Merge branch 'drm-rockchip-next-fixes-2016-01-22' of https://github.com/markyzq/kerne...
[deliverable/linux.git] / drivers / usb / host / xhci.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52 * xhci_handshake - spin reading hc until handshake completes or fails
53 * @ptr: address of hc register to be read
54 * @mask: bits to look at in result of read
55 * @done: value of those bits when handshake succeeds
56 * @usec: timeout in microseconds
57 *
58 * Returns negative errno, or zero on success
59 *
60 * Success happens when the "mask" bits have the specified value (hardware
61 * handshake done). There are two failure modes: "usec" have passed (major
62 * hardware flakeout), or the register reads as all-ones (hardware removed).
63 */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 u32 result;
67
68 do {
69 result = readl(ptr);
70 if (result == ~(u32)0) /* card removed */
71 return -ENODEV;
72 result &= mask;
73 if (result == done)
74 return 0;
75 udelay(1);
76 usec--;
77 } while (usec > 0);
78 return -ETIMEDOUT;
79 }
80
81 /*
82 * Disable interrupts and begin the xHCI halting process.
83 */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 u32 halted;
87 u32 cmd;
88 u32 mask;
89
90 mask = ~(XHCI_IRQS);
91 halted = readl(&xhci->op_regs->status) & STS_HALT;
92 if (!halted)
93 mask &= ~CMD_RUN;
94
95 cmd = readl(&xhci->op_regs->command);
96 cmd &= mask;
97 writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101 * Force HC into halt state.
102 *
103 * Disable any IRQs and clear the run/stop bit.
104 * HC will complete any current and actively pipelined transactions, and
105 * should halt within 16 ms of the run/stop bit being cleared.
106 * Read HC Halted bit in the status register to see when the HC is finished.
107 */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 int ret;
111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 xhci_quiesce(xhci);
113
114 ret = xhci_handshake(&xhci->op_regs->status,
115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 if (!ret) {
117 xhci->xhc_state |= XHCI_STATE_HALTED;
118 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119 } else
120 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121 XHCI_MAX_HALT_USEC);
122 return ret;
123 }
124
125 /*
126 * Set the run bit and wait for the host to be running.
127 */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130 u32 temp;
131 int ret;
132
133 temp = readl(&xhci->op_regs->command);
134 temp |= (CMD_RUN);
135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 temp);
137 writel(temp, &xhci->op_regs->command);
138
139 /*
140 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 * running.
142 */
143 ret = xhci_handshake(&xhci->op_regs->status,
144 STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 if (ret == -ETIMEDOUT)
146 xhci_err(xhci, "Host took too long to start, "
147 "waited %u microseconds.\n",
148 XHCI_MAX_HALT_USEC);
149 if (!ret)
150 xhci->xhc_state &= ~(XHCI_STATE_HALTED | XHCI_STATE_DYING);
151
152 return ret;
153 }
154
155 /*
156 * Reset a halted HC.
157 *
158 * This resets pipelines, timers, counters, state machines, etc.
159 * Transactions will be terminated immediately, and operational registers
160 * will be set to their defaults.
161 */
162 int xhci_reset(struct xhci_hcd *xhci)
163 {
164 u32 command;
165 u32 state;
166 int ret, i;
167
168 state = readl(&xhci->op_regs->status);
169 if ((state & STS_HALT) == 0) {
170 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
171 return 0;
172 }
173
174 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
175 command = readl(&xhci->op_regs->command);
176 command |= CMD_RESET;
177 writel(command, &xhci->op_regs->command);
178
179 /* Existing Intel xHCI controllers require a delay of 1 mS,
180 * after setting the CMD_RESET bit, and before accessing any
181 * HC registers. This allows the HC to complete the
182 * reset operation and be ready for HC register access.
183 * Without this delay, the subsequent HC register access,
184 * may result in a system hang very rarely.
185 */
186 if (xhci->quirks & XHCI_INTEL_HOST)
187 udelay(1000);
188
189 ret = xhci_handshake(&xhci->op_regs->command,
190 CMD_RESET, 0, 10 * 1000 * 1000);
191 if (ret)
192 return ret;
193
194 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195 "Wait for controller to be ready for doorbell rings");
196 /*
197 * xHCI cannot write to any doorbells or operational registers other
198 * than status until the "Controller Not Ready" flag is cleared.
199 */
200 ret = xhci_handshake(&xhci->op_regs->status,
201 STS_CNR, 0, 10 * 1000 * 1000);
202
203 for (i = 0; i < 2; ++i) {
204 xhci->bus_state[i].port_c_suspend = 0;
205 xhci->bus_state[i].suspended_ports = 0;
206 xhci->bus_state[i].resuming_ports = 0;
207 }
208
209 return ret;
210 }
211
212 #ifdef CONFIG_PCI
213 static int xhci_free_msi(struct xhci_hcd *xhci)
214 {
215 int i;
216
217 if (!xhci->msix_entries)
218 return -EINVAL;
219
220 for (i = 0; i < xhci->msix_count; i++)
221 if (xhci->msix_entries[i].vector)
222 free_irq(xhci->msix_entries[i].vector,
223 xhci_to_hcd(xhci));
224 return 0;
225 }
226
227 /*
228 * Set up MSI
229 */
230 static int xhci_setup_msi(struct xhci_hcd *xhci)
231 {
232 int ret;
233 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234
235 ret = pci_enable_msi(pdev);
236 if (ret) {
237 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238 "failed to allocate MSI entry");
239 return ret;
240 }
241
242 ret = request_irq(pdev->irq, xhci_msi_irq,
243 0, "xhci_hcd", xhci_to_hcd(xhci));
244 if (ret) {
245 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246 "disable MSI interrupt");
247 pci_disable_msi(pdev);
248 }
249
250 return ret;
251 }
252
253 /*
254 * Free IRQs
255 * free all IRQs request
256 */
257 static void xhci_free_irq(struct xhci_hcd *xhci)
258 {
259 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
260 int ret;
261
262 /* return if using legacy interrupt */
263 if (xhci_to_hcd(xhci)->irq > 0)
264 return;
265
266 ret = xhci_free_msi(xhci);
267 if (!ret)
268 return;
269 if (pdev->irq > 0)
270 free_irq(pdev->irq, xhci_to_hcd(xhci));
271
272 return;
273 }
274
275 /*
276 * Set up MSI-X
277 */
278 static int xhci_setup_msix(struct xhci_hcd *xhci)
279 {
280 int i, ret = 0;
281 struct usb_hcd *hcd = xhci_to_hcd(xhci);
282 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
283
284 /*
285 * calculate number of msi-x vectors supported.
286 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
287 * with max number of interrupters based on the xhci HCSPARAMS1.
288 * - num_online_cpus: maximum msi-x vectors per CPUs core.
289 * Add additional 1 vector to ensure always available interrupt.
290 */
291 xhci->msix_count = min(num_online_cpus() + 1,
292 HCS_MAX_INTRS(xhci->hcs_params1));
293
294 xhci->msix_entries =
295 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
296 GFP_KERNEL);
297 if (!xhci->msix_entries) {
298 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
299 return -ENOMEM;
300 }
301
302 for (i = 0; i < xhci->msix_count; i++) {
303 xhci->msix_entries[i].entry = i;
304 xhci->msix_entries[i].vector = 0;
305 }
306
307 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
308 if (ret) {
309 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310 "Failed to enable MSI-X");
311 goto free_entries;
312 }
313
314 for (i = 0; i < xhci->msix_count; i++) {
315 ret = request_irq(xhci->msix_entries[i].vector,
316 xhci_msi_irq,
317 0, "xhci_hcd", xhci_to_hcd(xhci));
318 if (ret)
319 goto disable_msix;
320 }
321
322 hcd->msix_enabled = 1;
323 return ret;
324
325 disable_msix:
326 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
327 xhci_free_irq(xhci);
328 pci_disable_msix(pdev);
329 free_entries:
330 kfree(xhci->msix_entries);
331 xhci->msix_entries = NULL;
332 return ret;
333 }
334
335 /* Free any IRQs and disable MSI-X */
336 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337 {
338 struct usb_hcd *hcd = xhci_to_hcd(xhci);
339 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340
341 if (xhci->quirks & XHCI_PLAT)
342 return;
343
344 xhci_free_irq(xhci);
345
346 if (xhci->msix_entries) {
347 pci_disable_msix(pdev);
348 kfree(xhci->msix_entries);
349 xhci->msix_entries = NULL;
350 } else {
351 pci_disable_msi(pdev);
352 }
353
354 hcd->msix_enabled = 0;
355 return;
356 }
357
358 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359 {
360 int i;
361
362 if (xhci->msix_entries) {
363 for (i = 0; i < xhci->msix_count; i++)
364 synchronize_irq(xhci->msix_entries[i].vector);
365 }
366 }
367
368 static int xhci_try_enable_msi(struct usb_hcd *hcd)
369 {
370 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
371 struct pci_dev *pdev;
372 int ret;
373
374 /* The xhci platform device has set up IRQs through usb_add_hcd. */
375 if (xhci->quirks & XHCI_PLAT)
376 return 0;
377
378 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379 /*
380 * Some Fresco Logic host controllers advertise MSI, but fail to
381 * generate interrupts. Don't even try to enable MSI.
382 */
383 if (xhci->quirks & XHCI_BROKEN_MSI)
384 goto legacy_irq;
385
386 /* unregister the legacy interrupt */
387 if (hcd->irq)
388 free_irq(hcd->irq, hcd);
389 hcd->irq = 0;
390
391 ret = xhci_setup_msix(xhci);
392 if (ret)
393 /* fall back to msi*/
394 ret = xhci_setup_msi(xhci);
395
396 if (!ret)
397 /* hcd->irq is 0, we have MSI */
398 return 0;
399
400 if (!pdev->irq) {
401 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
402 return -EINVAL;
403 }
404
405 legacy_irq:
406 if (!strlen(hcd->irq_descr))
407 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
408 hcd->driver->description, hcd->self.busnum);
409
410 /* fall back to legacy interrupt*/
411 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
412 hcd->irq_descr, hcd);
413 if (ret) {
414 xhci_err(xhci, "request interrupt %d failed\n",
415 pdev->irq);
416 return ret;
417 }
418 hcd->irq = pdev->irq;
419 return 0;
420 }
421
422 #else
423
424 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425 {
426 return 0;
427 }
428
429 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
430 {
431 }
432
433 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
434 {
435 }
436
437 #endif
438
439 static void compliance_mode_recovery(unsigned long arg)
440 {
441 struct xhci_hcd *xhci;
442 struct usb_hcd *hcd;
443 u32 temp;
444 int i;
445
446 xhci = (struct xhci_hcd *)arg;
447
448 for (i = 0; i < xhci->num_usb3_ports; i++) {
449 temp = readl(xhci->usb3_ports[i]);
450 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451 /*
452 * Compliance Mode Detected. Letting USB Core
453 * handle the Warm Reset
454 */
455 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456 "Compliance mode detected->port %d",
457 i + 1);
458 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
459 "Attempting compliance mode recovery");
460 hcd = xhci->shared_hcd;
461
462 if (hcd->state == HC_STATE_SUSPENDED)
463 usb_hcd_resume_root_hub(hcd);
464
465 usb_hcd_poll_rh_status(hcd);
466 }
467 }
468
469 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
470 mod_timer(&xhci->comp_mode_recovery_timer,
471 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 }
473
474 /*
475 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
476 * that causes ports behind that hardware to enter compliance mode sometimes.
477 * The quirk creates a timer that polls every 2 seconds the link state of
478 * each host controller's port and recovers it by issuing a Warm reset
479 * if Compliance mode is detected, otherwise the port will become "dead" (no
480 * device connections or disconnections will be detected anymore). Becasue no
481 * status event is generated when entering compliance mode (per xhci spec),
482 * this quirk is needed on systems that have the failing hardware installed.
483 */
484 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485 {
486 xhci->port_status_u0 = 0;
487 setup_timer(&xhci->comp_mode_recovery_timer,
488 compliance_mode_recovery, (unsigned long)xhci);
489 xhci->comp_mode_recovery_timer.expires = jiffies +
490 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491
492 set_timer_slack(&xhci->comp_mode_recovery_timer,
493 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
494 add_timer(&xhci->comp_mode_recovery_timer);
495 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496 "Compliance mode recovery timer initialized");
497 }
498
499 /*
500 * This function identifies the systems that have installed the SN65LVPE502CP
501 * USB3.0 re-driver and that need the Compliance Mode Quirk.
502 * Systems:
503 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
504 */
505 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
506 {
507 const char *dmi_product_name, *dmi_sys_vendor;
508
509 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
510 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
511 if (!dmi_product_name || !dmi_sys_vendor)
512 return false;
513
514 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
515 return false;
516
517 if (strstr(dmi_product_name, "Z420") ||
518 strstr(dmi_product_name, "Z620") ||
519 strstr(dmi_product_name, "Z820") ||
520 strstr(dmi_product_name, "Z1 Workstation"))
521 return true;
522
523 return false;
524 }
525
526 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
527 {
528 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
529 }
530
531
532 /*
533 * Initialize memory for HCD and xHC (one-time init).
534 *
535 * Program the PAGESIZE register, initialize the device context array, create
536 * device contexts (?), set up a command ring segment (or two?), create event
537 * ring (one for now).
538 */
539 int xhci_init(struct usb_hcd *hcd)
540 {
541 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542 int retval = 0;
543
544 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
545 spin_lock_init(&xhci->lock);
546 if (xhci->hci_version == 0x95 && link_quirk) {
547 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
548 "QUIRK: Not clearing Link TRB chain bits.");
549 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
550 } else {
551 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552 "xHCI doesn't need link TRB QUIRK");
553 }
554 retval = xhci_mem_init(xhci, GFP_KERNEL);
555 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
556
557 /* Initializing Compliance Mode Recovery Data If Needed */
558 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
559 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
560 compliance_mode_recovery_timer_init(xhci);
561 }
562
563 return retval;
564 }
565
566 /*-------------------------------------------------------------------------*/
567
568
569 static int xhci_run_finished(struct xhci_hcd *xhci)
570 {
571 if (xhci_start(xhci)) {
572 xhci_halt(xhci);
573 return -ENODEV;
574 }
575 xhci->shared_hcd->state = HC_STATE_RUNNING;
576 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
577
578 if (xhci->quirks & XHCI_NEC_HOST)
579 xhci_ring_cmd_db(xhci);
580
581 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582 "Finished xhci_run for USB3 roothub");
583 return 0;
584 }
585
586 /*
587 * Start the HC after it was halted.
588 *
589 * This function is called by the USB core when the HC driver is added.
590 * Its opposite is xhci_stop().
591 *
592 * xhci_init() must be called once before this function can be called.
593 * Reset the HC, enable device slot contexts, program DCBAAP, and
594 * set command ring pointer and event ring pointer.
595 *
596 * Setup MSI-X vectors and enable interrupts.
597 */
598 int xhci_run(struct usb_hcd *hcd)
599 {
600 u32 temp;
601 u64 temp_64;
602 int ret;
603 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604
605 /* Start the xHCI host controller running only after the USB 2.0 roothub
606 * is setup.
607 */
608
609 hcd->uses_new_polling = 1;
610 if (!usb_hcd_is_primary_hcd(hcd))
611 return xhci_run_finished(xhci);
612
613 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
614
615 ret = xhci_try_enable_msi(hcd);
616 if (ret)
617 return ret;
618
619 xhci_dbg(xhci, "Command ring memory map follows:\n");
620 xhci_debug_ring(xhci, xhci->cmd_ring);
621 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
622 xhci_dbg_cmd_ptrs(xhci);
623
624 xhci_dbg(xhci, "ERST memory map follows:\n");
625 xhci_dbg_erst(xhci, &xhci->erst);
626 xhci_dbg(xhci, "Event ring:\n");
627 xhci_debug_ring(xhci, xhci->event_ring);
628 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
629 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
630 temp_64 &= ~ERST_PTR_MASK;
631 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
633
634 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635 "// Set the interrupt modulation register");
636 temp = readl(&xhci->ir_set->irq_control);
637 temp &= ~ER_IRQ_INTERVAL_MASK;
638 /*
639 * the increment interval is 8 times as much as that defined
640 * in xHCI spec on MTK's controller
641 */
642 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
643 writel(temp, &xhci->ir_set->irq_control);
644
645 /* Set the HCD state before we enable the irqs */
646 temp = readl(&xhci->op_regs->command);
647 temp |= (CMD_EIE);
648 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649 "// Enable interrupts, cmd = 0x%x.", temp);
650 writel(temp, &xhci->op_regs->command);
651
652 temp = readl(&xhci->ir_set->irq_pending);
653 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
654 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
655 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
656 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
657 xhci_print_ir_set(xhci, 0);
658
659 if (xhci->quirks & XHCI_NEC_HOST) {
660 struct xhci_command *command;
661 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
662 if (!command)
663 return -ENOMEM;
664 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
665 TRB_TYPE(TRB_NEC_GET_FW));
666 }
667 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
668 "Finished xhci_run for USB2 roothub");
669 return 0;
670 }
671 EXPORT_SYMBOL_GPL(xhci_run);
672
673 /*
674 * Stop xHCI driver.
675 *
676 * This function is called by the USB core when the HC driver is removed.
677 * Its opposite is xhci_run().
678 *
679 * Disable device contexts, disable IRQs, and quiesce the HC.
680 * Reset the HC, finish any completed transactions, and cleanup memory.
681 */
682 void xhci_stop(struct usb_hcd *hcd)
683 {
684 u32 temp;
685 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
686
687 if (xhci->xhc_state & XHCI_STATE_HALTED)
688 return;
689
690 mutex_lock(&xhci->mutex);
691 spin_lock_irq(&xhci->lock);
692 xhci->xhc_state |= XHCI_STATE_HALTED;
693 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
694
695 /* Make sure the xHC is halted for a USB3 roothub
696 * (xhci_stop() could be called as part of failed init).
697 */
698 xhci_halt(xhci);
699 xhci_reset(xhci);
700 spin_unlock_irq(&xhci->lock);
701
702 xhci_cleanup_msix(xhci);
703
704 /* Deleting Compliance Mode Recovery Timer */
705 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
706 (!(xhci_all_ports_seen_u0(xhci)))) {
707 del_timer_sync(&xhci->comp_mode_recovery_timer);
708 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
709 "%s: compliance mode recovery timer deleted",
710 __func__);
711 }
712
713 if (xhci->quirks & XHCI_AMD_PLL_FIX)
714 usb_amd_dev_put();
715
716 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
717 "// Disabling event ring interrupts");
718 temp = readl(&xhci->op_regs->status);
719 writel(temp & ~STS_EINT, &xhci->op_regs->status);
720 temp = readl(&xhci->ir_set->irq_pending);
721 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
722 xhci_print_ir_set(xhci, 0);
723
724 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
725 xhci_mem_cleanup(xhci);
726 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
727 "xhci_stop completed - status = %x",
728 readl(&xhci->op_regs->status));
729 mutex_unlock(&xhci->mutex);
730 }
731
732 /*
733 * Shutdown HC (not bus-specific)
734 *
735 * This is called when the machine is rebooting or halting. We assume that the
736 * machine will be powered off, and the HC's internal state will be reset.
737 * Don't bother to free memory.
738 *
739 * This will only ever be called with the main usb_hcd (the USB3 roothub).
740 */
741 void xhci_shutdown(struct usb_hcd *hcd)
742 {
743 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
744
745 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
746 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
747
748 spin_lock_irq(&xhci->lock);
749 xhci_halt(xhci);
750 /* Workaround for spurious wakeups at shutdown with HSW */
751 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
752 xhci_reset(xhci);
753 spin_unlock_irq(&xhci->lock);
754
755 xhci_cleanup_msix(xhci);
756
757 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
758 "xhci_shutdown completed - status = %x",
759 readl(&xhci->op_regs->status));
760
761 /* Yet another workaround for spurious wakeups at shutdown with HSW */
762 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
763 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
764 }
765
766 #ifdef CONFIG_PM
767 static void xhci_save_registers(struct xhci_hcd *xhci)
768 {
769 xhci->s3.command = readl(&xhci->op_regs->command);
770 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
771 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
772 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
773 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
774 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
775 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
776 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
777 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
778 }
779
780 static void xhci_restore_registers(struct xhci_hcd *xhci)
781 {
782 writel(xhci->s3.command, &xhci->op_regs->command);
783 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
784 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
785 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
786 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
787 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
788 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
789 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
790 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
791 }
792
793 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
794 {
795 u64 val_64;
796
797 /* step 2: initialize command ring buffer */
798 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
799 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
800 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
801 xhci->cmd_ring->dequeue) &
802 (u64) ~CMD_RING_RSVD_BITS) |
803 xhci->cmd_ring->cycle_state;
804 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
805 "// Setting command ring address to 0x%llx",
806 (long unsigned long) val_64);
807 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
808 }
809
810 /*
811 * The whole command ring must be cleared to zero when we suspend the host.
812 *
813 * The host doesn't save the command ring pointer in the suspend well, so we
814 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
815 * aligned, because of the reserved bits in the command ring dequeue pointer
816 * register. Therefore, we can't just set the dequeue pointer back in the
817 * middle of the ring (TRBs are 16-byte aligned).
818 */
819 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
820 {
821 struct xhci_ring *ring;
822 struct xhci_segment *seg;
823
824 ring = xhci->cmd_ring;
825 seg = ring->deq_seg;
826 do {
827 memset(seg->trbs, 0,
828 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
829 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
830 cpu_to_le32(~TRB_CYCLE);
831 seg = seg->next;
832 } while (seg != ring->deq_seg);
833
834 /* Reset the software enqueue and dequeue pointers */
835 ring->deq_seg = ring->first_seg;
836 ring->dequeue = ring->first_seg->trbs;
837 ring->enq_seg = ring->deq_seg;
838 ring->enqueue = ring->dequeue;
839
840 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
841 /*
842 * Ring is now zeroed, so the HW should look for change of ownership
843 * when the cycle bit is set to 1.
844 */
845 ring->cycle_state = 1;
846
847 /*
848 * Reset the hardware dequeue pointer.
849 * Yes, this will need to be re-written after resume, but we're paranoid
850 * and want to make sure the hardware doesn't access bogus memory
851 * because, say, the BIOS or an SMI started the host without changing
852 * the command ring pointers.
853 */
854 xhci_set_cmd_ring_deq(xhci);
855 }
856
857 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
858 {
859 int port_index;
860 __le32 __iomem **port_array;
861 unsigned long flags;
862 u32 t1, t2;
863
864 spin_lock_irqsave(&xhci->lock, flags);
865
866 /* disble usb3 ports Wake bits*/
867 port_index = xhci->num_usb3_ports;
868 port_array = xhci->usb3_ports;
869 while (port_index--) {
870 t1 = readl(port_array[port_index]);
871 t1 = xhci_port_state_to_neutral(t1);
872 t2 = t1 & ~PORT_WAKE_BITS;
873 if (t1 != t2)
874 writel(t2, port_array[port_index]);
875 }
876
877 /* disble usb2 ports Wake bits*/
878 port_index = xhci->num_usb2_ports;
879 port_array = xhci->usb2_ports;
880 while (port_index--) {
881 t1 = readl(port_array[port_index]);
882 t1 = xhci_port_state_to_neutral(t1);
883 t2 = t1 & ~PORT_WAKE_BITS;
884 if (t1 != t2)
885 writel(t2, port_array[port_index]);
886 }
887
888 spin_unlock_irqrestore(&xhci->lock, flags);
889 }
890
891 /*
892 * Stop HC (not bus-specific)
893 *
894 * This is called when the machine transition into S3/S4 mode.
895 *
896 */
897 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
898 {
899 int rc = 0;
900 unsigned int delay = XHCI_MAX_HALT_USEC;
901 struct usb_hcd *hcd = xhci_to_hcd(xhci);
902 u32 command;
903
904 if (!hcd->state)
905 return 0;
906
907 if (hcd->state != HC_STATE_SUSPENDED ||
908 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
909 return -EINVAL;
910
911 /* Clear root port wake on bits if wakeup not allowed. */
912 if (!do_wakeup)
913 xhci_disable_port_wake_on_bits(xhci);
914
915 /* Don't poll the roothubs on bus suspend. */
916 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
917 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
918 del_timer_sync(&hcd->rh_timer);
919 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
920 del_timer_sync(&xhci->shared_hcd->rh_timer);
921
922 spin_lock_irq(&xhci->lock);
923 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
924 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
925 /* step 1: stop endpoint */
926 /* skipped assuming that port suspend has done */
927
928 /* step 2: clear Run/Stop bit */
929 command = readl(&xhci->op_regs->command);
930 command &= ~CMD_RUN;
931 writel(command, &xhci->op_regs->command);
932
933 /* Some chips from Fresco Logic need an extraordinary delay */
934 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
935
936 if (xhci_handshake(&xhci->op_regs->status,
937 STS_HALT, STS_HALT, delay)) {
938 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
939 spin_unlock_irq(&xhci->lock);
940 return -ETIMEDOUT;
941 }
942 xhci_clear_command_ring(xhci);
943
944 /* step 3: save registers */
945 xhci_save_registers(xhci);
946
947 /* step 4: set CSS flag */
948 command = readl(&xhci->op_regs->command);
949 command |= CMD_CSS;
950 writel(command, &xhci->op_regs->command);
951 if (xhci_handshake(&xhci->op_regs->status,
952 STS_SAVE, 0, 10 * 1000)) {
953 xhci_warn(xhci, "WARN: xHC save state timeout\n");
954 spin_unlock_irq(&xhci->lock);
955 return -ETIMEDOUT;
956 }
957 spin_unlock_irq(&xhci->lock);
958
959 /*
960 * Deleting Compliance Mode Recovery Timer because the xHCI Host
961 * is about to be suspended.
962 */
963 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
964 (!(xhci_all_ports_seen_u0(xhci)))) {
965 del_timer_sync(&xhci->comp_mode_recovery_timer);
966 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
967 "%s: compliance mode recovery timer deleted",
968 __func__);
969 }
970
971 /* step 5: remove core well power */
972 /* synchronize irq when using MSI-X */
973 xhci_msix_sync_irqs(xhci);
974
975 return rc;
976 }
977 EXPORT_SYMBOL_GPL(xhci_suspend);
978
979 /*
980 * start xHC (not bus-specific)
981 *
982 * This is called when the machine transition from S3/S4 mode.
983 *
984 */
985 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
986 {
987 u32 command, temp = 0, status;
988 struct usb_hcd *hcd = xhci_to_hcd(xhci);
989 struct usb_hcd *secondary_hcd;
990 int retval = 0;
991 bool comp_timer_running = false;
992
993 if (!hcd->state)
994 return 0;
995
996 /* Wait a bit if either of the roothubs need to settle from the
997 * transition into bus suspend.
998 */
999 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1000 time_before(jiffies,
1001 xhci->bus_state[1].next_statechange))
1002 msleep(100);
1003
1004 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1005 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1006
1007 spin_lock_irq(&xhci->lock);
1008 if (xhci->quirks & XHCI_RESET_ON_RESUME)
1009 hibernated = true;
1010
1011 if (!hibernated) {
1012 /* step 1: restore register */
1013 xhci_restore_registers(xhci);
1014 /* step 2: initialize command ring buffer */
1015 xhci_set_cmd_ring_deq(xhci);
1016 /* step 3: restore state and start state*/
1017 /* step 3: set CRS flag */
1018 command = readl(&xhci->op_regs->command);
1019 command |= CMD_CRS;
1020 writel(command, &xhci->op_regs->command);
1021 if (xhci_handshake(&xhci->op_regs->status,
1022 STS_RESTORE, 0, 10 * 1000)) {
1023 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1024 spin_unlock_irq(&xhci->lock);
1025 return -ETIMEDOUT;
1026 }
1027 temp = readl(&xhci->op_regs->status);
1028 }
1029
1030 /* If restore operation fails, re-initialize the HC during resume */
1031 if ((temp & STS_SRE) || hibernated) {
1032
1033 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1034 !(xhci_all_ports_seen_u0(xhci))) {
1035 del_timer_sync(&xhci->comp_mode_recovery_timer);
1036 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1037 "Compliance Mode Recovery Timer deleted!");
1038 }
1039
1040 /* Let the USB core know _both_ roothubs lost power. */
1041 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1042 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1043
1044 xhci_dbg(xhci, "Stop HCD\n");
1045 xhci_halt(xhci);
1046 xhci_reset(xhci);
1047 spin_unlock_irq(&xhci->lock);
1048 xhci_cleanup_msix(xhci);
1049
1050 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1051 temp = readl(&xhci->op_regs->status);
1052 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1053 temp = readl(&xhci->ir_set->irq_pending);
1054 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1055 xhci_print_ir_set(xhci, 0);
1056
1057 xhci_dbg(xhci, "cleaning up memory\n");
1058 xhci_mem_cleanup(xhci);
1059 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1060 readl(&xhci->op_regs->status));
1061
1062 /* USB core calls the PCI reinit and start functions twice:
1063 * first with the primary HCD, and then with the secondary HCD.
1064 * If we don't do the same, the host will never be started.
1065 */
1066 if (!usb_hcd_is_primary_hcd(hcd))
1067 secondary_hcd = hcd;
1068 else
1069 secondary_hcd = xhci->shared_hcd;
1070
1071 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1072 retval = xhci_init(hcd->primary_hcd);
1073 if (retval)
1074 return retval;
1075 comp_timer_running = true;
1076
1077 xhci_dbg(xhci, "Start the primary HCD\n");
1078 retval = xhci_run(hcd->primary_hcd);
1079 if (!retval) {
1080 xhci_dbg(xhci, "Start the secondary HCD\n");
1081 retval = xhci_run(secondary_hcd);
1082 }
1083 hcd->state = HC_STATE_SUSPENDED;
1084 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1085 goto done;
1086 }
1087
1088 /* step 4: set Run/Stop bit */
1089 command = readl(&xhci->op_regs->command);
1090 command |= CMD_RUN;
1091 writel(command, &xhci->op_regs->command);
1092 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1093 0, 250 * 1000);
1094
1095 /* step 5: walk topology and initialize portsc,
1096 * portpmsc and portli
1097 */
1098 /* this is done in bus_resume */
1099
1100 /* step 6: restart each of the previously
1101 * Running endpoints by ringing their doorbells
1102 */
1103
1104 spin_unlock_irq(&xhci->lock);
1105
1106 done:
1107 if (retval == 0) {
1108 /* Resume root hubs only when have pending events. */
1109 status = readl(&xhci->op_regs->status);
1110 if (status & STS_EINT) {
1111 usb_hcd_resume_root_hub(hcd);
1112 usb_hcd_resume_root_hub(xhci->shared_hcd);
1113 }
1114 }
1115
1116 /*
1117 * If system is subject to the Quirk, Compliance Mode Timer needs to
1118 * be re-initialized Always after a system resume. Ports are subject
1119 * to suffer the Compliance Mode issue again. It doesn't matter if
1120 * ports have entered previously to U0 before system's suspension.
1121 */
1122 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1123 compliance_mode_recovery_timer_init(xhci);
1124
1125 /* Re-enable port polling. */
1126 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1127 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1128 usb_hcd_poll_rh_status(hcd);
1129 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1130 usb_hcd_poll_rh_status(xhci->shared_hcd);
1131
1132 return retval;
1133 }
1134 EXPORT_SYMBOL_GPL(xhci_resume);
1135 #endif /* CONFIG_PM */
1136
1137 /*-------------------------------------------------------------------------*/
1138
1139 /**
1140 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1141 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1142 * value to right shift 1 for the bitmask.
1143 *
1144 * Index = (epnum * 2) + direction - 1,
1145 * where direction = 0 for OUT, 1 for IN.
1146 * For control endpoints, the IN index is used (OUT index is unused), so
1147 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1148 */
1149 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1150 {
1151 unsigned int index;
1152 if (usb_endpoint_xfer_control(desc))
1153 index = (unsigned int) (usb_endpoint_num(desc)*2);
1154 else
1155 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1156 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1157 return index;
1158 }
1159
1160 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1161 * address from the XHCI endpoint index.
1162 */
1163 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1164 {
1165 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1166 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1167 return direction | number;
1168 }
1169
1170 /* Find the flag for this endpoint (for use in the control context). Use the
1171 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1172 * bit 1, etc.
1173 */
1174 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1175 {
1176 return 1 << (xhci_get_endpoint_index(desc) + 1);
1177 }
1178
1179 /* Find the flag for this endpoint (for use in the control context). Use the
1180 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1181 * bit 1, etc.
1182 */
1183 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1184 {
1185 return 1 << (ep_index + 1);
1186 }
1187
1188 /* Compute the last valid endpoint context index. Basically, this is the
1189 * endpoint index plus one. For slot contexts with more than valid endpoint,
1190 * we find the most significant bit set in the added contexts flags.
1191 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1192 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1193 */
1194 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1195 {
1196 return fls(added_ctxs) - 1;
1197 }
1198
1199 /* Returns 1 if the arguments are OK;
1200 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1201 */
1202 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1203 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1204 const char *func) {
1205 struct xhci_hcd *xhci;
1206 struct xhci_virt_device *virt_dev;
1207
1208 if (!hcd || (check_ep && !ep) || !udev) {
1209 pr_debug("xHCI %s called with invalid args\n", func);
1210 return -EINVAL;
1211 }
1212 if (!udev->parent) {
1213 pr_debug("xHCI %s called for root hub\n", func);
1214 return 0;
1215 }
1216
1217 xhci = hcd_to_xhci(hcd);
1218 if (check_virt_dev) {
1219 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1220 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1221 func);
1222 return -EINVAL;
1223 }
1224
1225 virt_dev = xhci->devs[udev->slot_id];
1226 if (virt_dev->udev != udev) {
1227 xhci_dbg(xhci, "xHCI %s called with udev and "
1228 "virt_dev does not match\n", func);
1229 return -EINVAL;
1230 }
1231 }
1232
1233 if (xhci->xhc_state & XHCI_STATE_HALTED)
1234 return -ENODEV;
1235
1236 return 1;
1237 }
1238
1239 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1240 struct usb_device *udev, struct xhci_command *command,
1241 bool ctx_change, bool must_succeed);
1242
1243 /*
1244 * Full speed devices may have a max packet size greater than 8 bytes, but the
1245 * USB core doesn't know that until it reads the first 8 bytes of the
1246 * descriptor. If the usb_device's max packet size changes after that point,
1247 * we need to issue an evaluate context command and wait on it.
1248 */
1249 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1250 unsigned int ep_index, struct urb *urb)
1251 {
1252 struct xhci_container_ctx *out_ctx;
1253 struct xhci_input_control_ctx *ctrl_ctx;
1254 struct xhci_ep_ctx *ep_ctx;
1255 struct xhci_command *command;
1256 int max_packet_size;
1257 int hw_max_packet_size;
1258 int ret = 0;
1259
1260 out_ctx = xhci->devs[slot_id]->out_ctx;
1261 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1262 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1263 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1264 if (hw_max_packet_size != max_packet_size) {
1265 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1266 "Max Packet Size for ep 0 changed.");
1267 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1268 "Max packet size in usb_device = %d",
1269 max_packet_size);
1270 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1271 "Max packet size in xHCI HW = %d",
1272 hw_max_packet_size);
1273 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1274 "Issuing evaluate context command.");
1275
1276 /* Set up the input context flags for the command */
1277 /* FIXME: This won't work if a non-default control endpoint
1278 * changes max packet sizes.
1279 */
1280
1281 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1282 if (!command)
1283 return -ENOMEM;
1284
1285 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1286 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1287 if (!ctrl_ctx) {
1288 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1289 __func__);
1290 ret = -ENOMEM;
1291 goto command_cleanup;
1292 }
1293 /* Set up the modified control endpoint 0 */
1294 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1295 xhci->devs[slot_id]->out_ctx, ep_index);
1296
1297 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1298 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1299 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1300
1301 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1302 ctrl_ctx->drop_flags = 0;
1303
1304 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1305 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1306 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1307 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1308
1309 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1310 true, false);
1311
1312 /* Clean up the input context for later use by bandwidth
1313 * functions.
1314 */
1315 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1316 command_cleanup:
1317 kfree(command->completion);
1318 kfree(command);
1319 }
1320 return ret;
1321 }
1322
1323 /*
1324 * non-error returns are a promise to giveback() the urb later
1325 * we drop ownership so next owner (or urb unlink) can get it
1326 */
1327 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1328 {
1329 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1330 struct xhci_td *buffer;
1331 unsigned long flags;
1332 int ret = 0;
1333 unsigned int slot_id, ep_index;
1334 struct urb_priv *urb_priv;
1335 int size, i;
1336
1337 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1338 true, true, __func__) <= 0)
1339 return -EINVAL;
1340
1341 slot_id = urb->dev->slot_id;
1342 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1343
1344 if (!HCD_HW_ACCESSIBLE(hcd)) {
1345 if (!in_interrupt())
1346 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1347 ret = -ESHUTDOWN;
1348 goto exit;
1349 }
1350
1351 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1352 size = urb->number_of_packets;
1353 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1354 urb->transfer_buffer_length > 0 &&
1355 urb->transfer_flags & URB_ZERO_PACKET &&
1356 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1357 size = 2;
1358 else
1359 size = 1;
1360
1361 urb_priv = kzalloc(sizeof(struct urb_priv) +
1362 size * sizeof(struct xhci_td *), mem_flags);
1363 if (!urb_priv)
1364 return -ENOMEM;
1365
1366 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1367 if (!buffer) {
1368 kfree(urb_priv);
1369 return -ENOMEM;
1370 }
1371
1372 for (i = 0; i < size; i++) {
1373 urb_priv->td[i] = buffer;
1374 buffer++;
1375 }
1376
1377 urb_priv->length = size;
1378 urb_priv->td_cnt = 0;
1379 urb->hcpriv = urb_priv;
1380
1381 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1382 /* Check to see if the max packet size for the default control
1383 * endpoint changed during FS device enumeration
1384 */
1385 if (urb->dev->speed == USB_SPEED_FULL) {
1386 ret = xhci_check_maxpacket(xhci, slot_id,
1387 ep_index, urb);
1388 if (ret < 0) {
1389 xhci_urb_free_priv(urb_priv);
1390 urb->hcpriv = NULL;
1391 return ret;
1392 }
1393 }
1394
1395 /* We have a spinlock and interrupts disabled, so we must pass
1396 * atomic context to this function, which may allocate memory.
1397 */
1398 spin_lock_irqsave(&xhci->lock, flags);
1399 if (xhci->xhc_state & XHCI_STATE_DYING)
1400 goto dying;
1401 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1402 slot_id, ep_index);
1403 if (ret)
1404 goto free_priv;
1405 spin_unlock_irqrestore(&xhci->lock, flags);
1406 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1407 spin_lock_irqsave(&xhci->lock, flags);
1408 if (xhci->xhc_state & XHCI_STATE_DYING)
1409 goto dying;
1410 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1411 EP_GETTING_STREAMS) {
1412 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1413 "is transitioning to using streams.\n");
1414 ret = -EINVAL;
1415 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1416 EP_GETTING_NO_STREAMS) {
1417 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1418 "is transitioning to "
1419 "not having streams.\n");
1420 ret = -EINVAL;
1421 } else {
1422 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1423 slot_id, ep_index);
1424 }
1425 if (ret)
1426 goto free_priv;
1427 spin_unlock_irqrestore(&xhci->lock, flags);
1428 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1429 spin_lock_irqsave(&xhci->lock, flags);
1430 if (xhci->xhc_state & XHCI_STATE_DYING)
1431 goto dying;
1432 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1433 slot_id, ep_index);
1434 if (ret)
1435 goto free_priv;
1436 spin_unlock_irqrestore(&xhci->lock, flags);
1437 } else {
1438 spin_lock_irqsave(&xhci->lock, flags);
1439 if (xhci->xhc_state & XHCI_STATE_DYING)
1440 goto dying;
1441 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1442 slot_id, ep_index);
1443 if (ret)
1444 goto free_priv;
1445 spin_unlock_irqrestore(&xhci->lock, flags);
1446 }
1447 exit:
1448 return ret;
1449 dying:
1450 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1451 "non-responsive xHCI host.\n",
1452 urb->ep->desc.bEndpointAddress, urb);
1453 ret = -ESHUTDOWN;
1454 free_priv:
1455 xhci_urb_free_priv(urb_priv);
1456 urb->hcpriv = NULL;
1457 spin_unlock_irqrestore(&xhci->lock, flags);
1458 return ret;
1459 }
1460
1461 /* Get the right ring for the given URB.
1462 * If the endpoint supports streams, boundary check the URB's stream ID.
1463 * If the endpoint doesn't support streams, return the singular endpoint ring.
1464 */
1465 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1466 struct urb *urb)
1467 {
1468 unsigned int slot_id;
1469 unsigned int ep_index;
1470 unsigned int stream_id;
1471 struct xhci_virt_ep *ep;
1472
1473 slot_id = urb->dev->slot_id;
1474 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1475 stream_id = urb->stream_id;
1476 ep = &xhci->devs[slot_id]->eps[ep_index];
1477 /* Common case: no streams */
1478 if (!(ep->ep_state & EP_HAS_STREAMS))
1479 return ep->ring;
1480
1481 if (stream_id == 0) {
1482 xhci_warn(xhci,
1483 "WARN: Slot ID %u, ep index %u has streams, "
1484 "but URB has no stream ID.\n",
1485 slot_id, ep_index);
1486 return NULL;
1487 }
1488
1489 if (stream_id < ep->stream_info->num_streams)
1490 return ep->stream_info->stream_rings[stream_id];
1491
1492 xhci_warn(xhci,
1493 "WARN: Slot ID %u, ep index %u has "
1494 "stream IDs 1 to %u allocated, "
1495 "but stream ID %u is requested.\n",
1496 slot_id, ep_index,
1497 ep->stream_info->num_streams - 1,
1498 stream_id);
1499 return NULL;
1500 }
1501
1502 /*
1503 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1504 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1505 * should pick up where it left off in the TD, unless a Set Transfer Ring
1506 * Dequeue Pointer is issued.
1507 *
1508 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1509 * the ring. Since the ring is a contiguous structure, they can't be physically
1510 * removed. Instead, there are two options:
1511 *
1512 * 1) If the HC is in the middle of processing the URB to be canceled, we
1513 * simply move the ring's dequeue pointer past those TRBs using the Set
1514 * Transfer Ring Dequeue Pointer command. This will be the common case,
1515 * when drivers timeout on the last submitted URB and attempt to cancel.
1516 *
1517 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1518 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1519 * HC will need to invalidate the any TRBs it has cached after the stop
1520 * endpoint command, as noted in the xHCI 0.95 errata.
1521 *
1522 * 3) The TD may have completed by the time the Stop Endpoint Command
1523 * completes, so software needs to handle that case too.
1524 *
1525 * This function should protect against the TD enqueueing code ringing the
1526 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1527 * It also needs to account for multiple cancellations on happening at the same
1528 * time for the same endpoint.
1529 *
1530 * Note that this function can be called in any context, or so says
1531 * usb_hcd_unlink_urb()
1532 */
1533 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1534 {
1535 unsigned long flags;
1536 int ret, i;
1537 u32 temp;
1538 struct xhci_hcd *xhci;
1539 struct urb_priv *urb_priv;
1540 struct xhci_td *td;
1541 unsigned int ep_index;
1542 struct xhci_ring *ep_ring;
1543 struct xhci_virt_ep *ep;
1544 struct xhci_command *command;
1545
1546 xhci = hcd_to_xhci(hcd);
1547 spin_lock_irqsave(&xhci->lock, flags);
1548 /* Make sure the URB hasn't completed or been unlinked already */
1549 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1550 if (ret || !urb->hcpriv)
1551 goto done;
1552 temp = readl(&xhci->op_regs->status);
1553 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1554 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1555 "HW died, freeing TD.");
1556 urb_priv = urb->hcpriv;
1557 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1558 td = urb_priv->td[i];
1559 if (!list_empty(&td->td_list))
1560 list_del_init(&td->td_list);
1561 if (!list_empty(&td->cancelled_td_list))
1562 list_del_init(&td->cancelled_td_list);
1563 }
1564
1565 usb_hcd_unlink_urb_from_ep(hcd, urb);
1566 spin_unlock_irqrestore(&xhci->lock, flags);
1567 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1568 xhci_urb_free_priv(urb_priv);
1569 return ret;
1570 }
1571 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1572 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1573 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1574 "Ep 0x%x: URB %p to be canceled on "
1575 "non-responsive xHCI host.",
1576 urb->ep->desc.bEndpointAddress, urb);
1577 /* Let the stop endpoint command watchdog timer (which set this
1578 * state) finish cleaning up the endpoint TD lists. We must
1579 * have caught it in the middle of dropping a lock and giving
1580 * back an URB.
1581 */
1582 goto done;
1583 }
1584
1585 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1586 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1587 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1588 if (!ep_ring) {
1589 ret = -EINVAL;
1590 goto done;
1591 }
1592
1593 urb_priv = urb->hcpriv;
1594 i = urb_priv->td_cnt;
1595 if (i < urb_priv->length)
1596 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1597 "Cancel URB %p, dev %s, ep 0x%x, "
1598 "starting at offset 0x%llx",
1599 urb, urb->dev->devpath,
1600 urb->ep->desc.bEndpointAddress,
1601 (unsigned long long) xhci_trb_virt_to_dma(
1602 urb_priv->td[i]->start_seg,
1603 urb_priv->td[i]->first_trb));
1604
1605 for (; i < urb_priv->length; i++) {
1606 td = urb_priv->td[i];
1607 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1608 }
1609
1610 /* Queue a stop endpoint command, but only if this is
1611 * the first cancellation to be handled.
1612 */
1613 if (!(ep->ep_state & EP_HALT_PENDING)) {
1614 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1615 if (!command) {
1616 ret = -ENOMEM;
1617 goto done;
1618 }
1619 ep->ep_state |= EP_HALT_PENDING;
1620 ep->stop_cmds_pending++;
1621 ep->stop_cmd_timer.expires = jiffies +
1622 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1623 add_timer(&ep->stop_cmd_timer);
1624 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1625 ep_index, 0);
1626 xhci_ring_cmd_db(xhci);
1627 }
1628 done:
1629 spin_unlock_irqrestore(&xhci->lock, flags);
1630 return ret;
1631 }
1632
1633 /* Drop an endpoint from a new bandwidth configuration for this device.
1634 * Only one call to this function is allowed per endpoint before
1635 * check_bandwidth() or reset_bandwidth() must be called.
1636 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1637 * add the endpoint to the schedule with possibly new parameters denoted by a
1638 * different endpoint descriptor in usb_host_endpoint.
1639 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1640 * not allowed.
1641 *
1642 * The USB core will not allow URBs to be queued to an endpoint that is being
1643 * disabled, so there's no need for mutual exclusion to protect
1644 * the xhci->devs[slot_id] structure.
1645 */
1646 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1647 struct usb_host_endpoint *ep)
1648 {
1649 struct xhci_hcd *xhci;
1650 struct xhci_container_ctx *in_ctx, *out_ctx;
1651 struct xhci_input_control_ctx *ctrl_ctx;
1652 unsigned int ep_index;
1653 struct xhci_ep_ctx *ep_ctx;
1654 u32 drop_flag;
1655 u32 new_add_flags, new_drop_flags;
1656 int ret;
1657
1658 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1659 if (ret <= 0)
1660 return ret;
1661 xhci = hcd_to_xhci(hcd);
1662 if (xhci->xhc_state & XHCI_STATE_DYING)
1663 return -ENODEV;
1664
1665 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1666 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1667 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1668 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1669 __func__, drop_flag);
1670 return 0;
1671 }
1672
1673 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1674 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1675 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1676 if (!ctrl_ctx) {
1677 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1678 __func__);
1679 return 0;
1680 }
1681
1682 ep_index = xhci_get_endpoint_index(&ep->desc);
1683 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1684 /* If the HC already knows the endpoint is disabled,
1685 * or the HCD has noted it is disabled, ignore this request
1686 */
1687 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1688 cpu_to_le32(EP_STATE_DISABLED)) ||
1689 le32_to_cpu(ctrl_ctx->drop_flags) &
1690 xhci_get_endpoint_flag(&ep->desc)) {
1691 /* Do not warn when called after a usb_device_reset */
1692 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1693 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1694 __func__, ep);
1695 return 0;
1696 }
1697
1698 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1699 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1700
1701 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1702 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1703
1704 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1705
1706 if (xhci->quirks & XHCI_MTK_HOST)
1707 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1708
1709 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1710 (unsigned int) ep->desc.bEndpointAddress,
1711 udev->slot_id,
1712 (unsigned int) new_drop_flags,
1713 (unsigned int) new_add_flags);
1714 return 0;
1715 }
1716
1717 /* Add an endpoint to a new possible bandwidth configuration for this device.
1718 * Only one call to this function is allowed per endpoint before
1719 * check_bandwidth() or reset_bandwidth() must be called.
1720 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1721 * add the endpoint to the schedule with possibly new parameters denoted by a
1722 * different endpoint descriptor in usb_host_endpoint.
1723 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1724 * not allowed.
1725 *
1726 * The USB core will not allow URBs to be queued to an endpoint until the
1727 * configuration or alt setting is installed in the device, so there's no need
1728 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1729 */
1730 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1731 struct usb_host_endpoint *ep)
1732 {
1733 struct xhci_hcd *xhci;
1734 struct xhci_container_ctx *in_ctx;
1735 unsigned int ep_index;
1736 struct xhci_input_control_ctx *ctrl_ctx;
1737 u32 added_ctxs;
1738 u32 new_add_flags, new_drop_flags;
1739 struct xhci_virt_device *virt_dev;
1740 int ret = 0;
1741
1742 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1743 if (ret <= 0) {
1744 /* So we won't queue a reset ep command for a root hub */
1745 ep->hcpriv = NULL;
1746 return ret;
1747 }
1748 xhci = hcd_to_xhci(hcd);
1749 if (xhci->xhc_state & XHCI_STATE_DYING)
1750 return -ENODEV;
1751
1752 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1753 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1754 /* FIXME when we have to issue an evaluate endpoint command to
1755 * deal with ep0 max packet size changing once we get the
1756 * descriptors
1757 */
1758 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1759 __func__, added_ctxs);
1760 return 0;
1761 }
1762
1763 virt_dev = xhci->devs[udev->slot_id];
1764 in_ctx = virt_dev->in_ctx;
1765 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1766 if (!ctrl_ctx) {
1767 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1768 __func__);
1769 return 0;
1770 }
1771
1772 ep_index = xhci_get_endpoint_index(&ep->desc);
1773 /* If this endpoint is already in use, and the upper layers are trying
1774 * to add it again without dropping it, reject the addition.
1775 */
1776 if (virt_dev->eps[ep_index].ring &&
1777 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1778 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1779 "without dropping it.\n",
1780 (unsigned int) ep->desc.bEndpointAddress);
1781 return -EINVAL;
1782 }
1783
1784 /* If the HCD has already noted the endpoint is enabled,
1785 * ignore this request.
1786 */
1787 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1788 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1789 __func__, ep);
1790 return 0;
1791 }
1792
1793 /*
1794 * Configuration and alternate setting changes must be done in
1795 * process context, not interrupt context (or so documenation
1796 * for usb_set_interface() and usb_set_configuration() claim).
1797 */
1798 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1799 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1800 __func__, ep->desc.bEndpointAddress);
1801 return -ENOMEM;
1802 }
1803
1804 if (xhci->quirks & XHCI_MTK_HOST) {
1805 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1806 if (ret < 0) {
1807 xhci_free_or_cache_endpoint_ring(xhci,
1808 virt_dev, ep_index);
1809 return ret;
1810 }
1811 }
1812
1813 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1814 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1815
1816 /* If xhci_endpoint_disable() was called for this endpoint, but the
1817 * xHC hasn't been notified yet through the check_bandwidth() call,
1818 * this re-adds a new state for the endpoint from the new endpoint
1819 * descriptors. We must drop and re-add this endpoint, so we leave the
1820 * drop flags alone.
1821 */
1822 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1823
1824 /* Store the usb_device pointer for later use */
1825 ep->hcpriv = udev;
1826
1827 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1828 (unsigned int) ep->desc.bEndpointAddress,
1829 udev->slot_id,
1830 (unsigned int) new_drop_flags,
1831 (unsigned int) new_add_flags);
1832 return 0;
1833 }
1834
1835 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1836 {
1837 struct xhci_input_control_ctx *ctrl_ctx;
1838 struct xhci_ep_ctx *ep_ctx;
1839 struct xhci_slot_ctx *slot_ctx;
1840 int i;
1841
1842 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1843 if (!ctrl_ctx) {
1844 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1845 __func__);
1846 return;
1847 }
1848
1849 /* When a device's add flag and drop flag are zero, any subsequent
1850 * configure endpoint command will leave that endpoint's state
1851 * untouched. Make sure we don't leave any old state in the input
1852 * endpoint contexts.
1853 */
1854 ctrl_ctx->drop_flags = 0;
1855 ctrl_ctx->add_flags = 0;
1856 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1857 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1858 /* Endpoint 0 is always valid */
1859 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1860 for (i = 1; i < 31; ++i) {
1861 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1862 ep_ctx->ep_info = 0;
1863 ep_ctx->ep_info2 = 0;
1864 ep_ctx->deq = 0;
1865 ep_ctx->tx_info = 0;
1866 }
1867 }
1868
1869 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1870 struct usb_device *udev, u32 *cmd_status)
1871 {
1872 int ret;
1873
1874 switch (*cmd_status) {
1875 case COMP_CMD_ABORT:
1876 case COMP_CMD_STOP:
1877 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1878 ret = -ETIME;
1879 break;
1880 case COMP_ENOMEM:
1881 dev_warn(&udev->dev,
1882 "Not enough host controller resources for new device state.\n");
1883 ret = -ENOMEM;
1884 /* FIXME: can we allocate more resources for the HC? */
1885 break;
1886 case COMP_BW_ERR:
1887 case COMP_2ND_BW_ERR:
1888 dev_warn(&udev->dev,
1889 "Not enough bandwidth for new device state.\n");
1890 ret = -ENOSPC;
1891 /* FIXME: can we go back to the old state? */
1892 break;
1893 case COMP_TRB_ERR:
1894 /* the HCD set up something wrong */
1895 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1896 "add flag = 1, "
1897 "and endpoint is not disabled.\n");
1898 ret = -EINVAL;
1899 break;
1900 case COMP_DEV_ERR:
1901 dev_warn(&udev->dev,
1902 "ERROR: Incompatible device for endpoint configure command.\n");
1903 ret = -ENODEV;
1904 break;
1905 case COMP_SUCCESS:
1906 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1907 "Successful Endpoint Configure command");
1908 ret = 0;
1909 break;
1910 default:
1911 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1912 *cmd_status);
1913 ret = -EINVAL;
1914 break;
1915 }
1916 return ret;
1917 }
1918
1919 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1920 struct usb_device *udev, u32 *cmd_status)
1921 {
1922 int ret;
1923 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1924
1925 switch (*cmd_status) {
1926 case COMP_CMD_ABORT:
1927 case COMP_CMD_STOP:
1928 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1929 ret = -ETIME;
1930 break;
1931 case COMP_EINVAL:
1932 dev_warn(&udev->dev,
1933 "WARN: xHCI driver setup invalid evaluate context command.\n");
1934 ret = -EINVAL;
1935 break;
1936 case COMP_EBADSLT:
1937 dev_warn(&udev->dev,
1938 "WARN: slot not enabled for evaluate context command.\n");
1939 ret = -EINVAL;
1940 break;
1941 case COMP_CTX_STATE:
1942 dev_warn(&udev->dev,
1943 "WARN: invalid context state for evaluate context command.\n");
1944 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1945 ret = -EINVAL;
1946 break;
1947 case COMP_DEV_ERR:
1948 dev_warn(&udev->dev,
1949 "ERROR: Incompatible device for evaluate context command.\n");
1950 ret = -ENODEV;
1951 break;
1952 case COMP_MEL_ERR:
1953 /* Max Exit Latency too large error */
1954 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1955 ret = -EINVAL;
1956 break;
1957 case COMP_SUCCESS:
1958 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1959 "Successful evaluate context command");
1960 ret = 0;
1961 break;
1962 default:
1963 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1964 *cmd_status);
1965 ret = -EINVAL;
1966 break;
1967 }
1968 return ret;
1969 }
1970
1971 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1972 struct xhci_input_control_ctx *ctrl_ctx)
1973 {
1974 u32 valid_add_flags;
1975 u32 valid_drop_flags;
1976
1977 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1978 * (bit 1). The default control endpoint is added during the Address
1979 * Device command and is never removed until the slot is disabled.
1980 */
1981 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1982 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1983
1984 /* Use hweight32 to count the number of ones in the add flags, or
1985 * number of endpoints added. Don't count endpoints that are changed
1986 * (both added and dropped).
1987 */
1988 return hweight32(valid_add_flags) -
1989 hweight32(valid_add_flags & valid_drop_flags);
1990 }
1991
1992 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1993 struct xhci_input_control_ctx *ctrl_ctx)
1994 {
1995 u32 valid_add_flags;
1996 u32 valid_drop_flags;
1997
1998 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1999 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2000
2001 return hweight32(valid_drop_flags) -
2002 hweight32(valid_add_flags & valid_drop_flags);
2003 }
2004
2005 /*
2006 * We need to reserve the new number of endpoints before the configure endpoint
2007 * command completes. We can't subtract the dropped endpoints from the number
2008 * of active endpoints until the command completes because we can oversubscribe
2009 * the host in this case:
2010 *
2011 * - the first configure endpoint command drops more endpoints than it adds
2012 * - a second configure endpoint command that adds more endpoints is queued
2013 * - the first configure endpoint command fails, so the config is unchanged
2014 * - the second command may succeed, even though there isn't enough resources
2015 *
2016 * Must be called with xhci->lock held.
2017 */
2018 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2019 struct xhci_input_control_ctx *ctrl_ctx)
2020 {
2021 u32 added_eps;
2022
2023 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2024 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2025 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2026 "Not enough ep ctxs: "
2027 "%u active, need to add %u, limit is %u.",
2028 xhci->num_active_eps, added_eps,
2029 xhci->limit_active_eps);
2030 return -ENOMEM;
2031 }
2032 xhci->num_active_eps += added_eps;
2033 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2034 "Adding %u ep ctxs, %u now active.", added_eps,
2035 xhci->num_active_eps);
2036 return 0;
2037 }
2038
2039 /*
2040 * The configure endpoint was failed by the xHC for some other reason, so we
2041 * need to revert the resources that failed configuration would have used.
2042 *
2043 * Must be called with xhci->lock held.
2044 */
2045 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2046 struct xhci_input_control_ctx *ctrl_ctx)
2047 {
2048 u32 num_failed_eps;
2049
2050 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2051 xhci->num_active_eps -= num_failed_eps;
2052 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2053 "Removing %u failed ep ctxs, %u now active.",
2054 num_failed_eps,
2055 xhci->num_active_eps);
2056 }
2057
2058 /*
2059 * Now that the command has completed, clean up the active endpoint count by
2060 * subtracting out the endpoints that were dropped (but not changed).
2061 *
2062 * Must be called with xhci->lock held.
2063 */
2064 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2065 struct xhci_input_control_ctx *ctrl_ctx)
2066 {
2067 u32 num_dropped_eps;
2068
2069 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2070 xhci->num_active_eps -= num_dropped_eps;
2071 if (num_dropped_eps)
2072 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2073 "Removing %u dropped ep ctxs, %u now active.",
2074 num_dropped_eps,
2075 xhci->num_active_eps);
2076 }
2077
2078 static unsigned int xhci_get_block_size(struct usb_device *udev)
2079 {
2080 switch (udev->speed) {
2081 case USB_SPEED_LOW:
2082 case USB_SPEED_FULL:
2083 return FS_BLOCK;
2084 case USB_SPEED_HIGH:
2085 return HS_BLOCK;
2086 case USB_SPEED_SUPER:
2087 return SS_BLOCK;
2088 case USB_SPEED_UNKNOWN:
2089 case USB_SPEED_WIRELESS:
2090 default:
2091 /* Should never happen */
2092 return 1;
2093 }
2094 }
2095
2096 static unsigned int
2097 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2098 {
2099 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2100 return LS_OVERHEAD;
2101 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2102 return FS_OVERHEAD;
2103 return HS_OVERHEAD;
2104 }
2105
2106 /* If we are changing a LS/FS device under a HS hub,
2107 * make sure (if we are activating a new TT) that the HS bus has enough
2108 * bandwidth for this new TT.
2109 */
2110 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2111 struct xhci_virt_device *virt_dev,
2112 int old_active_eps)
2113 {
2114 struct xhci_interval_bw_table *bw_table;
2115 struct xhci_tt_bw_info *tt_info;
2116
2117 /* Find the bandwidth table for the root port this TT is attached to. */
2118 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2119 tt_info = virt_dev->tt_info;
2120 /* If this TT already had active endpoints, the bandwidth for this TT
2121 * has already been added. Removing all periodic endpoints (and thus
2122 * making the TT enactive) will only decrease the bandwidth used.
2123 */
2124 if (old_active_eps)
2125 return 0;
2126 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2127 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2128 return -ENOMEM;
2129 return 0;
2130 }
2131 /* Not sure why we would have no new active endpoints...
2132 *
2133 * Maybe because of an Evaluate Context change for a hub update or a
2134 * control endpoint 0 max packet size change?
2135 * FIXME: skip the bandwidth calculation in that case.
2136 */
2137 return 0;
2138 }
2139
2140 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2141 struct xhci_virt_device *virt_dev)
2142 {
2143 unsigned int bw_reserved;
2144
2145 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2146 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2147 return -ENOMEM;
2148
2149 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2150 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2151 return -ENOMEM;
2152
2153 return 0;
2154 }
2155
2156 /*
2157 * This algorithm is a very conservative estimate of the worst-case scheduling
2158 * scenario for any one interval. The hardware dynamically schedules the
2159 * packets, so we can't tell which microframe could be the limiting factor in
2160 * the bandwidth scheduling. This only takes into account periodic endpoints.
2161 *
2162 * Obviously, we can't solve an NP complete problem to find the minimum worst
2163 * case scenario. Instead, we come up with an estimate that is no less than
2164 * the worst case bandwidth used for any one microframe, but may be an
2165 * over-estimate.
2166 *
2167 * We walk the requirements for each endpoint by interval, starting with the
2168 * smallest interval, and place packets in the schedule where there is only one
2169 * possible way to schedule packets for that interval. In order to simplify
2170 * this algorithm, we record the largest max packet size for each interval, and
2171 * assume all packets will be that size.
2172 *
2173 * For interval 0, we obviously must schedule all packets for each interval.
2174 * The bandwidth for interval 0 is just the amount of data to be transmitted
2175 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2176 * the number of packets).
2177 *
2178 * For interval 1, we have two possible microframes to schedule those packets
2179 * in. For this algorithm, if we can schedule the same number of packets for
2180 * each possible scheduling opportunity (each microframe), we will do so. The
2181 * remaining number of packets will be saved to be transmitted in the gaps in
2182 * the next interval's scheduling sequence.
2183 *
2184 * As we move those remaining packets to be scheduled with interval 2 packets,
2185 * we have to double the number of remaining packets to transmit. This is
2186 * because the intervals are actually powers of 2, and we would be transmitting
2187 * the previous interval's packets twice in this interval. We also have to be
2188 * sure that when we look at the largest max packet size for this interval, we
2189 * also look at the largest max packet size for the remaining packets and take
2190 * the greater of the two.
2191 *
2192 * The algorithm continues to evenly distribute packets in each scheduling
2193 * opportunity, and push the remaining packets out, until we get to the last
2194 * interval. Then those packets and their associated overhead are just added
2195 * to the bandwidth used.
2196 */
2197 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2198 struct xhci_virt_device *virt_dev,
2199 int old_active_eps)
2200 {
2201 unsigned int bw_reserved;
2202 unsigned int max_bandwidth;
2203 unsigned int bw_used;
2204 unsigned int block_size;
2205 struct xhci_interval_bw_table *bw_table;
2206 unsigned int packet_size = 0;
2207 unsigned int overhead = 0;
2208 unsigned int packets_transmitted = 0;
2209 unsigned int packets_remaining = 0;
2210 unsigned int i;
2211
2212 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2213 return xhci_check_ss_bw(xhci, virt_dev);
2214
2215 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2216 max_bandwidth = HS_BW_LIMIT;
2217 /* Convert percent of bus BW reserved to blocks reserved */
2218 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2219 } else {
2220 max_bandwidth = FS_BW_LIMIT;
2221 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2222 }
2223
2224 bw_table = virt_dev->bw_table;
2225 /* We need to translate the max packet size and max ESIT payloads into
2226 * the units the hardware uses.
2227 */
2228 block_size = xhci_get_block_size(virt_dev->udev);
2229
2230 /* If we are manipulating a LS/FS device under a HS hub, double check
2231 * that the HS bus has enough bandwidth if we are activing a new TT.
2232 */
2233 if (virt_dev->tt_info) {
2234 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2235 "Recalculating BW for rootport %u",
2236 virt_dev->real_port);
2237 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2238 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2239 "newly activated TT.\n");
2240 return -ENOMEM;
2241 }
2242 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2243 "Recalculating BW for TT slot %u port %u",
2244 virt_dev->tt_info->slot_id,
2245 virt_dev->tt_info->ttport);
2246 } else {
2247 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2248 "Recalculating BW for rootport %u",
2249 virt_dev->real_port);
2250 }
2251
2252 /* Add in how much bandwidth will be used for interval zero, or the
2253 * rounded max ESIT payload + number of packets * largest overhead.
2254 */
2255 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2256 bw_table->interval_bw[0].num_packets *
2257 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2258
2259 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2260 unsigned int bw_added;
2261 unsigned int largest_mps;
2262 unsigned int interval_overhead;
2263
2264 /*
2265 * How many packets could we transmit in this interval?
2266 * If packets didn't fit in the previous interval, we will need
2267 * to transmit that many packets twice within this interval.
2268 */
2269 packets_remaining = 2 * packets_remaining +
2270 bw_table->interval_bw[i].num_packets;
2271
2272 /* Find the largest max packet size of this or the previous
2273 * interval.
2274 */
2275 if (list_empty(&bw_table->interval_bw[i].endpoints))
2276 largest_mps = 0;
2277 else {
2278 struct xhci_virt_ep *virt_ep;
2279 struct list_head *ep_entry;
2280
2281 ep_entry = bw_table->interval_bw[i].endpoints.next;
2282 virt_ep = list_entry(ep_entry,
2283 struct xhci_virt_ep, bw_endpoint_list);
2284 /* Convert to blocks, rounding up */
2285 largest_mps = DIV_ROUND_UP(
2286 virt_ep->bw_info.max_packet_size,
2287 block_size);
2288 }
2289 if (largest_mps > packet_size)
2290 packet_size = largest_mps;
2291
2292 /* Use the larger overhead of this or the previous interval. */
2293 interval_overhead = xhci_get_largest_overhead(
2294 &bw_table->interval_bw[i]);
2295 if (interval_overhead > overhead)
2296 overhead = interval_overhead;
2297
2298 /* How many packets can we evenly distribute across
2299 * (1 << (i + 1)) possible scheduling opportunities?
2300 */
2301 packets_transmitted = packets_remaining >> (i + 1);
2302
2303 /* Add in the bandwidth used for those scheduled packets */
2304 bw_added = packets_transmitted * (overhead + packet_size);
2305
2306 /* How many packets do we have remaining to transmit? */
2307 packets_remaining = packets_remaining % (1 << (i + 1));
2308
2309 /* What largest max packet size should those packets have? */
2310 /* If we've transmitted all packets, don't carry over the
2311 * largest packet size.
2312 */
2313 if (packets_remaining == 0) {
2314 packet_size = 0;
2315 overhead = 0;
2316 } else if (packets_transmitted > 0) {
2317 /* Otherwise if we do have remaining packets, and we've
2318 * scheduled some packets in this interval, take the
2319 * largest max packet size from endpoints with this
2320 * interval.
2321 */
2322 packet_size = largest_mps;
2323 overhead = interval_overhead;
2324 }
2325 /* Otherwise carry over packet_size and overhead from the last
2326 * time we had a remainder.
2327 */
2328 bw_used += bw_added;
2329 if (bw_used > max_bandwidth) {
2330 xhci_warn(xhci, "Not enough bandwidth. "
2331 "Proposed: %u, Max: %u\n",
2332 bw_used, max_bandwidth);
2333 return -ENOMEM;
2334 }
2335 }
2336 /*
2337 * Ok, we know we have some packets left over after even-handedly
2338 * scheduling interval 15. We don't know which microframes they will
2339 * fit into, so we over-schedule and say they will be scheduled every
2340 * microframe.
2341 */
2342 if (packets_remaining > 0)
2343 bw_used += overhead + packet_size;
2344
2345 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2346 unsigned int port_index = virt_dev->real_port - 1;
2347
2348 /* OK, we're manipulating a HS device attached to a
2349 * root port bandwidth domain. Include the number of active TTs
2350 * in the bandwidth used.
2351 */
2352 bw_used += TT_HS_OVERHEAD *
2353 xhci->rh_bw[port_index].num_active_tts;
2354 }
2355
2356 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2357 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2358 "Available: %u " "percent",
2359 bw_used, max_bandwidth, bw_reserved,
2360 (max_bandwidth - bw_used - bw_reserved) * 100 /
2361 max_bandwidth);
2362
2363 bw_used += bw_reserved;
2364 if (bw_used > max_bandwidth) {
2365 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2366 bw_used, max_bandwidth);
2367 return -ENOMEM;
2368 }
2369
2370 bw_table->bw_used = bw_used;
2371 return 0;
2372 }
2373
2374 static bool xhci_is_async_ep(unsigned int ep_type)
2375 {
2376 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2377 ep_type != ISOC_IN_EP &&
2378 ep_type != INT_IN_EP);
2379 }
2380
2381 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2382 {
2383 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2384 }
2385
2386 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2387 {
2388 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2389
2390 if (ep_bw->ep_interval == 0)
2391 return SS_OVERHEAD_BURST +
2392 (ep_bw->mult * ep_bw->num_packets *
2393 (SS_OVERHEAD + mps));
2394 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2395 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2396 1 << ep_bw->ep_interval);
2397
2398 }
2399
2400 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2401 struct xhci_bw_info *ep_bw,
2402 struct xhci_interval_bw_table *bw_table,
2403 struct usb_device *udev,
2404 struct xhci_virt_ep *virt_ep,
2405 struct xhci_tt_bw_info *tt_info)
2406 {
2407 struct xhci_interval_bw *interval_bw;
2408 int normalized_interval;
2409
2410 if (xhci_is_async_ep(ep_bw->type))
2411 return;
2412
2413 if (udev->speed == USB_SPEED_SUPER) {
2414 if (xhci_is_sync_in_ep(ep_bw->type))
2415 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2416 xhci_get_ss_bw_consumed(ep_bw);
2417 else
2418 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2419 xhci_get_ss_bw_consumed(ep_bw);
2420 return;
2421 }
2422
2423 /* SuperSpeed endpoints never get added to intervals in the table, so
2424 * this check is only valid for HS/FS/LS devices.
2425 */
2426 if (list_empty(&virt_ep->bw_endpoint_list))
2427 return;
2428 /* For LS/FS devices, we need to translate the interval expressed in
2429 * microframes to frames.
2430 */
2431 if (udev->speed == USB_SPEED_HIGH)
2432 normalized_interval = ep_bw->ep_interval;
2433 else
2434 normalized_interval = ep_bw->ep_interval - 3;
2435
2436 if (normalized_interval == 0)
2437 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2438 interval_bw = &bw_table->interval_bw[normalized_interval];
2439 interval_bw->num_packets -= ep_bw->num_packets;
2440 switch (udev->speed) {
2441 case USB_SPEED_LOW:
2442 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2443 break;
2444 case USB_SPEED_FULL:
2445 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2446 break;
2447 case USB_SPEED_HIGH:
2448 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2449 break;
2450 case USB_SPEED_SUPER:
2451 case USB_SPEED_UNKNOWN:
2452 case USB_SPEED_WIRELESS:
2453 /* Should never happen because only LS/FS/HS endpoints will get
2454 * added to the endpoint list.
2455 */
2456 return;
2457 }
2458 if (tt_info)
2459 tt_info->active_eps -= 1;
2460 list_del_init(&virt_ep->bw_endpoint_list);
2461 }
2462
2463 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2464 struct xhci_bw_info *ep_bw,
2465 struct xhci_interval_bw_table *bw_table,
2466 struct usb_device *udev,
2467 struct xhci_virt_ep *virt_ep,
2468 struct xhci_tt_bw_info *tt_info)
2469 {
2470 struct xhci_interval_bw *interval_bw;
2471 struct xhci_virt_ep *smaller_ep;
2472 int normalized_interval;
2473
2474 if (xhci_is_async_ep(ep_bw->type))
2475 return;
2476
2477 if (udev->speed == USB_SPEED_SUPER) {
2478 if (xhci_is_sync_in_ep(ep_bw->type))
2479 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2480 xhci_get_ss_bw_consumed(ep_bw);
2481 else
2482 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2483 xhci_get_ss_bw_consumed(ep_bw);
2484 return;
2485 }
2486
2487 /* For LS/FS devices, we need to translate the interval expressed in
2488 * microframes to frames.
2489 */
2490 if (udev->speed == USB_SPEED_HIGH)
2491 normalized_interval = ep_bw->ep_interval;
2492 else
2493 normalized_interval = ep_bw->ep_interval - 3;
2494
2495 if (normalized_interval == 0)
2496 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2497 interval_bw = &bw_table->interval_bw[normalized_interval];
2498 interval_bw->num_packets += ep_bw->num_packets;
2499 switch (udev->speed) {
2500 case USB_SPEED_LOW:
2501 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2502 break;
2503 case USB_SPEED_FULL:
2504 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2505 break;
2506 case USB_SPEED_HIGH:
2507 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2508 break;
2509 case USB_SPEED_SUPER:
2510 case USB_SPEED_UNKNOWN:
2511 case USB_SPEED_WIRELESS:
2512 /* Should never happen because only LS/FS/HS endpoints will get
2513 * added to the endpoint list.
2514 */
2515 return;
2516 }
2517
2518 if (tt_info)
2519 tt_info->active_eps += 1;
2520 /* Insert the endpoint into the list, largest max packet size first. */
2521 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2522 bw_endpoint_list) {
2523 if (ep_bw->max_packet_size >=
2524 smaller_ep->bw_info.max_packet_size) {
2525 /* Add the new ep before the smaller endpoint */
2526 list_add_tail(&virt_ep->bw_endpoint_list,
2527 &smaller_ep->bw_endpoint_list);
2528 return;
2529 }
2530 }
2531 /* Add the new endpoint at the end of the list. */
2532 list_add_tail(&virt_ep->bw_endpoint_list,
2533 &interval_bw->endpoints);
2534 }
2535
2536 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2537 struct xhci_virt_device *virt_dev,
2538 int old_active_eps)
2539 {
2540 struct xhci_root_port_bw_info *rh_bw_info;
2541 if (!virt_dev->tt_info)
2542 return;
2543
2544 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2545 if (old_active_eps == 0 &&
2546 virt_dev->tt_info->active_eps != 0) {
2547 rh_bw_info->num_active_tts += 1;
2548 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2549 } else if (old_active_eps != 0 &&
2550 virt_dev->tt_info->active_eps == 0) {
2551 rh_bw_info->num_active_tts -= 1;
2552 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2553 }
2554 }
2555
2556 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2557 struct xhci_virt_device *virt_dev,
2558 struct xhci_container_ctx *in_ctx)
2559 {
2560 struct xhci_bw_info ep_bw_info[31];
2561 int i;
2562 struct xhci_input_control_ctx *ctrl_ctx;
2563 int old_active_eps = 0;
2564
2565 if (virt_dev->tt_info)
2566 old_active_eps = virt_dev->tt_info->active_eps;
2567
2568 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2569 if (!ctrl_ctx) {
2570 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2571 __func__);
2572 return -ENOMEM;
2573 }
2574
2575 for (i = 0; i < 31; i++) {
2576 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2577 continue;
2578
2579 /* Make a copy of the BW info in case we need to revert this */
2580 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2581 sizeof(ep_bw_info[i]));
2582 /* Drop the endpoint from the interval table if the endpoint is
2583 * being dropped or changed.
2584 */
2585 if (EP_IS_DROPPED(ctrl_ctx, i))
2586 xhci_drop_ep_from_interval_table(xhci,
2587 &virt_dev->eps[i].bw_info,
2588 virt_dev->bw_table,
2589 virt_dev->udev,
2590 &virt_dev->eps[i],
2591 virt_dev->tt_info);
2592 }
2593 /* Overwrite the information stored in the endpoints' bw_info */
2594 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2595 for (i = 0; i < 31; i++) {
2596 /* Add any changed or added endpoints to the interval table */
2597 if (EP_IS_ADDED(ctrl_ctx, i))
2598 xhci_add_ep_to_interval_table(xhci,
2599 &virt_dev->eps[i].bw_info,
2600 virt_dev->bw_table,
2601 virt_dev->udev,
2602 &virt_dev->eps[i],
2603 virt_dev->tt_info);
2604 }
2605
2606 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2607 /* Ok, this fits in the bandwidth we have.
2608 * Update the number of active TTs.
2609 */
2610 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2611 return 0;
2612 }
2613
2614 /* We don't have enough bandwidth for this, revert the stored info. */
2615 for (i = 0; i < 31; i++) {
2616 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2617 continue;
2618
2619 /* Drop the new copies of any added or changed endpoints from
2620 * the interval table.
2621 */
2622 if (EP_IS_ADDED(ctrl_ctx, i)) {
2623 xhci_drop_ep_from_interval_table(xhci,
2624 &virt_dev->eps[i].bw_info,
2625 virt_dev->bw_table,
2626 virt_dev->udev,
2627 &virt_dev->eps[i],
2628 virt_dev->tt_info);
2629 }
2630 /* Revert the endpoint back to its old information */
2631 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2632 sizeof(ep_bw_info[i]));
2633 /* Add any changed or dropped endpoints back into the table */
2634 if (EP_IS_DROPPED(ctrl_ctx, i))
2635 xhci_add_ep_to_interval_table(xhci,
2636 &virt_dev->eps[i].bw_info,
2637 virt_dev->bw_table,
2638 virt_dev->udev,
2639 &virt_dev->eps[i],
2640 virt_dev->tt_info);
2641 }
2642 return -ENOMEM;
2643 }
2644
2645
2646 /* Issue a configure endpoint command or evaluate context command
2647 * and wait for it to finish.
2648 */
2649 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2650 struct usb_device *udev,
2651 struct xhci_command *command,
2652 bool ctx_change, bool must_succeed)
2653 {
2654 int ret;
2655 unsigned long flags;
2656 struct xhci_input_control_ctx *ctrl_ctx;
2657 struct xhci_virt_device *virt_dev;
2658
2659 if (!command)
2660 return -EINVAL;
2661
2662 spin_lock_irqsave(&xhci->lock, flags);
2663 virt_dev = xhci->devs[udev->slot_id];
2664
2665 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2666 if (!ctrl_ctx) {
2667 spin_unlock_irqrestore(&xhci->lock, flags);
2668 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2669 __func__);
2670 return -ENOMEM;
2671 }
2672
2673 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2674 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2675 spin_unlock_irqrestore(&xhci->lock, flags);
2676 xhci_warn(xhci, "Not enough host resources, "
2677 "active endpoint contexts = %u\n",
2678 xhci->num_active_eps);
2679 return -ENOMEM;
2680 }
2681 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2682 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2683 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2684 xhci_free_host_resources(xhci, ctrl_ctx);
2685 spin_unlock_irqrestore(&xhci->lock, flags);
2686 xhci_warn(xhci, "Not enough bandwidth\n");
2687 return -ENOMEM;
2688 }
2689
2690 if (!ctx_change)
2691 ret = xhci_queue_configure_endpoint(xhci, command,
2692 command->in_ctx->dma,
2693 udev->slot_id, must_succeed);
2694 else
2695 ret = xhci_queue_evaluate_context(xhci, command,
2696 command->in_ctx->dma,
2697 udev->slot_id, must_succeed);
2698 if (ret < 0) {
2699 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2700 xhci_free_host_resources(xhci, ctrl_ctx);
2701 spin_unlock_irqrestore(&xhci->lock, flags);
2702 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2703 "FIXME allocate a new ring segment");
2704 return -ENOMEM;
2705 }
2706 xhci_ring_cmd_db(xhci);
2707 spin_unlock_irqrestore(&xhci->lock, flags);
2708
2709 /* Wait for the configure endpoint command to complete */
2710 wait_for_completion(command->completion);
2711
2712 if (!ctx_change)
2713 ret = xhci_configure_endpoint_result(xhci, udev,
2714 &command->status);
2715 else
2716 ret = xhci_evaluate_context_result(xhci, udev,
2717 &command->status);
2718
2719 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2720 spin_lock_irqsave(&xhci->lock, flags);
2721 /* If the command failed, remove the reserved resources.
2722 * Otherwise, clean up the estimate to include dropped eps.
2723 */
2724 if (ret)
2725 xhci_free_host_resources(xhci, ctrl_ctx);
2726 else
2727 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2728 spin_unlock_irqrestore(&xhci->lock, flags);
2729 }
2730 return ret;
2731 }
2732
2733 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2734 struct xhci_virt_device *vdev, int i)
2735 {
2736 struct xhci_virt_ep *ep = &vdev->eps[i];
2737
2738 if (ep->ep_state & EP_HAS_STREAMS) {
2739 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2740 xhci_get_endpoint_address(i));
2741 xhci_free_stream_info(xhci, ep->stream_info);
2742 ep->stream_info = NULL;
2743 ep->ep_state &= ~EP_HAS_STREAMS;
2744 }
2745 }
2746
2747 /* Called after one or more calls to xhci_add_endpoint() or
2748 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2749 * to call xhci_reset_bandwidth().
2750 *
2751 * Since we are in the middle of changing either configuration or
2752 * installing a new alt setting, the USB core won't allow URBs to be
2753 * enqueued for any endpoint on the old config or interface. Nothing
2754 * else should be touching the xhci->devs[slot_id] structure, so we
2755 * don't need to take the xhci->lock for manipulating that.
2756 */
2757 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2758 {
2759 int i;
2760 int ret = 0;
2761 struct xhci_hcd *xhci;
2762 struct xhci_virt_device *virt_dev;
2763 struct xhci_input_control_ctx *ctrl_ctx;
2764 struct xhci_slot_ctx *slot_ctx;
2765 struct xhci_command *command;
2766
2767 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2768 if (ret <= 0)
2769 return ret;
2770 xhci = hcd_to_xhci(hcd);
2771 if (xhci->xhc_state & XHCI_STATE_DYING)
2772 return -ENODEV;
2773
2774 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2775 virt_dev = xhci->devs[udev->slot_id];
2776
2777 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2778 if (!command)
2779 return -ENOMEM;
2780
2781 command->in_ctx = virt_dev->in_ctx;
2782
2783 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2784 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2785 if (!ctrl_ctx) {
2786 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2787 __func__);
2788 ret = -ENOMEM;
2789 goto command_cleanup;
2790 }
2791 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2792 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2793 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2794
2795 /* Don't issue the command if there's no endpoints to update. */
2796 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2797 ctrl_ctx->drop_flags == 0) {
2798 ret = 0;
2799 goto command_cleanup;
2800 }
2801 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2802 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2803 for (i = 31; i >= 1; i--) {
2804 __le32 le32 = cpu_to_le32(BIT(i));
2805
2806 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2807 || (ctrl_ctx->add_flags & le32) || i == 1) {
2808 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2809 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2810 break;
2811 }
2812 }
2813 xhci_dbg(xhci, "New Input Control Context:\n");
2814 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2815 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2816
2817 ret = xhci_configure_endpoint(xhci, udev, command,
2818 false, false);
2819 if (ret)
2820 /* Callee should call reset_bandwidth() */
2821 goto command_cleanup;
2822
2823 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2824 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2825 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2826
2827 /* Free any rings that were dropped, but not changed. */
2828 for (i = 1; i < 31; ++i) {
2829 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2830 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2831 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2832 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2833 }
2834 }
2835 xhci_zero_in_ctx(xhci, virt_dev);
2836 /*
2837 * Install any rings for completely new endpoints or changed endpoints,
2838 * and free or cache any old rings from changed endpoints.
2839 */
2840 for (i = 1; i < 31; ++i) {
2841 if (!virt_dev->eps[i].new_ring)
2842 continue;
2843 /* Only cache or free the old ring if it exists.
2844 * It may not if this is the first add of an endpoint.
2845 */
2846 if (virt_dev->eps[i].ring) {
2847 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2848 }
2849 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2850 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2851 virt_dev->eps[i].new_ring = NULL;
2852 }
2853 command_cleanup:
2854 kfree(command->completion);
2855 kfree(command);
2856
2857 return ret;
2858 }
2859
2860 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2861 {
2862 struct xhci_hcd *xhci;
2863 struct xhci_virt_device *virt_dev;
2864 int i, ret;
2865
2866 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2867 if (ret <= 0)
2868 return;
2869 xhci = hcd_to_xhci(hcd);
2870
2871 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2872 virt_dev = xhci->devs[udev->slot_id];
2873 /* Free any rings allocated for added endpoints */
2874 for (i = 0; i < 31; ++i) {
2875 if (virt_dev->eps[i].new_ring) {
2876 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2877 virt_dev->eps[i].new_ring = NULL;
2878 }
2879 }
2880 xhci_zero_in_ctx(xhci, virt_dev);
2881 }
2882
2883 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2884 struct xhci_container_ctx *in_ctx,
2885 struct xhci_container_ctx *out_ctx,
2886 struct xhci_input_control_ctx *ctrl_ctx,
2887 u32 add_flags, u32 drop_flags)
2888 {
2889 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2890 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2891 xhci_slot_copy(xhci, in_ctx, out_ctx);
2892 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2893
2894 xhci_dbg(xhci, "Input Context:\n");
2895 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2896 }
2897
2898 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2899 unsigned int slot_id, unsigned int ep_index,
2900 struct xhci_dequeue_state *deq_state)
2901 {
2902 struct xhci_input_control_ctx *ctrl_ctx;
2903 struct xhci_container_ctx *in_ctx;
2904 struct xhci_ep_ctx *ep_ctx;
2905 u32 added_ctxs;
2906 dma_addr_t addr;
2907
2908 in_ctx = xhci->devs[slot_id]->in_ctx;
2909 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2910 if (!ctrl_ctx) {
2911 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2912 __func__);
2913 return;
2914 }
2915
2916 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2917 xhci->devs[slot_id]->out_ctx, ep_index);
2918 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2919 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2920 deq_state->new_deq_ptr);
2921 if (addr == 0) {
2922 xhci_warn(xhci, "WARN Cannot submit config ep after "
2923 "reset ep command\n");
2924 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2925 deq_state->new_deq_seg,
2926 deq_state->new_deq_ptr);
2927 return;
2928 }
2929 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2930
2931 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2932 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2933 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2934 added_ctxs, added_ctxs);
2935 }
2936
2937 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2938 unsigned int ep_index, struct xhci_td *td)
2939 {
2940 struct xhci_dequeue_state deq_state;
2941 struct xhci_virt_ep *ep;
2942 struct usb_device *udev = td->urb->dev;
2943
2944 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2945 "Cleaning up stalled endpoint ring");
2946 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2947 /* We need to move the HW's dequeue pointer past this TD,
2948 * or it will attempt to resend it on the next doorbell ring.
2949 */
2950 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2951 ep_index, ep->stopped_stream, td, &deq_state);
2952
2953 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2954 return;
2955
2956 /* HW with the reset endpoint quirk will use the saved dequeue state to
2957 * issue a configure endpoint command later.
2958 */
2959 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2960 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2961 "Queueing new dequeue state");
2962 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2963 ep_index, ep->stopped_stream, &deq_state);
2964 } else {
2965 /* Better hope no one uses the input context between now and the
2966 * reset endpoint completion!
2967 * XXX: No idea how this hardware will react when stream rings
2968 * are enabled.
2969 */
2970 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2971 "Setting up input context for "
2972 "configure endpoint command");
2973 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2974 ep_index, &deq_state);
2975 }
2976 }
2977
2978 /* Called when clearing halted device. The core should have sent the control
2979 * message to clear the device halt condition. The host side of the halt should
2980 * already be cleared with a reset endpoint command issued when the STALL tx
2981 * event was received.
2982 *
2983 * Context: in_interrupt
2984 */
2985
2986 void xhci_endpoint_reset(struct usb_hcd *hcd,
2987 struct usb_host_endpoint *ep)
2988 {
2989 struct xhci_hcd *xhci;
2990
2991 xhci = hcd_to_xhci(hcd);
2992
2993 /*
2994 * We might need to implement the config ep cmd in xhci 4.8.1 note:
2995 * The Reset Endpoint Command may only be issued to endpoints in the
2996 * Halted state. If software wishes reset the Data Toggle or Sequence
2997 * Number of an endpoint that isn't in the Halted state, then software
2998 * may issue a Configure Endpoint Command with the Drop and Add bits set
2999 * for the target endpoint. that is in the Stopped state.
3000 */
3001
3002 /* For now just print debug to follow the situation */
3003 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3004 ep->desc.bEndpointAddress);
3005 }
3006
3007 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3008 struct usb_device *udev, struct usb_host_endpoint *ep,
3009 unsigned int slot_id)
3010 {
3011 int ret;
3012 unsigned int ep_index;
3013 unsigned int ep_state;
3014
3015 if (!ep)
3016 return -EINVAL;
3017 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3018 if (ret <= 0)
3019 return -EINVAL;
3020 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3021 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3022 " descriptor for ep 0x%x does not support streams\n",
3023 ep->desc.bEndpointAddress);
3024 return -EINVAL;
3025 }
3026
3027 ep_index = xhci_get_endpoint_index(&ep->desc);
3028 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3029 if (ep_state & EP_HAS_STREAMS ||
3030 ep_state & EP_GETTING_STREAMS) {
3031 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3032 "already has streams set up.\n",
3033 ep->desc.bEndpointAddress);
3034 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3035 "dynamic stream context array reallocation.\n");
3036 return -EINVAL;
3037 }
3038 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3039 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3040 "endpoint 0x%x; URBs are pending.\n",
3041 ep->desc.bEndpointAddress);
3042 return -EINVAL;
3043 }
3044 return 0;
3045 }
3046
3047 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3048 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3049 {
3050 unsigned int max_streams;
3051
3052 /* The stream context array size must be a power of two */
3053 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3054 /*
3055 * Find out how many primary stream array entries the host controller
3056 * supports. Later we may use secondary stream arrays (similar to 2nd
3057 * level page entries), but that's an optional feature for xHCI host
3058 * controllers. xHCs must support at least 4 stream IDs.
3059 */
3060 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3061 if (*num_stream_ctxs > max_streams) {
3062 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3063 max_streams);
3064 *num_stream_ctxs = max_streams;
3065 *num_streams = max_streams;
3066 }
3067 }
3068
3069 /* Returns an error code if one of the endpoint already has streams.
3070 * This does not change any data structures, it only checks and gathers
3071 * information.
3072 */
3073 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3074 struct usb_device *udev,
3075 struct usb_host_endpoint **eps, unsigned int num_eps,
3076 unsigned int *num_streams, u32 *changed_ep_bitmask)
3077 {
3078 unsigned int max_streams;
3079 unsigned int endpoint_flag;
3080 int i;
3081 int ret;
3082
3083 for (i = 0; i < num_eps; i++) {
3084 ret = xhci_check_streams_endpoint(xhci, udev,
3085 eps[i], udev->slot_id);
3086 if (ret < 0)
3087 return ret;
3088
3089 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3090 if (max_streams < (*num_streams - 1)) {
3091 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3092 eps[i]->desc.bEndpointAddress,
3093 max_streams);
3094 *num_streams = max_streams+1;
3095 }
3096
3097 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3098 if (*changed_ep_bitmask & endpoint_flag)
3099 return -EINVAL;
3100 *changed_ep_bitmask |= endpoint_flag;
3101 }
3102 return 0;
3103 }
3104
3105 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3106 struct usb_device *udev,
3107 struct usb_host_endpoint **eps, unsigned int num_eps)
3108 {
3109 u32 changed_ep_bitmask = 0;
3110 unsigned int slot_id;
3111 unsigned int ep_index;
3112 unsigned int ep_state;
3113 int i;
3114
3115 slot_id = udev->slot_id;
3116 if (!xhci->devs[slot_id])
3117 return 0;
3118
3119 for (i = 0; i < num_eps; i++) {
3120 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3121 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3122 /* Are streams already being freed for the endpoint? */
3123 if (ep_state & EP_GETTING_NO_STREAMS) {
3124 xhci_warn(xhci, "WARN Can't disable streams for "
3125 "endpoint 0x%x, "
3126 "streams are being disabled already\n",
3127 eps[i]->desc.bEndpointAddress);
3128 return 0;
3129 }
3130 /* Are there actually any streams to free? */
3131 if (!(ep_state & EP_HAS_STREAMS) &&
3132 !(ep_state & EP_GETTING_STREAMS)) {
3133 xhci_warn(xhci, "WARN Can't disable streams for "
3134 "endpoint 0x%x, "
3135 "streams are already disabled!\n",
3136 eps[i]->desc.bEndpointAddress);
3137 xhci_warn(xhci, "WARN xhci_free_streams() called "
3138 "with non-streams endpoint\n");
3139 return 0;
3140 }
3141 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3142 }
3143 return changed_ep_bitmask;
3144 }
3145
3146 /*
3147 * The USB device drivers use this function (through the HCD interface in USB
3148 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3149 * coordinate mass storage command queueing across multiple endpoints (basically
3150 * a stream ID == a task ID).
3151 *
3152 * Setting up streams involves allocating the same size stream context array
3153 * for each endpoint and issuing a configure endpoint command for all endpoints.
3154 *
3155 * Don't allow the call to succeed if one endpoint only supports one stream
3156 * (which means it doesn't support streams at all).
3157 *
3158 * Drivers may get less stream IDs than they asked for, if the host controller
3159 * hardware or endpoints claim they can't support the number of requested
3160 * stream IDs.
3161 */
3162 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3163 struct usb_host_endpoint **eps, unsigned int num_eps,
3164 unsigned int num_streams, gfp_t mem_flags)
3165 {
3166 int i, ret;
3167 struct xhci_hcd *xhci;
3168 struct xhci_virt_device *vdev;
3169 struct xhci_command *config_cmd;
3170 struct xhci_input_control_ctx *ctrl_ctx;
3171 unsigned int ep_index;
3172 unsigned int num_stream_ctxs;
3173 unsigned long flags;
3174 u32 changed_ep_bitmask = 0;
3175
3176 if (!eps)
3177 return -EINVAL;
3178
3179 /* Add one to the number of streams requested to account for
3180 * stream 0 that is reserved for xHCI usage.
3181 */
3182 num_streams += 1;
3183 xhci = hcd_to_xhci(hcd);
3184 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3185 num_streams);
3186
3187 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3188 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3189 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3190 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3191 return -ENOSYS;
3192 }
3193
3194 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3195 if (!config_cmd) {
3196 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3197 return -ENOMEM;
3198 }
3199 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3200 if (!ctrl_ctx) {
3201 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3202 __func__);
3203 xhci_free_command(xhci, config_cmd);
3204 return -ENOMEM;
3205 }
3206
3207 /* Check to make sure all endpoints are not already configured for
3208 * streams. While we're at it, find the maximum number of streams that
3209 * all the endpoints will support and check for duplicate endpoints.
3210 */
3211 spin_lock_irqsave(&xhci->lock, flags);
3212 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3213 num_eps, &num_streams, &changed_ep_bitmask);
3214 if (ret < 0) {
3215 xhci_free_command(xhci, config_cmd);
3216 spin_unlock_irqrestore(&xhci->lock, flags);
3217 return ret;
3218 }
3219 if (num_streams <= 1) {
3220 xhci_warn(xhci, "WARN: endpoints can't handle "
3221 "more than one stream.\n");
3222 xhci_free_command(xhci, config_cmd);
3223 spin_unlock_irqrestore(&xhci->lock, flags);
3224 return -EINVAL;
3225 }
3226 vdev = xhci->devs[udev->slot_id];
3227 /* Mark each endpoint as being in transition, so
3228 * xhci_urb_enqueue() will reject all URBs.
3229 */
3230 for (i = 0; i < num_eps; i++) {
3231 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3232 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3233 }
3234 spin_unlock_irqrestore(&xhci->lock, flags);
3235
3236 /* Setup internal data structures and allocate HW data structures for
3237 * streams (but don't install the HW structures in the input context
3238 * until we're sure all memory allocation succeeded).
3239 */
3240 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3241 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3242 num_stream_ctxs, num_streams);
3243
3244 for (i = 0; i < num_eps; i++) {
3245 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3246 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3247 num_stream_ctxs,
3248 num_streams, mem_flags);
3249 if (!vdev->eps[ep_index].stream_info)
3250 goto cleanup;
3251 /* Set maxPstreams in endpoint context and update deq ptr to
3252 * point to stream context array. FIXME
3253 */
3254 }
3255
3256 /* Set up the input context for a configure endpoint command. */
3257 for (i = 0; i < num_eps; i++) {
3258 struct xhci_ep_ctx *ep_ctx;
3259
3260 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3261 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3262
3263 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3264 vdev->out_ctx, ep_index);
3265 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3266 vdev->eps[ep_index].stream_info);
3267 }
3268 /* Tell the HW to drop its old copy of the endpoint context info
3269 * and add the updated copy from the input context.
3270 */
3271 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3272 vdev->out_ctx, ctrl_ctx,
3273 changed_ep_bitmask, changed_ep_bitmask);
3274
3275 /* Issue and wait for the configure endpoint command */
3276 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3277 false, false);
3278
3279 /* xHC rejected the configure endpoint command for some reason, so we
3280 * leave the old ring intact and free our internal streams data
3281 * structure.
3282 */
3283 if (ret < 0)
3284 goto cleanup;
3285
3286 spin_lock_irqsave(&xhci->lock, flags);
3287 for (i = 0; i < num_eps; i++) {
3288 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3289 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3290 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3291 udev->slot_id, ep_index);
3292 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3293 }
3294 xhci_free_command(xhci, config_cmd);
3295 spin_unlock_irqrestore(&xhci->lock, flags);
3296
3297 /* Subtract 1 for stream 0, which drivers can't use */
3298 return num_streams - 1;
3299
3300 cleanup:
3301 /* If it didn't work, free the streams! */
3302 for (i = 0; i < num_eps; i++) {
3303 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3304 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3305 vdev->eps[ep_index].stream_info = NULL;
3306 /* FIXME Unset maxPstreams in endpoint context and
3307 * update deq ptr to point to normal string ring.
3308 */
3309 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3310 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3311 xhci_endpoint_zero(xhci, vdev, eps[i]);
3312 }
3313 xhci_free_command(xhci, config_cmd);
3314 return -ENOMEM;
3315 }
3316
3317 /* Transition the endpoint from using streams to being a "normal" endpoint
3318 * without streams.
3319 *
3320 * Modify the endpoint context state, submit a configure endpoint command,
3321 * and free all endpoint rings for streams if that completes successfully.
3322 */
3323 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3324 struct usb_host_endpoint **eps, unsigned int num_eps,
3325 gfp_t mem_flags)
3326 {
3327 int i, ret;
3328 struct xhci_hcd *xhci;
3329 struct xhci_virt_device *vdev;
3330 struct xhci_command *command;
3331 struct xhci_input_control_ctx *ctrl_ctx;
3332 unsigned int ep_index;
3333 unsigned long flags;
3334 u32 changed_ep_bitmask;
3335
3336 xhci = hcd_to_xhci(hcd);
3337 vdev = xhci->devs[udev->slot_id];
3338
3339 /* Set up a configure endpoint command to remove the streams rings */
3340 spin_lock_irqsave(&xhci->lock, flags);
3341 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3342 udev, eps, num_eps);
3343 if (changed_ep_bitmask == 0) {
3344 spin_unlock_irqrestore(&xhci->lock, flags);
3345 return -EINVAL;
3346 }
3347
3348 /* Use the xhci_command structure from the first endpoint. We may have
3349 * allocated too many, but the driver may call xhci_free_streams() for
3350 * each endpoint it grouped into one call to xhci_alloc_streams().
3351 */
3352 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3353 command = vdev->eps[ep_index].stream_info->free_streams_command;
3354 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3355 if (!ctrl_ctx) {
3356 spin_unlock_irqrestore(&xhci->lock, flags);
3357 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3358 __func__);
3359 return -EINVAL;
3360 }
3361
3362 for (i = 0; i < num_eps; i++) {
3363 struct xhci_ep_ctx *ep_ctx;
3364
3365 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3366 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3367 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3368 EP_GETTING_NO_STREAMS;
3369
3370 xhci_endpoint_copy(xhci, command->in_ctx,
3371 vdev->out_ctx, ep_index);
3372 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3373 &vdev->eps[ep_index]);
3374 }
3375 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3376 vdev->out_ctx, ctrl_ctx,
3377 changed_ep_bitmask, changed_ep_bitmask);
3378 spin_unlock_irqrestore(&xhci->lock, flags);
3379
3380 /* Issue and wait for the configure endpoint command,
3381 * which must succeed.
3382 */
3383 ret = xhci_configure_endpoint(xhci, udev, command,
3384 false, true);
3385
3386 /* xHC rejected the configure endpoint command for some reason, so we
3387 * leave the streams rings intact.
3388 */
3389 if (ret < 0)
3390 return ret;
3391
3392 spin_lock_irqsave(&xhci->lock, flags);
3393 for (i = 0; i < num_eps; i++) {
3394 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3395 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3396 vdev->eps[ep_index].stream_info = NULL;
3397 /* FIXME Unset maxPstreams in endpoint context and
3398 * update deq ptr to point to normal string ring.
3399 */
3400 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3401 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3402 }
3403 spin_unlock_irqrestore(&xhci->lock, flags);
3404
3405 return 0;
3406 }
3407
3408 /*
3409 * Deletes endpoint resources for endpoints that were active before a Reset
3410 * Device command, or a Disable Slot command. The Reset Device command leaves
3411 * the control endpoint intact, whereas the Disable Slot command deletes it.
3412 *
3413 * Must be called with xhci->lock held.
3414 */
3415 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3416 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3417 {
3418 int i;
3419 unsigned int num_dropped_eps = 0;
3420 unsigned int drop_flags = 0;
3421
3422 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3423 if (virt_dev->eps[i].ring) {
3424 drop_flags |= 1 << i;
3425 num_dropped_eps++;
3426 }
3427 }
3428 xhci->num_active_eps -= num_dropped_eps;
3429 if (num_dropped_eps)
3430 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3431 "Dropped %u ep ctxs, flags = 0x%x, "
3432 "%u now active.",
3433 num_dropped_eps, drop_flags,
3434 xhci->num_active_eps);
3435 }
3436
3437 /*
3438 * This submits a Reset Device Command, which will set the device state to 0,
3439 * set the device address to 0, and disable all the endpoints except the default
3440 * control endpoint. The USB core should come back and call
3441 * xhci_address_device(), and then re-set up the configuration. If this is
3442 * called because of a usb_reset_and_verify_device(), then the old alternate
3443 * settings will be re-installed through the normal bandwidth allocation
3444 * functions.
3445 *
3446 * Wait for the Reset Device command to finish. Remove all structures
3447 * associated with the endpoints that were disabled. Clear the input device
3448 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3449 *
3450 * If the virt_dev to be reset does not exist or does not match the udev,
3451 * it means the device is lost, possibly due to the xHC restore error and
3452 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3453 * re-allocate the device.
3454 */
3455 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3456 {
3457 int ret, i;
3458 unsigned long flags;
3459 struct xhci_hcd *xhci;
3460 unsigned int slot_id;
3461 struct xhci_virt_device *virt_dev;
3462 struct xhci_command *reset_device_cmd;
3463 int last_freed_endpoint;
3464 struct xhci_slot_ctx *slot_ctx;
3465 int old_active_eps = 0;
3466
3467 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3468 if (ret <= 0)
3469 return ret;
3470 xhci = hcd_to_xhci(hcd);
3471 slot_id = udev->slot_id;
3472 virt_dev = xhci->devs[slot_id];
3473 if (!virt_dev) {
3474 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3475 "not exist. Re-allocate the device\n", slot_id);
3476 ret = xhci_alloc_dev(hcd, udev);
3477 if (ret == 1)
3478 return 0;
3479 else
3480 return -EINVAL;
3481 }
3482
3483 if (virt_dev->tt_info)
3484 old_active_eps = virt_dev->tt_info->active_eps;
3485
3486 if (virt_dev->udev != udev) {
3487 /* If the virt_dev and the udev does not match, this virt_dev
3488 * may belong to another udev.
3489 * Re-allocate the device.
3490 */
3491 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3492 "not match the udev. Re-allocate the device\n",
3493 slot_id);
3494 ret = xhci_alloc_dev(hcd, udev);
3495 if (ret == 1)
3496 return 0;
3497 else
3498 return -EINVAL;
3499 }
3500
3501 /* If device is not setup, there is no point in resetting it */
3502 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3503 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3504 SLOT_STATE_DISABLED)
3505 return 0;
3506
3507 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3508 /* Allocate the command structure that holds the struct completion.
3509 * Assume we're in process context, since the normal device reset
3510 * process has to wait for the device anyway. Storage devices are
3511 * reset as part of error handling, so use GFP_NOIO instead of
3512 * GFP_KERNEL.
3513 */
3514 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3515 if (!reset_device_cmd) {
3516 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3517 return -ENOMEM;
3518 }
3519
3520 /* Attempt to submit the Reset Device command to the command ring */
3521 spin_lock_irqsave(&xhci->lock, flags);
3522
3523 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3524 if (ret) {
3525 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3526 spin_unlock_irqrestore(&xhci->lock, flags);
3527 goto command_cleanup;
3528 }
3529 xhci_ring_cmd_db(xhci);
3530 spin_unlock_irqrestore(&xhci->lock, flags);
3531
3532 /* Wait for the Reset Device command to finish */
3533 wait_for_completion(reset_device_cmd->completion);
3534
3535 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3536 * unless we tried to reset a slot ID that wasn't enabled,
3537 * or the device wasn't in the addressed or configured state.
3538 */
3539 ret = reset_device_cmd->status;
3540 switch (ret) {
3541 case COMP_CMD_ABORT:
3542 case COMP_CMD_STOP:
3543 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3544 ret = -ETIME;
3545 goto command_cleanup;
3546 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3547 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3548 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3549 slot_id,
3550 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3551 xhci_dbg(xhci, "Not freeing device rings.\n");
3552 /* Don't treat this as an error. May change my mind later. */
3553 ret = 0;
3554 goto command_cleanup;
3555 case COMP_SUCCESS:
3556 xhci_dbg(xhci, "Successful reset device command.\n");
3557 break;
3558 default:
3559 if (xhci_is_vendor_info_code(xhci, ret))
3560 break;
3561 xhci_warn(xhci, "Unknown completion code %u for "
3562 "reset device command.\n", ret);
3563 ret = -EINVAL;
3564 goto command_cleanup;
3565 }
3566
3567 /* Free up host controller endpoint resources */
3568 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3569 spin_lock_irqsave(&xhci->lock, flags);
3570 /* Don't delete the default control endpoint resources */
3571 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3572 spin_unlock_irqrestore(&xhci->lock, flags);
3573 }
3574
3575 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3576 last_freed_endpoint = 1;
3577 for (i = 1; i < 31; ++i) {
3578 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3579
3580 if (ep->ep_state & EP_HAS_STREAMS) {
3581 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3582 xhci_get_endpoint_address(i));
3583 xhci_free_stream_info(xhci, ep->stream_info);
3584 ep->stream_info = NULL;
3585 ep->ep_state &= ~EP_HAS_STREAMS;
3586 }
3587
3588 if (ep->ring) {
3589 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3590 last_freed_endpoint = i;
3591 }
3592 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3593 xhci_drop_ep_from_interval_table(xhci,
3594 &virt_dev->eps[i].bw_info,
3595 virt_dev->bw_table,
3596 udev,
3597 &virt_dev->eps[i],
3598 virt_dev->tt_info);
3599 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3600 }
3601 /* If necessary, update the number of active TTs on this root port */
3602 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3603
3604 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3605 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3606 ret = 0;
3607
3608 command_cleanup:
3609 xhci_free_command(xhci, reset_device_cmd);
3610 return ret;
3611 }
3612
3613 /*
3614 * At this point, the struct usb_device is about to go away, the device has
3615 * disconnected, and all traffic has been stopped and the endpoints have been
3616 * disabled. Free any HC data structures associated with that device.
3617 */
3618 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3619 {
3620 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3621 struct xhci_virt_device *virt_dev;
3622 unsigned long flags;
3623 u32 state;
3624 int i, ret;
3625 struct xhci_command *command;
3626
3627 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3628 if (!command)
3629 return;
3630
3631 #ifndef CONFIG_USB_DEFAULT_PERSIST
3632 /*
3633 * We called pm_runtime_get_noresume when the device was attached.
3634 * Decrement the counter here to allow controller to runtime suspend
3635 * if no devices remain.
3636 */
3637 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3638 pm_runtime_put_noidle(hcd->self.controller);
3639 #endif
3640
3641 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3642 /* If the host is halted due to driver unload, we still need to free the
3643 * device.
3644 */
3645 if (ret <= 0 && ret != -ENODEV) {
3646 kfree(command);
3647 return;
3648 }
3649
3650 virt_dev = xhci->devs[udev->slot_id];
3651
3652 /* Stop any wayward timer functions (which may grab the lock) */
3653 for (i = 0; i < 31; ++i) {
3654 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3655 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3656 }
3657
3658 spin_lock_irqsave(&xhci->lock, flags);
3659 /* Don't disable the slot if the host controller is dead. */
3660 state = readl(&xhci->op_regs->status);
3661 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3662 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3663 xhci_free_virt_device(xhci, udev->slot_id);
3664 spin_unlock_irqrestore(&xhci->lock, flags);
3665 kfree(command);
3666 return;
3667 }
3668
3669 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3670 udev->slot_id)) {
3671 spin_unlock_irqrestore(&xhci->lock, flags);
3672 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3673 return;
3674 }
3675 xhci_ring_cmd_db(xhci);
3676 spin_unlock_irqrestore(&xhci->lock, flags);
3677
3678 /*
3679 * Event command completion handler will free any data structures
3680 * associated with the slot. XXX Can free sleep?
3681 */
3682 }
3683
3684 /*
3685 * Checks if we have enough host controller resources for the default control
3686 * endpoint.
3687 *
3688 * Must be called with xhci->lock held.
3689 */
3690 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3691 {
3692 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3693 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3694 "Not enough ep ctxs: "
3695 "%u active, need to add 1, limit is %u.",
3696 xhci->num_active_eps, xhci->limit_active_eps);
3697 return -ENOMEM;
3698 }
3699 xhci->num_active_eps += 1;
3700 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3701 "Adding 1 ep ctx, %u now active.",
3702 xhci->num_active_eps);
3703 return 0;
3704 }
3705
3706
3707 /*
3708 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3709 * timed out, or allocating memory failed. Returns 1 on success.
3710 */
3711 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3712 {
3713 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3714 unsigned long flags;
3715 int ret, slot_id;
3716 struct xhci_command *command;
3717
3718 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3719 if (!command)
3720 return 0;
3721
3722 /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3723 mutex_lock(&xhci->mutex);
3724 spin_lock_irqsave(&xhci->lock, flags);
3725 command->completion = &xhci->addr_dev;
3726 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3727 if (ret) {
3728 spin_unlock_irqrestore(&xhci->lock, flags);
3729 mutex_unlock(&xhci->mutex);
3730 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3731 kfree(command);
3732 return 0;
3733 }
3734 xhci_ring_cmd_db(xhci);
3735 spin_unlock_irqrestore(&xhci->lock, flags);
3736
3737 wait_for_completion(command->completion);
3738 slot_id = xhci->slot_id;
3739 mutex_unlock(&xhci->mutex);
3740
3741 if (!slot_id || command->status != COMP_SUCCESS) {
3742 xhci_err(xhci, "Error while assigning device slot ID\n");
3743 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3744 HCS_MAX_SLOTS(
3745 readl(&xhci->cap_regs->hcs_params1)));
3746 kfree(command);
3747 return 0;
3748 }
3749
3750 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3751 spin_lock_irqsave(&xhci->lock, flags);
3752 ret = xhci_reserve_host_control_ep_resources(xhci);
3753 if (ret) {
3754 spin_unlock_irqrestore(&xhci->lock, flags);
3755 xhci_warn(xhci, "Not enough host resources, "
3756 "active endpoint contexts = %u\n",
3757 xhci->num_active_eps);
3758 goto disable_slot;
3759 }
3760 spin_unlock_irqrestore(&xhci->lock, flags);
3761 }
3762 /* Use GFP_NOIO, since this function can be called from
3763 * xhci_discover_or_reset_device(), which may be called as part of
3764 * mass storage driver error handling.
3765 */
3766 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3767 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3768 goto disable_slot;
3769 }
3770 udev->slot_id = slot_id;
3771
3772 #ifndef CONFIG_USB_DEFAULT_PERSIST
3773 /*
3774 * If resetting upon resume, we can't put the controller into runtime
3775 * suspend if there is a device attached.
3776 */
3777 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3778 pm_runtime_get_noresume(hcd->self.controller);
3779 #endif
3780
3781
3782 kfree(command);
3783 /* Is this a LS or FS device under a HS hub? */
3784 /* Hub or peripherial? */
3785 return 1;
3786
3787 disable_slot:
3788 /* Disable slot, if we can do it without mem alloc */
3789 spin_lock_irqsave(&xhci->lock, flags);
3790 command->completion = NULL;
3791 command->status = 0;
3792 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3793 udev->slot_id))
3794 xhci_ring_cmd_db(xhci);
3795 spin_unlock_irqrestore(&xhci->lock, flags);
3796 return 0;
3797 }
3798
3799 /*
3800 * Issue an Address Device command and optionally send a corresponding
3801 * SetAddress request to the device.
3802 */
3803 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3804 enum xhci_setup_dev setup)
3805 {
3806 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3807 unsigned long flags;
3808 struct xhci_virt_device *virt_dev;
3809 int ret = 0;
3810 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3811 struct xhci_slot_ctx *slot_ctx;
3812 struct xhci_input_control_ctx *ctrl_ctx;
3813 u64 temp_64;
3814 struct xhci_command *command = NULL;
3815
3816 mutex_lock(&xhci->mutex);
3817
3818 if (xhci->xhc_state) /* dying or halted */
3819 goto out;
3820
3821 if (!udev->slot_id) {
3822 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3823 "Bad Slot ID %d", udev->slot_id);
3824 ret = -EINVAL;
3825 goto out;
3826 }
3827
3828 virt_dev = xhci->devs[udev->slot_id];
3829
3830 if (WARN_ON(!virt_dev)) {
3831 /*
3832 * In plug/unplug torture test with an NEC controller,
3833 * a zero-dereference was observed once due to virt_dev = 0.
3834 * Print useful debug rather than crash if it is observed again!
3835 */
3836 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3837 udev->slot_id);
3838 ret = -EINVAL;
3839 goto out;
3840 }
3841
3842 if (setup == SETUP_CONTEXT_ONLY) {
3843 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3844 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3845 SLOT_STATE_DEFAULT) {
3846 xhci_dbg(xhci, "Slot already in default state\n");
3847 goto out;
3848 }
3849 }
3850
3851 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3852 if (!command) {
3853 ret = -ENOMEM;
3854 goto out;
3855 }
3856
3857 command->in_ctx = virt_dev->in_ctx;
3858 command->completion = &xhci->addr_dev;
3859
3860 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3861 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3862 if (!ctrl_ctx) {
3863 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3864 __func__);
3865 ret = -EINVAL;
3866 goto out;
3867 }
3868 /*
3869 * If this is the first Set Address since device plug-in or
3870 * virt_device realloaction after a resume with an xHCI power loss,
3871 * then set up the slot context.
3872 */
3873 if (!slot_ctx->dev_info)
3874 xhci_setup_addressable_virt_dev(xhci, udev);
3875 /* Otherwise, update the control endpoint ring enqueue pointer. */
3876 else
3877 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3878 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3879 ctrl_ctx->drop_flags = 0;
3880
3881 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3882 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3883 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3884 le32_to_cpu(slot_ctx->dev_info) >> 27);
3885
3886 spin_lock_irqsave(&xhci->lock, flags);
3887 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3888 udev->slot_id, setup);
3889 if (ret) {
3890 spin_unlock_irqrestore(&xhci->lock, flags);
3891 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3892 "FIXME: allocate a command ring segment");
3893 goto out;
3894 }
3895 xhci_ring_cmd_db(xhci);
3896 spin_unlock_irqrestore(&xhci->lock, flags);
3897
3898 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3899 wait_for_completion(command->completion);
3900
3901 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3902 * the SetAddress() "recovery interval" required by USB and aborting the
3903 * command on a timeout.
3904 */
3905 switch (command->status) {
3906 case COMP_CMD_ABORT:
3907 case COMP_CMD_STOP:
3908 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3909 ret = -ETIME;
3910 break;
3911 case COMP_CTX_STATE:
3912 case COMP_EBADSLT:
3913 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3914 act, udev->slot_id);
3915 ret = -EINVAL;
3916 break;
3917 case COMP_TX_ERR:
3918 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3919 ret = -EPROTO;
3920 break;
3921 case COMP_DEV_ERR:
3922 dev_warn(&udev->dev,
3923 "ERROR: Incompatible device for setup %s command\n", act);
3924 ret = -ENODEV;
3925 break;
3926 case COMP_SUCCESS:
3927 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3928 "Successful setup %s command", act);
3929 break;
3930 default:
3931 xhci_err(xhci,
3932 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3933 act, command->status);
3934 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3935 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3936 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3937 ret = -EINVAL;
3938 break;
3939 }
3940 if (ret)
3941 goto out;
3942 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3943 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3944 "Op regs DCBAA ptr = %#016llx", temp_64);
3945 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3946 "Slot ID %d dcbaa entry @%p = %#016llx",
3947 udev->slot_id,
3948 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3949 (unsigned long long)
3950 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3951 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3952 "Output Context DMA address = %#08llx",
3953 (unsigned long long)virt_dev->out_ctx->dma);
3954 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3955 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3956 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3957 le32_to_cpu(slot_ctx->dev_info) >> 27);
3958 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3959 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3960 /*
3961 * USB core uses address 1 for the roothubs, so we add one to the
3962 * address given back to us by the HC.
3963 */
3964 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3965 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3966 le32_to_cpu(slot_ctx->dev_info) >> 27);
3967 /* Zero the input context control for later use */
3968 ctrl_ctx->add_flags = 0;
3969 ctrl_ctx->drop_flags = 0;
3970
3971 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3972 "Internal device address = %d",
3973 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3974 out:
3975 mutex_unlock(&xhci->mutex);
3976 kfree(command);
3977 return ret;
3978 }
3979
3980 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3981 {
3982 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3983 }
3984
3985 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3986 {
3987 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3988 }
3989
3990 /*
3991 * Transfer the port index into real index in the HW port status
3992 * registers. Caculate offset between the port's PORTSC register
3993 * and port status base. Divide the number of per port register
3994 * to get the real index. The raw port number bases 1.
3995 */
3996 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3997 {
3998 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3999 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4000 __le32 __iomem *addr;
4001 int raw_port;
4002
4003 if (hcd->speed < HCD_USB3)
4004 addr = xhci->usb2_ports[port1 - 1];
4005 else
4006 addr = xhci->usb3_ports[port1 - 1];
4007
4008 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4009 return raw_port;
4010 }
4011
4012 /*
4013 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4014 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4015 */
4016 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4017 struct usb_device *udev, u16 max_exit_latency)
4018 {
4019 struct xhci_virt_device *virt_dev;
4020 struct xhci_command *command;
4021 struct xhci_input_control_ctx *ctrl_ctx;
4022 struct xhci_slot_ctx *slot_ctx;
4023 unsigned long flags;
4024 int ret;
4025
4026 spin_lock_irqsave(&xhci->lock, flags);
4027
4028 virt_dev = xhci->devs[udev->slot_id];
4029
4030 /*
4031 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4032 * xHC was re-initialized. Exit latency will be set later after
4033 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4034 */
4035
4036 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4037 spin_unlock_irqrestore(&xhci->lock, flags);
4038 return 0;
4039 }
4040
4041 /* Attempt to issue an Evaluate Context command to change the MEL. */
4042 command = xhci->lpm_command;
4043 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4044 if (!ctrl_ctx) {
4045 spin_unlock_irqrestore(&xhci->lock, flags);
4046 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4047 __func__);
4048 return -ENOMEM;
4049 }
4050
4051 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4052 spin_unlock_irqrestore(&xhci->lock, flags);
4053
4054 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4055 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4056 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4057 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4058 slot_ctx->dev_state = 0;
4059
4060 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4061 "Set up evaluate context for LPM MEL change.");
4062 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4063 xhci_dbg_ctx(xhci, command->in_ctx, 0);
4064
4065 /* Issue and wait for the evaluate context command. */
4066 ret = xhci_configure_endpoint(xhci, udev, command,
4067 true, true);
4068 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4069 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4070
4071 if (!ret) {
4072 spin_lock_irqsave(&xhci->lock, flags);
4073 virt_dev->current_mel = max_exit_latency;
4074 spin_unlock_irqrestore(&xhci->lock, flags);
4075 }
4076 return ret;
4077 }
4078
4079 #ifdef CONFIG_PM
4080
4081 /* BESL to HIRD Encoding array for USB2 LPM */
4082 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4083 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4084
4085 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4086 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4087 struct usb_device *udev)
4088 {
4089 int u2del, besl, besl_host;
4090 int besl_device = 0;
4091 u32 field;
4092
4093 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4094 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4095
4096 if (field & USB_BESL_SUPPORT) {
4097 for (besl_host = 0; besl_host < 16; besl_host++) {
4098 if (xhci_besl_encoding[besl_host] >= u2del)
4099 break;
4100 }
4101 /* Use baseline BESL value as default */
4102 if (field & USB_BESL_BASELINE_VALID)
4103 besl_device = USB_GET_BESL_BASELINE(field);
4104 else if (field & USB_BESL_DEEP_VALID)
4105 besl_device = USB_GET_BESL_DEEP(field);
4106 } else {
4107 if (u2del <= 50)
4108 besl_host = 0;
4109 else
4110 besl_host = (u2del - 51) / 75 + 1;
4111 }
4112
4113 besl = besl_host + besl_device;
4114 if (besl > 15)
4115 besl = 15;
4116
4117 return besl;
4118 }
4119
4120 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4121 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4122 {
4123 u32 field;
4124 int l1;
4125 int besld = 0;
4126 int hirdm = 0;
4127
4128 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4129
4130 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4131 l1 = udev->l1_params.timeout / 256;
4132
4133 /* device has preferred BESLD */
4134 if (field & USB_BESL_DEEP_VALID) {
4135 besld = USB_GET_BESL_DEEP(field);
4136 hirdm = 1;
4137 }
4138
4139 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4140 }
4141
4142 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4143 struct usb_device *udev, int enable)
4144 {
4145 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4146 __le32 __iomem **port_array;
4147 __le32 __iomem *pm_addr, *hlpm_addr;
4148 u32 pm_val, hlpm_val, field;
4149 unsigned int port_num;
4150 unsigned long flags;
4151 int hird, exit_latency;
4152 int ret;
4153
4154 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4155 !udev->lpm_capable)
4156 return -EPERM;
4157
4158 if (!udev->parent || udev->parent->parent ||
4159 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4160 return -EPERM;
4161
4162 if (udev->usb2_hw_lpm_capable != 1)
4163 return -EPERM;
4164
4165 spin_lock_irqsave(&xhci->lock, flags);
4166
4167 port_array = xhci->usb2_ports;
4168 port_num = udev->portnum - 1;
4169 pm_addr = port_array[port_num] + PORTPMSC;
4170 pm_val = readl(pm_addr);
4171 hlpm_addr = port_array[port_num] + PORTHLPMC;
4172 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4173
4174 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4175 enable ? "enable" : "disable", port_num + 1);
4176
4177 if (enable) {
4178 /* Host supports BESL timeout instead of HIRD */
4179 if (udev->usb2_hw_lpm_besl_capable) {
4180 /* if device doesn't have a preferred BESL value use a
4181 * default one which works with mixed HIRD and BESL
4182 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4183 */
4184 if ((field & USB_BESL_SUPPORT) &&
4185 (field & USB_BESL_BASELINE_VALID))
4186 hird = USB_GET_BESL_BASELINE(field);
4187 else
4188 hird = udev->l1_params.besl;
4189
4190 exit_latency = xhci_besl_encoding[hird];
4191 spin_unlock_irqrestore(&xhci->lock, flags);
4192
4193 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4194 * input context for link powermanagement evaluate
4195 * context commands. It is protected by hcd->bandwidth
4196 * mutex and is shared by all devices. We need to set
4197 * the max ext latency in USB 2 BESL LPM as well, so
4198 * use the same mutex and xhci_change_max_exit_latency()
4199 */
4200 mutex_lock(hcd->bandwidth_mutex);
4201 ret = xhci_change_max_exit_latency(xhci, udev,
4202 exit_latency);
4203 mutex_unlock(hcd->bandwidth_mutex);
4204
4205 if (ret < 0)
4206 return ret;
4207 spin_lock_irqsave(&xhci->lock, flags);
4208
4209 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4210 writel(hlpm_val, hlpm_addr);
4211 /* flush write */
4212 readl(hlpm_addr);
4213 } else {
4214 hird = xhci_calculate_hird_besl(xhci, udev);
4215 }
4216
4217 pm_val &= ~PORT_HIRD_MASK;
4218 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4219 writel(pm_val, pm_addr);
4220 pm_val = readl(pm_addr);
4221 pm_val |= PORT_HLE;
4222 writel(pm_val, pm_addr);
4223 /* flush write */
4224 readl(pm_addr);
4225 } else {
4226 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4227 writel(pm_val, pm_addr);
4228 /* flush write */
4229 readl(pm_addr);
4230 if (udev->usb2_hw_lpm_besl_capable) {
4231 spin_unlock_irqrestore(&xhci->lock, flags);
4232 mutex_lock(hcd->bandwidth_mutex);
4233 xhci_change_max_exit_latency(xhci, udev, 0);
4234 mutex_unlock(hcd->bandwidth_mutex);
4235 return 0;
4236 }
4237 }
4238
4239 spin_unlock_irqrestore(&xhci->lock, flags);
4240 return 0;
4241 }
4242
4243 /* check if a usb2 port supports a given extened capability protocol
4244 * only USB2 ports extended protocol capability values are cached.
4245 * Return 1 if capability is supported
4246 */
4247 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4248 unsigned capability)
4249 {
4250 u32 port_offset, port_count;
4251 int i;
4252
4253 for (i = 0; i < xhci->num_ext_caps; i++) {
4254 if (xhci->ext_caps[i] & capability) {
4255 /* port offsets starts at 1 */
4256 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4257 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4258 if (port >= port_offset &&
4259 port < port_offset + port_count)
4260 return 1;
4261 }
4262 }
4263 return 0;
4264 }
4265
4266 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4267 {
4268 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4269 int portnum = udev->portnum - 1;
4270
4271 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4272 !udev->lpm_capable)
4273 return 0;
4274
4275 /* we only support lpm for non-hub device connected to root hub yet */
4276 if (!udev->parent || udev->parent->parent ||
4277 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4278 return 0;
4279
4280 if (xhci->hw_lpm_support == 1 &&
4281 xhci_check_usb2_port_capability(
4282 xhci, portnum, XHCI_HLC)) {
4283 udev->usb2_hw_lpm_capable = 1;
4284 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4285 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4286 if (xhci_check_usb2_port_capability(xhci, portnum,
4287 XHCI_BLC))
4288 udev->usb2_hw_lpm_besl_capable = 1;
4289 }
4290
4291 return 0;
4292 }
4293
4294 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4295
4296 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4297 static unsigned long long xhci_service_interval_to_ns(
4298 struct usb_endpoint_descriptor *desc)
4299 {
4300 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4301 }
4302
4303 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4304 enum usb3_link_state state)
4305 {
4306 unsigned long long sel;
4307 unsigned long long pel;
4308 unsigned int max_sel_pel;
4309 char *state_name;
4310
4311 switch (state) {
4312 case USB3_LPM_U1:
4313 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4314 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4315 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4316 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4317 state_name = "U1";
4318 break;
4319 case USB3_LPM_U2:
4320 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4321 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4322 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4323 state_name = "U2";
4324 break;
4325 default:
4326 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4327 __func__);
4328 return USB3_LPM_DISABLED;
4329 }
4330
4331 if (sel <= max_sel_pel && pel <= max_sel_pel)
4332 return USB3_LPM_DEVICE_INITIATED;
4333
4334 if (sel > max_sel_pel)
4335 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4336 "due to long SEL %llu ms\n",
4337 state_name, sel);
4338 else
4339 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4340 "due to long PEL %llu ms\n",
4341 state_name, pel);
4342 return USB3_LPM_DISABLED;
4343 }
4344
4345 /* The U1 timeout should be the maximum of the following values:
4346 * - For control endpoints, U1 system exit latency (SEL) * 3
4347 * - For bulk endpoints, U1 SEL * 5
4348 * - For interrupt endpoints:
4349 * - Notification EPs, U1 SEL * 3
4350 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4351 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4352 */
4353 static unsigned long long xhci_calculate_intel_u1_timeout(
4354 struct usb_device *udev,
4355 struct usb_endpoint_descriptor *desc)
4356 {
4357 unsigned long long timeout_ns;
4358 int ep_type;
4359 int intr_type;
4360
4361 ep_type = usb_endpoint_type(desc);
4362 switch (ep_type) {
4363 case USB_ENDPOINT_XFER_CONTROL:
4364 timeout_ns = udev->u1_params.sel * 3;
4365 break;
4366 case USB_ENDPOINT_XFER_BULK:
4367 timeout_ns = udev->u1_params.sel * 5;
4368 break;
4369 case USB_ENDPOINT_XFER_INT:
4370 intr_type = usb_endpoint_interrupt_type(desc);
4371 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4372 timeout_ns = udev->u1_params.sel * 3;
4373 break;
4374 }
4375 /* Otherwise the calculation is the same as isoc eps */
4376 case USB_ENDPOINT_XFER_ISOC:
4377 timeout_ns = xhci_service_interval_to_ns(desc);
4378 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4379 if (timeout_ns < udev->u1_params.sel * 2)
4380 timeout_ns = udev->u1_params.sel * 2;
4381 break;
4382 default:
4383 return 0;
4384 }
4385
4386 return timeout_ns;
4387 }
4388
4389 /* Returns the hub-encoded U1 timeout value. */
4390 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4391 struct usb_device *udev,
4392 struct usb_endpoint_descriptor *desc)
4393 {
4394 unsigned long long timeout_ns;
4395
4396 if (xhci->quirks & XHCI_INTEL_HOST)
4397 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4398 else
4399 timeout_ns = udev->u1_params.sel;
4400
4401 /* The U1 timeout is encoded in 1us intervals.
4402 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4403 */
4404 if (timeout_ns == USB3_LPM_DISABLED)
4405 timeout_ns = 1;
4406 else
4407 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4408
4409 /* If the necessary timeout value is bigger than what we can set in the
4410 * USB 3.0 hub, we have to disable hub-initiated U1.
4411 */
4412 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4413 return timeout_ns;
4414 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4415 "due to long timeout %llu ms\n", timeout_ns);
4416 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4417 }
4418
4419 /* The U2 timeout should be the maximum of:
4420 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4421 * - largest bInterval of any active periodic endpoint (to avoid going
4422 * into lower power link states between intervals).
4423 * - the U2 Exit Latency of the device
4424 */
4425 static unsigned long long xhci_calculate_intel_u2_timeout(
4426 struct usb_device *udev,
4427 struct usb_endpoint_descriptor *desc)
4428 {
4429 unsigned long long timeout_ns;
4430 unsigned long long u2_del_ns;
4431
4432 timeout_ns = 10 * 1000 * 1000;
4433
4434 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4435 (xhci_service_interval_to_ns(desc) > timeout_ns))
4436 timeout_ns = xhci_service_interval_to_ns(desc);
4437
4438 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4439 if (u2_del_ns > timeout_ns)
4440 timeout_ns = u2_del_ns;
4441
4442 return timeout_ns;
4443 }
4444
4445 /* Returns the hub-encoded U2 timeout value. */
4446 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4447 struct usb_device *udev,
4448 struct usb_endpoint_descriptor *desc)
4449 {
4450 unsigned long long timeout_ns;
4451
4452 if (xhci->quirks & XHCI_INTEL_HOST)
4453 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4454 else
4455 timeout_ns = udev->u2_params.sel;
4456
4457 /* The U2 timeout is encoded in 256us intervals */
4458 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4459 /* If the necessary timeout value is bigger than what we can set in the
4460 * USB 3.0 hub, we have to disable hub-initiated U2.
4461 */
4462 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4463 return timeout_ns;
4464 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4465 "due to long timeout %llu ms\n", timeout_ns);
4466 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4467 }
4468
4469 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4470 struct usb_device *udev,
4471 struct usb_endpoint_descriptor *desc,
4472 enum usb3_link_state state,
4473 u16 *timeout)
4474 {
4475 if (state == USB3_LPM_U1)
4476 return xhci_calculate_u1_timeout(xhci, udev, desc);
4477 else if (state == USB3_LPM_U2)
4478 return xhci_calculate_u2_timeout(xhci, udev, desc);
4479
4480 return USB3_LPM_DISABLED;
4481 }
4482
4483 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4484 struct usb_device *udev,
4485 struct usb_endpoint_descriptor *desc,
4486 enum usb3_link_state state,
4487 u16 *timeout)
4488 {
4489 u16 alt_timeout;
4490
4491 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4492 desc, state, timeout);
4493
4494 /* If we found we can't enable hub-initiated LPM, or
4495 * the U1 or U2 exit latency was too high to allow
4496 * device-initiated LPM as well, just stop searching.
4497 */
4498 if (alt_timeout == USB3_LPM_DISABLED ||
4499 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4500 *timeout = alt_timeout;
4501 return -E2BIG;
4502 }
4503 if (alt_timeout > *timeout)
4504 *timeout = alt_timeout;
4505 return 0;
4506 }
4507
4508 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4509 struct usb_device *udev,
4510 struct usb_host_interface *alt,
4511 enum usb3_link_state state,
4512 u16 *timeout)
4513 {
4514 int j;
4515
4516 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4517 if (xhci_update_timeout_for_endpoint(xhci, udev,
4518 &alt->endpoint[j].desc, state, timeout))
4519 return -E2BIG;
4520 continue;
4521 }
4522 return 0;
4523 }
4524
4525 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4526 enum usb3_link_state state)
4527 {
4528 struct usb_device *parent;
4529 unsigned int num_hubs;
4530
4531 if (state == USB3_LPM_U2)
4532 return 0;
4533
4534 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4535 for (parent = udev->parent, num_hubs = 0; parent->parent;
4536 parent = parent->parent)
4537 num_hubs++;
4538
4539 if (num_hubs < 2)
4540 return 0;
4541
4542 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4543 " below second-tier hub.\n");
4544 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4545 "to decrease power consumption.\n");
4546 return -E2BIG;
4547 }
4548
4549 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4550 struct usb_device *udev,
4551 enum usb3_link_state state)
4552 {
4553 if (xhci->quirks & XHCI_INTEL_HOST)
4554 return xhci_check_intel_tier_policy(udev, state);
4555 else
4556 return 0;
4557 }
4558
4559 /* Returns the U1 or U2 timeout that should be enabled.
4560 * If the tier check or timeout setting functions return with a non-zero exit
4561 * code, that means the timeout value has been finalized and we shouldn't look
4562 * at any more endpoints.
4563 */
4564 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4565 struct usb_device *udev, enum usb3_link_state state)
4566 {
4567 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4568 struct usb_host_config *config;
4569 char *state_name;
4570 int i;
4571 u16 timeout = USB3_LPM_DISABLED;
4572
4573 if (state == USB3_LPM_U1)
4574 state_name = "U1";
4575 else if (state == USB3_LPM_U2)
4576 state_name = "U2";
4577 else {
4578 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4579 state);
4580 return timeout;
4581 }
4582
4583 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4584 return timeout;
4585
4586 /* Gather some information about the currently installed configuration
4587 * and alternate interface settings.
4588 */
4589 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4590 state, &timeout))
4591 return timeout;
4592
4593 config = udev->actconfig;
4594 if (!config)
4595 return timeout;
4596
4597 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4598 struct usb_driver *driver;
4599 struct usb_interface *intf = config->interface[i];
4600
4601 if (!intf)
4602 continue;
4603
4604 /* Check if any currently bound drivers want hub-initiated LPM
4605 * disabled.
4606 */
4607 if (intf->dev.driver) {
4608 driver = to_usb_driver(intf->dev.driver);
4609 if (driver && driver->disable_hub_initiated_lpm) {
4610 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4611 "at request of driver %s\n",
4612 state_name, driver->name);
4613 return xhci_get_timeout_no_hub_lpm(udev, state);
4614 }
4615 }
4616
4617 /* Not sure how this could happen... */
4618 if (!intf->cur_altsetting)
4619 continue;
4620
4621 if (xhci_update_timeout_for_interface(xhci, udev,
4622 intf->cur_altsetting,
4623 state, &timeout))
4624 return timeout;
4625 }
4626 return timeout;
4627 }
4628
4629 static int calculate_max_exit_latency(struct usb_device *udev,
4630 enum usb3_link_state state_changed,
4631 u16 hub_encoded_timeout)
4632 {
4633 unsigned long long u1_mel_us = 0;
4634 unsigned long long u2_mel_us = 0;
4635 unsigned long long mel_us = 0;
4636 bool disabling_u1;
4637 bool disabling_u2;
4638 bool enabling_u1;
4639 bool enabling_u2;
4640
4641 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4642 hub_encoded_timeout == USB3_LPM_DISABLED);
4643 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4644 hub_encoded_timeout == USB3_LPM_DISABLED);
4645
4646 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4647 hub_encoded_timeout != USB3_LPM_DISABLED);
4648 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4649 hub_encoded_timeout != USB3_LPM_DISABLED);
4650
4651 /* If U1 was already enabled and we're not disabling it,
4652 * or we're going to enable U1, account for the U1 max exit latency.
4653 */
4654 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4655 enabling_u1)
4656 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4657 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4658 enabling_u2)
4659 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4660
4661 if (u1_mel_us > u2_mel_us)
4662 mel_us = u1_mel_us;
4663 else
4664 mel_us = u2_mel_us;
4665 /* xHCI host controller max exit latency field is only 16 bits wide. */
4666 if (mel_us > MAX_EXIT) {
4667 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4668 "is too big.\n", mel_us);
4669 return -E2BIG;
4670 }
4671 return mel_us;
4672 }
4673
4674 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4675 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4676 struct usb_device *udev, enum usb3_link_state state)
4677 {
4678 struct xhci_hcd *xhci;
4679 u16 hub_encoded_timeout;
4680 int mel;
4681 int ret;
4682
4683 xhci = hcd_to_xhci(hcd);
4684 /* The LPM timeout values are pretty host-controller specific, so don't
4685 * enable hub-initiated timeouts unless the vendor has provided
4686 * information about their timeout algorithm.
4687 */
4688 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4689 !xhci->devs[udev->slot_id])
4690 return USB3_LPM_DISABLED;
4691
4692 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4693 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4694 if (mel < 0) {
4695 /* Max Exit Latency is too big, disable LPM. */
4696 hub_encoded_timeout = USB3_LPM_DISABLED;
4697 mel = 0;
4698 }
4699
4700 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4701 if (ret)
4702 return ret;
4703 return hub_encoded_timeout;
4704 }
4705
4706 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4707 struct usb_device *udev, enum usb3_link_state state)
4708 {
4709 struct xhci_hcd *xhci;
4710 u16 mel;
4711
4712 xhci = hcd_to_xhci(hcd);
4713 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4714 !xhci->devs[udev->slot_id])
4715 return 0;
4716
4717 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4718 return xhci_change_max_exit_latency(xhci, udev, mel);
4719 }
4720 #else /* CONFIG_PM */
4721
4722 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4723 struct usb_device *udev, int enable)
4724 {
4725 return 0;
4726 }
4727
4728 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4729 {
4730 return 0;
4731 }
4732
4733 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4734 struct usb_device *udev, enum usb3_link_state state)
4735 {
4736 return USB3_LPM_DISABLED;
4737 }
4738
4739 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4740 struct usb_device *udev, enum usb3_link_state state)
4741 {
4742 return 0;
4743 }
4744 #endif /* CONFIG_PM */
4745
4746 /*-------------------------------------------------------------------------*/
4747
4748 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4749 * internal data structures for the device.
4750 */
4751 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4752 struct usb_tt *tt, gfp_t mem_flags)
4753 {
4754 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4755 struct xhci_virt_device *vdev;
4756 struct xhci_command *config_cmd;
4757 struct xhci_input_control_ctx *ctrl_ctx;
4758 struct xhci_slot_ctx *slot_ctx;
4759 unsigned long flags;
4760 unsigned think_time;
4761 int ret;
4762
4763 /* Ignore root hubs */
4764 if (!hdev->parent)
4765 return 0;
4766
4767 vdev = xhci->devs[hdev->slot_id];
4768 if (!vdev) {
4769 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4770 return -EINVAL;
4771 }
4772 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4773 if (!config_cmd) {
4774 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4775 return -ENOMEM;
4776 }
4777 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4778 if (!ctrl_ctx) {
4779 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4780 __func__);
4781 xhci_free_command(xhci, config_cmd);
4782 return -ENOMEM;
4783 }
4784
4785 spin_lock_irqsave(&xhci->lock, flags);
4786 if (hdev->speed == USB_SPEED_HIGH &&
4787 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4788 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4789 xhci_free_command(xhci, config_cmd);
4790 spin_unlock_irqrestore(&xhci->lock, flags);
4791 return -ENOMEM;
4792 }
4793
4794 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4795 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4796 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4797 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4798 /*
4799 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4800 * but it may be already set to 1 when setup an xHCI virtual
4801 * device, so clear it anyway.
4802 */
4803 if (tt->multi)
4804 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4805 else if (hdev->speed == USB_SPEED_FULL)
4806 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4807
4808 if (xhci->hci_version > 0x95) {
4809 xhci_dbg(xhci, "xHCI version %x needs hub "
4810 "TT think time and number of ports\n",
4811 (unsigned int) xhci->hci_version);
4812 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4813 /* Set TT think time - convert from ns to FS bit times.
4814 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4815 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4816 *
4817 * xHCI 1.0: this field shall be 0 if the device is not a
4818 * High-spped hub.
4819 */
4820 think_time = tt->think_time;
4821 if (think_time != 0)
4822 think_time = (think_time / 666) - 1;
4823 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4824 slot_ctx->tt_info |=
4825 cpu_to_le32(TT_THINK_TIME(think_time));
4826 } else {
4827 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4828 "TT think time or number of ports\n",
4829 (unsigned int) xhci->hci_version);
4830 }
4831 slot_ctx->dev_state = 0;
4832 spin_unlock_irqrestore(&xhci->lock, flags);
4833
4834 xhci_dbg(xhci, "Set up %s for hub device.\n",
4835 (xhci->hci_version > 0x95) ?
4836 "configure endpoint" : "evaluate context");
4837 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4838 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4839
4840 /* Issue and wait for the configure endpoint or
4841 * evaluate context command.
4842 */
4843 if (xhci->hci_version > 0x95)
4844 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4845 false, false);
4846 else
4847 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4848 true, false);
4849
4850 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4851 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4852
4853 xhci_free_command(xhci, config_cmd);
4854 return ret;
4855 }
4856
4857 int xhci_get_frame(struct usb_hcd *hcd)
4858 {
4859 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4860 /* EHCI mods by the periodic size. Why? */
4861 return readl(&xhci->run_regs->microframe_index) >> 3;
4862 }
4863
4864 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4865 {
4866 struct xhci_hcd *xhci;
4867 struct device *dev = hcd->self.controller;
4868 int retval;
4869
4870 /* Accept arbitrarily long scatter-gather lists */
4871 hcd->self.sg_tablesize = ~0;
4872
4873 /* support to build packet from discontinuous buffers */
4874 hcd->self.no_sg_constraint = 1;
4875
4876 /* XHCI controllers don't stop the ep queue on short packets :| */
4877 hcd->self.no_stop_on_short = 1;
4878
4879 xhci = hcd_to_xhci(hcd);
4880
4881 if (usb_hcd_is_primary_hcd(hcd)) {
4882 xhci->main_hcd = hcd;
4883 /* Mark the first roothub as being USB 2.0.
4884 * The xHCI driver will register the USB 3.0 roothub.
4885 */
4886 hcd->speed = HCD_USB2;
4887 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4888 /*
4889 * USB 2.0 roothub under xHCI has an integrated TT,
4890 * (rate matching hub) as opposed to having an OHCI/UHCI
4891 * companion controller.
4892 */
4893 hcd->has_tt = 1;
4894 } else {
4895 if (xhci->sbrn == 0x31) {
4896 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4897 hcd->speed = HCD_USB31;
4898 }
4899 /* xHCI private pointer was set in xhci_pci_probe for the second
4900 * registered roothub.
4901 */
4902 return 0;
4903 }
4904
4905 mutex_init(&xhci->mutex);
4906 xhci->cap_regs = hcd->regs;
4907 xhci->op_regs = hcd->regs +
4908 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4909 xhci->run_regs = hcd->regs +
4910 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4911 /* Cache read-only capability registers */
4912 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4913 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4914 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4915 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4916 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4917 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4918 if (xhci->hci_version > 0x100)
4919 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4920 xhci_print_registers(xhci);
4921
4922 xhci->quirks = quirks;
4923
4924 get_quirks(dev, xhci);
4925
4926 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4927 * success event after a short transfer. This quirk will ignore such
4928 * spurious event.
4929 */
4930 if (xhci->hci_version > 0x96)
4931 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4932
4933 /* Make sure the HC is halted. */
4934 retval = xhci_halt(xhci);
4935 if (retval)
4936 return retval;
4937
4938 xhci_dbg(xhci, "Resetting HCD\n");
4939 /* Reset the internal HC memory state and registers. */
4940 retval = xhci_reset(xhci);
4941 if (retval)
4942 return retval;
4943 xhci_dbg(xhci, "Reset complete\n");
4944
4945 /* Set dma_mask and coherent_dma_mask to 64-bits,
4946 * if xHC supports 64-bit addressing */
4947 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4948 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4949 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4950 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4951 } else {
4952 /*
4953 * This is to avoid error in cases where a 32-bit USB
4954 * controller is used on a 64-bit capable system.
4955 */
4956 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4957 if (retval)
4958 return retval;
4959 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4960 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4961 }
4962
4963 xhci_dbg(xhci, "Calling HCD init\n");
4964 /* Initialize HCD and host controller data structures. */
4965 retval = xhci_init(hcd);
4966 if (retval)
4967 return retval;
4968 xhci_dbg(xhci, "Called HCD init\n");
4969
4970 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4971 xhci->hcc_params, xhci->hci_version, xhci->quirks);
4972
4973 return 0;
4974 }
4975 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4976
4977 static const struct hc_driver xhci_hc_driver = {
4978 .description = "xhci-hcd",
4979 .product_desc = "xHCI Host Controller",
4980 .hcd_priv_size = sizeof(struct xhci_hcd),
4981
4982 /*
4983 * generic hardware linkage
4984 */
4985 .irq = xhci_irq,
4986 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4987
4988 /*
4989 * basic lifecycle operations
4990 */
4991 .reset = NULL, /* set in xhci_init_driver() */
4992 .start = xhci_run,
4993 .stop = xhci_stop,
4994 .shutdown = xhci_shutdown,
4995
4996 /*
4997 * managing i/o requests and associated device resources
4998 */
4999 .urb_enqueue = xhci_urb_enqueue,
5000 .urb_dequeue = xhci_urb_dequeue,
5001 .alloc_dev = xhci_alloc_dev,
5002 .free_dev = xhci_free_dev,
5003 .alloc_streams = xhci_alloc_streams,
5004 .free_streams = xhci_free_streams,
5005 .add_endpoint = xhci_add_endpoint,
5006 .drop_endpoint = xhci_drop_endpoint,
5007 .endpoint_reset = xhci_endpoint_reset,
5008 .check_bandwidth = xhci_check_bandwidth,
5009 .reset_bandwidth = xhci_reset_bandwidth,
5010 .address_device = xhci_address_device,
5011 .enable_device = xhci_enable_device,
5012 .update_hub_device = xhci_update_hub_device,
5013 .reset_device = xhci_discover_or_reset_device,
5014
5015 /*
5016 * scheduling support
5017 */
5018 .get_frame_number = xhci_get_frame,
5019
5020 /*
5021 * root hub support
5022 */
5023 .hub_control = xhci_hub_control,
5024 .hub_status_data = xhci_hub_status_data,
5025 .bus_suspend = xhci_bus_suspend,
5026 .bus_resume = xhci_bus_resume,
5027
5028 /*
5029 * call back when device connected and addressed
5030 */
5031 .update_device = xhci_update_device,
5032 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5033 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5034 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5035 .find_raw_port_number = xhci_find_raw_port_number,
5036 };
5037
5038 void xhci_init_driver(struct hc_driver *drv,
5039 const struct xhci_driver_overrides *over)
5040 {
5041 BUG_ON(!over);
5042
5043 /* Copy the generic table to drv then apply the overrides */
5044 *drv = xhci_hc_driver;
5045
5046 if (over) {
5047 drv->hcd_priv_size += over->extra_priv_size;
5048 if (over->reset)
5049 drv->reset = over->reset;
5050 if (over->start)
5051 drv->start = over->start;
5052 }
5053 }
5054 EXPORT_SYMBOL_GPL(xhci_init_driver);
5055
5056 MODULE_DESCRIPTION(DRIVER_DESC);
5057 MODULE_AUTHOR(DRIVER_AUTHOR);
5058 MODULE_LICENSE("GPL");
5059
5060 static int __init xhci_hcd_init(void)
5061 {
5062 /*
5063 * Check the compiler generated sizes of structures that must be laid
5064 * out in specific ways for hardware access.
5065 */
5066 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5067 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5068 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5069 /* xhci_device_control has eight fields, and also
5070 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5071 */
5072 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5073 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5074 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5075 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5076 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5077 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5078 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5079
5080 if (usb_disabled())
5081 return -ENODEV;
5082
5083 return 0;
5084 }
5085
5086 /*
5087 * If an init function is provided, an exit function must also be provided
5088 * to allow module unload.
5089 */
5090 static void __exit xhci_hcd_fini(void) { }
5091
5092 module_init(xhci_hcd_init);
5093 module_exit(xhci_hcd_fini);
This page took 0.224542 seconds and 5 git commands to generate.