ARM: arm-soc: Merge branch 'next/smp' into next/soc2
[deliverable/linux.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 struct xhci_virt_device *virt_dev,
73 struct xhci_event_cmd *event);
74
75 /*
76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77 * address of the TRB.
78 */
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 union xhci_trb *trb)
81 {
82 unsigned long segment_offset;
83
84 if (!seg || !trb || trb < seg->trbs)
85 return 0;
86 /* offset in TRBs */
87 segment_offset = trb - seg->trbs;
88 if (segment_offset > TRBS_PER_SEGMENT)
89 return 0;
90 return seg->dma + (segment_offset * sizeof(*trb));
91 }
92
93 /* Does this link TRB point to the first segment in a ring,
94 * or was the previous TRB the last TRB on the last segment in the ERST?
95 */
96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 struct xhci_segment *seg, union xhci_trb *trb)
98 {
99 if (ring == xhci->event_ring)
100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 (seg->next == xhci->event_ring->first_seg);
102 else
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
104 }
105
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107 * segment? I.e. would the updated event TRB pointer step off the end of the
108 * event seg?
109 */
110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 struct xhci_segment *seg, union xhci_trb *trb)
112 {
113 if (ring == xhci->event_ring)
114 return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 else
116 return TRB_TYPE_LINK_LE32(trb->link.control);
117 }
118
119 static int enqueue_is_link_trb(struct xhci_ring *ring)
120 {
121 struct xhci_link_trb *link = &ring->enqueue->link;
122 return TRB_TYPE_LINK_LE32(link->control);
123 }
124
125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
126 * TRB is in a new segment. This does not skip over link TRBs, and it does not
127 * effect the ring dequeue or enqueue pointers.
128 */
129 static void next_trb(struct xhci_hcd *xhci,
130 struct xhci_ring *ring,
131 struct xhci_segment **seg,
132 union xhci_trb **trb)
133 {
134 if (last_trb(xhci, ring, *seg, *trb)) {
135 *seg = (*seg)->next;
136 *trb = ((*seg)->trbs);
137 } else {
138 (*trb)++;
139 }
140 }
141
142 /*
143 * See Cycle bit rules. SW is the consumer for the event ring only.
144 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
145 */
146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
147 {
148 unsigned long long addr;
149
150 ring->deq_updates++;
151
152 /*
153 * If this is not event ring, and the dequeue pointer
154 * is not on a link TRB, there is one more usable TRB
155 */
156 if (ring->type != TYPE_EVENT &&
157 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
158 ring->num_trbs_free++;
159
160 do {
161 /*
162 * Update the dequeue pointer further if that was a link TRB or
163 * we're at the end of an event ring segment (which doesn't have
164 * link TRBS)
165 */
166 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
167 if (ring->type == TYPE_EVENT &&
168 last_trb_on_last_seg(xhci, ring,
169 ring->deq_seg, ring->dequeue)) {
170 ring->cycle_state = (ring->cycle_state ? 0 : 1);
171 }
172 ring->deq_seg = ring->deq_seg->next;
173 ring->dequeue = ring->deq_seg->trbs;
174 } else {
175 ring->dequeue++;
176 }
177 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
178
179 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
180 }
181
182 /*
183 * See Cycle bit rules. SW is the consumer for the event ring only.
184 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
185 *
186 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
187 * chain bit is set), then set the chain bit in all the following link TRBs.
188 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
189 * have their chain bit cleared (so that each Link TRB is a separate TD).
190 *
191 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
192 * set, but other sections talk about dealing with the chain bit set. This was
193 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
194 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
195 *
196 * @more_trbs_coming: Will you enqueue more TRBs before calling
197 * prepare_transfer()?
198 */
199 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
200 bool more_trbs_coming)
201 {
202 u32 chain;
203 union xhci_trb *next;
204 unsigned long long addr;
205
206 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
207 /* If this is not event ring, there is one less usable TRB */
208 if (ring->type != TYPE_EVENT &&
209 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
210 ring->num_trbs_free--;
211 next = ++(ring->enqueue);
212
213 ring->enq_updates++;
214 /* Update the dequeue pointer further if that was a link TRB or we're at
215 * the end of an event ring segment (which doesn't have link TRBS)
216 */
217 while (last_trb(xhci, ring, ring->enq_seg, next)) {
218 if (ring->type != TYPE_EVENT) {
219 /*
220 * If the caller doesn't plan on enqueueing more
221 * TDs before ringing the doorbell, then we
222 * don't want to give the link TRB to the
223 * hardware just yet. We'll give the link TRB
224 * back in prepare_ring() just before we enqueue
225 * the TD at the top of the ring.
226 */
227 if (!chain && !more_trbs_coming)
228 break;
229
230 /* If we're not dealing with 0.95 hardware or
231 * isoc rings on AMD 0.96 host,
232 * carry over the chain bit of the previous TRB
233 * (which may mean the chain bit is cleared).
234 */
235 if (!(ring->type == TYPE_ISOC &&
236 (xhci->quirks & XHCI_AMD_0x96_HOST))
237 && !xhci_link_trb_quirk(xhci)) {
238 next->link.control &=
239 cpu_to_le32(~TRB_CHAIN);
240 next->link.control |=
241 cpu_to_le32(chain);
242 }
243 /* Give this link TRB to the hardware */
244 wmb();
245 next->link.control ^= cpu_to_le32(TRB_CYCLE);
246
247 /* Toggle the cycle bit after the last ring segment. */
248 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
249 ring->cycle_state = (ring->cycle_state ? 0 : 1);
250 }
251 }
252 ring->enq_seg = ring->enq_seg->next;
253 ring->enqueue = ring->enq_seg->trbs;
254 next = ring->enqueue;
255 }
256 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
257 }
258
259 /*
260 * Check to see if there's room to enqueue num_trbs on the ring and make sure
261 * enqueue pointer will not advance into dequeue segment. See rules above.
262 */
263 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
264 unsigned int num_trbs)
265 {
266 int num_trbs_in_deq_seg;
267
268 if (ring->num_trbs_free < num_trbs)
269 return 0;
270
271 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
272 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
273 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
274 return 0;
275 }
276
277 return 1;
278 }
279
280 /* Ring the host controller doorbell after placing a command on the ring */
281 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
282 {
283 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
284 return;
285
286 xhci_dbg(xhci, "// Ding dong!\n");
287 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
288 /* Flush PCI posted writes */
289 xhci_readl(xhci, &xhci->dba->doorbell[0]);
290 }
291
292 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
293 {
294 u64 temp_64;
295 int ret;
296
297 xhci_dbg(xhci, "Abort command ring\n");
298
299 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) {
300 xhci_dbg(xhci, "The command ring isn't running, "
301 "Have the command ring been stopped?\n");
302 return 0;
303 }
304
305 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
306 if (!(temp_64 & CMD_RING_RUNNING)) {
307 xhci_dbg(xhci, "Command ring had been stopped\n");
308 return 0;
309 }
310 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
311 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
312 &xhci->op_regs->cmd_ring);
313
314 /* Section 4.6.1.2 of xHCI 1.0 spec says software should
315 * time the completion od all xHCI commands, including
316 * the Command Abort operation. If software doesn't see
317 * CRR negated in a timely manner (e.g. longer than 5
318 * seconds), then it should assume that the there are
319 * larger problems with the xHC and assert HCRST.
320 */
321 ret = handshake(xhci, &xhci->op_regs->cmd_ring,
322 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
323 if (ret < 0) {
324 xhci_err(xhci, "Stopped the command ring failed, "
325 "maybe the host is dead\n");
326 xhci->xhc_state |= XHCI_STATE_DYING;
327 xhci_quiesce(xhci);
328 xhci_halt(xhci);
329 return -ESHUTDOWN;
330 }
331
332 return 0;
333 }
334
335 static int xhci_queue_cd(struct xhci_hcd *xhci,
336 struct xhci_command *command,
337 union xhci_trb *cmd_trb)
338 {
339 struct xhci_cd *cd;
340 cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC);
341 if (!cd)
342 return -ENOMEM;
343 INIT_LIST_HEAD(&cd->cancel_cmd_list);
344
345 cd->command = command;
346 cd->cmd_trb = cmd_trb;
347 list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list);
348
349 return 0;
350 }
351
352 /*
353 * Cancel the command which has issue.
354 *
355 * Some commands may hang due to waiting for acknowledgement from
356 * usb device. It is outside of the xHC's ability to control and
357 * will cause the command ring is blocked. When it occurs software
358 * should intervene to recover the command ring.
359 * See Section 4.6.1.1 and 4.6.1.2
360 */
361 int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command,
362 union xhci_trb *cmd_trb)
363 {
364 int retval = 0;
365 unsigned long flags;
366
367 spin_lock_irqsave(&xhci->lock, flags);
368
369 if (xhci->xhc_state & XHCI_STATE_DYING) {
370 xhci_warn(xhci, "Abort the command ring,"
371 " but the xHCI is dead.\n");
372 retval = -ESHUTDOWN;
373 goto fail;
374 }
375
376 /* queue the cmd desriptor to cancel_cmd_list */
377 retval = xhci_queue_cd(xhci, command, cmd_trb);
378 if (retval) {
379 xhci_warn(xhci, "Queuing command descriptor failed.\n");
380 goto fail;
381 }
382
383 /* abort command ring */
384 retval = xhci_abort_cmd_ring(xhci);
385 if (retval) {
386 xhci_err(xhci, "Abort command ring failed\n");
387 if (unlikely(retval == -ESHUTDOWN)) {
388 spin_unlock_irqrestore(&xhci->lock, flags);
389 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
390 xhci_dbg(xhci, "xHCI host controller is dead.\n");
391 return retval;
392 }
393 }
394
395 fail:
396 spin_unlock_irqrestore(&xhci->lock, flags);
397 return retval;
398 }
399
400 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
401 unsigned int slot_id,
402 unsigned int ep_index,
403 unsigned int stream_id)
404 {
405 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
406 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
407 unsigned int ep_state = ep->ep_state;
408
409 /* Don't ring the doorbell for this endpoint if there are pending
410 * cancellations because we don't want to interrupt processing.
411 * We don't want to restart any stream rings if there's a set dequeue
412 * pointer command pending because the device can choose to start any
413 * stream once the endpoint is on the HW schedule.
414 * FIXME - check all the stream rings for pending cancellations.
415 */
416 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
417 (ep_state & EP_HALTED))
418 return;
419 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
420 /* The CPU has better things to do at this point than wait for a
421 * write-posting flush. It'll get there soon enough.
422 */
423 }
424
425 /* Ring the doorbell for any rings with pending URBs */
426 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
427 unsigned int slot_id,
428 unsigned int ep_index)
429 {
430 unsigned int stream_id;
431 struct xhci_virt_ep *ep;
432
433 ep = &xhci->devs[slot_id]->eps[ep_index];
434
435 /* A ring has pending URBs if its TD list is not empty */
436 if (!(ep->ep_state & EP_HAS_STREAMS)) {
437 if (!(list_empty(&ep->ring->td_list)))
438 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
439 return;
440 }
441
442 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
443 stream_id++) {
444 struct xhci_stream_info *stream_info = ep->stream_info;
445 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
446 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
447 stream_id);
448 }
449 }
450
451 /*
452 * Find the segment that trb is in. Start searching in start_seg.
453 * If we must move past a segment that has a link TRB with a toggle cycle state
454 * bit set, then we will toggle the value pointed at by cycle_state.
455 */
456 static struct xhci_segment *find_trb_seg(
457 struct xhci_segment *start_seg,
458 union xhci_trb *trb, int *cycle_state)
459 {
460 struct xhci_segment *cur_seg = start_seg;
461 struct xhci_generic_trb *generic_trb;
462
463 while (cur_seg->trbs > trb ||
464 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
465 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
466 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
467 *cycle_state ^= 0x1;
468 cur_seg = cur_seg->next;
469 if (cur_seg == start_seg)
470 /* Looped over the entire list. Oops! */
471 return NULL;
472 }
473 return cur_seg;
474 }
475
476
477 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
478 unsigned int slot_id, unsigned int ep_index,
479 unsigned int stream_id)
480 {
481 struct xhci_virt_ep *ep;
482
483 ep = &xhci->devs[slot_id]->eps[ep_index];
484 /* Common case: no streams */
485 if (!(ep->ep_state & EP_HAS_STREAMS))
486 return ep->ring;
487
488 if (stream_id == 0) {
489 xhci_warn(xhci,
490 "WARN: Slot ID %u, ep index %u has streams, "
491 "but URB has no stream ID.\n",
492 slot_id, ep_index);
493 return NULL;
494 }
495
496 if (stream_id < ep->stream_info->num_streams)
497 return ep->stream_info->stream_rings[stream_id];
498
499 xhci_warn(xhci,
500 "WARN: Slot ID %u, ep index %u has "
501 "stream IDs 1 to %u allocated, "
502 "but stream ID %u is requested.\n",
503 slot_id, ep_index,
504 ep->stream_info->num_streams - 1,
505 stream_id);
506 return NULL;
507 }
508
509 /* Get the right ring for the given URB.
510 * If the endpoint supports streams, boundary check the URB's stream ID.
511 * If the endpoint doesn't support streams, return the singular endpoint ring.
512 */
513 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
514 struct urb *urb)
515 {
516 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
517 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
518 }
519
520 /*
521 * Move the xHC's endpoint ring dequeue pointer past cur_td.
522 * Record the new state of the xHC's endpoint ring dequeue segment,
523 * dequeue pointer, and new consumer cycle state in state.
524 * Update our internal representation of the ring's dequeue pointer.
525 *
526 * We do this in three jumps:
527 * - First we update our new ring state to be the same as when the xHC stopped.
528 * - Then we traverse the ring to find the segment that contains
529 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
530 * any link TRBs with the toggle cycle bit set.
531 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
532 * if we've moved it past a link TRB with the toggle cycle bit set.
533 *
534 * Some of the uses of xhci_generic_trb are grotty, but if they're done
535 * with correct __le32 accesses they should work fine. Only users of this are
536 * in here.
537 */
538 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
539 unsigned int slot_id, unsigned int ep_index,
540 unsigned int stream_id, struct xhci_td *cur_td,
541 struct xhci_dequeue_state *state)
542 {
543 struct xhci_virt_device *dev = xhci->devs[slot_id];
544 struct xhci_ring *ep_ring;
545 struct xhci_generic_trb *trb;
546 struct xhci_ep_ctx *ep_ctx;
547 dma_addr_t addr;
548
549 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
550 ep_index, stream_id);
551 if (!ep_ring) {
552 xhci_warn(xhci, "WARN can't find new dequeue state "
553 "for invalid stream ID %u.\n",
554 stream_id);
555 return;
556 }
557 state->new_cycle_state = 0;
558 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
559 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
560 dev->eps[ep_index].stopped_trb,
561 &state->new_cycle_state);
562 if (!state->new_deq_seg) {
563 WARN_ON(1);
564 return;
565 }
566
567 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
568 xhci_dbg(xhci, "Finding endpoint context\n");
569 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
570 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
571
572 state->new_deq_ptr = cur_td->last_trb;
573 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
574 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
575 state->new_deq_ptr,
576 &state->new_cycle_state);
577 if (!state->new_deq_seg) {
578 WARN_ON(1);
579 return;
580 }
581
582 trb = &state->new_deq_ptr->generic;
583 if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
584 (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
585 state->new_cycle_state ^= 0x1;
586 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
587
588 /*
589 * If there is only one segment in a ring, find_trb_seg()'s while loop
590 * will not run, and it will return before it has a chance to see if it
591 * needs to toggle the cycle bit. It can't tell if the stalled transfer
592 * ended just before the link TRB on a one-segment ring, or if the TD
593 * wrapped around the top of the ring, because it doesn't have the TD in
594 * question. Look for the one-segment case where stalled TRB's address
595 * is greater than the new dequeue pointer address.
596 */
597 if (ep_ring->first_seg == ep_ring->first_seg->next &&
598 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
599 state->new_cycle_state ^= 0x1;
600 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
601
602 /* Don't update the ring cycle state for the producer (us). */
603 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
604 state->new_deq_seg);
605 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
606 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
607 (unsigned long long) addr);
608 }
609
610 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
611 * (The last TRB actually points to the ring enqueue pointer, which is not part
612 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
613 */
614 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
615 struct xhci_td *cur_td, bool flip_cycle)
616 {
617 struct xhci_segment *cur_seg;
618 union xhci_trb *cur_trb;
619
620 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
621 true;
622 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
623 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
624 /* Unchain any chained Link TRBs, but
625 * leave the pointers intact.
626 */
627 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
628 /* Flip the cycle bit (link TRBs can't be the first
629 * or last TRB).
630 */
631 if (flip_cycle)
632 cur_trb->generic.field[3] ^=
633 cpu_to_le32(TRB_CYCLE);
634 xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
635 xhci_dbg(xhci, "Address = %p (0x%llx dma); "
636 "in seg %p (0x%llx dma)\n",
637 cur_trb,
638 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
639 cur_seg,
640 (unsigned long long)cur_seg->dma);
641 } else {
642 cur_trb->generic.field[0] = 0;
643 cur_trb->generic.field[1] = 0;
644 cur_trb->generic.field[2] = 0;
645 /* Preserve only the cycle bit of this TRB */
646 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
647 /* Flip the cycle bit except on the first or last TRB */
648 if (flip_cycle && cur_trb != cur_td->first_trb &&
649 cur_trb != cur_td->last_trb)
650 cur_trb->generic.field[3] ^=
651 cpu_to_le32(TRB_CYCLE);
652 cur_trb->generic.field[3] |= cpu_to_le32(
653 TRB_TYPE(TRB_TR_NOOP));
654 xhci_dbg(xhci, "TRB to noop at offset 0x%llx\n",
655 (unsigned long long)
656 xhci_trb_virt_to_dma(cur_seg, cur_trb));
657 }
658 if (cur_trb == cur_td->last_trb)
659 break;
660 }
661 }
662
663 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
664 unsigned int ep_index, unsigned int stream_id,
665 struct xhci_segment *deq_seg,
666 union xhci_trb *deq_ptr, u32 cycle_state);
667
668 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
669 unsigned int slot_id, unsigned int ep_index,
670 unsigned int stream_id,
671 struct xhci_dequeue_state *deq_state)
672 {
673 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
674
675 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
676 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
677 deq_state->new_deq_seg,
678 (unsigned long long)deq_state->new_deq_seg->dma,
679 deq_state->new_deq_ptr,
680 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
681 deq_state->new_cycle_state);
682 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
683 deq_state->new_deq_seg,
684 deq_state->new_deq_ptr,
685 (u32) deq_state->new_cycle_state);
686 /* Stop the TD queueing code from ringing the doorbell until
687 * this command completes. The HC won't set the dequeue pointer
688 * if the ring is running, and ringing the doorbell starts the
689 * ring running.
690 */
691 ep->ep_state |= SET_DEQ_PENDING;
692 }
693
694 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
695 struct xhci_virt_ep *ep)
696 {
697 ep->ep_state &= ~EP_HALT_PENDING;
698 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
699 * timer is running on another CPU, we don't decrement stop_cmds_pending
700 * (since we didn't successfully stop the watchdog timer).
701 */
702 if (del_timer(&ep->stop_cmd_timer))
703 ep->stop_cmds_pending--;
704 }
705
706 /* Must be called with xhci->lock held in interrupt context */
707 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
708 struct xhci_td *cur_td, int status, char *adjective)
709 {
710 struct usb_hcd *hcd;
711 struct urb *urb;
712 struct urb_priv *urb_priv;
713
714 urb = cur_td->urb;
715 urb_priv = urb->hcpriv;
716 urb_priv->td_cnt++;
717 hcd = bus_to_hcd(urb->dev->bus);
718
719 /* Only giveback urb when this is the last td in urb */
720 if (urb_priv->td_cnt == urb_priv->length) {
721 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
722 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
723 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
724 if (xhci->quirks & XHCI_AMD_PLL_FIX)
725 usb_amd_quirk_pll_enable();
726 }
727 }
728 usb_hcd_unlink_urb_from_ep(hcd, urb);
729
730 spin_unlock(&xhci->lock);
731 usb_hcd_giveback_urb(hcd, urb, status);
732 xhci_urb_free_priv(xhci, urb_priv);
733 spin_lock(&xhci->lock);
734 }
735 }
736
737 /*
738 * When we get a command completion for a Stop Endpoint Command, we need to
739 * unlink any cancelled TDs from the ring. There are two ways to do that:
740 *
741 * 1. If the HW was in the middle of processing the TD that needs to be
742 * cancelled, then we must move the ring's dequeue pointer past the last TRB
743 * in the TD with a Set Dequeue Pointer Command.
744 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
745 * bit cleared) so that the HW will skip over them.
746 */
747 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
748 union xhci_trb *trb, struct xhci_event_cmd *event)
749 {
750 unsigned int slot_id;
751 unsigned int ep_index;
752 struct xhci_virt_device *virt_dev;
753 struct xhci_ring *ep_ring;
754 struct xhci_virt_ep *ep;
755 struct list_head *entry;
756 struct xhci_td *cur_td = NULL;
757 struct xhci_td *last_unlinked_td;
758
759 struct xhci_dequeue_state deq_state;
760
761 if (unlikely(TRB_TO_SUSPEND_PORT(
762 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
763 slot_id = TRB_TO_SLOT_ID(
764 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
765 virt_dev = xhci->devs[slot_id];
766 if (virt_dev)
767 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
768 event);
769 else
770 xhci_warn(xhci, "Stop endpoint command "
771 "completion for disabled slot %u\n",
772 slot_id);
773 return;
774 }
775
776 memset(&deq_state, 0, sizeof(deq_state));
777 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
778 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
779 ep = &xhci->devs[slot_id]->eps[ep_index];
780
781 if (list_empty(&ep->cancelled_td_list)) {
782 xhci_stop_watchdog_timer_in_irq(xhci, ep);
783 ep->stopped_td = NULL;
784 ep->stopped_trb = NULL;
785 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
786 return;
787 }
788
789 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
790 * We have the xHCI lock, so nothing can modify this list until we drop
791 * it. We're also in the event handler, so we can't get re-interrupted
792 * if another Stop Endpoint command completes
793 */
794 list_for_each(entry, &ep->cancelled_td_list) {
795 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
796 xhci_dbg(xhci, "Removing canceled TD starting at 0x%llx (dma).\n",
797 (unsigned long long)xhci_trb_virt_to_dma(
798 cur_td->start_seg, cur_td->first_trb));
799 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
800 if (!ep_ring) {
801 /* This shouldn't happen unless a driver is mucking
802 * with the stream ID after submission. This will
803 * leave the TD on the hardware ring, and the hardware
804 * will try to execute it, and may access a buffer
805 * that has already been freed. In the best case, the
806 * hardware will execute it, and the event handler will
807 * ignore the completion event for that TD, since it was
808 * removed from the td_list for that endpoint. In
809 * short, don't muck with the stream ID after
810 * submission.
811 */
812 xhci_warn(xhci, "WARN Cancelled URB %p "
813 "has invalid stream ID %u.\n",
814 cur_td->urb,
815 cur_td->urb->stream_id);
816 goto remove_finished_td;
817 }
818 /*
819 * If we stopped on the TD we need to cancel, then we have to
820 * move the xHC endpoint ring dequeue pointer past this TD.
821 */
822 if (cur_td == ep->stopped_td)
823 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
824 cur_td->urb->stream_id,
825 cur_td, &deq_state);
826 else
827 td_to_noop(xhci, ep_ring, cur_td, false);
828 remove_finished_td:
829 /*
830 * The event handler won't see a completion for this TD anymore,
831 * so remove it from the endpoint ring's TD list. Keep it in
832 * the cancelled TD list for URB completion later.
833 */
834 list_del_init(&cur_td->td_list);
835 }
836 last_unlinked_td = cur_td;
837 xhci_stop_watchdog_timer_in_irq(xhci, ep);
838
839 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
840 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
841 xhci_queue_new_dequeue_state(xhci,
842 slot_id, ep_index,
843 ep->stopped_td->urb->stream_id,
844 &deq_state);
845 xhci_ring_cmd_db(xhci);
846 } else {
847 /* Otherwise ring the doorbell(s) to restart queued transfers */
848 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
849 }
850 ep->stopped_td = NULL;
851 ep->stopped_trb = NULL;
852
853 /*
854 * Drop the lock and complete the URBs in the cancelled TD list.
855 * New TDs to be cancelled might be added to the end of the list before
856 * we can complete all the URBs for the TDs we already unlinked.
857 * So stop when we've completed the URB for the last TD we unlinked.
858 */
859 do {
860 cur_td = list_entry(ep->cancelled_td_list.next,
861 struct xhci_td, cancelled_td_list);
862 list_del_init(&cur_td->cancelled_td_list);
863
864 /* Clean up the cancelled URB */
865 /* Doesn't matter what we pass for status, since the core will
866 * just overwrite it (because the URB has been unlinked).
867 */
868 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
869
870 /* Stop processing the cancelled list if the watchdog timer is
871 * running.
872 */
873 if (xhci->xhc_state & XHCI_STATE_DYING)
874 return;
875 } while (cur_td != last_unlinked_td);
876
877 /* Return to the event handler with xhci->lock re-acquired */
878 }
879
880 /* Watchdog timer function for when a stop endpoint command fails to complete.
881 * In this case, we assume the host controller is broken or dying or dead. The
882 * host may still be completing some other events, so we have to be careful to
883 * let the event ring handler and the URB dequeueing/enqueueing functions know
884 * through xhci->state.
885 *
886 * The timer may also fire if the host takes a very long time to respond to the
887 * command, and the stop endpoint command completion handler cannot delete the
888 * timer before the timer function is called. Another endpoint cancellation may
889 * sneak in before the timer function can grab the lock, and that may queue
890 * another stop endpoint command and add the timer back. So we cannot use a
891 * simple flag to say whether there is a pending stop endpoint command for a
892 * particular endpoint.
893 *
894 * Instead we use a combination of that flag and a counter for the number of
895 * pending stop endpoint commands. If the timer is the tail end of the last
896 * stop endpoint command, and the endpoint's command is still pending, we assume
897 * the host is dying.
898 */
899 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
900 {
901 struct xhci_hcd *xhci;
902 struct xhci_virt_ep *ep;
903 struct xhci_virt_ep *temp_ep;
904 struct xhci_ring *ring;
905 struct xhci_td *cur_td;
906 int ret, i, j;
907 unsigned long flags;
908
909 ep = (struct xhci_virt_ep *) arg;
910 xhci = ep->xhci;
911
912 spin_lock_irqsave(&xhci->lock, flags);
913
914 ep->stop_cmds_pending--;
915 if (xhci->xhc_state & XHCI_STATE_DYING) {
916 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
917 "xHCI as DYING, exiting.\n");
918 spin_unlock_irqrestore(&xhci->lock, flags);
919 return;
920 }
921 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
922 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
923 "exiting.\n");
924 spin_unlock_irqrestore(&xhci->lock, flags);
925 return;
926 }
927
928 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
929 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
930 /* Oops, HC is dead or dying or at least not responding to the stop
931 * endpoint command.
932 */
933 xhci->xhc_state |= XHCI_STATE_DYING;
934 /* Disable interrupts from the host controller and start halting it */
935 xhci_quiesce(xhci);
936 spin_unlock_irqrestore(&xhci->lock, flags);
937
938 ret = xhci_halt(xhci);
939
940 spin_lock_irqsave(&xhci->lock, flags);
941 if (ret < 0) {
942 /* This is bad; the host is not responding to commands and it's
943 * not allowing itself to be halted. At least interrupts are
944 * disabled. If we call usb_hc_died(), it will attempt to
945 * disconnect all device drivers under this host. Those
946 * disconnect() methods will wait for all URBs to be unlinked,
947 * so we must complete them.
948 */
949 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
950 xhci_warn(xhci, "Completing active URBs anyway.\n");
951 /* We could turn all TDs on the rings to no-ops. This won't
952 * help if the host has cached part of the ring, and is slow if
953 * we want to preserve the cycle bit. Skip it and hope the host
954 * doesn't touch the memory.
955 */
956 }
957 for (i = 0; i < MAX_HC_SLOTS; i++) {
958 if (!xhci->devs[i])
959 continue;
960 for (j = 0; j < 31; j++) {
961 temp_ep = &xhci->devs[i]->eps[j];
962 ring = temp_ep->ring;
963 if (!ring)
964 continue;
965 xhci_dbg(xhci, "Killing URBs for slot ID %u, "
966 "ep index %u\n", i, j);
967 while (!list_empty(&ring->td_list)) {
968 cur_td = list_first_entry(&ring->td_list,
969 struct xhci_td,
970 td_list);
971 list_del_init(&cur_td->td_list);
972 if (!list_empty(&cur_td->cancelled_td_list))
973 list_del_init(&cur_td->cancelled_td_list);
974 xhci_giveback_urb_in_irq(xhci, cur_td,
975 -ESHUTDOWN, "killed");
976 }
977 while (!list_empty(&temp_ep->cancelled_td_list)) {
978 cur_td = list_first_entry(
979 &temp_ep->cancelled_td_list,
980 struct xhci_td,
981 cancelled_td_list);
982 list_del_init(&cur_td->cancelled_td_list);
983 xhci_giveback_urb_in_irq(xhci, cur_td,
984 -ESHUTDOWN, "killed");
985 }
986 }
987 }
988 spin_unlock_irqrestore(&xhci->lock, flags);
989 xhci_dbg(xhci, "Calling usb_hc_died()\n");
990 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
991 xhci_dbg(xhci, "xHCI host controller is dead.\n");
992 }
993
994
995 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
996 struct xhci_virt_device *dev,
997 struct xhci_ring *ep_ring,
998 unsigned int ep_index)
999 {
1000 union xhci_trb *dequeue_temp;
1001 int num_trbs_free_temp;
1002 bool revert = false;
1003
1004 num_trbs_free_temp = ep_ring->num_trbs_free;
1005 dequeue_temp = ep_ring->dequeue;
1006
1007 /* If we get two back-to-back stalls, and the first stalled transfer
1008 * ends just before a link TRB, the dequeue pointer will be left on
1009 * the link TRB by the code in the while loop. So we have to update
1010 * the dequeue pointer one segment further, or we'll jump off
1011 * the segment into la-la-land.
1012 */
1013 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
1014 ep_ring->deq_seg = ep_ring->deq_seg->next;
1015 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1016 }
1017
1018 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1019 /* We have more usable TRBs */
1020 ep_ring->num_trbs_free++;
1021 ep_ring->dequeue++;
1022 if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
1023 ep_ring->dequeue)) {
1024 if (ep_ring->dequeue ==
1025 dev->eps[ep_index].queued_deq_ptr)
1026 break;
1027 ep_ring->deq_seg = ep_ring->deq_seg->next;
1028 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1029 }
1030 if (ep_ring->dequeue == dequeue_temp) {
1031 revert = true;
1032 break;
1033 }
1034 }
1035
1036 if (revert) {
1037 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1038 ep_ring->num_trbs_free = num_trbs_free_temp;
1039 }
1040 }
1041
1042 /*
1043 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1044 * we need to clear the set deq pending flag in the endpoint ring state, so that
1045 * the TD queueing code can ring the doorbell again. We also need to ring the
1046 * endpoint doorbell to restart the ring, but only if there aren't more
1047 * cancellations pending.
1048 */
1049 static void handle_set_deq_completion(struct xhci_hcd *xhci,
1050 struct xhci_event_cmd *event,
1051 union xhci_trb *trb)
1052 {
1053 unsigned int slot_id;
1054 unsigned int ep_index;
1055 unsigned int stream_id;
1056 struct xhci_ring *ep_ring;
1057 struct xhci_virt_device *dev;
1058 struct xhci_ep_ctx *ep_ctx;
1059 struct xhci_slot_ctx *slot_ctx;
1060
1061 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1062 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1063 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1064 dev = xhci->devs[slot_id];
1065
1066 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1067 if (!ep_ring) {
1068 xhci_warn(xhci, "WARN Set TR deq ptr command for "
1069 "freed stream ID %u\n",
1070 stream_id);
1071 /* XXX: Harmless??? */
1072 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1073 return;
1074 }
1075
1076 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1077 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1078
1079 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
1080 unsigned int ep_state;
1081 unsigned int slot_state;
1082
1083 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
1084 case COMP_TRB_ERR:
1085 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
1086 "of stream ID configuration\n");
1087 break;
1088 case COMP_CTX_STATE:
1089 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
1090 "to incorrect slot or ep state.\n");
1091 ep_state = le32_to_cpu(ep_ctx->ep_info);
1092 ep_state &= EP_STATE_MASK;
1093 slot_state = le32_to_cpu(slot_ctx->dev_state);
1094 slot_state = GET_SLOT_STATE(slot_state);
1095 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
1096 slot_state, ep_state);
1097 break;
1098 case COMP_EBADSLT:
1099 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
1100 "slot %u was not enabled.\n", slot_id);
1101 break;
1102 default:
1103 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
1104 "completion code of %u.\n",
1105 GET_COMP_CODE(le32_to_cpu(event->status)));
1106 break;
1107 }
1108 /* OK what do we do now? The endpoint state is hosed, and we
1109 * should never get to this point if the synchronization between
1110 * queueing, and endpoint state are correct. This might happen
1111 * if the device gets disconnected after we've finished
1112 * cancelling URBs, which might not be an error...
1113 */
1114 } else {
1115 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
1116 le64_to_cpu(ep_ctx->deq));
1117 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
1118 dev->eps[ep_index].queued_deq_ptr) ==
1119 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
1120 /* Update the ring's dequeue segment and dequeue pointer
1121 * to reflect the new position.
1122 */
1123 update_ring_for_set_deq_completion(xhci, dev,
1124 ep_ring, ep_index);
1125 } else {
1126 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
1127 "Ptr command & xHCI internal state.\n");
1128 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1129 dev->eps[ep_index].queued_deq_seg,
1130 dev->eps[ep_index].queued_deq_ptr);
1131 }
1132 }
1133
1134 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1135 dev->eps[ep_index].queued_deq_seg = NULL;
1136 dev->eps[ep_index].queued_deq_ptr = NULL;
1137 /* Restart any rings with pending URBs */
1138 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1139 }
1140
1141 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1142 struct xhci_event_cmd *event,
1143 union xhci_trb *trb)
1144 {
1145 int slot_id;
1146 unsigned int ep_index;
1147
1148 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1149 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1150 /* This command will only fail if the endpoint wasn't halted,
1151 * but we don't care.
1152 */
1153 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1154 GET_COMP_CODE(le32_to_cpu(event->status)));
1155
1156 /* HW with the reset endpoint quirk needs to have a configure endpoint
1157 * command complete before the endpoint can be used. Queue that here
1158 * because the HW can't handle two commands being queued in a row.
1159 */
1160 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1161 xhci_dbg(xhci, "Queueing configure endpoint command\n");
1162 xhci_queue_configure_endpoint(xhci,
1163 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1164 false);
1165 xhci_ring_cmd_db(xhci);
1166 } else {
1167 /* Clear our internal halted state and restart the ring(s) */
1168 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1169 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1170 }
1171 }
1172
1173 /* Complete the command and detele it from the devcie's command queue.
1174 */
1175 static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1176 struct xhci_command *command, u32 status)
1177 {
1178 command->status = status;
1179 list_del(&command->cmd_list);
1180 if (command->completion)
1181 complete(command->completion);
1182 else
1183 xhci_free_command(xhci, command);
1184 }
1185
1186
1187 /* Check to see if a command in the device's command queue matches this one.
1188 * Signal the completion or free the command, and return 1. Return 0 if the
1189 * completed command isn't at the head of the command list.
1190 */
1191 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1192 struct xhci_virt_device *virt_dev,
1193 struct xhci_event_cmd *event)
1194 {
1195 struct xhci_command *command;
1196
1197 if (list_empty(&virt_dev->cmd_list))
1198 return 0;
1199
1200 command = list_entry(virt_dev->cmd_list.next,
1201 struct xhci_command, cmd_list);
1202 if (xhci->cmd_ring->dequeue != command->command_trb)
1203 return 0;
1204
1205 xhci_complete_cmd_in_cmd_wait_list(xhci, command,
1206 GET_COMP_CODE(le32_to_cpu(event->status)));
1207 return 1;
1208 }
1209
1210 /*
1211 * Finding the command trb need to be cancelled and modifying it to
1212 * NO OP command. And if the command is in device's command wait
1213 * list, finishing and freeing it.
1214 *
1215 * If we can't find the command trb, we think it had already been
1216 * executed.
1217 */
1218 static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd)
1219 {
1220 struct xhci_segment *cur_seg;
1221 union xhci_trb *cmd_trb;
1222 u32 cycle_state;
1223
1224 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1225 return;
1226
1227 /* find the current segment of command ring */
1228 cur_seg = find_trb_seg(xhci->cmd_ring->first_seg,
1229 xhci->cmd_ring->dequeue, &cycle_state);
1230
1231 if (!cur_seg) {
1232 xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n",
1233 xhci->cmd_ring->dequeue,
1234 (unsigned long long)
1235 xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1236 xhci->cmd_ring->dequeue));
1237 xhci_debug_ring(xhci, xhci->cmd_ring);
1238 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
1239 return;
1240 }
1241
1242 /* find the command trb matched by cd from command ring */
1243 for (cmd_trb = xhci->cmd_ring->dequeue;
1244 cmd_trb != xhci->cmd_ring->enqueue;
1245 next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) {
1246 /* If the trb is link trb, continue */
1247 if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3]))
1248 continue;
1249
1250 if (cur_cd->cmd_trb == cmd_trb) {
1251
1252 /* If the command in device's command list, we should
1253 * finish it and free the command structure.
1254 */
1255 if (cur_cd->command)
1256 xhci_complete_cmd_in_cmd_wait_list(xhci,
1257 cur_cd->command, COMP_CMD_STOP);
1258
1259 /* get cycle state from the origin command trb */
1260 cycle_state = le32_to_cpu(cmd_trb->generic.field[3])
1261 & TRB_CYCLE;
1262
1263 /* modify the command trb to NO OP command */
1264 cmd_trb->generic.field[0] = 0;
1265 cmd_trb->generic.field[1] = 0;
1266 cmd_trb->generic.field[2] = 0;
1267 cmd_trb->generic.field[3] = cpu_to_le32(
1268 TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1269 break;
1270 }
1271 }
1272 }
1273
1274 static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci)
1275 {
1276 struct xhci_cd *cur_cd, *next_cd;
1277
1278 if (list_empty(&xhci->cancel_cmd_list))
1279 return;
1280
1281 list_for_each_entry_safe(cur_cd, next_cd,
1282 &xhci->cancel_cmd_list, cancel_cmd_list) {
1283 xhci_cmd_to_noop(xhci, cur_cd);
1284 list_del(&cur_cd->cancel_cmd_list);
1285 kfree(cur_cd);
1286 }
1287 }
1288
1289 /*
1290 * traversing the cancel_cmd_list. If the command descriptor according
1291 * to cmd_trb is found, the function free it and return 1, otherwise
1292 * return 0.
1293 */
1294 static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci,
1295 union xhci_trb *cmd_trb)
1296 {
1297 struct xhci_cd *cur_cd, *next_cd;
1298
1299 if (list_empty(&xhci->cancel_cmd_list))
1300 return 0;
1301
1302 list_for_each_entry_safe(cur_cd, next_cd,
1303 &xhci->cancel_cmd_list, cancel_cmd_list) {
1304 if (cur_cd->cmd_trb == cmd_trb) {
1305 if (cur_cd->command)
1306 xhci_complete_cmd_in_cmd_wait_list(xhci,
1307 cur_cd->command, COMP_CMD_STOP);
1308 list_del(&cur_cd->cancel_cmd_list);
1309 kfree(cur_cd);
1310 return 1;
1311 }
1312 }
1313
1314 return 0;
1315 }
1316
1317 /*
1318 * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the
1319 * trb pointed by the command ring dequeue pointer is the trb we want to
1320 * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will
1321 * traverse the cancel_cmd_list to trun the all of the commands according
1322 * to command descriptor to NO-OP trb.
1323 */
1324 static int handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1325 int cmd_trb_comp_code)
1326 {
1327 int cur_trb_is_good = 0;
1328
1329 /* Searching the cmd trb pointed by the command ring dequeue
1330 * pointer in command descriptor list. If it is found, free it.
1331 */
1332 cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci,
1333 xhci->cmd_ring->dequeue);
1334
1335 if (cmd_trb_comp_code == COMP_CMD_ABORT)
1336 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1337 else if (cmd_trb_comp_code == COMP_CMD_STOP) {
1338 /* traversing the cancel_cmd_list and canceling
1339 * the command according to command descriptor
1340 */
1341 xhci_cancel_cmd_in_cd_list(xhci);
1342
1343 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1344 /*
1345 * ring command ring doorbell again to restart the
1346 * command ring
1347 */
1348 if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue)
1349 xhci_ring_cmd_db(xhci);
1350 }
1351 return cur_trb_is_good;
1352 }
1353
1354 static void handle_cmd_completion(struct xhci_hcd *xhci,
1355 struct xhci_event_cmd *event)
1356 {
1357 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1358 u64 cmd_dma;
1359 dma_addr_t cmd_dequeue_dma;
1360 struct xhci_input_control_ctx *ctrl_ctx;
1361 struct xhci_virt_device *virt_dev;
1362 unsigned int ep_index;
1363 struct xhci_ring *ep_ring;
1364 unsigned int ep_state;
1365
1366 cmd_dma = le64_to_cpu(event->cmd_trb);
1367 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1368 xhci->cmd_ring->dequeue);
1369 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1370 if (cmd_dequeue_dma == 0) {
1371 xhci->error_bitmask |= 1 << 4;
1372 return;
1373 }
1374 /* Does the DMA address match our internal dequeue pointer address? */
1375 if (cmd_dma != (u64) cmd_dequeue_dma) {
1376 xhci->error_bitmask |= 1 << 5;
1377 return;
1378 }
1379
1380 if ((GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_ABORT) ||
1381 (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_STOP)) {
1382 /* If the return value is 0, we think the trb pointed by
1383 * command ring dequeue pointer is a good trb. The good
1384 * trb means we don't want to cancel the trb, but it have
1385 * been stopped by host. So we should handle it normally.
1386 * Otherwise, driver should invoke inc_deq() and return.
1387 */
1388 if (handle_stopped_cmd_ring(xhci,
1389 GET_COMP_CODE(le32_to_cpu(event->status)))) {
1390 inc_deq(xhci, xhci->cmd_ring);
1391 return;
1392 }
1393 }
1394
1395 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1396 & TRB_TYPE_BITMASK) {
1397 case TRB_TYPE(TRB_ENABLE_SLOT):
1398 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1399 xhci->slot_id = slot_id;
1400 else
1401 xhci->slot_id = 0;
1402 complete(&xhci->addr_dev);
1403 break;
1404 case TRB_TYPE(TRB_DISABLE_SLOT):
1405 if (xhci->devs[slot_id]) {
1406 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1407 /* Delete default control endpoint resources */
1408 xhci_free_device_endpoint_resources(xhci,
1409 xhci->devs[slot_id], true);
1410 xhci_free_virt_device(xhci, slot_id);
1411 }
1412 break;
1413 case TRB_TYPE(TRB_CONFIG_EP):
1414 virt_dev = xhci->devs[slot_id];
1415 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1416 break;
1417 /*
1418 * Configure endpoint commands can come from the USB core
1419 * configuration or alt setting changes, or because the HW
1420 * needed an extra configure endpoint command after a reset
1421 * endpoint command or streams were being configured.
1422 * If the command was for a halted endpoint, the xHCI driver
1423 * is not waiting on the configure endpoint command.
1424 */
1425 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1426 virt_dev->in_ctx);
1427 /* Input ctx add_flags are the endpoint index plus one */
1428 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1429 /* A usb_set_interface() call directly after clearing a halted
1430 * condition may race on this quirky hardware. Not worth
1431 * worrying about, since this is prototype hardware. Not sure
1432 * if this will work for streams, but streams support was
1433 * untested on this prototype.
1434 */
1435 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1436 ep_index != (unsigned int) -1 &&
1437 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1438 le32_to_cpu(ctrl_ctx->drop_flags)) {
1439 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1440 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1441 if (!(ep_state & EP_HALTED))
1442 goto bandwidth_change;
1443 xhci_dbg(xhci, "Completed config ep cmd - "
1444 "last ep index = %d, state = %d\n",
1445 ep_index, ep_state);
1446 /* Clear internal halted state and restart ring(s) */
1447 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1448 ~EP_HALTED;
1449 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1450 break;
1451 }
1452 bandwidth_change:
1453 xhci_dbg(xhci, "Completed config ep cmd\n");
1454 xhci->devs[slot_id]->cmd_status =
1455 GET_COMP_CODE(le32_to_cpu(event->status));
1456 complete(&xhci->devs[slot_id]->cmd_completion);
1457 break;
1458 case TRB_TYPE(TRB_EVAL_CONTEXT):
1459 virt_dev = xhci->devs[slot_id];
1460 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1461 break;
1462 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1463 complete(&xhci->devs[slot_id]->cmd_completion);
1464 break;
1465 case TRB_TYPE(TRB_ADDR_DEV):
1466 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1467 complete(&xhci->addr_dev);
1468 break;
1469 case TRB_TYPE(TRB_STOP_RING):
1470 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1471 break;
1472 case TRB_TYPE(TRB_SET_DEQ):
1473 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1474 break;
1475 case TRB_TYPE(TRB_CMD_NOOP):
1476 break;
1477 case TRB_TYPE(TRB_RESET_EP):
1478 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1479 break;
1480 case TRB_TYPE(TRB_RESET_DEV):
1481 xhci_dbg(xhci, "Completed reset device command.\n");
1482 slot_id = TRB_TO_SLOT_ID(
1483 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1484 virt_dev = xhci->devs[slot_id];
1485 if (virt_dev)
1486 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1487 else
1488 xhci_warn(xhci, "Reset device command completion "
1489 "for disabled slot %u\n", slot_id);
1490 break;
1491 case TRB_TYPE(TRB_NEC_GET_FW):
1492 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1493 xhci->error_bitmask |= 1 << 6;
1494 break;
1495 }
1496 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1497 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1498 NEC_FW_MINOR(le32_to_cpu(event->status)));
1499 break;
1500 default:
1501 /* Skip over unknown commands on the event ring */
1502 xhci->error_bitmask |= 1 << 6;
1503 break;
1504 }
1505 inc_deq(xhci, xhci->cmd_ring);
1506 }
1507
1508 static void handle_vendor_event(struct xhci_hcd *xhci,
1509 union xhci_trb *event)
1510 {
1511 u32 trb_type;
1512
1513 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1514 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1515 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1516 handle_cmd_completion(xhci, &event->event_cmd);
1517 }
1518
1519 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1520 * port registers -- USB 3.0 and USB 2.0).
1521 *
1522 * Returns a zero-based port number, which is suitable for indexing into each of
1523 * the split roothubs' port arrays and bus state arrays.
1524 * Add one to it in order to call xhci_find_slot_id_by_port.
1525 */
1526 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1527 struct xhci_hcd *xhci, u32 port_id)
1528 {
1529 unsigned int i;
1530 unsigned int num_similar_speed_ports = 0;
1531
1532 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1533 * and usb2_ports are 0-based indexes. Count the number of similar
1534 * speed ports, up to 1 port before this port.
1535 */
1536 for (i = 0; i < (port_id - 1); i++) {
1537 u8 port_speed = xhci->port_array[i];
1538
1539 /*
1540 * Skip ports that don't have known speeds, or have duplicate
1541 * Extended Capabilities port speed entries.
1542 */
1543 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1544 continue;
1545
1546 /*
1547 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1548 * 1.1 ports are under the USB 2.0 hub. If the port speed
1549 * matches the device speed, it's a similar speed port.
1550 */
1551 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1552 num_similar_speed_ports++;
1553 }
1554 return num_similar_speed_ports;
1555 }
1556
1557 static void handle_device_notification(struct xhci_hcd *xhci,
1558 union xhci_trb *event)
1559 {
1560 u32 slot_id;
1561 struct usb_device *udev;
1562
1563 slot_id = TRB_TO_SLOT_ID(event->generic.field[3]);
1564 if (!xhci->devs[slot_id]) {
1565 xhci_warn(xhci, "Device Notification event for "
1566 "unused slot %u\n", slot_id);
1567 return;
1568 }
1569
1570 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1571 slot_id);
1572 udev = xhci->devs[slot_id]->udev;
1573 if (udev && udev->parent)
1574 usb_wakeup_notification(udev->parent, udev->portnum);
1575 }
1576
1577 static void handle_port_status(struct xhci_hcd *xhci,
1578 union xhci_trb *event)
1579 {
1580 struct usb_hcd *hcd;
1581 u32 port_id;
1582 u32 temp, temp1;
1583 int max_ports;
1584 int slot_id;
1585 unsigned int faked_port_index;
1586 u8 major_revision;
1587 struct xhci_bus_state *bus_state;
1588 __le32 __iomem **port_array;
1589 bool bogus_port_status = false;
1590
1591 /* Port status change events always have a successful completion code */
1592 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1593 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1594 xhci->error_bitmask |= 1 << 8;
1595 }
1596 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1597 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1598
1599 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1600 if ((port_id <= 0) || (port_id > max_ports)) {
1601 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1602 bogus_port_status = true;
1603 goto cleanup;
1604 }
1605
1606 /* Figure out which usb_hcd this port is attached to:
1607 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1608 */
1609 major_revision = xhci->port_array[port_id - 1];
1610 if (major_revision == 0) {
1611 xhci_warn(xhci, "Event for port %u not in "
1612 "Extended Capabilities, ignoring.\n",
1613 port_id);
1614 bogus_port_status = true;
1615 goto cleanup;
1616 }
1617 if (major_revision == DUPLICATE_ENTRY) {
1618 xhci_warn(xhci, "Event for port %u duplicated in"
1619 "Extended Capabilities, ignoring.\n",
1620 port_id);
1621 bogus_port_status = true;
1622 goto cleanup;
1623 }
1624
1625 /*
1626 * Hardware port IDs reported by a Port Status Change Event include USB
1627 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1628 * resume event, but we first need to translate the hardware port ID
1629 * into the index into the ports on the correct split roothub, and the
1630 * correct bus_state structure.
1631 */
1632 /* Find the right roothub. */
1633 hcd = xhci_to_hcd(xhci);
1634 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1635 hcd = xhci->shared_hcd;
1636 bus_state = &xhci->bus_state[hcd_index(hcd)];
1637 if (hcd->speed == HCD_USB3)
1638 port_array = xhci->usb3_ports;
1639 else
1640 port_array = xhci->usb2_ports;
1641 /* Find the faked port hub number */
1642 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1643 port_id);
1644
1645 temp = xhci_readl(xhci, port_array[faked_port_index]);
1646 if (hcd->state == HC_STATE_SUSPENDED) {
1647 xhci_dbg(xhci, "resume root hub\n");
1648 usb_hcd_resume_root_hub(hcd);
1649 }
1650
1651 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1652 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1653
1654 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1655 if (!(temp1 & CMD_RUN)) {
1656 xhci_warn(xhci, "xHC is not running.\n");
1657 goto cleanup;
1658 }
1659
1660 if (DEV_SUPERSPEED(temp)) {
1661 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1662 /* Set a flag to say the port signaled remote wakeup,
1663 * so we can tell the difference between the end of
1664 * device and host initiated resume.
1665 */
1666 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1667 xhci_test_and_clear_bit(xhci, port_array,
1668 faked_port_index, PORT_PLC);
1669 xhci_set_link_state(xhci, port_array, faked_port_index,
1670 XDEV_U0);
1671 /* Need to wait until the next link state change
1672 * indicates the device is actually in U0.
1673 */
1674 bogus_port_status = true;
1675 goto cleanup;
1676 } else {
1677 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1678 bus_state->resume_done[faked_port_index] = jiffies +
1679 msecs_to_jiffies(20);
1680 set_bit(faked_port_index, &bus_state->resuming_ports);
1681 mod_timer(&hcd->rh_timer,
1682 bus_state->resume_done[faked_port_index]);
1683 /* Do the rest in GetPortStatus */
1684 }
1685 }
1686
1687 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1688 DEV_SUPERSPEED(temp)) {
1689 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1690 /* We've just brought the device into U0 through either the
1691 * Resume state after a device remote wakeup, or through the
1692 * U3Exit state after a host-initiated resume. If it's a device
1693 * initiated remote wake, don't pass up the link state change,
1694 * so the roothub behavior is consistent with external
1695 * USB 3.0 hub behavior.
1696 */
1697 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1698 faked_port_index + 1);
1699 if (slot_id && xhci->devs[slot_id])
1700 xhci_ring_device(xhci, slot_id);
1701 if (bus_state->port_remote_wakeup && (1 << faked_port_index)) {
1702 bus_state->port_remote_wakeup &=
1703 ~(1 << faked_port_index);
1704 xhci_test_and_clear_bit(xhci, port_array,
1705 faked_port_index, PORT_PLC);
1706 usb_wakeup_notification(hcd->self.root_hub,
1707 faked_port_index + 1);
1708 bogus_port_status = true;
1709 goto cleanup;
1710 }
1711 }
1712
1713 if (hcd->speed != HCD_USB3)
1714 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1715 PORT_PLC);
1716
1717 cleanup:
1718 /* Update event ring dequeue pointer before dropping the lock */
1719 inc_deq(xhci, xhci->event_ring);
1720
1721 /* Don't make the USB core poll the roothub if we got a bad port status
1722 * change event. Besides, at that point we can't tell which roothub
1723 * (USB 2.0 or USB 3.0) to kick.
1724 */
1725 if (bogus_port_status)
1726 return;
1727
1728 spin_unlock(&xhci->lock);
1729 /* Pass this up to the core */
1730 usb_hcd_poll_rh_status(hcd);
1731 spin_lock(&xhci->lock);
1732 }
1733
1734 /*
1735 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1736 * at end_trb, which may be in another segment. If the suspect DMA address is a
1737 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1738 * returns 0.
1739 */
1740 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1741 union xhci_trb *start_trb,
1742 union xhci_trb *end_trb,
1743 dma_addr_t suspect_dma)
1744 {
1745 dma_addr_t start_dma;
1746 dma_addr_t end_seg_dma;
1747 dma_addr_t end_trb_dma;
1748 struct xhci_segment *cur_seg;
1749
1750 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1751 cur_seg = start_seg;
1752
1753 do {
1754 if (start_dma == 0)
1755 return NULL;
1756 /* We may get an event for a Link TRB in the middle of a TD */
1757 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1758 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1759 /* If the end TRB isn't in this segment, this is set to 0 */
1760 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1761
1762 if (end_trb_dma > 0) {
1763 /* The end TRB is in this segment, so suspect should be here */
1764 if (start_dma <= end_trb_dma) {
1765 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1766 return cur_seg;
1767 } else {
1768 /* Case for one segment with
1769 * a TD wrapped around to the top
1770 */
1771 if ((suspect_dma >= start_dma &&
1772 suspect_dma <= end_seg_dma) ||
1773 (suspect_dma >= cur_seg->dma &&
1774 suspect_dma <= end_trb_dma))
1775 return cur_seg;
1776 }
1777 return NULL;
1778 } else {
1779 /* Might still be somewhere in this segment */
1780 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1781 return cur_seg;
1782 }
1783 cur_seg = cur_seg->next;
1784 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1785 } while (cur_seg != start_seg);
1786
1787 return NULL;
1788 }
1789
1790 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1791 unsigned int slot_id, unsigned int ep_index,
1792 unsigned int stream_id,
1793 struct xhci_td *td, union xhci_trb *event_trb)
1794 {
1795 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1796 ep->ep_state |= EP_HALTED;
1797 ep->stopped_td = td;
1798 ep->stopped_trb = event_trb;
1799 ep->stopped_stream = stream_id;
1800
1801 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1802 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1803
1804 ep->stopped_td = NULL;
1805 ep->stopped_trb = NULL;
1806 ep->stopped_stream = 0;
1807
1808 xhci_ring_cmd_db(xhci);
1809 }
1810
1811 /* Check if an error has halted the endpoint ring. The class driver will
1812 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1813 * However, a babble and other errors also halt the endpoint ring, and the class
1814 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1815 * Ring Dequeue Pointer command manually.
1816 */
1817 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1818 struct xhci_ep_ctx *ep_ctx,
1819 unsigned int trb_comp_code)
1820 {
1821 /* TRB completion codes that may require a manual halt cleanup */
1822 if (trb_comp_code == COMP_TX_ERR ||
1823 trb_comp_code == COMP_BABBLE ||
1824 trb_comp_code == COMP_SPLIT_ERR)
1825 /* The 0.96 spec says a babbling control endpoint
1826 * is not halted. The 0.96 spec says it is. Some HW
1827 * claims to be 0.95 compliant, but it halts the control
1828 * endpoint anyway. Check if a babble halted the
1829 * endpoint.
1830 */
1831 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1832 cpu_to_le32(EP_STATE_HALTED))
1833 return 1;
1834
1835 return 0;
1836 }
1837
1838 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1839 {
1840 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1841 /* Vendor defined "informational" completion code,
1842 * treat as not-an-error.
1843 */
1844 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1845 trb_comp_code);
1846 xhci_dbg(xhci, "Treating code as success.\n");
1847 return 1;
1848 }
1849 return 0;
1850 }
1851
1852 /*
1853 * Finish the td processing, remove the td from td list;
1854 * Return 1 if the urb can be given back.
1855 */
1856 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1857 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1858 struct xhci_virt_ep *ep, int *status, bool skip)
1859 {
1860 struct xhci_virt_device *xdev;
1861 struct xhci_ring *ep_ring;
1862 unsigned int slot_id;
1863 int ep_index;
1864 struct urb *urb = NULL;
1865 struct xhci_ep_ctx *ep_ctx;
1866 int ret = 0;
1867 struct urb_priv *urb_priv;
1868 u32 trb_comp_code;
1869
1870 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1871 xdev = xhci->devs[slot_id];
1872 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1873 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1874 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1875 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1876
1877 if (skip)
1878 goto td_cleanup;
1879
1880 if (trb_comp_code == COMP_STOP_INVAL ||
1881 trb_comp_code == COMP_STOP) {
1882 /* The Endpoint Stop Command completion will take care of any
1883 * stopped TDs. A stopped TD may be restarted, so don't update
1884 * the ring dequeue pointer or take this TD off any lists yet.
1885 */
1886 ep->stopped_td = td;
1887 ep->stopped_trb = event_trb;
1888 return 0;
1889 } else {
1890 if (trb_comp_code == COMP_STALL) {
1891 /* The transfer is completed from the driver's
1892 * perspective, but we need to issue a set dequeue
1893 * command for this stalled endpoint to move the dequeue
1894 * pointer past the TD. We can't do that here because
1895 * the halt condition must be cleared first. Let the
1896 * USB class driver clear the stall later.
1897 */
1898 ep->stopped_td = td;
1899 ep->stopped_trb = event_trb;
1900 ep->stopped_stream = ep_ring->stream_id;
1901 } else if (xhci_requires_manual_halt_cleanup(xhci,
1902 ep_ctx, trb_comp_code)) {
1903 /* Other types of errors halt the endpoint, but the
1904 * class driver doesn't call usb_reset_endpoint() unless
1905 * the error is -EPIPE. Clear the halted status in the
1906 * xHCI hardware manually.
1907 */
1908 xhci_cleanup_halted_endpoint(xhci,
1909 slot_id, ep_index, ep_ring->stream_id,
1910 td, event_trb);
1911 } else {
1912 /* Update ring dequeue pointer */
1913 while (ep_ring->dequeue != td->last_trb)
1914 inc_deq(xhci, ep_ring);
1915 inc_deq(xhci, ep_ring);
1916 }
1917
1918 td_cleanup:
1919 /* Clean up the endpoint's TD list */
1920 urb = td->urb;
1921 urb_priv = urb->hcpriv;
1922
1923 /* Do one last check of the actual transfer length.
1924 * If the host controller said we transferred more data than
1925 * the buffer length, urb->actual_length will be a very big
1926 * number (since it's unsigned). Play it safe and say we didn't
1927 * transfer anything.
1928 */
1929 if (urb->actual_length > urb->transfer_buffer_length) {
1930 xhci_warn(xhci, "URB transfer length is wrong, "
1931 "xHC issue? req. len = %u, "
1932 "act. len = %u\n",
1933 urb->transfer_buffer_length,
1934 urb->actual_length);
1935 urb->actual_length = 0;
1936 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1937 *status = -EREMOTEIO;
1938 else
1939 *status = 0;
1940 }
1941 list_del_init(&td->td_list);
1942 /* Was this TD slated to be cancelled but completed anyway? */
1943 if (!list_empty(&td->cancelled_td_list))
1944 list_del_init(&td->cancelled_td_list);
1945
1946 urb_priv->td_cnt++;
1947 /* Giveback the urb when all the tds are completed */
1948 if (urb_priv->td_cnt == urb_priv->length) {
1949 ret = 1;
1950 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1951 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1952 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1953 == 0) {
1954 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1955 usb_amd_quirk_pll_enable();
1956 }
1957 }
1958 }
1959 }
1960
1961 return ret;
1962 }
1963
1964 /*
1965 * Process control tds, update urb status and actual_length.
1966 */
1967 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1968 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1969 struct xhci_virt_ep *ep, int *status)
1970 {
1971 struct xhci_virt_device *xdev;
1972 struct xhci_ring *ep_ring;
1973 unsigned int slot_id;
1974 int ep_index;
1975 struct xhci_ep_ctx *ep_ctx;
1976 u32 trb_comp_code;
1977
1978 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1979 xdev = xhci->devs[slot_id];
1980 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1981 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1982 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1983 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1984
1985 switch (trb_comp_code) {
1986 case COMP_SUCCESS:
1987 if (event_trb == ep_ring->dequeue) {
1988 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1989 "without IOC set??\n");
1990 *status = -ESHUTDOWN;
1991 } else if (event_trb != td->last_trb) {
1992 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1993 "without IOC set??\n");
1994 *status = -ESHUTDOWN;
1995 } else {
1996 *status = 0;
1997 }
1998 break;
1999 case COMP_SHORT_TX:
2000 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2001 *status = -EREMOTEIO;
2002 else
2003 *status = 0;
2004 break;
2005 case COMP_STOP_INVAL:
2006 case COMP_STOP:
2007 return finish_td(xhci, td, event_trb, event, ep, status, false);
2008 default:
2009 if (!xhci_requires_manual_halt_cleanup(xhci,
2010 ep_ctx, trb_comp_code))
2011 break;
2012 xhci_dbg(xhci, "TRB error code %u, "
2013 "halted endpoint index = %u\n",
2014 trb_comp_code, ep_index);
2015 /* else fall through */
2016 case COMP_STALL:
2017 /* Did we transfer part of the data (middle) phase? */
2018 if (event_trb != ep_ring->dequeue &&
2019 event_trb != td->last_trb)
2020 td->urb->actual_length =
2021 td->urb->transfer_buffer_length
2022 - TRB_LEN(le32_to_cpu(event->transfer_len));
2023 else
2024 td->urb->actual_length = 0;
2025
2026 xhci_cleanup_halted_endpoint(xhci,
2027 slot_id, ep_index, 0, td, event_trb);
2028 return finish_td(xhci, td, event_trb, event, ep, status, true);
2029 }
2030 /*
2031 * Did we transfer any data, despite the errors that might have
2032 * happened? I.e. did we get past the setup stage?
2033 */
2034 if (event_trb != ep_ring->dequeue) {
2035 /* The event was for the status stage */
2036 if (event_trb == td->last_trb) {
2037 if (td->urb->actual_length != 0) {
2038 /* Don't overwrite a previously set error code
2039 */
2040 if ((*status == -EINPROGRESS || *status == 0) &&
2041 (td->urb->transfer_flags
2042 & URB_SHORT_NOT_OK))
2043 /* Did we already see a short data
2044 * stage? */
2045 *status = -EREMOTEIO;
2046 } else {
2047 td->urb->actual_length =
2048 td->urb->transfer_buffer_length;
2049 }
2050 } else {
2051 /* Maybe the event was for the data stage? */
2052 td->urb->actual_length =
2053 td->urb->transfer_buffer_length -
2054 TRB_LEN(le32_to_cpu(event->transfer_len));
2055 xhci_dbg(xhci, "Waiting for status "
2056 "stage event\n");
2057 return 0;
2058 }
2059 }
2060
2061 return finish_td(xhci, td, event_trb, event, ep, status, false);
2062 }
2063
2064 /*
2065 * Process isochronous tds, update urb packet status and actual_length.
2066 */
2067 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2068 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2069 struct xhci_virt_ep *ep, int *status)
2070 {
2071 struct xhci_ring *ep_ring;
2072 struct urb_priv *urb_priv;
2073 int idx;
2074 int len = 0;
2075 union xhci_trb *cur_trb;
2076 struct xhci_segment *cur_seg;
2077 struct usb_iso_packet_descriptor *frame;
2078 u32 trb_comp_code;
2079 bool skip_td = false;
2080
2081 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2082 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2083 urb_priv = td->urb->hcpriv;
2084 idx = urb_priv->td_cnt;
2085 frame = &td->urb->iso_frame_desc[idx];
2086
2087 /* handle completion code */
2088 switch (trb_comp_code) {
2089 case COMP_SUCCESS:
2090 if (TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2091 frame->status = 0;
2092 break;
2093 }
2094 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2095 trb_comp_code = COMP_SHORT_TX;
2096 case COMP_SHORT_TX:
2097 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2098 -EREMOTEIO : 0;
2099 break;
2100 case COMP_BW_OVER:
2101 frame->status = -ECOMM;
2102 skip_td = true;
2103 break;
2104 case COMP_BUFF_OVER:
2105 case COMP_BABBLE:
2106 frame->status = -EOVERFLOW;
2107 skip_td = true;
2108 break;
2109 case COMP_DEV_ERR:
2110 case COMP_STALL:
2111 case COMP_TX_ERR:
2112 frame->status = -EPROTO;
2113 skip_td = true;
2114 break;
2115 case COMP_STOP:
2116 case COMP_STOP_INVAL:
2117 break;
2118 default:
2119 frame->status = -1;
2120 break;
2121 }
2122
2123 if (trb_comp_code == COMP_SUCCESS || skip_td) {
2124 frame->actual_length = frame->length;
2125 td->urb->actual_length += frame->length;
2126 } else {
2127 for (cur_trb = ep_ring->dequeue,
2128 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2129 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2130 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2131 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2132 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2133 }
2134 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2135 TRB_LEN(le32_to_cpu(event->transfer_len));
2136
2137 if (trb_comp_code != COMP_STOP_INVAL) {
2138 frame->actual_length = len;
2139 td->urb->actual_length += len;
2140 }
2141 }
2142
2143 return finish_td(xhci, td, event_trb, event, ep, status, false);
2144 }
2145
2146 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2147 struct xhci_transfer_event *event,
2148 struct xhci_virt_ep *ep, int *status)
2149 {
2150 struct xhci_ring *ep_ring;
2151 struct urb_priv *urb_priv;
2152 struct usb_iso_packet_descriptor *frame;
2153 int idx;
2154
2155 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2156 urb_priv = td->urb->hcpriv;
2157 idx = urb_priv->td_cnt;
2158 frame = &td->urb->iso_frame_desc[idx];
2159
2160 /* The transfer is partly done. */
2161 frame->status = -EXDEV;
2162
2163 /* calc actual length */
2164 frame->actual_length = 0;
2165
2166 /* Update ring dequeue pointer */
2167 while (ep_ring->dequeue != td->last_trb)
2168 inc_deq(xhci, ep_ring);
2169 inc_deq(xhci, ep_ring);
2170
2171 return finish_td(xhci, td, NULL, event, ep, status, true);
2172 }
2173
2174 /*
2175 * Process bulk and interrupt tds, update urb status and actual_length.
2176 */
2177 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2178 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2179 struct xhci_virt_ep *ep, int *status)
2180 {
2181 struct xhci_ring *ep_ring;
2182 union xhci_trb *cur_trb;
2183 struct xhci_segment *cur_seg;
2184 u32 trb_comp_code;
2185
2186 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2187 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2188
2189 switch (trb_comp_code) {
2190 case COMP_SUCCESS:
2191 /* Double check that the HW transferred everything. */
2192 if (event_trb != td->last_trb ||
2193 TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2194 xhci_warn(xhci, "WARN Successful completion "
2195 "on short TX\n");
2196 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2197 *status = -EREMOTEIO;
2198 else
2199 *status = 0;
2200 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2201 trb_comp_code = COMP_SHORT_TX;
2202 } else {
2203 *status = 0;
2204 }
2205 break;
2206 case COMP_SHORT_TX:
2207 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2208 *status = -EREMOTEIO;
2209 else
2210 *status = 0;
2211 break;
2212 default:
2213 /* Others already handled above */
2214 break;
2215 }
2216 if (trb_comp_code == COMP_SHORT_TX)
2217 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2218 "%d bytes untransferred\n",
2219 td->urb->ep->desc.bEndpointAddress,
2220 td->urb->transfer_buffer_length,
2221 TRB_LEN(le32_to_cpu(event->transfer_len)));
2222 /* Fast path - was this the last TRB in the TD for this URB? */
2223 if (event_trb == td->last_trb) {
2224 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2225 td->urb->actual_length =
2226 td->urb->transfer_buffer_length -
2227 TRB_LEN(le32_to_cpu(event->transfer_len));
2228 if (td->urb->transfer_buffer_length <
2229 td->urb->actual_length) {
2230 xhci_warn(xhci, "HC gave bad length "
2231 "of %d bytes left\n",
2232 TRB_LEN(le32_to_cpu(event->transfer_len)));
2233 td->urb->actual_length = 0;
2234 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2235 *status = -EREMOTEIO;
2236 else
2237 *status = 0;
2238 }
2239 /* Don't overwrite a previously set error code */
2240 if (*status == -EINPROGRESS) {
2241 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2242 *status = -EREMOTEIO;
2243 else
2244 *status = 0;
2245 }
2246 } else {
2247 td->urb->actual_length =
2248 td->urb->transfer_buffer_length;
2249 /* Ignore a short packet completion if the
2250 * untransferred length was zero.
2251 */
2252 if (*status == -EREMOTEIO)
2253 *status = 0;
2254 }
2255 } else {
2256 /* Slow path - walk the list, starting from the dequeue
2257 * pointer, to get the actual length transferred.
2258 */
2259 td->urb->actual_length = 0;
2260 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2261 cur_trb != event_trb;
2262 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2263 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2264 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2265 td->urb->actual_length +=
2266 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2267 }
2268 /* If the ring didn't stop on a Link or No-op TRB, add
2269 * in the actual bytes transferred from the Normal TRB
2270 */
2271 if (trb_comp_code != COMP_STOP_INVAL)
2272 td->urb->actual_length +=
2273 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2274 TRB_LEN(le32_to_cpu(event->transfer_len));
2275 }
2276
2277 return finish_td(xhci, td, event_trb, event, ep, status, false);
2278 }
2279
2280 /*
2281 * If this function returns an error condition, it means it got a Transfer
2282 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2283 * At this point, the host controller is probably hosed and should be reset.
2284 */
2285 static int handle_tx_event(struct xhci_hcd *xhci,
2286 struct xhci_transfer_event *event)
2287 __releases(&xhci->lock)
2288 __acquires(&xhci->lock)
2289 {
2290 struct xhci_virt_device *xdev;
2291 struct xhci_virt_ep *ep;
2292 struct xhci_ring *ep_ring;
2293 unsigned int slot_id;
2294 int ep_index;
2295 struct xhci_td *td = NULL;
2296 dma_addr_t event_dma;
2297 struct xhci_segment *event_seg;
2298 union xhci_trb *event_trb;
2299 struct urb *urb = NULL;
2300 int status = -EINPROGRESS;
2301 struct urb_priv *urb_priv;
2302 struct xhci_ep_ctx *ep_ctx;
2303 struct list_head *tmp;
2304 u32 trb_comp_code;
2305 int ret = 0;
2306 int td_num = 0;
2307
2308 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2309 xdev = xhci->devs[slot_id];
2310 if (!xdev) {
2311 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2312 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2313 (unsigned long long) xhci_trb_virt_to_dma(
2314 xhci->event_ring->deq_seg,
2315 xhci->event_ring->dequeue),
2316 lower_32_bits(le64_to_cpu(event->buffer)),
2317 upper_32_bits(le64_to_cpu(event->buffer)),
2318 le32_to_cpu(event->transfer_len),
2319 le32_to_cpu(event->flags));
2320 xhci_dbg(xhci, "Event ring:\n");
2321 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2322 return -ENODEV;
2323 }
2324
2325 /* Endpoint ID is 1 based, our index is zero based */
2326 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2327 ep = &xdev->eps[ep_index];
2328 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2329 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2330 if (!ep_ring ||
2331 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2332 EP_STATE_DISABLED) {
2333 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2334 "or incorrect stream ring\n");
2335 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2336 (unsigned long long) xhci_trb_virt_to_dma(
2337 xhci->event_ring->deq_seg,
2338 xhci->event_ring->dequeue),
2339 lower_32_bits(le64_to_cpu(event->buffer)),
2340 upper_32_bits(le64_to_cpu(event->buffer)),
2341 le32_to_cpu(event->transfer_len),
2342 le32_to_cpu(event->flags));
2343 xhci_dbg(xhci, "Event ring:\n");
2344 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2345 return -ENODEV;
2346 }
2347
2348 /* Count current td numbers if ep->skip is set */
2349 if (ep->skip) {
2350 list_for_each(tmp, &ep_ring->td_list)
2351 td_num++;
2352 }
2353
2354 event_dma = le64_to_cpu(event->buffer);
2355 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2356 /* Look for common error cases */
2357 switch (trb_comp_code) {
2358 /* Skip codes that require special handling depending on
2359 * transfer type
2360 */
2361 case COMP_SUCCESS:
2362 if (TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2363 break;
2364 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2365 trb_comp_code = COMP_SHORT_TX;
2366 else
2367 xhci_warn_ratelimited(xhci,
2368 "WARN Successful completion on short TX: needs XHCI_TRUST_TX_LENGTH quirk?\n");
2369 case COMP_SHORT_TX:
2370 break;
2371 case COMP_STOP:
2372 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2373 break;
2374 case COMP_STOP_INVAL:
2375 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2376 break;
2377 case COMP_STALL:
2378 xhci_dbg(xhci, "Stalled endpoint\n");
2379 ep->ep_state |= EP_HALTED;
2380 status = -EPIPE;
2381 break;
2382 case COMP_TRB_ERR:
2383 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2384 status = -EILSEQ;
2385 break;
2386 case COMP_SPLIT_ERR:
2387 case COMP_TX_ERR:
2388 xhci_dbg(xhci, "Transfer error on endpoint\n");
2389 status = -EPROTO;
2390 break;
2391 case COMP_BABBLE:
2392 xhci_dbg(xhci, "Babble error on endpoint\n");
2393 status = -EOVERFLOW;
2394 break;
2395 case COMP_DB_ERR:
2396 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2397 status = -ENOSR;
2398 break;
2399 case COMP_BW_OVER:
2400 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2401 break;
2402 case COMP_BUFF_OVER:
2403 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2404 break;
2405 case COMP_UNDERRUN:
2406 /*
2407 * When the Isoch ring is empty, the xHC will generate
2408 * a Ring Overrun Event for IN Isoch endpoint or Ring
2409 * Underrun Event for OUT Isoch endpoint.
2410 */
2411 xhci_dbg(xhci, "underrun event on endpoint\n");
2412 if (!list_empty(&ep_ring->td_list))
2413 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2414 "still with TDs queued?\n",
2415 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2416 ep_index);
2417 goto cleanup;
2418 case COMP_OVERRUN:
2419 xhci_dbg(xhci, "overrun event on endpoint\n");
2420 if (!list_empty(&ep_ring->td_list))
2421 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2422 "still with TDs queued?\n",
2423 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2424 ep_index);
2425 goto cleanup;
2426 case COMP_DEV_ERR:
2427 xhci_warn(xhci, "WARN: detect an incompatible device");
2428 status = -EPROTO;
2429 break;
2430 case COMP_MISSED_INT:
2431 /*
2432 * When encounter missed service error, one or more isoc tds
2433 * may be missed by xHC.
2434 * Set skip flag of the ep_ring; Complete the missed tds as
2435 * short transfer when process the ep_ring next time.
2436 */
2437 ep->skip = true;
2438 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2439 goto cleanup;
2440 default:
2441 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2442 status = 0;
2443 break;
2444 }
2445 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2446 "busted\n");
2447 goto cleanup;
2448 }
2449
2450 do {
2451 /* This TRB should be in the TD at the head of this ring's
2452 * TD list.
2453 */
2454 if (list_empty(&ep_ring->td_list)) {
2455 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d "
2456 "with no TDs queued?\n",
2457 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2458 ep_index);
2459 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2460 (le32_to_cpu(event->flags) &
2461 TRB_TYPE_BITMASK)>>10);
2462 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2463 if (ep->skip) {
2464 ep->skip = false;
2465 xhci_dbg(xhci, "td_list is empty while skip "
2466 "flag set. Clear skip flag.\n");
2467 }
2468 ret = 0;
2469 goto cleanup;
2470 }
2471
2472 /* We've skipped all the TDs on the ep ring when ep->skip set */
2473 if (ep->skip && td_num == 0) {
2474 ep->skip = false;
2475 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2476 "Clear skip flag.\n");
2477 ret = 0;
2478 goto cleanup;
2479 }
2480
2481 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2482 if (ep->skip)
2483 td_num--;
2484
2485 /* Is this a TRB in the currently executing TD? */
2486 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2487 td->last_trb, event_dma);
2488
2489 /*
2490 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2491 * is not in the current TD pointed by ep_ring->dequeue because
2492 * that the hardware dequeue pointer still at the previous TRB
2493 * of the current TD. The previous TRB maybe a Link TD or the
2494 * last TRB of the previous TD. The command completion handle
2495 * will take care the rest.
2496 */
2497 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2498 ret = 0;
2499 goto cleanup;
2500 }
2501
2502 if (!event_seg) {
2503 if (!ep->skip ||
2504 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2505 /* Some host controllers give a spurious
2506 * successful event after a short transfer.
2507 * Ignore it.
2508 */
2509 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2510 ep_ring->last_td_was_short) {
2511 ep_ring->last_td_was_short = false;
2512 ret = 0;
2513 goto cleanup;
2514 }
2515 /* HC is busted, give up! */
2516 xhci_err(xhci,
2517 "ERROR Transfer event TRB DMA ptr not "
2518 "part of current TD\n");
2519 return -ESHUTDOWN;
2520 }
2521
2522 ret = skip_isoc_td(xhci, td, event, ep, &status);
2523 goto cleanup;
2524 }
2525 if (trb_comp_code == COMP_SHORT_TX)
2526 ep_ring->last_td_was_short = true;
2527 else
2528 ep_ring->last_td_was_short = false;
2529
2530 if (ep->skip) {
2531 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2532 ep->skip = false;
2533 }
2534
2535 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2536 sizeof(*event_trb)];
2537 /*
2538 * No-op TRB should not trigger interrupts.
2539 * If event_trb is a no-op TRB, it means the
2540 * corresponding TD has been cancelled. Just ignore
2541 * the TD.
2542 */
2543 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2544 xhci_dbg(xhci,
2545 "event_trb is a no-op TRB. Skip it\n");
2546 goto cleanup;
2547 }
2548
2549 /* Now update the urb's actual_length and give back to
2550 * the core
2551 */
2552 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2553 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2554 &status);
2555 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2556 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2557 &status);
2558 else
2559 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2560 ep, &status);
2561
2562 cleanup:
2563 /*
2564 * Do not update event ring dequeue pointer if ep->skip is set.
2565 * Will roll back to continue process missed tds.
2566 */
2567 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2568 inc_deq(xhci, xhci->event_ring);
2569 }
2570
2571 if (ret) {
2572 urb = td->urb;
2573 urb_priv = urb->hcpriv;
2574 /* Leave the TD around for the reset endpoint function
2575 * to use(but only if it's not a control endpoint,
2576 * since we already queued the Set TR dequeue pointer
2577 * command for stalled control endpoints).
2578 */
2579 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2580 (trb_comp_code != COMP_STALL &&
2581 trb_comp_code != COMP_BABBLE))
2582 xhci_urb_free_priv(xhci, urb_priv);
2583
2584 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2585 if ((urb->actual_length != urb->transfer_buffer_length &&
2586 (urb->transfer_flags &
2587 URB_SHORT_NOT_OK)) ||
2588 (status != 0 &&
2589 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2590 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2591 "expected = %d, status = %d\n",
2592 urb, urb->actual_length,
2593 urb->transfer_buffer_length,
2594 status);
2595 spin_unlock(&xhci->lock);
2596 /* EHCI, UHCI, and OHCI always unconditionally set the
2597 * urb->status of an isochronous endpoint to 0.
2598 */
2599 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2600 status = 0;
2601 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2602 spin_lock(&xhci->lock);
2603 }
2604
2605 /*
2606 * If ep->skip is set, it means there are missed tds on the
2607 * endpoint ring need to take care of.
2608 * Process them as short transfer until reach the td pointed by
2609 * the event.
2610 */
2611 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2612
2613 return 0;
2614 }
2615
2616 /*
2617 * This function handles all OS-owned events on the event ring. It may drop
2618 * xhci->lock between event processing (e.g. to pass up port status changes).
2619 * Returns >0 for "possibly more events to process" (caller should call again),
2620 * otherwise 0 if done. In future, <0 returns should indicate error code.
2621 */
2622 static int xhci_handle_event(struct xhci_hcd *xhci)
2623 {
2624 union xhci_trb *event;
2625 int update_ptrs = 1;
2626 int ret;
2627
2628 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2629 xhci->error_bitmask |= 1 << 1;
2630 return 0;
2631 }
2632
2633 event = xhci->event_ring->dequeue;
2634 /* Does the HC or OS own the TRB? */
2635 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2636 xhci->event_ring->cycle_state) {
2637 xhci->error_bitmask |= 1 << 2;
2638 return 0;
2639 }
2640
2641 /*
2642 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2643 * speculative reads of the event's flags/data below.
2644 */
2645 rmb();
2646 /* FIXME: Handle more event types. */
2647 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2648 case TRB_TYPE(TRB_COMPLETION):
2649 handle_cmd_completion(xhci, &event->event_cmd);
2650 break;
2651 case TRB_TYPE(TRB_PORT_STATUS):
2652 handle_port_status(xhci, event);
2653 update_ptrs = 0;
2654 break;
2655 case TRB_TYPE(TRB_TRANSFER):
2656 ret = handle_tx_event(xhci, &event->trans_event);
2657 if (ret < 0)
2658 xhci->error_bitmask |= 1 << 9;
2659 else
2660 update_ptrs = 0;
2661 break;
2662 case TRB_TYPE(TRB_DEV_NOTE):
2663 handle_device_notification(xhci, event);
2664 break;
2665 default:
2666 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2667 TRB_TYPE(48))
2668 handle_vendor_event(xhci, event);
2669 else
2670 xhci->error_bitmask |= 1 << 3;
2671 }
2672 /* Any of the above functions may drop and re-acquire the lock, so check
2673 * to make sure a watchdog timer didn't mark the host as non-responsive.
2674 */
2675 if (xhci->xhc_state & XHCI_STATE_DYING) {
2676 xhci_dbg(xhci, "xHCI host dying, returning from "
2677 "event handler.\n");
2678 return 0;
2679 }
2680
2681 if (update_ptrs)
2682 /* Update SW event ring dequeue pointer */
2683 inc_deq(xhci, xhci->event_ring);
2684
2685 /* Are there more items on the event ring? Caller will call us again to
2686 * check.
2687 */
2688 return 1;
2689 }
2690
2691 /*
2692 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2693 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2694 * indicators of an event TRB error, but we check the status *first* to be safe.
2695 */
2696 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2697 {
2698 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2699 u32 status;
2700 union xhci_trb *trb;
2701 u64 temp_64;
2702 union xhci_trb *event_ring_deq;
2703 dma_addr_t deq;
2704
2705 spin_lock(&xhci->lock);
2706 trb = xhci->event_ring->dequeue;
2707 /* Check if the xHC generated the interrupt, or the irq is shared */
2708 status = xhci_readl(xhci, &xhci->op_regs->status);
2709 if (status == 0xffffffff)
2710 goto hw_died;
2711
2712 if (!(status & STS_EINT)) {
2713 spin_unlock(&xhci->lock);
2714 return IRQ_NONE;
2715 }
2716 if (status & STS_FATAL) {
2717 xhci_warn(xhci, "WARNING: Host System Error\n");
2718 xhci_halt(xhci);
2719 hw_died:
2720 spin_unlock(&xhci->lock);
2721 return -ESHUTDOWN;
2722 }
2723
2724 /*
2725 * Clear the op reg interrupt status first,
2726 * so we can receive interrupts from other MSI-X interrupters.
2727 * Write 1 to clear the interrupt status.
2728 */
2729 status |= STS_EINT;
2730 xhci_writel(xhci, status, &xhci->op_regs->status);
2731 /* FIXME when MSI-X is supported and there are multiple vectors */
2732 /* Clear the MSI-X event interrupt status */
2733
2734 if (hcd->irq) {
2735 u32 irq_pending;
2736 /* Acknowledge the PCI interrupt */
2737 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2738 irq_pending |= IMAN_IP;
2739 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2740 }
2741
2742 if (xhci->xhc_state & XHCI_STATE_DYING) {
2743 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2744 "Shouldn't IRQs be disabled?\n");
2745 /* Clear the event handler busy flag (RW1C);
2746 * the event ring should be empty.
2747 */
2748 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2749 xhci_write_64(xhci, temp_64 | ERST_EHB,
2750 &xhci->ir_set->erst_dequeue);
2751 spin_unlock(&xhci->lock);
2752
2753 return IRQ_HANDLED;
2754 }
2755
2756 event_ring_deq = xhci->event_ring->dequeue;
2757 /* FIXME this should be a delayed service routine
2758 * that clears the EHB.
2759 */
2760 while (xhci_handle_event(xhci) > 0) {}
2761
2762 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2763 /* If necessary, update the HW's version of the event ring deq ptr. */
2764 if (event_ring_deq != xhci->event_ring->dequeue) {
2765 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2766 xhci->event_ring->dequeue);
2767 if (deq == 0)
2768 xhci_warn(xhci, "WARN something wrong with SW event "
2769 "ring dequeue ptr.\n");
2770 /* Update HC event ring dequeue pointer */
2771 temp_64 &= ERST_PTR_MASK;
2772 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2773 }
2774
2775 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2776 temp_64 |= ERST_EHB;
2777 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2778
2779 spin_unlock(&xhci->lock);
2780
2781 return IRQ_HANDLED;
2782 }
2783
2784 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2785 {
2786 return xhci_irq(hcd);
2787 }
2788
2789 /**** Endpoint Ring Operations ****/
2790
2791 /*
2792 * Generic function for queueing a TRB on a ring.
2793 * The caller must have checked to make sure there's room on the ring.
2794 *
2795 * @more_trbs_coming: Will you enqueue more TRBs before calling
2796 * prepare_transfer()?
2797 */
2798 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2799 bool more_trbs_coming,
2800 u32 field1, u32 field2, u32 field3, u32 field4)
2801 {
2802 struct xhci_generic_trb *trb;
2803
2804 trb = &ring->enqueue->generic;
2805 trb->field[0] = cpu_to_le32(field1);
2806 trb->field[1] = cpu_to_le32(field2);
2807 trb->field[2] = cpu_to_le32(field3);
2808 trb->field[3] = cpu_to_le32(field4);
2809 inc_enq(xhci, ring, more_trbs_coming);
2810 }
2811
2812 /*
2813 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2814 * FIXME allocate segments if the ring is full.
2815 */
2816 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2817 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2818 {
2819 unsigned int num_trbs_needed;
2820
2821 /* Make sure the endpoint has been added to xHC schedule */
2822 switch (ep_state) {
2823 case EP_STATE_DISABLED:
2824 /*
2825 * USB core changed config/interfaces without notifying us,
2826 * or hardware is reporting the wrong state.
2827 */
2828 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2829 return -ENOENT;
2830 case EP_STATE_ERROR:
2831 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2832 /* FIXME event handling code for error needs to clear it */
2833 /* XXX not sure if this should be -ENOENT or not */
2834 return -EINVAL;
2835 case EP_STATE_HALTED:
2836 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2837 case EP_STATE_STOPPED:
2838 case EP_STATE_RUNNING:
2839 break;
2840 default:
2841 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2842 /*
2843 * FIXME issue Configure Endpoint command to try to get the HC
2844 * back into a known state.
2845 */
2846 return -EINVAL;
2847 }
2848
2849 while (1) {
2850 if (room_on_ring(xhci, ep_ring, num_trbs))
2851 break;
2852
2853 if (ep_ring == xhci->cmd_ring) {
2854 xhci_err(xhci, "Do not support expand command ring\n");
2855 return -ENOMEM;
2856 }
2857
2858 xhci_dbg(xhci, "ERROR no room on ep ring, "
2859 "try ring expansion\n");
2860 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2861 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2862 mem_flags)) {
2863 xhci_err(xhci, "Ring expansion failed\n");
2864 return -ENOMEM;
2865 }
2866 }
2867
2868 if (enqueue_is_link_trb(ep_ring)) {
2869 struct xhci_ring *ring = ep_ring;
2870 union xhci_trb *next;
2871
2872 next = ring->enqueue;
2873
2874 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2875 /* If we're not dealing with 0.95 hardware or isoc rings
2876 * on AMD 0.96 host, clear the chain bit.
2877 */
2878 if (!xhci_link_trb_quirk(xhci) &&
2879 !(ring->type == TYPE_ISOC &&
2880 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2881 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2882 else
2883 next->link.control |= cpu_to_le32(TRB_CHAIN);
2884
2885 wmb();
2886 next->link.control ^= cpu_to_le32(TRB_CYCLE);
2887
2888 /* Toggle the cycle bit after the last ring segment. */
2889 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2890 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2891 }
2892 ring->enq_seg = ring->enq_seg->next;
2893 ring->enqueue = ring->enq_seg->trbs;
2894 next = ring->enqueue;
2895 }
2896 }
2897
2898 return 0;
2899 }
2900
2901 static int prepare_transfer(struct xhci_hcd *xhci,
2902 struct xhci_virt_device *xdev,
2903 unsigned int ep_index,
2904 unsigned int stream_id,
2905 unsigned int num_trbs,
2906 struct urb *urb,
2907 unsigned int td_index,
2908 gfp_t mem_flags)
2909 {
2910 int ret;
2911 struct urb_priv *urb_priv;
2912 struct xhci_td *td;
2913 struct xhci_ring *ep_ring;
2914 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2915
2916 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2917 if (!ep_ring) {
2918 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2919 stream_id);
2920 return -EINVAL;
2921 }
2922
2923 ret = prepare_ring(xhci, ep_ring,
2924 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2925 num_trbs, mem_flags);
2926 if (ret)
2927 return ret;
2928
2929 urb_priv = urb->hcpriv;
2930 td = urb_priv->td[td_index];
2931
2932 INIT_LIST_HEAD(&td->td_list);
2933 INIT_LIST_HEAD(&td->cancelled_td_list);
2934
2935 if (td_index == 0) {
2936 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2937 if (unlikely(ret))
2938 return ret;
2939 }
2940
2941 td->urb = urb;
2942 /* Add this TD to the tail of the endpoint ring's TD list */
2943 list_add_tail(&td->td_list, &ep_ring->td_list);
2944 td->start_seg = ep_ring->enq_seg;
2945 td->first_trb = ep_ring->enqueue;
2946
2947 urb_priv->td[td_index] = td;
2948
2949 return 0;
2950 }
2951
2952 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2953 {
2954 int num_sgs, num_trbs, running_total, temp, i;
2955 struct scatterlist *sg;
2956
2957 sg = NULL;
2958 num_sgs = urb->num_mapped_sgs;
2959 temp = urb->transfer_buffer_length;
2960
2961 num_trbs = 0;
2962 for_each_sg(urb->sg, sg, num_sgs, i) {
2963 unsigned int len = sg_dma_len(sg);
2964
2965 /* Scatter gather list entries may cross 64KB boundaries */
2966 running_total = TRB_MAX_BUFF_SIZE -
2967 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2968 running_total &= TRB_MAX_BUFF_SIZE - 1;
2969 if (running_total != 0)
2970 num_trbs++;
2971
2972 /* How many more 64KB chunks to transfer, how many more TRBs? */
2973 while (running_total < sg_dma_len(sg) && running_total < temp) {
2974 num_trbs++;
2975 running_total += TRB_MAX_BUFF_SIZE;
2976 }
2977 len = min_t(int, len, temp);
2978 temp -= len;
2979 if (temp == 0)
2980 break;
2981 }
2982 return num_trbs;
2983 }
2984
2985 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2986 {
2987 if (num_trbs != 0)
2988 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2989 "TRBs, %d left\n", __func__,
2990 urb->ep->desc.bEndpointAddress, num_trbs);
2991 if (running_total != urb->transfer_buffer_length)
2992 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2993 "queued %#x (%d), asked for %#x (%d)\n",
2994 __func__,
2995 urb->ep->desc.bEndpointAddress,
2996 running_total, running_total,
2997 urb->transfer_buffer_length,
2998 urb->transfer_buffer_length);
2999 }
3000
3001 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3002 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3003 struct xhci_generic_trb *start_trb)
3004 {
3005 /*
3006 * Pass all the TRBs to the hardware at once and make sure this write
3007 * isn't reordered.
3008 */
3009 wmb();
3010 if (start_cycle)
3011 start_trb->field[3] |= cpu_to_le32(start_cycle);
3012 else
3013 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3014 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3015 }
3016
3017 /*
3018 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3019 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3020 * (comprised of sg list entries) can take several service intervals to
3021 * transmit.
3022 */
3023 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3024 struct urb *urb, int slot_id, unsigned int ep_index)
3025 {
3026 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
3027 xhci->devs[slot_id]->out_ctx, ep_index);
3028 int xhci_interval;
3029 int ep_interval;
3030
3031 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3032 ep_interval = urb->interval;
3033 /* Convert to microframes */
3034 if (urb->dev->speed == USB_SPEED_LOW ||
3035 urb->dev->speed == USB_SPEED_FULL)
3036 ep_interval *= 8;
3037 /* FIXME change this to a warning and a suggestion to use the new API
3038 * to set the polling interval (once the API is added).
3039 */
3040 if (xhci_interval != ep_interval) {
3041 if (printk_ratelimit())
3042 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3043 " (%d microframe%s) than xHCI "
3044 "(%d microframe%s)\n",
3045 ep_interval,
3046 ep_interval == 1 ? "" : "s",
3047 xhci_interval,
3048 xhci_interval == 1 ? "" : "s");
3049 urb->interval = xhci_interval;
3050 /* Convert back to frames for LS/FS devices */
3051 if (urb->dev->speed == USB_SPEED_LOW ||
3052 urb->dev->speed == USB_SPEED_FULL)
3053 urb->interval /= 8;
3054 }
3055 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3056 }
3057
3058 /*
3059 * The TD size is the number of bytes remaining in the TD (including this TRB),
3060 * right shifted by 10.
3061 * It must fit in bits 21:17, so it can't be bigger than 31.
3062 */
3063 static u32 xhci_td_remainder(unsigned int remainder)
3064 {
3065 u32 max = (1 << (21 - 17 + 1)) - 1;
3066
3067 if ((remainder >> 10) >= max)
3068 return max << 17;
3069 else
3070 return (remainder >> 10) << 17;
3071 }
3072
3073 /*
3074 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in
3075 * the TD (*not* including this TRB).
3076 *
3077 * Total TD packet count = total_packet_count =
3078 * roundup(TD size in bytes / wMaxPacketSize)
3079 *
3080 * Packets transferred up to and including this TRB = packets_transferred =
3081 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3082 *
3083 * TD size = total_packet_count - packets_transferred
3084 *
3085 * It must fit in bits 21:17, so it can't be bigger than 31.
3086 */
3087
3088 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
3089 unsigned int total_packet_count, struct urb *urb)
3090 {
3091 int packets_transferred;
3092
3093 /* One TRB with a zero-length data packet. */
3094 if (running_total == 0 && trb_buff_len == 0)
3095 return 0;
3096
3097 /* All the TRB queueing functions don't count the current TRB in
3098 * running_total.
3099 */
3100 packets_transferred = (running_total + trb_buff_len) /
3101 usb_endpoint_maxp(&urb->ep->desc);
3102
3103 return xhci_td_remainder(total_packet_count - packets_transferred);
3104 }
3105
3106 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3107 struct urb *urb, int slot_id, unsigned int ep_index)
3108 {
3109 struct xhci_ring *ep_ring;
3110 unsigned int num_trbs;
3111 struct urb_priv *urb_priv;
3112 struct xhci_td *td;
3113 struct scatterlist *sg;
3114 int num_sgs;
3115 int trb_buff_len, this_sg_len, running_total;
3116 unsigned int total_packet_count;
3117 bool first_trb;
3118 u64 addr;
3119 bool more_trbs_coming;
3120
3121 struct xhci_generic_trb *start_trb;
3122 int start_cycle;
3123
3124 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3125 if (!ep_ring)
3126 return -EINVAL;
3127
3128 num_trbs = count_sg_trbs_needed(xhci, urb);
3129 num_sgs = urb->num_mapped_sgs;
3130 total_packet_count = roundup(urb->transfer_buffer_length,
3131 usb_endpoint_maxp(&urb->ep->desc));
3132
3133 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
3134 ep_index, urb->stream_id,
3135 num_trbs, urb, 0, mem_flags);
3136 if (trb_buff_len < 0)
3137 return trb_buff_len;
3138
3139 urb_priv = urb->hcpriv;
3140 td = urb_priv->td[0];
3141
3142 /*
3143 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3144 * until we've finished creating all the other TRBs. The ring's cycle
3145 * state may change as we enqueue the other TRBs, so save it too.
3146 */
3147 start_trb = &ep_ring->enqueue->generic;
3148 start_cycle = ep_ring->cycle_state;
3149
3150 running_total = 0;
3151 /*
3152 * How much data is in the first TRB?
3153 *
3154 * There are three forces at work for TRB buffer pointers and lengths:
3155 * 1. We don't want to walk off the end of this sg-list entry buffer.
3156 * 2. The transfer length that the driver requested may be smaller than
3157 * the amount of memory allocated for this scatter-gather list.
3158 * 3. TRBs buffers can't cross 64KB boundaries.
3159 */
3160 sg = urb->sg;
3161 addr = (u64) sg_dma_address(sg);
3162 this_sg_len = sg_dma_len(sg);
3163 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3164 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3165 if (trb_buff_len > urb->transfer_buffer_length)
3166 trb_buff_len = urb->transfer_buffer_length;
3167
3168 first_trb = true;
3169 /* Queue the first TRB, even if it's zero-length */
3170 do {
3171 u32 field = 0;
3172 u32 length_field = 0;
3173 u32 remainder = 0;
3174
3175 /* Don't change the cycle bit of the first TRB until later */
3176 if (first_trb) {
3177 first_trb = false;
3178 if (start_cycle == 0)
3179 field |= 0x1;
3180 } else
3181 field |= ep_ring->cycle_state;
3182
3183 /* Chain all the TRBs together; clear the chain bit in the last
3184 * TRB to indicate it's the last TRB in the chain.
3185 */
3186 if (num_trbs > 1) {
3187 field |= TRB_CHAIN;
3188 } else {
3189 /* FIXME - add check for ZERO_PACKET flag before this */
3190 td->last_trb = ep_ring->enqueue;
3191 field |= TRB_IOC;
3192 }
3193
3194 /* Only set interrupt on short packet for IN endpoints */
3195 if (usb_urb_dir_in(urb))
3196 field |= TRB_ISP;
3197
3198 if (TRB_MAX_BUFF_SIZE -
3199 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
3200 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
3201 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
3202 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
3203 (unsigned int) addr + trb_buff_len);
3204 }
3205
3206 /* Set the TRB length, TD size, and interrupter fields. */
3207 if (xhci->hci_version < 0x100) {
3208 remainder = xhci_td_remainder(
3209 urb->transfer_buffer_length -
3210 running_total);
3211 } else {
3212 remainder = xhci_v1_0_td_remainder(running_total,
3213 trb_buff_len, total_packet_count, urb);
3214 }
3215 length_field = TRB_LEN(trb_buff_len) |
3216 remainder |
3217 TRB_INTR_TARGET(0);
3218
3219 if (num_trbs > 1)
3220 more_trbs_coming = true;
3221 else
3222 more_trbs_coming = false;
3223 queue_trb(xhci, ep_ring, more_trbs_coming,
3224 lower_32_bits(addr),
3225 upper_32_bits(addr),
3226 length_field,
3227 field | TRB_TYPE(TRB_NORMAL));
3228 --num_trbs;
3229 running_total += trb_buff_len;
3230
3231 /* Calculate length for next transfer --
3232 * Are we done queueing all the TRBs for this sg entry?
3233 */
3234 this_sg_len -= trb_buff_len;
3235 if (this_sg_len == 0) {
3236 --num_sgs;
3237 if (num_sgs == 0)
3238 break;
3239 sg = sg_next(sg);
3240 addr = (u64) sg_dma_address(sg);
3241 this_sg_len = sg_dma_len(sg);
3242 } else {
3243 addr += trb_buff_len;
3244 }
3245
3246 trb_buff_len = TRB_MAX_BUFF_SIZE -
3247 (addr & (TRB_MAX_BUFF_SIZE - 1));
3248 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3249 if (running_total + trb_buff_len > urb->transfer_buffer_length)
3250 trb_buff_len =
3251 urb->transfer_buffer_length - running_total;
3252 } while (running_total < urb->transfer_buffer_length);
3253
3254 check_trb_math(urb, num_trbs, running_total);
3255 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3256 start_cycle, start_trb);
3257 return 0;
3258 }
3259
3260 /* This is very similar to what ehci-q.c qtd_fill() does */
3261 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3262 struct urb *urb, int slot_id, unsigned int ep_index)
3263 {
3264 struct xhci_ring *ep_ring;
3265 struct urb_priv *urb_priv;
3266 struct xhci_td *td;
3267 int num_trbs;
3268 struct xhci_generic_trb *start_trb;
3269 bool first_trb;
3270 bool more_trbs_coming;
3271 int start_cycle;
3272 u32 field, length_field;
3273
3274 int running_total, trb_buff_len, ret;
3275 unsigned int total_packet_count;
3276 u64 addr;
3277
3278 if (urb->num_sgs)
3279 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
3280
3281 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3282 if (!ep_ring)
3283 return -EINVAL;
3284
3285 num_trbs = 0;
3286 /* How much data is (potentially) left before the 64KB boundary? */
3287 running_total = TRB_MAX_BUFF_SIZE -
3288 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3289 running_total &= TRB_MAX_BUFF_SIZE - 1;
3290
3291 /* If there's some data on this 64KB chunk, or we have to send a
3292 * zero-length transfer, we need at least one TRB
3293 */
3294 if (running_total != 0 || urb->transfer_buffer_length == 0)
3295 num_trbs++;
3296 /* How many more 64KB chunks to transfer, how many more TRBs? */
3297 while (running_total < urb->transfer_buffer_length) {
3298 num_trbs++;
3299 running_total += TRB_MAX_BUFF_SIZE;
3300 }
3301 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
3302
3303 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3304 ep_index, urb->stream_id,
3305 num_trbs, urb, 0, mem_flags);
3306 if (ret < 0)
3307 return ret;
3308
3309 urb_priv = urb->hcpriv;
3310 td = urb_priv->td[0];
3311
3312 /*
3313 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3314 * until we've finished creating all the other TRBs. The ring's cycle
3315 * state may change as we enqueue the other TRBs, so save it too.
3316 */
3317 start_trb = &ep_ring->enqueue->generic;
3318 start_cycle = ep_ring->cycle_state;
3319
3320 running_total = 0;
3321 total_packet_count = roundup(urb->transfer_buffer_length,
3322 usb_endpoint_maxp(&urb->ep->desc));
3323 /* How much data is in the first TRB? */
3324 addr = (u64) urb->transfer_dma;
3325 trb_buff_len = TRB_MAX_BUFF_SIZE -
3326 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3327 if (trb_buff_len > urb->transfer_buffer_length)
3328 trb_buff_len = urb->transfer_buffer_length;
3329
3330 first_trb = true;
3331
3332 /* Queue the first TRB, even if it's zero-length */
3333 do {
3334 u32 remainder = 0;
3335 field = 0;
3336
3337 /* Don't change the cycle bit of the first TRB until later */
3338 if (first_trb) {
3339 first_trb = false;
3340 if (start_cycle == 0)
3341 field |= 0x1;
3342 } else
3343 field |= ep_ring->cycle_state;
3344
3345 /* Chain all the TRBs together; clear the chain bit in the last
3346 * TRB to indicate it's the last TRB in the chain.
3347 */
3348 if (num_trbs > 1) {
3349 field |= TRB_CHAIN;
3350 } else {
3351 /* FIXME - add check for ZERO_PACKET flag before this */
3352 td->last_trb = ep_ring->enqueue;
3353 field |= TRB_IOC;
3354 }
3355
3356 /* Only set interrupt on short packet for IN endpoints */
3357 if (usb_urb_dir_in(urb))
3358 field |= TRB_ISP;
3359
3360 /* Set the TRB length, TD size, and interrupter fields. */
3361 if (xhci->hci_version < 0x100) {
3362 remainder = xhci_td_remainder(
3363 urb->transfer_buffer_length -
3364 running_total);
3365 } else {
3366 remainder = xhci_v1_0_td_remainder(running_total,
3367 trb_buff_len, total_packet_count, urb);
3368 }
3369 length_field = TRB_LEN(trb_buff_len) |
3370 remainder |
3371 TRB_INTR_TARGET(0);
3372
3373 if (num_trbs > 1)
3374 more_trbs_coming = true;
3375 else
3376 more_trbs_coming = false;
3377 queue_trb(xhci, ep_ring, more_trbs_coming,
3378 lower_32_bits(addr),
3379 upper_32_bits(addr),
3380 length_field,
3381 field | TRB_TYPE(TRB_NORMAL));
3382 --num_trbs;
3383 running_total += trb_buff_len;
3384
3385 /* Calculate length for next transfer */
3386 addr += trb_buff_len;
3387 trb_buff_len = urb->transfer_buffer_length - running_total;
3388 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3389 trb_buff_len = TRB_MAX_BUFF_SIZE;
3390 } while (running_total < urb->transfer_buffer_length);
3391
3392 check_trb_math(urb, num_trbs, running_total);
3393 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3394 start_cycle, start_trb);
3395 return 0;
3396 }
3397
3398 /* Caller must have locked xhci->lock */
3399 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3400 struct urb *urb, int slot_id, unsigned int ep_index)
3401 {
3402 struct xhci_ring *ep_ring;
3403 int num_trbs;
3404 int ret;
3405 struct usb_ctrlrequest *setup;
3406 struct xhci_generic_trb *start_trb;
3407 int start_cycle;
3408 u32 field, length_field;
3409 struct urb_priv *urb_priv;
3410 struct xhci_td *td;
3411
3412 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3413 if (!ep_ring)
3414 return -EINVAL;
3415
3416 /*
3417 * Need to copy setup packet into setup TRB, so we can't use the setup
3418 * DMA address.
3419 */
3420 if (!urb->setup_packet)
3421 return -EINVAL;
3422
3423 /* 1 TRB for setup, 1 for status */
3424 num_trbs = 2;
3425 /*
3426 * Don't need to check if we need additional event data and normal TRBs,
3427 * since data in control transfers will never get bigger than 16MB
3428 * XXX: can we get a buffer that crosses 64KB boundaries?
3429 */
3430 if (urb->transfer_buffer_length > 0)
3431 num_trbs++;
3432 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3433 ep_index, urb->stream_id,
3434 num_trbs, urb, 0, mem_flags);
3435 if (ret < 0)
3436 return ret;
3437
3438 urb_priv = urb->hcpriv;
3439 td = urb_priv->td[0];
3440
3441 /*
3442 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3443 * until we've finished creating all the other TRBs. The ring's cycle
3444 * state may change as we enqueue the other TRBs, so save it too.
3445 */
3446 start_trb = &ep_ring->enqueue->generic;
3447 start_cycle = ep_ring->cycle_state;
3448
3449 /* Queue setup TRB - see section 6.4.1.2.1 */
3450 /* FIXME better way to translate setup_packet into two u32 fields? */
3451 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3452 field = 0;
3453 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3454 if (start_cycle == 0)
3455 field |= 0x1;
3456
3457 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3458 if (xhci->hci_version == 0x100) {
3459 if (urb->transfer_buffer_length > 0) {
3460 if (setup->bRequestType & USB_DIR_IN)
3461 field |= TRB_TX_TYPE(TRB_DATA_IN);
3462 else
3463 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3464 }
3465 }
3466
3467 queue_trb(xhci, ep_ring, true,
3468 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3469 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3470 TRB_LEN(8) | TRB_INTR_TARGET(0),
3471 /* Immediate data in pointer */
3472 field);
3473
3474 /* If there's data, queue data TRBs */
3475 /* Only set interrupt on short packet for IN endpoints */
3476 if (usb_urb_dir_in(urb))
3477 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3478 else
3479 field = TRB_TYPE(TRB_DATA);
3480
3481 length_field = TRB_LEN(urb->transfer_buffer_length) |
3482 xhci_td_remainder(urb->transfer_buffer_length) |
3483 TRB_INTR_TARGET(0);
3484 if (urb->transfer_buffer_length > 0) {
3485 if (setup->bRequestType & USB_DIR_IN)
3486 field |= TRB_DIR_IN;
3487 queue_trb(xhci, ep_ring, true,
3488 lower_32_bits(urb->transfer_dma),
3489 upper_32_bits(urb->transfer_dma),
3490 length_field,
3491 field | ep_ring->cycle_state);
3492 }
3493
3494 /* Save the DMA address of the last TRB in the TD */
3495 td->last_trb = ep_ring->enqueue;
3496
3497 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3498 /* If the device sent data, the status stage is an OUT transfer */
3499 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3500 field = 0;
3501 else
3502 field = TRB_DIR_IN;
3503 queue_trb(xhci, ep_ring, false,
3504 0,
3505 0,
3506 TRB_INTR_TARGET(0),
3507 /* Event on completion */
3508 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3509
3510 giveback_first_trb(xhci, slot_id, ep_index, 0,
3511 start_cycle, start_trb);
3512 return 0;
3513 }
3514
3515 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3516 struct urb *urb, int i)
3517 {
3518 int num_trbs = 0;
3519 u64 addr, td_len;
3520
3521 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3522 td_len = urb->iso_frame_desc[i].length;
3523
3524 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3525 TRB_MAX_BUFF_SIZE);
3526 if (num_trbs == 0)
3527 num_trbs++;
3528
3529 return num_trbs;
3530 }
3531
3532 /*
3533 * The transfer burst count field of the isochronous TRB defines the number of
3534 * bursts that are required to move all packets in this TD. Only SuperSpeed
3535 * devices can burst up to bMaxBurst number of packets per service interval.
3536 * This field is zero based, meaning a value of zero in the field means one
3537 * burst. Basically, for everything but SuperSpeed devices, this field will be
3538 * zero. Only xHCI 1.0 host controllers support this field.
3539 */
3540 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3541 struct usb_device *udev,
3542 struct urb *urb, unsigned int total_packet_count)
3543 {
3544 unsigned int max_burst;
3545
3546 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3547 return 0;
3548
3549 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3550 return roundup(total_packet_count, max_burst + 1) - 1;
3551 }
3552
3553 /*
3554 * Returns the number of packets in the last "burst" of packets. This field is
3555 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3556 * the last burst packet count is equal to the total number of packets in the
3557 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3558 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3559 * contain 1 to (bMaxBurst + 1) packets.
3560 */
3561 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3562 struct usb_device *udev,
3563 struct urb *urb, unsigned int total_packet_count)
3564 {
3565 unsigned int max_burst;
3566 unsigned int residue;
3567
3568 if (xhci->hci_version < 0x100)
3569 return 0;
3570
3571 switch (udev->speed) {
3572 case USB_SPEED_SUPER:
3573 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3574 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3575 residue = total_packet_count % (max_burst + 1);
3576 /* If residue is zero, the last burst contains (max_burst + 1)
3577 * number of packets, but the TLBPC field is zero-based.
3578 */
3579 if (residue == 0)
3580 return max_burst;
3581 return residue - 1;
3582 default:
3583 if (total_packet_count == 0)
3584 return 0;
3585 return total_packet_count - 1;
3586 }
3587 }
3588
3589 /* This is for isoc transfer */
3590 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3591 struct urb *urb, int slot_id, unsigned int ep_index)
3592 {
3593 struct xhci_ring *ep_ring;
3594 struct urb_priv *urb_priv;
3595 struct xhci_td *td;
3596 int num_tds, trbs_per_td;
3597 struct xhci_generic_trb *start_trb;
3598 bool first_trb;
3599 int start_cycle;
3600 u32 field, length_field;
3601 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3602 u64 start_addr, addr;
3603 int i, j;
3604 bool more_trbs_coming;
3605
3606 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3607
3608 num_tds = urb->number_of_packets;
3609 if (num_tds < 1) {
3610 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3611 return -EINVAL;
3612 }
3613
3614 start_addr = (u64) urb->transfer_dma;
3615 start_trb = &ep_ring->enqueue->generic;
3616 start_cycle = ep_ring->cycle_state;
3617
3618 urb_priv = urb->hcpriv;
3619 /* Queue the first TRB, even if it's zero-length */
3620 for (i = 0; i < num_tds; i++) {
3621 unsigned int total_packet_count;
3622 unsigned int burst_count;
3623 unsigned int residue;
3624
3625 first_trb = true;
3626 running_total = 0;
3627 addr = start_addr + urb->iso_frame_desc[i].offset;
3628 td_len = urb->iso_frame_desc[i].length;
3629 td_remain_len = td_len;
3630 total_packet_count = roundup(td_len,
3631 usb_endpoint_maxp(&urb->ep->desc));
3632 /* A zero-length transfer still involves at least one packet. */
3633 if (total_packet_count == 0)
3634 total_packet_count++;
3635 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3636 total_packet_count);
3637 residue = xhci_get_last_burst_packet_count(xhci,
3638 urb->dev, urb, total_packet_count);
3639
3640 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3641
3642 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3643 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3644 if (ret < 0) {
3645 if (i == 0)
3646 return ret;
3647 goto cleanup;
3648 }
3649
3650 td = urb_priv->td[i];
3651 for (j = 0; j < trbs_per_td; j++) {
3652 u32 remainder = 0;
3653 field = TRB_TBC(burst_count) | TRB_TLBPC(residue);
3654
3655 if (first_trb) {
3656 /* Queue the isoc TRB */
3657 field |= TRB_TYPE(TRB_ISOC);
3658 /* Assume URB_ISO_ASAP is set */
3659 field |= TRB_SIA;
3660 if (i == 0) {
3661 if (start_cycle == 0)
3662 field |= 0x1;
3663 } else
3664 field |= ep_ring->cycle_state;
3665 first_trb = false;
3666 } else {
3667 /* Queue other normal TRBs */
3668 field |= TRB_TYPE(TRB_NORMAL);
3669 field |= ep_ring->cycle_state;
3670 }
3671
3672 /* Only set interrupt on short packet for IN EPs */
3673 if (usb_urb_dir_in(urb))
3674 field |= TRB_ISP;
3675
3676 /* Chain all the TRBs together; clear the chain bit in
3677 * the last TRB to indicate it's the last TRB in the
3678 * chain.
3679 */
3680 if (j < trbs_per_td - 1) {
3681 field |= TRB_CHAIN;
3682 more_trbs_coming = true;
3683 } else {
3684 td->last_trb = ep_ring->enqueue;
3685 field |= TRB_IOC;
3686 if (xhci->hci_version == 0x100 &&
3687 !(xhci->quirks &
3688 XHCI_AVOID_BEI)) {
3689 /* Set BEI bit except for the last td */
3690 if (i < num_tds - 1)
3691 field |= TRB_BEI;
3692 }
3693 more_trbs_coming = false;
3694 }
3695
3696 /* Calculate TRB length */
3697 trb_buff_len = TRB_MAX_BUFF_SIZE -
3698 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3699 if (trb_buff_len > td_remain_len)
3700 trb_buff_len = td_remain_len;
3701
3702 /* Set the TRB length, TD size, & interrupter fields. */
3703 if (xhci->hci_version < 0x100) {
3704 remainder = xhci_td_remainder(
3705 td_len - running_total);
3706 } else {
3707 remainder = xhci_v1_0_td_remainder(
3708 running_total, trb_buff_len,
3709 total_packet_count, urb);
3710 }
3711 length_field = TRB_LEN(trb_buff_len) |
3712 remainder |
3713 TRB_INTR_TARGET(0);
3714
3715 queue_trb(xhci, ep_ring, more_trbs_coming,
3716 lower_32_bits(addr),
3717 upper_32_bits(addr),
3718 length_field,
3719 field);
3720 running_total += trb_buff_len;
3721
3722 addr += trb_buff_len;
3723 td_remain_len -= trb_buff_len;
3724 }
3725
3726 /* Check TD length */
3727 if (running_total != td_len) {
3728 xhci_err(xhci, "ISOC TD length unmatch\n");
3729 ret = -EINVAL;
3730 goto cleanup;
3731 }
3732 }
3733
3734 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3735 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3736 usb_amd_quirk_pll_disable();
3737 }
3738 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3739
3740 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3741 start_cycle, start_trb);
3742 return 0;
3743 cleanup:
3744 /* Clean up a partially enqueued isoc transfer. */
3745
3746 for (i--; i >= 0; i--)
3747 list_del_init(&urb_priv->td[i]->td_list);
3748
3749 /* Use the first TD as a temporary variable to turn the TDs we've queued
3750 * into No-ops with a software-owned cycle bit. That way the hardware
3751 * won't accidentally start executing bogus TDs when we partially
3752 * overwrite them. td->first_trb and td->start_seg are already set.
3753 */
3754 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3755 /* Every TRB except the first & last will have its cycle bit flipped. */
3756 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3757
3758 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3759 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3760 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3761 ep_ring->cycle_state = start_cycle;
3762 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3763 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3764 return ret;
3765 }
3766
3767 /*
3768 * Check transfer ring to guarantee there is enough room for the urb.
3769 * Update ISO URB start_frame and interval.
3770 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3771 * update the urb->start_frame by now.
3772 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3773 */
3774 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3775 struct urb *urb, int slot_id, unsigned int ep_index)
3776 {
3777 struct xhci_virt_device *xdev;
3778 struct xhci_ring *ep_ring;
3779 struct xhci_ep_ctx *ep_ctx;
3780 int start_frame;
3781 int xhci_interval;
3782 int ep_interval;
3783 int num_tds, num_trbs, i;
3784 int ret;
3785
3786 xdev = xhci->devs[slot_id];
3787 ep_ring = xdev->eps[ep_index].ring;
3788 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3789
3790 num_trbs = 0;
3791 num_tds = urb->number_of_packets;
3792 for (i = 0; i < num_tds; i++)
3793 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3794
3795 /* Check the ring to guarantee there is enough room for the whole urb.
3796 * Do not insert any td of the urb to the ring if the check failed.
3797 */
3798 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3799 num_trbs, mem_flags);
3800 if (ret)
3801 return ret;
3802
3803 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3804 start_frame &= 0x3fff;
3805
3806 urb->start_frame = start_frame;
3807 if (urb->dev->speed == USB_SPEED_LOW ||
3808 urb->dev->speed == USB_SPEED_FULL)
3809 urb->start_frame >>= 3;
3810
3811 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3812 ep_interval = urb->interval;
3813 /* Convert to microframes */
3814 if (urb->dev->speed == USB_SPEED_LOW ||
3815 urb->dev->speed == USB_SPEED_FULL)
3816 ep_interval *= 8;
3817 /* FIXME change this to a warning and a suggestion to use the new API
3818 * to set the polling interval (once the API is added).
3819 */
3820 if (xhci_interval != ep_interval) {
3821 if (printk_ratelimit())
3822 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3823 " (%d microframe%s) than xHCI "
3824 "(%d microframe%s)\n",
3825 ep_interval,
3826 ep_interval == 1 ? "" : "s",
3827 xhci_interval,
3828 xhci_interval == 1 ? "" : "s");
3829 urb->interval = xhci_interval;
3830 /* Convert back to frames for LS/FS devices */
3831 if (urb->dev->speed == USB_SPEED_LOW ||
3832 urb->dev->speed == USB_SPEED_FULL)
3833 urb->interval /= 8;
3834 }
3835 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3836
3837 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3838 }
3839
3840 /**** Command Ring Operations ****/
3841
3842 /* Generic function for queueing a command TRB on the command ring.
3843 * Check to make sure there's room on the command ring for one command TRB.
3844 * Also check that there's room reserved for commands that must not fail.
3845 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3846 * then only check for the number of reserved spots.
3847 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3848 * because the command event handler may want to resubmit a failed command.
3849 */
3850 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3851 u32 field3, u32 field4, bool command_must_succeed)
3852 {
3853 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3854 int ret;
3855
3856 if (!command_must_succeed)
3857 reserved_trbs++;
3858
3859 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3860 reserved_trbs, GFP_ATOMIC);
3861 if (ret < 0) {
3862 xhci_err(xhci, "ERR: No room for command on command ring\n");
3863 if (command_must_succeed)
3864 xhci_err(xhci, "ERR: Reserved TRB counting for "
3865 "unfailable commands failed.\n");
3866 return ret;
3867 }
3868 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3869 field4 | xhci->cmd_ring->cycle_state);
3870 return 0;
3871 }
3872
3873 /* Queue a slot enable or disable request on the command ring */
3874 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3875 {
3876 return queue_command(xhci, 0, 0, 0,
3877 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3878 }
3879
3880 /* Queue an address device command TRB */
3881 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3882 u32 slot_id)
3883 {
3884 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3885 upper_32_bits(in_ctx_ptr), 0,
3886 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3887 false);
3888 }
3889
3890 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3891 u32 field1, u32 field2, u32 field3, u32 field4)
3892 {
3893 return queue_command(xhci, field1, field2, field3, field4, false);
3894 }
3895
3896 /* Queue a reset device command TRB */
3897 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3898 {
3899 return queue_command(xhci, 0, 0, 0,
3900 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3901 false);
3902 }
3903
3904 /* Queue a configure endpoint command TRB */
3905 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3906 u32 slot_id, bool command_must_succeed)
3907 {
3908 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3909 upper_32_bits(in_ctx_ptr), 0,
3910 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3911 command_must_succeed);
3912 }
3913
3914 /* Queue an evaluate context command TRB */
3915 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3916 u32 slot_id, bool command_must_succeed)
3917 {
3918 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3919 upper_32_bits(in_ctx_ptr), 0,
3920 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3921 command_must_succeed);
3922 }
3923
3924 /*
3925 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3926 * activity on an endpoint that is about to be suspended.
3927 */
3928 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3929 unsigned int ep_index, int suspend)
3930 {
3931 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3932 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3933 u32 type = TRB_TYPE(TRB_STOP_RING);
3934 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3935
3936 return queue_command(xhci, 0, 0, 0,
3937 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3938 }
3939
3940 /* Set Transfer Ring Dequeue Pointer command.
3941 * This should not be used for endpoints that have streams enabled.
3942 */
3943 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3944 unsigned int ep_index, unsigned int stream_id,
3945 struct xhci_segment *deq_seg,
3946 union xhci_trb *deq_ptr, u32 cycle_state)
3947 {
3948 dma_addr_t addr;
3949 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3950 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3951 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3952 u32 type = TRB_TYPE(TRB_SET_DEQ);
3953 struct xhci_virt_ep *ep;
3954
3955 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
3956 if (addr == 0) {
3957 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3958 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3959 deq_seg, deq_ptr);
3960 return 0;
3961 }
3962 ep = &xhci->devs[slot_id]->eps[ep_index];
3963 if ((ep->ep_state & SET_DEQ_PENDING)) {
3964 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3965 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3966 return 0;
3967 }
3968 ep->queued_deq_seg = deq_seg;
3969 ep->queued_deq_ptr = deq_ptr;
3970 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
3971 upper_32_bits(addr), trb_stream_id,
3972 trb_slot_id | trb_ep_index | type, false);
3973 }
3974
3975 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
3976 unsigned int ep_index)
3977 {
3978 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3979 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3980 u32 type = TRB_TYPE(TRB_RESET_EP);
3981
3982 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
3983 false);
3984 }
This page took 0.175083 seconds and 6 git commands to generate.