047 return num_trbs;
3048 }
3049
3050 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
3051 {
3052 if (num_trbs != 0)
3053 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
3054 "TRBs, %d left\n", __func__,
3055 urb->ep->desc.bEndpointAddress, num_trbs);
3056 if (running_total != urb->transfer_buffer_length)
3057 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3058 "queued %#x (%d), asked for %#x (%d)\n",
3059 __func__,
3060 urb->ep->desc.bEndpointAddress,
3061 running_total, running_total,
3062 urb->transfer_buffer_length,
3063 urb->transfer_buffer_length);
3064 }
3065
3066 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3067 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3068 struct xhci_generic_trb *start_trb)
3069 {
3070 /*
3071 * Pass all the TRBs to the hardware at once and make sure this write
3072 * isn't reordered.
3073 */
3074 wmb();
3075 if (start_cycle)
3076 start_trb->field[3] |= cpu_to_le32(start_cycle);
3077 else
3078 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3079 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3080 }
3081
3082 /*
3083 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3084 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3085 * (comprised of sg list entries) can take several service intervals to
3086 * transmit.
3087 */
3088 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3089 struct urb *urb, int slot_id, unsigned int ep_index)
3090 {
3091 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
3092 xhci->devs[slot_id]->out_ctx, ep_index);
3093 int xhci_interval;
3094 int ep_interval;
3095
3096 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3097 ep_interval = urb->interval;
3098 /* Convert to microframes */
3099 if (urb->dev->speed == USB_SPEED_LOW ||
3100 urb->dev->speed == USB_SPEED_FULL)
3101 ep_interval *= 8;
3102 /* FIXME change this to a warning and a suggestion to use the new API
3103 * to set the polling interval (once the API is added).
3104 */
3105 if (xhci_interval != ep_interval) {
3106 dev_dbg_ratelimited(&urb->dev->dev,
3107 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3108 ep_interval, ep_interval == 1 ? "" : "s",
3109 xhci_interval, xhci_interval == 1 ? "" : "s");
3110 urb->interval = xhci_interval;
3111 /* Convert back to frames for LS/FS devices */
3112 if (urb->dev->speed == USB_SPEED_LOW ||
3113 urb->dev->speed == USB_SPEED_FULL)
3114 urb->interval /= 8;
3115 }
3116 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3117 }
3118
3119 /*
3120 * The TD size is the number of bytes remaining in the TD (including this TRB),
3121 * right shifted by 10.
3122 * It must fit in bits 21:17, so it can't be bigger than 31.
3123 */
3124 static u32 xhci_td_remainder(unsigned int remainder)
3125 {
3126 u32 max = (1 << (21 - 17 + 1)) - 1;
3127
3128 if ((remainder >> 10) >= max)
3129 return max << 17;
3130 else
3131 return (remainder >> 10) << 17;
3132 }
3133
3134 /*
3135 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3136 * packets remaining in the TD (*not* including this TRB).
3137 *
3138 * Total TD packet count = total_packet_count =
3139 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3140 *
3141 * Packets transferred up to and including this TRB = packets_transferred =
3142 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3143 *
3144 * TD size = total_packet_count - packets_transferred
3145 *
3146 * It must fit in bits 21:17, so it can't be bigger than 31.
3147 * The last TRB in a TD must have the TD size set to zero.
3148 */
3149 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
3150 unsigned int total_packet_count, struct urb *urb,
3151 unsigned int num_trbs_left)
3152 {
3153 int packets_transferred;
3154
3155 /* One TRB with a zero-length data packet. */
3156 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0))
3157 return 0;
3158
3159 /* All the TRB queueing functions don't count the current TRB in
3160 * running_total.
3161 */
3162 packets_transferred = (running_total + trb_buff_len) /
3163 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3164
3165 if ((total_packet_count - packets_transferred) > 31)
3166 return 31 << 17;
3167 return (total_packet_count - packets_transferred) << 17;
3168 }
3169
3170 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3171 struct urb *urb, int slot_id, unsigned int ep_index)
3172 {
3173 struct xhci_ring *ep_ring;
3174 unsigned int num_trbs;
3175 struct urb_priv *urb_priv;
3176 struct xhci_td *td;
3177 struct scatterlist *sg;
3178 int num_sgs;
3179 int trb_buff_len, this_sg_len, running_total;
3180 unsigned int total_packet_count;
3181 bool first_trb;
3182 u64 addr;
3183 bool more_trbs_coming;
3184
3185 struct xhci_generic_trb *start_trb;
3186 int start_cycle;
3187
3188 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3189 if (!ep_ring)
3190 return -EINVAL;
3191
3192 num_trbs = count_sg_trbs_needed(xhci, urb);
3193 num_sgs = urb->num_mapped_sgs;
3194 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3195 usb_endpoint_maxp(&urb->ep->desc));
3196
3197 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
3198 ep_index, urb->stream_id,
3199 num_trbs, urb, 0, mem_flags);
3200 if (trb_buff_len < 0)
3201 return trb_buff_len;
3202
3203 urb_priv = urb->hcpriv;
3204 td = urb_priv->td[0];
3205
3206 /*
3207 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3208 * until we've finished creating all the other TRBs. The ring's cycle
3209 * state may change as we enqueue the other TRBs, so save it too.
3210 */
3211 start_trb = &ep_ring->enqueue->generic;
3212 start_cycle = ep_ring->cycle_state;
3213
3214 running_total = 0;
3215 /*
3216 * How much data is in the first TRB?
3217 *
3218 * There are three forces at work for TRB buffer pointers and lengths:
3219 * 1. We don't want to walk off the end of this sg-list entry buffer.
3220 * 2. The transfer length that the driver requested may be smaller than
3221 * the amount of memory allocated for this scatter-gather list.
3222 * 3. TRBs buffers can't cross 64KB boundaries.
3223 */
3224 sg = urb->sg;
3225 addr = (u64) sg_dma_address(sg);
3226 this_sg_len = sg_dma_len(sg);
3227 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3228 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3229 if (trb_buff_len > urb->transfer_buffer_length)
3230 trb_buff_len = urb->transfer_buffer_length;
3231
3232 first_trb = true;
3233 /* Queue the first TRB, even if it's zero-length */
3234 do {
3235 u32 field = 0;
3236 u32 length_field = 0;
3237 u32 remainder = 0;
3238
3239 /* Don't change the cycle bit of the first TRB until later */
3240 if (first_trb) {
3241 first_trb = false;
3242 if (start_cycle == 0)
3243 field |= 0x1;
3244 } else
3245 field |= ep_ring->cycle_state;
3246
3247 /* Chain all the TRBs together; clear the chain bit in the last
3248 * TRB to indicate it's the last TRB in the chain.
3249 */
3250 if (num_trbs > 1) {
3251 field |= TRB_CHAIN;
3252 } else {
3253 /* FIXME - add check for ZERO_PACKET flag before this */
3254 td->last_trb = ep_ring->enqueue;
3255 field |= TRB_IOC;
3256 }
3257
3258 /* Only set interrupt on short packet for IN endpoints */
3259 if (usb_urb_dir_in(urb))
3260 field |= TRB_ISP;
3261
3262 if (TRB_MAX_BUFF_SIZE -
3263 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
3264 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
3265 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
3266 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
3267 (unsigned int) addr + trb_buff_len);
3268 }
3269
3270 /* Set the TRB length, TD size, and interrupter fields. */
3271 if (xhci->hci_version < 0x100) {
3272 remainder = xhci_td_remainder(
3273 urb->transfer_buffer_length -
3274 running_total);
3275 } else {
3276 remainder = xhci_v1_0_td_remainder(running_total,
3277 trb_buff_len, total_packet_count, urb,
3278 num_trbs - 1);
3279 }
3280 length_field = TRB_LEN(trb_buff_len) |
3281 remainder |
3282 TRB_INTR_TARGET(0);
3283
3284 if (num_trbs > 1)
3285 more_trbs_coming = true;
3286 else
3287 more_trbs_coming = false;
3288 queue_trb(xhci, ep_ring, more_trbs_coming,
3289 lower_32_bits(addr),
3290 upper_32_bits(addr),
3291 length_field,
3292 field | TRB_TYPE(TRB_NORMAL));
3293 --num_trbs;
3294 running_total += trb_buff_len;
3295
3296 /* Calculate length for next transfer --
3297 * Are we done queueing all the TRBs for this sg entry?
3298 */
3299 this_sg_len -= trb_buff_len;
3300 if (this_sg_len == 0) {
3301 --num_sgs;
3302 if (num_sgs == 0)
3303 break;
3304 sg = sg_next(sg);
3305 addr = (u64) sg_dma_address(sg);
3306 this_sg_len = sg_dma_len(sg);
3307 } else {
3308 addr += trb_buff_len;
3309 }
3310
3311 trb_buff_len = TRB_MAX_BUFF_SIZE -
3312 (addr & (TRB_MAX_BUFF_SIZE - 1));
3313 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3314 if (running_total + trb_buff_len > urb->transfer_buffer_length)
3315 trb_buff_len =
3316 urb->transfer_buffer_length - running_total;
3317 } while (running_total < urb->transfer_buffer_length);
3318
3319 check_trb_math(urb, num_trbs, running_total);
3320 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3321 start_cycle, start_trb);
3322 return 0;
3323 }
3324
3325 /* This is very similar to what ehci-q.c qtd_fill() does */
3326 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3327 struct urb *urb, int slot_id, unsigned int ep_index)
3328 {
3329 struct xhci_ring *ep_ring;
3330 struct urb_priv *urb_priv;
3331 struct xhci_td *td;
3332 int num_trbs;
3333 struct xhci_generic_trb *start_trb;
3334 bool first_trb;
3335 bool more_trbs_coming;
3336 int start_cycle;
3337 u32 field, length_field;
3338
3339 int running_total, trb_buff_len, ret;
3340 unsigned int total_packet_count;
3341 u64 addr;
3342
3343 if (urb->num_sgs)
3344 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
3345
3346 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3347 if (!ep_ring)
3348 return -EINVAL;
3349
3350 num_trbs = 0;
3351 /* How much data is (potentially) left before the 64KB boundary? */
3352 running_total = TRB_MAX_BUFF_SIZE -
3353 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3354 running_total &= TRB_MAX_BUFF_SIZE - 1;
3355
3356 /* If there's some data on this 64KB chunk, or we have to send a
3357 * zero-length transfer, we need at least one TRB
3358 */
3359 if (running_total != 0 || urb->transfer_buffer_length == 0)
3360 num_trbs++;
3361 /* How many more 64KB chunks to transfer, how many more TRBs? */
3362 while (running_total < urb->transfer_buffer_length) {
3363 num_trbs++;
3364 running_total += TRB_MAX_BUFF_SIZE;
3365 }
3366 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
3367
3368 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3369 ep_index, urb->stream_id,
3370 num_trbs, urb, 0, mem_flags);
3371 if (ret < 0)
3372 return ret;
3373
3374 urb_priv = urb->hcpriv;
3375 td = urb_priv->td[0];
3376
3377 /*
3378 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3379 * until we've finished creating all the other TRBs. The ring's cycle
3380 * state may change as we enqueue the other TRBs, so save it too.
3381 */
3382 start_trb = &ep_ring->enqueue->generic;
3383 start_cycle = ep_ring->cycle_state;
3384
3385 running_total = 0;
3386 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3387 usb_endpoint_maxp(&urb->ep->desc));
3388 /* How much data is in the first TRB? */
3389 addr = (u64) urb->transfer_dma;
3390 trb_buff_len = TRB_MAX_BUFF_SIZE -
3391 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3392 if (trb_buff_len > urb->transfer_buffer_length)
3393 trb_buff_len = urb->transfer_buffer_length;
3394
3395 first_trb = true;
3396
3397 /* Queue the first TRB, even if it's zero-length */
3398 do {
3399 u32 remainder = 0;
3400 field = 0;
3401
3402 /* Don't change the cycle bit of the first TRB until later */
3403 if (first_trb) {
3404 first_trb = false;
3405 if (start_cycle == 0)
3406 field |= 0x1;
3407 } else
3408 field |= ep_ring->cycle_state;
3409
3410 /* Chain all the TRBs together; clear the chain bit in the last
3411 * TRB to indicate it's the last TRB in the chain.
3412 */
3413 if (num_trbs > 1) {
3414 field |= TRB_CHAIN;
3415 } else {
3416 /* FIXME - add check for ZERO_PACKET flag before this */
3417 td->last_trb = ep_ring->enqueue;
3418 field |= TRB_IOC;
3419 }
3420
3421 /* Only set interrupt on short packet for IN endpoints */
3422 if (usb_urb_dir_in(urb))
3423 field |= TRB_ISP;
3424
3425 /* Set the TRB length, TD size, and interrupter fields. */
3426 if (xhci->hci_version < 0x100) {
3427 remainder = xhci_td_remainder(
3428 urb->transfer_buffer_length -
3429 running_total);
3430 } else {
3431 remainder = xhci_v1_0_td_remainder(running_total,
3432 trb_buff_len, total_packet_count, urb,
3433 num_trbs - 1);
3434 }
3435 length_field = TRB_LEN(trb_buff_len) |
3436 remainder |
3437 TRB_INTR_TARGET(0);
3438
3439 if (num_trbs > 1)
3440 more_trbs_coming = true;
3441 else
3442 more_trbs_coming = false;
3443 queue_trb(xhci, ep_ring, more_trbs_coming,
3444 lower_32_bits(addr),
3445 upper_32_bits(addr),
3446 length_field,
3447 field | TRB_TYPE(TRB_NORMAL));
3448 --num_trbs;
3449 running_total += trb_buff_len;
3450
3451 /* Calculate length for next transfer */
3452 addr += trb_buff_len;
3453 trb_buff_len = urb->transfer_buffer_length - running_total;
3454 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3455 trb_buff_len = TRB_MAX_BUFF_SIZE;
3456 } while (running_total < urb->transfer_buffer_length);
3457
3458 check_trb_math(urb, num_trbs, running_total);
3459 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3460 start_cycle, start_trb);
3461 return 0;
3462 }
3463
3464 /* Caller must have locked xhci->lock */
3465 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3466 struct urb *urb, int slot_id, unsigned int ep_index)
3467 {
3468 struct xhci_ring *ep_ring;
3469 int num_trbs;
3470 int ret;
3471 struct usb_ctrlrequest *setup;
3472 struct xhci_generic_trb *start_trb;
3473 int start_cycle;
3474 u32 field, length_field;
3475 struct urb_priv *urb_priv;
3476 struct xhci_td *td;
3477
3478 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3479 if (!ep_ring)
3480 return -EINVAL;
3481
3482 /*
3483 * Need to copy setup packet into setup TRB, so we can't use the setup
3484 * DMA address.
3485 */
3486 if (!urb->setup_packet)
3487 return -EINVAL;
3488
3489 /* 1 TRB for setup, 1 for status */
3490 num_trbs = 2;
3491 /*
3492 * Don't need to check if we need additional event data and normal TRBs,
3493 * since data in control transfers will never get bigger than 16MB
3494 * XXX: can we get a buffer that crosses 64KB boundaries?
3495 */
3496 if (urb->transfer_buffer_length > 0)
3497 num_trbs++;
3498 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3499 ep_index, urb->stream_id,
3500 num_trbs, urb, 0, mem_flags);
3501 if (ret < 0)
3502 return ret;
3503
3504 urb_priv = urb->hcpriv;
3505 td = urb_priv->td[0];
3506
3507 /*
3508 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3509 * until we've finished creating all the other TRBs. The ring's cycle
3510 * state may change as we enqueue the other TRBs, so save it too.
3511 */
3512 start_trb = &ep_ring->enqueue->generic;
3513 start_cycle = ep_ring->cycle_state;
3514
3515 /* Queue setup TRB - see section 6.4.1.2.1 */
3516 /* FIXME better way to translate setup_packet into two u32 fields? */
3517 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3518 field = 0;
3519 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3520 if (start_cycle == 0)
3521 field |= 0x1;
3522
3523 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3524 if (xhci->hci_version == 0x100) {
3525 if (urb->transfer_buffer_length > 0) {
3526 if (setup->bRequestType & USB_DIR_IN)
3527 field |= TRB_TX_TYPE(TRB_DATA_IN);
3528 else
3529 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3530 }
3531 }
3532
3533 queue_trb(xhci, ep_ring, true,
3534 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3535 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3536 TRB_LEN(8) | TRB_INTR_TARGET(0),
3537 /* Immediate data in pointer */
3538 field);
3539
3540 /* If there's data, queue data TRBs */
3541 /* Only set interrupt on short packet for IN endpoints */
3542 if (usb_urb_dir_in(urb))
3543 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3544 else
3545 field = TRB_TYPE(TRB_DATA);
3546
3547 length_field = TRB_LEN(urb->transfer_buffer_length) |
3548 xhci_td_remainder(urb->transfer_buffer_length) |
3549 TRB_INTR_TARGET(0);
3550 if (urb->transfer_buffer_length > 0) {
3551 if (setup->bRequestType & USB_DIR_IN)
3552 field |= TRB_DIR_IN;
3553 queue_trb(xhci, ep_ring, true,
3554 lower_32_bits(urb->transfer_dma),
3555 upper_32_bits(urb->transfer_dma),
3556 length_field,
3557 field | ep_ring->cycle_state);
3558 }
3559
3560 /* Save the DMA address of the last TRB in the TD */
3561 td->last_trb = ep_ring->enqueue;
3562
3563 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3564 /* If the device sent data, the status stage is an OUT transfer */
3565 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3566 field = 0;
3567 else
3568 field = TRB_DIR_IN;
3569 queue_trb(xhci, ep_ring, false,
3570 0,
3571 0,
3572 TRB_INTR_TARGET(0),
3573 /* Event on completion */
3574 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3575
3576 giveback_first_trb(xhci, slot_id, ep_index, 0,
3577 start_cycle, start_trb);
3578 return 0;
3579 }
3580
3581 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3582 struct urb *urb, int i)
3583 {
3584 int num_trbs = 0;
3585 u64 addr, td_len;
3586
3587 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3588 td_len = urb->iso_frame_desc[i].length;
3589
3590 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3591 TRB_MAX_BUFF_SIZE);
3592 if (num_trbs == 0)
3593 num_trbs++;
3594
3595 return num_trbs;
3596 }
3597
3598 /*
3599 * The transfer burst count field of the isochronous TRB defines the number of
3600 * bursts that are required to move all packets in this TD. Only SuperSpeed
3601 * devices can burst up to bMaxBurst number of packets per service interval.
3602 * This field is zero based, meaning a value of zero in the field means one
3603 * burst. Basically, for everything but SuperSpeed devices, this field will be
3604 * zero. Only xHCI 1.0 host controllers support this field.
3605 */
3606 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3607 struct usb_device *udev,
3608 struct urb *urb, unsigned int total_packet_count)
3609 {
3610 unsigned int max_burst;
3611
3612 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3613 return 0;
3614
3615 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3616 return roundup(total_packet_count, max_burst + 1) - 1;
3617 }
3618
3619 /*
3620 * Returns the number of packets in the last "burst" of packets. This field is
3621 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3622 * the last burst packet count is equal to the total number of packets in the
3623 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3624 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3625 * contain 1 to (bMaxBurst + 1) packets.
3626 */
3627 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3628 struct usb_device *udev,
3629 struct urb *urb, unsigned int total_packet_count)
3630 {
3631 unsigned int max_burst;
3632 unsigned int residue;
3633
3634 if (xhci->hci_version < 0x100)
3635 return 0;
3636
3637 switch (udev->speed) {
3638 case USB_SPEED_SUPER:
3639 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3640 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3641 residue = total_packet_count % (max_burst + 1);
3642 /* If residue is zero, the last burst contains (max_burst + 1)
3643 * number of packets, but the TLBPC field is zero-based.
3644 */
3645 if (residue == 0)
3646 return max_burst;
3647 return residue - 1;
3648 default:
3649 if (total_packet_count == 0)
3650 return 0;
3651 return total_packet_count - 1;
3652 }
3653 }
3654
3655 /* This is for isoc transfer */
3656 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3657 struct urb *urb, int slot_id, unsigned int ep_index)
3658 {
3659 struct xhci_ring *ep_ring;
3660 struct urb_priv *urb_priv;
3661 struct xhci_td *td;
3662 int num_tds, trbs_per_td;
3663 struct xhci_generic_trb *start_trb;
3664 bool first_trb;
3665 int start_cycle;
3666 u32 field, length_field;
3667 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3668 u64 start_addr, addr;
3669 int i, j;
3670 bool more_trbs_coming;
3671
3672 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3673
3674 num_tds = urb->number_of_packets;
3675 if (num_tds < 1) {
3676 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3677 return -EINVAL;
3678 }
3679
3680 start_addr = (u64) urb->transfer_dma;
3681 start_trb = &ep_ring->enqueue->generic;
3682 start_cycle = ep_ring->cycle_state;
3683
3684 urb_priv = urb->hcpriv;
3685 /* Queue the first TRB, even if it's zero-length */
3686 for (i = 0; i < num_tds; i++) {
3687 unsigned int total_packet_count;
3688 unsigned int burst_count;
3689 unsigned int residue;
3690
3691 first_trb = true;
3692 running_total = 0;
3693 addr = start_addr + urb->iso_frame_desc[i].offset;
3694 td_len = urb->iso_frame_desc[i].length;
3695 td_remain_len = td_len;
3696 total_packet_count = DIV_ROUND_UP(td_len,
3697 GET_MAX_PACKET(
3698 usb_endpoint_maxp(&urb->ep->desc)));
3699 /* A zero-length transfer still involves at least one packet. */
3700 if (total_packet_count == 0)
3701 total_packet_count++;
3702 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3703 total_packet_count);
3704 residue = xhci_get_last_burst_packet_count(xhci,
3705 urb->dev, urb, total_packet_count);
3706
3707 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3708
3709 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3710 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3711 if (ret < 0) {
3712 if (i == 0)
3713 return ret;
3714 goto cleanup;
3715 }
3716
3717 td = urb_priv->td[i];
3718 for (j = 0; j < trbs_per_td; j++) {
3719 u32 remainder = 0;
3720 field = 0;
3721
3722 if (first_trb) {
3723 field = TRB_TBC(burst_count) |
3724 TRB_TLBPC(residue);
3725 /* Queue the isoc TRB */
3726 field |= TRB_TYPE(TRB_ISOC);
3727 /* Assume URB_ISO_ASAP is set */
3728 field |= TRB_SIA;
3729 if (i == 0) {
3730 if (start_cycle == 0)
3731 field |= 0x1;
3732 } else
3733 field |= ep_ring->cycle_state;
3734 first_trb = false;
3735 } else {
3736 /* Queue other normal TRBs */
3737 field |= TRB_TYPE(TRB_NORMAL);
3738 field |= ep_ring->cycle_state;
3739 }
3740
3741 /* Only set interrupt on short packet for IN EPs */
3742 if (usb_urb_dir_in(urb))
3743 field |= TRB_ISP;
3744
3745 /* Chain all the TRBs together; clear the chain bit in
3746 * the last TRB to indicate it's the last TRB in the
3747 * chain.
3748 */
3749 if (j < trbs_per_td - 1) {
3750 field |= TRB_CHAIN;
3751 more_trbs_coming = true;
3752 } else {
3753 td->last_trb = ep_ring->enqueue;
3754 field |= TRB_IOC;
3755 if (xhci->hci_version == 0x100 &&
3756 !(xhci->quirks &
3757 XHCI_AVOID_BEI)) {
3758 /* Set BEI bit except for the last td */
3759 if (i < num_tds - 1)
3760 field |= TRB_BEI;
3761 }
3762 more_trbs_coming = false;
3763 }
3764
3765 /* Calculate TRB length */
3766 trb_buff_len = TRB_MAX_BUFF_SIZE -
3767 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3768 if (trb_buff_len > td_remain_len)
3769 trb_buff_len = td_remain_len;
3770
3771 /* Set the TRB length, TD size, & interrupter fields. */
3772 if (xhci->hci_version < 0x100) {
3773 remainder = xhci_td_remainder(
3774 td_len - running_total);
3775 } else {
3776 remainder = xhci_v1_0_td_remainder(
3777 running_total, trb_buff_len,
3778 total_packet_count, urb,
3779 (trbs_per_td - j - 1));
3780 }
3781 length_field = TRB_LEN(trb_buff_len) |
3782 remainder |
3783 TRB_INTR_TARGET(0);
3784
3785 queue_trb(xhci, ep_ring, more_trbs_coming,
3786 lower_32_bits(addr),
3787 upper_32_bits(addr),
3788 length_field,
3789 field);
3790 running_total += trb_buff_len;
3791
3792 addr += trb_buff_len;
3793 td_remain_len -= trb_buff_len;
3794 }
3795
3796 /* Check TD length */
3797 if (running_total != td_len) {
3798 xhci_err(xhci, "ISOC TD length unmatch\n");
3799 ret = -EINVAL;
3800 goto cleanup;
3801 }
3802 }
3803
3804 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3805 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3806 usb_amd_quirk_pll_disable();
3807 }
3808 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3809
3810 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3811 start_cycle, start_trb);
3812 return 0;
3813 cleanup:
3814 /* Clean up a partially enqueued isoc transfer. */
3815
3816 for (i--; i >= 0; i--)
3817 list_del_init(&urb_priv->td[i]->td_list);
3818
3819 /* Use the first TD as a temporary variable to turn the TDs we've queued
3820 * into No-ops with a software-owned cycle bit. That way the hardware
3821 * won't accidentally start executing bogus TDs when we partially
3822 * overwrite them. td->first_trb and td->start_seg are already set.
3823 */
3824 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3825 /* Every TRB except the first & last will have its cycle bit flipped. */
3826 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3827
3828 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3829 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3830 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3831 ep_ring->cycle_state = start_cycle;
3832 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3833 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3834 return ret;
3835 }
3836
3837 /*
3838 * Check transfer ring to guarantee there is enough room for the urb.
3839 * Update ISO URB start_frame and interval.
3840 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3841 * update the urb->start_frame by now.
3842 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3843 */
3844 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3845 struct urb *urb, int slot_id, unsigned int ep_index)
3846 {
3847 struct xhci_virt_device *xdev;
3848 struct xhci_ring *ep_ring;
3849 struct xhci_ep_ctx *ep_ctx;
3850 int start_frame;
3851 int xhci_interval;
3852 int ep_interval;
3853 int num_tds, num_trbs, i;
3854 int ret;
3855
3856 xdev = xhci->devs[slot_id];
3857 ep_ring = xdev->eps[ep_index].ring;
3858 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3859
3860 num_trbs = 0;
3861 num_tds = urb->number_of_packets;
3862 for (i = 0; i < num_tds; i++)
3863 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3864
3865 /* Check the ring to guarantee there is enough room for the whole urb.
3866 * Do not insert any td of the urb to the ring if the check failed.
3867 */
3868 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3869 num_trbs, mem_flags);
3870 if (ret)
3871 return ret;
3872
3873 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3874 start_frame &= 0x3fff;
3875
3876 urb->start_frame = start_frame;
3877 if (urb->dev->speed == USB_SPEED_LOW ||
3878 urb->dev->speed == USB_SPEED_FULL)
3879 urb->start_frame >>= 3;
3880
3881 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3882 ep_interval = urb->interval;
3883 /* Convert to microframes */
3884 if (urb->dev->speed == USB_SPEED_LOW ||
3885 urb->dev->speed == USB_SPEED_FULL)
3886 ep_interval *= 8;
3887 /* FIXME change this to a warning and a suggestion to use the new API
3888 * to set the polling interval (once the API is added).
3889 */
3890 if (xhci_interval != ep_interval) {
3891 dev_dbg_ratelimited(&urb->dev->dev,
3892 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3893 ep_interval, ep_interval == 1 ? "" : "s",
3894 xhci_interval, xhci_interval == 1 ? "" : "s");
3895 urb->interval = xhci_interval;
3896 /* Convert back to frames for LS/FS devices */
3897 if (urb->dev->speed == USB_SPEED_LOW ||
3898 urb->dev->speed == USB_SPEED_FULL)
3899 urb->interval /= 8;
3900 }
3901 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3902
3903 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3904 }
3905
3906 /**** Command Ring Operations ****/
3907
3908 /* Generic function for queueing a command TRB on the command ring.
3909 * Check to make sure there's room on the command ring for one command TRB.
3910 * Also check that there's room reserved for commands that must not fail.
3911 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3912 * then only check for the number of reserved spots.
3913 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3914 * because the command event handler may want to resubmit a failed command.
3915 */
3916 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3917 u32 field3, u32 field4, bool command_must_succeed)
3918 {
3919 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3920 int ret;
3921
3922 if (!command_must_succeed)
3923 reserved_trbs++;
3924
3925 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3926 reserved_trbs, GFP_ATOMIC);
3927 if (ret < 0) {
3928 xhci_err(xhci, "ERR: No room for command on command ring\n");
3929 if (command_must_succeed)
3930 xhci_err(xhci, "ERR: Reserved TRB counting for "
3931 "unfailable commands failed.\n");
3932 return ret;
3933 }
3934 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3935 field4 | xhci->cmd_ring->cycle_state);
3936 return 0;
3937 }
3938
3939 /* Queue a slot enable or disable request on the command ring */
3940 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3941 {
3942 return queue_command(xhci, 0, 0, 0,
3943 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3944 }
3945
3946 /* Queue an address device command TRB */
3947 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3948 u32 slot_id)
3949 {
3950 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3951 upper_32_bits(in_ctx_ptr), 0,
3952 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3953 false);
3954 }
3955
3956 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3957 u32 field1, u32 field2, u32 field3, u32 field4)
3958 {
3959 return queue_command(xhci, field1, field2, field3, field4, false);
3960 }
3961
3962 /* Queue a reset device command TRB */
3963 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3964 {
3965 return queue_command(xhci, 0, 0, 0,
3966 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3967 false);
3968 }
3969
3970 /* Queue a configure endpoint command TRB */
3971 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3972 u32 slot_id, bool command_must_succeed)
3973 {
3974 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3975 upper_32_bits(in_ctx_ptr), 0,
3976 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3977 command_must_succeed);
3978 }
3979
3980 /* Queue an evaluate context command TRB */
3981 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3982 u32 slot_id, bool command_must_succeed)
3983 {
3984 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3985 upper_32_bits(in_ctx_ptr), 0,
3986 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3987 command_must_succeed);
3988 }
3989
3990 /*
3991 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3992 * activity on an endpoint that is about to be suspended.
3993 */
3994 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3995 unsigned int ep_index, int suspend)
3996 {
3997 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3998 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3999 u32 type = TRB_TYPE(TRB_STOP_RING);
4000 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
4001
4002 return queue_command(xhci, 0, 0, 0,
4003 trb_slot_id | trb_ep_index | type | trb_suspend, false);
4004 }
4005
4006 /* Set Transfer Ring Dequeue Pointer command.
4007 * This should not be used for endpoints that have streams enabled.
4008 */
4009 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
4010 unsigned int ep_index, unsigned int stream_id,
4011 struct xhci_segment *deq_seg,
4012 union xhci_trb *deq_ptr, u32 cycle_state)
4013 {
4014 dma_addr_t addr;
4015 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4016 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4017 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
4018 u32 type = TRB_TYPE(TRB_SET_DEQ);
4019 struct xhci_virt_ep *ep;
4020
4021 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
4022 if (addr == 0) {
4023 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4024 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4025 deq_seg, deq_ptr);
4026 return 0;
4027 }
4028 ep = &xhci->devs[slot_id]->eps[ep_index];
4029 if ((ep->ep_state & SET_DEQ_PENDING)) {
4030 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4031 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4032 return 0;
4033 }
4034 ep->queued_deq_seg = deq_seg;
4035 ep->queued_deq_ptr = deq_ptr;
4036 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
4037 upper_32_bits(addr), trb_stream_id,
4038 trb_slot_id | trb_ep_index | type, false);
4039 }
4040
4041 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
4042 unsigned int ep_index)
4043 {
4044 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4045 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4046 u32 type = TRB_TYPE(TRB_RESET_EP);
4047
4048 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
4049 false);
4050 }
This page took 0.15514 seconds and 4 git commands to generate.