Merge branch 'pci/resource' into next
[deliverable/linux.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70 #include "xhci-trace.h"
71
72 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
73 struct xhci_virt_device *virt_dev,
74 struct xhci_event_cmd *event);
75
76 /*
77 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
78 * address of the TRB.
79 */
80 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
81 union xhci_trb *trb)
82 {
83 unsigned long segment_offset;
84
85 if (!seg || !trb || trb < seg->trbs)
86 return 0;
87 /* offset in TRBs */
88 segment_offset = trb - seg->trbs;
89 if (segment_offset > TRBS_PER_SEGMENT)
90 return 0;
91 return seg->dma + (segment_offset * sizeof(*trb));
92 }
93
94 /* Does this link TRB point to the first segment in a ring,
95 * or was the previous TRB the last TRB on the last segment in the ERST?
96 */
97 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
98 struct xhci_segment *seg, union xhci_trb *trb)
99 {
100 if (ring == xhci->event_ring)
101 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
102 (seg->next == xhci->event_ring->first_seg);
103 else
104 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
105 }
106
107 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
108 * segment? I.e. would the updated event TRB pointer step off the end of the
109 * event seg?
110 */
111 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
112 struct xhci_segment *seg, union xhci_trb *trb)
113 {
114 if (ring == xhci->event_ring)
115 return trb == &seg->trbs[TRBS_PER_SEGMENT];
116 else
117 return TRB_TYPE_LINK_LE32(trb->link.control);
118 }
119
120 static int enqueue_is_link_trb(struct xhci_ring *ring)
121 {
122 struct xhci_link_trb *link = &ring->enqueue->link;
123 return TRB_TYPE_LINK_LE32(link->control);
124 }
125
126 union xhci_trb *xhci_find_next_enqueue(struct xhci_ring *ring)
127 {
128 /* Enqueue pointer can be left pointing to the link TRB,
129 * we must handle that
130 */
131 if (TRB_TYPE_LINK_LE32(ring->enqueue->link.control))
132 return ring->enq_seg->next->trbs;
133 return ring->enqueue;
134 }
135
136 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
137 * TRB is in a new segment. This does not skip over link TRBs, and it does not
138 * effect the ring dequeue or enqueue pointers.
139 */
140 static void next_trb(struct xhci_hcd *xhci,
141 struct xhci_ring *ring,
142 struct xhci_segment **seg,
143 union xhci_trb **trb)
144 {
145 if (last_trb(xhci, ring, *seg, *trb)) {
146 *seg = (*seg)->next;
147 *trb = ((*seg)->trbs);
148 } else {
149 (*trb)++;
150 }
151 }
152
153 /*
154 * See Cycle bit rules. SW is the consumer for the event ring only.
155 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
156 */
157 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
158 {
159 ring->deq_updates++;
160
161 /*
162 * If this is not event ring, and the dequeue pointer
163 * is not on a link TRB, there is one more usable TRB
164 */
165 if (ring->type != TYPE_EVENT &&
166 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
167 ring->num_trbs_free++;
168
169 do {
170 /*
171 * Update the dequeue pointer further if that was a link TRB or
172 * we're at the end of an event ring segment (which doesn't have
173 * link TRBS)
174 */
175 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
176 if (ring->type == TYPE_EVENT &&
177 last_trb_on_last_seg(xhci, ring,
178 ring->deq_seg, ring->dequeue)) {
179 ring->cycle_state ^= 1;
180 }
181 ring->deq_seg = ring->deq_seg->next;
182 ring->dequeue = ring->deq_seg->trbs;
183 } else {
184 ring->dequeue++;
185 }
186 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
187 }
188
189 /*
190 * See Cycle bit rules. SW is the consumer for the event ring only.
191 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
192 *
193 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
194 * chain bit is set), then set the chain bit in all the following link TRBs.
195 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
196 * have their chain bit cleared (so that each Link TRB is a separate TD).
197 *
198 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
199 * set, but other sections talk about dealing with the chain bit set. This was
200 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
201 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
202 *
203 * @more_trbs_coming: Will you enqueue more TRBs before calling
204 * prepare_transfer()?
205 */
206 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
207 bool more_trbs_coming)
208 {
209 u32 chain;
210 union xhci_trb *next;
211
212 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
213 /* If this is not event ring, there is one less usable TRB */
214 if (ring->type != TYPE_EVENT &&
215 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
216 ring->num_trbs_free--;
217 next = ++(ring->enqueue);
218
219 ring->enq_updates++;
220 /* Update the dequeue pointer further if that was a link TRB or we're at
221 * the end of an event ring segment (which doesn't have link TRBS)
222 */
223 while (last_trb(xhci, ring, ring->enq_seg, next)) {
224 if (ring->type != TYPE_EVENT) {
225 /*
226 * If the caller doesn't plan on enqueueing more
227 * TDs before ringing the doorbell, then we
228 * don't want to give the link TRB to the
229 * hardware just yet. We'll give the link TRB
230 * back in prepare_ring() just before we enqueue
231 * the TD at the top of the ring.
232 */
233 if (!chain && !more_trbs_coming)
234 break;
235
236 /* If we're not dealing with 0.95 hardware or
237 * isoc rings on AMD 0.96 host,
238 * carry over the chain bit of the previous TRB
239 * (which may mean the chain bit is cleared).
240 */
241 if (!(ring->type == TYPE_ISOC &&
242 (xhci->quirks & XHCI_AMD_0x96_HOST))
243 && !xhci_link_trb_quirk(xhci)) {
244 next->link.control &=
245 cpu_to_le32(~TRB_CHAIN);
246 next->link.control |=
247 cpu_to_le32(chain);
248 }
249 /* Give this link TRB to the hardware */
250 wmb();
251 next->link.control ^= cpu_to_le32(TRB_CYCLE);
252
253 /* Toggle the cycle bit after the last ring segment. */
254 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
255 ring->cycle_state = (ring->cycle_state ? 0 : 1);
256 }
257 }
258 ring->enq_seg = ring->enq_seg->next;
259 ring->enqueue = ring->enq_seg->trbs;
260 next = ring->enqueue;
261 }
262 }
263
264 /*
265 * Check to see if there's room to enqueue num_trbs on the ring and make sure
266 * enqueue pointer will not advance into dequeue segment. See rules above.
267 */
268 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
269 unsigned int num_trbs)
270 {
271 int num_trbs_in_deq_seg;
272
273 if (ring->num_trbs_free < num_trbs)
274 return 0;
275
276 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
277 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
278 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
279 return 0;
280 }
281
282 return 1;
283 }
284
285 /* Ring the host controller doorbell after placing a command on the ring */
286 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
287 {
288 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
289 return;
290
291 xhci_dbg(xhci, "// Ding dong!\n");
292 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
293 /* Flush PCI posted writes */
294 readl(&xhci->dba->doorbell[0]);
295 }
296
297 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
298 {
299 u64 temp_64;
300 int ret;
301
302 xhci_dbg(xhci, "Abort command ring\n");
303
304 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) {
305 xhci_dbg(xhci, "The command ring isn't running, "
306 "Have the command ring been stopped?\n");
307 return 0;
308 }
309
310 temp_64 = readq(&xhci->op_regs->cmd_ring);
311 if (!(temp_64 & CMD_RING_RUNNING)) {
312 xhci_dbg(xhci, "Command ring had been stopped\n");
313 return 0;
314 }
315 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
316 writeq(temp_64 | CMD_RING_ABORT, &xhci->op_regs->cmd_ring);
317
318 /* Section 4.6.1.2 of xHCI 1.0 spec says software should
319 * time the completion od all xHCI commands, including
320 * the Command Abort operation. If software doesn't see
321 * CRR negated in a timely manner (e.g. longer than 5
322 * seconds), then it should assume that the there are
323 * larger problems with the xHC and assert HCRST.
324 */
325 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring,
326 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
327 if (ret < 0) {
328 xhci_err(xhci, "Stopped the command ring failed, "
329 "maybe the host is dead\n");
330 xhci->xhc_state |= XHCI_STATE_DYING;
331 xhci_quiesce(xhci);
332 xhci_halt(xhci);
333 return -ESHUTDOWN;
334 }
335
336 return 0;
337 }
338
339 static int xhci_queue_cd(struct xhci_hcd *xhci,
340 struct xhci_command *command,
341 union xhci_trb *cmd_trb)
342 {
343 struct xhci_cd *cd;
344 cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC);
345 if (!cd)
346 return -ENOMEM;
347 INIT_LIST_HEAD(&cd->cancel_cmd_list);
348
349 cd->command = command;
350 cd->cmd_trb = cmd_trb;
351 list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list);
352
353 return 0;
354 }
355
356 /*
357 * Cancel the command which has issue.
358 *
359 * Some commands may hang due to waiting for acknowledgement from
360 * usb device. It is outside of the xHC's ability to control and
361 * will cause the command ring is blocked. When it occurs software
362 * should intervene to recover the command ring.
363 * See Section 4.6.1.1 and 4.6.1.2
364 */
365 int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command,
366 union xhci_trb *cmd_trb)
367 {
368 int retval = 0;
369 unsigned long flags;
370
371 spin_lock_irqsave(&xhci->lock, flags);
372
373 if (xhci->xhc_state & XHCI_STATE_DYING) {
374 xhci_warn(xhci, "Abort the command ring,"
375 " but the xHCI is dead.\n");
376 retval = -ESHUTDOWN;
377 goto fail;
378 }
379
380 /* queue the cmd desriptor to cancel_cmd_list */
381 retval = xhci_queue_cd(xhci, command, cmd_trb);
382 if (retval) {
383 xhci_warn(xhci, "Queuing command descriptor failed.\n");
384 goto fail;
385 }
386
387 /* abort command ring */
388 retval = xhci_abort_cmd_ring(xhci);
389 if (retval) {
390 xhci_err(xhci, "Abort command ring failed\n");
391 if (unlikely(retval == -ESHUTDOWN)) {
392 spin_unlock_irqrestore(&xhci->lock, flags);
393 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
394 xhci_dbg(xhci, "xHCI host controller is dead.\n");
395 return retval;
396 }
397 }
398
399 fail:
400 spin_unlock_irqrestore(&xhci->lock, flags);
401 return retval;
402 }
403
404 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
405 unsigned int slot_id,
406 unsigned int ep_index,
407 unsigned int stream_id)
408 {
409 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
410 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
411 unsigned int ep_state = ep->ep_state;
412
413 /* Don't ring the doorbell for this endpoint if there are pending
414 * cancellations because we don't want to interrupt processing.
415 * We don't want to restart any stream rings if there's a set dequeue
416 * pointer command pending because the device can choose to start any
417 * stream once the endpoint is on the HW schedule.
418 * FIXME - check all the stream rings for pending cancellations.
419 */
420 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
421 (ep_state & EP_HALTED))
422 return;
423 writel(DB_VALUE(ep_index, stream_id), db_addr);
424 /* The CPU has better things to do at this point than wait for a
425 * write-posting flush. It'll get there soon enough.
426 */
427 }
428
429 /* Ring the doorbell for any rings with pending URBs */
430 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
431 unsigned int slot_id,
432 unsigned int ep_index)
433 {
434 unsigned int stream_id;
435 struct xhci_virt_ep *ep;
436
437 ep = &xhci->devs[slot_id]->eps[ep_index];
438
439 /* A ring has pending URBs if its TD list is not empty */
440 if (!(ep->ep_state & EP_HAS_STREAMS)) {
441 if (ep->ring && !(list_empty(&ep->ring->td_list)))
442 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
443 return;
444 }
445
446 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
447 stream_id++) {
448 struct xhci_stream_info *stream_info = ep->stream_info;
449 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
450 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
451 stream_id);
452 }
453 }
454
455 /*
456 * Find the segment that trb is in. Start searching in start_seg.
457 * If we must move past a segment that has a link TRB with a toggle cycle state
458 * bit set, then we will toggle the value pointed at by cycle_state.
459 */
460 static struct xhci_segment *find_trb_seg(
461 struct xhci_segment *start_seg,
462 union xhci_trb *trb, int *cycle_state)
463 {
464 struct xhci_segment *cur_seg = start_seg;
465 struct xhci_generic_trb *generic_trb;
466
467 while (cur_seg->trbs > trb ||
468 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
469 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
470 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
471 *cycle_state ^= 0x1;
472 cur_seg = cur_seg->next;
473 if (cur_seg == start_seg)
474 /* Looped over the entire list. Oops! */
475 return NULL;
476 }
477 return cur_seg;
478 }
479
480
481 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
482 unsigned int slot_id, unsigned int ep_index,
483 unsigned int stream_id)
484 {
485 struct xhci_virt_ep *ep;
486
487 ep = &xhci->devs[slot_id]->eps[ep_index];
488 /* Common case: no streams */
489 if (!(ep->ep_state & EP_HAS_STREAMS))
490 return ep->ring;
491
492 if (stream_id == 0) {
493 xhci_warn(xhci,
494 "WARN: Slot ID %u, ep index %u has streams, "
495 "but URB has no stream ID.\n",
496 slot_id, ep_index);
497 return NULL;
498 }
499
500 if (stream_id < ep->stream_info->num_streams)
501 return ep->stream_info->stream_rings[stream_id];
502
503 xhci_warn(xhci,
504 "WARN: Slot ID %u, ep index %u has "
505 "stream IDs 1 to %u allocated, "
506 "but stream ID %u is requested.\n",
507 slot_id, ep_index,
508 ep->stream_info->num_streams - 1,
509 stream_id);
510 return NULL;
511 }
512
513 /* Get the right ring for the given URB.
514 * If the endpoint supports streams, boundary check the URB's stream ID.
515 * If the endpoint doesn't support streams, return the singular endpoint ring.
516 */
517 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
518 struct urb *urb)
519 {
520 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
521 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
522 }
523
524 /*
525 * Move the xHC's endpoint ring dequeue pointer past cur_td.
526 * Record the new state of the xHC's endpoint ring dequeue segment,
527 * dequeue pointer, and new consumer cycle state in state.
528 * Update our internal representation of the ring's dequeue pointer.
529 *
530 * We do this in three jumps:
531 * - First we update our new ring state to be the same as when the xHC stopped.
532 * - Then we traverse the ring to find the segment that contains
533 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
534 * any link TRBs with the toggle cycle bit set.
535 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
536 * if we've moved it past a link TRB with the toggle cycle bit set.
537 *
538 * Some of the uses of xhci_generic_trb are grotty, but if they're done
539 * with correct __le32 accesses they should work fine. Only users of this are
540 * in here.
541 */
542 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
543 unsigned int slot_id, unsigned int ep_index,
544 unsigned int stream_id, struct xhci_td *cur_td,
545 struct xhci_dequeue_state *state)
546 {
547 struct xhci_virt_device *dev = xhci->devs[slot_id];
548 struct xhci_ring *ep_ring;
549 struct xhci_generic_trb *trb;
550 struct xhci_ep_ctx *ep_ctx;
551 dma_addr_t addr;
552
553 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
554 ep_index, stream_id);
555 if (!ep_ring) {
556 xhci_warn(xhci, "WARN can't find new dequeue state "
557 "for invalid stream ID %u.\n",
558 stream_id);
559 return;
560 }
561 state->new_cycle_state = 0;
562 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
563 "Finding segment containing stopped TRB.");
564 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
565 dev->eps[ep_index].stopped_trb,
566 &state->new_cycle_state);
567 if (!state->new_deq_seg) {
568 WARN_ON(1);
569 return;
570 }
571
572 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
573 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
574 "Finding endpoint context");
575 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
576 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
577
578 state->new_deq_ptr = cur_td->last_trb;
579 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
580 "Finding segment containing last TRB in TD.");
581 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
582 state->new_deq_ptr,
583 &state->new_cycle_state);
584 if (!state->new_deq_seg) {
585 WARN_ON(1);
586 return;
587 }
588
589 trb = &state->new_deq_ptr->generic;
590 if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
591 (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
592 state->new_cycle_state ^= 0x1;
593 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
594
595 /*
596 * If there is only one segment in a ring, find_trb_seg()'s while loop
597 * will not run, and it will return before it has a chance to see if it
598 * needs to toggle the cycle bit. It can't tell if the stalled transfer
599 * ended just before the link TRB on a one-segment ring, or if the TD
600 * wrapped around the top of the ring, because it doesn't have the TD in
601 * question. Look for the one-segment case where stalled TRB's address
602 * is greater than the new dequeue pointer address.
603 */
604 if (ep_ring->first_seg == ep_ring->first_seg->next &&
605 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
606 state->new_cycle_state ^= 0x1;
607 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
608 "Cycle state = 0x%x", state->new_cycle_state);
609
610 /* Don't update the ring cycle state for the producer (us). */
611 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
612 "New dequeue segment = %p (virtual)",
613 state->new_deq_seg);
614 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
615 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
616 "New dequeue pointer = 0x%llx (DMA)",
617 (unsigned long long) addr);
618 }
619
620 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
621 * (The last TRB actually points to the ring enqueue pointer, which is not part
622 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
623 */
624 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
625 struct xhci_td *cur_td, bool flip_cycle)
626 {
627 struct xhci_segment *cur_seg;
628 union xhci_trb *cur_trb;
629
630 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
631 true;
632 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
633 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
634 /* Unchain any chained Link TRBs, but
635 * leave the pointers intact.
636 */
637 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
638 /* Flip the cycle bit (link TRBs can't be the first
639 * or last TRB).
640 */
641 if (flip_cycle)
642 cur_trb->generic.field[3] ^=
643 cpu_to_le32(TRB_CYCLE);
644 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
645 "Cancel (unchain) link TRB");
646 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
647 "Address = %p (0x%llx dma); "
648 "in seg %p (0x%llx dma)",
649 cur_trb,
650 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
651 cur_seg,
652 (unsigned long long)cur_seg->dma);
653 } else {
654 cur_trb->generic.field[0] = 0;
655 cur_trb->generic.field[1] = 0;
656 cur_trb->generic.field[2] = 0;
657 /* Preserve only the cycle bit of this TRB */
658 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
659 /* Flip the cycle bit except on the first or last TRB */
660 if (flip_cycle && cur_trb != cur_td->first_trb &&
661 cur_trb != cur_td->last_trb)
662 cur_trb->generic.field[3] ^=
663 cpu_to_le32(TRB_CYCLE);
664 cur_trb->generic.field[3] |= cpu_to_le32(
665 TRB_TYPE(TRB_TR_NOOP));
666 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
667 "TRB to noop at offset 0x%llx",
668 (unsigned long long)
669 xhci_trb_virt_to_dma(cur_seg, cur_trb));
670 }
671 if (cur_trb == cur_td->last_trb)
672 break;
673 }
674 }
675
676 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
677 unsigned int ep_index, unsigned int stream_id,
678 struct xhci_segment *deq_seg,
679 union xhci_trb *deq_ptr, u32 cycle_state);
680
681 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
682 unsigned int slot_id, unsigned int ep_index,
683 unsigned int stream_id,
684 struct xhci_dequeue_state *deq_state)
685 {
686 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
687
688 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
689 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
690 "new deq ptr = %p (0x%llx dma), new cycle = %u",
691 deq_state->new_deq_seg,
692 (unsigned long long)deq_state->new_deq_seg->dma,
693 deq_state->new_deq_ptr,
694 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
695 deq_state->new_cycle_state);
696 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
697 deq_state->new_deq_seg,
698 deq_state->new_deq_ptr,
699 (u32) deq_state->new_cycle_state);
700 /* Stop the TD queueing code from ringing the doorbell until
701 * this command completes. The HC won't set the dequeue pointer
702 * if the ring is running, and ringing the doorbell starts the
703 * ring running.
704 */
705 ep->ep_state |= SET_DEQ_PENDING;
706 }
707
708 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
709 struct xhci_virt_ep *ep)
710 {
711 ep->ep_state &= ~EP_HALT_PENDING;
712 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
713 * timer is running on another CPU, we don't decrement stop_cmds_pending
714 * (since we didn't successfully stop the watchdog timer).
715 */
716 if (del_timer(&ep->stop_cmd_timer))
717 ep->stop_cmds_pending--;
718 }
719
720 /* Must be called with xhci->lock held in interrupt context */
721 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
722 struct xhci_td *cur_td, int status)
723 {
724 struct usb_hcd *hcd;
725 struct urb *urb;
726 struct urb_priv *urb_priv;
727
728 urb = cur_td->urb;
729 urb_priv = urb->hcpriv;
730 urb_priv->td_cnt++;
731 hcd = bus_to_hcd(urb->dev->bus);
732
733 /* Only giveback urb when this is the last td in urb */
734 if (urb_priv->td_cnt == urb_priv->length) {
735 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
736 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
737 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
738 if (xhci->quirks & XHCI_AMD_PLL_FIX)
739 usb_amd_quirk_pll_enable();
740 }
741 }
742 usb_hcd_unlink_urb_from_ep(hcd, urb);
743
744 spin_unlock(&xhci->lock);
745 usb_hcd_giveback_urb(hcd, urb, status);
746 xhci_urb_free_priv(xhci, urb_priv);
747 spin_lock(&xhci->lock);
748 }
749 }
750
751 /*
752 * When we get a command completion for a Stop Endpoint Command, we need to
753 * unlink any cancelled TDs from the ring. There are two ways to do that:
754 *
755 * 1. If the HW was in the middle of processing the TD that needs to be
756 * cancelled, then we must move the ring's dequeue pointer past the last TRB
757 * in the TD with a Set Dequeue Pointer Command.
758 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
759 * bit cleared) so that the HW will skip over them.
760 */
761 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
762 union xhci_trb *trb, struct xhci_event_cmd *event)
763 {
764 unsigned int ep_index;
765 struct xhci_virt_device *virt_dev;
766 struct xhci_ring *ep_ring;
767 struct xhci_virt_ep *ep;
768 struct list_head *entry;
769 struct xhci_td *cur_td = NULL;
770 struct xhci_td *last_unlinked_td;
771
772 struct xhci_dequeue_state deq_state;
773
774 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
775 virt_dev = xhci->devs[slot_id];
776 if (virt_dev)
777 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
778 event);
779 else
780 xhci_warn(xhci, "Stop endpoint command "
781 "completion for disabled slot %u\n",
782 slot_id);
783 return;
784 }
785
786 memset(&deq_state, 0, sizeof(deq_state));
787 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
788 ep = &xhci->devs[slot_id]->eps[ep_index];
789
790 if (list_empty(&ep->cancelled_td_list)) {
791 xhci_stop_watchdog_timer_in_irq(xhci, ep);
792 ep->stopped_td = NULL;
793 ep->stopped_trb = NULL;
794 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
795 return;
796 }
797
798 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
799 * We have the xHCI lock, so nothing can modify this list until we drop
800 * it. We're also in the event handler, so we can't get re-interrupted
801 * if another Stop Endpoint command completes
802 */
803 list_for_each(entry, &ep->cancelled_td_list) {
804 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
805 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
806 "Removing canceled TD starting at 0x%llx (dma).",
807 (unsigned long long)xhci_trb_virt_to_dma(
808 cur_td->start_seg, cur_td->first_trb));
809 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
810 if (!ep_ring) {
811 /* This shouldn't happen unless a driver is mucking
812 * with the stream ID after submission. This will
813 * leave the TD on the hardware ring, and the hardware
814 * will try to execute it, and may access a buffer
815 * that has already been freed. In the best case, the
816 * hardware will execute it, and the event handler will
817 * ignore the completion event for that TD, since it was
818 * removed from the td_list for that endpoint. In
819 * short, don't muck with the stream ID after
820 * submission.
821 */
822 xhci_warn(xhci, "WARN Cancelled URB %p "
823 "has invalid stream ID %u.\n",
824 cur_td->urb,
825 cur_td->urb->stream_id);
826 goto remove_finished_td;
827 }
828 /*
829 * If we stopped on the TD we need to cancel, then we have to
830 * move the xHC endpoint ring dequeue pointer past this TD.
831 */
832 if (cur_td == ep->stopped_td)
833 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
834 cur_td->urb->stream_id,
835 cur_td, &deq_state);
836 else
837 td_to_noop(xhci, ep_ring, cur_td, false);
838 remove_finished_td:
839 /*
840 * The event handler won't see a completion for this TD anymore,
841 * so remove it from the endpoint ring's TD list. Keep it in
842 * the cancelled TD list for URB completion later.
843 */
844 list_del_init(&cur_td->td_list);
845 }
846 last_unlinked_td = cur_td;
847 xhci_stop_watchdog_timer_in_irq(xhci, ep);
848
849 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
850 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
851 xhci_queue_new_dequeue_state(xhci,
852 slot_id, ep_index,
853 ep->stopped_td->urb->stream_id,
854 &deq_state);
855 xhci_ring_cmd_db(xhci);
856 } else {
857 /* Otherwise ring the doorbell(s) to restart queued transfers */
858 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
859 }
860
861 /* Clear stopped_td and stopped_trb if endpoint is not halted */
862 if (!(ep->ep_state & EP_HALTED)) {
863 ep->stopped_td = NULL;
864 ep->stopped_trb = NULL;
865 }
866
867 /*
868 * Drop the lock and complete the URBs in the cancelled TD list.
869 * New TDs to be cancelled might be added to the end of the list before
870 * we can complete all the URBs for the TDs we already unlinked.
871 * So stop when we've completed the URB for the last TD we unlinked.
872 */
873 do {
874 cur_td = list_entry(ep->cancelled_td_list.next,
875 struct xhci_td, cancelled_td_list);
876 list_del_init(&cur_td->cancelled_td_list);
877
878 /* Clean up the cancelled URB */
879 /* Doesn't matter what we pass for status, since the core will
880 * just overwrite it (because the URB has been unlinked).
881 */
882 xhci_giveback_urb_in_irq(xhci, cur_td, 0);
883
884 /* Stop processing the cancelled list if the watchdog timer is
885 * running.
886 */
887 if (xhci->xhc_state & XHCI_STATE_DYING)
888 return;
889 } while (cur_td != last_unlinked_td);
890
891 /* Return to the event handler with xhci->lock re-acquired */
892 }
893
894 /* Watchdog timer function for when a stop endpoint command fails to complete.
895 * In this case, we assume the host controller is broken or dying or dead. The
896 * host may still be completing some other events, so we have to be careful to
897 * let the event ring handler and the URB dequeueing/enqueueing functions know
898 * through xhci->state.
899 *
900 * The timer may also fire if the host takes a very long time to respond to the
901 * command, and the stop endpoint command completion handler cannot delete the
902 * timer before the timer function is called. Another endpoint cancellation may
903 * sneak in before the timer function can grab the lock, and that may queue
904 * another stop endpoint command and add the timer back. So we cannot use a
905 * simple flag to say whether there is a pending stop endpoint command for a
906 * particular endpoint.
907 *
908 * Instead we use a combination of that flag and a counter for the number of
909 * pending stop endpoint commands. If the timer is the tail end of the last
910 * stop endpoint command, and the endpoint's command is still pending, we assume
911 * the host is dying.
912 */
913 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
914 {
915 struct xhci_hcd *xhci;
916 struct xhci_virt_ep *ep;
917 struct xhci_virt_ep *temp_ep;
918 struct xhci_ring *ring;
919 struct xhci_td *cur_td;
920 int ret, i, j;
921 unsigned long flags;
922
923 ep = (struct xhci_virt_ep *) arg;
924 xhci = ep->xhci;
925
926 spin_lock_irqsave(&xhci->lock, flags);
927
928 ep->stop_cmds_pending--;
929 if (xhci->xhc_state & XHCI_STATE_DYING) {
930 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
931 "Stop EP timer ran, but another timer marked "
932 "xHCI as DYING, exiting.");
933 spin_unlock_irqrestore(&xhci->lock, flags);
934 return;
935 }
936 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
937 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
938 "Stop EP timer ran, but no command pending, "
939 "exiting.");
940 spin_unlock_irqrestore(&xhci->lock, flags);
941 return;
942 }
943
944 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
945 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
946 /* Oops, HC is dead or dying or at least not responding to the stop
947 * endpoint command.
948 */
949 xhci->xhc_state |= XHCI_STATE_DYING;
950 /* Disable interrupts from the host controller and start halting it */
951 xhci_quiesce(xhci);
952 spin_unlock_irqrestore(&xhci->lock, flags);
953
954 ret = xhci_halt(xhci);
955
956 spin_lock_irqsave(&xhci->lock, flags);
957 if (ret < 0) {
958 /* This is bad; the host is not responding to commands and it's
959 * not allowing itself to be halted. At least interrupts are
960 * disabled. If we call usb_hc_died(), it will attempt to
961 * disconnect all device drivers under this host. Those
962 * disconnect() methods will wait for all URBs to be unlinked,
963 * so we must complete them.
964 */
965 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
966 xhci_warn(xhci, "Completing active URBs anyway.\n");
967 /* We could turn all TDs on the rings to no-ops. This won't
968 * help if the host has cached part of the ring, and is slow if
969 * we want to preserve the cycle bit. Skip it and hope the host
970 * doesn't touch the memory.
971 */
972 }
973 for (i = 0; i < MAX_HC_SLOTS; i++) {
974 if (!xhci->devs[i])
975 continue;
976 for (j = 0; j < 31; j++) {
977 temp_ep = &xhci->devs[i]->eps[j];
978 ring = temp_ep->ring;
979 if (!ring)
980 continue;
981 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
982 "Killing URBs for slot ID %u, "
983 "ep index %u", i, j);
984 while (!list_empty(&ring->td_list)) {
985 cur_td = list_first_entry(&ring->td_list,
986 struct xhci_td,
987 td_list);
988 list_del_init(&cur_td->td_list);
989 if (!list_empty(&cur_td->cancelled_td_list))
990 list_del_init(&cur_td->cancelled_td_list);
991 xhci_giveback_urb_in_irq(xhci, cur_td,
992 -ESHUTDOWN);
993 }
994 while (!list_empty(&temp_ep->cancelled_td_list)) {
995 cur_td = list_first_entry(
996 &temp_ep->cancelled_td_list,
997 struct xhci_td,
998 cancelled_td_list);
999 list_del_init(&cur_td->cancelled_td_list);
1000 xhci_giveback_urb_in_irq(xhci, cur_td,
1001 -ESHUTDOWN);
1002 }
1003 }
1004 }
1005 spin_unlock_irqrestore(&xhci->lock, flags);
1006 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1007 "Calling usb_hc_died()");
1008 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1009 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1010 "xHCI host controller is dead.");
1011 }
1012
1013
1014 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
1015 struct xhci_virt_device *dev,
1016 struct xhci_ring *ep_ring,
1017 unsigned int ep_index)
1018 {
1019 union xhci_trb *dequeue_temp;
1020 int num_trbs_free_temp;
1021 bool revert = false;
1022
1023 num_trbs_free_temp = ep_ring->num_trbs_free;
1024 dequeue_temp = ep_ring->dequeue;
1025
1026 /* If we get two back-to-back stalls, and the first stalled transfer
1027 * ends just before a link TRB, the dequeue pointer will be left on
1028 * the link TRB by the code in the while loop. So we have to update
1029 * the dequeue pointer one segment further, or we'll jump off
1030 * the segment into la-la-land.
1031 */
1032 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
1033 ep_ring->deq_seg = ep_ring->deq_seg->next;
1034 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1035 }
1036
1037 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1038 /* We have more usable TRBs */
1039 ep_ring->num_trbs_free++;
1040 ep_ring->dequeue++;
1041 if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
1042 ep_ring->dequeue)) {
1043 if (ep_ring->dequeue ==
1044 dev->eps[ep_index].queued_deq_ptr)
1045 break;
1046 ep_ring->deq_seg = ep_ring->deq_seg->next;
1047 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1048 }
1049 if (ep_ring->dequeue == dequeue_temp) {
1050 revert = true;
1051 break;
1052 }
1053 }
1054
1055 if (revert) {
1056 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1057 ep_ring->num_trbs_free = num_trbs_free_temp;
1058 }
1059 }
1060
1061 /*
1062 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1063 * we need to clear the set deq pending flag in the endpoint ring state, so that
1064 * the TD queueing code can ring the doorbell again. We also need to ring the
1065 * endpoint doorbell to restart the ring, but only if there aren't more
1066 * cancellations pending.
1067 */
1068 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1069 union xhci_trb *trb, u32 cmd_comp_code)
1070 {
1071 unsigned int ep_index;
1072 unsigned int stream_id;
1073 struct xhci_ring *ep_ring;
1074 struct xhci_virt_device *dev;
1075 struct xhci_ep_ctx *ep_ctx;
1076 struct xhci_slot_ctx *slot_ctx;
1077
1078 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1079 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1080 dev = xhci->devs[slot_id];
1081
1082 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1083 if (!ep_ring) {
1084 xhci_warn(xhci, "WARN Set TR deq ptr command for "
1085 "freed stream ID %u\n",
1086 stream_id);
1087 /* XXX: Harmless??? */
1088 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1089 return;
1090 }
1091
1092 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1093 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1094
1095 if (cmd_comp_code != COMP_SUCCESS) {
1096 unsigned int ep_state;
1097 unsigned int slot_state;
1098
1099 switch (cmd_comp_code) {
1100 case COMP_TRB_ERR:
1101 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
1102 "of stream ID configuration\n");
1103 break;
1104 case COMP_CTX_STATE:
1105 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
1106 "to incorrect slot or ep state.\n");
1107 ep_state = le32_to_cpu(ep_ctx->ep_info);
1108 ep_state &= EP_STATE_MASK;
1109 slot_state = le32_to_cpu(slot_ctx->dev_state);
1110 slot_state = GET_SLOT_STATE(slot_state);
1111 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1112 "Slot state = %u, EP state = %u",
1113 slot_state, ep_state);
1114 break;
1115 case COMP_EBADSLT:
1116 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
1117 "slot %u was not enabled.\n", slot_id);
1118 break;
1119 default:
1120 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
1121 "completion code of %u.\n",
1122 cmd_comp_code);
1123 break;
1124 }
1125 /* OK what do we do now? The endpoint state is hosed, and we
1126 * should never get to this point if the synchronization between
1127 * queueing, and endpoint state are correct. This might happen
1128 * if the device gets disconnected after we've finished
1129 * cancelling URBs, which might not be an error...
1130 */
1131 } else {
1132 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1133 "Successful Set TR Deq Ptr cmd, deq = @%08llx",
1134 le64_to_cpu(ep_ctx->deq));
1135 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
1136 dev->eps[ep_index].queued_deq_ptr) ==
1137 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
1138 /* Update the ring's dequeue segment and dequeue pointer
1139 * to reflect the new position.
1140 */
1141 update_ring_for_set_deq_completion(xhci, dev,
1142 ep_ring, ep_index);
1143 } else {
1144 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
1145 "Ptr command & xHCI internal state.\n");
1146 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1147 dev->eps[ep_index].queued_deq_seg,
1148 dev->eps[ep_index].queued_deq_ptr);
1149 }
1150 }
1151
1152 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1153 dev->eps[ep_index].queued_deq_seg = NULL;
1154 dev->eps[ep_index].queued_deq_ptr = NULL;
1155 /* Restart any rings with pending URBs */
1156 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1157 }
1158
1159 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1160 union xhci_trb *trb, u32 cmd_comp_code)
1161 {
1162 unsigned int ep_index;
1163
1164 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1165 /* This command will only fail if the endpoint wasn't halted,
1166 * but we don't care.
1167 */
1168 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1169 "Ignoring reset ep completion code of %u", cmd_comp_code);
1170
1171 /* HW with the reset endpoint quirk needs to have a configure endpoint
1172 * command complete before the endpoint can be used. Queue that here
1173 * because the HW can't handle two commands being queued in a row.
1174 */
1175 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1176 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1177 "Queueing configure endpoint command");
1178 xhci_queue_configure_endpoint(xhci,
1179 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1180 false);
1181 xhci_ring_cmd_db(xhci);
1182 } else {
1183 /* Clear our internal halted state and restart the ring(s) */
1184 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1185 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1186 }
1187 }
1188
1189 /* Complete the command and detele it from the devcie's command queue.
1190 */
1191 static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1192 struct xhci_command *command, u32 status)
1193 {
1194 command->status = status;
1195 list_del(&command->cmd_list);
1196 if (command->completion)
1197 complete(command->completion);
1198 else
1199 xhci_free_command(xhci, command);
1200 }
1201
1202
1203 /* Check to see if a command in the device's command queue matches this one.
1204 * Signal the completion or free the command, and return 1. Return 0 if the
1205 * completed command isn't at the head of the command list.
1206 */
1207 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1208 struct xhci_virt_device *virt_dev,
1209 struct xhci_event_cmd *event)
1210 {
1211 struct xhci_command *command;
1212
1213 if (list_empty(&virt_dev->cmd_list))
1214 return 0;
1215
1216 command = list_entry(virt_dev->cmd_list.next,
1217 struct xhci_command, cmd_list);
1218 if (xhci->cmd_ring->dequeue != command->command_trb)
1219 return 0;
1220
1221 xhci_complete_cmd_in_cmd_wait_list(xhci, command,
1222 GET_COMP_CODE(le32_to_cpu(event->status)));
1223 return 1;
1224 }
1225
1226 /*
1227 * Finding the command trb need to be cancelled and modifying it to
1228 * NO OP command. And if the command is in device's command wait
1229 * list, finishing and freeing it.
1230 *
1231 * If we can't find the command trb, we think it had already been
1232 * executed.
1233 */
1234 static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd)
1235 {
1236 struct xhci_segment *cur_seg;
1237 union xhci_trb *cmd_trb;
1238 u32 cycle_state;
1239
1240 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1241 return;
1242
1243 /* find the current segment of command ring */
1244 cur_seg = find_trb_seg(xhci->cmd_ring->first_seg,
1245 xhci->cmd_ring->dequeue, &cycle_state);
1246
1247 if (!cur_seg) {
1248 xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n",
1249 xhci->cmd_ring->dequeue,
1250 (unsigned long long)
1251 xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1252 xhci->cmd_ring->dequeue));
1253 xhci_debug_ring(xhci, xhci->cmd_ring);
1254 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
1255 return;
1256 }
1257
1258 /* find the command trb matched by cd from command ring */
1259 for (cmd_trb = xhci->cmd_ring->dequeue;
1260 cmd_trb != xhci->cmd_ring->enqueue;
1261 next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) {
1262 /* If the trb is link trb, continue */
1263 if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3]))
1264 continue;
1265
1266 if (cur_cd->cmd_trb == cmd_trb) {
1267
1268 /* If the command in device's command list, we should
1269 * finish it and free the command structure.
1270 */
1271 if (cur_cd->command)
1272 xhci_complete_cmd_in_cmd_wait_list(xhci,
1273 cur_cd->command, COMP_CMD_STOP);
1274
1275 /* get cycle state from the origin command trb */
1276 cycle_state = le32_to_cpu(cmd_trb->generic.field[3])
1277 & TRB_CYCLE;
1278
1279 /* modify the command trb to NO OP command */
1280 cmd_trb->generic.field[0] = 0;
1281 cmd_trb->generic.field[1] = 0;
1282 cmd_trb->generic.field[2] = 0;
1283 cmd_trb->generic.field[3] = cpu_to_le32(
1284 TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1285 break;
1286 }
1287 }
1288 }
1289
1290 static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci)
1291 {
1292 struct xhci_cd *cur_cd, *next_cd;
1293
1294 if (list_empty(&xhci->cancel_cmd_list))
1295 return;
1296
1297 list_for_each_entry_safe(cur_cd, next_cd,
1298 &xhci->cancel_cmd_list, cancel_cmd_list) {
1299 xhci_cmd_to_noop(xhci, cur_cd);
1300 list_del(&cur_cd->cancel_cmd_list);
1301 kfree(cur_cd);
1302 }
1303 }
1304
1305 /*
1306 * traversing the cancel_cmd_list. If the command descriptor according
1307 * to cmd_trb is found, the function free it and return 1, otherwise
1308 * return 0.
1309 */
1310 static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci,
1311 union xhci_trb *cmd_trb)
1312 {
1313 struct xhci_cd *cur_cd, *next_cd;
1314
1315 if (list_empty(&xhci->cancel_cmd_list))
1316 return 0;
1317
1318 list_for_each_entry_safe(cur_cd, next_cd,
1319 &xhci->cancel_cmd_list, cancel_cmd_list) {
1320 if (cur_cd->cmd_trb == cmd_trb) {
1321 if (cur_cd->command)
1322 xhci_complete_cmd_in_cmd_wait_list(xhci,
1323 cur_cd->command, COMP_CMD_STOP);
1324 list_del(&cur_cd->cancel_cmd_list);
1325 kfree(cur_cd);
1326 return 1;
1327 }
1328 }
1329
1330 return 0;
1331 }
1332
1333 /*
1334 * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the
1335 * trb pointed by the command ring dequeue pointer is the trb we want to
1336 * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will
1337 * traverse the cancel_cmd_list to trun the all of the commands according
1338 * to command descriptor to NO-OP trb.
1339 */
1340 static int handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1341 int cmd_trb_comp_code)
1342 {
1343 int cur_trb_is_good = 0;
1344
1345 /* Searching the cmd trb pointed by the command ring dequeue
1346 * pointer in command descriptor list. If it is found, free it.
1347 */
1348 cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci,
1349 xhci->cmd_ring->dequeue);
1350
1351 if (cmd_trb_comp_code == COMP_CMD_ABORT)
1352 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1353 else if (cmd_trb_comp_code == COMP_CMD_STOP) {
1354 /* traversing the cancel_cmd_list and canceling
1355 * the command according to command descriptor
1356 */
1357 xhci_cancel_cmd_in_cd_list(xhci);
1358
1359 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1360 /*
1361 * ring command ring doorbell again to restart the
1362 * command ring
1363 */
1364 if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue)
1365 xhci_ring_cmd_db(xhci);
1366 }
1367 return cur_trb_is_good;
1368 }
1369
1370 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1371 u32 cmd_comp_code)
1372 {
1373 if (cmd_comp_code == COMP_SUCCESS)
1374 xhci->slot_id = slot_id;
1375 else
1376 xhci->slot_id = 0;
1377 complete(&xhci->addr_dev);
1378 }
1379
1380 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1381 {
1382 struct xhci_virt_device *virt_dev;
1383
1384 virt_dev = xhci->devs[slot_id];
1385 if (!virt_dev)
1386 return;
1387 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1388 /* Delete default control endpoint resources */
1389 xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1390 xhci_free_virt_device(xhci, slot_id);
1391 }
1392
1393 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1394 struct xhci_event_cmd *event, u32 cmd_comp_code)
1395 {
1396 struct xhci_virt_device *virt_dev;
1397 struct xhci_input_control_ctx *ctrl_ctx;
1398 unsigned int ep_index;
1399 unsigned int ep_state;
1400 u32 add_flags, drop_flags;
1401
1402 virt_dev = xhci->devs[slot_id];
1403 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1404 return;
1405 /*
1406 * Configure endpoint commands can come from the USB core
1407 * configuration or alt setting changes, or because the HW
1408 * needed an extra configure endpoint command after a reset
1409 * endpoint command or streams were being configured.
1410 * If the command was for a halted endpoint, the xHCI driver
1411 * is not waiting on the configure endpoint command.
1412 */
1413 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1414 if (!ctrl_ctx) {
1415 xhci_warn(xhci, "Could not get input context, bad type.\n");
1416 return;
1417 }
1418
1419 add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1420 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1421 /* Input ctx add_flags are the endpoint index plus one */
1422 ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1423
1424 /* A usb_set_interface() call directly after clearing a halted
1425 * condition may race on this quirky hardware. Not worth
1426 * worrying about, since this is prototype hardware. Not sure
1427 * if this will work for streams, but streams support was
1428 * untested on this prototype.
1429 */
1430 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1431 ep_index != (unsigned int) -1 &&
1432 add_flags - SLOT_FLAG == drop_flags) {
1433 ep_state = virt_dev->eps[ep_index].ep_state;
1434 if (!(ep_state & EP_HALTED))
1435 goto bandwidth_change;
1436 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1437 "Completed config ep cmd - "
1438 "last ep index = %d, state = %d",
1439 ep_index, ep_state);
1440 /* Clear internal halted state and restart ring(s) */
1441 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1442 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1443 return;
1444 }
1445 bandwidth_change:
1446 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1447 "Completed config ep cmd");
1448 virt_dev->cmd_status = cmd_comp_code;
1449 complete(&virt_dev->cmd_completion);
1450 return;
1451 }
1452
1453 static void xhci_handle_cmd_eval_ctx(struct xhci_hcd *xhci, int slot_id,
1454 struct xhci_event_cmd *event, u32 cmd_comp_code)
1455 {
1456 struct xhci_virt_device *virt_dev;
1457
1458 virt_dev = xhci->devs[slot_id];
1459 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1460 return;
1461 virt_dev->cmd_status = cmd_comp_code;
1462 complete(&virt_dev->cmd_completion);
1463 }
1464
1465 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id,
1466 u32 cmd_comp_code)
1467 {
1468 xhci->devs[slot_id]->cmd_status = cmd_comp_code;
1469 complete(&xhci->addr_dev);
1470 }
1471
1472 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1473 struct xhci_event_cmd *event)
1474 {
1475 struct xhci_virt_device *virt_dev;
1476
1477 xhci_dbg(xhci, "Completed reset device command.\n");
1478 virt_dev = xhci->devs[slot_id];
1479 if (virt_dev)
1480 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1481 else
1482 xhci_warn(xhci, "Reset device command completion "
1483 "for disabled slot %u\n", slot_id);
1484 }
1485
1486 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1487 struct xhci_event_cmd *event)
1488 {
1489 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1490 xhci->error_bitmask |= 1 << 6;
1491 return;
1492 }
1493 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1494 "NEC firmware version %2x.%02x",
1495 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1496 NEC_FW_MINOR(le32_to_cpu(event->status)));
1497 }
1498
1499 static void handle_cmd_completion(struct xhci_hcd *xhci,
1500 struct xhci_event_cmd *event)
1501 {
1502 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1503 u64 cmd_dma;
1504 dma_addr_t cmd_dequeue_dma;
1505 u32 cmd_comp_code;
1506 union xhci_trb *cmd_trb;
1507 u32 cmd_type;
1508
1509 cmd_dma = le64_to_cpu(event->cmd_trb);
1510 cmd_trb = xhci->cmd_ring->dequeue;
1511 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1512 cmd_trb);
1513 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1514 if (cmd_dequeue_dma == 0) {
1515 xhci->error_bitmask |= 1 << 4;
1516 return;
1517 }
1518 /* Does the DMA address match our internal dequeue pointer address? */
1519 if (cmd_dma != (u64) cmd_dequeue_dma) {
1520 xhci->error_bitmask |= 1 << 5;
1521 return;
1522 }
1523
1524 trace_xhci_cmd_completion(cmd_trb, (struct xhci_generic_trb *) event);
1525
1526 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1527 if (cmd_comp_code == COMP_CMD_ABORT || cmd_comp_code == COMP_CMD_STOP) {
1528 /* If the return value is 0, we think the trb pointed by
1529 * command ring dequeue pointer is a good trb. The good
1530 * trb means we don't want to cancel the trb, but it have
1531 * been stopped by host. So we should handle it normally.
1532 * Otherwise, driver should invoke inc_deq() and return.
1533 */
1534 if (handle_stopped_cmd_ring(xhci, cmd_comp_code)) {
1535 inc_deq(xhci, xhci->cmd_ring);
1536 return;
1537 }
1538 /* There is no command to handle if we get a stop event when the
1539 * command ring is empty, event->cmd_trb points to the next
1540 * unset command
1541 */
1542 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1543 return;
1544 }
1545
1546 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1547 switch (cmd_type) {
1548 case TRB_ENABLE_SLOT:
1549 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd_comp_code);
1550 break;
1551 case TRB_DISABLE_SLOT:
1552 xhci_handle_cmd_disable_slot(xhci, slot_id);
1553 break;
1554 case TRB_CONFIG_EP:
1555 xhci_handle_cmd_config_ep(xhci, slot_id, event, cmd_comp_code);
1556 break;
1557 case TRB_EVAL_CONTEXT:
1558 xhci_handle_cmd_eval_ctx(xhci, slot_id, event, cmd_comp_code);
1559 break;
1560 case TRB_ADDR_DEV:
1561 xhci_handle_cmd_addr_dev(xhci, slot_id, cmd_comp_code);
1562 break;
1563 case TRB_STOP_RING:
1564 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1565 le32_to_cpu(cmd_trb->generic.field[3])));
1566 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1567 break;
1568 case TRB_SET_DEQ:
1569 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1570 le32_to_cpu(cmd_trb->generic.field[3])));
1571 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1572 break;
1573 case TRB_CMD_NOOP:
1574 break;
1575 case TRB_RESET_EP:
1576 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1577 le32_to_cpu(cmd_trb->generic.field[3])));
1578 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1579 break;
1580 case TRB_RESET_DEV:
1581 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1582 le32_to_cpu(cmd_trb->generic.field[3])));
1583 xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1584 break;
1585 case TRB_NEC_GET_FW:
1586 xhci_handle_cmd_nec_get_fw(xhci, event);
1587 break;
1588 default:
1589 /* Skip over unknown commands on the event ring */
1590 xhci->error_bitmask |= 1 << 6;
1591 break;
1592 }
1593 inc_deq(xhci, xhci->cmd_ring);
1594 }
1595
1596 static void handle_vendor_event(struct xhci_hcd *xhci,
1597 union xhci_trb *event)
1598 {
1599 u32 trb_type;
1600
1601 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1602 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1603 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1604 handle_cmd_completion(xhci, &event->event_cmd);
1605 }
1606
1607 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1608 * port registers -- USB 3.0 and USB 2.0).
1609 *
1610 * Returns a zero-based port number, which is suitable for indexing into each of
1611 * the split roothubs' port arrays and bus state arrays.
1612 * Add one to it in order to call xhci_find_slot_id_by_port.
1613 */
1614 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1615 struct xhci_hcd *xhci, u32 port_id)
1616 {
1617 unsigned int i;
1618 unsigned int num_similar_speed_ports = 0;
1619
1620 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1621 * and usb2_ports are 0-based indexes. Count the number of similar
1622 * speed ports, up to 1 port before this port.
1623 */
1624 for (i = 0; i < (port_id - 1); i++) {
1625 u8 port_speed = xhci->port_array[i];
1626
1627 /*
1628 * Skip ports that don't have known speeds, or have duplicate
1629 * Extended Capabilities port speed entries.
1630 */
1631 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1632 continue;
1633
1634 /*
1635 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1636 * 1.1 ports are under the USB 2.0 hub. If the port speed
1637 * matches the device speed, it's a similar speed port.
1638 */
1639 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1640 num_similar_speed_ports++;
1641 }
1642 return num_similar_speed_ports;
1643 }
1644
1645 static void handle_device_notification(struct xhci_hcd *xhci,
1646 union xhci_trb *event)
1647 {
1648 u32 slot_id;
1649 struct usb_device *udev;
1650
1651 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1652 if (!xhci->devs[slot_id]) {
1653 xhci_warn(xhci, "Device Notification event for "
1654 "unused slot %u\n", slot_id);
1655 return;
1656 }
1657
1658 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1659 slot_id);
1660 udev = xhci->devs[slot_id]->udev;
1661 if (udev && udev->parent)
1662 usb_wakeup_notification(udev->parent, udev->portnum);
1663 }
1664
1665 static void handle_port_status(struct xhci_hcd *xhci,
1666 union xhci_trb *event)
1667 {
1668 struct usb_hcd *hcd;
1669 u32 port_id;
1670 u32 temp, temp1;
1671 int max_ports;
1672 int slot_id;
1673 unsigned int faked_port_index;
1674 u8 major_revision;
1675 struct xhci_bus_state *bus_state;
1676 __le32 __iomem **port_array;
1677 bool bogus_port_status = false;
1678
1679 /* Port status change events always have a successful completion code */
1680 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1681 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1682 xhci->error_bitmask |= 1 << 8;
1683 }
1684 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1685 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1686
1687 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1688 if ((port_id <= 0) || (port_id > max_ports)) {
1689 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1690 inc_deq(xhci, xhci->event_ring);
1691 return;
1692 }
1693
1694 /* Figure out which usb_hcd this port is attached to:
1695 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1696 */
1697 major_revision = xhci->port_array[port_id - 1];
1698
1699 /* Find the right roothub. */
1700 hcd = xhci_to_hcd(xhci);
1701 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1702 hcd = xhci->shared_hcd;
1703
1704 if (major_revision == 0) {
1705 xhci_warn(xhci, "Event for port %u not in "
1706 "Extended Capabilities, ignoring.\n",
1707 port_id);
1708 bogus_port_status = true;
1709 goto cleanup;
1710 }
1711 if (major_revision == DUPLICATE_ENTRY) {
1712 xhci_warn(xhci, "Event for port %u duplicated in"
1713 "Extended Capabilities, ignoring.\n",
1714 port_id);
1715 bogus_port_status = true;
1716 goto cleanup;
1717 }
1718
1719 /*
1720 * Hardware port IDs reported by a Port Status Change Event include USB
1721 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1722 * resume event, but we first need to translate the hardware port ID
1723 * into the index into the ports on the correct split roothub, and the
1724 * correct bus_state structure.
1725 */
1726 bus_state = &xhci->bus_state[hcd_index(hcd)];
1727 if (hcd->speed == HCD_USB3)
1728 port_array = xhci->usb3_ports;
1729 else
1730 port_array = xhci->usb2_ports;
1731 /* Find the faked port hub number */
1732 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1733 port_id);
1734
1735 temp = readl(port_array[faked_port_index]);
1736 if (hcd->state == HC_STATE_SUSPENDED) {
1737 xhci_dbg(xhci, "resume root hub\n");
1738 usb_hcd_resume_root_hub(hcd);
1739 }
1740
1741 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1742 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1743
1744 temp1 = readl(&xhci->op_regs->command);
1745 if (!(temp1 & CMD_RUN)) {
1746 xhci_warn(xhci, "xHC is not running.\n");
1747 goto cleanup;
1748 }
1749
1750 if (DEV_SUPERSPEED(temp)) {
1751 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1752 /* Set a flag to say the port signaled remote wakeup,
1753 * so we can tell the difference between the end of
1754 * device and host initiated resume.
1755 */
1756 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1757 xhci_test_and_clear_bit(xhci, port_array,
1758 faked_port_index, PORT_PLC);
1759 xhci_set_link_state(xhci, port_array, faked_port_index,
1760 XDEV_U0);
1761 /* Need to wait until the next link state change
1762 * indicates the device is actually in U0.
1763 */
1764 bogus_port_status = true;
1765 goto cleanup;
1766 } else {
1767 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1768 bus_state->resume_done[faked_port_index] = jiffies +
1769 msecs_to_jiffies(20);
1770 set_bit(faked_port_index, &bus_state->resuming_ports);
1771 mod_timer(&hcd->rh_timer,
1772 bus_state->resume_done[faked_port_index]);
1773 /* Do the rest in GetPortStatus */
1774 }
1775 }
1776
1777 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1778 DEV_SUPERSPEED(temp)) {
1779 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1780 /* We've just brought the device into U0 through either the
1781 * Resume state after a device remote wakeup, or through the
1782 * U3Exit state after a host-initiated resume. If it's a device
1783 * initiated remote wake, don't pass up the link state change,
1784 * so the roothub behavior is consistent with external
1785 * USB 3.0 hub behavior.
1786 */
1787 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1788 faked_port_index + 1);
1789 if (slot_id && xhci->devs[slot_id])
1790 xhci_ring_device(xhci, slot_id);
1791 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1792 bus_state->port_remote_wakeup &=
1793 ~(1 << faked_port_index);
1794 xhci_test_and_clear_bit(xhci, port_array,
1795 faked_port_index, PORT_PLC);
1796 usb_wakeup_notification(hcd->self.root_hub,
1797 faked_port_index + 1);
1798 bogus_port_status = true;
1799 goto cleanup;
1800 }
1801 }
1802
1803 /*
1804 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1805 * RExit to a disconnect state). If so, let the the driver know it's
1806 * out of the RExit state.
1807 */
1808 if (!DEV_SUPERSPEED(temp) &&
1809 test_and_clear_bit(faked_port_index,
1810 &bus_state->rexit_ports)) {
1811 complete(&bus_state->rexit_done[faked_port_index]);
1812 bogus_port_status = true;
1813 goto cleanup;
1814 }
1815
1816 if (hcd->speed != HCD_USB3)
1817 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1818 PORT_PLC);
1819
1820 cleanup:
1821 /* Update event ring dequeue pointer before dropping the lock */
1822 inc_deq(xhci, xhci->event_ring);
1823
1824 /* Don't make the USB core poll the roothub if we got a bad port status
1825 * change event. Besides, at that point we can't tell which roothub
1826 * (USB 2.0 or USB 3.0) to kick.
1827 */
1828 if (bogus_port_status)
1829 return;
1830
1831 /*
1832 * xHCI port-status-change events occur when the "or" of all the
1833 * status-change bits in the portsc register changes from 0 to 1.
1834 * New status changes won't cause an event if any other change
1835 * bits are still set. When an event occurs, switch over to
1836 * polling to avoid losing status changes.
1837 */
1838 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1839 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1840 spin_unlock(&xhci->lock);
1841 /* Pass this up to the core */
1842 usb_hcd_poll_rh_status(hcd);
1843 spin_lock(&xhci->lock);
1844 }
1845
1846 /*
1847 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1848 * at end_trb, which may be in another segment. If the suspect DMA address is a
1849 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1850 * returns 0.
1851 */
1852 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1853 union xhci_trb *start_trb,
1854 union xhci_trb *end_trb,
1855 dma_addr_t suspect_dma)
1856 {
1857 dma_addr_t start_dma;
1858 dma_addr_t end_seg_dma;
1859 dma_addr_t end_trb_dma;
1860 struct xhci_segment *cur_seg;
1861
1862 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1863 cur_seg = start_seg;
1864
1865 do {
1866 if (start_dma == 0)
1867 return NULL;
1868 /* We may get an event for a Link TRB in the middle of a TD */
1869 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1870 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1871 /* If the end TRB isn't in this segment, this is set to 0 */
1872 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1873
1874 if (end_trb_dma > 0) {
1875 /* The end TRB is in this segment, so suspect should be here */
1876 if (start_dma <= end_trb_dma) {
1877 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1878 return cur_seg;
1879 } else {
1880 /* Case for one segment with
1881 * a TD wrapped around to the top
1882 */
1883 if ((suspect_dma >= start_dma &&
1884 suspect_dma <= end_seg_dma) ||
1885 (suspect_dma >= cur_seg->dma &&
1886 suspect_dma <= end_trb_dma))
1887 return cur_seg;
1888 }
1889 return NULL;
1890 } else {
1891 /* Might still be somewhere in this segment */
1892 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1893 return cur_seg;
1894 }
1895 cur_seg = cur_seg->next;
1896 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1897 } while (cur_seg != start_seg);
1898
1899 return NULL;
1900 }
1901
1902 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1903 unsigned int slot_id, unsigned int ep_index,
1904 unsigned int stream_id,
1905 struct xhci_td *td, union xhci_trb *event_trb)
1906 {
1907 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1908 ep->ep_state |= EP_HALTED;
1909 ep->stopped_td = td;
1910 ep->stopped_trb = event_trb;
1911 ep->stopped_stream = stream_id;
1912
1913 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1914 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1915
1916 ep->stopped_td = NULL;
1917 ep->stopped_trb = NULL;
1918 ep->stopped_stream = 0;
1919
1920 xhci_ring_cmd_db(xhci);
1921 }
1922
1923 /* Check if an error has halted the endpoint ring. The class driver will
1924 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1925 * However, a babble and other errors also halt the endpoint ring, and the class
1926 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1927 * Ring Dequeue Pointer command manually.
1928 */
1929 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1930 struct xhci_ep_ctx *ep_ctx,
1931 unsigned int trb_comp_code)
1932 {
1933 /* TRB completion codes that may require a manual halt cleanup */
1934 if (trb_comp_code == COMP_TX_ERR ||
1935 trb_comp_code == COMP_BABBLE ||
1936 trb_comp_code == COMP_SPLIT_ERR)
1937 /* The 0.96 spec says a babbling control endpoint
1938 * is not halted. The 0.96 spec says it is. Some HW
1939 * claims to be 0.95 compliant, but it halts the control
1940 * endpoint anyway. Check if a babble halted the
1941 * endpoint.
1942 */
1943 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1944 cpu_to_le32(EP_STATE_HALTED))
1945 return 1;
1946
1947 return 0;
1948 }
1949
1950 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1951 {
1952 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1953 /* Vendor defined "informational" completion code,
1954 * treat as not-an-error.
1955 */
1956 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1957 trb_comp_code);
1958 xhci_dbg(xhci, "Treating code as success.\n");
1959 return 1;
1960 }
1961 return 0;
1962 }
1963
1964 /*
1965 * Finish the td processing, remove the td from td list;
1966 * Return 1 if the urb can be given back.
1967 */
1968 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1969 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1970 struct xhci_virt_ep *ep, int *status, bool skip)
1971 {
1972 struct xhci_virt_device *xdev;
1973 struct xhci_ring *ep_ring;
1974 unsigned int slot_id;
1975 int ep_index;
1976 struct urb *urb = NULL;
1977 struct xhci_ep_ctx *ep_ctx;
1978 int ret = 0;
1979 struct urb_priv *urb_priv;
1980 u32 trb_comp_code;
1981
1982 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1983 xdev = xhci->devs[slot_id];
1984 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1985 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1986 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1987 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1988
1989 if (skip)
1990 goto td_cleanup;
1991
1992 if (trb_comp_code == COMP_STOP_INVAL ||
1993 trb_comp_code == COMP_STOP) {
1994 /* The Endpoint Stop Command completion will take care of any
1995 * stopped TDs. A stopped TD may be restarted, so don't update
1996 * the ring dequeue pointer or take this TD off any lists yet.
1997 */
1998 ep->stopped_td = td;
1999 ep->stopped_trb = event_trb;
2000 return 0;
2001 } else {
2002 if (trb_comp_code == COMP_STALL) {
2003 /* The transfer is completed from the driver's
2004 * perspective, but we need to issue a set dequeue
2005 * command for this stalled endpoint to move the dequeue
2006 * pointer past the TD. We can't do that here because
2007 * the halt condition must be cleared first. Let the
2008 * USB class driver clear the stall later.
2009 */
2010 ep->stopped_td = td;
2011 ep->stopped_trb = event_trb;
2012 ep->stopped_stream = ep_ring->stream_id;
2013 } else if (xhci_requires_manual_halt_cleanup(xhci,
2014 ep_ctx, trb_comp_code)) {
2015 /* Other types of errors halt the endpoint, but the
2016 * class driver doesn't call usb_reset_endpoint() unless
2017 * the error is -EPIPE. Clear the halted status in the
2018 * xHCI hardware manually.
2019 */
2020 xhci_cleanup_halted_endpoint(xhci,
2021 slot_id, ep_index, ep_ring->stream_id,
2022 td, event_trb);
2023 } else {
2024 /* Update ring dequeue pointer */
2025 while (ep_ring->dequeue != td->last_trb)
2026 inc_deq(xhci, ep_ring);
2027 inc_deq(xhci, ep_ring);
2028 }
2029
2030 td_cleanup:
2031 /* Clean up the endpoint's TD list */
2032 urb = td->urb;
2033 urb_priv = urb->hcpriv;
2034
2035 /* Do one last check of the actual transfer length.
2036 * If the host controller said we transferred more data than
2037 * the buffer length, urb->actual_length will be a very big
2038 * number (since it's unsigned). Play it safe and say we didn't
2039 * transfer anything.
2040 */
2041 if (urb->actual_length > urb->transfer_buffer_length) {
2042 xhci_warn(xhci, "URB transfer length is wrong, "
2043 "xHC issue? req. len = %u, "
2044 "act. len = %u\n",
2045 urb->transfer_buffer_length,
2046 urb->actual_length);
2047 urb->actual_length = 0;
2048 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2049 *status = -EREMOTEIO;
2050 else
2051 *status = 0;
2052 }
2053 list_del_init(&td->td_list);
2054 /* Was this TD slated to be cancelled but completed anyway? */
2055 if (!list_empty(&td->cancelled_td_list))
2056 list_del_init(&td->cancelled_td_list);
2057
2058 urb_priv->td_cnt++;
2059 /* Giveback the urb when all the tds are completed */
2060 if (urb_priv->td_cnt == urb_priv->length) {
2061 ret = 1;
2062 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
2063 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
2064 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
2065 == 0) {
2066 if (xhci->quirks & XHCI_AMD_PLL_FIX)
2067 usb_amd_quirk_pll_enable();
2068 }
2069 }
2070 }
2071 }
2072
2073 return ret;
2074 }
2075
2076 /*
2077 * Process control tds, update urb status and actual_length.
2078 */
2079 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
2080 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2081 struct xhci_virt_ep *ep, int *status)
2082 {
2083 struct xhci_virt_device *xdev;
2084 struct xhci_ring *ep_ring;
2085 unsigned int slot_id;
2086 int ep_index;
2087 struct xhci_ep_ctx *ep_ctx;
2088 u32 trb_comp_code;
2089
2090 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2091 xdev = xhci->devs[slot_id];
2092 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2093 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2094 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2095 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2096
2097 switch (trb_comp_code) {
2098 case COMP_SUCCESS:
2099 if (event_trb == ep_ring->dequeue) {
2100 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
2101 "without IOC set??\n");
2102 *status = -ESHUTDOWN;
2103 } else if (event_trb != td->last_trb) {
2104 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
2105 "without IOC set??\n");
2106 *status = -ESHUTDOWN;
2107 } else {
2108 *status = 0;
2109 }
2110 break;
2111 case COMP_SHORT_TX:
2112 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2113 *status = -EREMOTEIO;
2114 else
2115 *status = 0;
2116 break;
2117 case COMP_STOP_INVAL:
2118 case COMP_STOP:
2119 return finish_td(xhci, td, event_trb, event, ep, status, false);
2120 default:
2121 if (!xhci_requires_manual_halt_cleanup(xhci,
2122 ep_ctx, trb_comp_code))
2123 break;
2124 xhci_dbg(xhci, "TRB error code %u, "
2125 "halted endpoint index = %u\n",
2126 trb_comp_code, ep_index);
2127 /* else fall through */
2128 case COMP_STALL:
2129 /* Did we transfer part of the data (middle) phase? */
2130 if (event_trb != ep_ring->dequeue &&
2131 event_trb != td->last_trb)
2132 td->urb->actual_length =
2133 td->urb->transfer_buffer_length -
2134 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2135 else
2136 td->urb->actual_length = 0;
2137
2138 xhci_cleanup_halted_endpoint(xhci,
2139 slot_id, ep_index, 0, td, event_trb);
2140 return finish_td(xhci, td, event_trb, event, ep, status, true);
2141 }
2142 /*
2143 * Did we transfer any data, despite the errors that might have
2144 * happened? I.e. did we get past the setup stage?
2145 */
2146 if (event_trb != ep_ring->dequeue) {
2147 /* The event was for the status stage */
2148 if (event_trb == td->last_trb) {
2149 if (td->urb->actual_length != 0) {
2150 /* Don't overwrite a previously set error code
2151 */
2152 if ((*status == -EINPROGRESS || *status == 0) &&
2153 (td->urb->transfer_flags
2154 & URB_SHORT_NOT_OK))
2155 /* Did we already see a short data
2156 * stage? */
2157 *status = -EREMOTEIO;
2158 } else {
2159 td->urb->actual_length =
2160 td->urb->transfer_buffer_length;
2161 }
2162 } else {
2163 /* Maybe the event was for the data stage? */
2164 td->urb->actual_length =
2165 td->urb->transfer_buffer_length -
2166 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2167 xhci_dbg(xhci, "Waiting for status "
2168 "stage event\n");
2169 return 0;
2170 }
2171 }
2172
2173 return finish_td(xhci, td, event_trb, event, ep, status, false);
2174 }
2175
2176 /*
2177 * Process isochronous tds, update urb packet status and actual_length.
2178 */
2179 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2180 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2181 struct xhci_virt_ep *ep, int *status)
2182 {
2183 struct xhci_ring *ep_ring;
2184 struct urb_priv *urb_priv;
2185 int idx;
2186 int len = 0;
2187 union xhci_trb *cur_trb;
2188 struct xhci_segment *cur_seg;
2189 struct usb_iso_packet_descriptor *frame;
2190 u32 trb_comp_code;
2191 bool skip_td = false;
2192
2193 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2194 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2195 urb_priv = td->urb->hcpriv;
2196 idx = urb_priv->td_cnt;
2197 frame = &td->urb->iso_frame_desc[idx];
2198
2199 /* handle completion code */
2200 switch (trb_comp_code) {
2201 case COMP_SUCCESS:
2202 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2203 frame->status = 0;
2204 break;
2205 }
2206 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2207 trb_comp_code = COMP_SHORT_TX;
2208 case COMP_SHORT_TX:
2209 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2210 -EREMOTEIO : 0;
2211 break;
2212 case COMP_BW_OVER:
2213 frame->status = -ECOMM;
2214 skip_td = true;
2215 break;
2216 case COMP_BUFF_OVER:
2217 case COMP_BABBLE:
2218 frame->status = -EOVERFLOW;
2219 skip_td = true;
2220 break;
2221 case COMP_DEV_ERR:
2222 case COMP_STALL:
2223 case COMP_TX_ERR:
2224 frame->status = -EPROTO;
2225 skip_td = true;
2226 break;
2227 case COMP_STOP:
2228 case COMP_STOP_INVAL:
2229 break;
2230 default:
2231 frame->status = -1;
2232 break;
2233 }
2234
2235 if (trb_comp_code == COMP_SUCCESS || skip_td) {
2236 frame->actual_length = frame->length;
2237 td->urb->actual_length += frame->length;
2238 } else {
2239 for (cur_trb = ep_ring->dequeue,
2240 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2241 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2242 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2243 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2244 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2245 }
2246 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2247 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2248
2249 if (trb_comp_code != COMP_STOP_INVAL) {
2250 frame->actual_length = len;
2251 td->urb->actual_length += len;
2252 }
2253 }
2254
2255 return finish_td(xhci, td, event_trb, event, ep, status, false);
2256 }
2257
2258 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2259 struct xhci_transfer_event *event,
2260 struct xhci_virt_ep *ep, int *status)
2261 {
2262 struct xhci_ring *ep_ring;
2263 struct urb_priv *urb_priv;
2264 struct usb_iso_packet_descriptor *frame;
2265 int idx;
2266
2267 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2268 urb_priv = td->urb->hcpriv;
2269 idx = urb_priv->td_cnt;
2270 frame = &td->urb->iso_frame_desc[idx];
2271
2272 /* The transfer is partly done. */
2273 frame->status = -EXDEV;
2274
2275 /* calc actual length */
2276 frame->actual_length = 0;
2277
2278 /* Update ring dequeue pointer */
2279 while (ep_ring->dequeue != td->last_trb)
2280 inc_deq(xhci, ep_ring);
2281 inc_deq(xhci, ep_ring);
2282
2283 return finish_td(xhci, td, NULL, event, ep, status, true);
2284 }
2285
2286 /*
2287 * Process bulk and interrupt tds, update urb status and actual_length.
2288 */
2289 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2290 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2291 struct xhci_virt_ep *ep, int *status)
2292 {
2293 struct xhci_ring *ep_ring;
2294 union xhci_trb *cur_trb;
2295 struct xhci_segment *cur_seg;
2296 u32 trb_comp_code;
2297
2298 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2299 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2300
2301 switch (trb_comp_code) {
2302 case COMP_SUCCESS:
2303 /* Double check that the HW transferred everything. */
2304 if (event_trb != td->last_trb ||
2305 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2306 xhci_warn(xhci, "WARN Successful completion "
2307 "on short TX\n");
2308 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2309 *status = -EREMOTEIO;
2310 else
2311 *status = 0;
2312 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2313 trb_comp_code = COMP_SHORT_TX;
2314 } else {
2315 *status = 0;
2316 }
2317 break;
2318 case COMP_SHORT_TX:
2319 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2320 *status = -EREMOTEIO;
2321 else
2322 *status = 0;
2323 break;
2324 default:
2325 /* Others already handled above */
2326 break;
2327 }
2328 if (trb_comp_code == COMP_SHORT_TX)
2329 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2330 "%d bytes untransferred\n",
2331 td->urb->ep->desc.bEndpointAddress,
2332 td->urb->transfer_buffer_length,
2333 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2334 /* Fast path - was this the last TRB in the TD for this URB? */
2335 if (event_trb == td->last_trb) {
2336 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2337 td->urb->actual_length =
2338 td->urb->transfer_buffer_length -
2339 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2340 if (td->urb->transfer_buffer_length <
2341 td->urb->actual_length) {
2342 xhci_warn(xhci, "HC gave bad length "
2343 "of %d bytes left\n",
2344 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2345 td->urb->actual_length = 0;
2346 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2347 *status = -EREMOTEIO;
2348 else
2349 *status = 0;
2350 }
2351 /* Don't overwrite a previously set error code */
2352 if (*status == -EINPROGRESS) {
2353 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2354 *status = -EREMOTEIO;
2355 else
2356 *status = 0;
2357 }
2358 } else {
2359 td->urb->actual_length =
2360 td->urb->transfer_buffer_length;
2361 /* Ignore a short packet completion if the
2362 * untransferred length was zero.
2363 */
2364 if (*status == -EREMOTEIO)
2365 *status = 0;
2366 }
2367 } else {
2368 /* Slow path - walk the list, starting from the dequeue
2369 * pointer, to get the actual length transferred.
2370 */
2371 td->urb->actual_length = 0;
2372 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2373 cur_trb != event_trb;
2374 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2375 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2376 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2377 td->urb->actual_length +=
2378 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2379 }
2380 /* If the ring didn't stop on a Link or No-op TRB, add
2381 * in the actual bytes transferred from the Normal TRB
2382 */
2383 if (trb_comp_code != COMP_STOP_INVAL)
2384 td->urb->actual_length +=
2385 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2386 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2387 }
2388
2389 return finish_td(xhci, td, event_trb, event, ep, status, false);
2390 }
2391
2392 /*
2393 * If this function returns an error condition, it means it got a Transfer
2394 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2395 * At this point, the host controller is probably hosed and should be reset.
2396 */
2397 static int handle_tx_event(struct xhci_hcd *xhci,
2398 struct xhci_transfer_event *event)
2399 __releases(&xhci->lock)
2400 __acquires(&xhci->lock)
2401 {
2402 struct xhci_virt_device *xdev;
2403 struct xhci_virt_ep *ep;
2404 struct xhci_ring *ep_ring;
2405 unsigned int slot_id;
2406 int ep_index;
2407 struct xhci_td *td = NULL;
2408 dma_addr_t event_dma;
2409 struct xhci_segment *event_seg;
2410 union xhci_trb *event_trb;
2411 struct urb *urb = NULL;
2412 int status = -EINPROGRESS;
2413 struct urb_priv *urb_priv;
2414 struct xhci_ep_ctx *ep_ctx;
2415 struct list_head *tmp;
2416 u32 trb_comp_code;
2417 int ret = 0;
2418 int td_num = 0;
2419
2420 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2421 xdev = xhci->devs[slot_id];
2422 if (!xdev) {
2423 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2424 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2425 (unsigned long long) xhci_trb_virt_to_dma(
2426 xhci->event_ring->deq_seg,
2427 xhci->event_ring->dequeue),
2428 lower_32_bits(le64_to_cpu(event->buffer)),
2429 upper_32_bits(le64_to_cpu(event->buffer)),
2430 le32_to_cpu(event->transfer_len),
2431 le32_to_cpu(event->flags));
2432 xhci_dbg(xhci, "Event ring:\n");
2433 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2434 return -ENODEV;
2435 }
2436
2437 /* Endpoint ID is 1 based, our index is zero based */
2438 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2439 ep = &xdev->eps[ep_index];
2440 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2441 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2442 if (!ep_ring ||
2443 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2444 EP_STATE_DISABLED) {
2445 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2446 "or incorrect stream ring\n");
2447 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2448 (unsigned long long) xhci_trb_virt_to_dma(
2449 xhci->event_ring->deq_seg,
2450 xhci->event_ring->dequeue),
2451 lower_32_bits(le64_to_cpu(event->buffer)),
2452 upper_32_bits(le64_to_cpu(event->buffer)),
2453 le32_to_cpu(event->transfer_len),
2454 le32_to_cpu(event->flags));
2455 xhci_dbg(xhci, "Event ring:\n");
2456 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2457 return -ENODEV;
2458 }
2459
2460 /* Count current td numbers if ep->skip is set */
2461 if (ep->skip) {
2462 list_for_each(tmp, &ep_ring->td_list)
2463 td_num++;
2464 }
2465
2466 event_dma = le64_to_cpu(event->buffer);
2467 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2468 /* Look for common error cases */
2469 switch (trb_comp_code) {
2470 /* Skip codes that require special handling depending on
2471 * transfer type
2472 */
2473 case COMP_SUCCESS:
2474 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2475 break;
2476 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2477 trb_comp_code = COMP_SHORT_TX;
2478 else
2479 xhci_warn_ratelimited(xhci,
2480 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2481 case COMP_SHORT_TX:
2482 break;
2483 case COMP_STOP:
2484 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2485 break;
2486 case COMP_STOP_INVAL:
2487 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2488 break;
2489 case COMP_STALL:
2490 xhci_dbg(xhci, "Stalled endpoint\n");
2491 ep->ep_state |= EP_HALTED;
2492 status = -EPIPE;
2493 break;
2494 case COMP_TRB_ERR:
2495 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2496 status = -EILSEQ;
2497 break;
2498 case COMP_SPLIT_ERR:
2499 case COMP_TX_ERR:
2500 xhci_dbg(xhci, "Transfer error on endpoint\n");
2501 status = -EPROTO;
2502 break;
2503 case COMP_BABBLE:
2504 xhci_dbg(xhci, "Babble error on endpoint\n");
2505 status = -EOVERFLOW;
2506 break;
2507 case COMP_DB_ERR:
2508 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2509 status = -ENOSR;
2510 break;
2511 case COMP_BW_OVER:
2512 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2513 break;
2514 case COMP_BUFF_OVER:
2515 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2516 break;
2517 case COMP_UNDERRUN:
2518 /*
2519 * When the Isoch ring is empty, the xHC will generate
2520 * a Ring Overrun Event for IN Isoch endpoint or Ring
2521 * Underrun Event for OUT Isoch endpoint.
2522 */
2523 xhci_dbg(xhci, "underrun event on endpoint\n");
2524 if (!list_empty(&ep_ring->td_list))
2525 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2526 "still with TDs queued?\n",
2527 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2528 ep_index);
2529 goto cleanup;
2530 case COMP_OVERRUN:
2531 xhci_dbg(xhci, "overrun event on endpoint\n");
2532 if (!list_empty(&ep_ring->td_list))
2533 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2534 "still with TDs queued?\n",
2535 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2536 ep_index);
2537 goto cleanup;
2538 case COMP_DEV_ERR:
2539 xhci_warn(xhci, "WARN: detect an incompatible device");
2540 status = -EPROTO;
2541 break;
2542 case COMP_MISSED_INT:
2543 /*
2544 * When encounter missed service error, one or more isoc tds
2545 * may be missed by xHC.
2546 * Set skip flag of the ep_ring; Complete the missed tds as
2547 * short transfer when process the ep_ring next time.
2548 */
2549 ep->skip = true;
2550 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2551 goto cleanup;
2552 default:
2553 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2554 status = 0;
2555 break;
2556 }
2557 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2558 "busted\n");
2559 goto cleanup;
2560 }
2561
2562 do {
2563 /* This TRB should be in the TD at the head of this ring's
2564 * TD list.
2565 */
2566 if (list_empty(&ep_ring->td_list)) {
2567 /*
2568 * A stopped endpoint may generate an extra completion
2569 * event if the device was suspended. Don't print
2570 * warnings.
2571 */
2572 if (!(trb_comp_code == COMP_STOP ||
2573 trb_comp_code == COMP_STOP_INVAL)) {
2574 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2575 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2576 ep_index);
2577 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2578 (le32_to_cpu(event->flags) &
2579 TRB_TYPE_BITMASK)>>10);
2580 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2581 }
2582 if (ep->skip) {
2583 ep->skip = false;
2584 xhci_dbg(xhci, "td_list is empty while skip "
2585 "flag set. Clear skip flag.\n");
2586 }
2587 ret = 0;
2588 goto cleanup;
2589 }
2590
2591 /* We've skipped all the TDs on the ep ring when ep->skip set */
2592 if (ep->skip && td_num == 0) {
2593 ep->skip = false;
2594 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2595 "Clear skip flag.\n");
2596 ret = 0;
2597 goto cleanup;
2598 }
2599
2600 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2601 if (ep->skip)
2602 td_num--;
2603
2604 /* Is this a TRB in the currently executing TD? */
2605 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2606 td->last_trb, event_dma);
2607
2608 /*
2609 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2610 * is not in the current TD pointed by ep_ring->dequeue because
2611 * that the hardware dequeue pointer still at the previous TRB
2612 * of the current TD. The previous TRB maybe a Link TD or the
2613 * last TRB of the previous TD. The command completion handle
2614 * will take care the rest.
2615 */
2616 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2617 ret = 0;
2618 goto cleanup;
2619 }
2620
2621 if (!event_seg) {
2622 if (!ep->skip ||
2623 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2624 /* Some host controllers give a spurious
2625 * successful event after a short transfer.
2626 * Ignore it.
2627 */
2628 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2629 ep_ring->last_td_was_short) {
2630 ep_ring->last_td_was_short = false;
2631 ret = 0;
2632 goto cleanup;
2633 }
2634 /* HC is busted, give up! */
2635 xhci_err(xhci,
2636 "ERROR Transfer event TRB DMA ptr not "
2637 "part of current TD\n");
2638 return -ESHUTDOWN;
2639 }
2640
2641 ret = skip_isoc_td(xhci, td, event, ep, &status);
2642 goto cleanup;
2643 }
2644 if (trb_comp_code == COMP_SHORT_TX)
2645 ep_ring->last_td_was_short = true;
2646 else
2647 ep_ring->last_td_was_short = false;
2648
2649 if (ep->skip) {
2650 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2651 ep->skip = false;
2652 }
2653
2654 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2655 sizeof(*event_trb)];
2656 /*
2657 * No-op TRB should not trigger interrupts.
2658 * If event_trb is a no-op TRB, it means the
2659 * corresponding TD has been cancelled. Just ignore
2660 * the TD.
2661 */
2662 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2663 xhci_dbg(xhci,
2664 "event_trb is a no-op TRB. Skip it\n");
2665 goto cleanup;
2666 }
2667
2668 /* Now update the urb's actual_length and give back to
2669 * the core
2670 */
2671 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2672 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2673 &status);
2674 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2675 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2676 &status);
2677 else
2678 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2679 ep, &status);
2680
2681 cleanup:
2682 /*
2683 * Do not update event ring dequeue pointer if ep->skip is set.
2684 * Will roll back to continue process missed tds.
2685 */
2686 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2687 inc_deq(xhci, xhci->event_ring);
2688 }
2689
2690 if (ret) {
2691 urb = td->urb;
2692 urb_priv = urb->hcpriv;
2693 /* Leave the TD around for the reset endpoint function
2694 * to use(but only if it's not a control endpoint,
2695 * since we already queued the Set TR dequeue pointer
2696 * command for stalled control endpoints).
2697 */
2698 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2699 (trb_comp_code != COMP_STALL &&
2700 trb_comp_code != COMP_BABBLE))
2701 xhci_urb_free_priv(xhci, urb_priv);
2702 else
2703 kfree(urb_priv);
2704
2705 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2706 if ((urb->actual_length != urb->transfer_buffer_length &&
2707 (urb->transfer_flags &
2708 URB_SHORT_NOT_OK)) ||
2709 (status != 0 &&
2710 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2711 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2712 "expected = %d, status = %d\n",
2713 urb, urb->actual_length,
2714 urb->transfer_buffer_length,
2715 status);
2716 spin_unlock(&xhci->lock);
2717 /* EHCI, UHCI, and OHCI always unconditionally set the
2718 * urb->status of an isochronous endpoint to 0.
2719 */
2720 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2721 status = 0;
2722 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2723 spin_lock(&xhci->lock);
2724 }
2725
2726 /*
2727 * If ep->skip is set, it means there are missed tds on the
2728 * endpoint ring need to take care of.
2729 * Process them as short transfer until reach the td pointed by
2730 * the event.
2731 */
2732 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2733
2734 return 0;
2735 }
2736
2737 /*
2738 * This function handles all OS-owned events on the event ring. It may drop
2739 * xhci->lock between event processing (e.g. to pass up port status changes).
2740 * Returns >0 for "possibly more events to process" (caller should call again),
2741 * otherwise 0 if done. In future, <0 returns should indicate error code.
2742 */
2743 static int xhci_handle_event(struct xhci_hcd *xhci)
2744 {
2745 union xhci_trb *event;
2746 int update_ptrs = 1;
2747 int ret;
2748
2749 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2750 xhci->error_bitmask |= 1 << 1;
2751 return 0;
2752 }
2753
2754 event = xhci->event_ring->dequeue;
2755 /* Does the HC or OS own the TRB? */
2756 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2757 xhci->event_ring->cycle_state) {
2758 xhci->error_bitmask |= 1 << 2;
2759 return 0;
2760 }
2761
2762 /*
2763 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2764 * speculative reads of the event's flags/data below.
2765 */
2766 rmb();
2767 /* FIXME: Handle more event types. */
2768 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2769 case TRB_TYPE(TRB_COMPLETION):
2770 handle_cmd_completion(xhci, &event->event_cmd);
2771 break;
2772 case TRB_TYPE(TRB_PORT_STATUS):
2773 handle_port_status(xhci, event);
2774 update_ptrs = 0;
2775 break;
2776 case TRB_TYPE(TRB_TRANSFER):
2777 ret = handle_tx_event(xhci, &event->trans_event);
2778 if (ret < 0)
2779 xhci->error_bitmask |= 1 << 9;
2780 else
2781 update_ptrs = 0;
2782 break;
2783 case TRB_TYPE(TRB_DEV_NOTE):
2784 handle_device_notification(xhci, event);
2785 break;
2786 default:
2787 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2788 TRB_TYPE(48))
2789 handle_vendor_event(xhci, event);
2790 else
2791 xhci->error_bitmask |= 1 << 3;
2792 }
2793 /* Any of the above functions may drop and re-acquire the lock, so check
2794 * to make sure a watchdog timer didn't mark the host as non-responsive.
2795 */
2796 if (xhci->xhc_state & XHCI_STATE_DYING) {
2797 xhci_dbg(xhci, "xHCI host dying, returning from "
2798 "event handler.\n");
2799 return 0;
2800 }
2801
2802 if (update_ptrs)
2803 /* Update SW event ring dequeue pointer */
2804 inc_deq(xhci, xhci->event_ring);
2805
2806 /* Are there more items on the event ring? Caller will call us again to
2807 * check.
2808 */
2809 return 1;
2810 }
2811
2812 /*
2813 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2814 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2815 * indicators of an event TRB error, but we check the status *first* to be safe.
2816 */
2817 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2818 {
2819 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2820 u32 status;
2821 u64 temp_64;
2822 union xhci_trb *event_ring_deq;
2823 dma_addr_t deq;
2824
2825 spin_lock(&xhci->lock);
2826 /* Check if the xHC generated the interrupt, or the irq is shared */
2827 status = readl(&xhci->op_regs->status);
2828 if (status == 0xffffffff)
2829 goto hw_died;
2830
2831 if (!(status & STS_EINT)) {
2832 spin_unlock(&xhci->lock);
2833 return IRQ_NONE;
2834 }
2835 if (status & STS_FATAL) {
2836 xhci_warn(xhci, "WARNING: Host System Error\n");
2837 xhci_halt(xhci);
2838 hw_died:
2839 spin_unlock(&xhci->lock);
2840 return -ESHUTDOWN;
2841 }
2842
2843 /*
2844 * Clear the op reg interrupt status first,
2845 * so we can receive interrupts from other MSI-X interrupters.
2846 * Write 1 to clear the interrupt status.
2847 */
2848 status |= STS_EINT;
2849 writel(status, &xhci->op_regs->status);
2850 /* FIXME when MSI-X is supported and there are multiple vectors */
2851 /* Clear the MSI-X event interrupt status */
2852
2853 if (hcd->irq) {
2854 u32 irq_pending;
2855 /* Acknowledge the PCI interrupt */
2856 irq_pending = readl(&xhci->ir_set->irq_pending);
2857 irq_pending |= IMAN_IP;
2858 writel(irq_pending, &xhci->ir_set->irq_pending);
2859 }
2860
2861 if (xhci->xhc_state & XHCI_STATE_DYING) {
2862 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2863 "Shouldn't IRQs be disabled?\n");
2864 /* Clear the event handler busy flag (RW1C);
2865 * the event ring should be empty.
2866 */
2867 temp_64 = readq(&xhci->ir_set->erst_dequeue);
2868 writeq(temp_64 | ERST_EHB, &xhci->ir_set->erst_dequeue);
2869 spin_unlock(&xhci->lock);
2870
2871 return IRQ_HANDLED;
2872 }
2873
2874 event_ring_deq = xhci->event_ring->dequeue;
2875 /* FIXME this should be a delayed service routine
2876 * that clears the EHB.
2877 */
2878 while (xhci_handle_event(xhci) > 0) {}
2879
2880 temp_64 = readq(&xhci->ir_set->erst_dequeue);
2881 /* If necessary, update the HW's version of the event ring deq ptr. */
2882 if (event_ring_deq != xhci->event_ring->dequeue) {
2883 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2884 xhci->event_ring->dequeue);
2885 if (deq == 0)
2886 xhci_warn(xhci, "WARN something wrong with SW event "
2887 "ring dequeue ptr.\n");
2888 /* Update HC event ring dequeue pointer */
2889 temp_64 &= ERST_PTR_MASK;
2890 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2891 }
2892
2893 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2894 temp_64 |= ERST_EHB;
2895 writeq(temp_64, &xhci->ir_set->erst_dequeue);
2896
2897 spin_unlock(&xhci->lock);
2898
2899 return IRQ_HANDLED;
2900 }
2901
2902 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2903 {
2904 return xhci_irq(hcd);
2905 }
2906
2907 /**** Endpoint Ring Operations ****/
2908
2909 /*
2910 * Generic function for queueing a TRB on a ring.
2911 * The caller must have checked to make sure there's room on the ring.
2912 *
2913 * @more_trbs_coming: Will you enqueue more TRBs before calling
2914 * prepare_transfer()?
2915 */
2916 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2917 bool more_trbs_coming,
2918 u32 field1, u32 field2, u32 field3, u32 field4)
2919 {
2920 struct xhci_generic_trb *trb;
2921
2922 trb = &ring->enqueue->generic;
2923 trb->field[0] = cpu_to_le32(field1);
2924 trb->field[1] = cpu_to_le32(field2);
2925 trb->field[2] = cpu_to_le32(field3);
2926 trb->field[3] = cpu_to_le32(field4);
2927 inc_enq(xhci, ring, more_trbs_coming);
2928 }
2929
2930 /*
2931 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2932 * FIXME allocate segments if the ring is full.
2933 */
2934 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2935 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2936 {
2937 unsigned int num_trbs_needed;
2938
2939 /* Make sure the endpoint has been added to xHC schedule */
2940 switch (ep_state) {
2941 case EP_STATE_DISABLED:
2942 /*
2943 * USB core changed config/interfaces without notifying us,
2944 * or hardware is reporting the wrong state.
2945 */
2946 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2947 return -ENOENT;
2948 case EP_STATE_ERROR:
2949 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2950 /* FIXME event handling code for error needs to clear it */
2951 /* XXX not sure if this should be -ENOENT or not */
2952 return -EINVAL;
2953 case EP_STATE_HALTED:
2954 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2955 case EP_STATE_STOPPED:
2956 case EP_STATE_RUNNING:
2957 break;
2958 default:
2959 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2960 /*
2961 * FIXME issue Configure Endpoint command to try to get the HC
2962 * back into a known state.
2963 */
2964 return -EINVAL;
2965 }
2966
2967 while (1) {
2968 if (room_on_ring(xhci, ep_ring, num_trbs)) {
2969 union xhci_trb *trb = ep_ring->enqueue;
2970 unsigned int usable = ep_ring->enq_seg->trbs +
2971 TRBS_PER_SEGMENT - 1 - trb;
2972 u32 nop_cmd;
2973
2974 /*
2975 * Section 4.11.7.1 TD Fragments states that a link
2976 * TRB must only occur at the boundary between
2977 * data bursts (eg 512 bytes for 480M).
2978 * While it is possible to split a large fragment
2979 * we don't know the size yet.
2980 * Simplest solution is to fill the trb before the
2981 * LINK with nop commands.
2982 */
2983 if (num_trbs == 1 || num_trbs <= usable || usable == 0)
2984 break;
2985
2986 if (ep_ring->type != TYPE_BULK)
2987 /*
2988 * While isoc transfers might have a buffer that
2989 * crosses a 64k boundary it is unlikely.
2990 * Since we can't add NOPs without generating
2991 * gaps in the traffic just hope it never
2992 * happens at the end of the ring.
2993 * This could be fixed by writing a LINK TRB
2994 * instead of the first NOP - however the
2995 * TRB_TYPE_LINK_LE32() calls would all need
2996 * changing to check the ring length.
2997 */
2998 break;
2999
3000 if (num_trbs >= TRBS_PER_SEGMENT) {
3001 xhci_err(xhci, "Too many fragments %d, max %d\n",
3002 num_trbs, TRBS_PER_SEGMENT - 1);
3003 return -EINVAL;
3004 }
3005
3006 nop_cmd = cpu_to_le32(TRB_TYPE(TRB_TR_NOOP) |
3007 ep_ring->cycle_state);
3008 ep_ring->num_trbs_free -= usable;
3009 do {
3010 trb->generic.field[0] = 0;
3011 trb->generic.field[1] = 0;
3012 trb->generic.field[2] = 0;
3013 trb->generic.field[3] = nop_cmd;
3014 trb++;
3015 } while (--usable);
3016 ep_ring->enqueue = trb;
3017 if (room_on_ring(xhci, ep_ring, num_trbs))
3018 break;
3019 }
3020
3021 if (ep_ring == xhci->cmd_ring) {
3022 xhci_err(xhci, "Do not support expand command ring\n");
3023 return -ENOMEM;
3024 }
3025
3026 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
3027 "ERROR no room on ep ring, try ring expansion");
3028 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
3029 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
3030 mem_flags)) {
3031 xhci_err(xhci, "Ring expansion failed\n");
3032 return -ENOMEM;
3033 }
3034 }
3035
3036 if (enqueue_is_link_trb(ep_ring)) {
3037 struct xhci_ring *ring = ep_ring;
3038 union xhci_trb *next;
3039
3040 next = ring->enqueue;
3041
3042 while (last_trb(xhci, ring, ring->enq_seg, next)) {
3043 /* If we're not dealing with 0.95 hardware or isoc rings
3044 * on AMD 0.96 host, clear the chain bit.
3045 */
3046 if (!xhci_link_trb_quirk(xhci) &&
3047 !(ring->type == TYPE_ISOC &&
3048 (xhci->quirks & XHCI_AMD_0x96_HOST)))
3049 next->link.control &= cpu_to_le32(~TRB_CHAIN);
3050 else
3051 next->link.control |= cpu_to_le32(TRB_CHAIN);
3052
3053 wmb();
3054 next->link.control ^= cpu_to_le32(TRB_CYCLE);
3055
3056 /* Toggle the cycle bit after the last ring segment. */
3057 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
3058 ring->cycle_state = (ring->cycle_state ? 0 : 1);
3059 }
3060 ring->enq_seg = ring->enq_seg->next;
3061 ring->enqueue = ring->enq_seg->trbs;
3062 next = ring->enqueue;
3063 }
3064 }
3065
3066 return 0;
3067 }
3068
3069 static int prepare_transfer(struct xhci_hcd *xhci,
3070 struct xhci_virt_device *xdev,
3071 unsigned int ep_index,
3072 unsigned int stream_id,
3073 unsigned int num_trbs,
3074 struct urb *urb,
3075 unsigned int td_index,
3076 gfp_t mem_flags)
3077 {
3078 int ret;
3079 struct urb_priv *urb_priv;
3080 struct xhci_td *td;
3081 struct xhci_ring *ep_ring;
3082 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3083
3084 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
3085 if (!ep_ring) {
3086 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
3087 stream_id);
3088 return -EINVAL;
3089 }
3090
3091 ret = prepare_ring(xhci, ep_ring,
3092 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3093 num_trbs, mem_flags);
3094 if (ret)
3095 return ret;
3096
3097 urb_priv = urb->hcpriv;
3098 td = urb_priv->td[td_index];
3099
3100 INIT_LIST_HEAD(&td->td_list);
3101 INIT_LIST_HEAD(&td->cancelled_td_list);
3102
3103 if (td_index == 0) {
3104 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
3105 if (unlikely(ret))
3106 return ret;
3107 }
3108
3109 td->urb = urb;
3110 /* Add this TD to the tail of the endpoint ring's TD list */
3111 list_add_tail(&td->td_list, &ep_ring->td_list);
3112 td->start_seg = ep_ring->enq_seg;
3113 td->first_trb = ep_ring->enqueue;
3114
3115 urb_priv->td[td_index] = td;
3116
3117 return 0;
3118 }
3119
3120 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
3121 {
3122 int num_sgs, num_trbs, running_total, temp, i;
3123 struct scatterlist *sg;
3124
3125 sg = NULL;
3126 num_sgs = urb->num_mapped_sgs;
3127 temp = urb->transfer_buffer_length;
3128
3129 num_trbs = 0;
3130 for_each_sg(urb->sg, sg, num_sgs, i) {
3131 unsigned int len = sg_dma_len(sg);
3132
3133 /* Scatter gather list entries may cross 64KB boundaries */
3134 running_total = TRB_MAX_BUFF_SIZE -
3135 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
3136 running_total &= TRB_MAX_BUFF_SIZE - 1;
3137 if (running_total != 0)
3138 num_trbs++;
3139
3140 /* How many more 64KB chunks to transfer, how many more TRBs? */
3141 while (running_total < sg_dma_len(sg) && running_total < temp) {
3142 num_trbs++;
3143 running_total += TRB_MAX_BUFF_SIZE;
3144 }
3145 len = min_t(int, len, temp);
3146 temp -= len;
3147 if (temp == 0)
3148 break;
3149 }
3150 return num_trbs;
3151 }
3152
3153 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
3154 {
3155 if (num_trbs != 0)
3156 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
3157 "TRBs, %d left\n", __func__,
3158 urb->ep->desc.bEndpointAddress, num_trbs);
3159 if (running_total != urb->transfer_buffer_length)
3160 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3161 "queued %#x (%d), asked for %#x (%d)\n",
3162 __func__,
3163 urb->ep->desc.bEndpointAddress,
3164 running_total, running_total,
3165 urb->transfer_buffer_length,
3166 urb->transfer_buffer_length);
3167 }
3168
3169 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3170 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3171 struct xhci_generic_trb *start_trb)
3172 {
3173 /*
3174 * Pass all the TRBs to the hardware at once and make sure this write
3175 * isn't reordered.
3176 */
3177 wmb();
3178 if (start_cycle)
3179 start_trb->field[3] |= cpu_to_le32(start_cycle);
3180 else
3181 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3182 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3183 }
3184
3185 /*
3186 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3187 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3188 * (comprised of sg list entries) can take several service intervals to
3189 * transmit.
3190 */
3191 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3192 struct urb *urb, int slot_id, unsigned int ep_index)
3193 {
3194 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
3195 xhci->devs[slot_id]->out_ctx, ep_index);
3196 int xhci_interval;
3197 int ep_interval;
3198
3199 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3200 ep_interval = urb->interval;
3201 /* Convert to microframes */
3202 if (urb->dev->speed == USB_SPEED_LOW ||
3203 urb->dev->speed == USB_SPEED_FULL)
3204 ep_interval *= 8;
3205 /* FIXME change this to a warning and a suggestion to use the new API
3206 * to set the polling interval (once the API is added).
3207 */
3208 if (xhci_interval != ep_interval) {
3209 dev_dbg_ratelimited(&urb->dev->dev,
3210 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3211 ep_interval, ep_interval == 1 ? "" : "s",
3212 xhci_interval, xhci_interval == 1 ? "" : "s");
3213 urb->interval = xhci_interval;
3214 /* Convert back to frames for LS/FS devices */
3215 if (urb->dev->speed == USB_SPEED_LOW ||
3216 urb->dev->speed == USB_SPEED_FULL)
3217 urb->interval /= 8;
3218 }
3219 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3220 }
3221
3222 /*
3223 * The TD size is the number of bytes remaining in the TD (including this TRB),
3224 * right shifted by 10.
3225 * It must fit in bits 21:17, so it can't be bigger than 31.
3226 */
3227 static u32 xhci_td_remainder(unsigned int remainder)
3228 {
3229 u32 max = (1 << (21 - 17 + 1)) - 1;
3230
3231 if ((remainder >> 10) >= max)
3232 return max << 17;
3233 else
3234 return (remainder >> 10) << 17;
3235 }
3236
3237 /*
3238 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3239 * packets remaining in the TD (*not* including this TRB).
3240 *
3241 * Total TD packet count = total_packet_count =
3242 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3243 *
3244 * Packets transferred up to and including this TRB = packets_transferred =
3245 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3246 *
3247 * TD size = total_packet_count - packets_transferred
3248 *
3249 * It must fit in bits 21:17, so it can't be bigger than 31.
3250 * The last TRB in a TD must have the TD size set to zero.
3251 */
3252 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
3253 unsigned int total_packet_count, struct urb *urb,
3254 unsigned int num_trbs_left)
3255 {
3256 int packets_transferred;
3257
3258 /* One TRB with a zero-length data packet. */
3259 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0))
3260 return 0;
3261
3262 /* All the TRB queueing functions don't count the current TRB in
3263 * running_total.
3264 */
3265 packets_transferred = (running_total + trb_buff_len) /
3266 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3267
3268 if ((total_packet_count - packets_transferred) > 31)
3269 return 31 << 17;
3270 return (total_packet_count - packets_transferred) << 17;
3271 }
3272
3273 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3274 struct urb *urb, int slot_id, unsigned int ep_index)
3275 {
3276 struct xhci_ring *ep_ring;
3277 unsigned int num_trbs;
3278 struct urb_priv *urb_priv;
3279 struct xhci_td *td;
3280 struct scatterlist *sg;
3281 int num_sgs;
3282 int trb_buff_len, this_sg_len, running_total;
3283 unsigned int total_packet_count;
3284 bool first_trb;
3285 u64 addr;
3286 bool more_trbs_coming;
3287
3288 struct xhci_generic_trb *start_trb;
3289 int start_cycle;
3290
3291 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3292 if (!ep_ring)
3293 return -EINVAL;
3294
3295 num_trbs = count_sg_trbs_needed(xhci, urb);
3296 num_sgs = urb->num_mapped_sgs;
3297 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3298 usb_endpoint_maxp(&urb->ep->desc));
3299
3300 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
3301 ep_index, urb->stream_id,
3302 num_trbs, urb, 0, mem_flags);
3303 if (trb_buff_len < 0)
3304 return trb_buff_len;
3305
3306 urb_priv = urb->hcpriv;
3307 td = urb_priv->td[0];
3308
3309 /*
3310 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3311 * until we've finished creating all the other TRBs. The ring's cycle
3312 * state may change as we enqueue the other TRBs, so save it too.
3313 */
3314 start_trb = &ep_ring->enqueue->generic;
3315 start_cycle = ep_ring->cycle_state;
3316
3317 running_total = 0;
3318 /*
3319 * How much data is in the first TRB?
3320 *
3321 * There are three forces at work for TRB buffer pointers and lengths:
3322 * 1. We don't want to walk off the end of this sg-list entry buffer.
3323 * 2. The transfer length that the driver requested may be smaller than
3324 * the amount of memory allocated for this scatter-gather list.
3325 * 3. TRBs buffers can't cross 64KB boundaries.
3326 */
3327 sg = urb->sg;
3328 addr = (u64) sg_dma_address(sg);
3329 this_sg_len = sg_dma_len(sg);
3330 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3331 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3332 if (trb_buff_len > urb->transfer_buffer_length)
3333 trb_buff_len = urb->transfer_buffer_length;
3334
3335 first_trb = true;
3336 /* Queue the first TRB, even if it's zero-length */
3337 do {
3338 u32 field = 0;
3339 u32 length_field = 0;
3340 u32 remainder = 0;
3341
3342 /* Don't change the cycle bit of the first TRB until later */
3343 if (first_trb) {
3344 first_trb = false;
3345 if (start_cycle == 0)
3346 field |= 0x1;
3347 } else
3348 field |= ep_ring->cycle_state;
3349
3350 /* Chain all the TRBs together; clear the chain bit in the last
3351 * TRB to indicate it's the last TRB in the chain.
3352 */
3353 if (num_trbs > 1) {
3354 field |= TRB_CHAIN;
3355 } else {
3356 /* FIXME - add check for ZERO_PACKET flag before this */
3357 td->last_trb = ep_ring->enqueue;
3358 field |= TRB_IOC;
3359 }
3360
3361 /* Only set interrupt on short packet for IN endpoints */
3362 if (usb_urb_dir_in(urb))
3363 field |= TRB_ISP;
3364
3365 if (TRB_MAX_BUFF_SIZE -
3366 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
3367 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
3368 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
3369 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
3370 (unsigned int) addr + trb_buff_len);
3371 }
3372
3373 /* Set the TRB length, TD size, and interrupter fields. */
3374 if (xhci->hci_version < 0x100) {
3375 remainder = xhci_td_remainder(
3376 urb->transfer_buffer_length -
3377 running_total);
3378 } else {
3379 remainder = xhci_v1_0_td_remainder(running_total,
3380 trb_buff_len, total_packet_count, urb,
3381 num_trbs - 1);
3382 }
3383 length_field = TRB_LEN(trb_buff_len) |
3384 remainder |
3385 TRB_INTR_TARGET(0);
3386
3387 if (num_trbs > 1)
3388 more_trbs_coming = true;
3389 else
3390 more_trbs_coming = false;
3391 queue_trb(xhci, ep_ring, more_trbs_coming,
3392 lower_32_bits(addr),
3393 upper_32_bits(addr),
3394 length_field,
3395 field | TRB_TYPE(TRB_NORMAL));
3396 --num_trbs;
3397 running_total += trb_buff_len;
3398
3399 /* Calculate length for next transfer --
3400 * Are we done queueing all the TRBs for this sg entry?
3401 */
3402 this_sg_len -= trb_buff_len;
3403 if (this_sg_len == 0) {
3404 --num_sgs;
3405 if (num_sgs == 0)
3406 break;
3407 sg = sg_next(sg);
3408 addr = (u64) sg_dma_address(sg);
3409 this_sg_len = sg_dma_len(sg);
3410 } else {
3411 addr += trb_buff_len;
3412 }
3413
3414 trb_buff_len = TRB_MAX_BUFF_SIZE -
3415 (addr & (TRB_MAX_BUFF_SIZE - 1));
3416 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3417 if (running_total + trb_buff_len > urb->transfer_buffer_length)
3418 trb_buff_len =
3419 urb->transfer_buffer_length - running_total;
3420 } while (running_total < urb->transfer_buffer_length);
3421
3422 check_trb_math(urb, num_trbs, running_total);
3423 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3424 start_cycle, start_trb);
3425 return 0;
3426 }
3427
3428 /* This is very similar to what ehci-q.c qtd_fill() does */
3429 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3430 struct urb *urb, int slot_id, unsigned int ep_index)
3431 {
3432 struct xhci_ring *ep_ring;
3433 struct urb_priv *urb_priv;
3434 struct xhci_td *td;
3435 int num_trbs;
3436 struct xhci_generic_trb *start_trb;
3437 bool first_trb;
3438 bool more_trbs_coming;
3439 int start_cycle;
3440 u32 field, length_field;
3441
3442 int running_total, trb_buff_len, ret;
3443 unsigned int total_packet_count;
3444 u64 addr;
3445
3446 if (urb->num_sgs)
3447 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
3448
3449 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3450 if (!ep_ring)
3451 return -EINVAL;
3452
3453 num_trbs = 0;
3454 /* How much data is (potentially) left before the 64KB boundary? */
3455 running_total = TRB_MAX_BUFF_SIZE -
3456 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3457 running_total &= TRB_MAX_BUFF_SIZE - 1;
3458
3459 /* If there's some data on this 64KB chunk, or we have to send a
3460 * zero-length transfer, we need at least one TRB
3461 */
3462 if (running_total != 0 || urb->transfer_buffer_length == 0)
3463 num_trbs++;
3464 /* How many more 64KB chunks to transfer, how many more TRBs? */
3465 while (running_total < urb->transfer_buffer_length) {
3466 num_trbs++;
3467 running_total += TRB_MAX_BUFF_SIZE;
3468 }
3469 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
3470
3471 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3472 ep_index, urb->stream_id,
3473 num_trbs, urb, 0, mem_flags);
3474 if (ret < 0)
3475 return ret;
3476
3477 urb_priv = urb->hcpriv;
3478 td = urb_priv->td[0];
3479
3480 /*
3481 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3482 * until we've finished creating all the other TRBs. The ring's cycle
3483 * state may change as we enqueue the other TRBs, so save it too.
3484 */
3485 start_trb = &ep_ring->enqueue->generic;
3486 start_cycle = ep_ring->cycle_state;
3487
3488 running_total = 0;
3489 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3490 usb_endpoint_maxp(&urb->ep->desc));
3491 /* How much data is in the first TRB? */
3492 addr = (u64) urb->transfer_dma;
3493 trb_buff_len = TRB_MAX_BUFF_SIZE -
3494 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3495 if (trb_buff_len > urb->transfer_buffer_length)
3496 trb_buff_len = urb->transfer_buffer_length;
3497
3498 first_trb = true;
3499
3500 /* Queue the first TRB, even if it's zero-length */
3501 do {
3502 u32 remainder = 0;
3503 field = 0;
3504
3505 /* Don't change the cycle bit of the first TRB until later */
3506 if (first_trb) {
3507 first_trb = false;
3508 if (start_cycle == 0)
3509 field |= 0x1;
3510 } else
3511 field |= ep_ring->cycle_state;
3512
3513 /* Chain all the TRBs together; clear the chain bit in the last
3514 * TRB to indicate it's the last TRB in the chain.
3515 */
3516 if (num_trbs > 1) {
3517 field |= TRB_CHAIN;
3518 } else {
3519 /* FIXME - add check for ZERO_PACKET flag before this */
3520 td->last_trb = ep_ring->enqueue;
3521 field |= TRB_IOC;
3522 }
3523
3524 /* Only set interrupt on short packet for IN endpoints */
3525 if (usb_urb_dir_in(urb))
3526 field |= TRB_ISP;
3527
3528 /* Set the TRB length, TD size, and interrupter fields. */
3529 if (xhci->hci_version < 0x100) {
3530 remainder = xhci_td_remainder(
3531 urb->transfer_buffer_length -
3532 running_total);
3533 } else {
3534 remainder = xhci_v1_0_td_remainder(running_total,
3535 trb_buff_len, total_packet_count, urb,
3536 num_trbs - 1);
3537 }
3538 length_field = TRB_LEN(trb_buff_len) |
3539 remainder |
3540 TRB_INTR_TARGET(0);
3541
3542 if (num_trbs > 1)
3543 more_trbs_coming = true;
3544 else
3545 more_trbs_coming = false;
3546 queue_trb(xhci, ep_ring, more_trbs_coming,
3547 lower_32_bits(addr),
3548 upper_32_bits(addr),
3549 length_field,
3550 field | TRB_TYPE(TRB_NORMAL));
3551 --num_trbs;
3552 running_total += trb_buff_len;
3553
3554 /* Calculate length for next transfer */
3555 addr += trb_buff_len;
3556 trb_buff_len = urb->transfer_buffer_length - running_total;
3557 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3558 trb_buff_len = TRB_MAX_BUFF_SIZE;
3559 } while (running_total < urb->transfer_buffer_length);
3560
3561 check_trb_math(urb, num_trbs, running_total);
3562 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3563 start_cycle, start_trb);
3564 return 0;
3565 }
3566
3567 /* Caller must have locked xhci->lock */
3568 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3569 struct urb *urb, int slot_id, unsigned int ep_index)
3570 {
3571 struct xhci_ring *ep_ring;
3572 int num_trbs;
3573 int ret;
3574 struct usb_ctrlrequest *setup;
3575 struct xhci_generic_trb *start_trb;
3576 int start_cycle;
3577 u32 field, length_field;
3578 struct urb_priv *urb_priv;
3579 struct xhci_td *td;
3580
3581 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3582 if (!ep_ring)
3583 return -EINVAL;
3584
3585 /*
3586 * Need to copy setup packet into setup TRB, so we can't use the setup
3587 * DMA address.
3588 */
3589 if (!urb->setup_packet)
3590 return -EINVAL;
3591
3592 /* 1 TRB for setup, 1 for status */
3593 num_trbs = 2;
3594 /*
3595 * Don't need to check if we need additional event data and normal TRBs,
3596 * since data in control transfers will never get bigger than 16MB
3597 * XXX: can we get a buffer that crosses 64KB boundaries?
3598 */
3599 if (urb->transfer_buffer_length > 0)
3600 num_trbs++;
3601 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3602 ep_index, urb->stream_id,
3603 num_trbs, urb, 0, mem_flags);
3604 if (ret < 0)
3605 return ret;
3606
3607 urb_priv = urb->hcpriv;
3608 td = urb_priv->td[0];
3609
3610 /*
3611 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3612 * until we've finished creating all the other TRBs. The ring's cycle
3613 * state may change as we enqueue the other TRBs, so save it too.
3614 */
3615 start_trb = &ep_ring->enqueue->generic;
3616 start_cycle = ep_ring->cycle_state;
3617
3618 /* Queue setup TRB - see section 6.4.1.2.1 */
3619 /* FIXME better way to translate setup_packet into two u32 fields? */
3620 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3621 field = 0;
3622 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3623 if (start_cycle == 0)
3624 field |= 0x1;
3625
3626 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3627 if (xhci->hci_version == 0x100) {
3628 if (urb->transfer_buffer_length > 0) {
3629 if (setup->bRequestType & USB_DIR_IN)
3630 field |= TRB_TX_TYPE(TRB_DATA_IN);
3631 else
3632 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3633 }
3634 }
3635
3636 queue_trb(xhci, ep_ring, true,
3637 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3638 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3639 TRB_LEN(8) | TRB_INTR_TARGET(0),
3640 /* Immediate data in pointer */
3641 field);
3642
3643 /* If there's data, queue data TRBs */
3644 /* Only set interrupt on short packet for IN endpoints */
3645 if (usb_urb_dir_in(urb))
3646 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3647 else
3648 field = TRB_TYPE(TRB_DATA);
3649
3650 length_field = TRB_LEN(urb->transfer_buffer_length) |
3651 xhci_td_remainder(urb->transfer_buffer_length) |
3652 TRB_INTR_TARGET(0);
3653 if (urb->transfer_buffer_length > 0) {
3654 if (setup->bRequestType & USB_DIR_IN)
3655 field |= TRB_DIR_IN;
3656 queue_trb(xhci, ep_ring, true,
3657 lower_32_bits(urb->transfer_dma),
3658 upper_32_bits(urb->transfer_dma),
3659 length_field,
3660 field | ep_ring->cycle_state);
3661 }
3662
3663 /* Save the DMA address of the last TRB in the TD */
3664 td->last_trb = ep_ring->enqueue;
3665
3666 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3667 /* If the device sent data, the status stage is an OUT transfer */
3668 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3669 field = 0;
3670 else
3671 field = TRB_DIR_IN;
3672 queue_trb(xhci, ep_ring, false,
3673 0,
3674 0,
3675 TRB_INTR_TARGET(0),
3676 /* Event on completion */
3677 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3678
3679 giveback_first_trb(xhci, slot_id, ep_index, 0,
3680 start_cycle, start_trb);
3681 return 0;
3682 }
3683
3684 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3685 struct urb *urb, int i)
3686 {
3687 int num_trbs = 0;
3688 u64 addr, td_len;
3689
3690 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3691 td_len = urb->iso_frame_desc[i].length;
3692
3693 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3694 TRB_MAX_BUFF_SIZE);
3695 if (num_trbs == 0)
3696 num_trbs++;
3697
3698 return num_trbs;
3699 }
3700
3701 /*
3702 * The transfer burst count field of the isochronous TRB defines the number of
3703 * bursts that are required to move all packets in this TD. Only SuperSpeed
3704 * devices can burst up to bMaxBurst number of packets per service interval.
3705 * This field is zero based, meaning a value of zero in the field means one
3706 * burst. Basically, for everything but SuperSpeed devices, this field will be
3707 * zero. Only xHCI 1.0 host controllers support this field.
3708 */
3709 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3710 struct usb_device *udev,
3711 struct urb *urb, unsigned int total_packet_count)
3712 {
3713 unsigned int max_burst;
3714
3715 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3716 return 0;
3717
3718 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3719 return roundup(total_packet_count, max_burst + 1) - 1;
3720 }
3721
3722 /*
3723 * Returns the number of packets in the last "burst" of packets. This field is
3724 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3725 * the last burst packet count is equal to the total number of packets in the
3726 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3727 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3728 * contain 1 to (bMaxBurst + 1) packets.
3729 */
3730 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3731 struct usb_device *udev,
3732 struct urb *urb, unsigned int total_packet_count)
3733 {
3734 unsigned int max_burst;
3735 unsigned int residue;
3736
3737 if (xhci->hci_version < 0x100)
3738 return 0;
3739
3740 switch (udev->speed) {
3741 case USB_SPEED_SUPER:
3742 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3743 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3744 residue = total_packet_count % (max_burst + 1);
3745 /* If residue is zero, the last burst contains (max_burst + 1)
3746 * number of packets, but the TLBPC field is zero-based.
3747 */
3748 if (residue == 0)
3749 return max_burst;
3750 return residue - 1;
3751 default:
3752 if (total_packet_count == 0)
3753 return 0;
3754 return total_packet_count - 1;
3755 }
3756 }
3757
3758 /* This is for isoc transfer */
3759 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3760 struct urb *urb, int slot_id, unsigned int ep_index)
3761 {
3762 struct xhci_ring *ep_ring;
3763 struct urb_priv *urb_priv;
3764 struct xhci_td *td;
3765 int num_tds, trbs_per_td;
3766 struct xhci_generic_trb *start_trb;
3767 bool first_trb;
3768 int start_cycle;
3769 u32 field, length_field;
3770 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3771 u64 start_addr, addr;
3772 int i, j;
3773 bool more_trbs_coming;
3774
3775 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3776
3777 num_tds = urb->number_of_packets;
3778 if (num_tds < 1) {
3779 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3780 return -EINVAL;
3781 }
3782
3783 start_addr = (u64) urb->transfer_dma;
3784 start_trb = &ep_ring->enqueue->generic;
3785 start_cycle = ep_ring->cycle_state;
3786
3787 urb_priv = urb->hcpriv;
3788 /* Queue the first TRB, even if it's zero-length */
3789 for (i = 0; i < num_tds; i++) {
3790 unsigned int total_packet_count;
3791 unsigned int burst_count;
3792 unsigned int residue;
3793
3794 first_trb = true;
3795 running_total = 0;
3796 addr = start_addr + urb->iso_frame_desc[i].offset;
3797 td_len = urb->iso_frame_desc[i].length;
3798 td_remain_len = td_len;
3799 total_packet_count = DIV_ROUND_UP(td_len,
3800 GET_MAX_PACKET(
3801 usb_endpoint_maxp(&urb->ep->desc)));
3802 /* A zero-length transfer still involves at least one packet. */
3803 if (total_packet_count == 0)
3804 total_packet_count++;
3805 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3806 total_packet_count);
3807 residue = xhci_get_last_burst_packet_count(xhci,
3808 urb->dev, urb, total_packet_count);
3809
3810 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3811
3812 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3813 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3814 if (ret < 0) {
3815 if (i == 0)
3816 return ret;
3817 goto cleanup;
3818 }
3819
3820 td = urb_priv->td[i];
3821 for (j = 0; j < trbs_per_td; j++) {
3822 u32 remainder = 0;
3823 field = 0;
3824
3825 if (first_trb) {
3826 field = TRB_TBC(burst_count) |
3827 TRB_TLBPC(residue);
3828 /* Queue the isoc TRB */
3829 field |= TRB_TYPE(TRB_ISOC);
3830 /* Assume URB_ISO_ASAP is set */
3831 field |= TRB_SIA;
3832 if (i == 0) {
3833 if (start_cycle == 0)
3834 field |= 0x1;
3835 } else
3836 field |= ep_ring->cycle_state;
3837 first_trb = false;
3838 } else {
3839 /* Queue other normal TRBs */
3840 field |= TRB_TYPE(TRB_NORMAL);
3841 field |= ep_ring->cycle_state;
3842 }
3843
3844 /* Only set interrupt on short packet for IN EPs */
3845 if (usb_urb_dir_in(urb))
3846 field |= TRB_ISP;
3847
3848 /* Chain all the TRBs together; clear the chain bit in
3849 * the last TRB to indicate it's the last TRB in the
3850 * chain.
3851 */
3852 if (j < trbs_per_td - 1) {
3853 field |= TRB_CHAIN;
3854 more_trbs_coming = true;
3855 } else {
3856 td->last_trb = ep_ring->enqueue;
3857 field |= TRB_IOC;
3858 if (xhci->hci_version == 0x100 &&
3859 !(xhci->quirks &
3860 XHCI_AVOID_BEI)) {
3861 /* Set BEI bit except for the last td */
3862 if (i < num_tds - 1)
3863 field |= TRB_BEI;
3864 }
3865 more_trbs_coming = false;
3866 }
3867
3868 /* Calculate TRB length */
3869 trb_buff_len = TRB_MAX_BUFF_SIZE -
3870 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3871 if (trb_buff_len > td_remain_len)
3872 trb_buff_len = td_remain_len;
3873
3874 /* Set the TRB length, TD size, & interrupter fields. */
3875 if (xhci->hci_version < 0x100) {
3876 remainder = xhci_td_remainder(
3877 td_len - running_total);
3878 } else {
3879 remainder = xhci_v1_0_td_remainder(
3880 running_total, trb_buff_len,
3881 total_packet_count, urb,
3882 (trbs_per_td - j - 1));
3883 }
3884 length_field = TRB_LEN(trb_buff_len) |
3885 remainder |
3886 TRB_INTR_TARGET(0);
3887
3888 queue_trb(xhci, ep_ring, more_trbs_coming,
3889 lower_32_bits(addr),
3890 upper_32_bits(addr),
3891 length_field,
3892 field);
3893 running_total += trb_buff_len;
3894
3895 addr += trb_buff_len;
3896 td_remain_len -= trb_buff_len;
3897 }
3898
3899 /* Check TD length */
3900 if (running_total != td_len) {
3901 xhci_err(xhci, "ISOC TD length unmatch\n");
3902 ret = -EINVAL;
3903 goto cleanup;
3904 }
3905 }
3906
3907 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3908 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3909 usb_amd_quirk_pll_disable();
3910 }
3911 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3912
3913 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3914 start_cycle, start_trb);
3915 return 0;
3916 cleanup:
3917 /* Clean up a partially enqueued isoc transfer. */
3918
3919 for (i--; i >= 0; i--)
3920 list_del_init(&urb_priv->td[i]->td_list);
3921
3922 /* Use the first TD as a temporary variable to turn the TDs we've queued
3923 * into No-ops with a software-owned cycle bit. That way the hardware
3924 * won't accidentally start executing bogus TDs when we partially
3925 * overwrite them. td->first_trb and td->start_seg are already set.
3926 */
3927 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3928 /* Every TRB except the first & last will have its cycle bit flipped. */
3929 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3930
3931 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3932 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3933 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3934 ep_ring->cycle_state = start_cycle;
3935 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3936 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3937 return ret;
3938 }
3939
3940 /*
3941 * Check transfer ring to guarantee there is enough room for the urb.
3942 * Update ISO URB start_frame and interval.
3943 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3944 * update the urb->start_frame by now.
3945 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3946 */
3947 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3948 struct urb *urb, int slot_id, unsigned int ep_index)
3949 {
3950 struct xhci_virt_device *xdev;
3951 struct xhci_ring *ep_ring;
3952 struct xhci_ep_ctx *ep_ctx;
3953 int start_frame;
3954 int xhci_interval;
3955 int ep_interval;
3956 int num_tds, num_trbs, i;
3957 int ret;
3958
3959 xdev = xhci->devs[slot_id];
3960 ep_ring = xdev->eps[ep_index].ring;
3961 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3962
3963 num_trbs = 0;
3964 num_tds = urb->number_of_packets;
3965 for (i = 0; i < num_tds; i++)
3966 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3967
3968 /* Check the ring to guarantee there is enough room for the whole urb.
3969 * Do not insert any td of the urb to the ring if the check failed.
3970 */
3971 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3972 num_trbs, mem_flags);
3973 if (ret)
3974 return ret;
3975
3976 start_frame = readl(&xhci->run_regs->microframe_index);
3977 start_frame &= 0x3fff;
3978
3979 urb->start_frame = start_frame;
3980 if (urb->dev->speed == USB_SPEED_LOW ||
3981 urb->dev->speed == USB_SPEED_FULL)
3982 urb->start_frame >>= 3;
3983
3984 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3985 ep_interval = urb->interval;
3986 /* Convert to microframes */
3987 if (urb->dev->speed == USB_SPEED_LOW ||
3988 urb->dev->speed == USB_SPEED_FULL)
3989 ep_interval *= 8;
3990 /* FIXME change this to a warning and a suggestion to use the new API
3991 * to set the polling interval (once the API is added).
3992 */
3993 if (xhci_interval != ep_interval) {
3994 dev_dbg_ratelimited(&urb->dev->dev,
3995 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3996 ep_interval, ep_interval == 1 ? "" : "s",
3997 xhci_interval, xhci_interval == 1 ? "" : "s");
3998 urb->interval = xhci_interval;
3999 /* Convert back to frames for LS/FS devices */
4000 if (urb->dev->speed == USB_SPEED_LOW ||
4001 urb->dev->speed == USB_SPEED_FULL)
4002 urb->interval /= 8;
4003 }
4004 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
4005
4006 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
4007 }
4008
4009 /**** Command Ring Operations ****/
4010
4011 /* Generic function for queueing a command TRB on the command ring.
4012 * Check to make sure there's room on the command ring for one command TRB.
4013 * Also check that there's room reserved for commands that must not fail.
4014 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
4015 * then only check for the number of reserved spots.
4016 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
4017 * because the command event handler may want to resubmit a failed command.
4018 */
4019 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
4020 u32 field3, u32 field4, bool command_must_succeed)
4021 {
4022 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
4023 int ret;
4024
4025 if (!command_must_succeed)
4026 reserved_trbs++;
4027
4028 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
4029 reserved_trbs, GFP_ATOMIC);
4030 if (ret < 0) {
4031 xhci_err(xhci, "ERR: No room for command on command ring\n");
4032 if (command_must_succeed)
4033 xhci_err(xhci, "ERR: Reserved TRB counting for "
4034 "unfailable commands failed.\n");
4035 return ret;
4036 }
4037 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
4038 field4 | xhci->cmd_ring->cycle_state);
4039 return 0;
4040 }
4041
4042 /* Queue a slot enable or disable request on the command ring */
4043 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
4044 {
4045 return queue_command(xhci, 0, 0, 0,
4046 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
4047 }
4048
4049 /* Queue an address device command TRB */
4050 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
4051 u32 slot_id, enum xhci_setup_dev setup)
4052 {
4053 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
4054 upper_32_bits(in_ctx_ptr), 0,
4055 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
4056 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
4057 }
4058
4059 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
4060 u32 field1, u32 field2, u32 field3, u32 field4)
4061 {
4062 return queue_command(xhci, field1, field2, field3, field4, false);
4063 }
4064
4065 /* Queue a reset device command TRB */
4066 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
4067 {
4068 return queue_command(xhci, 0, 0, 0,
4069 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
4070 false);
4071 }
4072
4073 /* Queue a configure endpoint command TRB */
4074 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
4075 u32 slot_id, bool command_must_succeed)
4076 {
4077 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
4078 upper_32_bits(in_ctx_ptr), 0,
4079 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
4080 command_must_succeed);
4081 }
4082
4083 /* Queue an evaluate context command TRB */
4084 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
4085 u32 slot_id, bool command_must_succeed)
4086 {
4087 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
4088 upper_32_bits(in_ctx_ptr), 0,
4089 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
4090 command_must_succeed);
4091 }
4092
4093 /*
4094 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
4095 * activity on an endpoint that is about to be suspended.
4096 */
4097 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
4098 unsigned int ep_index, int suspend)
4099 {
4100 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4101 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4102 u32 type = TRB_TYPE(TRB_STOP_RING);
4103 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
4104
4105 return queue_command(xhci, 0, 0, 0,
4106 trb_slot_id | trb_ep_index | type | trb_suspend, false);
4107 }
4108
4109 /* Set Transfer Ring Dequeue Pointer command.
4110 * This should not be used for endpoints that have streams enabled.
4111 */
4112 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
4113 unsigned int ep_index, unsigned int stream_id,
4114 struct xhci_segment *deq_seg,
4115 union xhci_trb *deq_ptr, u32 cycle_state)
4116 {
4117 dma_addr_t addr;
4118 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4119 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4120 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
4121 u32 type = TRB_TYPE(TRB_SET_DEQ);
4122 struct xhci_virt_ep *ep;
4123
4124 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
4125 if (addr == 0) {
4126 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4127 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4128 deq_seg, deq_ptr);
4129 return 0;
4130 }
4131 ep = &xhci->devs[slot_id]->eps[ep_index];
4132 if ((ep->ep_state & SET_DEQ_PENDING)) {
4133 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4134 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4135 return 0;
4136 }
4137 ep->queued_deq_seg = deq_seg;
4138 ep->queued_deq_ptr = deq_ptr;
4139 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
4140 upper_32_bits(addr), trb_stream_id,
4141 trb_slot_id | trb_ep_index | type, false);
4142 }
4143
4144 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
4145 unsigned int ep_index)
4146 {
4147 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4148 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4149 u32 type = TRB_TYPE(TRB_RESET_EP);
4150
4151 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
4152 false);
4153 }
This page took 0.122532 seconds and 5 git commands to generate.