xHCI: test and clear RWC bit
[deliverable/linux.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include "xhci.h"
70
71 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 struct xhci_virt_device *virt_dev,
73 struct xhci_event_cmd *event);
74
75 /*
76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77 * address of the TRB.
78 */
79 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 union xhci_trb *trb)
81 {
82 unsigned long segment_offset;
83
84 if (!seg || !trb || trb < seg->trbs)
85 return 0;
86 /* offset in TRBs */
87 segment_offset = trb - seg->trbs;
88 if (segment_offset > TRBS_PER_SEGMENT)
89 return 0;
90 return seg->dma + (segment_offset * sizeof(*trb));
91 }
92
93 /* Does this link TRB point to the first segment in a ring,
94 * or was the previous TRB the last TRB on the last segment in the ERST?
95 */
96 static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 struct xhci_segment *seg, union xhci_trb *trb)
98 {
99 if (ring == xhci->event_ring)
100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 (seg->next == xhci->event_ring->first_seg);
102 else
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
104 }
105
106 /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107 * segment? I.e. would the updated event TRB pointer step off the end of the
108 * event seg?
109 */
110 static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 struct xhci_segment *seg, union xhci_trb *trb)
112 {
113 if (ring == xhci->event_ring)
114 return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 else
116 return TRB_TYPE_LINK_LE32(trb->link.control);
117 }
118
119 static int enqueue_is_link_trb(struct xhci_ring *ring)
120 {
121 struct xhci_link_trb *link = &ring->enqueue->link;
122 return TRB_TYPE_LINK_LE32(link->control);
123 }
124
125 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
126 * TRB is in a new segment. This does not skip over link TRBs, and it does not
127 * effect the ring dequeue or enqueue pointers.
128 */
129 static void next_trb(struct xhci_hcd *xhci,
130 struct xhci_ring *ring,
131 struct xhci_segment **seg,
132 union xhci_trb **trb)
133 {
134 if (last_trb(xhci, ring, *seg, *trb)) {
135 *seg = (*seg)->next;
136 *trb = ((*seg)->trbs);
137 } else {
138 (*trb)++;
139 }
140 }
141
142 /*
143 * See Cycle bit rules. SW is the consumer for the event ring only.
144 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
145 */
146 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer)
147 {
148 union xhci_trb *next = ++(ring->dequeue);
149 unsigned long long addr;
150
151 ring->deq_updates++;
152 /* Update the dequeue pointer further if that was a link TRB or we're at
153 * the end of an event ring segment (which doesn't have link TRBS)
154 */
155 while (last_trb(xhci, ring, ring->deq_seg, next)) {
156 if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) {
157 ring->cycle_state = (ring->cycle_state ? 0 : 1);
158 if (!in_interrupt())
159 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
160 ring,
161 (unsigned int) ring->cycle_state);
162 }
163 ring->deq_seg = ring->deq_seg->next;
164 ring->dequeue = ring->deq_seg->trbs;
165 next = ring->dequeue;
166 }
167 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
168 }
169
170 /*
171 * See Cycle bit rules. SW is the consumer for the event ring only.
172 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
173 *
174 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
175 * chain bit is set), then set the chain bit in all the following link TRBs.
176 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
177 * have their chain bit cleared (so that each Link TRB is a separate TD).
178 *
179 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
180 * set, but other sections talk about dealing with the chain bit set. This was
181 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
182 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
183 *
184 * @more_trbs_coming: Will you enqueue more TRBs before calling
185 * prepare_transfer()?
186 */
187 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
188 bool consumer, bool more_trbs_coming)
189 {
190 u32 chain;
191 union xhci_trb *next;
192 unsigned long long addr;
193
194 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
195 next = ++(ring->enqueue);
196
197 ring->enq_updates++;
198 /* Update the dequeue pointer further if that was a link TRB or we're at
199 * the end of an event ring segment (which doesn't have link TRBS)
200 */
201 while (last_trb(xhci, ring, ring->enq_seg, next)) {
202 if (!consumer) {
203 if (ring != xhci->event_ring) {
204 /*
205 * If the caller doesn't plan on enqueueing more
206 * TDs before ringing the doorbell, then we
207 * don't want to give the link TRB to the
208 * hardware just yet. We'll give the link TRB
209 * back in prepare_ring() just before we enqueue
210 * the TD at the top of the ring.
211 */
212 if (!chain && !more_trbs_coming)
213 break;
214
215 /* If we're not dealing with 0.95 hardware,
216 * carry over the chain bit of the previous TRB
217 * (which may mean the chain bit is cleared).
218 */
219 if (!xhci_link_trb_quirk(xhci)) {
220 next->link.control &=
221 cpu_to_le32(~TRB_CHAIN);
222 next->link.control |=
223 cpu_to_le32(chain);
224 }
225 /* Give this link TRB to the hardware */
226 wmb();
227 next->link.control ^= cpu_to_le32(TRB_CYCLE);
228 }
229 /* Toggle the cycle bit after the last ring segment. */
230 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
231 ring->cycle_state = (ring->cycle_state ? 0 : 1);
232 if (!in_interrupt())
233 xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n",
234 ring,
235 (unsigned int) ring->cycle_state);
236 }
237 }
238 ring->enq_seg = ring->enq_seg->next;
239 ring->enqueue = ring->enq_seg->trbs;
240 next = ring->enqueue;
241 }
242 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
243 }
244
245 /*
246 * Check to see if there's room to enqueue num_trbs on the ring. See rules
247 * above.
248 * FIXME: this would be simpler and faster if we just kept track of the number
249 * of free TRBs in a ring.
250 */
251 static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
252 unsigned int num_trbs)
253 {
254 int i;
255 union xhci_trb *enq = ring->enqueue;
256 struct xhci_segment *enq_seg = ring->enq_seg;
257 struct xhci_segment *cur_seg;
258 unsigned int left_on_ring;
259
260 /* If we are currently pointing to a link TRB, advance the
261 * enqueue pointer before checking for space */
262 while (last_trb(xhci, ring, enq_seg, enq)) {
263 enq_seg = enq_seg->next;
264 enq = enq_seg->trbs;
265 }
266
267 /* Check if ring is empty */
268 if (enq == ring->dequeue) {
269 /* Can't use link trbs */
270 left_on_ring = TRBS_PER_SEGMENT - 1;
271 for (cur_seg = enq_seg->next; cur_seg != enq_seg;
272 cur_seg = cur_seg->next)
273 left_on_ring += TRBS_PER_SEGMENT - 1;
274
275 /* Always need one TRB free in the ring. */
276 left_on_ring -= 1;
277 if (num_trbs > left_on_ring) {
278 xhci_warn(xhci, "Not enough room on ring; "
279 "need %u TRBs, %u TRBs left\n",
280 num_trbs, left_on_ring);
281 return 0;
282 }
283 return 1;
284 }
285 /* Make sure there's an extra empty TRB available */
286 for (i = 0; i <= num_trbs; ++i) {
287 if (enq == ring->dequeue)
288 return 0;
289 enq++;
290 while (last_trb(xhci, ring, enq_seg, enq)) {
291 enq_seg = enq_seg->next;
292 enq = enq_seg->trbs;
293 }
294 }
295 return 1;
296 }
297
298 /* Ring the host controller doorbell after placing a command on the ring */
299 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
300 {
301 xhci_dbg(xhci, "// Ding dong!\n");
302 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
303 /* Flush PCI posted writes */
304 xhci_readl(xhci, &xhci->dba->doorbell[0]);
305 }
306
307 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
308 unsigned int slot_id,
309 unsigned int ep_index,
310 unsigned int stream_id)
311 {
312 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
313 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
314 unsigned int ep_state = ep->ep_state;
315
316 /* Don't ring the doorbell for this endpoint if there are pending
317 * cancellations because we don't want to interrupt processing.
318 * We don't want to restart any stream rings if there's a set dequeue
319 * pointer command pending because the device can choose to start any
320 * stream once the endpoint is on the HW schedule.
321 * FIXME - check all the stream rings for pending cancellations.
322 */
323 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
324 (ep_state & EP_HALTED))
325 return;
326 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
327 /* The CPU has better things to do at this point than wait for a
328 * write-posting flush. It'll get there soon enough.
329 */
330 }
331
332 /* Ring the doorbell for any rings with pending URBs */
333 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
334 unsigned int slot_id,
335 unsigned int ep_index)
336 {
337 unsigned int stream_id;
338 struct xhci_virt_ep *ep;
339
340 ep = &xhci->devs[slot_id]->eps[ep_index];
341
342 /* A ring has pending URBs if its TD list is not empty */
343 if (!(ep->ep_state & EP_HAS_STREAMS)) {
344 if (!(list_empty(&ep->ring->td_list)))
345 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
346 return;
347 }
348
349 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
350 stream_id++) {
351 struct xhci_stream_info *stream_info = ep->stream_info;
352 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
353 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
354 stream_id);
355 }
356 }
357
358 /*
359 * Find the segment that trb is in. Start searching in start_seg.
360 * If we must move past a segment that has a link TRB with a toggle cycle state
361 * bit set, then we will toggle the value pointed at by cycle_state.
362 */
363 static struct xhci_segment *find_trb_seg(
364 struct xhci_segment *start_seg,
365 union xhci_trb *trb, int *cycle_state)
366 {
367 struct xhci_segment *cur_seg = start_seg;
368 struct xhci_generic_trb *generic_trb;
369
370 while (cur_seg->trbs > trb ||
371 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
372 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
373 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
374 *cycle_state ^= 0x1;
375 cur_seg = cur_seg->next;
376 if (cur_seg == start_seg)
377 /* Looped over the entire list. Oops! */
378 return NULL;
379 }
380 return cur_seg;
381 }
382
383
384 static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
385 unsigned int slot_id, unsigned int ep_index,
386 unsigned int stream_id)
387 {
388 struct xhci_virt_ep *ep;
389
390 ep = &xhci->devs[slot_id]->eps[ep_index];
391 /* Common case: no streams */
392 if (!(ep->ep_state & EP_HAS_STREAMS))
393 return ep->ring;
394
395 if (stream_id == 0) {
396 xhci_warn(xhci,
397 "WARN: Slot ID %u, ep index %u has streams, "
398 "but URB has no stream ID.\n",
399 slot_id, ep_index);
400 return NULL;
401 }
402
403 if (stream_id < ep->stream_info->num_streams)
404 return ep->stream_info->stream_rings[stream_id];
405
406 xhci_warn(xhci,
407 "WARN: Slot ID %u, ep index %u has "
408 "stream IDs 1 to %u allocated, "
409 "but stream ID %u is requested.\n",
410 slot_id, ep_index,
411 ep->stream_info->num_streams - 1,
412 stream_id);
413 return NULL;
414 }
415
416 /* Get the right ring for the given URB.
417 * If the endpoint supports streams, boundary check the URB's stream ID.
418 * If the endpoint doesn't support streams, return the singular endpoint ring.
419 */
420 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
421 struct urb *urb)
422 {
423 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
424 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
425 }
426
427 /*
428 * Move the xHC's endpoint ring dequeue pointer past cur_td.
429 * Record the new state of the xHC's endpoint ring dequeue segment,
430 * dequeue pointer, and new consumer cycle state in state.
431 * Update our internal representation of the ring's dequeue pointer.
432 *
433 * We do this in three jumps:
434 * - First we update our new ring state to be the same as when the xHC stopped.
435 * - Then we traverse the ring to find the segment that contains
436 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
437 * any link TRBs with the toggle cycle bit set.
438 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
439 * if we've moved it past a link TRB with the toggle cycle bit set.
440 *
441 * Some of the uses of xhci_generic_trb are grotty, but if they're done
442 * with correct __le32 accesses they should work fine. Only users of this are
443 * in here.
444 */
445 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
446 unsigned int slot_id, unsigned int ep_index,
447 unsigned int stream_id, struct xhci_td *cur_td,
448 struct xhci_dequeue_state *state)
449 {
450 struct xhci_virt_device *dev = xhci->devs[slot_id];
451 struct xhci_ring *ep_ring;
452 struct xhci_generic_trb *trb;
453 struct xhci_ep_ctx *ep_ctx;
454 dma_addr_t addr;
455
456 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
457 ep_index, stream_id);
458 if (!ep_ring) {
459 xhci_warn(xhci, "WARN can't find new dequeue state "
460 "for invalid stream ID %u.\n",
461 stream_id);
462 return;
463 }
464 state->new_cycle_state = 0;
465 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
466 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
467 dev->eps[ep_index].stopped_trb,
468 &state->new_cycle_state);
469 if (!state->new_deq_seg) {
470 WARN_ON(1);
471 return;
472 }
473
474 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
475 xhci_dbg(xhci, "Finding endpoint context\n");
476 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
477 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
478
479 state->new_deq_ptr = cur_td->last_trb;
480 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
481 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
482 state->new_deq_ptr,
483 &state->new_cycle_state);
484 if (!state->new_deq_seg) {
485 WARN_ON(1);
486 return;
487 }
488
489 trb = &state->new_deq_ptr->generic;
490 if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
491 (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
492 state->new_cycle_state ^= 0x1;
493 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
494
495 /*
496 * If there is only one segment in a ring, find_trb_seg()'s while loop
497 * will not run, and it will return before it has a chance to see if it
498 * needs to toggle the cycle bit. It can't tell if the stalled transfer
499 * ended just before the link TRB on a one-segment ring, or if the TD
500 * wrapped around the top of the ring, because it doesn't have the TD in
501 * question. Look for the one-segment case where stalled TRB's address
502 * is greater than the new dequeue pointer address.
503 */
504 if (ep_ring->first_seg == ep_ring->first_seg->next &&
505 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
506 state->new_cycle_state ^= 0x1;
507 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
508
509 /* Don't update the ring cycle state for the producer (us). */
510 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
511 state->new_deq_seg);
512 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
513 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
514 (unsigned long long) addr);
515 }
516
517 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
518 * (The last TRB actually points to the ring enqueue pointer, which is not part
519 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
520 */
521 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
522 struct xhci_td *cur_td, bool flip_cycle)
523 {
524 struct xhci_segment *cur_seg;
525 union xhci_trb *cur_trb;
526
527 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
528 true;
529 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
530 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
531 /* Unchain any chained Link TRBs, but
532 * leave the pointers intact.
533 */
534 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
535 /* Flip the cycle bit (link TRBs can't be the first
536 * or last TRB).
537 */
538 if (flip_cycle)
539 cur_trb->generic.field[3] ^=
540 cpu_to_le32(TRB_CYCLE);
541 xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
542 xhci_dbg(xhci, "Address = %p (0x%llx dma); "
543 "in seg %p (0x%llx dma)\n",
544 cur_trb,
545 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
546 cur_seg,
547 (unsigned long long)cur_seg->dma);
548 } else {
549 cur_trb->generic.field[0] = 0;
550 cur_trb->generic.field[1] = 0;
551 cur_trb->generic.field[2] = 0;
552 /* Preserve only the cycle bit of this TRB */
553 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
554 /* Flip the cycle bit except on the first or last TRB */
555 if (flip_cycle && cur_trb != cur_td->first_trb &&
556 cur_trb != cur_td->last_trb)
557 cur_trb->generic.field[3] ^=
558 cpu_to_le32(TRB_CYCLE);
559 cur_trb->generic.field[3] |= cpu_to_le32(
560 TRB_TYPE(TRB_TR_NOOP));
561 xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) "
562 "in seg %p (0x%llx dma)\n",
563 cur_trb,
564 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
565 cur_seg,
566 (unsigned long long)cur_seg->dma);
567 }
568 if (cur_trb == cur_td->last_trb)
569 break;
570 }
571 }
572
573 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
574 unsigned int ep_index, unsigned int stream_id,
575 struct xhci_segment *deq_seg,
576 union xhci_trb *deq_ptr, u32 cycle_state);
577
578 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
579 unsigned int slot_id, unsigned int ep_index,
580 unsigned int stream_id,
581 struct xhci_dequeue_state *deq_state)
582 {
583 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
584
585 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
586 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
587 deq_state->new_deq_seg,
588 (unsigned long long)deq_state->new_deq_seg->dma,
589 deq_state->new_deq_ptr,
590 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
591 deq_state->new_cycle_state);
592 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
593 deq_state->new_deq_seg,
594 deq_state->new_deq_ptr,
595 (u32) deq_state->new_cycle_state);
596 /* Stop the TD queueing code from ringing the doorbell until
597 * this command completes. The HC won't set the dequeue pointer
598 * if the ring is running, and ringing the doorbell starts the
599 * ring running.
600 */
601 ep->ep_state |= SET_DEQ_PENDING;
602 }
603
604 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
605 struct xhci_virt_ep *ep)
606 {
607 ep->ep_state &= ~EP_HALT_PENDING;
608 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
609 * timer is running on another CPU, we don't decrement stop_cmds_pending
610 * (since we didn't successfully stop the watchdog timer).
611 */
612 if (del_timer(&ep->stop_cmd_timer))
613 ep->stop_cmds_pending--;
614 }
615
616 /* Must be called with xhci->lock held in interrupt context */
617 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
618 struct xhci_td *cur_td, int status, char *adjective)
619 {
620 struct usb_hcd *hcd;
621 struct urb *urb;
622 struct urb_priv *urb_priv;
623
624 urb = cur_td->urb;
625 urb_priv = urb->hcpriv;
626 urb_priv->td_cnt++;
627 hcd = bus_to_hcd(urb->dev->bus);
628
629 /* Only giveback urb when this is the last td in urb */
630 if (urb_priv->td_cnt == urb_priv->length) {
631 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
632 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
633 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
634 if (xhci->quirks & XHCI_AMD_PLL_FIX)
635 usb_amd_quirk_pll_enable();
636 }
637 }
638 usb_hcd_unlink_urb_from_ep(hcd, urb);
639
640 spin_unlock(&xhci->lock);
641 usb_hcd_giveback_urb(hcd, urb, status);
642 xhci_urb_free_priv(xhci, urb_priv);
643 spin_lock(&xhci->lock);
644 }
645 }
646
647 /*
648 * When we get a command completion for a Stop Endpoint Command, we need to
649 * unlink any cancelled TDs from the ring. There are two ways to do that:
650 *
651 * 1. If the HW was in the middle of processing the TD that needs to be
652 * cancelled, then we must move the ring's dequeue pointer past the last TRB
653 * in the TD with a Set Dequeue Pointer Command.
654 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
655 * bit cleared) so that the HW will skip over them.
656 */
657 static void handle_stopped_endpoint(struct xhci_hcd *xhci,
658 union xhci_trb *trb, struct xhci_event_cmd *event)
659 {
660 unsigned int slot_id;
661 unsigned int ep_index;
662 struct xhci_virt_device *virt_dev;
663 struct xhci_ring *ep_ring;
664 struct xhci_virt_ep *ep;
665 struct list_head *entry;
666 struct xhci_td *cur_td = NULL;
667 struct xhci_td *last_unlinked_td;
668
669 struct xhci_dequeue_state deq_state;
670
671 if (unlikely(TRB_TO_SUSPEND_PORT(
672 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
673 slot_id = TRB_TO_SLOT_ID(
674 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
675 virt_dev = xhci->devs[slot_id];
676 if (virt_dev)
677 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
678 event);
679 else
680 xhci_warn(xhci, "Stop endpoint command "
681 "completion for disabled slot %u\n",
682 slot_id);
683 return;
684 }
685
686 memset(&deq_state, 0, sizeof(deq_state));
687 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
688 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
689 ep = &xhci->devs[slot_id]->eps[ep_index];
690
691 if (list_empty(&ep->cancelled_td_list)) {
692 xhci_stop_watchdog_timer_in_irq(xhci, ep);
693 ep->stopped_td = NULL;
694 ep->stopped_trb = NULL;
695 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
696 return;
697 }
698
699 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
700 * We have the xHCI lock, so nothing can modify this list until we drop
701 * it. We're also in the event handler, so we can't get re-interrupted
702 * if another Stop Endpoint command completes
703 */
704 list_for_each(entry, &ep->cancelled_td_list) {
705 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
706 xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n",
707 cur_td->first_trb,
708 (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb));
709 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
710 if (!ep_ring) {
711 /* This shouldn't happen unless a driver is mucking
712 * with the stream ID after submission. This will
713 * leave the TD on the hardware ring, and the hardware
714 * will try to execute it, and may access a buffer
715 * that has already been freed. In the best case, the
716 * hardware will execute it, and the event handler will
717 * ignore the completion event for that TD, since it was
718 * removed from the td_list for that endpoint. In
719 * short, don't muck with the stream ID after
720 * submission.
721 */
722 xhci_warn(xhci, "WARN Cancelled URB %p "
723 "has invalid stream ID %u.\n",
724 cur_td->urb,
725 cur_td->urb->stream_id);
726 goto remove_finished_td;
727 }
728 /*
729 * If we stopped on the TD we need to cancel, then we have to
730 * move the xHC endpoint ring dequeue pointer past this TD.
731 */
732 if (cur_td == ep->stopped_td)
733 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
734 cur_td->urb->stream_id,
735 cur_td, &deq_state);
736 else
737 td_to_noop(xhci, ep_ring, cur_td, false);
738 remove_finished_td:
739 /*
740 * The event handler won't see a completion for this TD anymore,
741 * so remove it from the endpoint ring's TD list. Keep it in
742 * the cancelled TD list for URB completion later.
743 */
744 list_del_init(&cur_td->td_list);
745 }
746 last_unlinked_td = cur_td;
747 xhci_stop_watchdog_timer_in_irq(xhci, ep);
748
749 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
750 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
751 xhci_queue_new_dequeue_state(xhci,
752 slot_id, ep_index,
753 ep->stopped_td->urb->stream_id,
754 &deq_state);
755 xhci_ring_cmd_db(xhci);
756 } else {
757 /* Otherwise ring the doorbell(s) to restart queued transfers */
758 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
759 }
760 ep->stopped_td = NULL;
761 ep->stopped_trb = NULL;
762
763 /*
764 * Drop the lock and complete the URBs in the cancelled TD list.
765 * New TDs to be cancelled might be added to the end of the list before
766 * we can complete all the URBs for the TDs we already unlinked.
767 * So stop when we've completed the URB for the last TD we unlinked.
768 */
769 do {
770 cur_td = list_entry(ep->cancelled_td_list.next,
771 struct xhci_td, cancelled_td_list);
772 list_del_init(&cur_td->cancelled_td_list);
773
774 /* Clean up the cancelled URB */
775 /* Doesn't matter what we pass for status, since the core will
776 * just overwrite it (because the URB has been unlinked).
777 */
778 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
779
780 /* Stop processing the cancelled list if the watchdog timer is
781 * running.
782 */
783 if (xhci->xhc_state & XHCI_STATE_DYING)
784 return;
785 } while (cur_td != last_unlinked_td);
786
787 /* Return to the event handler with xhci->lock re-acquired */
788 }
789
790 /* Watchdog timer function for when a stop endpoint command fails to complete.
791 * In this case, we assume the host controller is broken or dying or dead. The
792 * host may still be completing some other events, so we have to be careful to
793 * let the event ring handler and the URB dequeueing/enqueueing functions know
794 * through xhci->state.
795 *
796 * The timer may also fire if the host takes a very long time to respond to the
797 * command, and the stop endpoint command completion handler cannot delete the
798 * timer before the timer function is called. Another endpoint cancellation may
799 * sneak in before the timer function can grab the lock, and that may queue
800 * another stop endpoint command and add the timer back. So we cannot use a
801 * simple flag to say whether there is a pending stop endpoint command for a
802 * particular endpoint.
803 *
804 * Instead we use a combination of that flag and a counter for the number of
805 * pending stop endpoint commands. If the timer is the tail end of the last
806 * stop endpoint command, and the endpoint's command is still pending, we assume
807 * the host is dying.
808 */
809 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
810 {
811 struct xhci_hcd *xhci;
812 struct xhci_virt_ep *ep;
813 struct xhci_virt_ep *temp_ep;
814 struct xhci_ring *ring;
815 struct xhci_td *cur_td;
816 int ret, i, j;
817
818 ep = (struct xhci_virt_ep *) arg;
819 xhci = ep->xhci;
820
821 spin_lock(&xhci->lock);
822
823 ep->stop_cmds_pending--;
824 if (xhci->xhc_state & XHCI_STATE_DYING) {
825 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
826 "xHCI as DYING, exiting.\n");
827 spin_unlock(&xhci->lock);
828 return;
829 }
830 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
831 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
832 "exiting.\n");
833 spin_unlock(&xhci->lock);
834 return;
835 }
836
837 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
838 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
839 /* Oops, HC is dead or dying or at least not responding to the stop
840 * endpoint command.
841 */
842 xhci->xhc_state |= XHCI_STATE_DYING;
843 /* Disable interrupts from the host controller and start halting it */
844 xhci_quiesce(xhci);
845 spin_unlock(&xhci->lock);
846
847 ret = xhci_halt(xhci);
848
849 spin_lock(&xhci->lock);
850 if (ret < 0) {
851 /* This is bad; the host is not responding to commands and it's
852 * not allowing itself to be halted. At least interrupts are
853 * disabled. If we call usb_hc_died(), it will attempt to
854 * disconnect all device drivers under this host. Those
855 * disconnect() methods will wait for all URBs to be unlinked,
856 * so we must complete them.
857 */
858 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
859 xhci_warn(xhci, "Completing active URBs anyway.\n");
860 /* We could turn all TDs on the rings to no-ops. This won't
861 * help if the host has cached part of the ring, and is slow if
862 * we want to preserve the cycle bit. Skip it and hope the host
863 * doesn't touch the memory.
864 */
865 }
866 for (i = 0; i < MAX_HC_SLOTS; i++) {
867 if (!xhci->devs[i])
868 continue;
869 for (j = 0; j < 31; j++) {
870 temp_ep = &xhci->devs[i]->eps[j];
871 ring = temp_ep->ring;
872 if (!ring)
873 continue;
874 xhci_dbg(xhci, "Killing URBs for slot ID %u, "
875 "ep index %u\n", i, j);
876 while (!list_empty(&ring->td_list)) {
877 cur_td = list_first_entry(&ring->td_list,
878 struct xhci_td,
879 td_list);
880 list_del_init(&cur_td->td_list);
881 if (!list_empty(&cur_td->cancelled_td_list))
882 list_del_init(&cur_td->cancelled_td_list);
883 xhci_giveback_urb_in_irq(xhci, cur_td,
884 -ESHUTDOWN, "killed");
885 }
886 while (!list_empty(&temp_ep->cancelled_td_list)) {
887 cur_td = list_first_entry(
888 &temp_ep->cancelled_td_list,
889 struct xhci_td,
890 cancelled_td_list);
891 list_del_init(&cur_td->cancelled_td_list);
892 xhci_giveback_urb_in_irq(xhci, cur_td,
893 -ESHUTDOWN, "killed");
894 }
895 }
896 }
897 spin_unlock(&xhci->lock);
898 xhci_dbg(xhci, "Calling usb_hc_died()\n");
899 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
900 xhci_dbg(xhci, "xHCI host controller is dead.\n");
901 }
902
903 /*
904 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
905 * we need to clear the set deq pending flag in the endpoint ring state, so that
906 * the TD queueing code can ring the doorbell again. We also need to ring the
907 * endpoint doorbell to restart the ring, but only if there aren't more
908 * cancellations pending.
909 */
910 static void handle_set_deq_completion(struct xhci_hcd *xhci,
911 struct xhci_event_cmd *event,
912 union xhci_trb *trb)
913 {
914 unsigned int slot_id;
915 unsigned int ep_index;
916 unsigned int stream_id;
917 struct xhci_ring *ep_ring;
918 struct xhci_virt_device *dev;
919 struct xhci_ep_ctx *ep_ctx;
920 struct xhci_slot_ctx *slot_ctx;
921
922 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
923 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
924 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
925 dev = xhci->devs[slot_id];
926
927 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
928 if (!ep_ring) {
929 xhci_warn(xhci, "WARN Set TR deq ptr command for "
930 "freed stream ID %u\n",
931 stream_id);
932 /* XXX: Harmless??? */
933 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
934 return;
935 }
936
937 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
938 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
939
940 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
941 unsigned int ep_state;
942 unsigned int slot_state;
943
944 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
945 case COMP_TRB_ERR:
946 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
947 "of stream ID configuration\n");
948 break;
949 case COMP_CTX_STATE:
950 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
951 "to incorrect slot or ep state.\n");
952 ep_state = le32_to_cpu(ep_ctx->ep_info);
953 ep_state &= EP_STATE_MASK;
954 slot_state = le32_to_cpu(slot_ctx->dev_state);
955 slot_state = GET_SLOT_STATE(slot_state);
956 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
957 slot_state, ep_state);
958 break;
959 case COMP_EBADSLT:
960 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
961 "slot %u was not enabled.\n", slot_id);
962 break;
963 default:
964 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
965 "completion code of %u.\n",
966 GET_COMP_CODE(le32_to_cpu(event->status)));
967 break;
968 }
969 /* OK what do we do now? The endpoint state is hosed, and we
970 * should never get to this point if the synchronization between
971 * queueing, and endpoint state are correct. This might happen
972 * if the device gets disconnected after we've finished
973 * cancelling URBs, which might not be an error...
974 */
975 } else {
976 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
977 le64_to_cpu(ep_ctx->deq));
978 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
979 dev->eps[ep_index].queued_deq_ptr) ==
980 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
981 /* Update the ring's dequeue segment and dequeue pointer
982 * to reflect the new position.
983 */
984 ep_ring->deq_seg = dev->eps[ep_index].queued_deq_seg;
985 ep_ring->dequeue = dev->eps[ep_index].queued_deq_ptr;
986 } else {
987 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
988 "Ptr command & xHCI internal state.\n");
989 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
990 dev->eps[ep_index].queued_deq_seg,
991 dev->eps[ep_index].queued_deq_ptr);
992 }
993 }
994
995 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
996 dev->eps[ep_index].queued_deq_seg = NULL;
997 dev->eps[ep_index].queued_deq_ptr = NULL;
998 /* Restart any rings with pending URBs */
999 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1000 }
1001
1002 static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1003 struct xhci_event_cmd *event,
1004 union xhci_trb *trb)
1005 {
1006 int slot_id;
1007 unsigned int ep_index;
1008
1009 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1010 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1011 /* This command will only fail if the endpoint wasn't halted,
1012 * but we don't care.
1013 */
1014 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1015 GET_COMP_CODE(le32_to_cpu(event->status)));
1016
1017 /* HW with the reset endpoint quirk needs to have a configure endpoint
1018 * command complete before the endpoint can be used. Queue that here
1019 * because the HW can't handle two commands being queued in a row.
1020 */
1021 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1022 xhci_dbg(xhci, "Queueing configure endpoint command\n");
1023 xhci_queue_configure_endpoint(xhci,
1024 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1025 false);
1026 xhci_ring_cmd_db(xhci);
1027 } else {
1028 /* Clear our internal halted state and restart the ring(s) */
1029 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1030 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1031 }
1032 }
1033
1034 /* Check to see if a command in the device's command queue matches this one.
1035 * Signal the completion or free the command, and return 1. Return 0 if the
1036 * completed command isn't at the head of the command list.
1037 */
1038 static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1039 struct xhci_virt_device *virt_dev,
1040 struct xhci_event_cmd *event)
1041 {
1042 struct xhci_command *command;
1043
1044 if (list_empty(&virt_dev->cmd_list))
1045 return 0;
1046
1047 command = list_entry(virt_dev->cmd_list.next,
1048 struct xhci_command, cmd_list);
1049 if (xhci->cmd_ring->dequeue != command->command_trb)
1050 return 0;
1051
1052 command->status = GET_COMP_CODE(le32_to_cpu(event->status));
1053 list_del(&command->cmd_list);
1054 if (command->completion)
1055 complete(command->completion);
1056 else
1057 xhci_free_command(xhci, command);
1058 return 1;
1059 }
1060
1061 static void handle_cmd_completion(struct xhci_hcd *xhci,
1062 struct xhci_event_cmd *event)
1063 {
1064 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1065 u64 cmd_dma;
1066 dma_addr_t cmd_dequeue_dma;
1067 struct xhci_input_control_ctx *ctrl_ctx;
1068 struct xhci_virt_device *virt_dev;
1069 unsigned int ep_index;
1070 struct xhci_ring *ep_ring;
1071 unsigned int ep_state;
1072
1073 cmd_dma = le64_to_cpu(event->cmd_trb);
1074 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1075 xhci->cmd_ring->dequeue);
1076 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1077 if (cmd_dequeue_dma == 0) {
1078 xhci->error_bitmask |= 1 << 4;
1079 return;
1080 }
1081 /* Does the DMA address match our internal dequeue pointer address? */
1082 if (cmd_dma != (u64) cmd_dequeue_dma) {
1083 xhci->error_bitmask |= 1 << 5;
1084 return;
1085 }
1086 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1087 & TRB_TYPE_BITMASK) {
1088 case TRB_TYPE(TRB_ENABLE_SLOT):
1089 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1090 xhci->slot_id = slot_id;
1091 else
1092 xhci->slot_id = 0;
1093 complete(&xhci->addr_dev);
1094 break;
1095 case TRB_TYPE(TRB_DISABLE_SLOT):
1096 if (xhci->devs[slot_id]) {
1097 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1098 /* Delete default control endpoint resources */
1099 xhci_free_device_endpoint_resources(xhci,
1100 xhci->devs[slot_id], true);
1101 xhci_free_virt_device(xhci, slot_id);
1102 }
1103 break;
1104 case TRB_TYPE(TRB_CONFIG_EP):
1105 virt_dev = xhci->devs[slot_id];
1106 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1107 break;
1108 /*
1109 * Configure endpoint commands can come from the USB core
1110 * configuration or alt setting changes, or because the HW
1111 * needed an extra configure endpoint command after a reset
1112 * endpoint command or streams were being configured.
1113 * If the command was for a halted endpoint, the xHCI driver
1114 * is not waiting on the configure endpoint command.
1115 */
1116 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1117 virt_dev->in_ctx);
1118 /* Input ctx add_flags are the endpoint index plus one */
1119 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1120 /* A usb_set_interface() call directly after clearing a halted
1121 * condition may race on this quirky hardware. Not worth
1122 * worrying about, since this is prototype hardware. Not sure
1123 * if this will work for streams, but streams support was
1124 * untested on this prototype.
1125 */
1126 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1127 ep_index != (unsigned int) -1 &&
1128 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1129 le32_to_cpu(ctrl_ctx->drop_flags)) {
1130 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1131 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1132 if (!(ep_state & EP_HALTED))
1133 goto bandwidth_change;
1134 xhci_dbg(xhci, "Completed config ep cmd - "
1135 "last ep index = %d, state = %d\n",
1136 ep_index, ep_state);
1137 /* Clear internal halted state and restart ring(s) */
1138 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1139 ~EP_HALTED;
1140 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1141 break;
1142 }
1143 bandwidth_change:
1144 xhci_dbg(xhci, "Completed config ep cmd\n");
1145 xhci->devs[slot_id]->cmd_status =
1146 GET_COMP_CODE(le32_to_cpu(event->status));
1147 complete(&xhci->devs[slot_id]->cmd_completion);
1148 break;
1149 case TRB_TYPE(TRB_EVAL_CONTEXT):
1150 virt_dev = xhci->devs[slot_id];
1151 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1152 break;
1153 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1154 complete(&xhci->devs[slot_id]->cmd_completion);
1155 break;
1156 case TRB_TYPE(TRB_ADDR_DEV):
1157 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1158 complete(&xhci->addr_dev);
1159 break;
1160 case TRB_TYPE(TRB_STOP_RING):
1161 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1162 break;
1163 case TRB_TYPE(TRB_SET_DEQ):
1164 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1165 break;
1166 case TRB_TYPE(TRB_CMD_NOOP):
1167 break;
1168 case TRB_TYPE(TRB_RESET_EP):
1169 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1170 break;
1171 case TRB_TYPE(TRB_RESET_DEV):
1172 xhci_dbg(xhci, "Completed reset device command.\n");
1173 slot_id = TRB_TO_SLOT_ID(
1174 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1175 virt_dev = xhci->devs[slot_id];
1176 if (virt_dev)
1177 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1178 else
1179 xhci_warn(xhci, "Reset device command completion "
1180 "for disabled slot %u\n", slot_id);
1181 break;
1182 case TRB_TYPE(TRB_NEC_GET_FW):
1183 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1184 xhci->error_bitmask |= 1 << 6;
1185 break;
1186 }
1187 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1188 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1189 NEC_FW_MINOR(le32_to_cpu(event->status)));
1190 break;
1191 default:
1192 /* Skip over unknown commands on the event ring */
1193 xhci->error_bitmask |= 1 << 6;
1194 break;
1195 }
1196 inc_deq(xhci, xhci->cmd_ring, false);
1197 }
1198
1199 static void handle_vendor_event(struct xhci_hcd *xhci,
1200 union xhci_trb *event)
1201 {
1202 u32 trb_type;
1203
1204 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1205 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1206 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1207 handle_cmd_completion(xhci, &event->event_cmd);
1208 }
1209
1210 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1211 * port registers -- USB 3.0 and USB 2.0).
1212 *
1213 * Returns a zero-based port number, which is suitable for indexing into each of
1214 * the split roothubs' port arrays and bus state arrays.
1215 */
1216 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1217 struct xhci_hcd *xhci, u32 port_id)
1218 {
1219 unsigned int i;
1220 unsigned int num_similar_speed_ports = 0;
1221
1222 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1223 * and usb2_ports are 0-based indexes. Count the number of similar
1224 * speed ports, up to 1 port before this port.
1225 */
1226 for (i = 0; i < (port_id - 1); i++) {
1227 u8 port_speed = xhci->port_array[i];
1228
1229 /*
1230 * Skip ports that don't have known speeds, or have duplicate
1231 * Extended Capabilities port speed entries.
1232 */
1233 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1234 continue;
1235
1236 /*
1237 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1238 * 1.1 ports are under the USB 2.0 hub. If the port speed
1239 * matches the device speed, it's a similar speed port.
1240 */
1241 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1242 num_similar_speed_ports++;
1243 }
1244 return num_similar_speed_ports;
1245 }
1246
1247 static void handle_port_status(struct xhci_hcd *xhci,
1248 union xhci_trb *event)
1249 {
1250 struct usb_hcd *hcd;
1251 u32 port_id;
1252 u32 temp, temp1;
1253 int max_ports;
1254 int slot_id;
1255 unsigned int faked_port_index;
1256 u8 major_revision;
1257 struct xhci_bus_state *bus_state;
1258 __le32 __iomem **port_array;
1259 bool bogus_port_status = false;
1260
1261 /* Port status change events always have a successful completion code */
1262 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1263 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1264 xhci->error_bitmask |= 1 << 8;
1265 }
1266 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1267 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1268
1269 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1270 if ((port_id <= 0) || (port_id > max_ports)) {
1271 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1272 bogus_port_status = true;
1273 goto cleanup;
1274 }
1275
1276 /* Figure out which usb_hcd this port is attached to:
1277 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1278 */
1279 major_revision = xhci->port_array[port_id - 1];
1280 if (major_revision == 0) {
1281 xhci_warn(xhci, "Event for port %u not in "
1282 "Extended Capabilities, ignoring.\n",
1283 port_id);
1284 bogus_port_status = true;
1285 goto cleanup;
1286 }
1287 if (major_revision == DUPLICATE_ENTRY) {
1288 xhci_warn(xhci, "Event for port %u duplicated in"
1289 "Extended Capabilities, ignoring.\n",
1290 port_id);
1291 bogus_port_status = true;
1292 goto cleanup;
1293 }
1294
1295 /*
1296 * Hardware port IDs reported by a Port Status Change Event include USB
1297 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1298 * resume event, but we first need to translate the hardware port ID
1299 * into the index into the ports on the correct split roothub, and the
1300 * correct bus_state structure.
1301 */
1302 /* Find the right roothub. */
1303 hcd = xhci_to_hcd(xhci);
1304 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1305 hcd = xhci->shared_hcd;
1306 bus_state = &xhci->bus_state[hcd_index(hcd)];
1307 if (hcd->speed == HCD_USB3)
1308 port_array = xhci->usb3_ports;
1309 else
1310 port_array = xhci->usb2_ports;
1311 /* Find the faked port hub number */
1312 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1313 port_id);
1314
1315 temp = xhci_readl(xhci, port_array[faked_port_index]);
1316 if (hcd->state == HC_STATE_SUSPENDED) {
1317 xhci_dbg(xhci, "resume root hub\n");
1318 usb_hcd_resume_root_hub(hcd);
1319 }
1320
1321 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1322 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1323
1324 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1325 if (!(temp1 & CMD_RUN)) {
1326 xhci_warn(xhci, "xHC is not running.\n");
1327 goto cleanup;
1328 }
1329
1330 if (DEV_SUPERSPEED(temp)) {
1331 xhci_dbg(xhci, "resume SS port %d\n", port_id);
1332 xhci_set_link_state(xhci, port_array, faked_port_index,
1333 XDEV_U0);
1334 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1335 faked_port_index);
1336 if (!slot_id) {
1337 xhci_dbg(xhci, "slot_id is zero\n");
1338 goto cleanup;
1339 }
1340 xhci_ring_device(xhci, slot_id);
1341 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1342 /* Clear PORT_PLC */
1343 xhci_test_and_clear_bit(xhci, port_array,
1344 faked_port_index, PORT_PLC);
1345 } else {
1346 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1347 bus_state->resume_done[faked_port_index] = jiffies +
1348 msecs_to_jiffies(20);
1349 mod_timer(&hcd->rh_timer,
1350 bus_state->resume_done[faked_port_index]);
1351 /* Do the rest in GetPortStatus */
1352 }
1353 }
1354
1355 cleanup:
1356 /* Update event ring dequeue pointer before dropping the lock */
1357 inc_deq(xhci, xhci->event_ring, true);
1358
1359 /* Don't make the USB core poll the roothub if we got a bad port status
1360 * change event. Besides, at that point we can't tell which roothub
1361 * (USB 2.0 or USB 3.0) to kick.
1362 */
1363 if (bogus_port_status)
1364 return;
1365
1366 spin_unlock(&xhci->lock);
1367 /* Pass this up to the core */
1368 usb_hcd_poll_rh_status(hcd);
1369 spin_lock(&xhci->lock);
1370 }
1371
1372 /*
1373 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1374 * at end_trb, which may be in another segment. If the suspect DMA address is a
1375 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1376 * returns 0.
1377 */
1378 struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1379 union xhci_trb *start_trb,
1380 union xhci_trb *end_trb,
1381 dma_addr_t suspect_dma)
1382 {
1383 dma_addr_t start_dma;
1384 dma_addr_t end_seg_dma;
1385 dma_addr_t end_trb_dma;
1386 struct xhci_segment *cur_seg;
1387
1388 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1389 cur_seg = start_seg;
1390
1391 do {
1392 if (start_dma == 0)
1393 return NULL;
1394 /* We may get an event for a Link TRB in the middle of a TD */
1395 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1396 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1397 /* If the end TRB isn't in this segment, this is set to 0 */
1398 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1399
1400 if (end_trb_dma > 0) {
1401 /* The end TRB is in this segment, so suspect should be here */
1402 if (start_dma <= end_trb_dma) {
1403 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1404 return cur_seg;
1405 } else {
1406 /* Case for one segment with
1407 * a TD wrapped around to the top
1408 */
1409 if ((suspect_dma >= start_dma &&
1410 suspect_dma <= end_seg_dma) ||
1411 (suspect_dma >= cur_seg->dma &&
1412 suspect_dma <= end_trb_dma))
1413 return cur_seg;
1414 }
1415 return NULL;
1416 } else {
1417 /* Might still be somewhere in this segment */
1418 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1419 return cur_seg;
1420 }
1421 cur_seg = cur_seg->next;
1422 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1423 } while (cur_seg != start_seg);
1424
1425 return NULL;
1426 }
1427
1428 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1429 unsigned int slot_id, unsigned int ep_index,
1430 unsigned int stream_id,
1431 struct xhci_td *td, union xhci_trb *event_trb)
1432 {
1433 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1434 ep->ep_state |= EP_HALTED;
1435 ep->stopped_td = td;
1436 ep->stopped_trb = event_trb;
1437 ep->stopped_stream = stream_id;
1438
1439 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1440 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1441
1442 ep->stopped_td = NULL;
1443 ep->stopped_trb = NULL;
1444 ep->stopped_stream = 0;
1445
1446 xhci_ring_cmd_db(xhci);
1447 }
1448
1449 /* Check if an error has halted the endpoint ring. The class driver will
1450 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1451 * However, a babble and other errors also halt the endpoint ring, and the class
1452 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1453 * Ring Dequeue Pointer command manually.
1454 */
1455 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1456 struct xhci_ep_ctx *ep_ctx,
1457 unsigned int trb_comp_code)
1458 {
1459 /* TRB completion codes that may require a manual halt cleanup */
1460 if (trb_comp_code == COMP_TX_ERR ||
1461 trb_comp_code == COMP_BABBLE ||
1462 trb_comp_code == COMP_SPLIT_ERR)
1463 /* The 0.96 spec says a babbling control endpoint
1464 * is not halted. The 0.96 spec says it is. Some HW
1465 * claims to be 0.95 compliant, but it halts the control
1466 * endpoint anyway. Check if a babble halted the
1467 * endpoint.
1468 */
1469 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1470 cpu_to_le32(EP_STATE_HALTED))
1471 return 1;
1472
1473 return 0;
1474 }
1475
1476 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1477 {
1478 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1479 /* Vendor defined "informational" completion code,
1480 * treat as not-an-error.
1481 */
1482 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1483 trb_comp_code);
1484 xhci_dbg(xhci, "Treating code as success.\n");
1485 return 1;
1486 }
1487 return 0;
1488 }
1489
1490 /*
1491 * Finish the td processing, remove the td from td list;
1492 * Return 1 if the urb can be given back.
1493 */
1494 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1495 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1496 struct xhci_virt_ep *ep, int *status, bool skip)
1497 {
1498 struct xhci_virt_device *xdev;
1499 struct xhci_ring *ep_ring;
1500 unsigned int slot_id;
1501 int ep_index;
1502 struct urb *urb = NULL;
1503 struct xhci_ep_ctx *ep_ctx;
1504 int ret = 0;
1505 struct urb_priv *urb_priv;
1506 u32 trb_comp_code;
1507
1508 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1509 xdev = xhci->devs[slot_id];
1510 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1511 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1512 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1513 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1514
1515 if (skip)
1516 goto td_cleanup;
1517
1518 if (trb_comp_code == COMP_STOP_INVAL ||
1519 trb_comp_code == COMP_STOP) {
1520 /* The Endpoint Stop Command completion will take care of any
1521 * stopped TDs. A stopped TD may be restarted, so don't update
1522 * the ring dequeue pointer or take this TD off any lists yet.
1523 */
1524 ep->stopped_td = td;
1525 ep->stopped_trb = event_trb;
1526 return 0;
1527 } else {
1528 if (trb_comp_code == COMP_STALL) {
1529 /* The transfer is completed from the driver's
1530 * perspective, but we need to issue a set dequeue
1531 * command for this stalled endpoint to move the dequeue
1532 * pointer past the TD. We can't do that here because
1533 * the halt condition must be cleared first. Let the
1534 * USB class driver clear the stall later.
1535 */
1536 ep->stopped_td = td;
1537 ep->stopped_trb = event_trb;
1538 ep->stopped_stream = ep_ring->stream_id;
1539 } else if (xhci_requires_manual_halt_cleanup(xhci,
1540 ep_ctx, trb_comp_code)) {
1541 /* Other types of errors halt the endpoint, but the
1542 * class driver doesn't call usb_reset_endpoint() unless
1543 * the error is -EPIPE. Clear the halted status in the
1544 * xHCI hardware manually.
1545 */
1546 xhci_cleanup_halted_endpoint(xhci,
1547 slot_id, ep_index, ep_ring->stream_id,
1548 td, event_trb);
1549 } else {
1550 /* Update ring dequeue pointer */
1551 while (ep_ring->dequeue != td->last_trb)
1552 inc_deq(xhci, ep_ring, false);
1553 inc_deq(xhci, ep_ring, false);
1554 }
1555
1556 td_cleanup:
1557 /* Clean up the endpoint's TD list */
1558 urb = td->urb;
1559 urb_priv = urb->hcpriv;
1560
1561 /* Do one last check of the actual transfer length.
1562 * If the host controller said we transferred more data than
1563 * the buffer length, urb->actual_length will be a very big
1564 * number (since it's unsigned). Play it safe and say we didn't
1565 * transfer anything.
1566 */
1567 if (urb->actual_length > urb->transfer_buffer_length) {
1568 xhci_warn(xhci, "URB transfer length is wrong, "
1569 "xHC issue? req. len = %u, "
1570 "act. len = %u\n",
1571 urb->transfer_buffer_length,
1572 urb->actual_length);
1573 urb->actual_length = 0;
1574 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1575 *status = -EREMOTEIO;
1576 else
1577 *status = 0;
1578 }
1579 list_del_init(&td->td_list);
1580 /* Was this TD slated to be cancelled but completed anyway? */
1581 if (!list_empty(&td->cancelled_td_list))
1582 list_del_init(&td->cancelled_td_list);
1583
1584 urb_priv->td_cnt++;
1585 /* Giveback the urb when all the tds are completed */
1586 if (urb_priv->td_cnt == urb_priv->length) {
1587 ret = 1;
1588 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1589 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1590 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1591 == 0) {
1592 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1593 usb_amd_quirk_pll_enable();
1594 }
1595 }
1596 }
1597 }
1598
1599 return ret;
1600 }
1601
1602 /*
1603 * Process control tds, update urb status and actual_length.
1604 */
1605 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1606 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1607 struct xhci_virt_ep *ep, int *status)
1608 {
1609 struct xhci_virt_device *xdev;
1610 struct xhci_ring *ep_ring;
1611 unsigned int slot_id;
1612 int ep_index;
1613 struct xhci_ep_ctx *ep_ctx;
1614 u32 trb_comp_code;
1615
1616 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1617 xdev = xhci->devs[slot_id];
1618 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1619 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1620 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1621 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1622
1623 xhci_debug_trb(xhci, xhci->event_ring->dequeue);
1624 switch (trb_comp_code) {
1625 case COMP_SUCCESS:
1626 if (event_trb == ep_ring->dequeue) {
1627 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
1628 "without IOC set??\n");
1629 *status = -ESHUTDOWN;
1630 } else if (event_trb != td->last_trb) {
1631 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
1632 "without IOC set??\n");
1633 *status = -ESHUTDOWN;
1634 } else {
1635 *status = 0;
1636 }
1637 break;
1638 case COMP_SHORT_TX:
1639 xhci_warn(xhci, "WARN: short transfer on control ep\n");
1640 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1641 *status = -EREMOTEIO;
1642 else
1643 *status = 0;
1644 break;
1645 case COMP_STOP_INVAL:
1646 case COMP_STOP:
1647 return finish_td(xhci, td, event_trb, event, ep, status, false);
1648 default:
1649 if (!xhci_requires_manual_halt_cleanup(xhci,
1650 ep_ctx, trb_comp_code))
1651 break;
1652 xhci_dbg(xhci, "TRB error code %u, "
1653 "halted endpoint index = %u\n",
1654 trb_comp_code, ep_index);
1655 /* else fall through */
1656 case COMP_STALL:
1657 /* Did we transfer part of the data (middle) phase? */
1658 if (event_trb != ep_ring->dequeue &&
1659 event_trb != td->last_trb)
1660 td->urb->actual_length =
1661 td->urb->transfer_buffer_length
1662 - TRB_LEN(le32_to_cpu(event->transfer_len));
1663 else
1664 td->urb->actual_length = 0;
1665
1666 xhci_cleanup_halted_endpoint(xhci,
1667 slot_id, ep_index, 0, td, event_trb);
1668 return finish_td(xhci, td, event_trb, event, ep, status, true);
1669 }
1670 /*
1671 * Did we transfer any data, despite the errors that might have
1672 * happened? I.e. did we get past the setup stage?
1673 */
1674 if (event_trb != ep_ring->dequeue) {
1675 /* The event was for the status stage */
1676 if (event_trb == td->last_trb) {
1677 if (td->urb->actual_length != 0) {
1678 /* Don't overwrite a previously set error code
1679 */
1680 if ((*status == -EINPROGRESS || *status == 0) &&
1681 (td->urb->transfer_flags
1682 & URB_SHORT_NOT_OK))
1683 /* Did we already see a short data
1684 * stage? */
1685 *status = -EREMOTEIO;
1686 } else {
1687 td->urb->actual_length =
1688 td->urb->transfer_buffer_length;
1689 }
1690 } else {
1691 /* Maybe the event was for the data stage? */
1692 td->urb->actual_length =
1693 td->urb->transfer_buffer_length -
1694 TRB_LEN(le32_to_cpu(event->transfer_len));
1695 xhci_dbg(xhci, "Waiting for status "
1696 "stage event\n");
1697 return 0;
1698 }
1699 }
1700
1701 return finish_td(xhci, td, event_trb, event, ep, status, false);
1702 }
1703
1704 /*
1705 * Process isochronous tds, update urb packet status and actual_length.
1706 */
1707 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1708 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1709 struct xhci_virt_ep *ep, int *status)
1710 {
1711 struct xhci_ring *ep_ring;
1712 struct urb_priv *urb_priv;
1713 int idx;
1714 int len = 0;
1715 union xhci_trb *cur_trb;
1716 struct xhci_segment *cur_seg;
1717 struct usb_iso_packet_descriptor *frame;
1718 u32 trb_comp_code;
1719 bool skip_td = false;
1720
1721 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1722 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1723 urb_priv = td->urb->hcpriv;
1724 idx = urb_priv->td_cnt;
1725 frame = &td->urb->iso_frame_desc[idx];
1726
1727 /* handle completion code */
1728 switch (trb_comp_code) {
1729 case COMP_SUCCESS:
1730 frame->status = 0;
1731 break;
1732 case COMP_SHORT_TX:
1733 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
1734 -EREMOTEIO : 0;
1735 break;
1736 case COMP_BW_OVER:
1737 frame->status = -ECOMM;
1738 skip_td = true;
1739 break;
1740 case COMP_BUFF_OVER:
1741 case COMP_BABBLE:
1742 frame->status = -EOVERFLOW;
1743 skip_td = true;
1744 break;
1745 case COMP_DEV_ERR:
1746 case COMP_STALL:
1747 frame->status = -EPROTO;
1748 skip_td = true;
1749 break;
1750 case COMP_STOP:
1751 case COMP_STOP_INVAL:
1752 break;
1753 default:
1754 frame->status = -1;
1755 break;
1756 }
1757
1758 if (trb_comp_code == COMP_SUCCESS || skip_td) {
1759 frame->actual_length = frame->length;
1760 td->urb->actual_length += frame->length;
1761 } else {
1762 for (cur_trb = ep_ring->dequeue,
1763 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
1764 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1765 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1766 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1767 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1768 }
1769 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1770 TRB_LEN(le32_to_cpu(event->transfer_len));
1771
1772 if (trb_comp_code != COMP_STOP_INVAL) {
1773 frame->actual_length = len;
1774 td->urb->actual_length += len;
1775 }
1776 }
1777
1778 return finish_td(xhci, td, event_trb, event, ep, status, false);
1779 }
1780
1781 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
1782 struct xhci_transfer_event *event,
1783 struct xhci_virt_ep *ep, int *status)
1784 {
1785 struct xhci_ring *ep_ring;
1786 struct urb_priv *urb_priv;
1787 struct usb_iso_packet_descriptor *frame;
1788 int idx;
1789
1790 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1791 urb_priv = td->urb->hcpriv;
1792 idx = urb_priv->td_cnt;
1793 frame = &td->urb->iso_frame_desc[idx];
1794
1795 /* The transfer is partly done. */
1796 frame->status = -EXDEV;
1797
1798 /* calc actual length */
1799 frame->actual_length = 0;
1800
1801 /* Update ring dequeue pointer */
1802 while (ep_ring->dequeue != td->last_trb)
1803 inc_deq(xhci, ep_ring, false);
1804 inc_deq(xhci, ep_ring, false);
1805
1806 return finish_td(xhci, td, NULL, event, ep, status, true);
1807 }
1808
1809 /*
1810 * Process bulk and interrupt tds, update urb status and actual_length.
1811 */
1812 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
1813 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1814 struct xhci_virt_ep *ep, int *status)
1815 {
1816 struct xhci_ring *ep_ring;
1817 union xhci_trb *cur_trb;
1818 struct xhci_segment *cur_seg;
1819 u32 trb_comp_code;
1820
1821 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1822 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1823
1824 switch (trb_comp_code) {
1825 case COMP_SUCCESS:
1826 /* Double check that the HW transferred everything. */
1827 if (event_trb != td->last_trb) {
1828 xhci_warn(xhci, "WARN Successful completion "
1829 "on short TX\n");
1830 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1831 *status = -EREMOTEIO;
1832 else
1833 *status = 0;
1834 } else {
1835 *status = 0;
1836 }
1837 break;
1838 case COMP_SHORT_TX:
1839 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1840 *status = -EREMOTEIO;
1841 else
1842 *status = 0;
1843 break;
1844 default:
1845 /* Others already handled above */
1846 break;
1847 }
1848 if (trb_comp_code == COMP_SHORT_TX)
1849 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
1850 "%d bytes untransferred\n",
1851 td->urb->ep->desc.bEndpointAddress,
1852 td->urb->transfer_buffer_length,
1853 TRB_LEN(le32_to_cpu(event->transfer_len)));
1854 /* Fast path - was this the last TRB in the TD for this URB? */
1855 if (event_trb == td->last_trb) {
1856 if (TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
1857 td->urb->actual_length =
1858 td->urb->transfer_buffer_length -
1859 TRB_LEN(le32_to_cpu(event->transfer_len));
1860 if (td->urb->transfer_buffer_length <
1861 td->urb->actual_length) {
1862 xhci_warn(xhci, "HC gave bad length "
1863 "of %d bytes left\n",
1864 TRB_LEN(le32_to_cpu(event->transfer_len)));
1865 td->urb->actual_length = 0;
1866 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1867 *status = -EREMOTEIO;
1868 else
1869 *status = 0;
1870 }
1871 /* Don't overwrite a previously set error code */
1872 if (*status == -EINPROGRESS) {
1873 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1874 *status = -EREMOTEIO;
1875 else
1876 *status = 0;
1877 }
1878 } else {
1879 td->urb->actual_length =
1880 td->urb->transfer_buffer_length;
1881 /* Ignore a short packet completion if the
1882 * untransferred length was zero.
1883 */
1884 if (*status == -EREMOTEIO)
1885 *status = 0;
1886 }
1887 } else {
1888 /* Slow path - walk the list, starting from the dequeue
1889 * pointer, to get the actual length transferred.
1890 */
1891 td->urb->actual_length = 0;
1892 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
1893 cur_trb != event_trb;
1894 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
1895 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
1896 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
1897 td->urb->actual_length +=
1898 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
1899 }
1900 /* If the ring didn't stop on a Link or No-op TRB, add
1901 * in the actual bytes transferred from the Normal TRB
1902 */
1903 if (trb_comp_code != COMP_STOP_INVAL)
1904 td->urb->actual_length +=
1905 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
1906 TRB_LEN(le32_to_cpu(event->transfer_len));
1907 }
1908
1909 return finish_td(xhci, td, event_trb, event, ep, status, false);
1910 }
1911
1912 /*
1913 * If this function returns an error condition, it means it got a Transfer
1914 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
1915 * At this point, the host controller is probably hosed and should be reset.
1916 */
1917 static int handle_tx_event(struct xhci_hcd *xhci,
1918 struct xhci_transfer_event *event)
1919 {
1920 struct xhci_virt_device *xdev;
1921 struct xhci_virt_ep *ep;
1922 struct xhci_ring *ep_ring;
1923 unsigned int slot_id;
1924 int ep_index;
1925 struct xhci_td *td = NULL;
1926 dma_addr_t event_dma;
1927 struct xhci_segment *event_seg;
1928 union xhci_trb *event_trb;
1929 struct urb *urb = NULL;
1930 int status = -EINPROGRESS;
1931 struct urb_priv *urb_priv;
1932 struct xhci_ep_ctx *ep_ctx;
1933 u32 trb_comp_code;
1934 int ret = 0;
1935
1936 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1937 xdev = xhci->devs[slot_id];
1938 if (!xdev) {
1939 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
1940 return -ENODEV;
1941 }
1942
1943 /* Endpoint ID is 1 based, our index is zero based */
1944 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1945 ep = &xdev->eps[ep_index];
1946 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1947 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1948 if (!ep_ring ||
1949 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
1950 EP_STATE_DISABLED) {
1951 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
1952 "or incorrect stream ring\n");
1953 return -ENODEV;
1954 }
1955
1956 event_dma = le64_to_cpu(event->buffer);
1957 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1958 /* Look for common error cases */
1959 switch (trb_comp_code) {
1960 /* Skip codes that require special handling depending on
1961 * transfer type
1962 */
1963 case COMP_SUCCESS:
1964 case COMP_SHORT_TX:
1965 break;
1966 case COMP_STOP:
1967 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
1968 break;
1969 case COMP_STOP_INVAL:
1970 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
1971 break;
1972 case COMP_STALL:
1973 xhci_warn(xhci, "WARN: Stalled endpoint\n");
1974 ep->ep_state |= EP_HALTED;
1975 status = -EPIPE;
1976 break;
1977 case COMP_TRB_ERR:
1978 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
1979 status = -EILSEQ;
1980 break;
1981 case COMP_SPLIT_ERR:
1982 case COMP_TX_ERR:
1983 xhci_warn(xhci, "WARN: transfer error on endpoint\n");
1984 status = -EPROTO;
1985 break;
1986 case COMP_BABBLE:
1987 xhci_warn(xhci, "WARN: babble error on endpoint\n");
1988 status = -EOVERFLOW;
1989 break;
1990 case COMP_DB_ERR:
1991 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
1992 status = -ENOSR;
1993 break;
1994 case COMP_BW_OVER:
1995 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
1996 break;
1997 case COMP_BUFF_OVER:
1998 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
1999 break;
2000 case COMP_UNDERRUN:
2001 /*
2002 * When the Isoch ring is empty, the xHC will generate
2003 * a Ring Overrun Event for IN Isoch endpoint or Ring
2004 * Underrun Event for OUT Isoch endpoint.
2005 */
2006 xhci_dbg(xhci, "underrun event on endpoint\n");
2007 if (!list_empty(&ep_ring->td_list))
2008 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2009 "still with TDs queued?\n",
2010 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2011 ep_index);
2012 goto cleanup;
2013 case COMP_OVERRUN:
2014 xhci_dbg(xhci, "overrun event on endpoint\n");
2015 if (!list_empty(&ep_ring->td_list))
2016 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2017 "still with TDs queued?\n",
2018 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2019 ep_index);
2020 goto cleanup;
2021 case COMP_DEV_ERR:
2022 xhci_warn(xhci, "WARN: detect an incompatible device");
2023 status = -EPROTO;
2024 break;
2025 case COMP_MISSED_INT:
2026 /*
2027 * When encounter missed service error, one or more isoc tds
2028 * may be missed by xHC.
2029 * Set skip flag of the ep_ring; Complete the missed tds as
2030 * short transfer when process the ep_ring next time.
2031 */
2032 ep->skip = true;
2033 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2034 goto cleanup;
2035 default:
2036 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2037 status = 0;
2038 break;
2039 }
2040 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2041 "busted\n");
2042 goto cleanup;
2043 }
2044
2045 do {
2046 /* This TRB should be in the TD at the head of this ring's
2047 * TD list.
2048 */
2049 if (list_empty(&ep_ring->td_list)) {
2050 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d "
2051 "with no TDs queued?\n",
2052 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2053 ep_index);
2054 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2055 (le32_to_cpu(event->flags) &
2056 TRB_TYPE_BITMASK)>>10);
2057 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2058 if (ep->skip) {
2059 ep->skip = false;
2060 xhci_dbg(xhci, "td_list is empty while skip "
2061 "flag set. Clear skip flag.\n");
2062 }
2063 ret = 0;
2064 goto cleanup;
2065 }
2066
2067 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2068
2069 /* Is this a TRB in the currently executing TD? */
2070 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2071 td->last_trb, event_dma);
2072
2073 /*
2074 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2075 * is not in the current TD pointed by ep_ring->dequeue because
2076 * that the hardware dequeue pointer still at the previous TRB
2077 * of the current TD. The previous TRB maybe a Link TD or the
2078 * last TRB of the previous TD. The command completion handle
2079 * will take care the rest.
2080 */
2081 if (!event_seg && trb_comp_code == COMP_STOP_INVAL) {
2082 ret = 0;
2083 goto cleanup;
2084 }
2085
2086 if (!event_seg) {
2087 if (!ep->skip ||
2088 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2089 /* Some host controllers give a spurious
2090 * successful event after a short transfer.
2091 * Ignore it.
2092 */
2093 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2094 ep_ring->last_td_was_short) {
2095 ep_ring->last_td_was_short = false;
2096 ret = 0;
2097 goto cleanup;
2098 }
2099 /* HC is busted, give up! */
2100 xhci_err(xhci,
2101 "ERROR Transfer event TRB DMA ptr not "
2102 "part of current TD\n");
2103 return -ESHUTDOWN;
2104 }
2105
2106 ret = skip_isoc_td(xhci, td, event, ep, &status);
2107 goto cleanup;
2108 }
2109 if (trb_comp_code == COMP_SHORT_TX)
2110 ep_ring->last_td_was_short = true;
2111 else
2112 ep_ring->last_td_was_short = false;
2113
2114 if (ep->skip) {
2115 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2116 ep->skip = false;
2117 }
2118
2119 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2120 sizeof(*event_trb)];
2121 /*
2122 * No-op TRB should not trigger interrupts.
2123 * If event_trb is a no-op TRB, it means the
2124 * corresponding TD has been cancelled. Just ignore
2125 * the TD.
2126 */
2127 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2128 xhci_dbg(xhci,
2129 "event_trb is a no-op TRB. Skip it\n");
2130 goto cleanup;
2131 }
2132
2133 /* Now update the urb's actual_length and give back to
2134 * the core
2135 */
2136 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2137 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2138 &status);
2139 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2140 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2141 &status);
2142 else
2143 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2144 ep, &status);
2145
2146 cleanup:
2147 /*
2148 * Do not update event ring dequeue pointer if ep->skip is set.
2149 * Will roll back to continue process missed tds.
2150 */
2151 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2152 inc_deq(xhci, xhci->event_ring, true);
2153 }
2154
2155 if (ret) {
2156 urb = td->urb;
2157 urb_priv = urb->hcpriv;
2158 /* Leave the TD around for the reset endpoint function
2159 * to use(but only if it's not a control endpoint,
2160 * since we already queued the Set TR dequeue pointer
2161 * command for stalled control endpoints).
2162 */
2163 if (usb_endpoint_xfer_control(&urb->ep->desc) ||
2164 (trb_comp_code != COMP_STALL &&
2165 trb_comp_code != COMP_BABBLE))
2166 xhci_urb_free_priv(xhci, urb_priv);
2167
2168 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2169 if ((urb->actual_length != urb->transfer_buffer_length &&
2170 (urb->transfer_flags &
2171 URB_SHORT_NOT_OK)) ||
2172 (status != 0 &&
2173 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2174 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2175 "expected = %x, status = %d\n",
2176 urb, urb->actual_length,
2177 urb->transfer_buffer_length,
2178 status);
2179 spin_unlock(&xhci->lock);
2180 /* EHCI, UHCI, and OHCI always unconditionally set the
2181 * urb->status of an isochronous endpoint to 0.
2182 */
2183 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2184 status = 0;
2185 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2186 spin_lock(&xhci->lock);
2187 }
2188
2189 /*
2190 * If ep->skip is set, it means there are missed tds on the
2191 * endpoint ring need to take care of.
2192 * Process them as short transfer until reach the td pointed by
2193 * the event.
2194 */
2195 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2196
2197 return 0;
2198 }
2199
2200 /*
2201 * This function handles all OS-owned events on the event ring. It may drop
2202 * xhci->lock between event processing (e.g. to pass up port status changes).
2203 * Returns >0 for "possibly more events to process" (caller should call again),
2204 * otherwise 0 if done. In future, <0 returns should indicate error code.
2205 */
2206 static int xhci_handle_event(struct xhci_hcd *xhci)
2207 {
2208 union xhci_trb *event;
2209 int update_ptrs = 1;
2210 int ret;
2211
2212 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2213 xhci->error_bitmask |= 1 << 1;
2214 return 0;
2215 }
2216
2217 event = xhci->event_ring->dequeue;
2218 /* Does the HC or OS own the TRB? */
2219 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2220 xhci->event_ring->cycle_state) {
2221 xhci->error_bitmask |= 1 << 2;
2222 return 0;
2223 }
2224
2225 /*
2226 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2227 * speculative reads of the event's flags/data below.
2228 */
2229 rmb();
2230 /* FIXME: Handle more event types. */
2231 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2232 case TRB_TYPE(TRB_COMPLETION):
2233 handle_cmd_completion(xhci, &event->event_cmd);
2234 break;
2235 case TRB_TYPE(TRB_PORT_STATUS):
2236 handle_port_status(xhci, event);
2237 update_ptrs = 0;
2238 break;
2239 case TRB_TYPE(TRB_TRANSFER):
2240 ret = handle_tx_event(xhci, &event->trans_event);
2241 if (ret < 0)
2242 xhci->error_bitmask |= 1 << 9;
2243 else
2244 update_ptrs = 0;
2245 break;
2246 default:
2247 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2248 TRB_TYPE(48))
2249 handle_vendor_event(xhci, event);
2250 else
2251 xhci->error_bitmask |= 1 << 3;
2252 }
2253 /* Any of the above functions may drop and re-acquire the lock, so check
2254 * to make sure a watchdog timer didn't mark the host as non-responsive.
2255 */
2256 if (xhci->xhc_state & XHCI_STATE_DYING) {
2257 xhci_dbg(xhci, "xHCI host dying, returning from "
2258 "event handler.\n");
2259 return 0;
2260 }
2261
2262 if (update_ptrs)
2263 /* Update SW event ring dequeue pointer */
2264 inc_deq(xhci, xhci->event_ring, true);
2265
2266 /* Are there more items on the event ring? Caller will call us again to
2267 * check.
2268 */
2269 return 1;
2270 }
2271
2272 /*
2273 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2274 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2275 * indicators of an event TRB error, but we check the status *first* to be safe.
2276 */
2277 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2278 {
2279 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2280 u32 status;
2281 union xhci_trb *trb;
2282 u64 temp_64;
2283 union xhci_trb *event_ring_deq;
2284 dma_addr_t deq;
2285
2286 spin_lock(&xhci->lock);
2287 trb = xhci->event_ring->dequeue;
2288 /* Check if the xHC generated the interrupt, or the irq is shared */
2289 status = xhci_readl(xhci, &xhci->op_regs->status);
2290 if (status == 0xffffffff)
2291 goto hw_died;
2292
2293 if (!(status & STS_EINT)) {
2294 spin_unlock(&xhci->lock);
2295 return IRQ_NONE;
2296 }
2297 if (status & STS_FATAL) {
2298 xhci_warn(xhci, "WARNING: Host System Error\n");
2299 xhci_halt(xhci);
2300 hw_died:
2301 spin_unlock(&xhci->lock);
2302 return -ESHUTDOWN;
2303 }
2304
2305 /*
2306 * Clear the op reg interrupt status first,
2307 * so we can receive interrupts from other MSI-X interrupters.
2308 * Write 1 to clear the interrupt status.
2309 */
2310 status |= STS_EINT;
2311 xhci_writel(xhci, status, &xhci->op_regs->status);
2312 /* FIXME when MSI-X is supported and there are multiple vectors */
2313 /* Clear the MSI-X event interrupt status */
2314
2315 if (hcd->irq != -1) {
2316 u32 irq_pending;
2317 /* Acknowledge the PCI interrupt */
2318 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2319 irq_pending |= 0x3;
2320 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2321 }
2322
2323 if (xhci->xhc_state & XHCI_STATE_DYING) {
2324 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2325 "Shouldn't IRQs be disabled?\n");
2326 /* Clear the event handler busy flag (RW1C);
2327 * the event ring should be empty.
2328 */
2329 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2330 xhci_write_64(xhci, temp_64 | ERST_EHB,
2331 &xhci->ir_set->erst_dequeue);
2332 spin_unlock(&xhci->lock);
2333
2334 return IRQ_HANDLED;
2335 }
2336
2337 event_ring_deq = xhci->event_ring->dequeue;
2338 /* FIXME this should be a delayed service routine
2339 * that clears the EHB.
2340 */
2341 while (xhci_handle_event(xhci) > 0) {}
2342
2343 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2344 /* If necessary, update the HW's version of the event ring deq ptr. */
2345 if (event_ring_deq != xhci->event_ring->dequeue) {
2346 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2347 xhci->event_ring->dequeue);
2348 if (deq == 0)
2349 xhci_warn(xhci, "WARN something wrong with SW event "
2350 "ring dequeue ptr.\n");
2351 /* Update HC event ring dequeue pointer */
2352 temp_64 &= ERST_PTR_MASK;
2353 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2354 }
2355
2356 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2357 temp_64 |= ERST_EHB;
2358 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2359
2360 spin_unlock(&xhci->lock);
2361
2362 return IRQ_HANDLED;
2363 }
2364
2365 irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2366 {
2367 irqreturn_t ret;
2368 struct xhci_hcd *xhci;
2369
2370 xhci = hcd_to_xhci(hcd);
2371 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2372 if (xhci->shared_hcd)
2373 set_bit(HCD_FLAG_SAW_IRQ, &xhci->shared_hcd->flags);
2374
2375 ret = xhci_irq(hcd);
2376
2377 return ret;
2378 }
2379
2380 /**** Endpoint Ring Operations ****/
2381
2382 /*
2383 * Generic function for queueing a TRB on a ring.
2384 * The caller must have checked to make sure there's room on the ring.
2385 *
2386 * @more_trbs_coming: Will you enqueue more TRBs before calling
2387 * prepare_transfer()?
2388 */
2389 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2390 bool consumer, bool more_trbs_coming,
2391 u32 field1, u32 field2, u32 field3, u32 field4)
2392 {
2393 struct xhci_generic_trb *trb;
2394
2395 trb = &ring->enqueue->generic;
2396 trb->field[0] = cpu_to_le32(field1);
2397 trb->field[1] = cpu_to_le32(field2);
2398 trb->field[2] = cpu_to_le32(field3);
2399 trb->field[3] = cpu_to_le32(field4);
2400 inc_enq(xhci, ring, consumer, more_trbs_coming);
2401 }
2402
2403 /*
2404 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2405 * FIXME allocate segments if the ring is full.
2406 */
2407 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2408 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2409 {
2410 /* Make sure the endpoint has been added to xHC schedule */
2411 switch (ep_state) {
2412 case EP_STATE_DISABLED:
2413 /*
2414 * USB core changed config/interfaces without notifying us,
2415 * or hardware is reporting the wrong state.
2416 */
2417 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2418 return -ENOENT;
2419 case EP_STATE_ERROR:
2420 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2421 /* FIXME event handling code for error needs to clear it */
2422 /* XXX not sure if this should be -ENOENT or not */
2423 return -EINVAL;
2424 case EP_STATE_HALTED:
2425 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2426 case EP_STATE_STOPPED:
2427 case EP_STATE_RUNNING:
2428 break;
2429 default:
2430 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2431 /*
2432 * FIXME issue Configure Endpoint command to try to get the HC
2433 * back into a known state.
2434 */
2435 return -EINVAL;
2436 }
2437 if (!room_on_ring(xhci, ep_ring, num_trbs)) {
2438 /* FIXME allocate more room */
2439 xhci_err(xhci, "ERROR no room on ep ring\n");
2440 return -ENOMEM;
2441 }
2442
2443 if (enqueue_is_link_trb(ep_ring)) {
2444 struct xhci_ring *ring = ep_ring;
2445 union xhci_trb *next;
2446
2447 next = ring->enqueue;
2448
2449 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2450 /* If we're not dealing with 0.95 hardware,
2451 * clear the chain bit.
2452 */
2453 if (!xhci_link_trb_quirk(xhci))
2454 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2455 else
2456 next->link.control |= cpu_to_le32(TRB_CHAIN);
2457
2458 wmb();
2459 next->link.control ^= cpu_to_le32(TRB_CYCLE);
2460
2461 /* Toggle the cycle bit after the last ring segment. */
2462 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2463 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2464 if (!in_interrupt()) {
2465 xhci_dbg(xhci, "queue_trb: Toggle cycle "
2466 "state for ring %p = %i\n",
2467 ring, (unsigned int)ring->cycle_state);
2468 }
2469 }
2470 ring->enq_seg = ring->enq_seg->next;
2471 ring->enqueue = ring->enq_seg->trbs;
2472 next = ring->enqueue;
2473 }
2474 }
2475
2476 return 0;
2477 }
2478
2479 static int prepare_transfer(struct xhci_hcd *xhci,
2480 struct xhci_virt_device *xdev,
2481 unsigned int ep_index,
2482 unsigned int stream_id,
2483 unsigned int num_trbs,
2484 struct urb *urb,
2485 unsigned int td_index,
2486 gfp_t mem_flags)
2487 {
2488 int ret;
2489 struct urb_priv *urb_priv;
2490 struct xhci_td *td;
2491 struct xhci_ring *ep_ring;
2492 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2493
2494 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2495 if (!ep_ring) {
2496 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2497 stream_id);
2498 return -EINVAL;
2499 }
2500
2501 ret = prepare_ring(xhci, ep_ring,
2502 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2503 num_trbs, mem_flags);
2504 if (ret)
2505 return ret;
2506
2507 urb_priv = urb->hcpriv;
2508 td = urb_priv->td[td_index];
2509
2510 INIT_LIST_HEAD(&td->td_list);
2511 INIT_LIST_HEAD(&td->cancelled_td_list);
2512
2513 if (td_index == 0) {
2514 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2515 if (unlikely(ret))
2516 return ret;
2517 }
2518
2519 td->urb = urb;
2520 /* Add this TD to the tail of the endpoint ring's TD list */
2521 list_add_tail(&td->td_list, &ep_ring->td_list);
2522 td->start_seg = ep_ring->enq_seg;
2523 td->first_trb = ep_ring->enqueue;
2524
2525 urb_priv->td[td_index] = td;
2526
2527 return 0;
2528 }
2529
2530 static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2531 {
2532 int num_sgs, num_trbs, running_total, temp, i;
2533 struct scatterlist *sg;
2534
2535 sg = NULL;
2536 num_sgs = urb->num_sgs;
2537 temp = urb->transfer_buffer_length;
2538
2539 xhci_dbg(xhci, "count sg list trbs: \n");
2540 num_trbs = 0;
2541 for_each_sg(urb->sg, sg, num_sgs, i) {
2542 unsigned int previous_total_trbs = num_trbs;
2543 unsigned int len = sg_dma_len(sg);
2544
2545 /* Scatter gather list entries may cross 64KB boundaries */
2546 running_total = TRB_MAX_BUFF_SIZE -
2547 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2548 running_total &= TRB_MAX_BUFF_SIZE - 1;
2549 if (running_total != 0)
2550 num_trbs++;
2551
2552 /* How many more 64KB chunks to transfer, how many more TRBs? */
2553 while (running_total < sg_dma_len(sg) && running_total < temp) {
2554 num_trbs++;
2555 running_total += TRB_MAX_BUFF_SIZE;
2556 }
2557 xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n",
2558 i, (unsigned long long)sg_dma_address(sg),
2559 len, len, num_trbs - previous_total_trbs);
2560
2561 len = min_t(int, len, temp);
2562 temp -= len;
2563 if (temp == 0)
2564 break;
2565 }
2566 xhci_dbg(xhci, "\n");
2567 if (!in_interrupt())
2568 xhci_dbg(xhci, "ep %#x - urb len = %d, sglist used, "
2569 "num_trbs = %d\n",
2570 urb->ep->desc.bEndpointAddress,
2571 urb->transfer_buffer_length,
2572 num_trbs);
2573 return num_trbs;
2574 }
2575
2576 static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
2577 {
2578 if (num_trbs != 0)
2579 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
2580 "TRBs, %d left\n", __func__,
2581 urb->ep->desc.bEndpointAddress, num_trbs);
2582 if (running_total != urb->transfer_buffer_length)
2583 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
2584 "queued %#x (%d), asked for %#x (%d)\n",
2585 __func__,
2586 urb->ep->desc.bEndpointAddress,
2587 running_total, running_total,
2588 urb->transfer_buffer_length,
2589 urb->transfer_buffer_length);
2590 }
2591
2592 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
2593 unsigned int ep_index, unsigned int stream_id, int start_cycle,
2594 struct xhci_generic_trb *start_trb)
2595 {
2596 /*
2597 * Pass all the TRBs to the hardware at once and make sure this write
2598 * isn't reordered.
2599 */
2600 wmb();
2601 if (start_cycle)
2602 start_trb->field[3] |= cpu_to_le32(start_cycle);
2603 else
2604 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
2605 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
2606 }
2607
2608 /*
2609 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
2610 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
2611 * (comprised of sg list entries) can take several service intervals to
2612 * transmit.
2613 */
2614 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2615 struct urb *urb, int slot_id, unsigned int ep_index)
2616 {
2617 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
2618 xhci->devs[slot_id]->out_ctx, ep_index);
2619 int xhci_interval;
2620 int ep_interval;
2621
2622 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
2623 ep_interval = urb->interval;
2624 /* Convert to microframes */
2625 if (urb->dev->speed == USB_SPEED_LOW ||
2626 urb->dev->speed == USB_SPEED_FULL)
2627 ep_interval *= 8;
2628 /* FIXME change this to a warning and a suggestion to use the new API
2629 * to set the polling interval (once the API is added).
2630 */
2631 if (xhci_interval != ep_interval) {
2632 if (printk_ratelimit())
2633 dev_dbg(&urb->dev->dev, "Driver uses different interval"
2634 " (%d microframe%s) than xHCI "
2635 "(%d microframe%s)\n",
2636 ep_interval,
2637 ep_interval == 1 ? "" : "s",
2638 xhci_interval,
2639 xhci_interval == 1 ? "" : "s");
2640 urb->interval = xhci_interval;
2641 /* Convert back to frames for LS/FS devices */
2642 if (urb->dev->speed == USB_SPEED_LOW ||
2643 urb->dev->speed == USB_SPEED_FULL)
2644 urb->interval /= 8;
2645 }
2646 return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
2647 }
2648
2649 /*
2650 * The TD size is the number of bytes remaining in the TD (including this TRB),
2651 * right shifted by 10.
2652 * It must fit in bits 21:17, so it can't be bigger than 31.
2653 */
2654 static u32 xhci_td_remainder(unsigned int remainder)
2655 {
2656 u32 max = (1 << (21 - 17 + 1)) - 1;
2657
2658 if ((remainder >> 10) >= max)
2659 return max << 17;
2660 else
2661 return (remainder >> 10) << 17;
2662 }
2663
2664 /*
2665 * For xHCI 1.0 host controllers, TD size is the number of packets remaining in
2666 * the TD (*not* including this TRB).
2667 *
2668 * Total TD packet count = total_packet_count =
2669 * roundup(TD size in bytes / wMaxPacketSize)
2670 *
2671 * Packets transferred up to and including this TRB = packets_transferred =
2672 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
2673 *
2674 * TD size = total_packet_count - packets_transferred
2675 *
2676 * It must fit in bits 21:17, so it can't be bigger than 31.
2677 */
2678
2679 static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
2680 unsigned int total_packet_count, struct urb *urb)
2681 {
2682 int packets_transferred;
2683
2684 /* One TRB with a zero-length data packet. */
2685 if (running_total == 0 && trb_buff_len == 0)
2686 return 0;
2687
2688 /* All the TRB queueing functions don't count the current TRB in
2689 * running_total.
2690 */
2691 packets_transferred = (running_total + trb_buff_len) /
2692 usb_endpoint_maxp(&urb->ep->desc);
2693
2694 return xhci_td_remainder(total_packet_count - packets_transferred);
2695 }
2696
2697 static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2698 struct urb *urb, int slot_id, unsigned int ep_index)
2699 {
2700 struct xhci_ring *ep_ring;
2701 unsigned int num_trbs;
2702 struct urb_priv *urb_priv;
2703 struct xhci_td *td;
2704 struct scatterlist *sg;
2705 int num_sgs;
2706 int trb_buff_len, this_sg_len, running_total;
2707 unsigned int total_packet_count;
2708 bool first_trb;
2709 u64 addr;
2710 bool more_trbs_coming;
2711
2712 struct xhci_generic_trb *start_trb;
2713 int start_cycle;
2714
2715 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2716 if (!ep_ring)
2717 return -EINVAL;
2718
2719 num_trbs = count_sg_trbs_needed(xhci, urb);
2720 num_sgs = urb->num_sgs;
2721 total_packet_count = roundup(urb->transfer_buffer_length,
2722 usb_endpoint_maxp(&urb->ep->desc));
2723
2724 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
2725 ep_index, urb->stream_id,
2726 num_trbs, urb, 0, mem_flags);
2727 if (trb_buff_len < 0)
2728 return trb_buff_len;
2729
2730 urb_priv = urb->hcpriv;
2731 td = urb_priv->td[0];
2732
2733 /*
2734 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2735 * until we've finished creating all the other TRBs. The ring's cycle
2736 * state may change as we enqueue the other TRBs, so save it too.
2737 */
2738 start_trb = &ep_ring->enqueue->generic;
2739 start_cycle = ep_ring->cycle_state;
2740
2741 running_total = 0;
2742 /*
2743 * How much data is in the first TRB?
2744 *
2745 * There are three forces at work for TRB buffer pointers and lengths:
2746 * 1. We don't want to walk off the end of this sg-list entry buffer.
2747 * 2. The transfer length that the driver requested may be smaller than
2748 * the amount of memory allocated for this scatter-gather list.
2749 * 3. TRBs buffers can't cross 64KB boundaries.
2750 */
2751 sg = urb->sg;
2752 addr = (u64) sg_dma_address(sg);
2753 this_sg_len = sg_dma_len(sg);
2754 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
2755 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2756 if (trb_buff_len > urb->transfer_buffer_length)
2757 trb_buff_len = urb->transfer_buffer_length;
2758 xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n",
2759 trb_buff_len);
2760
2761 first_trb = true;
2762 /* Queue the first TRB, even if it's zero-length */
2763 do {
2764 u32 field = 0;
2765 u32 length_field = 0;
2766 u32 remainder = 0;
2767
2768 /* Don't change the cycle bit of the first TRB until later */
2769 if (first_trb) {
2770 first_trb = false;
2771 if (start_cycle == 0)
2772 field |= 0x1;
2773 } else
2774 field |= ep_ring->cycle_state;
2775
2776 /* Chain all the TRBs together; clear the chain bit in the last
2777 * TRB to indicate it's the last TRB in the chain.
2778 */
2779 if (num_trbs > 1) {
2780 field |= TRB_CHAIN;
2781 } else {
2782 /* FIXME - add check for ZERO_PACKET flag before this */
2783 td->last_trb = ep_ring->enqueue;
2784 field |= TRB_IOC;
2785 }
2786
2787 /* Only set interrupt on short packet for IN endpoints */
2788 if (usb_urb_dir_in(urb))
2789 field |= TRB_ISP;
2790
2791 xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), "
2792 "64KB boundary at %#x, end dma = %#x\n",
2793 (unsigned int) addr, trb_buff_len, trb_buff_len,
2794 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2795 (unsigned int) addr + trb_buff_len);
2796 if (TRB_MAX_BUFF_SIZE -
2797 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
2798 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
2799 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
2800 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
2801 (unsigned int) addr + trb_buff_len);
2802 }
2803
2804 /* Set the TRB length, TD size, and interrupter fields. */
2805 if (xhci->hci_version < 0x100) {
2806 remainder = xhci_td_remainder(
2807 urb->transfer_buffer_length -
2808 running_total);
2809 } else {
2810 remainder = xhci_v1_0_td_remainder(running_total,
2811 trb_buff_len, total_packet_count, urb);
2812 }
2813 length_field = TRB_LEN(trb_buff_len) |
2814 remainder |
2815 TRB_INTR_TARGET(0);
2816
2817 if (num_trbs > 1)
2818 more_trbs_coming = true;
2819 else
2820 more_trbs_coming = false;
2821 queue_trb(xhci, ep_ring, false, more_trbs_coming,
2822 lower_32_bits(addr),
2823 upper_32_bits(addr),
2824 length_field,
2825 field | TRB_TYPE(TRB_NORMAL));
2826 --num_trbs;
2827 running_total += trb_buff_len;
2828
2829 /* Calculate length for next transfer --
2830 * Are we done queueing all the TRBs for this sg entry?
2831 */
2832 this_sg_len -= trb_buff_len;
2833 if (this_sg_len == 0) {
2834 --num_sgs;
2835 if (num_sgs == 0)
2836 break;
2837 sg = sg_next(sg);
2838 addr = (u64) sg_dma_address(sg);
2839 this_sg_len = sg_dma_len(sg);
2840 } else {
2841 addr += trb_buff_len;
2842 }
2843
2844 trb_buff_len = TRB_MAX_BUFF_SIZE -
2845 (addr & (TRB_MAX_BUFF_SIZE - 1));
2846 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
2847 if (running_total + trb_buff_len > urb->transfer_buffer_length)
2848 trb_buff_len =
2849 urb->transfer_buffer_length - running_total;
2850 } while (running_total < urb->transfer_buffer_length);
2851
2852 check_trb_math(urb, num_trbs, running_total);
2853 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
2854 start_cycle, start_trb);
2855 return 0;
2856 }
2857
2858 /* This is very similar to what ehci-q.c qtd_fill() does */
2859 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
2860 struct urb *urb, int slot_id, unsigned int ep_index)
2861 {
2862 struct xhci_ring *ep_ring;
2863 struct urb_priv *urb_priv;
2864 struct xhci_td *td;
2865 int num_trbs;
2866 struct xhci_generic_trb *start_trb;
2867 bool first_trb;
2868 bool more_trbs_coming;
2869 int start_cycle;
2870 u32 field, length_field;
2871
2872 int running_total, trb_buff_len, ret;
2873 unsigned int total_packet_count;
2874 u64 addr;
2875
2876 if (urb->num_sgs)
2877 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
2878
2879 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
2880 if (!ep_ring)
2881 return -EINVAL;
2882
2883 num_trbs = 0;
2884 /* How much data is (potentially) left before the 64KB boundary? */
2885 running_total = TRB_MAX_BUFF_SIZE -
2886 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2887 running_total &= TRB_MAX_BUFF_SIZE - 1;
2888
2889 /* If there's some data on this 64KB chunk, or we have to send a
2890 * zero-length transfer, we need at least one TRB
2891 */
2892 if (running_total != 0 || urb->transfer_buffer_length == 0)
2893 num_trbs++;
2894 /* How many more 64KB chunks to transfer, how many more TRBs? */
2895 while (running_total < urb->transfer_buffer_length) {
2896 num_trbs++;
2897 running_total += TRB_MAX_BUFF_SIZE;
2898 }
2899 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
2900
2901 if (!in_interrupt())
2902 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d), "
2903 "addr = %#llx, num_trbs = %d\n",
2904 urb->ep->desc.bEndpointAddress,
2905 urb->transfer_buffer_length,
2906 urb->transfer_buffer_length,
2907 (unsigned long long)urb->transfer_dma,
2908 num_trbs);
2909
2910 ret = prepare_transfer(xhci, xhci->devs[slot_id],
2911 ep_index, urb->stream_id,
2912 num_trbs, urb, 0, mem_flags);
2913 if (ret < 0)
2914 return ret;
2915
2916 urb_priv = urb->hcpriv;
2917 td = urb_priv->td[0];
2918
2919 /*
2920 * Don't give the first TRB to the hardware (by toggling the cycle bit)
2921 * until we've finished creating all the other TRBs. The ring's cycle
2922 * state may change as we enqueue the other TRBs, so save it too.
2923 */
2924 start_trb = &ep_ring->enqueue->generic;
2925 start_cycle = ep_ring->cycle_state;
2926
2927 running_total = 0;
2928 total_packet_count = roundup(urb->transfer_buffer_length,
2929 usb_endpoint_maxp(&urb->ep->desc));
2930 /* How much data is in the first TRB? */
2931 addr = (u64) urb->transfer_dma;
2932 trb_buff_len = TRB_MAX_BUFF_SIZE -
2933 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
2934 if (trb_buff_len > urb->transfer_buffer_length)
2935 trb_buff_len = urb->transfer_buffer_length;
2936
2937 first_trb = true;
2938
2939 /* Queue the first TRB, even if it's zero-length */
2940 do {
2941 u32 remainder = 0;
2942 field = 0;
2943
2944 /* Don't change the cycle bit of the first TRB until later */
2945 if (first_trb) {
2946 first_trb = false;
2947 if (start_cycle == 0)
2948 field |= 0x1;
2949 } else
2950 field |= ep_ring->cycle_state;
2951
2952 /* Chain all the TRBs together; clear the chain bit in the last
2953 * TRB to indicate it's the last TRB in the chain.
2954 */
2955 if (num_trbs > 1) {
2956 field |= TRB_CHAIN;
2957 } else {
2958 /* FIXME - add check for ZERO_PACKET flag before this */
2959 td->last_trb = ep_ring->enqueue;
2960 field |= TRB_IOC;
2961 }
2962
2963 /* Only set interrupt on short packet for IN endpoints */
2964 if (usb_urb_dir_in(urb))
2965 field |= TRB_ISP;
2966
2967 /* Set the TRB length, TD size, and interrupter fields. */
2968 if (xhci->hci_version < 0x100) {
2969 remainder = xhci_td_remainder(
2970 urb->transfer_buffer_length -
2971 running_total);
2972 } else {
2973 remainder = xhci_v1_0_td_remainder(running_total,
2974 trb_buff_len, total_packet_count, urb);
2975 }
2976 length_field = TRB_LEN(trb_buff_len) |
2977 remainder |
2978 TRB_INTR_TARGET(0);
2979
2980 if (num_trbs > 1)
2981 more_trbs_coming = true;
2982 else
2983 more_trbs_coming = false;
2984 queue_trb(xhci, ep_ring, false, more_trbs_coming,
2985 lower_32_bits(addr),
2986 upper_32_bits(addr),
2987 length_field,
2988 field | TRB_TYPE(TRB_NORMAL));
2989 --num_trbs;
2990 running_total += trb_buff_len;
2991
2992 /* Calculate length for next transfer */
2993 addr += trb_buff_len;
2994 trb_buff_len = urb->transfer_buffer_length - running_total;
2995 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
2996 trb_buff_len = TRB_MAX_BUFF_SIZE;
2997 } while (running_total < urb->transfer_buffer_length);
2998
2999 check_trb_math(urb, num_trbs, running_total);
3000 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3001 start_cycle, start_trb);
3002 return 0;
3003 }
3004
3005 /* Caller must have locked xhci->lock */
3006 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3007 struct urb *urb, int slot_id, unsigned int ep_index)
3008 {
3009 struct xhci_ring *ep_ring;
3010 int num_trbs;
3011 int ret;
3012 struct usb_ctrlrequest *setup;
3013 struct xhci_generic_trb *start_trb;
3014 int start_cycle;
3015 u32 field, length_field;
3016 struct urb_priv *urb_priv;
3017 struct xhci_td *td;
3018
3019 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3020 if (!ep_ring)
3021 return -EINVAL;
3022
3023 /*
3024 * Need to copy setup packet into setup TRB, so we can't use the setup
3025 * DMA address.
3026 */
3027 if (!urb->setup_packet)
3028 return -EINVAL;
3029
3030 if (!in_interrupt())
3031 xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n",
3032 slot_id, ep_index);
3033 /* 1 TRB for setup, 1 for status */
3034 num_trbs = 2;
3035 /*
3036 * Don't need to check if we need additional event data and normal TRBs,
3037 * since data in control transfers will never get bigger than 16MB
3038 * XXX: can we get a buffer that crosses 64KB boundaries?
3039 */
3040 if (urb->transfer_buffer_length > 0)
3041 num_trbs++;
3042 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3043 ep_index, urb->stream_id,
3044 num_trbs, urb, 0, mem_flags);
3045 if (ret < 0)
3046 return ret;
3047
3048 urb_priv = urb->hcpriv;
3049 td = urb_priv->td[0];
3050
3051 /*
3052 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3053 * until we've finished creating all the other TRBs. The ring's cycle
3054 * state may change as we enqueue the other TRBs, so save it too.
3055 */
3056 start_trb = &ep_ring->enqueue->generic;
3057 start_cycle = ep_ring->cycle_state;
3058
3059 /* Queue setup TRB - see section 6.4.1.2.1 */
3060 /* FIXME better way to translate setup_packet into two u32 fields? */
3061 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3062 field = 0;
3063 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3064 if (start_cycle == 0)
3065 field |= 0x1;
3066
3067 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3068 if (xhci->hci_version == 0x100) {
3069 if (urb->transfer_buffer_length > 0) {
3070 if (setup->bRequestType & USB_DIR_IN)
3071 field |= TRB_TX_TYPE(TRB_DATA_IN);
3072 else
3073 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3074 }
3075 }
3076
3077 queue_trb(xhci, ep_ring, false, true,
3078 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3079 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3080 TRB_LEN(8) | TRB_INTR_TARGET(0),
3081 /* Immediate data in pointer */
3082 field);
3083
3084 /* If there's data, queue data TRBs */
3085 /* Only set interrupt on short packet for IN endpoints */
3086 if (usb_urb_dir_in(urb))
3087 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3088 else
3089 field = TRB_TYPE(TRB_DATA);
3090
3091 length_field = TRB_LEN(urb->transfer_buffer_length) |
3092 xhci_td_remainder(urb->transfer_buffer_length) |
3093 TRB_INTR_TARGET(0);
3094 if (urb->transfer_buffer_length > 0) {
3095 if (setup->bRequestType & USB_DIR_IN)
3096 field |= TRB_DIR_IN;
3097 queue_trb(xhci, ep_ring, false, true,
3098 lower_32_bits(urb->transfer_dma),
3099 upper_32_bits(urb->transfer_dma),
3100 length_field,
3101 field | ep_ring->cycle_state);
3102 }
3103
3104 /* Save the DMA address of the last TRB in the TD */
3105 td->last_trb = ep_ring->enqueue;
3106
3107 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3108 /* If the device sent data, the status stage is an OUT transfer */
3109 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3110 field = 0;
3111 else
3112 field = TRB_DIR_IN;
3113 queue_trb(xhci, ep_ring, false, false,
3114 0,
3115 0,
3116 TRB_INTR_TARGET(0),
3117 /* Event on completion */
3118 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3119
3120 giveback_first_trb(xhci, slot_id, ep_index, 0,
3121 start_cycle, start_trb);
3122 return 0;
3123 }
3124
3125 static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3126 struct urb *urb, int i)
3127 {
3128 int num_trbs = 0;
3129 u64 addr, td_len;
3130
3131 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3132 td_len = urb->iso_frame_desc[i].length;
3133
3134 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3135 TRB_MAX_BUFF_SIZE);
3136 if (num_trbs == 0)
3137 num_trbs++;
3138
3139 return num_trbs;
3140 }
3141
3142 /*
3143 * The transfer burst count field of the isochronous TRB defines the number of
3144 * bursts that are required to move all packets in this TD. Only SuperSpeed
3145 * devices can burst up to bMaxBurst number of packets per service interval.
3146 * This field is zero based, meaning a value of zero in the field means one
3147 * burst. Basically, for everything but SuperSpeed devices, this field will be
3148 * zero. Only xHCI 1.0 host controllers support this field.
3149 */
3150 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3151 struct usb_device *udev,
3152 struct urb *urb, unsigned int total_packet_count)
3153 {
3154 unsigned int max_burst;
3155
3156 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3157 return 0;
3158
3159 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3160 return roundup(total_packet_count, max_burst + 1) - 1;
3161 }
3162
3163 /*
3164 * Returns the number of packets in the last "burst" of packets. This field is
3165 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3166 * the last burst packet count is equal to the total number of packets in the
3167 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3168 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3169 * contain 1 to (bMaxBurst + 1) packets.
3170 */
3171 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3172 struct usb_device *udev,
3173 struct urb *urb, unsigned int total_packet_count)
3174 {
3175 unsigned int max_burst;
3176 unsigned int residue;
3177
3178 if (xhci->hci_version < 0x100)
3179 return 0;
3180
3181 switch (udev->speed) {
3182 case USB_SPEED_SUPER:
3183 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3184 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3185 residue = total_packet_count % (max_burst + 1);
3186 /* If residue is zero, the last burst contains (max_burst + 1)
3187 * number of packets, but the TLBPC field is zero-based.
3188 */
3189 if (residue == 0)
3190 return max_burst;
3191 return residue - 1;
3192 default:
3193 if (total_packet_count == 0)
3194 return 0;
3195 return total_packet_count - 1;
3196 }
3197 }
3198
3199 /* This is for isoc transfer */
3200 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3201 struct urb *urb, int slot_id, unsigned int ep_index)
3202 {
3203 struct xhci_ring *ep_ring;
3204 struct urb_priv *urb_priv;
3205 struct xhci_td *td;
3206 int num_tds, trbs_per_td;
3207 struct xhci_generic_trb *start_trb;
3208 bool first_trb;
3209 int start_cycle;
3210 u32 field, length_field;
3211 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3212 u64 start_addr, addr;
3213 int i, j;
3214 bool more_trbs_coming;
3215
3216 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3217
3218 num_tds = urb->number_of_packets;
3219 if (num_tds < 1) {
3220 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3221 return -EINVAL;
3222 }
3223
3224 if (!in_interrupt())
3225 xhci_dbg(xhci, "ep %#x - urb len = %#x (%d),"
3226 " addr = %#llx, num_tds = %d\n",
3227 urb->ep->desc.bEndpointAddress,
3228 urb->transfer_buffer_length,
3229 urb->transfer_buffer_length,
3230 (unsigned long long)urb->transfer_dma,
3231 num_tds);
3232
3233 start_addr = (u64) urb->transfer_dma;
3234 start_trb = &ep_ring->enqueue->generic;
3235 start_cycle = ep_ring->cycle_state;
3236
3237 urb_priv = urb->hcpriv;
3238 /* Queue the first TRB, even if it's zero-length */
3239 for (i = 0; i < num_tds; i++) {
3240 unsigned int total_packet_count;
3241 unsigned int burst_count;
3242 unsigned int residue;
3243
3244 first_trb = true;
3245 running_total = 0;
3246 addr = start_addr + urb->iso_frame_desc[i].offset;
3247 td_len = urb->iso_frame_desc[i].length;
3248 td_remain_len = td_len;
3249 total_packet_count = roundup(td_len,
3250 usb_endpoint_maxp(&urb->ep->desc));
3251 /* A zero-length transfer still involves at least one packet. */
3252 if (total_packet_count == 0)
3253 total_packet_count++;
3254 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3255 total_packet_count);
3256 residue = xhci_get_last_burst_packet_count(xhci,
3257 urb->dev, urb, total_packet_count);
3258
3259 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3260
3261 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3262 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3263 if (ret < 0) {
3264 if (i == 0)
3265 return ret;
3266 goto cleanup;
3267 }
3268
3269 td = urb_priv->td[i];
3270 for (j = 0; j < trbs_per_td; j++) {
3271 u32 remainder = 0;
3272 field = TRB_TBC(burst_count) | TRB_TLBPC(residue);
3273
3274 if (first_trb) {
3275 /* Queue the isoc TRB */
3276 field |= TRB_TYPE(TRB_ISOC);
3277 /* Assume URB_ISO_ASAP is set */
3278 field |= TRB_SIA;
3279 if (i == 0) {
3280 if (start_cycle == 0)
3281 field |= 0x1;
3282 } else
3283 field |= ep_ring->cycle_state;
3284 first_trb = false;
3285 } else {
3286 /* Queue other normal TRBs */
3287 field |= TRB_TYPE(TRB_NORMAL);
3288 field |= ep_ring->cycle_state;
3289 }
3290
3291 /* Only set interrupt on short packet for IN EPs */
3292 if (usb_urb_dir_in(urb))
3293 field |= TRB_ISP;
3294
3295 /* Chain all the TRBs together; clear the chain bit in
3296 * the last TRB to indicate it's the last TRB in the
3297 * chain.
3298 */
3299 if (j < trbs_per_td - 1) {
3300 field |= TRB_CHAIN;
3301 more_trbs_coming = true;
3302 } else {
3303 td->last_trb = ep_ring->enqueue;
3304 field |= TRB_IOC;
3305 if (xhci->hci_version == 0x100) {
3306 /* Set BEI bit except for the last td */
3307 if (i < num_tds - 1)
3308 field |= TRB_BEI;
3309 }
3310 more_trbs_coming = false;
3311 }
3312
3313 /* Calculate TRB length */
3314 trb_buff_len = TRB_MAX_BUFF_SIZE -
3315 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3316 if (trb_buff_len > td_remain_len)
3317 trb_buff_len = td_remain_len;
3318
3319 /* Set the TRB length, TD size, & interrupter fields. */
3320 if (xhci->hci_version < 0x100) {
3321 remainder = xhci_td_remainder(
3322 td_len - running_total);
3323 } else {
3324 remainder = xhci_v1_0_td_remainder(
3325 running_total, trb_buff_len,
3326 total_packet_count, urb);
3327 }
3328 length_field = TRB_LEN(trb_buff_len) |
3329 remainder |
3330 TRB_INTR_TARGET(0);
3331
3332 queue_trb(xhci, ep_ring, false, more_trbs_coming,
3333 lower_32_bits(addr),
3334 upper_32_bits(addr),
3335 length_field,
3336 field);
3337 running_total += trb_buff_len;
3338
3339 addr += trb_buff_len;
3340 td_remain_len -= trb_buff_len;
3341 }
3342
3343 /* Check TD length */
3344 if (running_total != td_len) {
3345 xhci_err(xhci, "ISOC TD length unmatch\n");
3346 return -EINVAL;
3347 }
3348 }
3349
3350 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3351 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3352 usb_amd_quirk_pll_disable();
3353 }
3354 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3355
3356 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3357 start_cycle, start_trb);
3358 return 0;
3359 cleanup:
3360 /* Clean up a partially enqueued isoc transfer. */
3361
3362 for (i--; i >= 0; i--)
3363 list_del_init(&urb_priv->td[i]->td_list);
3364
3365 /* Use the first TD as a temporary variable to turn the TDs we've queued
3366 * into No-ops with a software-owned cycle bit. That way the hardware
3367 * won't accidentally start executing bogus TDs when we partially
3368 * overwrite them. td->first_trb and td->start_seg are already set.
3369 */
3370 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3371 /* Every TRB except the first & last will have its cycle bit flipped. */
3372 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3373
3374 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3375 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3376 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3377 ep_ring->cycle_state = start_cycle;
3378 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3379 return ret;
3380 }
3381
3382 /*
3383 * Check transfer ring to guarantee there is enough room for the urb.
3384 * Update ISO URB start_frame and interval.
3385 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3386 * update the urb->start_frame by now.
3387 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3388 */
3389 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3390 struct urb *urb, int slot_id, unsigned int ep_index)
3391 {
3392 struct xhci_virt_device *xdev;
3393 struct xhci_ring *ep_ring;
3394 struct xhci_ep_ctx *ep_ctx;
3395 int start_frame;
3396 int xhci_interval;
3397 int ep_interval;
3398 int num_tds, num_trbs, i;
3399 int ret;
3400
3401 xdev = xhci->devs[slot_id];
3402 ep_ring = xdev->eps[ep_index].ring;
3403 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3404
3405 num_trbs = 0;
3406 num_tds = urb->number_of_packets;
3407 for (i = 0; i < num_tds; i++)
3408 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3409
3410 /* Check the ring to guarantee there is enough room for the whole urb.
3411 * Do not insert any td of the urb to the ring if the check failed.
3412 */
3413 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3414 num_trbs, mem_flags);
3415 if (ret)
3416 return ret;
3417
3418 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3419 start_frame &= 0x3fff;
3420
3421 urb->start_frame = start_frame;
3422 if (urb->dev->speed == USB_SPEED_LOW ||
3423 urb->dev->speed == USB_SPEED_FULL)
3424 urb->start_frame >>= 3;
3425
3426 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3427 ep_interval = urb->interval;
3428 /* Convert to microframes */
3429 if (urb->dev->speed == USB_SPEED_LOW ||
3430 urb->dev->speed == USB_SPEED_FULL)
3431 ep_interval *= 8;
3432 /* FIXME change this to a warning and a suggestion to use the new API
3433 * to set the polling interval (once the API is added).
3434 */
3435 if (xhci_interval != ep_interval) {
3436 if (printk_ratelimit())
3437 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3438 " (%d microframe%s) than xHCI "
3439 "(%d microframe%s)\n",
3440 ep_interval,
3441 ep_interval == 1 ? "" : "s",
3442 xhci_interval,
3443 xhci_interval == 1 ? "" : "s");
3444 urb->interval = xhci_interval;
3445 /* Convert back to frames for LS/FS devices */
3446 if (urb->dev->speed == USB_SPEED_LOW ||
3447 urb->dev->speed == USB_SPEED_FULL)
3448 urb->interval /= 8;
3449 }
3450 return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index);
3451 }
3452
3453 /**** Command Ring Operations ****/
3454
3455 /* Generic function for queueing a command TRB on the command ring.
3456 * Check to make sure there's room on the command ring for one command TRB.
3457 * Also check that there's room reserved for commands that must not fail.
3458 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3459 * then only check for the number of reserved spots.
3460 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3461 * because the command event handler may want to resubmit a failed command.
3462 */
3463 static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3464 u32 field3, u32 field4, bool command_must_succeed)
3465 {
3466 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3467 int ret;
3468
3469 if (!command_must_succeed)
3470 reserved_trbs++;
3471
3472 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3473 reserved_trbs, GFP_ATOMIC);
3474 if (ret < 0) {
3475 xhci_err(xhci, "ERR: No room for command on command ring\n");
3476 if (command_must_succeed)
3477 xhci_err(xhci, "ERR: Reserved TRB counting for "
3478 "unfailable commands failed.\n");
3479 return ret;
3480 }
3481 queue_trb(xhci, xhci->cmd_ring, false, false, field1, field2, field3,
3482 field4 | xhci->cmd_ring->cycle_state);
3483 return 0;
3484 }
3485
3486 /* Queue a slot enable or disable request on the command ring */
3487 int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3488 {
3489 return queue_command(xhci, 0, 0, 0,
3490 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3491 }
3492
3493 /* Queue an address device command TRB */
3494 int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3495 u32 slot_id)
3496 {
3497 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3498 upper_32_bits(in_ctx_ptr), 0,
3499 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3500 false);
3501 }
3502
3503 int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3504 u32 field1, u32 field2, u32 field3, u32 field4)
3505 {
3506 return queue_command(xhci, field1, field2, field3, field4, false);
3507 }
3508
3509 /* Queue a reset device command TRB */
3510 int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3511 {
3512 return queue_command(xhci, 0, 0, 0,
3513 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3514 false);
3515 }
3516
3517 /* Queue a configure endpoint command TRB */
3518 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3519 u32 slot_id, bool command_must_succeed)
3520 {
3521 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3522 upper_32_bits(in_ctx_ptr), 0,
3523 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3524 command_must_succeed);
3525 }
3526
3527 /* Queue an evaluate context command TRB */
3528 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3529 u32 slot_id)
3530 {
3531 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3532 upper_32_bits(in_ctx_ptr), 0,
3533 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3534 false);
3535 }
3536
3537 /*
3538 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3539 * activity on an endpoint that is about to be suspended.
3540 */
3541 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3542 unsigned int ep_index, int suspend)
3543 {
3544 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3545 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3546 u32 type = TRB_TYPE(TRB_STOP_RING);
3547 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3548
3549 return queue_command(xhci, 0, 0, 0,
3550 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3551 }
3552
3553 /* Set Transfer Ring Dequeue Pointer command.
3554 * This should not be used for endpoints that have streams enabled.
3555 */
3556 static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3557 unsigned int ep_index, unsigned int stream_id,
3558 struct xhci_segment *deq_seg,
3559 union xhci_trb *deq_ptr, u32 cycle_state)
3560 {
3561 dma_addr_t addr;
3562 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3563 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3564 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3565 u32 type = TRB_TYPE(TRB_SET_DEQ);
3566 struct xhci_virt_ep *ep;
3567
3568 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
3569 if (addr == 0) {
3570 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3571 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3572 deq_seg, deq_ptr);
3573 return 0;
3574 }
3575 ep = &xhci->devs[slot_id]->eps[ep_index];
3576 if ((ep->ep_state & SET_DEQ_PENDING)) {
3577 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3578 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
3579 return 0;
3580 }
3581 ep->queued_deq_seg = deq_seg;
3582 ep->queued_deq_ptr = deq_ptr;
3583 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
3584 upper_32_bits(addr), trb_stream_id,
3585 trb_slot_id | trb_ep_index | type, false);
3586 }
3587
3588 int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
3589 unsigned int ep_index)
3590 {
3591 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3592 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3593 u32 type = TRB_TYPE(TRB_RESET_EP);
3594
3595 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
3596 false);
3597 }
This page took 0.113213 seconds and 6 git commands to generate.