xhci: Fix oops happening after address device timeout
[deliverable/linux.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70 #include "xhci-trace.h"
71
72 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
73 struct xhci_virt_device *virt_dev,
74 struct xhci_event_cmd *event);
75
76 /*
77 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
78 * address of the TRB.
79 */
80 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
81 union xhci_trb *trb)
82 {
83 unsigned long segment_offset;
84
85 if (!seg || !trb || trb < seg->trbs)
86 return 0;
87 /* offset in TRBs */
88 segment_offset = trb - seg->trbs;
89 if (segment_offset > TRBS_PER_SEGMENT)
90 return 0;
91 return seg->dma + (segment_offset * sizeof(*trb));
92 }
93
94 /* Does this link TRB point to the first segment in a ring,
95 * or was the previous TRB the last TRB on the last segment in the ERST?
96 */
97 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
98 struct xhci_segment *seg, union xhci_trb *trb)
99 {
100 if (ring == xhci->event_ring)
101 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
102 (seg->next == xhci->event_ring->first_seg);
103 else
104 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
105 }
106
107 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
108 * segment? I.e. would the updated event TRB pointer step off the end of the
109 * event seg?
110 */
111 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
112 struct xhci_segment *seg, union xhci_trb *trb)
113 {
114 if (ring == xhci->event_ring)
115 return trb == &seg->trbs[TRBS_PER_SEGMENT];
116 else
117 return TRB_TYPE_LINK_LE32(trb->link.control);
118 }
119
120 static int enqueue_is_link_trb(struct xhci_ring *ring)
121 {
122 struct xhci_link_trb *link = &ring->enqueue->link;
123 return TRB_TYPE_LINK_LE32(link->control);
124 }
125
126 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
127 * TRB is in a new segment. This does not skip over link TRBs, and it does not
128 * effect the ring dequeue or enqueue pointers.
129 */
130 static void next_trb(struct xhci_hcd *xhci,
131 struct xhci_ring *ring,
132 struct xhci_segment **seg,
133 union xhci_trb **trb)
134 {
135 if (last_trb(xhci, ring, *seg, *trb)) {
136 *seg = (*seg)->next;
137 *trb = ((*seg)->trbs);
138 } else {
139 (*trb)++;
140 }
141 }
142
143 /*
144 * See Cycle bit rules. SW is the consumer for the event ring only.
145 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
146 */
147 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
148 {
149 unsigned long long addr;
150
151 ring->deq_updates++;
152
153 /*
154 * If this is not event ring, and the dequeue pointer
155 * is not on a link TRB, there is one more usable TRB
156 */
157 if (ring->type != TYPE_EVENT &&
158 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
159 ring->num_trbs_free++;
160
161 do {
162 /*
163 * Update the dequeue pointer further if that was a link TRB or
164 * we're at the end of an event ring segment (which doesn't have
165 * link TRBS)
166 */
167 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
168 if (ring->type == TYPE_EVENT &&
169 last_trb_on_last_seg(xhci, ring,
170 ring->deq_seg, ring->dequeue)) {
171 ring->cycle_state = (ring->cycle_state ? 0 : 1);
172 }
173 ring->deq_seg = ring->deq_seg->next;
174 ring->dequeue = ring->deq_seg->trbs;
175 } else {
176 ring->dequeue++;
177 }
178 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
179
180 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
181 }
182
183 /*
184 * See Cycle bit rules. SW is the consumer for the event ring only.
185 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
186 *
187 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
188 * chain bit is set), then set the chain bit in all the following link TRBs.
189 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
190 * have their chain bit cleared (so that each Link TRB is a separate TD).
191 *
192 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
193 * set, but other sections talk about dealing with the chain bit set. This was
194 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
195 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
196 *
197 * @more_trbs_coming: Will you enqueue more TRBs before calling
198 * prepare_transfer()?
199 */
200 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
201 bool more_trbs_coming)
202 {
203 u32 chain;
204 union xhci_trb *next;
205 unsigned long long addr;
206
207 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
208 /* If this is not event ring, there is one less usable TRB */
209 if (ring->type != TYPE_EVENT &&
210 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
211 ring->num_trbs_free--;
212 next = ++(ring->enqueue);
213
214 ring->enq_updates++;
215 /* Update the dequeue pointer further if that was a link TRB or we're at
216 * the end of an event ring segment (which doesn't have link TRBS)
217 */
218 while (last_trb(xhci, ring, ring->enq_seg, next)) {
219 if (ring->type != TYPE_EVENT) {
220 /*
221 * If the caller doesn't plan on enqueueing more
222 * TDs before ringing the doorbell, then we
223 * don't want to give the link TRB to the
224 * hardware just yet. We'll give the link TRB
225 * back in prepare_ring() just before we enqueue
226 * the TD at the top of the ring.
227 */
228 if (!chain && !more_trbs_coming)
229 break;
230
231 /* If we're not dealing with 0.95 hardware or
232 * isoc rings on AMD 0.96 host,
233 * carry over the chain bit of the previous TRB
234 * (which may mean the chain bit is cleared).
235 */
236 if (!(ring->type == TYPE_ISOC &&
237 (xhci->quirks & XHCI_AMD_0x96_HOST))
238 && !xhci_link_trb_quirk(xhci)) {
239 next->link.control &=
240 cpu_to_le32(~TRB_CHAIN);
241 next->link.control |=
242 cpu_to_le32(chain);
243 }
244 /* Give this link TRB to the hardware */
245 wmb();
246 next->link.control ^= cpu_to_le32(TRB_CYCLE);
247
248 /* Toggle the cycle bit after the last ring segment. */
249 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
250 ring->cycle_state = (ring->cycle_state ? 0 : 1);
251 }
252 }
253 ring->enq_seg = ring->enq_seg->next;
254 ring->enqueue = ring->enq_seg->trbs;
255 next = ring->enqueue;
256 }
257 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
258 }
259
260 /*
261 * Check to see if there's room to enqueue num_trbs on the ring and make sure
262 * enqueue pointer will not advance into dequeue segment. See rules above.
263 */
264 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
265 unsigned int num_trbs)
266 {
267 int num_trbs_in_deq_seg;
268
269 if (ring->num_trbs_free < num_trbs)
270 return 0;
271
272 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
273 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
274 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
275 return 0;
276 }
277
278 return 1;
279 }
280
281 /* Ring the host controller doorbell after placing a command on the ring */
282 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
283 {
284 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
285 return;
286
287 xhci_dbg(xhci, "// Ding dong!\n");
288 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
289 /* Flush PCI posted writes */
290 xhci_readl(xhci, &xhci->dba->doorbell[0]);
291 }
292
293 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
294 {
295 u64 temp_64;
296 int ret;
297
298 xhci_dbg(xhci, "Abort command ring\n");
299
300 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) {
301 xhci_dbg(xhci, "The command ring isn't running, "
302 "Have the command ring been stopped?\n");
303 return 0;
304 }
305
306 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
307 if (!(temp_64 & CMD_RING_RUNNING)) {
308 xhci_dbg(xhci, "Command ring had been stopped\n");
309 return 0;
310 }
311 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
312 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
313 &xhci->op_regs->cmd_ring);
314
315 /* Section 4.6.1.2 of xHCI 1.0 spec says software should
316 * time the completion od all xHCI commands, including
317 * the Command Abort operation. If software doesn't see
318 * CRR negated in a timely manner (e.g. longer than 5
319 * seconds), then it should assume that the there are
320 * larger problems with the xHC and assert HCRST.
321 */
322 ret = xhci_handshake(xhci, &xhci->op_regs->cmd_ring,
323 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
324 if (ret < 0) {
325 xhci_err(xhci, "Stopped the command ring failed, "
326 "maybe the host is dead\n");
327 xhci->xhc_state |= XHCI_STATE_DYING;
328 xhci_quiesce(xhci);
329 xhci_halt(xhci);
330 return -ESHUTDOWN;
331 }
332
333 return 0;
334 }
335
336 static int xhci_queue_cd(struct xhci_hcd *xhci,
337 struct xhci_command *command,
338 union xhci_trb *cmd_trb)
339 {
340 struct xhci_cd *cd;
341 cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC);
342 if (!cd)
343 return -ENOMEM;
344 INIT_LIST_HEAD(&cd->cancel_cmd_list);
345
346 cd->command = command;
347 cd->cmd_trb = cmd_trb;
348 list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list);
349
350 return 0;
351 }
352
353 /*
354 * Cancel the command which has issue.
355 *
356 * Some commands may hang due to waiting for acknowledgement from
357 * usb device. It is outside of the xHC's ability to control and
358 * will cause the command ring is blocked. When it occurs software
359 * should intervene to recover the command ring.
360 * See Section 4.6.1.1 and 4.6.1.2
361 */
362 int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command,
363 union xhci_trb *cmd_trb)
364 {
365 int retval = 0;
366 unsigned long flags;
367
368 spin_lock_irqsave(&xhci->lock, flags);
369
370 if (xhci->xhc_state & XHCI_STATE_DYING) {
371 xhci_warn(xhci, "Abort the command ring,"
372 " but the xHCI is dead.\n");
373 retval = -ESHUTDOWN;
374 goto fail;
375 }
376
377 /* queue the cmd desriptor to cancel_cmd_list */
378 retval = xhci_queue_cd(xhci, command, cmd_trb);
379 if (retval) {
380 xhci_warn(xhci, "Queuing command descriptor failed.\n");
381 goto fail;
382 }
383
384 /* abort command ring */
385 retval = xhci_abort_cmd_ring(xhci);
386 if (retval) {
387 xhci_err(xhci, "Abort command ring failed\n");
388 if (unlikely(retval == -ESHUTDOWN)) {
389 spin_unlock_irqrestore(&xhci->lock, flags);
390 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
391 xhci_dbg(xhci, "xHCI host controller is dead.\n");
392 return retval;
393 }
394 }
395
396 fail:
397 spin_unlock_irqrestore(&xhci->lock, flags);
398 return retval;
399 }
400
401 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
402 unsigned int slot_id,
403 unsigned int ep_index,
404 unsigned int stream_id)
405 {
406 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
407 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
408 unsigned int ep_state = ep->ep_state;
409
410 /* Don't ring the doorbell for this endpoint if there are pending
411 * cancellations because we don't want to interrupt processing.
412 * We don't want to restart any stream rings if there's a set dequeue
413 * pointer command pending because the device can choose to start any
414 * stream once the endpoint is on the HW schedule.
415 * FIXME - check all the stream rings for pending cancellations.
416 */
417 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
418 (ep_state & EP_HALTED))
419 return;
420 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
421 /* The CPU has better things to do at this point than wait for a
422 * write-posting flush. It'll get there soon enough.
423 */
424 }
425
426 /* Ring the doorbell for any rings with pending URBs */
427 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
428 unsigned int slot_id,
429 unsigned int ep_index)
430 {
431 unsigned int stream_id;
432 struct xhci_virt_ep *ep;
433
434 ep = &xhci->devs[slot_id]->eps[ep_index];
435
436 /* A ring has pending URBs if its TD list is not empty */
437 if (!(ep->ep_state & EP_HAS_STREAMS)) {
438 if (ep->ring && !(list_empty(&ep->ring->td_list)))
439 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
440 return;
441 }
442
443 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
444 stream_id++) {
445 struct xhci_stream_info *stream_info = ep->stream_info;
446 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
447 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
448 stream_id);
449 }
450 }
451
452 /*
453 * Find the segment that trb is in. Start searching in start_seg.
454 * If we must move past a segment that has a link TRB with a toggle cycle state
455 * bit set, then we will toggle the value pointed at by cycle_state.
456 */
457 static struct xhci_segment *find_trb_seg(
458 struct xhci_segment *start_seg,
459 union xhci_trb *trb, int *cycle_state)
460 {
461 struct xhci_segment *cur_seg = start_seg;
462 struct xhci_generic_trb *generic_trb;
463
464 while (cur_seg->trbs > trb ||
465 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
466 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
467 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
468 *cycle_state ^= 0x1;
469 cur_seg = cur_seg->next;
470 if (cur_seg == start_seg)
471 /* Looped over the entire list. Oops! */
472 return NULL;
473 }
474 return cur_seg;
475 }
476
477
478 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
479 unsigned int slot_id, unsigned int ep_index,
480 unsigned int stream_id)
481 {
482 struct xhci_virt_ep *ep;
483
484 ep = &xhci->devs[slot_id]->eps[ep_index];
485 /* Common case: no streams */
486 if (!(ep->ep_state & EP_HAS_STREAMS))
487 return ep->ring;
488
489 if (stream_id == 0) {
490 xhci_warn(xhci,
491 "WARN: Slot ID %u, ep index %u has streams, "
492 "but URB has no stream ID.\n",
493 slot_id, ep_index);
494 return NULL;
495 }
496
497 if (stream_id < ep->stream_info->num_streams)
498 return ep->stream_info->stream_rings[stream_id];
499
500 xhci_warn(xhci,
501 "WARN: Slot ID %u, ep index %u has "
502 "stream IDs 1 to %u allocated, "
503 "but stream ID %u is requested.\n",
504 slot_id, ep_index,
505 ep->stream_info->num_streams - 1,
506 stream_id);
507 return NULL;
508 }
509
510 /* Get the right ring for the given URB.
511 * If the endpoint supports streams, boundary check the URB's stream ID.
512 * If the endpoint doesn't support streams, return the singular endpoint ring.
513 */
514 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
515 struct urb *urb)
516 {
517 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
518 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
519 }
520
521 /*
522 * Move the xHC's endpoint ring dequeue pointer past cur_td.
523 * Record the new state of the xHC's endpoint ring dequeue segment,
524 * dequeue pointer, and new consumer cycle state in state.
525 * Update our internal representation of the ring's dequeue pointer.
526 *
527 * We do this in three jumps:
528 * - First we update our new ring state to be the same as when the xHC stopped.
529 * - Then we traverse the ring to find the segment that contains
530 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
531 * any link TRBs with the toggle cycle bit set.
532 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
533 * if we've moved it past a link TRB with the toggle cycle bit set.
534 *
535 * Some of the uses of xhci_generic_trb are grotty, but if they're done
536 * with correct __le32 accesses they should work fine. Only users of this are
537 * in here.
538 */
539 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
540 unsigned int slot_id, unsigned int ep_index,
541 unsigned int stream_id, struct xhci_td *cur_td,
542 struct xhci_dequeue_state *state)
543 {
544 struct xhci_virt_device *dev = xhci->devs[slot_id];
545 struct xhci_ring *ep_ring;
546 struct xhci_generic_trb *trb;
547 struct xhci_ep_ctx *ep_ctx;
548 dma_addr_t addr;
549
550 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
551 ep_index, stream_id);
552 if (!ep_ring) {
553 xhci_warn(xhci, "WARN can't find new dequeue state "
554 "for invalid stream ID %u.\n",
555 stream_id);
556 return;
557 }
558 state->new_cycle_state = 0;
559 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
560 "Finding segment containing stopped TRB.");
561 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
562 dev->eps[ep_index].stopped_trb,
563 &state->new_cycle_state);
564 if (!state->new_deq_seg) {
565 WARN_ON(1);
566 return;
567 }
568
569 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
570 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
571 "Finding endpoint context");
572 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
573 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
574
575 state->new_deq_ptr = cur_td->last_trb;
576 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
577 "Finding segment containing last TRB in TD.");
578 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
579 state->new_deq_ptr,
580 &state->new_cycle_state);
581 if (!state->new_deq_seg) {
582 WARN_ON(1);
583 return;
584 }
585
586 trb = &state->new_deq_ptr->generic;
587 if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
588 (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
589 state->new_cycle_state ^= 0x1;
590 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
591
592 /*
593 * If there is only one segment in a ring, find_trb_seg()'s while loop
594 * will not run, and it will return before it has a chance to see if it
595 * needs to toggle the cycle bit. It can't tell if the stalled transfer
596 * ended just before the link TRB on a one-segment ring, or if the TD
597 * wrapped around the top of the ring, because it doesn't have the TD in
598 * question. Look for the one-segment case where stalled TRB's address
599 * is greater than the new dequeue pointer address.
600 */
601 if (ep_ring->first_seg == ep_ring->first_seg->next &&
602 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
603 state->new_cycle_state ^= 0x1;
604 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
605 "Cycle state = 0x%x", state->new_cycle_state);
606
607 /* Don't update the ring cycle state for the producer (us). */
608 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
609 "New dequeue segment = %p (virtual)",
610 state->new_deq_seg);
611 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
612 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
613 "New dequeue pointer = 0x%llx (DMA)",
614 (unsigned long long) addr);
615 }
616
617 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
618 * (The last TRB actually points to the ring enqueue pointer, which is not part
619 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
620 */
621 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
622 struct xhci_td *cur_td, bool flip_cycle)
623 {
624 struct xhci_segment *cur_seg;
625 union xhci_trb *cur_trb;
626
627 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
628 true;
629 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
630 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
631 /* Unchain any chained Link TRBs, but
632 * leave the pointers intact.
633 */
634 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
635 /* Flip the cycle bit (link TRBs can't be the first
636 * or last TRB).
637 */
638 if (flip_cycle)
639 cur_trb->generic.field[3] ^=
640 cpu_to_le32(TRB_CYCLE);
641 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
642 "Cancel (unchain) link TRB");
643 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
644 "Address = %p (0x%llx dma); "
645 "in seg %p (0x%llx dma)",
646 cur_trb,
647 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
648 cur_seg,
649 (unsigned long long)cur_seg->dma);
650 } else {
651 cur_trb->generic.field[0] = 0;
652 cur_trb->generic.field[1] = 0;
653 cur_trb->generic.field[2] = 0;
654 /* Preserve only the cycle bit of this TRB */
655 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
656 /* Flip the cycle bit except on the first or last TRB */
657 if (flip_cycle && cur_trb != cur_td->first_trb &&
658 cur_trb != cur_td->last_trb)
659 cur_trb->generic.field[3] ^=
660 cpu_to_le32(TRB_CYCLE);
661 cur_trb->generic.field[3] |= cpu_to_le32(
662 TRB_TYPE(TRB_TR_NOOP));
663 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
664 "TRB to noop at offset 0x%llx",
665 (unsigned long long)
666 xhci_trb_virt_to_dma(cur_seg, cur_trb));
667 }
668 if (cur_trb == cur_td->last_trb)
669 break;
670 }
671 }
672
673 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
674 unsigned int ep_index, unsigned int stream_id,
675 struct xhci_segment *deq_seg,
676 union xhci_trb *deq_ptr, u32 cycle_state);
677
678 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
679 unsigned int slot_id, unsigned int ep_index,
680 unsigned int stream_id,
681 struct xhci_dequeue_state *deq_state)
682 {
683 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
684
685 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
686 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
687 "new deq ptr = %p (0x%llx dma), new cycle = %u",
688 deq_state->new_deq_seg,
689 (unsigned long long)deq_state->new_deq_seg->dma,
690 deq_state->new_deq_ptr,
691 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
692 deq_state->new_cycle_state);
693 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
694 deq_state->new_deq_seg,
695 deq_state->new_deq_ptr,
696 (u32) deq_state->new_cycle_state);
697 /* Stop the TD queueing code from ringing the doorbell until
698 * this command completes. The HC won't set the dequeue pointer
699 * if the ring is running, and ringing the doorbell starts the
700 * ring running.
701 */
702 ep->ep_state |= SET_DEQ_PENDING;
703 }
704
705 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
706 struct xhci_virt_ep *ep)
707 {
708 ep->ep_state &= ~EP_HALT_PENDING;
709 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
710 * timer is running on another CPU, we don't decrement stop_cmds_pending
711 * (since we didn't successfully stop the watchdog timer).
712 */
713 if (del_timer(&ep->stop_cmd_timer))
714 ep->stop_cmds_pending--;
715 }
716
717 /* Must be called with xhci->lock held in interrupt context */
718 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
719 struct xhci_td *cur_td, int status, char *adjective)
720 {
721 struct usb_hcd *hcd;
722 struct urb *urb;
723 struct urb_priv *urb_priv;
724
725 urb = cur_td->urb;
726 urb_priv = urb->hcpriv;
727 urb_priv->td_cnt++;
728 hcd = bus_to_hcd(urb->dev->bus);
729
730 /* Only giveback urb when this is the last td in urb */
731 if (urb_priv->td_cnt == urb_priv->length) {
732 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
733 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
734 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
735 if (xhci->quirks & XHCI_AMD_PLL_FIX)
736 usb_amd_quirk_pll_enable();
737 }
738 }
739 usb_hcd_unlink_urb_from_ep(hcd, urb);
740
741 spin_unlock(&xhci->lock);
742 usb_hcd_giveback_urb(hcd, urb, status);
743 xhci_urb_free_priv(xhci, urb_priv);
744 spin_lock(&xhci->lock);
745 }
746 }
747
748 /*
749 * When we get a command completion for a Stop Endpoint Command, we need to
750 * unlink any cancelled TDs from the ring. There are two ways to do that:
751 *
752 * 1. If the HW was in the middle of processing the TD that needs to be
753 * cancelled, then we must move the ring's dequeue pointer past the last TRB
754 * in the TD with a Set Dequeue Pointer Command.
755 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
756 * bit cleared) so that the HW will skip over them.
757 */
758 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
759 union xhci_trb *trb, struct xhci_event_cmd *event)
760 {
761 unsigned int slot_id;
762 unsigned int ep_index;
763 struct xhci_virt_device *virt_dev;
764 struct xhci_ring *ep_ring;
765 struct xhci_virt_ep *ep;
766 struct list_head *entry;
767 struct xhci_td *cur_td = NULL;
768 struct xhci_td *last_unlinked_td;
769
770 struct xhci_dequeue_state deq_state;
771
772 if (unlikely(TRB_TO_SUSPEND_PORT(
773 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
774 slot_id = TRB_TO_SLOT_ID(
775 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
776 virt_dev = xhci->devs[slot_id];
777 if (virt_dev)
778 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
779 event);
780 else
781 xhci_warn(xhci, "Stop endpoint command "
782 "completion for disabled slot %u\n",
783 slot_id);
784 return;
785 }
786
787 memset(&deq_state, 0, sizeof(deq_state));
788 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
789 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
790 ep = &xhci->devs[slot_id]->eps[ep_index];
791
792 if (list_empty(&ep->cancelled_td_list)) {
793 xhci_stop_watchdog_timer_in_irq(xhci, ep);
794 ep->stopped_td = NULL;
795 ep->stopped_trb = NULL;
796 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
797 return;
798 }
799
800 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
801 * We have the xHCI lock, so nothing can modify this list until we drop
802 * it. We're also in the event handler, so we can't get re-interrupted
803 * if another Stop Endpoint command completes
804 */
805 list_for_each(entry, &ep->cancelled_td_list) {
806 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
807 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
808 "Removing canceled TD starting at 0x%llx (dma).",
809 (unsigned long long)xhci_trb_virt_to_dma(
810 cur_td->start_seg, cur_td->first_trb));
811 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
812 if (!ep_ring) {
813 /* This shouldn't happen unless a driver is mucking
814 * with the stream ID after submission. This will
815 * leave the TD on the hardware ring, and the hardware
816 * will try to execute it, and may access a buffer
817 * that has already been freed. In the best case, the
818 * hardware will execute it, and the event handler will
819 * ignore the completion event for that TD, since it was
820 * removed from the td_list for that endpoint. In
821 * short, don't muck with the stream ID after
822 * submission.
823 */
824 xhci_warn(xhci, "WARN Cancelled URB %p "
825 "has invalid stream ID %u.\n",
826 cur_td->urb,
827 cur_td->urb->stream_id);
828 goto remove_finished_td;
829 }
830 /*
831 * If we stopped on the TD we need to cancel, then we have to
832 * move the xHC endpoint ring dequeue pointer past this TD.
833 */
834 if (cur_td == ep->stopped_td)
835 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
836 cur_td->urb->stream_id,
837 cur_td, &deq_state);
838 else
839 td_to_noop(xhci, ep_ring, cur_td, false);
840 remove_finished_td:
841 /*
842 * The event handler won't see a completion for this TD anymore,
843 * so remove it from the endpoint ring's TD list. Keep it in
844 * the cancelled TD list for URB completion later.
845 */
846 list_del_init(&cur_td->td_list);
847 }
848 last_unlinked_td = cur_td;
849 xhci_stop_watchdog_timer_in_irq(xhci, ep);
850
851 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
852 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
853 xhci_queue_new_dequeue_state(xhci,
854 slot_id, ep_index,
855 ep->stopped_td->urb->stream_id,
856 &deq_state);
857 xhci_ring_cmd_db(xhci);
858 } else {
859 /* Otherwise ring the doorbell(s) to restart queued transfers */
860 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
861 }
862 ep->stopped_td = NULL;
863 ep->stopped_trb = NULL;
864
865 /*
866 * Drop the lock and complete the URBs in the cancelled TD list.
867 * New TDs to be cancelled might be added to the end of the list before
868 * we can complete all the URBs for the TDs we already unlinked.
869 * So stop when we've completed the URB for the last TD we unlinked.
870 */
871 do {
872 cur_td = list_entry(ep->cancelled_td_list.next,
873 struct xhci_td, cancelled_td_list);
874 list_del_init(&cur_td->cancelled_td_list);
875
876 /* Clean up the cancelled URB */
877 /* Doesn't matter what we pass for status, since the core will
878 * just overwrite it (because the URB has been unlinked).
879 */
880 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
881
882 /* Stop processing the cancelled list if the watchdog timer is
883 * running.
884 */
885 if (xhci->xhc_state & XHCI_STATE_DYING)
886 return;
887 } while (cur_td != last_unlinked_td);
888
889 /* Return to the event handler with xhci->lock re-acquired */
890 }
891
892 /* Watchdog timer function for when a stop endpoint command fails to complete.
893 * In this case, we assume the host controller is broken or dying or dead. The
894 * host may still be completing some other events, so we have to be careful to
895 * let the event ring handler and the URB dequeueing/enqueueing functions know
896 * through xhci->state.
897 *
898 * The timer may also fire if the host takes a very long time to respond to the
899 * command, and the stop endpoint command completion handler cannot delete the
900 * timer before the timer function is called. Another endpoint cancellation may
901 * sneak in before the timer function can grab the lock, and that may queue
902 * another stop endpoint command and add the timer back. So we cannot use a
903 * simple flag to say whether there is a pending stop endpoint command for a
904 * particular endpoint.
905 *
906 * Instead we use a combination of that flag and a counter for the number of
907 * pending stop endpoint commands. If the timer is the tail end of the last
908 * stop endpoint command, and the endpoint's command is still pending, we assume
909 * the host is dying.
910 */
911 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
912 {
913 struct xhci_hcd *xhci;
914 struct xhci_virt_ep *ep;
915 struct xhci_virt_ep *temp_ep;
916 struct xhci_ring *ring;
917 struct xhci_td *cur_td;
918 int ret, i, j;
919 unsigned long flags;
920
921 ep = (struct xhci_virt_ep *) arg;
922 xhci = ep->xhci;
923
924 spin_lock_irqsave(&xhci->lock, flags);
925
926 ep->stop_cmds_pending--;
927 if (xhci->xhc_state & XHCI_STATE_DYING) {
928 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
929 "Stop EP timer ran, but another timer marked "
930 "xHCI as DYING, exiting.");
931 spin_unlock_irqrestore(&xhci->lock, flags);
932 return;
933 }
934 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
935 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
936 "Stop EP timer ran, but no command pending, "
937 "exiting.");
938 spin_unlock_irqrestore(&xhci->lock, flags);
939 return;
940 }
941
942 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
943 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
944 /* Oops, HC is dead or dying or at least not responding to the stop
945 * endpoint command.
946 */
947 xhci->xhc_state |= XHCI_STATE_DYING;
948 /* Disable interrupts from the host controller and start halting it */
949 xhci_quiesce(xhci);
950 spin_unlock_irqrestore(&xhci->lock, flags);
951
952 ret = xhci_halt(xhci);
953
954 spin_lock_irqsave(&xhci->lock, flags);
955 if (ret < 0) {
956 /* This is bad; the host is not responding to commands and it's
957 * not allowing itself to be halted. At least interrupts are
958 * disabled. If we call usb_hc_died(), it will attempt to
959 * disconnect all device drivers under this host. Those
960 * disconnect() methods will wait for all URBs to be unlinked,
961 * so we must complete them.
962 */
963 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
964 xhci_warn(xhci, "Completing active URBs anyway.\n");
965 /* We could turn all TDs on the rings to no-ops. This won't
966 * help if the host has cached part of the ring, and is slow if
967 * we want to preserve the cycle bit. Skip it and hope the host
968 * doesn't touch the memory.
969 */
970 }
971 for (i = 0; i < MAX_HC_SLOTS; i++) {
972 if (!xhci->devs[i])
973 continue;
974 for (j = 0; j < 31; j++) {
975 temp_ep = &xhci->devs[i]->eps[j];
976 ring = temp_ep->ring;
977 if (!ring)
978 continue;
979 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
980 "Killing URBs for slot ID %u, "
981 "ep index %u", i, j);
982 while (!list_empty(&ring->td_list)) {
983 cur_td = list_first_entry(&ring->td_list,
984 struct xhci_td,
985 td_list);
986 list_del_init(&cur_td->td_list);
987 if (!list_empty(&cur_td->cancelled_td_list))
988 list_del_init(&cur_td->cancelled_td_list);
989 xhci_giveback_urb_in_irq(xhci, cur_td,
990 -ESHUTDOWN, "killed");
991 }
992 while (!list_empty(&temp_ep->cancelled_td_list)) {
993 cur_td = list_first_entry(
994 &temp_ep->cancelled_td_list,
995 struct xhci_td,
996 cancelled_td_list);
997 list_del_init(&cur_td->cancelled_td_list);
998 xhci_giveback_urb_in_irq(xhci, cur_td,
999 -ESHUTDOWN, "killed");
1000 }
1001 }
1002 }
1003 spin_unlock_irqrestore(&xhci->lock, flags);
1004 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1005 "Calling usb_hc_died()");
1006 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1007 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1008 "xHCI host controller is dead.");
1009 }
1010
1011
1012 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
1013 struct xhci_virt_device *dev,
1014 struct xhci_ring *ep_ring,
1015 unsigned int ep_index)
1016 {
1017 union xhci_trb *dequeue_temp;
1018 int num_trbs_free_temp;
1019 bool revert = false;
1020
1021 num_trbs_free_temp = ep_ring->num_trbs_free;
1022 dequeue_temp = ep_ring->dequeue;
1023
1024 /* If we get two back-to-back stalls, and the first stalled transfer
1025 * ends just before a link TRB, the dequeue pointer will be left on
1026 * the link TRB by the code in the while loop. So we have to update
1027 * the dequeue pointer one segment further, or we'll jump off
1028 * the segment into la-la-land.
1029 */
1030 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
1031 ep_ring->deq_seg = ep_ring->deq_seg->next;
1032 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1033 }
1034
1035 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1036 /* We have more usable TRBs */
1037 ep_ring->num_trbs_free++;
1038 ep_ring->dequeue++;
1039 if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
1040 ep_ring->dequeue)) {
1041 if (ep_ring->dequeue ==
1042 dev->eps[ep_index].queued_deq_ptr)
1043 break;
1044 ep_ring->deq_seg = ep_ring->deq_seg->next;
1045 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1046 }
1047 if (ep_ring->dequeue == dequeue_temp) {
1048 revert = true;
1049 break;
1050 }
1051 }
1052
1053 if (revert) {
1054 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1055 ep_ring->num_trbs_free = num_trbs_free_temp;
1056 }
1057 }
1058
1059 /*
1060 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1061 * we need to clear the set deq pending flag in the endpoint ring state, so that
1062 * the TD queueing code can ring the doorbell again. We also need to ring the
1063 * endpoint doorbell to restart the ring, but only if there aren't more
1064 * cancellations pending.
1065 */
1066 static void handle_set_deq_completion(struct xhci_hcd *xhci,
1067 struct xhci_event_cmd *event,
1068 union xhci_trb *trb)
1069 {
1070 unsigned int slot_id;
1071 unsigned int ep_index;
1072 unsigned int stream_id;
1073 struct xhci_ring *ep_ring;
1074 struct xhci_virt_device *dev;
1075 struct xhci_ep_ctx *ep_ctx;
1076 struct xhci_slot_ctx *slot_ctx;
1077
1078 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1079 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1080 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1081 dev = xhci->devs[slot_id];
1082
1083 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1084 if (!ep_ring) {
1085 xhci_warn(xhci, "WARN Set TR deq ptr command for "
1086 "freed stream ID %u\n",
1087 stream_id);
1088 /* XXX: Harmless??? */
1089 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1090 return;
1091 }
1092
1093 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1094 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1095
1096 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
1097 unsigned int ep_state;
1098 unsigned int slot_state;
1099
1100 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
1101 case COMP_TRB_ERR:
1102 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
1103 "of stream ID configuration\n");
1104 break;
1105 case COMP_CTX_STATE:
1106 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
1107 "to incorrect slot or ep state.\n");
1108 ep_state = le32_to_cpu(ep_ctx->ep_info);
1109 ep_state &= EP_STATE_MASK;
1110 slot_state = le32_to_cpu(slot_ctx->dev_state);
1111 slot_state = GET_SLOT_STATE(slot_state);
1112 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1113 "Slot state = %u, EP state = %u",
1114 slot_state, ep_state);
1115 break;
1116 case COMP_EBADSLT:
1117 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
1118 "slot %u was not enabled.\n", slot_id);
1119 break;
1120 default:
1121 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
1122 "completion code of %u.\n",
1123 GET_COMP_CODE(le32_to_cpu(event->status)));
1124 break;
1125 }
1126 /* OK what do we do now? The endpoint state is hosed, and we
1127 * should never get to this point if the synchronization between
1128 * queueing, and endpoint state are correct. This might happen
1129 * if the device gets disconnected after we've finished
1130 * cancelling URBs, which might not be an error...
1131 */
1132 } else {
1133 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1134 "Successful Set TR Deq Ptr cmd, deq = @%08llx",
1135 le64_to_cpu(ep_ctx->deq));
1136 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
1137 dev->eps[ep_index].queued_deq_ptr) ==
1138 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
1139 /* Update the ring's dequeue segment and dequeue pointer
1140 * to reflect the new position.
1141 */
1142 update_ring_for_set_deq_completion(xhci, dev,
1143 ep_ring, ep_index);
1144 } else {
1145 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
1146 "Ptr command & xHCI internal state.\n");
1147 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1148 dev->eps[ep_index].queued_deq_seg,
1149 dev->eps[ep_index].queued_deq_ptr);
1150 }
1151 }
1152
1153 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1154 dev->eps[ep_index].queued_deq_seg = NULL;
1155 dev->eps[ep_index].queued_deq_ptr = NULL;
1156 /* Restart any rings with pending URBs */
1157 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1158 }
1159
1160 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1161 struct xhci_event_cmd *event,
1162 union xhci_trb *trb)
1163 {
1164 int slot_id;
1165 unsigned int ep_index;
1166
1167 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1168 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1169 /* This command will only fail if the endpoint wasn't halted,
1170 * but we don't care.
1171 */
1172 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1173 "Ignoring reset ep completion code of %u",
1174 GET_COMP_CODE(le32_to_cpu(event->status)));
1175
1176 /* HW with the reset endpoint quirk needs to have a configure endpoint
1177 * command complete before the endpoint can be used. Queue that here
1178 * because the HW can't handle two commands being queued in a row.
1179 */
1180 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1181 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1182 "Queueing configure endpoint command");
1183 xhci_queue_configure_endpoint(xhci,
1184 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1185 false);
1186 xhci_ring_cmd_db(xhci);
1187 } else {
1188 /* Clear our internal halted state and restart the ring(s) */
1189 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1190 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1191 }
1192 }
1193
1194 /* Complete the command and detele it from the devcie's command queue.
1195 */
1196 static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1197 struct xhci_command *command, u32 status)
1198 {
1199 command->status = status;
1200 list_del(&command->cmd_list);
1201 if (command->completion)
1202 complete(command->completion);
1203 else
1204 xhci_free_command(xhci, command);
1205 }
1206
1207
1208 /* Check to see if a command in the device's command queue matches this one.
1209 * Signal the completion or free the command, and return 1. Return 0 if the
1210 * completed command isn't at the head of the command list.
1211 */
1212 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1213 struct xhci_virt_device *virt_dev,
1214 struct xhci_event_cmd *event)
1215 {
1216 struct xhci_command *command;
1217
1218 if (list_empty(&virt_dev->cmd_list))
1219 return 0;
1220
1221 command = list_entry(virt_dev->cmd_list.next,
1222 struct xhci_command, cmd_list);
1223 if (xhci->cmd_ring->dequeue != command->command_trb)
1224 return 0;
1225
1226 xhci_complete_cmd_in_cmd_wait_list(xhci, command,
1227 GET_COMP_CODE(le32_to_cpu(event->status)));
1228 return 1;
1229 }
1230
1231 /*
1232 * Finding the command trb need to be cancelled and modifying it to
1233 * NO OP command. And if the command is in device's command wait
1234 * list, finishing and freeing it.
1235 *
1236 * If we can't find the command trb, we think it had already been
1237 * executed.
1238 */
1239 static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd)
1240 {
1241 struct xhci_segment *cur_seg;
1242 union xhci_trb *cmd_trb;
1243 u32 cycle_state;
1244
1245 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1246 return;
1247
1248 /* find the current segment of command ring */
1249 cur_seg = find_trb_seg(xhci->cmd_ring->first_seg,
1250 xhci->cmd_ring->dequeue, &cycle_state);
1251
1252 if (!cur_seg) {
1253 xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n",
1254 xhci->cmd_ring->dequeue,
1255 (unsigned long long)
1256 xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1257 xhci->cmd_ring->dequeue));
1258 xhci_debug_ring(xhci, xhci->cmd_ring);
1259 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
1260 return;
1261 }
1262
1263 /* find the command trb matched by cd from command ring */
1264 for (cmd_trb = xhci->cmd_ring->dequeue;
1265 cmd_trb != xhci->cmd_ring->enqueue;
1266 next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) {
1267 /* If the trb is link trb, continue */
1268 if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3]))
1269 continue;
1270
1271 if (cur_cd->cmd_trb == cmd_trb) {
1272
1273 /* If the command in device's command list, we should
1274 * finish it and free the command structure.
1275 */
1276 if (cur_cd->command)
1277 xhci_complete_cmd_in_cmd_wait_list(xhci,
1278 cur_cd->command, COMP_CMD_STOP);
1279
1280 /* get cycle state from the origin command trb */
1281 cycle_state = le32_to_cpu(cmd_trb->generic.field[3])
1282 & TRB_CYCLE;
1283
1284 /* modify the command trb to NO OP command */
1285 cmd_trb->generic.field[0] = 0;
1286 cmd_trb->generic.field[1] = 0;
1287 cmd_trb->generic.field[2] = 0;
1288 cmd_trb->generic.field[3] = cpu_to_le32(
1289 TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1290 break;
1291 }
1292 }
1293 }
1294
1295 static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci)
1296 {
1297 struct xhci_cd *cur_cd, *next_cd;
1298
1299 if (list_empty(&xhci->cancel_cmd_list))
1300 return;
1301
1302 list_for_each_entry_safe(cur_cd, next_cd,
1303 &xhci->cancel_cmd_list, cancel_cmd_list) {
1304 xhci_cmd_to_noop(xhci, cur_cd);
1305 list_del(&cur_cd->cancel_cmd_list);
1306 kfree(cur_cd);
1307 }
1308 }
1309
1310 /*
1311 * traversing the cancel_cmd_list. If the command descriptor according
1312 * to cmd_trb is found, the function free it and return 1, otherwise
1313 * return 0.
1314 */
1315 static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci,
1316 union xhci_trb *cmd_trb)
1317 {
1318 struct xhci_cd *cur_cd, *next_cd;
1319
1320 if (list_empty(&xhci->cancel_cmd_list))
1321 return 0;
1322
1323 list_for_each_entry_safe(cur_cd, next_cd,
1324 &xhci->cancel_cmd_list, cancel_cmd_list) {
1325 if (cur_cd->cmd_trb == cmd_trb) {
1326 if (cur_cd->command)
1327 xhci_complete_cmd_in_cmd_wait_list(xhci,
1328 cur_cd->command, COMP_CMD_STOP);
1329 list_del(&cur_cd->cancel_cmd_list);
1330 kfree(cur_cd);
1331 return 1;
1332 }
1333 }
1334
1335 return 0;
1336 }
1337
1338 /*
1339 * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the
1340 * trb pointed by the command ring dequeue pointer is the trb we want to
1341 * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will
1342 * traverse the cancel_cmd_list to trun the all of the commands according
1343 * to command descriptor to NO-OP trb.
1344 */
1345 static int handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1346 int cmd_trb_comp_code)
1347 {
1348 int cur_trb_is_good = 0;
1349
1350 /* Searching the cmd trb pointed by the command ring dequeue
1351 * pointer in command descriptor list. If it is found, free it.
1352 */
1353 cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci,
1354 xhci->cmd_ring->dequeue);
1355
1356 if (cmd_trb_comp_code == COMP_CMD_ABORT)
1357 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1358 else if (cmd_trb_comp_code == COMP_CMD_STOP) {
1359 /* traversing the cancel_cmd_list and canceling
1360 * the command according to command descriptor
1361 */
1362 xhci_cancel_cmd_in_cd_list(xhci);
1363
1364 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1365 /*
1366 * ring command ring doorbell again to restart the
1367 * command ring
1368 */
1369 if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue)
1370 xhci_ring_cmd_db(xhci);
1371 }
1372 return cur_trb_is_good;
1373 }
1374
1375 static void handle_cmd_completion(struct xhci_hcd *xhci,
1376 struct xhci_event_cmd *event)
1377 {
1378 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1379 u64 cmd_dma;
1380 dma_addr_t cmd_dequeue_dma;
1381 struct xhci_input_control_ctx *ctrl_ctx;
1382 struct xhci_virt_device *virt_dev;
1383 unsigned int ep_index;
1384 struct xhci_ring *ep_ring;
1385 unsigned int ep_state;
1386
1387 cmd_dma = le64_to_cpu(event->cmd_trb);
1388 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1389 xhci->cmd_ring->dequeue);
1390 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1391 if (cmd_dequeue_dma == 0) {
1392 xhci->error_bitmask |= 1 << 4;
1393 return;
1394 }
1395 /* Does the DMA address match our internal dequeue pointer address? */
1396 if (cmd_dma != (u64) cmd_dequeue_dma) {
1397 xhci->error_bitmask |= 1 << 5;
1398 return;
1399 }
1400
1401 trace_xhci_cmd_completion(&xhci->cmd_ring->dequeue->generic,
1402 (struct xhci_generic_trb *) event);
1403
1404 if ((GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_ABORT) ||
1405 (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_STOP)) {
1406 /* If the return value is 0, we think the trb pointed by
1407 * command ring dequeue pointer is a good trb. The good
1408 * trb means we don't want to cancel the trb, but it have
1409 * been stopped by host. So we should handle it normally.
1410 * Otherwise, driver should invoke inc_deq() and return.
1411 */
1412 if (handle_stopped_cmd_ring(xhci,
1413 GET_COMP_CODE(le32_to_cpu(event->status)))) {
1414 inc_deq(xhci, xhci->cmd_ring);
1415 return;
1416 }
1417 /* There is no command to handle if we get a stop event when the
1418 * command ring is empty, event->cmd_trb points to the next
1419 * unset command
1420 */
1421 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1422 return;
1423 }
1424
1425 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1426 & TRB_TYPE_BITMASK) {
1427 case TRB_TYPE(TRB_ENABLE_SLOT):
1428 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1429 xhci->slot_id = slot_id;
1430 else
1431 xhci->slot_id = 0;
1432 complete(&xhci->addr_dev);
1433 break;
1434 case TRB_TYPE(TRB_DISABLE_SLOT):
1435 if (xhci->devs[slot_id]) {
1436 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1437 /* Delete default control endpoint resources */
1438 xhci_free_device_endpoint_resources(xhci,
1439 xhci->devs[slot_id], true);
1440 xhci_free_virt_device(xhci, slot_id);
1441 }
1442 break;
1443 case TRB_TYPE(TRB_CONFIG_EP):
1444 virt_dev = xhci->devs[slot_id];
1445 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1446 break;
1447 /*
1448 * Configure endpoint commands can come from the USB core
1449 * configuration or alt setting changes, or because the HW
1450 * needed an extra configure endpoint command after a reset
1451 * endpoint command or streams were being configured.
1452 * If the command was for a halted endpoint, the xHCI driver
1453 * is not waiting on the configure endpoint command.
1454 */
1455 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1456 virt_dev->in_ctx);
1457 if (!ctrl_ctx) {
1458 xhci_warn(xhci, "Could not get input context, bad type.\n");
1459 break;
1460 }
1461 /* Input ctx add_flags are the endpoint index plus one */
1462 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1463 /* A usb_set_interface() call directly after clearing a halted
1464 * condition may race on this quirky hardware. Not worth
1465 * worrying about, since this is prototype hardware. Not sure
1466 * if this will work for streams, but streams support was
1467 * untested on this prototype.
1468 */
1469 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1470 ep_index != (unsigned int) -1 &&
1471 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1472 le32_to_cpu(ctrl_ctx->drop_flags)) {
1473 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1474 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1475 if (!(ep_state & EP_HALTED))
1476 goto bandwidth_change;
1477 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1478 "Completed config ep cmd - "
1479 "last ep index = %d, state = %d",
1480 ep_index, ep_state);
1481 /* Clear internal halted state and restart ring(s) */
1482 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1483 ~EP_HALTED;
1484 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1485 break;
1486 }
1487 bandwidth_change:
1488 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1489 "Completed config ep cmd");
1490 xhci->devs[slot_id]->cmd_status =
1491 GET_COMP_CODE(le32_to_cpu(event->status));
1492 complete(&xhci->devs[slot_id]->cmd_completion);
1493 break;
1494 case TRB_TYPE(TRB_EVAL_CONTEXT):
1495 virt_dev = xhci->devs[slot_id];
1496 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1497 break;
1498 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1499 complete(&xhci->devs[slot_id]->cmd_completion);
1500 break;
1501 case TRB_TYPE(TRB_ADDR_DEV):
1502 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1503 complete(&xhci->addr_dev);
1504 break;
1505 case TRB_TYPE(TRB_STOP_RING):
1506 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1507 break;
1508 case TRB_TYPE(TRB_SET_DEQ):
1509 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1510 break;
1511 case TRB_TYPE(TRB_CMD_NOOP):
1512 break;
1513 case TRB_TYPE(TRB_RESET_EP):
1514 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1515 break;
1516 case TRB_TYPE(TRB_RESET_DEV):
1517 xhci_dbg(xhci, "Completed reset device command.\n");
1518 slot_id = TRB_TO_SLOT_ID(
1519 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1520 virt_dev = xhci->devs[slot_id];
1521 if (virt_dev)
1522 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1523 else
1524 xhci_warn(xhci, "Reset device command completion "
1525 "for disabled slot %u\n", slot_id);
1526 break;
1527 case TRB_TYPE(TRB_NEC_GET_FW):
1528 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1529 xhci->error_bitmask |= 1 << 6;
1530 break;
1531 }
1532 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1533 "NEC firmware version %2x.%02x",
1534 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1535 NEC_FW_MINOR(le32_to_cpu(event->status)));
1536 break;
1537 default:
1538 /* Skip over unknown commands on the event ring */
1539 xhci->error_bitmask |= 1 << 6;
1540 break;
1541 }
1542 inc_deq(xhci, xhci->cmd_ring);
1543 }
1544
1545 static void handle_vendor_event(struct xhci_hcd *xhci,
1546 union xhci_trb *event)
1547 {
1548 u32 trb_type;
1549
1550 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1551 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1552 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1553 handle_cmd_completion(xhci, &event->event_cmd);
1554 }
1555
1556 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1557 * port registers -- USB 3.0 and USB 2.0).
1558 *
1559 * Returns a zero-based port number, which is suitable for indexing into each of
1560 * the split roothubs' port arrays and bus state arrays.
1561 * Add one to it in order to call xhci_find_slot_id_by_port.
1562 */
1563 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1564 struct xhci_hcd *xhci, u32 port_id)
1565 {
1566 unsigned int i;
1567 unsigned int num_similar_speed_ports = 0;
1568
1569 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1570 * and usb2_ports are 0-based indexes. Count the number of similar
1571 * speed ports, up to 1 port before this port.
1572 */
1573 for (i = 0; i < (port_id - 1); i++) {
1574 u8 port_speed = xhci->port_array[i];
1575
1576 /*
1577 * Skip ports that don't have known speeds, or have duplicate
1578 * Extended Capabilities port speed entries.
1579 */
1580 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1581 continue;
1582
1583 /*
1584 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1585 * 1.1 ports are under the USB 2.0 hub. If the port speed
1586 * matches the device speed, it's a similar speed port.
1587 */
1588 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1589 num_similar_speed_ports++;
1590 }
1591 return num_similar_speed_ports;
1592 }
1593
1594 static void handle_device_notification(struct xhci_hcd *xhci,
1595 union xhci_trb *event)
1596 {
1597 u32 slot_id;
1598 struct usb_device *udev;
1599
1600 slot_id = TRB_TO_SLOT_ID(event->generic.field[3]);
1601 if (!xhci->devs[slot_id]) {
1602 xhci_warn(xhci, "Device Notification event for "
1603 "unused slot %u\n", slot_id);
1604 return;
1605 }
1606
1607 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1608 slot_id);
1609 udev = xhci->devs[slot_id]->udev;
1610 if (udev && udev->parent)
1611 usb_wakeup_notification(udev->parent, udev->portnum);
1612 }
1613
1614 static void handle_port_status(struct xhci_hcd *xhci,
1615 union xhci_trb *event)
1616 {
1617 struct usb_hcd *hcd;
1618 u32 port_id;
1619 u32 temp, temp1;
1620 int max_ports;
1621 int slot_id;
1622 unsigned int faked_port_index;
1623 u8 major_revision;
1624 struct xhci_bus_state *bus_state;
1625 __le32 __iomem **port_array;
1626 bool bogus_port_status = false;
1627
1628 /* Port status change events always have a successful completion code */
1629 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1630 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1631 xhci->error_bitmask |= 1 << 8;
1632 }
1633 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1634 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1635
1636 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1637 if ((port_id <= 0) || (port_id > max_ports)) {
1638 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1639 inc_deq(xhci, xhci->event_ring);
1640 return;
1641 }
1642
1643 /* Figure out which usb_hcd this port is attached to:
1644 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1645 */
1646 major_revision = xhci->port_array[port_id - 1];
1647
1648 /* Find the right roothub. */
1649 hcd = xhci_to_hcd(xhci);
1650 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1651 hcd = xhci->shared_hcd;
1652
1653 if (major_revision == 0) {
1654 xhci_warn(xhci, "Event for port %u not in "
1655 "Extended Capabilities, ignoring.\n",
1656 port_id);
1657 bogus_port_status = true;
1658 goto cleanup;
1659 }
1660 if (major_revision == DUPLICATE_ENTRY) {
1661 xhci_warn(xhci, "Event for port %u duplicated in"
1662 "Extended Capabilities, ignoring.\n",
1663 port_id);
1664 bogus_port_status = true;
1665 goto cleanup;
1666 }
1667
1668 /*
1669 * Hardware port IDs reported by a Port Status Change Event include USB
1670 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1671 * resume event, but we first need to translate the hardware port ID
1672 * into the index into the ports on the correct split roothub, and the
1673 * correct bus_state structure.
1674 */
1675 bus_state = &xhci->bus_state[hcd_index(hcd)];
1676 if (hcd->speed == HCD_USB3)
1677 port_array = xhci->usb3_ports;
1678 else
1679 port_array = xhci->usb2_ports;
1680 /* Find the faked port hub number */
1681 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1682 port_id);
1683
1684 temp = xhci_readl(xhci, port_array[faked_port_index]);
1685 if (hcd->state == HC_STATE_SUSPENDED) {
1686 xhci_dbg(xhci, "resume root hub\n");
1687 usb_hcd_resume_root_hub(hcd);
1688 }
1689
1690 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1691 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1692
1693 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1694 if (!(temp1 & CMD_RUN)) {
1695 xhci_warn(xhci, "xHC is not running.\n");
1696 goto cleanup;
1697 }
1698
1699 if (DEV_SUPERSPEED(temp)) {
1700 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1701 /* Set a flag to say the port signaled remote wakeup,
1702 * so we can tell the difference between the end of
1703 * device and host initiated resume.
1704 */
1705 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1706 xhci_test_and_clear_bit(xhci, port_array,
1707 faked_port_index, PORT_PLC);
1708 xhci_set_link_state(xhci, port_array, faked_port_index,
1709 XDEV_U0);
1710 /* Need to wait until the next link state change
1711 * indicates the device is actually in U0.
1712 */
1713 bogus_port_status = true;
1714 goto cleanup;
1715 } else {
1716 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1717 bus_state->resume_done[faked_port_index] = jiffies +
1718 msecs_to_jiffies(20);
1719 set_bit(faked_port_index, &bus_state->resuming_ports);
1720 mod_timer(&hcd->rh_timer,
1721 bus_state->resume_done[faked_port_index]);
1722 /* Do the rest in GetPortStatus */
1723 }
1724 }
1725
1726 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1727 DEV_SUPERSPEED(temp)) {
1728 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1729 /* We've just brought the device into U0 through either the
1730 * Resume state after a device remote wakeup, or through the
1731 * U3Exit state after a host-initiated resume. If it's a device
1732 * initiated remote wake, don't pass up the link state change,
1733 * so the roothub behavior is consistent with external
1734 * USB 3.0 hub behavior.
1735 */
1736 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1737 faked_port_index + 1);
1738 if (slot_id && xhci->devs[slot_id])
1739 xhci_ring_device(xhci, slot_id);
1740 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1741 bus_state->port_remote_wakeup &=
1742 ~(1 << faked_port_index);
1743 xhci_test_and_clear_bit(xhci, port_array,
1744 faked_port_index, PORT_PLC);
1745 usb_wakeup_notification(hcd->self.root_hub,
1746 faked_port_index + 1);
1747 bogus_port_status = true;
1748 goto cleanup;
1749 }
1750 }
1751
1752 if (hcd->speed != HCD_USB3)
1753 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1754 PORT_PLC);
1755
1756 cleanup:
1757 /* Update event ring dequeue pointer before dropping the lock */
1758 inc_deq(xhci, xhci->event_ring);
1759
1760 /* Don't make the USB core poll the roothub if we got a bad port status
1761 * change event. Besides, at that point we can't tell which roothub
1762 * (USB 2.0 or USB 3.0) to kick.
1763 */
1764 if (bogus_port_status)
1765 return;
1766
1767 /*
1768 * xHCI port-status-change events occur when the "or" of all the
1769 * status-change bits in the portsc register changes from 0 to 1.
1770 * New status changes won't cause an event if any other change
1771 * bits are still set. When an event occurs, switch over to
1772 * polling to avoid losing status changes.
1773 */
1774 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1775 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1776 spin_unlock(&xhci->lock);
1777 /* Pass this up to the core */
1778 usb_hcd_poll_rh_status(hcd);
1779 spin_lock(&xhci->lock);
1780 }
1781
1782 /*
1783 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1784 * at end_trb, which may be in another segment. If the suspect DMA address is a
1785 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1786 * returns 0.
1787 */
1788 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1789 union xhci_trb *start_trb,
1790 union xhci_trb *end_trb,
1791 dma_addr_t suspect_dma)
1792 {
1793 dma_addr_t start_dma;
1794 dma_addr_t end_seg_dma;
1795 dma_addr_t end_trb_dma;
1796 struct xhci_segment *cur_seg;
1797
1798 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1799 cur_seg = start_seg;
1800
1801 do {
1802 if (start_dma == 0)
1803 return NULL;
1804 /* We may get an event for a Link TRB in the middle of a TD */
1805 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1806 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1807 /* If the end TRB isn't in this segment, this is set to 0 */
1808 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1809
1810 if (end_trb_dma > 0) {
1811 /* The end TRB is in this segment, so suspect should be here */
1812 if (start_dma <= end_trb_dma) {
1813 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1814 return cur_seg;
1815 } else {
1816 /* Case for one segment with
1817 * a TD wrapped around to the top
1818 */
1819 if ((suspect_dma >= start_dma &&
1820 suspect_dma <= end_seg_dma) ||
1821 (suspect_dma >= cur_seg->dma &&
1822 suspect_dma <= end_trb_dma))
1823 return cur_seg;
1824 }
1825 return NULL;
1826 } else {
1827 /* Might still be somewhere in this segment */
1828 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1829 return cur_seg;
1830 }
1831 cur_seg = cur_seg->next;
1832 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1833 } while (cur_seg != start_seg);
1834
1835 return NULL;
1836 }
1837
1838 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1839 unsigned int slot_id, unsigned int ep_index,
1840 unsigned int stream_id,
1841 struct xhci_td *td, union xhci_trb *event_trb)
1842 {
1843 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1844 ep->ep_state |= EP_HALTED;
1845 ep->stopped_td = td;
1846 ep->stopped_trb = event_trb;
1847 ep->stopped_stream = stream_id;
1848
1849 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1850 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1851
1852 ep->stopped_td = NULL;
1853 ep->stopped_trb = NULL;
1854 ep->stopped_stream = 0;
1855
1856 xhci_ring_cmd_db(xhci);
1857 }
1858
1859 /* Check if an error has halted the endpoint ring. The class driver will
1860 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1861 * However, a babble and other errors also halt the endpoint ring, and the class
1862 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1863 * Ring Dequeue Pointer command manually.
1864 */
1865 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1866 struct xhci_ep_ctx *ep_ctx,
1867 unsigned int trb_comp_code)
1868 {
1869 /* TRB completion codes that may require a manual halt cleanup */
1870 if (trb_comp_code == COMP_TX_ERR ||
1871 trb_comp_code == COMP_BABBLE ||
1872 trb_comp_code == COMP_SPLIT_ERR)
1873 /* The 0.96 spec says a babbling control endpoint
1874 * is not halted. The 0.96 spec says it is. Some HW
1875 * claims to be 0.95 compliant, but it halts the control
1876 * endpoint anyway. Check if a babble halted the
1877 * endpoint.
1878 */
1879 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1880 cpu_to_le32(EP_STATE_HALTED))
1881 return 1;
1882
1883 return 0;
1884 }
1885
1886 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1887 {
1888 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1889 /* Vendor defined "informational" completion code,
1890 * treat as not-an-error.
1891 */
1892 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1893 trb_comp_code);
1894 xhci_dbg(xhci, "Treating code as success.\n");
1895 return 1;
1896 }
1897 return 0;
1898 }
1899
1900 /*
1901 * Finish the td processing, remove the td from td list;
1902 * Return 1 if the urb can be given back.
1903 */
1904 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1905 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1906 struct xhci_virt_ep *ep, int *status, bool skip)
1907 {
1908 struct xhci_virt_device *xdev;
1909 struct xhci_ring *ep_ring;
1910 unsigned int slot_id;
1911 int ep_index;
1912 struct urb *urb = NULL;
1913 struct xhci_ep_ctx *ep_ctx;
1914 int ret = 0;
1915 struct urb_priv *urb_priv;
1916 u32 trb_comp_code;
1917
1918 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1919 xdev = xhci->devs[slot_id];
1920 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1921 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1922 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1923 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1924
1925 if (skip)
1926 goto td_cleanup;
1927
1928 if (trb_comp_code == COMP_STOP_INVAL ||
1929 trb_comp_code == COMP_STOP) {
1930 /* The Endpoint Stop Command completion will take care of any
1931 * stopped TDs. A stopped TD may be restarted, so don't update
1932 * the ring dequeue pointer or take this TD off any lists yet.
1933 */
1934 ep->stopped_td = td;
1935 ep->stopped_trb = event_trb;
1936 return 0;
1937 } else {
1938 if (trb_comp_code == COMP_STALL) {
1939 /* The transfer is completed from the driver's
1940 * perspective, but we need to issue a set dequeue
1941 * command for this stalled endpoint to move the dequeue
1942 * pointer past the TD. We can't do that here because
1943 * the halt condition must be cleared first. Let the
1944 * USB class driver clear the stall later.
1945 */
1946 ep->stopped_td = td;
1947 ep->stopped_trb = event_trb;
1948 ep->stopped_stream = ep_ring->stream_id;
1949 } else if (xhci_requires_manual_halt_cleanup(xhci,
1950 ep_ctx, trb_comp_code)) {
1951 /* Other types of errors halt the endpoint, but the
1952 * class driver doesn't call usb_reset_endpoint() unless
1953 * the error is -EPIPE. Clear the halted status in the
1954 * xHCI hardware manually.
1955 */
1956 xhci_cleanup_halted_endpoint(xhci,
1957 slot_id, ep_index, ep_ring->stream_id,
1958 td, event_trb);
1959 } else {
1960 /* Update ring dequeue pointer */
1961 while (ep_ring->dequeue != td->last_trb)
1962 inc_deq(xhci, ep_ring);
1963 inc_deq(xhci, ep_ring);
1964 }
1965
1966 td_cleanup:
1967 /* Clean up the endpoint's TD list */
1968 urb = td->urb;
1969 urb_priv = urb->hcpriv;
1970
1971 /* Do one last check of the actual transfer length.
1972 * If the host controller said we transferred more data than
1973 * the buffer length, urb->actual_length will be a very big
1974 * number (since it's unsigned). Play it safe and say we didn't
1975 * transfer anything.
1976 */
1977 if (urb->actual_length > urb->transfer_buffer_length) {
1978 xhci_warn(xhci, "URB transfer length is wrong, "
1979 "xHC issue? req. len = %u, "
1980 "act. len = %u\n",
1981 urb->transfer_buffer_length,
1982 urb->actual_length);
1983 urb->actual_length = 0;
1984 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1985 *status = -EREMOTEIO;
1986 else
1987 *status = 0;
1988 }
1989 list_del_init(&td->td_list);
1990 /* Was this TD slated to be cancelled but completed anyway? */
1991 if (!list_empty(&td->cancelled_td_list))
1992 list_del_init(&td->cancelled_td_list);
1993
1994 urb_priv->td_cnt++;
1995 /* Giveback the urb when all the tds are completed */
1996 if (urb_priv->td_cnt == urb_priv->length) {
1997 ret = 1;
1998 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1999 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
2000 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
2001 == 0) {
2002 if (xhci->quirks & XHCI_AMD_PLL_FIX)
2003 usb_amd_quirk_pll_enable();
2004 }
2005 }
2006 }
2007 }
2008
2009 return ret;
2010 }
2011
2012 /*
2013 * Process control tds, update urb status and actual_length.
2014 */
2015 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
2016 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2017 struct xhci_virt_ep *ep, int *status)
2018 {
2019 struct xhci_virt_device *xdev;
2020 struct xhci_ring *ep_ring;
2021 unsigned int slot_id;
2022 int ep_index;
2023 struct xhci_ep_ctx *ep_ctx;
2024 u32 trb_comp_code;
2025
2026 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2027 xdev = xhci->devs[slot_id];
2028 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2029 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2030 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2031 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2032
2033 switch (trb_comp_code) {
2034 case COMP_SUCCESS:
2035 if (event_trb == ep_ring->dequeue) {
2036 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
2037 "without IOC set??\n");
2038 *status = -ESHUTDOWN;
2039 } else if (event_trb != td->last_trb) {
2040 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
2041 "without IOC set??\n");
2042 *status = -ESHUTDOWN;
2043 } else {
2044 *status = 0;
2045 }
2046 break;
2047 case COMP_SHORT_TX:
2048 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2049 *status = -EREMOTEIO;
2050 else
2051 *status = 0;
2052 break;
2053 case COMP_STOP_INVAL:
2054 case COMP_STOP:
2055 return finish_td(xhci, td, event_trb, event, ep, status, false);
2056 default:
2057 if (!xhci_requires_manual_halt_cleanup(xhci,
2058 ep_ctx, trb_comp_code))
2059 break;
2060 xhci_dbg(xhci, "TRB error code %u, "
2061 "halted endpoint index = %u\n",
2062 trb_comp_code, ep_index);
2063 /* else fall through */
2064 case COMP_STALL:
2065 /* Did we transfer part of the data (middle) phase? */
2066 if (event_trb != ep_ring->dequeue &&
2067 event_trb != td->last_trb)
2068 td->urb->actual_length =
2069 td->urb->transfer_buffer_length -
2070 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2071 else
2072 td->urb->actual_length = 0;
2073
2074 xhci_cleanup_halted_endpoint(xhci,
2075 slot_id, ep_index, 0, td, event_trb);
2076 return finish_td(xhci, td, event_trb, event, ep, status, true);
2077 }
2078 /*
2079 * Did we transfer any data, despite the errors that might have
2080 * happened? I.e. did we get past the setup stage?
2081 */
2082 if (event_trb != ep_ring->dequeue) {
2083 /* The event was for the status stage */
2084 if (event_trb == td->last_trb) {
2085 if (td->urb->actual_length != 0) {
2086 /* Don't overwrite a previously set error code
2087 */
2088 if ((*status == -EINPROGRESS || *status == 0) &&
2089 (td->urb->transfer_flags
2090 & URB_SHORT_NOT_OK))
2091 /* Did we already see a short data
2092 * stage? */
2093 *status = -EREMOTEIO;
2094 } else {
2095 td->urb->actual_length =
2096 td->urb->transfer_buffer_length;
2097 }
2098 } else {
2099 /* Maybe the event was for the data stage? */
2100 td->urb->actual_length =
2101 td->urb->transfer_buffer_length -
2102 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2103 xhci_dbg(xhci, "Waiting for status "
2104 "stage event\n");
2105 return 0;
2106 }
2107 }
2108
2109 return finish_td(xhci, td, event_trb, event, ep, status, false);
2110 }
2111
2112 /*
2113 * Process isochronous tds, update urb packet status and actual_length.
2114 */
2115 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2116 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2117 struct xhci_virt_ep *ep, int *status)
2118 {
2119 struct xhci_ring *ep_ring;
2120 struct urb_priv *urb_priv;
2121 int idx;
2122 int len = 0;
2123 union xhci_trb *cur_trb;
2124 struct xhci_segment *cur_seg;
2125 struct usb_iso_packet_descriptor *frame;
2126 u32 trb_comp_code;
2127 bool skip_td = false;
2128
2129 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2130 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2131 urb_priv = td->urb->hcpriv;
2132 idx = urb_priv->td_cnt;
2133 frame = &td->urb->iso_frame_desc[idx];
2134
2135 /* handle completion code */
2136 switch (trb_comp_code) {
2137 case COMP_SUCCESS:
2138 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2139 frame->status = 0;
2140 break;
2141 }
2142 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2143 trb_comp_code = COMP_SHORT_TX;
2144 case COMP_SHORT_TX:
2145 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2146 -EREMOTEIO : 0;
2147 break;
2148 case COMP_BW_OVER:
2149 frame->status = -ECOMM;
2150 skip_td = true;
2151 break;
2152 case COMP_BUFF_OVER:
2153 case COMP_BABBLE:
2154 frame->status = -EOVERFLOW;
2155 skip_td = true;
2156 break;
2157 case COMP_DEV_ERR:
2158 case COMP_STALL:
2159 case COMP_TX_ERR:
2160 frame->status = -EPROTO;
2161 skip_td = true;
2162 break;
2163 case COMP_STOP:
2164 case COMP_STOP_INVAL:
2165 break;
2166 default:
2167 frame->status = -1;
2168 break;
2169 }
2170
2171 if (trb_comp_code == COMP_SUCCESS || skip_td) {
2172 frame->actual_length = frame->length;
2173 td->urb->actual_length += frame->length;
2174 } else {
2175 for (cur_trb = ep_ring->dequeue,
2176 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2177 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2178 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2179 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2180 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2181 }
2182 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2183 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2184
2185 if (trb_comp_code != COMP_STOP_INVAL) {
2186 frame->actual_length = len;
2187 td->urb->actual_length += len;
2188 }
2189 }
2190
2191 return finish_td(xhci, td, event_trb, event, ep, status, false);
2192 }
2193
2194 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2195 struct xhci_transfer_event *event,
2196 struct xhci_virt_ep *ep, int *status)
2197 {
2198 struct xhci_ring *ep_ring;
2199 struct urb_priv *urb_priv;
2200 struct usb_iso_packet_descriptor *frame;
2201 int idx;
2202
2203 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2204 urb_priv = td->urb->hcpriv;
2205 idx = urb_priv->td_cnt;
2206 frame = &td->urb->iso_frame_desc[idx];
2207
2208 /* The transfer is partly done. */
2209 frame->status = -EXDEV;
2210
2211 /* calc actual length */
2212 frame->actual_length = 0;
2213
2214 /* Update ring dequeue pointer */
2215 while (ep_ring->dequeue != td->last_trb)
2216 inc_deq(xhci, ep_ring);
2217 inc_deq(xhci, ep_ring);
2218
2219 return finish_td(xhci, td, NULL, event, ep, status, true);
2220 }
2221
2222 /*
2223 * Process bulk and interrupt tds, update urb status and actual_length.
2224 */
2225 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2226 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2227 struct xhci_virt_ep *ep, int *status)
2228 {
2229 struct xhci_ring *ep_ring;
2230 union xhci_trb *cur_trb;
2231 struct xhci_segment *cur_seg;
2232 u32 trb_comp_code;
2233
2234 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2235 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2236
2237 switch (trb_comp_code) {
2238 case COMP_SUCCESS:
2239 /* Double check that the HW transferred everything. */
2240 if (event_trb != td->last_trb ||
2241 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2242 xhci_warn(xhci, "WARN Successful completion "
2243 "on short TX\n");
2244 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2245 *status = -EREMOTEIO;
2246 else
2247 *status = 0;
2248 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2249 trb_comp_code = COMP_SHORT_TX;
2250 } else {
2251 *status = 0;
2252 }
2253 break;
2254 case COMP_SHORT_TX:
2255 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2256 *status = -EREMOTEIO;
2257 else
2258 *status = 0;
2259 break;
2260 default:
2261 /* Others already handled above */
2262 break;
2263 }
2264 if (trb_comp_code == COMP_SHORT_TX)
2265 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2266 "%d bytes untransferred\n",
2267 td->urb->ep->desc.bEndpointAddress,
2268 td->urb->transfer_buffer_length,
2269 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2270 /* Fast path - was this the last TRB in the TD for this URB? */
2271 if (event_trb == td->last_trb) {
2272 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2273 td->urb->actual_length =
2274 td->urb->transfer_buffer_length -
2275 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2276 if (td->urb->transfer_buffer_length <
2277 td->urb->actual_length) {
2278 xhci_warn(xhci, "HC gave bad length "
2279 "of %d bytes left\n",
2280 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2281 td->urb->actual_length = 0;
2282 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2283 *status = -EREMOTEIO;
2284 else
2285 *status = 0;
2286 }
2287 /* Don't overwrite a previously set error code */
2288 if (*status == -EINPROGRESS) {
2289 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2290 *status = -EREMOTEIO;
2291 else
2292 *status = 0;
2293 }
2294 } else {
2295 td->urb->actual_length =
2296 td->urb->transfer_buffer_length;
2297 /* Ignore a short packet completion if the
2298 * untransferred length was zero.
2299 */
2300 if (*status == -EREMOTEIO)
2301 *status = 0;
2302 }
2303 } else {
2304 /* Slow path - walk the list, starting from the dequeue
2305 * pointer, to get the actual length transferred.
2306 */
2307 td->urb->actual_length = 0;
2308 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2309 cur_trb != event_trb;
2310 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2311 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2312 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2313 td->urb->actual_length +=
2314 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2315 }
2316 /* If the ring didn't stop on a Link or No-op TRB, add
2317 * in the actual bytes transferred from the Normal TRB
2318 */
2319 if (trb_comp_code != COMP_STOP_INVAL)
2320 td->urb->actual_length +=
2321 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2322 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2323 }
2324
2325 return finish_td(xhci, td, event_trb, event, ep, status, false);
2326 }
2327
2328 /*
2329 * If this function returns an error condition, it means it got a Transfer
2330 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2331 * At this point, the host controller is probably hosed and should be reset.
2332 */
2333 static int handle_tx_event(struct xhci_hcd *xhci,
2334 struct xhci_transfer_event *event)
2335 __releases(&xhci->lock)
2336 __acquires(&xhci->lock)
2337 {
2338 struct xhci_virt_device *xdev;
2339 struct xhci_virt_ep *ep;
2340 struct xhci_ring *ep_ring;
2341 unsigned int slot_id;
2342 int ep_index;
2343 struct xhci_td *td = NULL;
2344 dma_addr_t event_dma;
2345 struct xhci_segment *event_seg;
2346 union xhci_trb *event_trb;
2347 struct urb *urb = NULL;
2348 int status = -EINPROGRESS;
2349 struct urb_priv *urb_priv;
2350 struct xhci_ep_ctx *ep_ctx;
2351 struct list_head *tmp;
2352 u32 trb_comp_code;
2353 int ret = 0;
2354 int td_num = 0;
2355
2356 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2357 xdev = xhci->devs[slot_id];
2358 if (!xdev) {
2359 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2360 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2361 (unsigned long long) xhci_trb_virt_to_dma(
2362 xhci->event_ring->deq_seg,
2363 xhci->event_ring->dequeue),
2364 lower_32_bits(le64_to_cpu(event->buffer)),
2365 upper_32_bits(le64_to_cpu(event->buffer)),
2366 le32_to_cpu(event->transfer_len),
2367 le32_to_cpu(event->flags));
2368 xhci_dbg(xhci, "Event ring:\n");
2369 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2370 return -ENODEV;
2371 }
2372
2373 /* Endpoint ID is 1 based, our index is zero based */
2374 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2375 ep = &xdev->eps[ep_index];
2376 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2377 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2378 if (!ep_ring ||
2379 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2380 EP_STATE_DISABLED) {
2381 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2382 "or incorrect stream ring\n");
2383 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2384 (unsigned long long) xhci_trb_virt_to_dma(
2385 xhci->event_ring->deq_seg,
2386 xhci->event_ring->dequeue),
2387 lower_32_bits(le64_to_cpu(event->buffer)),
2388 upper_32_bits(le64_to_cpu(event->buffer)),
2389 le32_to_cpu(event->transfer_len),
2390 le32_to_cpu(event->flags));
2391 xhci_dbg(xhci, "Event ring:\n");
2392 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2393 return -ENODEV;
2394 }
2395
2396 /* Count current td numbers if ep->skip is set */
2397 if (ep->skip) {
2398 list_for_each(tmp, &ep_ring->td_list)
2399 td_num++;
2400 }
2401
2402 event_dma = le64_to_cpu(event->buffer);
2403 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2404 /* Look for common error cases */
2405 switch (trb_comp_code) {
2406 /* Skip codes that require special handling depending on
2407 * transfer type
2408 */
2409 case COMP_SUCCESS:
2410 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2411 break;
2412 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2413 trb_comp_code = COMP_SHORT_TX;
2414 else
2415 xhci_warn_ratelimited(xhci,
2416 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2417 case COMP_SHORT_TX:
2418 break;
2419 case COMP_STOP:
2420 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2421 break;
2422 case COMP_STOP_INVAL:
2423 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2424 break;
2425 case COMP_STALL:
2426 xhci_dbg(xhci, "Stalled endpoint\n");
2427 ep->ep_state |= EP_HALTED;
2428 status = -EPIPE;
2429 break;
2430 case COMP_TRB_ERR:
2431 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2432 status = -EILSEQ;
2433 break;
2434 case COMP_SPLIT_ERR:
2435 case COMP_TX_ERR:
2436 xhci_dbg(xhci, "Transfer error on endpoint\n");
2437 status = -EPROTO;
2438 break;
2439 case COMP_BABBLE:
2440 xhci_dbg(xhci, "Babble error on endpoint\n");
2441 status = -EOVERFLOW;
2442 break;
2443 case COMP_DB_ERR:
2444 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2445 status = -ENOSR;
2446 break;
2447 case COMP_BW_OVER:
2448 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2449 break;
2450 case COMP_BUFF_OVER:
2451 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2452 break;
2453 case COMP_UNDERRUN:
2454 /*
2455 * When the Isoch ring is empty, the xHC will generate
2456 * a Ring Overrun Event for IN Isoch endpoint or Ring
2457 * Underrun Event for OUT Isoch endpoint.
2458 */
2459 xhci_dbg(xhci, "underrun event on endpoint\n");
2460 if (!list_empty(&ep_ring->td_list))
2461 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2462 "still with TDs queued?\n",
2463 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2464 ep_index);
2465 goto cleanup;
2466 case COMP_OVERRUN:
2467 xhci_dbg(xhci, "overrun event on endpoint\n");
2468 if (!list_empty(&ep_ring->td_list))
2469 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2470 "still with TDs queued?\n",
2471 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2472 ep_index);
2473 goto cleanup;
2474 case COMP_DEV_ERR:
2475 xhci_warn(xhci, "WARN: detect an incompatible device");
2476 status = -EPROTO;
2477 break;
2478 case COMP_MISSED_INT:
2479 /*
2480 * When encounter missed service error, one or more isoc tds
2481 * may be missed by xHC.
2482 * Set skip flag of the ep_ring; Complete the missed tds as
2483 * short transfer when process the ep_ring next time.
2484 */
2485 ep->skip = true;
2486 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2487 goto cleanup;
2488 default:
2489 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2490 status = 0;
2491 break;
2492 }
2493 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2494 "busted\n");
2495 goto cleanup;
2496 }
2497
2498 do {
2499 /* This TRB should be in the TD at the head of this ring's
2500 * TD list.
2501 */
2502 if (list_empty(&ep_ring->td_list)) {
2503 /*
2504 * A stopped endpoint may generate an extra completion
2505 * event if the device was suspended. Don't print
2506 * warnings.
2507 */
2508 if (!(trb_comp_code == COMP_STOP ||
2509 trb_comp_code == COMP_STOP_INVAL)) {
2510 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2511 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2512 ep_index);
2513 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2514 (le32_to_cpu(event->flags) &
2515 TRB_TYPE_BITMASK)>>10);
2516 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2517 }
2518 if (ep->skip) {
2519 ep->skip = false;
2520 xhci_dbg(xhci, "td_list is empty while skip "
2521 "flag set. Clear skip flag.\n");
2522 }
2523 ret = 0;
2524 goto cleanup;
2525 }
2526
2527 /* We've skipped all the TDs on the ep ring when ep->skip set */
2528 if (ep->skip && td_num == 0) {
2529 ep->skip = false;
2530 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2531 "Clear skip flag.\n");
2532 ret = 0;
2533 goto cleanup;
2534 }
2535
2536 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2537 if (ep->skip)
2538 td_num--;
2539
2540 /* Is this a TRB in the currently executing TD? */
2541 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2542 td->last_trb, event_dma);
2543
2544 /*
2545 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2546 * is not in the current TD pointed by ep_ring->dequeue because
2547 * that the hardware dequeue pointer still at the previous TRB
2548 * of the current TD. The previous TRB maybe a Link TD or the
2549 * last TRB of the previous TD. The command completion handle
2550 * will take care the rest.
2551 */
2552 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2553 ret = 0;
2554 goto cleanup;
2555 }
2556
2557 if (!event_seg) {
2558 if (!ep->skip ||
2559 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2560 /* Some host controllers give a spurious
2561 * successful event after a short transfer.
2562 * Ignore it.
2563 */
2564 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2565 ep_ring->last_td_was_short) {
2566 ep_ring->last_td_was_short = false;
2567 ret = 0;
2568 goto cleanup;
2569 }
2570 /* HC is busted, give up! */
2571 xhci_err(xhci,
2572 "ERROR Transfer event TRB DMA ptr not "
2573 "part of current TD\n");
2574 return -ESHUTDOWN;
2575 }
2576
2577 ret = skip_isoc_td(xhci, td, event, ep, &status);
2578 goto cleanup;
2579 }
2580 if (trb_comp_code == COMP_SHORT_TX)
2581 ep_ring->last_td_was_short = true;
2582 else
2583 ep_ring->last_td_was_short = false;
2584
2585 if (ep->skip) {
2586 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2587 ep->skip = false;
2588 }
2589
2590 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2591 sizeof(*event_trb)];
2592 /*
2593 * No-op TRB should not trigger interrupts.
2594 * If event_trb is a no-op TRB, it means the
2595 * corresponding TD has been cancelled. Just ignore
2596 * the TD.
2597 */
2598 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2599 xhci_dbg(xhci,
2600 "event_trb is a no-op TRB. Skip it\n");
2601 goto cleanup;
2602 }
2603
2604 /* Now update the urb's actual_length and give back to
2605 * the core
2606 */
2607 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2608 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2609 &status);
2610 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2611 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2612 &status);
2613 else
2614 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2615 ep, &status);
2616
2617 cleanup:
2618 /*
2619 * Do not update event ring dequeue pointer if ep->skip is set.
2620 * Will roll back to continue process missed tds.
2621 */
2622 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2623 inc_deq(xhci, xhci->event_ring);
2624 }
2625
2626 if (ret) {
2627 urb = td->urb;
2628 urb_priv = urb->hcpriv;
2629 /* Leave the TD around for the reset endpoint function
2630 * to use(but only if it's not a control endpoint,
2631 * since we already queued the Set TR dequeue pointer
2632 * command for stalled control endpoints).
2633 */
2634 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2635 (trb_comp_code != COMP_STALL &&
2636 trb_comp_code != COMP_BABBLE))
2637 xhci_urb_free_priv(xhci, urb_priv);
2638 else
2639 kfree(urb_priv);
2640
2641 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2642 if ((urb->actual_length != urb->transfer_buffer_length &&
2643 (urb->transfer_flags &
2644 URB_SHORT_NOT_OK)) ||
2645 (status != 0 &&
2646 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2647 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2648 "expected = %d, status = %d\n",
2649 urb, urb->actual_length,
2650 urb->transfer_buffer_length,
2651 status);
2652 spin_unlock(&xhci->lock);
2653 /* EHCI, UHCI, and OHCI always unconditionally set the
2654 * urb->status of an isochronous endpoint to 0.
2655 */
2656 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2657 status = 0;
2658 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2659 spin_lock(&xhci->lock);
2660 }
2661
2662 /*
2663 * If ep->skip is set, it means there are missed tds on the
2664 * endpoint ring need to take care of.
2665 * Process them as short transfer until reach the td pointed by
2666 * the event.
2667 */
2668 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2669
2670 return 0;
2671 }
2672
2673 /*
2674 * This function handles all OS-owned events on the event ring. It may drop
2675 * xhci->lock between event processing (e.g. to pass up port status changes).
2676 * Returns >0 for "possibly more events to process" (caller should call again),
2677 * otherwise 0 if done. In future, <0 returns should indicate error code.
2678 */
2679 static int xhci_handle_event(struct xhci_hcd *xhci)
2680 {
2681 union xhci_trb *event;
2682 int update_ptrs = 1;
2683 int ret;
2684
2685 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2686 xhci->error_bitmask |= 1 << 1;
2687 return 0;
2688 }
2689
2690 event = xhci->event_ring->dequeue;
2691 /* Does the HC or OS own the TRB? */
2692 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2693 xhci->event_ring->cycle_state) {
2694 xhci->error_bitmask |= 1 << 2;
2695 return 0;
2696 }
2697
2698 /*
2699 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2700 * speculative reads of the event's flags/data below.
2701 */
2702 rmb();
2703 /* FIXME: Handle more event types. */
2704 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2705 case TRB_TYPE(TRB_COMPLETION):
2706 handle_cmd_completion(xhci, &event->event_cmd);
2707 break;
2708 case TRB_TYPE(TRB_PORT_STATUS):
2709 handle_port_status(xhci, event);
2710 update_ptrs = 0;
2711 break;
2712 case TRB_TYPE(TRB_TRANSFER):
2713 ret = handle_tx_event(xhci, &event->trans_event);
2714 if (ret < 0)
2715 xhci->error_bitmask |= 1 << 9;
2716 else
2717 update_ptrs = 0;
2718 break;
2719 case TRB_TYPE(TRB_DEV_NOTE):
2720 handle_device_notification(xhci, event);
2721 break;
2722 default:
2723 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2724 TRB_TYPE(48))
2725 handle_vendor_event(xhci, event);
2726 else
2727 xhci->error_bitmask |= 1 << 3;
2728 }
2729 /* Any of the above functions may drop and re-acquire the lock, so check
2730 * to make sure a watchdog timer didn't mark the host as non-responsive.
2731 */
2732 if (xhci->xhc_state & XHCI_STATE_DYING) {
2733 xhci_dbg(xhci, "xHCI host dying, returning from "
2734 "event handler.\n");
2735 return 0;
2736 }
2737
2738 if (update_ptrs)
2739 /* Update SW event ring dequeue pointer */
2740 inc_deq(xhci, xhci->event_ring);
2741
2742 /* Are there more items on the event ring? Caller will call us again to
2743 * check.
2744 */
2745 return 1;
2746 }
2747
2748 /*
2749 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2750 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2751 * indicators of an event TRB error, but we check the status *first* to be safe.
2752 */
2753 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2754 {
2755 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2756 u32 status;
2757 u64 temp_64;
2758 union xhci_trb *event_ring_deq;
2759 dma_addr_t deq;
2760
2761 spin_lock(&xhci->lock);
2762 /* Check if the xHC generated the interrupt, or the irq is shared */
2763 status = xhci_readl(xhci, &xhci->op_regs->status);
2764 if (status == 0xffffffff)
2765 goto hw_died;
2766
2767 if (!(status & STS_EINT)) {
2768 spin_unlock(&xhci->lock);
2769 return IRQ_NONE;
2770 }
2771 if (status & STS_FATAL) {
2772 xhci_warn(xhci, "WARNING: Host System Error\n");
2773 xhci_halt(xhci);
2774 hw_died:
2775 spin_unlock(&xhci->lock);
2776 return -ESHUTDOWN;
2777 }
2778
2779 /*
2780 * Clear the op reg interrupt status first,
2781 * so we can receive interrupts from other MSI-X interrupters.
2782 * Write 1 to clear the interrupt status.
2783 */
2784 status |= STS_EINT;
2785 xhci_writel(xhci, status, &xhci->op_regs->status);
2786 /* FIXME when MSI-X is supported and there are multiple vectors */
2787 /* Clear the MSI-X event interrupt status */
2788
2789 if (hcd->irq) {
2790 u32 irq_pending;
2791 /* Acknowledge the PCI interrupt */
2792 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2793 irq_pending |= IMAN_IP;
2794 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2795 }
2796
2797 if (xhci->xhc_state & XHCI_STATE_DYING) {
2798 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2799 "Shouldn't IRQs be disabled?\n");
2800 /* Clear the event handler busy flag (RW1C);
2801 * the event ring should be empty.
2802 */
2803 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2804 xhci_write_64(xhci, temp_64 | ERST_EHB,
2805 &xhci->ir_set->erst_dequeue);
2806 spin_unlock(&xhci->lock);
2807
2808 return IRQ_HANDLED;
2809 }
2810
2811 event_ring_deq = xhci->event_ring->dequeue;
2812 /* FIXME this should be a delayed service routine
2813 * that clears the EHB.
2814 */
2815 while (xhci_handle_event(xhci) > 0) {}
2816
2817 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2818 /* If necessary, update the HW's version of the event ring deq ptr. */
2819 if (event_ring_deq != xhci->event_ring->dequeue) {
2820 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2821 xhci->event_ring->dequeue);
2822 if (deq == 0)
2823 xhci_warn(xhci, "WARN something wrong with SW event "
2824 "ring dequeue ptr.\n");
2825 /* Update HC event ring dequeue pointer */
2826 temp_64 &= ERST_PTR_MASK;
2827 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2828 }
2829
2830 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2831 temp_64 |= ERST_EHB;
2832 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2833
2834 spin_unlock(&xhci->lock);
2835
2836 return IRQ_HANDLED;
2837 }
2838
2839 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2840 {
2841 return xhci_irq(hcd);
2842 }
2843
2844 /**** Endpoint Ring Operations ****/
2845
2846 /*
2847 * Generic function for queueing a TRB on a ring.
2848 * The caller must have checked to make sure there's room on the ring.
2849 *
2850 * @more_trbs_coming: Will you enqueue more TRBs before calling
2851 * prepare_transfer()?
2852 */
2853 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2854 bool more_trbs_coming,
2855 u32 field1, u32 field2, u32 field3, u32 field4)
2856 {
2857 struct xhci_generic_trb *trb;
2858
2859 trb = &ring->enqueue->generic;
2860 trb->field[0] = cpu_to_le32(field1);
2861 trb->field[1] = cpu_to_le32(field2);
2862 trb->field[2] = cpu_to_le32(field3);
2863 trb->field[3] = cpu_to_le32(field4);
2864 inc_enq(xhci, ring, more_trbs_coming);
2865 }
2866
2867 /*
2868 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2869 * FIXME allocate segments if the ring is full.
2870 */
2871 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2872 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2873 {
2874 unsigned int num_trbs_needed;
2875
2876 /* Make sure the endpoint has been added to xHC schedule */
2877 switch (ep_state) {
2878 case EP_STATE_DISABLED:
2879 /*
2880 * USB core changed config/interfaces without notifying us,
2881 * or hardware is reporting the wrong state.
2882 */
2883 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2884 return -ENOENT;
2885 case EP_STATE_ERROR:
2886 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2887 /* FIXME event handling code for error needs to clear it */
2888 /* XXX not sure if this should be -ENOENT or not */
2889 return -EINVAL;
2890 case EP_STATE_HALTED:
2891 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2892 case EP_STATE_STOPPED:
2893 case EP_STATE_RUNNING:
2894 break;
2895 default:
2896 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2897 /*
2898 * FIXME issue Configure Endpoint command to try to get the HC
2899 * back into a known state.
2900 */
2901 return -EINVAL;
2902 }
2903
2904 while (1) {
2905 if (room_on_ring(xhci, ep_ring, num_trbs))
2906 break;
2907
2908 if (ep_ring == xhci->cmd_ring) {
2909 xhci_err(xhci, "Do not support expand command ring\n");
2910 return -ENOMEM;
2911 }
2912
2913 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2914 "ERROR no room on ep ring, try ring expansion");
2915 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2916 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2917 mem_flags)) {
2918 xhci_err(xhci, "Ring expansion failed\n");
2919 return -ENOMEM;
2920 }
2921 }
2922
2923 if (enqueue_is_link_trb(ep_ring)) {
2924 struct xhci_ring *ring = ep_ring;
2925 union xhci_trb *next;
2926
2927 next = ring->enqueue;
2928
2929 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2930 /* If we're not dealing with 0.95 hardware or isoc rings
2931 * on AMD 0.96 host, clear the chain bit.
2932 */
2933 if (!xhci_link_trb_quirk(xhci) &&
2934 !(ring->type == TYPE_ISOC &&
2935 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2936 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2937 else
2938 next->link.control |= cpu_to_le32(TRB_CHAIN);
2939
2940 wmb();
2941 next->link.control ^= cpu_to_le32(TRB_CYCLE);
2942
2943 /* Toggle the cycle bit after the last ring segment. */
2944 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2945 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2946 }
2947 ring->enq_seg = ring->enq_seg->next;
2948 ring->enqueue = ring->enq_seg->trbs;
2949 next = ring->enqueue;
2950 }
2951 }
2952
2953 return 0;
2954 }
2955
2956 static int prepare_transfer(struct xhci_hcd *xhci,
2957 struct xhci_virt_device *xdev,
2958 unsigned int ep_index,
2959 unsigned int stream_id,
2960 unsigned int num_trbs,
2961 struct urb *urb,
2962 unsigned int td_index,
2963 gfp_t mem_flags)
2964 {
2965 int ret;
2966 struct urb_priv *urb_priv;
2967 struct xhci_td *td;
2968 struct xhci_ring *ep_ring;
2969 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2970
2971 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2972 if (!ep_ring) {
2973 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2974 stream_id);
2975 return -EINVAL;
2976 }
2977
2978 ret = prepare_ring(xhci, ep_ring,
2979 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2980 num_trbs, mem_flags);
2981 if (ret)
2982 return ret;
2983
2984 urb_priv = urb->hcpriv;
2985 td = urb_priv->td[td_index];
2986
2987 INIT_LIST_HEAD(&td->td_list);
2988 INIT_LIST_HEAD(&td->cancelled_td_list);
2989
2990 if (td_index == 0) {
2991 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2992 if (unlikely(ret))
2993 return ret;
2994 }
2995
2996 td->urb = urb;
2997 /* Add this TD to the tail of the endpoint ring's TD list */
2998 list_add_tail(&td->td_list, &ep_ring->td_list);
2999 td->start_seg = ep_ring->enq_seg;
3000 td->first_trb = ep_ring->enqueue;
3001
3002 urb_priv->td[td_index] = td;
3003
3004 return 0;
3005 }
3006
3007 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
3008 {
3009 int num_sgs, num_trbs, running_total, temp, i;
3010 struct scatterlist *sg;
3011
3012 sg = NULL;
3013 num_sgs = urb->num_mapped_sgs;
3014 temp = urb->transfer_buffer_length;
3015
3016 num_trbs = 0;
3017 for_each_sg(urb->sg, sg, num_sgs, i) {
3018 unsigned int len = sg_dma_len(sg);
3019
3020 /* Scatter gather list entries may cross 64KB boundaries */
3021 running_total = TRB_MAX_BUFF_SIZE -
3022 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
3023 running_total &= TRB_MAX_BUFF_SIZE - 1;
3024 if (running_total != 0)
3025 num_trbs++;
3026
3027 /* How many more 64KB chunks to transfer, how many more TRBs? */
3028 while (running_total < sg_dma_len(sg) && running_total < temp) {
3029 num_trbs++;
3030 running_total += TRB_MAX_BUFF_SIZE;
3031 }
3032 len = min_t(int, len, temp);
3033 temp -= len;
3034 if (temp == 0)
3035 break;
3036 }
3037 return num_trbs;
3038 }
3039
3040 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
3041 {
3042 if (num_trbs != 0)
3043 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
3044 "TRBs, %d left\n", __func__,
3045 urb->ep->desc.bEndpointAddress, num_trbs);
3046 if (running_total != urb->transfer_buffer_length)
3047 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3048 "queued %#x (%d), asked for %#x (%d)\n",
3049 __func__,
3050 urb->ep->desc.bEndpointAddress,
3051 running_total, running_total,
3052 urb->transfer_buffer_length,
3053 urb->transfer_buffer_length);
3054 }
3055
3056 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3057 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3058 struct xhci_generic_trb *start_trb)
3059 {
3060 /*
3061 * Pass all the TRBs to the hardware at once and make sure this write
3062 * isn't reordered.
3063 */
3064 wmb();
3065 if (start_cycle)
3066 start_trb->field[3] |= cpu_to_le32(start_cycle);
3067 else
3068 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3069 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3070 }
3071
3072 /*
3073 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3074 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3075 * (comprised of sg list entries) can take several service intervals to
3076 * transmit.
3077 */
3078 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3079 struct urb *urb, int slot_id, unsigned int ep_index)
3080 {
3081 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
3082 xhci->devs[slot_id]->out_ctx, ep_index);
3083 int xhci_interval;
3084 int ep_interval;
3085
3086 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3087 ep_interval = urb->interval;
3088 /* Convert to microframes */
3089 if (urb->dev->speed == USB_SPEED_LOW ||
3090 urb->dev->speed == USB_SPEED_FULL)
3091 ep_interval *= 8;
3092 /* FIXME change this to a warning and a suggestion to use the new API
3093 * to set the polling interval (once the API is added).
3094 */
3095 if (xhci_interval != ep_interval) {
3096 dev_dbg_ratelimited(&urb->dev->dev,
3097 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3098 ep_interval, ep_interval == 1 ? "" : "s",
3099 xhci_interval, xhci_interval == 1 ? "" : "s");
3100 urb->interval = xhci_interval;
3101 /* Convert back to frames for LS/FS devices */
3102 if (urb->dev->speed == USB_SPEED_LOW ||
3103 urb->dev->speed == USB_SPEED_FULL)
3104 urb->interval /= 8;
3105 }
3106 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3107 }
3108
3109 /*
3110 * The TD size is the number of bytes remaining in the TD (including this TRB),
3111 * right shifted by 10.
3112 * It must fit in bits 21:17, so it can't be bigger than 31.
3113 */
3114 static u32 xhci_td_remainder(unsigned int remainder)
3115 {
3116 u32 max = (1 << (21 - 17 + 1)) - 1;
3117
3118 if ((remainder >> 10) >= max)
3119 return max << 17;
3120 else
3121 return (remainder >> 10) << 17;
3122 }
3123
3124 /*
3125 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3126 * packets remaining in the TD (*not* including this TRB).
3127 *
3128 * Total TD packet count = total_packet_count =
3129 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3130 *
3131 * Packets transferred up to and including this TRB = packets_transferred =
3132 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3133 *
3134 * TD size = total_packet_count - packets_transferred
3135 *
3136 * It must fit in bits 21:17, so it can't be bigger than 31.
3137 * The last TRB in a TD must have the TD size set to zero.
3138 */
3139 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
3140 unsigned int total_packet_count, struct urb *urb,
3141 unsigned int num_trbs_left)
3142 {
3143 int packets_transferred;
3144
3145 /* One TRB with a zero-length data packet. */
3146 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0))
3147 return 0;
3148
3149 /* All the TRB queueing functions don't count the current TRB in
3150 * running_total.
3151 */
3152 packets_transferred = (running_total + trb_buff_len) /
3153 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3154
3155 if ((total_packet_count - packets_transferred) > 31)
3156 return 31 << 17;
3157 return (total_packet_count - packets_transferred) << 17;
3158 }
3159
3160 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3161 struct urb *urb, int slot_id, unsigned int ep_index)
3162 {
3163 struct xhci_ring *ep_ring;
3164 unsigned int num_trbs;
3165 struct urb_priv *urb_priv;
3166 struct xhci_td *td;
3167 struct scatterlist *sg;
3168 int num_sgs;
3169 int trb_buff_len, this_sg_len, running_total;
3170 unsigned int total_packet_count;
3171 bool first_trb;
3172 u64 addr;
3173 bool more_trbs_coming;
3174
3175 struct xhci_generic_trb *start_trb;
3176 int start_cycle;
3177
3178 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3179 if (!ep_ring)
3180 return -EINVAL;
3181
3182 num_trbs = count_sg_trbs_needed(xhci, urb);
3183 num_sgs = urb->num_mapped_sgs;
3184 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3185 usb_endpoint_maxp(&urb->ep->desc));
3186
3187 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
3188 ep_index, urb->stream_id,
3189 num_trbs, urb, 0, mem_flags);
3190 if (trb_buff_len < 0)
3191 return trb_buff_len;
3192
3193 urb_priv = urb->hcpriv;
3194 td = urb_priv->td[0];
3195
3196 /*
3197 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3198 * until we've finished creating all the other TRBs. The ring's cycle
3199 * state may change as we enqueue the other TRBs, so save it too.
3200 */
3201 start_trb = &ep_ring->enqueue->generic;
3202 start_cycle = ep_ring->cycle_state;
3203
3204 running_total = 0;
3205 /*
3206 * How much data is in the first TRB?
3207 *
3208 * There are three forces at work for TRB buffer pointers and lengths:
3209 * 1. We don't want to walk off the end of this sg-list entry buffer.
3210 * 2. The transfer length that the driver requested may be smaller than
3211 * the amount of memory allocated for this scatter-gather list.
3212 * 3. TRBs buffers can't cross 64KB boundaries.
3213 */
3214 sg = urb->sg;
3215 addr = (u64) sg_dma_address(sg);
3216 this_sg_len = sg_dma_len(sg);
3217 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3218 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3219 if (trb_buff_len > urb->transfer_buffer_length)
3220 trb_buff_len = urb->transfer_buffer_length;
3221
3222 first_trb = true;
3223 /* Queue the first TRB, even if it's zero-length */
3224 do {
3225 u32 field = 0;
3226 u32 length_field = 0;
3227 u32 remainder = 0;
3228
3229 /* Don't change the cycle bit of the first TRB until later */
3230 if (first_trb) {
3231 first_trb = false;
3232 if (start_cycle == 0)
3233 field |= 0x1;
3234 } else
3235 field |= ep_ring->cycle_state;
3236
3237 /* Chain all the TRBs together; clear the chain bit in the last
3238 * TRB to indicate it's the last TRB in the chain.
3239 */
3240 if (num_trbs > 1) {
3241 field |= TRB_CHAIN;
3242 } else {
3243 /* FIXME - add check for ZERO_PACKET flag before this */
3244 td->last_trb = ep_ring->enqueue;
3245 field |= TRB_IOC;
3246 }
3247
3248 /* Only set interrupt on short packet for IN endpoints */
3249 if (usb_urb_dir_in(urb))
3250 field |= TRB_ISP;
3251
3252 if (TRB_MAX_BUFF_SIZE -
3253 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
3254 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
3255 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
3256 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
3257 (unsigned int) addr + trb_buff_len);
3258 }
3259
3260 /* Set the TRB length, TD size, and interrupter fields. */
3261 if (xhci->hci_version < 0x100) {
3262 remainder = xhci_td_remainder(
3263 urb->transfer_buffer_length -
3264 running_total);
3265 } else {
3266 remainder = xhci_v1_0_td_remainder(running_total,
3267 trb_buff_len, total_packet_count, urb,
3268 num_trbs - 1);
3269 }
3270 length_field = TRB_LEN(trb_buff_len) |
3271 remainder |
3272 TRB_INTR_TARGET(0);
3273
3274 if (num_trbs > 1)
3275 more_trbs_coming = true;
3276 else
3277 more_trbs_coming = false;
3278 queue_trb(xhci, ep_ring, more_trbs_coming,
3279 lower_32_bits(addr),
3280 upper_32_bits(addr),
3281 length_field,
3282 field | TRB_TYPE(TRB_NORMAL));
3283 --num_trbs;
3284 running_total += trb_buff_len;
3285
3286 /* Calculate length for next transfer --
3287 * Are we done queueing all the TRBs for this sg entry?
3288 */
3289 this_sg_len -= trb_buff_len;
3290 if (this_sg_len == 0) {
3291 --num_sgs;
3292 if (num_sgs == 0)
3293 break;
3294 sg = sg_next(sg);
3295 addr = (u64) sg_dma_address(sg);
3296 this_sg_len = sg_dma_len(sg);
3297 } else {
3298 addr += trb_buff_len;
3299 }
3300
3301 trb_buff_len = TRB_MAX_BUFF_SIZE -
3302 (addr & (TRB_MAX_BUFF_SIZE - 1));
3303 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3304 if (running_total + trb_buff_len > urb->transfer_buffer_length)
3305 trb_buff_len =
3306 urb->transfer_buffer_length - running_total;
3307 } while (running_total < urb->transfer_buffer_length);
3308
3309 check_trb_math(urb, num_trbs, running_total);
3310 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3311 start_cycle, start_trb);
3312 return 0;
3313 }
3314
3315 /* This is very similar to what ehci-q.c qtd_fill() does */
3316 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3317 struct urb *urb, int slot_id, unsigned int ep_index)
3318 {
3319 struct xhci_ring *ep_ring;
3320 struct urb_priv *urb_priv;
3321 struct xhci_td *td;
3322 int num_trbs;
3323 struct xhci_generic_trb *start_trb;
3324 bool first_trb;
3325 bool more_trbs_coming;
3326 int start_cycle;
3327 u32 field, length_field;
3328
3329 int running_total, trb_buff_len, ret;
3330 unsigned int total_packet_count;
3331 u64 addr;
3332
3333 if (urb->num_sgs)
3334 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
3335
3336 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3337 if (!ep_ring)
3338 return -EINVAL;
3339
3340 num_trbs = 0;
3341 /* How much data is (potentially) left before the 64KB boundary? */
3342 running_total = TRB_MAX_BUFF_SIZE -
3343 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3344 running_total &= TRB_MAX_BUFF_SIZE - 1;
3345
3346 /* If there's some data on this 64KB chunk, or we have to send a
3347 * zero-length transfer, we need at least one TRB
3348 */
3349 if (running_total != 0 || urb->transfer_buffer_length == 0)
3350 num_trbs++;
3351 /* How many more 64KB chunks to transfer, how many more TRBs? */
3352 while (running_total < urb->transfer_buffer_length) {
3353 num_trbs++;
3354 running_total += TRB_MAX_BUFF_SIZE;
3355 }
3356 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
3357
3358 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3359 ep_index, urb->stream_id,
3360 num_trbs, urb, 0, mem_flags);
3361 if (ret < 0)
3362 return ret;
3363
3364 urb_priv = urb->hcpriv;
3365 td = urb_priv->td[0];
3366
3367 /*
3368 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3369 * until we've finished creating all the other TRBs. The ring's cycle
3370 * state may change as we enqueue the other TRBs, so save it too.
3371 */
3372 start_trb = &ep_ring->enqueue->generic;
3373 start_cycle = ep_ring->cycle_state;
3374
3375 running_total = 0;
3376 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3377 usb_endpoint_maxp(&urb->ep->desc));
3378 /* How much data is in the first TRB? */
3379 addr = (u64) urb->transfer_dma;
3380 trb_buff_len = TRB_MAX_BUFF_SIZE -
3381 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3382 if (trb_buff_len > urb->transfer_buffer_length)
3383 trb_buff_len = urb->transfer_buffer_length;
3384
3385 first_trb = true;
3386
3387 /* Queue the first TRB, even if it's zero-length */
3388 do {
3389 u32 remainder = 0;
3390 field = 0;
3391
3392 /* Don't change the cycle bit of the first TRB until later */
3393 if (first_trb) {
3394 first_trb = false;
3395 if (start_cycle == 0)
3396 field |= 0x1;
3397 } else
3398 field |= ep_ring->cycle_state;
3399
3400 /* Chain all the TRBs together; clear the chain bit in the last
3401 * TRB to indicate it's the last TRB in the chain.
3402 */
3403 if (num_trbs > 1) {
3404 field |= TRB_CHAIN;
3405 } else {
3406 /* FIXME - add check for ZERO_PACKET flag before this */
3407 td->last_trb = ep_ring->enqueue;
3408 field |= TRB_IOC;
3409 }
3410
3411 /* Only set interrupt on short packet for IN endpoints */
3412 if (usb_urb_dir_in(urb))
3413 field |= TRB_ISP;
3414
3415 /* Set the TRB length, TD size, and interrupter fields. */
3416 if (xhci->hci_version < 0x100) {
3417 remainder = xhci_td_remainder(
3418 urb->transfer_buffer_length -
3419 running_total);
3420 } else {
3421 remainder = xhci_v1_0_td_remainder(running_total,
3422 trb_buff_len, total_packet_count, urb,
3423 num_trbs - 1);
3424 }
3425 length_field = TRB_LEN(trb_buff_len) |
3426 remainder |
3427 TRB_INTR_TARGET(0);
3428
3429 if (num_trbs > 1)
3430 more_trbs_coming = true;
3431 else
3432 more_trbs_coming = false;
3433 queue_trb(xhci, ep_ring, more_trbs_coming,
3434 lower_32_bits(addr),
3435 upper_32_bits(addr),
3436 length_field,
3437 field | TRB_TYPE(TRB_NORMAL));
3438 --num_trbs;
3439 running_total += trb_buff_len;
3440
3441 /* Calculate length for next transfer */
3442 addr += trb_buff_len;
3443 trb_buff_len = urb->transfer_buffer_length - running_total;
3444 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3445 trb_buff_len = TRB_MAX_BUFF_SIZE;
3446 } while (running_total < urb->transfer_buffer_length);
3447
3448 check_trb_math(urb, num_trbs, running_total);
3449 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3450 start_cycle, start_trb);
3451 return 0;
3452 }
3453
3454 /* Caller must have locked xhci->lock */
3455 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3456 struct urb *urb, int slot_id, unsigned int ep_index)
3457 {
3458 struct xhci_ring *ep_ring;
3459 int num_trbs;
3460 int ret;
3461 struct usb_ctrlrequest *setup;
3462 struct xhci_generic_trb *start_trb;
3463 int start_cycle;
3464 u32 field, length_field;
3465 struct urb_priv *urb_priv;
3466 struct xhci_td *td;
3467
3468 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3469 if (!ep_ring)
3470 return -EINVAL;
3471
3472 /*
3473 * Need to copy setup packet into setup TRB, so we can't use the setup
3474 * DMA address.
3475 */
3476 if (!urb->setup_packet)
3477 return -EINVAL;
3478
3479 /* 1 TRB for setup, 1 for status */
3480 num_trbs = 2;
3481 /*
3482 * Don't need to check if we need additional event data and normal TRBs,
3483 * since data in control transfers will never get bigger than 16MB
3484 * XXX: can we get a buffer that crosses 64KB boundaries?
3485 */
3486 if (urb->transfer_buffer_length > 0)
3487 num_trbs++;
3488 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3489 ep_index, urb->stream_id,
3490 num_trbs, urb, 0, mem_flags);
3491 if (ret < 0)
3492 return ret;
3493
3494 urb_priv = urb->hcpriv;
3495 td = urb_priv->td[0];
3496
3497 /*
3498 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3499 * until we've finished creating all the other TRBs. The ring's cycle
3500 * state may change as we enqueue the other TRBs, so save it too.
3501 */
3502 start_trb = &ep_ring->enqueue->generic;
3503 start_cycle = ep_ring->cycle_state;
3504
3505 /* Queue setup TRB - see section 6.4.1.2.1 */
3506 /* FIXME better way to translate setup_packet into two u32 fields? */
3507 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3508 field = 0;
3509 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3510 if (start_cycle == 0)
3511 field |= 0x1;
3512
3513 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3514 if (xhci->hci_version == 0x100) {
3515 if (urb->transfer_buffer_length > 0) {
3516 if (setup->bRequestType & USB_DIR_IN)
3517 field |= TRB_TX_TYPE(TRB_DATA_IN);
3518 else
3519 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3520 }
3521 }
3522
3523 queue_trb(xhci, ep_ring, true,
3524 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3525 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3526 TRB_LEN(8) | TRB_INTR_TARGET(0),
3527 /* Immediate data in pointer */
3528 field);
3529
3530 /* If there's data, queue data TRBs */
3531 /* Only set interrupt on short packet for IN endpoints */
3532 if (usb_urb_dir_in(urb))
3533 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3534 else
3535 field = TRB_TYPE(TRB_DATA);
3536
3537 length_field = TRB_LEN(urb->transfer_buffer_length) |
3538 xhci_td_remainder(urb->transfer_buffer_length) |
3539 TRB_INTR_TARGET(0);
3540 if (urb->transfer_buffer_length > 0) {
3541 if (setup->bRequestType & USB_DIR_IN)
3542 field |= TRB_DIR_IN;
3543 queue_trb(xhci, ep_ring, true,
3544 lower_32_bits(urb->transfer_dma),
3545 upper_32_bits(urb->transfer_dma),
3546 length_field,
3547 field | ep_ring->cycle_state);
3548 }
3549
3550 /* Save the DMA address of the last TRB in the TD */
3551 td->last_trb = ep_ring->enqueue;
3552
3553 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3554 /* If the device sent data, the status stage is an OUT transfer */
3555 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3556 field = 0;
3557 else
3558 field = TRB_DIR_IN;
3559 queue_trb(xhci, ep_ring, false,
3560 0,
3561 0,
3562 TRB_INTR_TARGET(0),
3563 /* Event on completion */
3564 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3565
3566 giveback_first_trb(xhci, slot_id, ep_index, 0,
3567 start_cycle, start_trb);
3568 return 0;
3569 }
3570
3571 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3572 struct urb *urb, int i)
3573 {
3574 int num_trbs = 0;
3575 u64 addr, td_len;
3576
3577 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3578 td_len = urb->iso_frame_desc[i].length;
3579
3580 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3581 TRB_MAX_BUFF_SIZE);
3582 if (num_trbs == 0)
3583 num_trbs++;
3584
3585 return num_trbs;
3586 }
3587
3588 /*
3589 * The transfer burst count field of the isochronous TRB defines the number of
3590 * bursts that are required to move all packets in this TD. Only SuperSpeed
3591 * devices can burst up to bMaxBurst number of packets per service interval.
3592 * This field is zero based, meaning a value of zero in the field means one
3593 * burst. Basically, for everything but SuperSpeed devices, this field will be
3594 * zero. Only xHCI 1.0 host controllers support this field.
3595 */
3596 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3597 struct usb_device *udev,
3598 struct urb *urb, unsigned int total_packet_count)
3599 {
3600 unsigned int max_burst;
3601
3602 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3603 return 0;
3604
3605 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3606 return roundup(total_packet_count, max_burst + 1) - 1;
3607 }
3608
3609 /*
3610 * Returns the number of packets in the last "burst" of packets. This field is
3611 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3612 * the last burst packet count is equal to the total number of packets in the
3613 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3614 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3615 * contain 1 to (bMaxBurst + 1) packets.
3616 */
3617 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3618 struct usb_device *udev,
3619 struct urb *urb, unsigned int total_packet_count)
3620 {
3621 unsigned int max_burst;
3622 unsigned int residue;
3623
3624 if (xhci->hci_version < 0x100)
3625 return 0;
3626
3627 switch (udev->speed) {
3628 case USB_SPEED_SUPER:
3629 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3630 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3631 residue = total_packet_count % (max_burst + 1);
3632 /* If residue is zero, the last burst contains (max_burst + 1)
3633 * number of packets, but the TLBPC field is zero-based.
3634 */
3635 if (residue == 0)
3636 return max_burst;
3637 return residue - 1;
3638 default:
3639 if (total_packet_count == 0)
3640 return 0;
3641 return total_packet_count - 1;
3642 }
3643 }
3644
3645 /* This is for isoc transfer */
3646 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3647 struct urb *urb, int slot_id, unsigned int ep_index)
3648 {
3649 struct xhci_ring *ep_ring;
3650 struct urb_priv *urb_priv;
3651 struct xhci_td *td;
3652 int num_tds, trbs_per_td;
3653 struct xhci_generic_trb *start_trb;
3654 bool first_trb;
3655 int start_cycle;
3656 u32 field, length_field;
3657 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3658 u64 start_addr, addr;
3659 int i, j;
3660 bool more_trbs_coming;
3661
3662 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3663
3664 num_tds = urb->number_of_packets;
3665 if (num_tds < 1) {
3666 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3667 return -EINVAL;
3668 }
3669
3670 start_addr = (u64) urb->transfer_dma;
3671 start_trb = &ep_ring->enqueue->generic;
3672 start_cycle = ep_ring->cycle_state;
3673
3674 urb_priv = urb->hcpriv;
3675 /* Queue the first TRB, even if it's zero-length */
3676 for (i = 0; i < num_tds; i++) {
3677 unsigned int total_packet_count;
3678 unsigned int burst_count;
3679 unsigned int residue;
3680
3681 first_trb = true;
3682 running_total = 0;
3683 addr = start_addr + urb->iso_frame_desc[i].offset;
3684 td_len = urb->iso_frame_desc[i].length;
3685 td_remain_len = td_len;
3686 total_packet_count = DIV_ROUND_UP(td_len,
3687 GET_MAX_PACKET(
3688 usb_endpoint_maxp(&urb->ep->desc)));
3689 /* A zero-length transfer still involves at least one packet. */
3690 if (total_packet_count == 0)
3691 total_packet_count++;
3692 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3693 total_packet_count);
3694 residue = xhci_get_last_burst_packet_count(xhci,
3695 urb->dev, urb, total_packet_count);
3696
3697 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3698
3699 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3700 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3701 if (ret < 0) {
3702 if (i == 0)
3703 return ret;
3704 goto cleanup;
3705 }
3706
3707 td = urb_priv->td[i];
3708 for (j = 0; j < trbs_per_td; j++) {
3709 u32 remainder = 0;
3710 field = 0;
3711
3712 if (first_trb) {
3713 field = TRB_TBC(burst_count) |
3714 TRB_TLBPC(residue);
3715 /* Queue the isoc TRB */
3716 field |= TRB_TYPE(TRB_ISOC);
3717 /* Assume URB_ISO_ASAP is set */
3718 field |= TRB_SIA;
3719 if (i == 0) {
3720 if (start_cycle == 0)
3721 field |= 0x1;
3722 } else
3723 field |= ep_ring->cycle_state;
3724 first_trb = false;
3725 } else {
3726 /* Queue other normal TRBs */
3727 field |= TRB_TYPE(TRB_NORMAL);
3728 field |= ep_ring->cycle_state;
3729 }
3730
3731 /* Only set interrupt on short packet for IN EPs */
3732 if (usb_urb_dir_in(urb))
3733 field |= TRB_ISP;
3734
3735 /* Chain all the TRBs together; clear the chain bit in
3736 * the last TRB to indicate it's the last TRB in the
3737 * chain.
3738 */
3739 if (j < trbs_per_td - 1) {
3740 field |= TRB_CHAIN;
3741 more_trbs_coming = true;
3742 } else {
3743 td->last_trb = ep_ring->enqueue;
3744 field |= TRB_IOC;
3745 if (xhci->hci_version == 0x100 &&
3746 !(xhci->quirks &
3747 XHCI_AVOID_BEI)) {
3748 /* Set BEI bit except for the last td */
3749 if (i < num_tds - 1)
3750 field |= TRB_BEI;
3751 }
3752 more_trbs_coming = false;
3753 }
3754
3755 /* Calculate TRB length */
3756 trb_buff_len = TRB_MAX_BUFF_SIZE -
3757 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3758 if (trb_buff_len > td_remain_len)
3759 trb_buff_len = td_remain_len;
3760
3761 /* Set the TRB length, TD size, & interrupter fields. */
3762 if (xhci->hci_version < 0x100) {
3763 remainder = xhci_td_remainder(
3764 td_len - running_total);
3765 } else {
3766 remainder = xhci_v1_0_td_remainder(
3767 running_total, trb_buff_len,
3768 total_packet_count, urb,
3769 (trbs_per_td - j - 1));
3770 }
3771 length_field = TRB_LEN(trb_buff_len) |
3772 remainder |
3773 TRB_INTR_TARGET(0);
3774
3775 queue_trb(xhci, ep_ring, more_trbs_coming,
3776 lower_32_bits(addr),
3777 upper_32_bits(addr),
3778 length_field,
3779 field);
3780 running_total += trb_buff_len;
3781
3782 addr += trb_buff_len;
3783 td_remain_len -= trb_buff_len;
3784 }
3785
3786 /* Check TD length */
3787 if (running_total != td_len) {
3788 xhci_err(xhci, "ISOC TD length unmatch\n");
3789 ret = -EINVAL;
3790 goto cleanup;
3791 }
3792 }
3793
3794 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3795 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3796 usb_amd_quirk_pll_disable();
3797 }
3798 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3799
3800 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3801 start_cycle, start_trb);
3802 return 0;
3803 cleanup:
3804 /* Clean up a partially enqueued isoc transfer. */
3805
3806 for (i--; i >= 0; i--)
3807 list_del_init(&urb_priv->td[i]->td_list);
3808
3809 /* Use the first TD as a temporary variable to turn the TDs we've queued
3810 * into No-ops with a software-owned cycle bit. That way the hardware
3811 * won't accidentally start executing bogus TDs when we partially
3812 * overwrite them. td->first_trb and td->start_seg are already set.
3813 */
3814 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3815 /* Every TRB except the first & last will have its cycle bit flipped. */
3816 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3817
3818 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3819 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3820 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3821 ep_ring->cycle_state = start_cycle;
3822 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3823 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3824 return ret;
3825 }
3826
3827 /*
3828 * Check transfer ring to guarantee there is enough room for the urb.
3829 * Update ISO URB start_frame and interval.
3830 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3831 * update the urb->start_frame by now.
3832 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3833 */
3834 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3835 struct urb *urb, int slot_id, unsigned int ep_index)
3836 {
3837 struct xhci_virt_device *xdev;
3838 struct xhci_ring *ep_ring;
3839 struct xhci_ep_ctx *ep_ctx;
3840 int start_frame;
3841 int xhci_interval;
3842 int ep_interval;
3843 int num_tds, num_trbs, i;
3844 int ret;
3845
3846 xdev = xhci->devs[slot_id];
3847 ep_ring = xdev->eps[ep_index].ring;
3848 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3849
3850 num_trbs = 0;
3851 num_tds = urb->number_of_packets;
3852 for (i = 0; i < num_tds; i++)
3853 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3854
3855 /* Check the ring to guarantee there is enough room for the whole urb.
3856 * Do not insert any td of the urb to the ring if the check failed.
3857 */
3858 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3859 num_trbs, mem_flags);
3860 if (ret)
3861 return ret;
3862
3863 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3864 start_frame &= 0x3fff;
3865
3866 urb->start_frame = start_frame;
3867 if (urb->dev->speed == USB_SPEED_LOW ||
3868 urb->dev->speed == USB_SPEED_FULL)
3869 urb->start_frame >>= 3;
3870
3871 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3872 ep_interval = urb->interval;
3873 /* Convert to microframes */
3874 if (urb->dev->speed == USB_SPEED_LOW ||
3875 urb->dev->speed == USB_SPEED_FULL)
3876 ep_interval *= 8;
3877 /* FIXME change this to a warning and a suggestion to use the new API
3878 * to set the polling interval (once the API is added).
3879 */
3880 if (xhci_interval != ep_interval) {
3881 dev_dbg_ratelimited(&urb->dev->dev,
3882 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3883 ep_interval, ep_interval == 1 ? "" : "s",
3884 xhci_interval, xhci_interval == 1 ? "" : "s");
3885 urb->interval = xhci_interval;
3886 /* Convert back to frames for LS/FS devices */
3887 if (urb->dev->speed == USB_SPEED_LOW ||
3888 urb->dev->speed == USB_SPEED_FULL)
3889 urb->interval /= 8;
3890 }
3891 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3892
3893 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3894 }
3895
3896 /**** Command Ring Operations ****/
3897
3898 /* Generic function for queueing a command TRB on the command ring.
3899 * Check to make sure there's room on the command ring for one command TRB.
3900 * Also check that there's room reserved for commands that must not fail.
3901 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3902 * then only check for the number of reserved spots.
3903 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3904 * because the command event handler may want to resubmit a failed command.
3905 */
3906 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3907 u32 field3, u32 field4, bool command_must_succeed)
3908 {
3909 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3910 int ret;
3911
3912 if (!command_must_succeed)
3913 reserved_trbs++;
3914
3915 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3916 reserved_trbs, GFP_ATOMIC);
3917 if (ret < 0) {
3918 xhci_err(xhci, "ERR: No room for command on command ring\n");
3919 if (command_must_succeed)
3920 xhci_err(xhci, "ERR: Reserved TRB counting for "
3921 "unfailable commands failed.\n");
3922 return ret;
3923 }
3924 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3925 field4 | xhci->cmd_ring->cycle_state);
3926 return 0;
3927 }
3928
3929 /* Queue a slot enable or disable request on the command ring */
3930 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3931 {
3932 return queue_command(xhci, 0, 0, 0,
3933 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3934 }
3935
3936 /* Queue an address device command TRB */
3937 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3938 u32 slot_id)
3939 {
3940 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3941 upper_32_bits(in_ctx_ptr), 0,
3942 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3943 false);
3944 }
3945
3946 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3947 u32 field1, u32 field2, u32 field3, u32 field4)
3948 {
3949 return queue_command(xhci, field1, field2, field3, field4, false);
3950 }
3951
3952 /* Queue a reset device command TRB */
3953 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3954 {
3955 return queue_command(xhci, 0, 0, 0,
3956 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3957 false);
3958 }
3959
3960 /* Queue a configure endpoint command TRB */
3961 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3962 u32 slot_id, bool command_must_succeed)
3963 {
3964 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3965 upper_32_bits(in_ctx_ptr), 0,
3966 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3967 command_must_succeed);
3968 }
3969
3970 /* Queue an evaluate context command TRB */
3971 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3972 u32 slot_id, bool command_must_succeed)
3973 {
3974 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3975 upper_32_bits(in_ctx_ptr), 0,
3976 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3977 command_must_succeed);
3978 }
3979
3980 /*
3981 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3982 * activity on an endpoint that is about to be suspended.
3983 */
3984 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3985 unsigned int ep_index, int suspend)
3986 {
3987 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3988 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3989 u32 type = TRB_TYPE(TRB_STOP_RING);
3990 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3991
3992 return queue_command(xhci, 0, 0, 0,
3993 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3994 }
3995
3996 /* Set Transfer Ring Dequeue Pointer command.
3997 * This should not be used for endpoints that have streams enabled.
3998 */
3999 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
4000 unsigned int ep_index, unsigned int stream_id,
4001 struct xhci_segment *deq_seg,
4002 union xhci_trb *deq_ptr, u32 cycle_state)
4003 {
4004 dma_addr_t addr;
4005 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4006 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4007 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
4008 u32 type = TRB_TYPE(TRB_SET_DEQ);
4009 struct xhci_virt_ep *ep;
4010
4011 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
4012 if (addr == 0) {
4013 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4014 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4015 deq_seg, deq_ptr);
4016 return 0;
4017 }
4018 ep = &xhci->devs[slot_id]->eps[ep_index];
4019 if ((ep->ep_state & SET_DEQ_PENDING)) {
4020 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4021 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4022 return 0;
4023 }
4024 ep->queued_deq_seg = deq_seg;
4025 ep->queued_deq_ptr = deq_ptr;
4026 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
4027 upper_32_bits(addr), trb_stream_id,
4028 trb_slot_id | trb_ep_index | type, false);
4029 }
4030
4031 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
4032 unsigned int ep_index)
4033 {
4034 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4035 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4036 u32 type = TRB_TYPE(TRB_RESET_EP);
4037
4038 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
4039 false);
4040 }
This page took 0.121594 seconds and 5 git commands to generate.