xhci: add the meaningful IRQ description if it is empty
[deliverable/linux.git] / drivers / usb / host / xhci.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42
43 static unsigned int quirks;
44 module_param(quirks, uint, S_IRUGO);
45 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
46
47 /* TODO: copied from ehci-hcd.c - can this be refactored? */
48 /*
49 * xhci_handshake - spin reading hc until handshake completes or fails
50 * @ptr: address of hc register to be read
51 * @mask: bits to look at in result of read
52 * @done: value of those bits when handshake succeeds
53 * @usec: timeout in microseconds
54 *
55 * Returns negative errno, or zero on success
56 *
57 * Success happens when the "mask" bits have the specified value (hardware
58 * handshake done). There are two failure modes: "usec" have passed (major
59 * hardware flakeout), or the register reads as all-ones (hardware removed).
60 */
61 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
62 u32 mask, u32 done, int usec)
63 {
64 u32 result;
65
66 do {
67 result = readl(ptr);
68 if (result == ~(u32)0) /* card removed */
69 return -ENODEV;
70 result &= mask;
71 if (result == done)
72 return 0;
73 udelay(1);
74 usec--;
75 } while (usec > 0);
76 return -ETIMEDOUT;
77 }
78
79 /*
80 * Disable interrupts and begin the xHCI halting process.
81 */
82 void xhci_quiesce(struct xhci_hcd *xhci)
83 {
84 u32 halted;
85 u32 cmd;
86 u32 mask;
87
88 mask = ~(XHCI_IRQS);
89 halted = readl(&xhci->op_regs->status) & STS_HALT;
90 if (!halted)
91 mask &= ~CMD_RUN;
92
93 cmd = readl(&xhci->op_regs->command);
94 cmd &= mask;
95 writel(cmd, &xhci->op_regs->command);
96 }
97
98 /*
99 * Force HC into halt state.
100 *
101 * Disable any IRQs and clear the run/stop bit.
102 * HC will complete any current and actively pipelined transactions, and
103 * should halt within 16 ms of the run/stop bit being cleared.
104 * Read HC Halted bit in the status register to see when the HC is finished.
105 */
106 int xhci_halt(struct xhci_hcd *xhci)
107 {
108 int ret;
109 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
110 xhci_quiesce(xhci);
111
112 ret = xhci_handshake(xhci, &xhci->op_regs->status,
113 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
114 if (!ret) {
115 xhci->xhc_state |= XHCI_STATE_HALTED;
116 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
117 } else
118 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
119 XHCI_MAX_HALT_USEC);
120 return ret;
121 }
122
123 /*
124 * Set the run bit and wait for the host to be running.
125 */
126 static int xhci_start(struct xhci_hcd *xhci)
127 {
128 u32 temp;
129 int ret;
130
131 temp = readl(&xhci->op_regs->command);
132 temp |= (CMD_RUN);
133 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
134 temp);
135 writel(temp, &xhci->op_regs->command);
136
137 /*
138 * Wait for the HCHalted Status bit to be 0 to indicate the host is
139 * running.
140 */
141 ret = xhci_handshake(xhci, &xhci->op_regs->status,
142 STS_HALT, 0, XHCI_MAX_HALT_USEC);
143 if (ret == -ETIMEDOUT)
144 xhci_err(xhci, "Host took too long to start, "
145 "waited %u microseconds.\n",
146 XHCI_MAX_HALT_USEC);
147 if (!ret)
148 xhci->xhc_state &= ~XHCI_STATE_HALTED;
149 return ret;
150 }
151
152 /*
153 * Reset a halted HC.
154 *
155 * This resets pipelines, timers, counters, state machines, etc.
156 * Transactions will be terminated immediately, and operational registers
157 * will be set to their defaults.
158 */
159 int xhci_reset(struct xhci_hcd *xhci)
160 {
161 u32 command;
162 u32 state;
163 int ret, i;
164
165 state = readl(&xhci->op_regs->status);
166 if ((state & STS_HALT) == 0) {
167 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168 return 0;
169 }
170
171 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172 command = readl(&xhci->op_regs->command);
173 command |= CMD_RESET;
174 writel(command, &xhci->op_regs->command);
175
176 ret = xhci_handshake(xhci, &xhci->op_regs->command,
177 CMD_RESET, 0, 10 * 1000 * 1000);
178 if (ret)
179 return ret;
180
181 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
182 "Wait for controller to be ready for doorbell rings");
183 /*
184 * xHCI cannot write to any doorbells or operational registers other
185 * than status until the "Controller Not Ready" flag is cleared.
186 */
187 ret = xhci_handshake(xhci, &xhci->op_regs->status,
188 STS_CNR, 0, 10 * 1000 * 1000);
189
190 for (i = 0; i < 2; ++i) {
191 xhci->bus_state[i].port_c_suspend = 0;
192 xhci->bus_state[i].suspended_ports = 0;
193 xhci->bus_state[i].resuming_ports = 0;
194 }
195
196 return ret;
197 }
198
199 #ifdef CONFIG_PCI
200 static int xhci_free_msi(struct xhci_hcd *xhci)
201 {
202 int i;
203
204 if (!xhci->msix_entries)
205 return -EINVAL;
206
207 for (i = 0; i < xhci->msix_count; i++)
208 if (xhci->msix_entries[i].vector)
209 free_irq(xhci->msix_entries[i].vector,
210 xhci_to_hcd(xhci));
211 return 0;
212 }
213
214 /*
215 * Set up MSI
216 */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219 int ret;
220 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
221
222 ret = pci_enable_msi(pdev);
223 if (ret) {
224 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
225 "failed to allocate MSI entry");
226 return ret;
227 }
228
229 ret = request_irq(pdev->irq, xhci_msi_irq,
230 0, "xhci_hcd", xhci_to_hcd(xhci));
231 if (ret) {
232 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
233 "disable MSI interrupt");
234 pci_disable_msi(pdev);
235 }
236
237 return ret;
238 }
239
240 /*
241 * Free IRQs
242 * free all IRQs request
243 */
244 static void xhci_free_irq(struct xhci_hcd *xhci)
245 {
246 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
247 int ret;
248
249 /* return if using legacy interrupt */
250 if (xhci_to_hcd(xhci)->irq > 0)
251 return;
252
253 ret = xhci_free_msi(xhci);
254 if (!ret)
255 return;
256 if (pdev->irq > 0)
257 free_irq(pdev->irq, xhci_to_hcd(xhci));
258
259 return;
260 }
261
262 /*
263 * Set up MSI-X
264 */
265 static int xhci_setup_msix(struct xhci_hcd *xhci)
266 {
267 int i, ret = 0;
268 struct usb_hcd *hcd = xhci_to_hcd(xhci);
269 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
270
271 /*
272 * calculate number of msi-x vectors supported.
273 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
274 * with max number of interrupters based on the xhci HCSPARAMS1.
275 * - num_online_cpus: maximum msi-x vectors per CPUs core.
276 * Add additional 1 vector to ensure always available interrupt.
277 */
278 xhci->msix_count = min(num_online_cpus() + 1,
279 HCS_MAX_INTRS(xhci->hcs_params1));
280
281 xhci->msix_entries =
282 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
283 GFP_KERNEL);
284 if (!xhci->msix_entries) {
285 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
286 return -ENOMEM;
287 }
288
289 for (i = 0; i < xhci->msix_count; i++) {
290 xhci->msix_entries[i].entry = i;
291 xhci->msix_entries[i].vector = 0;
292 }
293
294 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
295 if (ret) {
296 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
297 "Failed to enable MSI-X");
298 goto free_entries;
299 }
300
301 for (i = 0; i < xhci->msix_count; i++) {
302 ret = request_irq(xhci->msix_entries[i].vector,
303 xhci_msi_irq,
304 0, "xhci_hcd", xhci_to_hcd(xhci));
305 if (ret)
306 goto disable_msix;
307 }
308
309 hcd->msix_enabled = 1;
310 return ret;
311
312 disable_msix:
313 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
314 xhci_free_irq(xhci);
315 pci_disable_msix(pdev);
316 free_entries:
317 kfree(xhci->msix_entries);
318 xhci->msix_entries = NULL;
319 return ret;
320 }
321
322 /* Free any IRQs and disable MSI-X */
323 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
324 {
325 struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328 if (xhci->quirks & XHCI_PLAT)
329 return;
330
331 xhci_free_irq(xhci);
332
333 if (xhci->msix_entries) {
334 pci_disable_msix(pdev);
335 kfree(xhci->msix_entries);
336 xhci->msix_entries = NULL;
337 } else {
338 pci_disable_msi(pdev);
339 }
340
341 hcd->msix_enabled = 0;
342 return;
343 }
344
345 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
346 {
347 int i;
348
349 if (xhci->msix_entries) {
350 for (i = 0; i < xhci->msix_count; i++)
351 synchronize_irq(xhci->msix_entries[i].vector);
352 }
353 }
354
355 static int xhci_try_enable_msi(struct usb_hcd *hcd)
356 {
357 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
358 struct pci_dev *pdev;
359 int ret;
360
361 /* The xhci platform device has set up IRQs through usb_add_hcd. */
362 if (xhci->quirks & XHCI_PLAT)
363 return 0;
364
365 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
366 /*
367 * Some Fresco Logic host controllers advertise MSI, but fail to
368 * generate interrupts. Don't even try to enable MSI.
369 */
370 if (xhci->quirks & XHCI_BROKEN_MSI)
371 goto legacy_irq;
372
373 /* unregister the legacy interrupt */
374 if (hcd->irq)
375 free_irq(hcd->irq, hcd);
376 hcd->irq = 0;
377
378 ret = xhci_setup_msix(xhci);
379 if (ret)
380 /* fall back to msi*/
381 ret = xhci_setup_msi(xhci);
382
383 if (!ret)
384 /* hcd->irq is 0, we have MSI */
385 return 0;
386
387 if (!pdev->irq) {
388 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
389 return -EINVAL;
390 }
391
392 legacy_irq:
393 if (!strlen(hcd->irq_descr))
394 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
395 hcd->driver->description, hcd->self.busnum);
396
397 /* fall back to legacy interrupt*/
398 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
399 hcd->irq_descr, hcd);
400 if (ret) {
401 xhci_err(xhci, "request interrupt %d failed\n",
402 pdev->irq);
403 return ret;
404 }
405 hcd->irq = pdev->irq;
406 return 0;
407 }
408
409 #else
410
411 static int xhci_try_enable_msi(struct usb_hcd *hcd)
412 {
413 return 0;
414 }
415
416 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
417 {
418 }
419
420 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
421 {
422 }
423
424 #endif
425
426 static void compliance_mode_recovery(unsigned long arg)
427 {
428 struct xhci_hcd *xhci;
429 struct usb_hcd *hcd;
430 u32 temp;
431 int i;
432
433 xhci = (struct xhci_hcd *)arg;
434
435 for (i = 0; i < xhci->num_usb3_ports; i++) {
436 temp = readl(xhci->usb3_ports[i]);
437 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
438 /*
439 * Compliance Mode Detected. Letting USB Core
440 * handle the Warm Reset
441 */
442 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
443 "Compliance mode detected->port %d",
444 i + 1);
445 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
446 "Attempting compliance mode recovery");
447 hcd = xhci->shared_hcd;
448
449 if (hcd->state == HC_STATE_SUSPENDED)
450 usb_hcd_resume_root_hub(hcd);
451
452 usb_hcd_poll_rh_status(hcd);
453 }
454 }
455
456 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
457 mod_timer(&xhci->comp_mode_recovery_timer,
458 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
459 }
460
461 /*
462 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
463 * that causes ports behind that hardware to enter compliance mode sometimes.
464 * The quirk creates a timer that polls every 2 seconds the link state of
465 * each host controller's port and recovers it by issuing a Warm reset
466 * if Compliance mode is detected, otherwise the port will become "dead" (no
467 * device connections or disconnections will be detected anymore). Becasue no
468 * status event is generated when entering compliance mode (per xhci spec),
469 * this quirk is needed on systems that have the failing hardware installed.
470 */
471 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
472 {
473 xhci->port_status_u0 = 0;
474 init_timer(&xhci->comp_mode_recovery_timer);
475
476 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
477 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
478 xhci->comp_mode_recovery_timer.expires = jiffies +
479 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
480
481 set_timer_slack(&xhci->comp_mode_recovery_timer,
482 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
483 add_timer(&xhci->comp_mode_recovery_timer);
484 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
485 "Compliance mode recovery timer initialized");
486 }
487
488 /*
489 * This function identifies the systems that have installed the SN65LVPE502CP
490 * USB3.0 re-driver and that need the Compliance Mode Quirk.
491 * Systems:
492 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
493 */
494 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
495 {
496 const char *dmi_product_name, *dmi_sys_vendor;
497
498 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
499 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
500 if (!dmi_product_name || !dmi_sys_vendor)
501 return false;
502
503 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
504 return false;
505
506 if (strstr(dmi_product_name, "Z420") ||
507 strstr(dmi_product_name, "Z620") ||
508 strstr(dmi_product_name, "Z820") ||
509 strstr(dmi_product_name, "Z1 Workstation"))
510 return true;
511
512 return false;
513 }
514
515 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
516 {
517 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
518 }
519
520
521 /*
522 * Initialize memory for HCD and xHC (one-time init).
523 *
524 * Program the PAGESIZE register, initialize the device context array, create
525 * device contexts (?), set up a command ring segment (or two?), create event
526 * ring (one for now).
527 */
528 int xhci_init(struct usb_hcd *hcd)
529 {
530 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
531 int retval = 0;
532
533 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
534 spin_lock_init(&xhci->lock);
535 if (xhci->hci_version == 0x95 && link_quirk) {
536 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
537 "QUIRK: Not clearing Link TRB chain bits.");
538 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
539 } else {
540 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
541 "xHCI doesn't need link TRB QUIRK");
542 }
543 retval = xhci_mem_init(xhci, GFP_KERNEL);
544 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
545
546 /* Initializing Compliance Mode Recovery Data If Needed */
547 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
548 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
549 compliance_mode_recovery_timer_init(xhci);
550 }
551
552 return retval;
553 }
554
555 /*-------------------------------------------------------------------------*/
556
557
558 static int xhci_run_finished(struct xhci_hcd *xhci)
559 {
560 if (xhci_start(xhci)) {
561 xhci_halt(xhci);
562 return -ENODEV;
563 }
564 xhci->shared_hcd->state = HC_STATE_RUNNING;
565 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
566
567 if (xhci->quirks & XHCI_NEC_HOST)
568 xhci_ring_cmd_db(xhci);
569
570 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
571 "Finished xhci_run for USB3 roothub");
572 return 0;
573 }
574
575 /*
576 * Start the HC after it was halted.
577 *
578 * This function is called by the USB core when the HC driver is added.
579 * Its opposite is xhci_stop().
580 *
581 * xhci_init() must be called once before this function can be called.
582 * Reset the HC, enable device slot contexts, program DCBAAP, and
583 * set command ring pointer and event ring pointer.
584 *
585 * Setup MSI-X vectors and enable interrupts.
586 */
587 int xhci_run(struct usb_hcd *hcd)
588 {
589 u32 temp;
590 u64 temp_64;
591 int ret;
592 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
593
594 /* Start the xHCI host controller running only after the USB 2.0 roothub
595 * is setup.
596 */
597
598 hcd->uses_new_polling = 1;
599 if (!usb_hcd_is_primary_hcd(hcd))
600 return xhci_run_finished(xhci);
601
602 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
603
604 ret = xhci_try_enable_msi(hcd);
605 if (ret)
606 return ret;
607
608 xhci_dbg(xhci, "Command ring memory map follows:\n");
609 xhci_debug_ring(xhci, xhci->cmd_ring);
610 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
611 xhci_dbg_cmd_ptrs(xhci);
612
613 xhci_dbg(xhci, "ERST memory map follows:\n");
614 xhci_dbg_erst(xhci, &xhci->erst);
615 xhci_dbg(xhci, "Event ring:\n");
616 xhci_debug_ring(xhci, xhci->event_ring);
617 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
618 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
619 temp_64 &= ~ERST_PTR_MASK;
620 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
622
623 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
624 "// Set the interrupt modulation register");
625 temp = readl(&xhci->ir_set->irq_control);
626 temp &= ~ER_IRQ_INTERVAL_MASK;
627 temp |= (u32) 160;
628 writel(temp, &xhci->ir_set->irq_control);
629
630 /* Set the HCD state before we enable the irqs */
631 temp = readl(&xhci->op_regs->command);
632 temp |= (CMD_EIE);
633 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
634 "// Enable interrupts, cmd = 0x%x.", temp);
635 writel(temp, &xhci->op_regs->command);
636
637 temp = readl(&xhci->ir_set->irq_pending);
638 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
639 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
640 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
641 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
642 xhci_print_ir_set(xhci, 0);
643
644 if (xhci->quirks & XHCI_NEC_HOST)
645 xhci_queue_vendor_command(xhci, 0, 0, 0,
646 TRB_TYPE(TRB_NEC_GET_FW));
647
648 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649 "Finished xhci_run for USB2 roothub");
650 return 0;
651 }
652
653 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
654 {
655 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
656
657 spin_lock_irq(&xhci->lock);
658 xhci_halt(xhci);
659
660 /* The shared_hcd is going to be deallocated shortly (the USB core only
661 * calls this function when allocation fails in usb_add_hcd(), or
662 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
663 */
664 xhci->shared_hcd = NULL;
665 spin_unlock_irq(&xhci->lock);
666 }
667
668 /*
669 * Stop xHCI driver.
670 *
671 * This function is called by the USB core when the HC driver is removed.
672 * Its opposite is xhci_run().
673 *
674 * Disable device contexts, disable IRQs, and quiesce the HC.
675 * Reset the HC, finish any completed transactions, and cleanup memory.
676 */
677 void xhci_stop(struct usb_hcd *hcd)
678 {
679 u32 temp;
680 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
681
682 if (!usb_hcd_is_primary_hcd(hcd)) {
683 xhci_only_stop_hcd(xhci->shared_hcd);
684 return;
685 }
686
687 spin_lock_irq(&xhci->lock);
688 /* Make sure the xHC is halted for a USB3 roothub
689 * (xhci_stop() could be called as part of failed init).
690 */
691 xhci_halt(xhci);
692 xhci_reset(xhci);
693 spin_unlock_irq(&xhci->lock);
694
695 xhci_cleanup_msix(xhci);
696
697 /* Deleting Compliance Mode Recovery Timer */
698 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
699 (!(xhci_all_ports_seen_u0(xhci)))) {
700 del_timer_sync(&xhci->comp_mode_recovery_timer);
701 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
702 "%s: compliance mode recovery timer deleted",
703 __func__);
704 }
705
706 if (xhci->quirks & XHCI_AMD_PLL_FIX)
707 usb_amd_dev_put();
708
709 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
710 "// Disabling event ring interrupts");
711 temp = readl(&xhci->op_regs->status);
712 writel(temp & ~STS_EINT, &xhci->op_regs->status);
713 temp = readl(&xhci->ir_set->irq_pending);
714 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
715 xhci_print_ir_set(xhci, 0);
716
717 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
718 xhci_mem_cleanup(xhci);
719 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
720 "xhci_stop completed - status = %x",
721 readl(&xhci->op_regs->status));
722 }
723
724 /*
725 * Shutdown HC (not bus-specific)
726 *
727 * This is called when the machine is rebooting or halting. We assume that the
728 * machine will be powered off, and the HC's internal state will be reset.
729 * Don't bother to free memory.
730 *
731 * This will only ever be called with the main usb_hcd (the USB3 roothub).
732 */
733 void xhci_shutdown(struct usb_hcd *hcd)
734 {
735 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
736
737 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
738 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
739
740 spin_lock_irq(&xhci->lock);
741 xhci_halt(xhci);
742 /* Workaround for spurious wakeups at shutdown with HSW */
743 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
744 xhci_reset(xhci);
745 spin_unlock_irq(&xhci->lock);
746
747 xhci_cleanup_msix(xhci);
748
749 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
750 "xhci_shutdown completed - status = %x",
751 readl(&xhci->op_regs->status));
752
753 /* Yet another workaround for spurious wakeups at shutdown with HSW */
754 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
755 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
756 }
757
758 #ifdef CONFIG_PM
759 static void xhci_save_registers(struct xhci_hcd *xhci)
760 {
761 xhci->s3.command = readl(&xhci->op_regs->command);
762 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
763 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
764 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
765 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
766 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
767 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
768 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
769 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
770 }
771
772 static void xhci_restore_registers(struct xhci_hcd *xhci)
773 {
774 writel(xhci->s3.command, &xhci->op_regs->command);
775 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
776 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
777 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
778 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
779 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
780 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
781 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
782 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
783 }
784
785 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
786 {
787 u64 val_64;
788
789 /* step 2: initialize command ring buffer */
790 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
791 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
792 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
793 xhci->cmd_ring->dequeue) &
794 (u64) ~CMD_RING_RSVD_BITS) |
795 xhci->cmd_ring->cycle_state;
796 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
797 "// Setting command ring address to 0x%llx",
798 (long unsigned long) val_64);
799 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
800 }
801
802 /*
803 * The whole command ring must be cleared to zero when we suspend the host.
804 *
805 * The host doesn't save the command ring pointer in the suspend well, so we
806 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
807 * aligned, because of the reserved bits in the command ring dequeue pointer
808 * register. Therefore, we can't just set the dequeue pointer back in the
809 * middle of the ring (TRBs are 16-byte aligned).
810 */
811 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
812 {
813 struct xhci_ring *ring;
814 struct xhci_segment *seg;
815
816 ring = xhci->cmd_ring;
817 seg = ring->deq_seg;
818 do {
819 memset(seg->trbs, 0,
820 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
821 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
822 cpu_to_le32(~TRB_CYCLE);
823 seg = seg->next;
824 } while (seg != ring->deq_seg);
825
826 /* Reset the software enqueue and dequeue pointers */
827 ring->deq_seg = ring->first_seg;
828 ring->dequeue = ring->first_seg->trbs;
829 ring->enq_seg = ring->deq_seg;
830 ring->enqueue = ring->dequeue;
831
832 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
833 /*
834 * Ring is now zeroed, so the HW should look for change of ownership
835 * when the cycle bit is set to 1.
836 */
837 ring->cycle_state = 1;
838
839 /*
840 * Reset the hardware dequeue pointer.
841 * Yes, this will need to be re-written after resume, but we're paranoid
842 * and want to make sure the hardware doesn't access bogus memory
843 * because, say, the BIOS or an SMI started the host without changing
844 * the command ring pointers.
845 */
846 xhci_set_cmd_ring_deq(xhci);
847 }
848
849 /*
850 * Stop HC (not bus-specific)
851 *
852 * This is called when the machine transition into S3/S4 mode.
853 *
854 */
855 int xhci_suspend(struct xhci_hcd *xhci)
856 {
857 int rc = 0;
858 unsigned int delay = XHCI_MAX_HALT_USEC;
859 struct usb_hcd *hcd = xhci_to_hcd(xhci);
860 u32 command;
861
862 if (hcd->state != HC_STATE_SUSPENDED ||
863 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
864 return -EINVAL;
865
866 /* Don't poll the roothubs on bus suspend. */
867 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
868 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
869 del_timer_sync(&hcd->rh_timer);
870
871 spin_lock_irq(&xhci->lock);
872 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
873 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
874 /* step 1: stop endpoint */
875 /* skipped assuming that port suspend has done */
876
877 /* step 2: clear Run/Stop bit */
878 command = readl(&xhci->op_regs->command);
879 command &= ~CMD_RUN;
880 writel(command, &xhci->op_regs->command);
881
882 /* Some chips from Fresco Logic need an extraordinary delay */
883 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
884
885 if (xhci_handshake(xhci, &xhci->op_regs->status,
886 STS_HALT, STS_HALT, delay)) {
887 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
888 spin_unlock_irq(&xhci->lock);
889 return -ETIMEDOUT;
890 }
891 xhci_clear_command_ring(xhci);
892
893 /* step 3: save registers */
894 xhci_save_registers(xhci);
895
896 /* step 4: set CSS flag */
897 command = readl(&xhci->op_regs->command);
898 command |= CMD_CSS;
899 writel(command, &xhci->op_regs->command);
900 if (xhci_handshake(xhci, &xhci->op_regs->status,
901 STS_SAVE, 0, 10 * 1000)) {
902 xhci_warn(xhci, "WARN: xHC save state timeout\n");
903 spin_unlock_irq(&xhci->lock);
904 return -ETIMEDOUT;
905 }
906 spin_unlock_irq(&xhci->lock);
907
908 /*
909 * Deleting Compliance Mode Recovery Timer because the xHCI Host
910 * is about to be suspended.
911 */
912 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
913 (!(xhci_all_ports_seen_u0(xhci)))) {
914 del_timer_sync(&xhci->comp_mode_recovery_timer);
915 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
916 "%s: compliance mode recovery timer deleted",
917 __func__);
918 }
919
920 /* step 5: remove core well power */
921 /* synchronize irq when using MSI-X */
922 xhci_msix_sync_irqs(xhci);
923
924 return rc;
925 }
926
927 /*
928 * start xHC (not bus-specific)
929 *
930 * This is called when the machine transition from S3/S4 mode.
931 *
932 */
933 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
934 {
935 u32 command, temp = 0;
936 struct usb_hcd *hcd = xhci_to_hcd(xhci);
937 struct usb_hcd *secondary_hcd;
938 int retval = 0;
939 bool comp_timer_running = false;
940
941 /* Wait a bit if either of the roothubs need to settle from the
942 * transition into bus suspend.
943 */
944 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
945 time_before(jiffies,
946 xhci->bus_state[1].next_statechange))
947 msleep(100);
948
949 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
950 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
951
952 spin_lock_irq(&xhci->lock);
953 if (xhci->quirks & XHCI_RESET_ON_RESUME)
954 hibernated = true;
955
956 if (!hibernated) {
957 /* step 1: restore register */
958 xhci_restore_registers(xhci);
959 /* step 2: initialize command ring buffer */
960 xhci_set_cmd_ring_deq(xhci);
961 /* step 3: restore state and start state*/
962 /* step 3: set CRS flag */
963 command = readl(&xhci->op_regs->command);
964 command |= CMD_CRS;
965 writel(command, &xhci->op_regs->command);
966 if (xhci_handshake(xhci, &xhci->op_regs->status,
967 STS_RESTORE, 0, 10 * 1000)) {
968 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
969 spin_unlock_irq(&xhci->lock);
970 return -ETIMEDOUT;
971 }
972 temp = readl(&xhci->op_regs->status);
973 }
974
975 /* If restore operation fails, re-initialize the HC during resume */
976 if ((temp & STS_SRE) || hibernated) {
977
978 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
979 !(xhci_all_ports_seen_u0(xhci))) {
980 del_timer_sync(&xhci->comp_mode_recovery_timer);
981 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
982 "Compliance Mode Recovery Timer deleted!");
983 }
984
985 /* Let the USB core know _both_ roothubs lost power. */
986 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
987 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
988
989 xhci_dbg(xhci, "Stop HCD\n");
990 xhci_halt(xhci);
991 xhci_reset(xhci);
992 spin_unlock_irq(&xhci->lock);
993 xhci_cleanup_msix(xhci);
994
995 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
996 temp = readl(&xhci->op_regs->status);
997 writel(temp & ~STS_EINT, &xhci->op_regs->status);
998 temp = readl(&xhci->ir_set->irq_pending);
999 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1000 xhci_print_ir_set(xhci, 0);
1001
1002 xhci_dbg(xhci, "cleaning up memory\n");
1003 xhci_mem_cleanup(xhci);
1004 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1005 readl(&xhci->op_regs->status));
1006
1007 /* USB core calls the PCI reinit and start functions twice:
1008 * first with the primary HCD, and then with the secondary HCD.
1009 * If we don't do the same, the host will never be started.
1010 */
1011 if (!usb_hcd_is_primary_hcd(hcd))
1012 secondary_hcd = hcd;
1013 else
1014 secondary_hcd = xhci->shared_hcd;
1015
1016 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1017 retval = xhci_init(hcd->primary_hcd);
1018 if (retval)
1019 return retval;
1020 comp_timer_running = true;
1021
1022 xhci_dbg(xhci, "Start the primary HCD\n");
1023 retval = xhci_run(hcd->primary_hcd);
1024 if (!retval) {
1025 xhci_dbg(xhci, "Start the secondary HCD\n");
1026 retval = xhci_run(secondary_hcd);
1027 }
1028 hcd->state = HC_STATE_SUSPENDED;
1029 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1030 goto done;
1031 }
1032
1033 /* step 4: set Run/Stop bit */
1034 command = readl(&xhci->op_regs->command);
1035 command |= CMD_RUN;
1036 writel(command, &xhci->op_regs->command);
1037 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1038 0, 250 * 1000);
1039
1040 /* step 5: walk topology and initialize portsc,
1041 * portpmsc and portli
1042 */
1043 /* this is done in bus_resume */
1044
1045 /* step 6: restart each of the previously
1046 * Running endpoints by ringing their doorbells
1047 */
1048
1049 spin_unlock_irq(&xhci->lock);
1050
1051 done:
1052 if (retval == 0) {
1053 usb_hcd_resume_root_hub(hcd);
1054 usb_hcd_resume_root_hub(xhci->shared_hcd);
1055 }
1056
1057 /*
1058 * If system is subject to the Quirk, Compliance Mode Timer needs to
1059 * be re-initialized Always after a system resume. Ports are subject
1060 * to suffer the Compliance Mode issue again. It doesn't matter if
1061 * ports have entered previously to U0 before system's suspension.
1062 */
1063 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1064 compliance_mode_recovery_timer_init(xhci);
1065
1066 /* Re-enable port polling. */
1067 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1068 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1069 usb_hcd_poll_rh_status(hcd);
1070
1071 return retval;
1072 }
1073 #endif /* CONFIG_PM */
1074
1075 /*-------------------------------------------------------------------------*/
1076
1077 /**
1078 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1079 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1080 * value to right shift 1 for the bitmask.
1081 *
1082 * Index = (epnum * 2) + direction - 1,
1083 * where direction = 0 for OUT, 1 for IN.
1084 * For control endpoints, the IN index is used (OUT index is unused), so
1085 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1086 */
1087 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1088 {
1089 unsigned int index;
1090 if (usb_endpoint_xfer_control(desc))
1091 index = (unsigned int) (usb_endpoint_num(desc)*2);
1092 else
1093 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1094 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1095 return index;
1096 }
1097
1098 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1099 * address from the XHCI endpoint index.
1100 */
1101 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1102 {
1103 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1104 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1105 return direction | number;
1106 }
1107
1108 /* Find the flag for this endpoint (for use in the control context). Use the
1109 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1110 * bit 1, etc.
1111 */
1112 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1113 {
1114 return 1 << (xhci_get_endpoint_index(desc) + 1);
1115 }
1116
1117 /* Find the flag for this endpoint (for use in the control context). Use the
1118 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1119 * bit 1, etc.
1120 */
1121 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1122 {
1123 return 1 << (ep_index + 1);
1124 }
1125
1126 /* Compute the last valid endpoint context index. Basically, this is the
1127 * endpoint index plus one. For slot contexts with more than valid endpoint,
1128 * we find the most significant bit set in the added contexts flags.
1129 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1130 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1131 */
1132 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1133 {
1134 return fls(added_ctxs) - 1;
1135 }
1136
1137 /* Returns 1 if the arguments are OK;
1138 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1139 */
1140 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1141 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1142 const char *func) {
1143 struct xhci_hcd *xhci;
1144 struct xhci_virt_device *virt_dev;
1145
1146 if (!hcd || (check_ep && !ep) || !udev) {
1147 pr_debug("xHCI %s called with invalid args\n", func);
1148 return -EINVAL;
1149 }
1150 if (!udev->parent) {
1151 pr_debug("xHCI %s called for root hub\n", func);
1152 return 0;
1153 }
1154
1155 xhci = hcd_to_xhci(hcd);
1156 if (check_virt_dev) {
1157 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1158 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1159 func);
1160 return -EINVAL;
1161 }
1162
1163 virt_dev = xhci->devs[udev->slot_id];
1164 if (virt_dev->udev != udev) {
1165 xhci_dbg(xhci, "xHCI %s called with udev and "
1166 "virt_dev does not match\n", func);
1167 return -EINVAL;
1168 }
1169 }
1170
1171 if (xhci->xhc_state & XHCI_STATE_HALTED)
1172 return -ENODEV;
1173
1174 return 1;
1175 }
1176
1177 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1178 struct usb_device *udev, struct xhci_command *command,
1179 bool ctx_change, bool must_succeed);
1180
1181 /*
1182 * Full speed devices may have a max packet size greater than 8 bytes, but the
1183 * USB core doesn't know that until it reads the first 8 bytes of the
1184 * descriptor. If the usb_device's max packet size changes after that point,
1185 * we need to issue an evaluate context command and wait on it.
1186 */
1187 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1188 unsigned int ep_index, struct urb *urb)
1189 {
1190 struct xhci_container_ctx *in_ctx;
1191 struct xhci_container_ctx *out_ctx;
1192 struct xhci_input_control_ctx *ctrl_ctx;
1193 struct xhci_ep_ctx *ep_ctx;
1194 int max_packet_size;
1195 int hw_max_packet_size;
1196 int ret = 0;
1197
1198 out_ctx = xhci->devs[slot_id]->out_ctx;
1199 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1200 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1201 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1202 if (hw_max_packet_size != max_packet_size) {
1203 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1204 "Max Packet Size for ep 0 changed.");
1205 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1206 "Max packet size in usb_device = %d",
1207 max_packet_size);
1208 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1209 "Max packet size in xHCI HW = %d",
1210 hw_max_packet_size);
1211 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1212 "Issuing evaluate context command.");
1213
1214 /* Set up the input context flags for the command */
1215 /* FIXME: This won't work if a non-default control endpoint
1216 * changes max packet sizes.
1217 */
1218 in_ctx = xhci->devs[slot_id]->in_ctx;
1219 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1220 if (!ctrl_ctx) {
1221 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1222 __func__);
1223 return -ENOMEM;
1224 }
1225 /* Set up the modified control endpoint 0 */
1226 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1227 xhci->devs[slot_id]->out_ctx, ep_index);
1228
1229 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1230 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1231 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1232
1233 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1234 ctrl_ctx->drop_flags = 0;
1235
1236 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1237 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1238 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1239 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1240
1241 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1242 true, false);
1243
1244 /* Clean up the input context for later use by bandwidth
1245 * functions.
1246 */
1247 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1248 }
1249 return ret;
1250 }
1251
1252 /*
1253 * non-error returns are a promise to giveback() the urb later
1254 * we drop ownership so next owner (or urb unlink) can get it
1255 */
1256 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1257 {
1258 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1259 struct xhci_td *buffer;
1260 unsigned long flags;
1261 int ret = 0;
1262 unsigned int slot_id, ep_index;
1263 struct urb_priv *urb_priv;
1264 int size, i;
1265
1266 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1267 true, true, __func__) <= 0)
1268 return -EINVAL;
1269
1270 slot_id = urb->dev->slot_id;
1271 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1272
1273 if (!HCD_HW_ACCESSIBLE(hcd)) {
1274 if (!in_interrupt())
1275 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1276 ret = -ESHUTDOWN;
1277 goto exit;
1278 }
1279
1280 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1281 size = urb->number_of_packets;
1282 else
1283 size = 1;
1284
1285 urb_priv = kzalloc(sizeof(struct urb_priv) +
1286 size * sizeof(struct xhci_td *), mem_flags);
1287 if (!urb_priv)
1288 return -ENOMEM;
1289
1290 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1291 if (!buffer) {
1292 kfree(urb_priv);
1293 return -ENOMEM;
1294 }
1295
1296 for (i = 0; i < size; i++) {
1297 urb_priv->td[i] = buffer;
1298 buffer++;
1299 }
1300
1301 urb_priv->length = size;
1302 urb_priv->td_cnt = 0;
1303 urb->hcpriv = urb_priv;
1304
1305 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1306 /* Check to see if the max packet size for the default control
1307 * endpoint changed during FS device enumeration
1308 */
1309 if (urb->dev->speed == USB_SPEED_FULL) {
1310 ret = xhci_check_maxpacket(xhci, slot_id,
1311 ep_index, urb);
1312 if (ret < 0) {
1313 xhci_urb_free_priv(xhci, urb_priv);
1314 urb->hcpriv = NULL;
1315 return ret;
1316 }
1317 }
1318
1319 /* We have a spinlock and interrupts disabled, so we must pass
1320 * atomic context to this function, which may allocate memory.
1321 */
1322 spin_lock_irqsave(&xhci->lock, flags);
1323 if (xhci->xhc_state & XHCI_STATE_DYING)
1324 goto dying;
1325 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1326 slot_id, ep_index);
1327 if (ret)
1328 goto free_priv;
1329 spin_unlock_irqrestore(&xhci->lock, flags);
1330 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1331 spin_lock_irqsave(&xhci->lock, flags);
1332 if (xhci->xhc_state & XHCI_STATE_DYING)
1333 goto dying;
1334 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1335 EP_GETTING_STREAMS) {
1336 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1337 "is transitioning to using streams.\n");
1338 ret = -EINVAL;
1339 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1340 EP_GETTING_NO_STREAMS) {
1341 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1342 "is transitioning to "
1343 "not having streams.\n");
1344 ret = -EINVAL;
1345 } else {
1346 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1347 slot_id, ep_index);
1348 }
1349 if (ret)
1350 goto free_priv;
1351 spin_unlock_irqrestore(&xhci->lock, flags);
1352 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1353 spin_lock_irqsave(&xhci->lock, flags);
1354 if (xhci->xhc_state & XHCI_STATE_DYING)
1355 goto dying;
1356 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1357 slot_id, ep_index);
1358 if (ret)
1359 goto free_priv;
1360 spin_unlock_irqrestore(&xhci->lock, flags);
1361 } else {
1362 spin_lock_irqsave(&xhci->lock, flags);
1363 if (xhci->xhc_state & XHCI_STATE_DYING)
1364 goto dying;
1365 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1366 slot_id, ep_index);
1367 if (ret)
1368 goto free_priv;
1369 spin_unlock_irqrestore(&xhci->lock, flags);
1370 }
1371 exit:
1372 return ret;
1373 dying:
1374 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1375 "non-responsive xHCI host.\n",
1376 urb->ep->desc.bEndpointAddress, urb);
1377 ret = -ESHUTDOWN;
1378 free_priv:
1379 xhci_urb_free_priv(xhci, urb_priv);
1380 urb->hcpriv = NULL;
1381 spin_unlock_irqrestore(&xhci->lock, flags);
1382 return ret;
1383 }
1384
1385 /* Get the right ring for the given URB.
1386 * If the endpoint supports streams, boundary check the URB's stream ID.
1387 * If the endpoint doesn't support streams, return the singular endpoint ring.
1388 */
1389 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1390 struct urb *urb)
1391 {
1392 unsigned int slot_id;
1393 unsigned int ep_index;
1394 unsigned int stream_id;
1395 struct xhci_virt_ep *ep;
1396
1397 slot_id = urb->dev->slot_id;
1398 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1399 stream_id = urb->stream_id;
1400 ep = &xhci->devs[slot_id]->eps[ep_index];
1401 /* Common case: no streams */
1402 if (!(ep->ep_state & EP_HAS_STREAMS))
1403 return ep->ring;
1404
1405 if (stream_id == 0) {
1406 xhci_warn(xhci,
1407 "WARN: Slot ID %u, ep index %u has streams, "
1408 "but URB has no stream ID.\n",
1409 slot_id, ep_index);
1410 return NULL;
1411 }
1412
1413 if (stream_id < ep->stream_info->num_streams)
1414 return ep->stream_info->stream_rings[stream_id];
1415
1416 xhci_warn(xhci,
1417 "WARN: Slot ID %u, ep index %u has "
1418 "stream IDs 1 to %u allocated, "
1419 "but stream ID %u is requested.\n",
1420 slot_id, ep_index,
1421 ep->stream_info->num_streams - 1,
1422 stream_id);
1423 return NULL;
1424 }
1425
1426 /*
1427 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1428 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1429 * should pick up where it left off in the TD, unless a Set Transfer Ring
1430 * Dequeue Pointer is issued.
1431 *
1432 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1433 * the ring. Since the ring is a contiguous structure, they can't be physically
1434 * removed. Instead, there are two options:
1435 *
1436 * 1) If the HC is in the middle of processing the URB to be canceled, we
1437 * simply move the ring's dequeue pointer past those TRBs using the Set
1438 * Transfer Ring Dequeue Pointer command. This will be the common case,
1439 * when drivers timeout on the last submitted URB and attempt to cancel.
1440 *
1441 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1442 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1443 * HC will need to invalidate the any TRBs it has cached after the stop
1444 * endpoint command, as noted in the xHCI 0.95 errata.
1445 *
1446 * 3) The TD may have completed by the time the Stop Endpoint Command
1447 * completes, so software needs to handle that case too.
1448 *
1449 * This function should protect against the TD enqueueing code ringing the
1450 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1451 * It also needs to account for multiple cancellations on happening at the same
1452 * time for the same endpoint.
1453 *
1454 * Note that this function can be called in any context, or so says
1455 * usb_hcd_unlink_urb()
1456 */
1457 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1458 {
1459 unsigned long flags;
1460 int ret, i;
1461 u32 temp;
1462 struct xhci_hcd *xhci;
1463 struct urb_priv *urb_priv;
1464 struct xhci_td *td;
1465 unsigned int ep_index;
1466 struct xhci_ring *ep_ring;
1467 struct xhci_virt_ep *ep;
1468
1469 xhci = hcd_to_xhci(hcd);
1470 spin_lock_irqsave(&xhci->lock, flags);
1471 /* Make sure the URB hasn't completed or been unlinked already */
1472 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1473 if (ret || !urb->hcpriv)
1474 goto done;
1475 temp = readl(&xhci->op_regs->status);
1476 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1477 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1478 "HW died, freeing TD.");
1479 urb_priv = urb->hcpriv;
1480 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1481 td = urb_priv->td[i];
1482 if (!list_empty(&td->td_list))
1483 list_del_init(&td->td_list);
1484 if (!list_empty(&td->cancelled_td_list))
1485 list_del_init(&td->cancelled_td_list);
1486 }
1487
1488 usb_hcd_unlink_urb_from_ep(hcd, urb);
1489 spin_unlock_irqrestore(&xhci->lock, flags);
1490 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1491 xhci_urb_free_priv(xhci, urb_priv);
1492 return ret;
1493 }
1494 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1495 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1496 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1497 "Ep 0x%x: URB %p to be canceled on "
1498 "non-responsive xHCI host.",
1499 urb->ep->desc.bEndpointAddress, urb);
1500 /* Let the stop endpoint command watchdog timer (which set this
1501 * state) finish cleaning up the endpoint TD lists. We must
1502 * have caught it in the middle of dropping a lock and giving
1503 * back an URB.
1504 */
1505 goto done;
1506 }
1507
1508 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1509 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1510 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1511 if (!ep_ring) {
1512 ret = -EINVAL;
1513 goto done;
1514 }
1515
1516 urb_priv = urb->hcpriv;
1517 i = urb_priv->td_cnt;
1518 if (i < urb_priv->length)
1519 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1520 "Cancel URB %p, dev %s, ep 0x%x, "
1521 "starting at offset 0x%llx",
1522 urb, urb->dev->devpath,
1523 urb->ep->desc.bEndpointAddress,
1524 (unsigned long long) xhci_trb_virt_to_dma(
1525 urb_priv->td[i]->start_seg,
1526 urb_priv->td[i]->first_trb));
1527
1528 for (; i < urb_priv->length; i++) {
1529 td = urb_priv->td[i];
1530 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1531 }
1532
1533 /* Queue a stop endpoint command, but only if this is
1534 * the first cancellation to be handled.
1535 */
1536 if (!(ep->ep_state & EP_HALT_PENDING)) {
1537 ep->ep_state |= EP_HALT_PENDING;
1538 ep->stop_cmds_pending++;
1539 ep->stop_cmd_timer.expires = jiffies +
1540 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1541 add_timer(&ep->stop_cmd_timer);
1542 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1543 xhci_ring_cmd_db(xhci);
1544 }
1545 done:
1546 spin_unlock_irqrestore(&xhci->lock, flags);
1547 return ret;
1548 }
1549
1550 /* Drop an endpoint from a new bandwidth configuration for this device.
1551 * Only one call to this function is allowed per endpoint before
1552 * check_bandwidth() or reset_bandwidth() must be called.
1553 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1554 * add the endpoint to the schedule with possibly new parameters denoted by a
1555 * different endpoint descriptor in usb_host_endpoint.
1556 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1557 * not allowed.
1558 *
1559 * The USB core will not allow URBs to be queued to an endpoint that is being
1560 * disabled, so there's no need for mutual exclusion to protect
1561 * the xhci->devs[slot_id] structure.
1562 */
1563 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1564 struct usb_host_endpoint *ep)
1565 {
1566 struct xhci_hcd *xhci;
1567 struct xhci_container_ctx *in_ctx, *out_ctx;
1568 struct xhci_input_control_ctx *ctrl_ctx;
1569 struct xhci_slot_ctx *slot_ctx;
1570 unsigned int last_ctx;
1571 unsigned int ep_index;
1572 struct xhci_ep_ctx *ep_ctx;
1573 u32 drop_flag;
1574 u32 new_add_flags, new_drop_flags, new_slot_info;
1575 int ret;
1576
1577 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1578 if (ret <= 0)
1579 return ret;
1580 xhci = hcd_to_xhci(hcd);
1581 if (xhci->xhc_state & XHCI_STATE_DYING)
1582 return -ENODEV;
1583
1584 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1585 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1586 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1587 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1588 __func__, drop_flag);
1589 return 0;
1590 }
1591
1592 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1593 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1594 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1595 if (!ctrl_ctx) {
1596 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1597 __func__);
1598 return 0;
1599 }
1600
1601 ep_index = xhci_get_endpoint_index(&ep->desc);
1602 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1603 /* If the HC already knows the endpoint is disabled,
1604 * or the HCD has noted it is disabled, ignore this request
1605 */
1606 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1607 cpu_to_le32(EP_STATE_DISABLED)) ||
1608 le32_to_cpu(ctrl_ctx->drop_flags) &
1609 xhci_get_endpoint_flag(&ep->desc)) {
1610 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1611 __func__, ep);
1612 return 0;
1613 }
1614
1615 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1616 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1617
1618 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1619 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1620
1621 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1622 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1623 /* Update the last valid endpoint context, if we deleted the last one */
1624 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1625 LAST_CTX(last_ctx)) {
1626 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1627 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1628 }
1629 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1630
1631 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1632
1633 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1634 (unsigned int) ep->desc.bEndpointAddress,
1635 udev->slot_id,
1636 (unsigned int) new_drop_flags,
1637 (unsigned int) new_add_flags,
1638 (unsigned int) new_slot_info);
1639 return 0;
1640 }
1641
1642 /* Add an endpoint to a new possible bandwidth configuration for this device.
1643 * Only one call to this function is allowed per endpoint before
1644 * check_bandwidth() or reset_bandwidth() must be called.
1645 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1646 * add the endpoint to the schedule with possibly new parameters denoted by a
1647 * different endpoint descriptor in usb_host_endpoint.
1648 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1649 * not allowed.
1650 *
1651 * The USB core will not allow URBs to be queued to an endpoint until the
1652 * configuration or alt setting is installed in the device, so there's no need
1653 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1654 */
1655 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1656 struct usb_host_endpoint *ep)
1657 {
1658 struct xhci_hcd *xhci;
1659 struct xhci_container_ctx *in_ctx, *out_ctx;
1660 unsigned int ep_index;
1661 struct xhci_slot_ctx *slot_ctx;
1662 struct xhci_input_control_ctx *ctrl_ctx;
1663 u32 added_ctxs;
1664 unsigned int last_ctx;
1665 u32 new_add_flags, new_drop_flags, new_slot_info;
1666 struct xhci_virt_device *virt_dev;
1667 int ret = 0;
1668
1669 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1670 if (ret <= 0) {
1671 /* So we won't queue a reset ep command for a root hub */
1672 ep->hcpriv = NULL;
1673 return ret;
1674 }
1675 xhci = hcd_to_xhci(hcd);
1676 if (xhci->xhc_state & XHCI_STATE_DYING)
1677 return -ENODEV;
1678
1679 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1680 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1681 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1682 /* FIXME when we have to issue an evaluate endpoint command to
1683 * deal with ep0 max packet size changing once we get the
1684 * descriptors
1685 */
1686 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1687 __func__, added_ctxs);
1688 return 0;
1689 }
1690
1691 virt_dev = xhci->devs[udev->slot_id];
1692 in_ctx = virt_dev->in_ctx;
1693 out_ctx = virt_dev->out_ctx;
1694 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1695 if (!ctrl_ctx) {
1696 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1697 __func__);
1698 return 0;
1699 }
1700
1701 ep_index = xhci_get_endpoint_index(&ep->desc);
1702 /* If this endpoint is already in use, and the upper layers are trying
1703 * to add it again without dropping it, reject the addition.
1704 */
1705 if (virt_dev->eps[ep_index].ring &&
1706 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1707 xhci_get_endpoint_flag(&ep->desc))) {
1708 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1709 "without dropping it.\n",
1710 (unsigned int) ep->desc.bEndpointAddress);
1711 return -EINVAL;
1712 }
1713
1714 /* If the HCD has already noted the endpoint is enabled,
1715 * ignore this request.
1716 */
1717 if (le32_to_cpu(ctrl_ctx->add_flags) &
1718 xhci_get_endpoint_flag(&ep->desc)) {
1719 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1720 __func__, ep);
1721 return 0;
1722 }
1723
1724 /*
1725 * Configuration and alternate setting changes must be done in
1726 * process context, not interrupt context (or so documenation
1727 * for usb_set_interface() and usb_set_configuration() claim).
1728 */
1729 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1730 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1731 __func__, ep->desc.bEndpointAddress);
1732 return -ENOMEM;
1733 }
1734
1735 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1736 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1737
1738 /* If xhci_endpoint_disable() was called for this endpoint, but the
1739 * xHC hasn't been notified yet through the check_bandwidth() call,
1740 * this re-adds a new state for the endpoint from the new endpoint
1741 * descriptors. We must drop and re-add this endpoint, so we leave the
1742 * drop flags alone.
1743 */
1744 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1745
1746 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1747 /* Update the last valid endpoint context, if we just added one past */
1748 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1749 LAST_CTX(last_ctx)) {
1750 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1751 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1752 }
1753 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1754
1755 /* Store the usb_device pointer for later use */
1756 ep->hcpriv = udev;
1757
1758 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1759 (unsigned int) ep->desc.bEndpointAddress,
1760 udev->slot_id,
1761 (unsigned int) new_drop_flags,
1762 (unsigned int) new_add_flags,
1763 (unsigned int) new_slot_info);
1764 return 0;
1765 }
1766
1767 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1768 {
1769 struct xhci_input_control_ctx *ctrl_ctx;
1770 struct xhci_ep_ctx *ep_ctx;
1771 struct xhci_slot_ctx *slot_ctx;
1772 int i;
1773
1774 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1775 if (!ctrl_ctx) {
1776 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1777 __func__);
1778 return;
1779 }
1780
1781 /* When a device's add flag and drop flag are zero, any subsequent
1782 * configure endpoint command will leave that endpoint's state
1783 * untouched. Make sure we don't leave any old state in the input
1784 * endpoint contexts.
1785 */
1786 ctrl_ctx->drop_flags = 0;
1787 ctrl_ctx->add_flags = 0;
1788 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1789 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1790 /* Endpoint 0 is always valid */
1791 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1792 for (i = 1; i < 31; ++i) {
1793 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1794 ep_ctx->ep_info = 0;
1795 ep_ctx->ep_info2 = 0;
1796 ep_ctx->deq = 0;
1797 ep_ctx->tx_info = 0;
1798 }
1799 }
1800
1801 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1802 struct usb_device *udev, u32 *cmd_status)
1803 {
1804 int ret;
1805
1806 switch (*cmd_status) {
1807 case COMP_ENOMEM:
1808 dev_warn(&udev->dev, "Not enough host controller resources "
1809 "for new device state.\n");
1810 ret = -ENOMEM;
1811 /* FIXME: can we allocate more resources for the HC? */
1812 break;
1813 case COMP_BW_ERR:
1814 case COMP_2ND_BW_ERR:
1815 dev_warn(&udev->dev, "Not enough bandwidth "
1816 "for new device state.\n");
1817 ret = -ENOSPC;
1818 /* FIXME: can we go back to the old state? */
1819 break;
1820 case COMP_TRB_ERR:
1821 /* the HCD set up something wrong */
1822 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1823 "add flag = 1, "
1824 "and endpoint is not disabled.\n");
1825 ret = -EINVAL;
1826 break;
1827 case COMP_DEV_ERR:
1828 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1829 "configure command.\n");
1830 ret = -ENODEV;
1831 break;
1832 case COMP_SUCCESS:
1833 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1834 "Successful Endpoint Configure command");
1835 ret = 0;
1836 break;
1837 default:
1838 xhci_err(xhci, "ERROR: unexpected command completion "
1839 "code 0x%x.\n", *cmd_status);
1840 ret = -EINVAL;
1841 break;
1842 }
1843 return ret;
1844 }
1845
1846 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1847 struct usb_device *udev, u32 *cmd_status)
1848 {
1849 int ret;
1850 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1851
1852 switch (*cmd_status) {
1853 case COMP_EINVAL:
1854 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1855 "context command.\n");
1856 ret = -EINVAL;
1857 break;
1858 case COMP_EBADSLT:
1859 dev_warn(&udev->dev, "WARN: slot not enabled for"
1860 "evaluate context command.\n");
1861 ret = -EINVAL;
1862 break;
1863 case COMP_CTX_STATE:
1864 dev_warn(&udev->dev, "WARN: invalid context state for "
1865 "evaluate context command.\n");
1866 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1867 ret = -EINVAL;
1868 break;
1869 case COMP_DEV_ERR:
1870 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1871 "context command.\n");
1872 ret = -ENODEV;
1873 break;
1874 case COMP_MEL_ERR:
1875 /* Max Exit Latency too large error */
1876 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1877 ret = -EINVAL;
1878 break;
1879 case COMP_SUCCESS:
1880 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1881 "Successful evaluate context command");
1882 ret = 0;
1883 break;
1884 default:
1885 xhci_err(xhci, "ERROR: unexpected command completion "
1886 "code 0x%x.\n", *cmd_status);
1887 ret = -EINVAL;
1888 break;
1889 }
1890 return ret;
1891 }
1892
1893 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1894 struct xhci_input_control_ctx *ctrl_ctx)
1895 {
1896 u32 valid_add_flags;
1897 u32 valid_drop_flags;
1898
1899 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1900 * (bit 1). The default control endpoint is added during the Address
1901 * Device command and is never removed until the slot is disabled.
1902 */
1903 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1904 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1905
1906 /* Use hweight32 to count the number of ones in the add flags, or
1907 * number of endpoints added. Don't count endpoints that are changed
1908 * (both added and dropped).
1909 */
1910 return hweight32(valid_add_flags) -
1911 hweight32(valid_add_flags & valid_drop_flags);
1912 }
1913
1914 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1915 struct xhci_input_control_ctx *ctrl_ctx)
1916 {
1917 u32 valid_add_flags;
1918 u32 valid_drop_flags;
1919
1920 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1921 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1922
1923 return hweight32(valid_drop_flags) -
1924 hweight32(valid_add_flags & valid_drop_flags);
1925 }
1926
1927 /*
1928 * We need to reserve the new number of endpoints before the configure endpoint
1929 * command completes. We can't subtract the dropped endpoints from the number
1930 * of active endpoints until the command completes because we can oversubscribe
1931 * the host in this case:
1932 *
1933 * - the first configure endpoint command drops more endpoints than it adds
1934 * - a second configure endpoint command that adds more endpoints is queued
1935 * - the first configure endpoint command fails, so the config is unchanged
1936 * - the second command may succeed, even though there isn't enough resources
1937 *
1938 * Must be called with xhci->lock held.
1939 */
1940 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1941 struct xhci_input_control_ctx *ctrl_ctx)
1942 {
1943 u32 added_eps;
1944
1945 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1946 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1947 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1948 "Not enough ep ctxs: "
1949 "%u active, need to add %u, limit is %u.",
1950 xhci->num_active_eps, added_eps,
1951 xhci->limit_active_eps);
1952 return -ENOMEM;
1953 }
1954 xhci->num_active_eps += added_eps;
1955 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1956 "Adding %u ep ctxs, %u now active.", added_eps,
1957 xhci->num_active_eps);
1958 return 0;
1959 }
1960
1961 /*
1962 * The configure endpoint was failed by the xHC for some other reason, so we
1963 * need to revert the resources that failed configuration would have used.
1964 *
1965 * Must be called with xhci->lock held.
1966 */
1967 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1968 struct xhci_input_control_ctx *ctrl_ctx)
1969 {
1970 u32 num_failed_eps;
1971
1972 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1973 xhci->num_active_eps -= num_failed_eps;
1974 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1975 "Removing %u failed ep ctxs, %u now active.",
1976 num_failed_eps,
1977 xhci->num_active_eps);
1978 }
1979
1980 /*
1981 * Now that the command has completed, clean up the active endpoint count by
1982 * subtracting out the endpoints that were dropped (but not changed).
1983 *
1984 * Must be called with xhci->lock held.
1985 */
1986 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1987 struct xhci_input_control_ctx *ctrl_ctx)
1988 {
1989 u32 num_dropped_eps;
1990
1991 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1992 xhci->num_active_eps -= num_dropped_eps;
1993 if (num_dropped_eps)
1994 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1995 "Removing %u dropped ep ctxs, %u now active.",
1996 num_dropped_eps,
1997 xhci->num_active_eps);
1998 }
1999
2000 static unsigned int xhci_get_block_size(struct usb_device *udev)
2001 {
2002 switch (udev->speed) {
2003 case USB_SPEED_LOW:
2004 case USB_SPEED_FULL:
2005 return FS_BLOCK;
2006 case USB_SPEED_HIGH:
2007 return HS_BLOCK;
2008 case USB_SPEED_SUPER:
2009 return SS_BLOCK;
2010 case USB_SPEED_UNKNOWN:
2011 case USB_SPEED_WIRELESS:
2012 default:
2013 /* Should never happen */
2014 return 1;
2015 }
2016 }
2017
2018 static unsigned int
2019 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2020 {
2021 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2022 return LS_OVERHEAD;
2023 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2024 return FS_OVERHEAD;
2025 return HS_OVERHEAD;
2026 }
2027
2028 /* If we are changing a LS/FS device under a HS hub,
2029 * make sure (if we are activating a new TT) that the HS bus has enough
2030 * bandwidth for this new TT.
2031 */
2032 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2033 struct xhci_virt_device *virt_dev,
2034 int old_active_eps)
2035 {
2036 struct xhci_interval_bw_table *bw_table;
2037 struct xhci_tt_bw_info *tt_info;
2038
2039 /* Find the bandwidth table for the root port this TT is attached to. */
2040 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2041 tt_info = virt_dev->tt_info;
2042 /* If this TT already had active endpoints, the bandwidth for this TT
2043 * has already been added. Removing all periodic endpoints (and thus
2044 * making the TT enactive) will only decrease the bandwidth used.
2045 */
2046 if (old_active_eps)
2047 return 0;
2048 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2049 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2050 return -ENOMEM;
2051 return 0;
2052 }
2053 /* Not sure why we would have no new active endpoints...
2054 *
2055 * Maybe because of an Evaluate Context change for a hub update or a
2056 * control endpoint 0 max packet size change?
2057 * FIXME: skip the bandwidth calculation in that case.
2058 */
2059 return 0;
2060 }
2061
2062 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2063 struct xhci_virt_device *virt_dev)
2064 {
2065 unsigned int bw_reserved;
2066
2067 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2068 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2069 return -ENOMEM;
2070
2071 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2072 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2073 return -ENOMEM;
2074
2075 return 0;
2076 }
2077
2078 /*
2079 * This algorithm is a very conservative estimate of the worst-case scheduling
2080 * scenario for any one interval. The hardware dynamically schedules the
2081 * packets, so we can't tell which microframe could be the limiting factor in
2082 * the bandwidth scheduling. This only takes into account periodic endpoints.
2083 *
2084 * Obviously, we can't solve an NP complete problem to find the minimum worst
2085 * case scenario. Instead, we come up with an estimate that is no less than
2086 * the worst case bandwidth used for any one microframe, but may be an
2087 * over-estimate.
2088 *
2089 * We walk the requirements for each endpoint by interval, starting with the
2090 * smallest interval, and place packets in the schedule where there is only one
2091 * possible way to schedule packets for that interval. In order to simplify
2092 * this algorithm, we record the largest max packet size for each interval, and
2093 * assume all packets will be that size.
2094 *
2095 * For interval 0, we obviously must schedule all packets for each interval.
2096 * The bandwidth for interval 0 is just the amount of data to be transmitted
2097 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2098 * the number of packets).
2099 *
2100 * For interval 1, we have two possible microframes to schedule those packets
2101 * in. For this algorithm, if we can schedule the same number of packets for
2102 * each possible scheduling opportunity (each microframe), we will do so. The
2103 * remaining number of packets will be saved to be transmitted in the gaps in
2104 * the next interval's scheduling sequence.
2105 *
2106 * As we move those remaining packets to be scheduled with interval 2 packets,
2107 * we have to double the number of remaining packets to transmit. This is
2108 * because the intervals are actually powers of 2, and we would be transmitting
2109 * the previous interval's packets twice in this interval. We also have to be
2110 * sure that when we look at the largest max packet size for this interval, we
2111 * also look at the largest max packet size for the remaining packets and take
2112 * the greater of the two.
2113 *
2114 * The algorithm continues to evenly distribute packets in each scheduling
2115 * opportunity, and push the remaining packets out, until we get to the last
2116 * interval. Then those packets and their associated overhead are just added
2117 * to the bandwidth used.
2118 */
2119 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2120 struct xhci_virt_device *virt_dev,
2121 int old_active_eps)
2122 {
2123 unsigned int bw_reserved;
2124 unsigned int max_bandwidth;
2125 unsigned int bw_used;
2126 unsigned int block_size;
2127 struct xhci_interval_bw_table *bw_table;
2128 unsigned int packet_size = 0;
2129 unsigned int overhead = 0;
2130 unsigned int packets_transmitted = 0;
2131 unsigned int packets_remaining = 0;
2132 unsigned int i;
2133
2134 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2135 return xhci_check_ss_bw(xhci, virt_dev);
2136
2137 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2138 max_bandwidth = HS_BW_LIMIT;
2139 /* Convert percent of bus BW reserved to blocks reserved */
2140 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2141 } else {
2142 max_bandwidth = FS_BW_LIMIT;
2143 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2144 }
2145
2146 bw_table = virt_dev->bw_table;
2147 /* We need to translate the max packet size and max ESIT payloads into
2148 * the units the hardware uses.
2149 */
2150 block_size = xhci_get_block_size(virt_dev->udev);
2151
2152 /* If we are manipulating a LS/FS device under a HS hub, double check
2153 * that the HS bus has enough bandwidth if we are activing a new TT.
2154 */
2155 if (virt_dev->tt_info) {
2156 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2157 "Recalculating BW for rootport %u",
2158 virt_dev->real_port);
2159 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2160 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2161 "newly activated TT.\n");
2162 return -ENOMEM;
2163 }
2164 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2165 "Recalculating BW for TT slot %u port %u",
2166 virt_dev->tt_info->slot_id,
2167 virt_dev->tt_info->ttport);
2168 } else {
2169 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2170 "Recalculating BW for rootport %u",
2171 virt_dev->real_port);
2172 }
2173
2174 /* Add in how much bandwidth will be used for interval zero, or the
2175 * rounded max ESIT payload + number of packets * largest overhead.
2176 */
2177 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2178 bw_table->interval_bw[0].num_packets *
2179 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2180
2181 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2182 unsigned int bw_added;
2183 unsigned int largest_mps;
2184 unsigned int interval_overhead;
2185
2186 /*
2187 * How many packets could we transmit in this interval?
2188 * If packets didn't fit in the previous interval, we will need
2189 * to transmit that many packets twice within this interval.
2190 */
2191 packets_remaining = 2 * packets_remaining +
2192 bw_table->interval_bw[i].num_packets;
2193
2194 /* Find the largest max packet size of this or the previous
2195 * interval.
2196 */
2197 if (list_empty(&bw_table->interval_bw[i].endpoints))
2198 largest_mps = 0;
2199 else {
2200 struct xhci_virt_ep *virt_ep;
2201 struct list_head *ep_entry;
2202
2203 ep_entry = bw_table->interval_bw[i].endpoints.next;
2204 virt_ep = list_entry(ep_entry,
2205 struct xhci_virt_ep, bw_endpoint_list);
2206 /* Convert to blocks, rounding up */
2207 largest_mps = DIV_ROUND_UP(
2208 virt_ep->bw_info.max_packet_size,
2209 block_size);
2210 }
2211 if (largest_mps > packet_size)
2212 packet_size = largest_mps;
2213
2214 /* Use the larger overhead of this or the previous interval. */
2215 interval_overhead = xhci_get_largest_overhead(
2216 &bw_table->interval_bw[i]);
2217 if (interval_overhead > overhead)
2218 overhead = interval_overhead;
2219
2220 /* How many packets can we evenly distribute across
2221 * (1 << (i + 1)) possible scheduling opportunities?
2222 */
2223 packets_transmitted = packets_remaining >> (i + 1);
2224
2225 /* Add in the bandwidth used for those scheduled packets */
2226 bw_added = packets_transmitted * (overhead + packet_size);
2227
2228 /* How many packets do we have remaining to transmit? */
2229 packets_remaining = packets_remaining % (1 << (i + 1));
2230
2231 /* What largest max packet size should those packets have? */
2232 /* If we've transmitted all packets, don't carry over the
2233 * largest packet size.
2234 */
2235 if (packets_remaining == 0) {
2236 packet_size = 0;
2237 overhead = 0;
2238 } else if (packets_transmitted > 0) {
2239 /* Otherwise if we do have remaining packets, and we've
2240 * scheduled some packets in this interval, take the
2241 * largest max packet size from endpoints with this
2242 * interval.
2243 */
2244 packet_size = largest_mps;
2245 overhead = interval_overhead;
2246 }
2247 /* Otherwise carry over packet_size and overhead from the last
2248 * time we had a remainder.
2249 */
2250 bw_used += bw_added;
2251 if (bw_used > max_bandwidth) {
2252 xhci_warn(xhci, "Not enough bandwidth. "
2253 "Proposed: %u, Max: %u\n",
2254 bw_used, max_bandwidth);
2255 return -ENOMEM;
2256 }
2257 }
2258 /*
2259 * Ok, we know we have some packets left over after even-handedly
2260 * scheduling interval 15. We don't know which microframes they will
2261 * fit into, so we over-schedule and say they will be scheduled every
2262 * microframe.
2263 */
2264 if (packets_remaining > 0)
2265 bw_used += overhead + packet_size;
2266
2267 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2268 unsigned int port_index = virt_dev->real_port - 1;
2269
2270 /* OK, we're manipulating a HS device attached to a
2271 * root port bandwidth domain. Include the number of active TTs
2272 * in the bandwidth used.
2273 */
2274 bw_used += TT_HS_OVERHEAD *
2275 xhci->rh_bw[port_index].num_active_tts;
2276 }
2277
2278 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2279 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2280 "Available: %u " "percent",
2281 bw_used, max_bandwidth, bw_reserved,
2282 (max_bandwidth - bw_used - bw_reserved) * 100 /
2283 max_bandwidth);
2284
2285 bw_used += bw_reserved;
2286 if (bw_used > max_bandwidth) {
2287 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2288 bw_used, max_bandwidth);
2289 return -ENOMEM;
2290 }
2291
2292 bw_table->bw_used = bw_used;
2293 return 0;
2294 }
2295
2296 static bool xhci_is_async_ep(unsigned int ep_type)
2297 {
2298 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2299 ep_type != ISOC_IN_EP &&
2300 ep_type != INT_IN_EP);
2301 }
2302
2303 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2304 {
2305 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2306 }
2307
2308 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2309 {
2310 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2311
2312 if (ep_bw->ep_interval == 0)
2313 return SS_OVERHEAD_BURST +
2314 (ep_bw->mult * ep_bw->num_packets *
2315 (SS_OVERHEAD + mps));
2316 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2317 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2318 1 << ep_bw->ep_interval);
2319
2320 }
2321
2322 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2323 struct xhci_bw_info *ep_bw,
2324 struct xhci_interval_bw_table *bw_table,
2325 struct usb_device *udev,
2326 struct xhci_virt_ep *virt_ep,
2327 struct xhci_tt_bw_info *tt_info)
2328 {
2329 struct xhci_interval_bw *interval_bw;
2330 int normalized_interval;
2331
2332 if (xhci_is_async_ep(ep_bw->type))
2333 return;
2334
2335 if (udev->speed == USB_SPEED_SUPER) {
2336 if (xhci_is_sync_in_ep(ep_bw->type))
2337 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2338 xhci_get_ss_bw_consumed(ep_bw);
2339 else
2340 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2341 xhci_get_ss_bw_consumed(ep_bw);
2342 return;
2343 }
2344
2345 /* SuperSpeed endpoints never get added to intervals in the table, so
2346 * this check is only valid for HS/FS/LS devices.
2347 */
2348 if (list_empty(&virt_ep->bw_endpoint_list))
2349 return;
2350 /* For LS/FS devices, we need to translate the interval expressed in
2351 * microframes to frames.
2352 */
2353 if (udev->speed == USB_SPEED_HIGH)
2354 normalized_interval = ep_bw->ep_interval;
2355 else
2356 normalized_interval = ep_bw->ep_interval - 3;
2357
2358 if (normalized_interval == 0)
2359 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2360 interval_bw = &bw_table->interval_bw[normalized_interval];
2361 interval_bw->num_packets -= ep_bw->num_packets;
2362 switch (udev->speed) {
2363 case USB_SPEED_LOW:
2364 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2365 break;
2366 case USB_SPEED_FULL:
2367 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2368 break;
2369 case USB_SPEED_HIGH:
2370 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2371 break;
2372 case USB_SPEED_SUPER:
2373 case USB_SPEED_UNKNOWN:
2374 case USB_SPEED_WIRELESS:
2375 /* Should never happen because only LS/FS/HS endpoints will get
2376 * added to the endpoint list.
2377 */
2378 return;
2379 }
2380 if (tt_info)
2381 tt_info->active_eps -= 1;
2382 list_del_init(&virt_ep->bw_endpoint_list);
2383 }
2384
2385 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2386 struct xhci_bw_info *ep_bw,
2387 struct xhci_interval_bw_table *bw_table,
2388 struct usb_device *udev,
2389 struct xhci_virt_ep *virt_ep,
2390 struct xhci_tt_bw_info *tt_info)
2391 {
2392 struct xhci_interval_bw *interval_bw;
2393 struct xhci_virt_ep *smaller_ep;
2394 int normalized_interval;
2395
2396 if (xhci_is_async_ep(ep_bw->type))
2397 return;
2398
2399 if (udev->speed == USB_SPEED_SUPER) {
2400 if (xhci_is_sync_in_ep(ep_bw->type))
2401 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2402 xhci_get_ss_bw_consumed(ep_bw);
2403 else
2404 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2405 xhci_get_ss_bw_consumed(ep_bw);
2406 return;
2407 }
2408
2409 /* For LS/FS devices, we need to translate the interval expressed in
2410 * microframes to frames.
2411 */
2412 if (udev->speed == USB_SPEED_HIGH)
2413 normalized_interval = ep_bw->ep_interval;
2414 else
2415 normalized_interval = ep_bw->ep_interval - 3;
2416
2417 if (normalized_interval == 0)
2418 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2419 interval_bw = &bw_table->interval_bw[normalized_interval];
2420 interval_bw->num_packets += ep_bw->num_packets;
2421 switch (udev->speed) {
2422 case USB_SPEED_LOW:
2423 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2424 break;
2425 case USB_SPEED_FULL:
2426 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2427 break;
2428 case USB_SPEED_HIGH:
2429 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2430 break;
2431 case USB_SPEED_SUPER:
2432 case USB_SPEED_UNKNOWN:
2433 case USB_SPEED_WIRELESS:
2434 /* Should never happen because only LS/FS/HS endpoints will get
2435 * added to the endpoint list.
2436 */
2437 return;
2438 }
2439
2440 if (tt_info)
2441 tt_info->active_eps += 1;
2442 /* Insert the endpoint into the list, largest max packet size first. */
2443 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2444 bw_endpoint_list) {
2445 if (ep_bw->max_packet_size >=
2446 smaller_ep->bw_info.max_packet_size) {
2447 /* Add the new ep before the smaller endpoint */
2448 list_add_tail(&virt_ep->bw_endpoint_list,
2449 &smaller_ep->bw_endpoint_list);
2450 return;
2451 }
2452 }
2453 /* Add the new endpoint at the end of the list. */
2454 list_add_tail(&virt_ep->bw_endpoint_list,
2455 &interval_bw->endpoints);
2456 }
2457
2458 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2459 struct xhci_virt_device *virt_dev,
2460 int old_active_eps)
2461 {
2462 struct xhci_root_port_bw_info *rh_bw_info;
2463 if (!virt_dev->tt_info)
2464 return;
2465
2466 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2467 if (old_active_eps == 0 &&
2468 virt_dev->tt_info->active_eps != 0) {
2469 rh_bw_info->num_active_tts += 1;
2470 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2471 } else if (old_active_eps != 0 &&
2472 virt_dev->tt_info->active_eps == 0) {
2473 rh_bw_info->num_active_tts -= 1;
2474 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2475 }
2476 }
2477
2478 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2479 struct xhci_virt_device *virt_dev,
2480 struct xhci_container_ctx *in_ctx)
2481 {
2482 struct xhci_bw_info ep_bw_info[31];
2483 int i;
2484 struct xhci_input_control_ctx *ctrl_ctx;
2485 int old_active_eps = 0;
2486
2487 if (virt_dev->tt_info)
2488 old_active_eps = virt_dev->tt_info->active_eps;
2489
2490 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2491 if (!ctrl_ctx) {
2492 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2493 __func__);
2494 return -ENOMEM;
2495 }
2496
2497 for (i = 0; i < 31; i++) {
2498 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2499 continue;
2500
2501 /* Make a copy of the BW info in case we need to revert this */
2502 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2503 sizeof(ep_bw_info[i]));
2504 /* Drop the endpoint from the interval table if the endpoint is
2505 * being dropped or changed.
2506 */
2507 if (EP_IS_DROPPED(ctrl_ctx, i))
2508 xhci_drop_ep_from_interval_table(xhci,
2509 &virt_dev->eps[i].bw_info,
2510 virt_dev->bw_table,
2511 virt_dev->udev,
2512 &virt_dev->eps[i],
2513 virt_dev->tt_info);
2514 }
2515 /* Overwrite the information stored in the endpoints' bw_info */
2516 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2517 for (i = 0; i < 31; i++) {
2518 /* Add any changed or added endpoints to the interval table */
2519 if (EP_IS_ADDED(ctrl_ctx, i))
2520 xhci_add_ep_to_interval_table(xhci,
2521 &virt_dev->eps[i].bw_info,
2522 virt_dev->bw_table,
2523 virt_dev->udev,
2524 &virt_dev->eps[i],
2525 virt_dev->tt_info);
2526 }
2527
2528 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2529 /* Ok, this fits in the bandwidth we have.
2530 * Update the number of active TTs.
2531 */
2532 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2533 return 0;
2534 }
2535
2536 /* We don't have enough bandwidth for this, revert the stored info. */
2537 for (i = 0; i < 31; i++) {
2538 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2539 continue;
2540
2541 /* Drop the new copies of any added or changed endpoints from
2542 * the interval table.
2543 */
2544 if (EP_IS_ADDED(ctrl_ctx, i)) {
2545 xhci_drop_ep_from_interval_table(xhci,
2546 &virt_dev->eps[i].bw_info,
2547 virt_dev->bw_table,
2548 virt_dev->udev,
2549 &virt_dev->eps[i],
2550 virt_dev->tt_info);
2551 }
2552 /* Revert the endpoint back to its old information */
2553 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2554 sizeof(ep_bw_info[i]));
2555 /* Add any changed or dropped endpoints back into the table */
2556 if (EP_IS_DROPPED(ctrl_ctx, i))
2557 xhci_add_ep_to_interval_table(xhci,
2558 &virt_dev->eps[i].bw_info,
2559 virt_dev->bw_table,
2560 virt_dev->udev,
2561 &virt_dev->eps[i],
2562 virt_dev->tt_info);
2563 }
2564 return -ENOMEM;
2565 }
2566
2567
2568 /* Issue a configure endpoint command or evaluate context command
2569 * and wait for it to finish.
2570 */
2571 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2572 struct usb_device *udev,
2573 struct xhci_command *command,
2574 bool ctx_change, bool must_succeed)
2575 {
2576 int ret;
2577 int timeleft;
2578 unsigned long flags;
2579 struct xhci_container_ctx *in_ctx;
2580 struct xhci_input_control_ctx *ctrl_ctx;
2581 struct completion *cmd_completion;
2582 u32 *cmd_status;
2583 struct xhci_virt_device *virt_dev;
2584 union xhci_trb *cmd_trb;
2585
2586 spin_lock_irqsave(&xhci->lock, flags);
2587 virt_dev = xhci->devs[udev->slot_id];
2588
2589 if (command)
2590 in_ctx = command->in_ctx;
2591 else
2592 in_ctx = virt_dev->in_ctx;
2593 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2594 if (!ctrl_ctx) {
2595 spin_unlock_irqrestore(&xhci->lock, flags);
2596 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2597 __func__);
2598 return -ENOMEM;
2599 }
2600
2601 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2602 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2603 spin_unlock_irqrestore(&xhci->lock, flags);
2604 xhci_warn(xhci, "Not enough host resources, "
2605 "active endpoint contexts = %u\n",
2606 xhci->num_active_eps);
2607 return -ENOMEM;
2608 }
2609 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2610 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2611 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2612 xhci_free_host_resources(xhci, ctrl_ctx);
2613 spin_unlock_irqrestore(&xhci->lock, flags);
2614 xhci_warn(xhci, "Not enough bandwidth\n");
2615 return -ENOMEM;
2616 }
2617
2618 if (command) {
2619 cmd_completion = command->completion;
2620 cmd_status = &command->status;
2621 command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2622 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2623 } else {
2624 cmd_completion = &virt_dev->cmd_completion;
2625 cmd_status = &virt_dev->cmd_status;
2626 }
2627 init_completion(cmd_completion);
2628
2629 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2630 if (!ctx_change)
2631 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2632 udev->slot_id, must_succeed);
2633 else
2634 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2635 udev->slot_id, must_succeed);
2636 if (ret < 0) {
2637 if (command)
2638 list_del(&command->cmd_list);
2639 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2640 xhci_free_host_resources(xhci, ctrl_ctx);
2641 spin_unlock_irqrestore(&xhci->lock, flags);
2642 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2643 "FIXME allocate a new ring segment");
2644 return -ENOMEM;
2645 }
2646 xhci_ring_cmd_db(xhci);
2647 spin_unlock_irqrestore(&xhci->lock, flags);
2648
2649 /* Wait for the configure endpoint command to complete */
2650 timeleft = wait_for_completion_interruptible_timeout(
2651 cmd_completion,
2652 XHCI_CMD_DEFAULT_TIMEOUT);
2653 if (timeleft <= 0) {
2654 xhci_warn(xhci, "%s while waiting for %s command\n",
2655 timeleft == 0 ? "Timeout" : "Signal",
2656 ctx_change == 0 ?
2657 "configure endpoint" :
2658 "evaluate context");
2659 /* cancel the configure endpoint command */
2660 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2661 if (ret < 0)
2662 return ret;
2663 return -ETIME;
2664 }
2665
2666 if (!ctx_change)
2667 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2668 else
2669 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2670
2671 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2672 spin_lock_irqsave(&xhci->lock, flags);
2673 /* If the command failed, remove the reserved resources.
2674 * Otherwise, clean up the estimate to include dropped eps.
2675 */
2676 if (ret)
2677 xhci_free_host_resources(xhci, ctrl_ctx);
2678 else
2679 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2680 spin_unlock_irqrestore(&xhci->lock, flags);
2681 }
2682 return ret;
2683 }
2684
2685 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2686 struct xhci_virt_device *vdev, int i)
2687 {
2688 struct xhci_virt_ep *ep = &vdev->eps[i];
2689
2690 if (ep->ep_state & EP_HAS_STREAMS) {
2691 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2692 xhci_get_endpoint_address(i));
2693 xhci_free_stream_info(xhci, ep->stream_info);
2694 ep->stream_info = NULL;
2695 ep->ep_state &= ~EP_HAS_STREAMS;
2696 }
2697 }
2698
2699 /* Called after one or more calls to xhci_add_endpoint() or
2700 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2701 * to call xhci_reset_bandwidth().
2702 *
2703 * Since we are in the middle of changing either configuration or
2704 * installing a new alt setting, the USB core won't allow URBs to be
2705 * enqueued for any endpoint on the old config or interface. Nothing
2706 * else should be touching the xhci->devs[slot_id] structure, so we
2707 * don't need to take the xhci->lock for manipulating that.
2708 */
2709 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2710 {
2711 int i;
2712 int ret = 0;
2713 struct xhci_hcd *xhci;
2714 struct xhci_virt_device *virt_dev;
2715 struct xhci_input_control_ctx *ctrl_ctx;
2716 struct xhci_slot_ctx *slot_ctx;
2717
2718 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2719 if (ret <= 0)
2720 return ret;
2721 xhci = hcd_to_xhci(hcd);
2722 if (xhci->xhc_state & XHCI_STATE_DYING)
2723 return -ENODEV;
2724
2725 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2726 virt_dev = xhci->devs[udev->slot_id];
2727
2728 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2729 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2730 if (!ctrl_ctx) {
2731 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2732 __func__);
2733 return -ENOMEM;
2734 }
2735 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2736 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2737 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2738
2739 /* Don't issue the command if there's no endpoints to update. */
2740 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2741 ctrl_ctx->drop_flags == 0)
2742 return 0;
2743
2744 xhci_dbg(xhci, "New Input Control Context:\n");
2745 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2746 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2747 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2748
2749 ret = xhci_configure_endpoint(xhci, udev, NULL,
2750 false, false);
2751 if (ret) {
2752 /* Callee should call reset_bandwidth() */
2753 return ret;
2754 }
2755
2756 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2757 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2758 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2759
2760 /* Free any rings that were dropped, but not changed. */
2761 for (i = 1; i < 31; ++i) {
2762 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2763 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2764 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2765 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2766 }
2767 }
2768 xhci_zero_in_ctx(xhci, virt_dev);
2769 /*
2770 * Install any rings for completely new endpoints or changed endpoints,
2771 * and free or cache any old rings from changed endpoints.
2772 */
2773 for (i = 1; i < 31; ++i) {
2774 if (!virt_dev->eps[i].new_ring)
2775 continue;
2776 /* Only cache or free the old ring if it exists.
2777 * It may not if this is the first add of an endpoint.
2778 */
2779 if (virt_dev->eps[i].ring) {
2780 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2781 }
2782 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2783 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2784 virt_dev->eps[i].new_ring = NULL;
2785 }
2786
2787 return ret;
2788 }
2789
2790 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2791 {
2792 struct xhci_hcd *xhci;
2793 struct xhci_virt_device *virt_dev;
2794 int i, ret;
2795
2796 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2797 if (ret <= 0)
2798 return;
2799 xhci = hcd_to_xhci(hcd);
2800
2801 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2802 virt_dev = xhci->devs[udev->slot_id];
2803 /* Free any rings allocated for added endpoints */
2804 for (i = 0; i < 31; ++i) {
2805 if (virt_dev->eps[i].new_ring) {
2806 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2807 virt_dev->eps[i].new_ring = NULL;
2808 }
2809 }
2810 xhci_zero_in_ctx(xhci, virt_dev);
2811 }
2812
2813 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2814 struct xhci_container_ctx *in_ctx,
2815 struct xhci_container_ctx *out_ctx,
2816 struct xhci_input_control_ctx *ctrl_ctx,
2817 u32 add_flags, u32 drop_flags)
2818 {
2819 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2820 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2821 xhci_slot_copy(xhci, in_ctx, out_ctx);
2822 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2823
2824 xhci_dbg(xhci, "Input Context:\n");
2825 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2826 }
2827
2828 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2829 unsigned int slot_id, unsigned int ep_index,
2830 struct xhci_dequeue_state *deq_state)
2831 {
2832 struct xhci_input_control_ctx *ctrl_ctx;
2833 struct xhci_container_ctx *in_ctx;
2834 struct xhci_ep_ctx *ep_ctx;
2835 u32 added_ctxs;
2836 dma_addr_t addr;
2837
2838 in_ctx = xhci->devs[slot_id]->in_ctx;
2839 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2840 if (!ctrl_ctx) {
2841 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2842 __func__);
2843 return;
2844 }
2845
2846 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2847 xhci->devs[slot_id]->out_ctx, ep_index);
2848 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2849 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2850 deq_state->new_deq_ptr);
2851 if (addr == 0) {
2852 xhci_warn(xhci, "WARN Cannot submit config ep after "
2853 "reset ep command\n");
2854 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2855 deq_state->new_deq_seg,
2856 deq_state->new_deq_ptr);
2857 return;
2858 }
2859 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2860
2861 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2862 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2863 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2864 added_ctxs, added_ctxs);
2865 }
2866
2867 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2868 struct usb_device *udev, unsigned int ep_index)
2869 {
2870 struct xhci_dequeue_state deq_state;
2871 struct xhci_virt_ep *ep;
2872
2873 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2874 "Cleaning up stalled endpoint ring");
2875 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2876 /* We need to move the HW's dequeue pointer past this TD,
2877 * or it will attempt to resend it on the next doorbell ring.
2878 */
2879 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2880 ep_index, ep->stopped_stream, ep->stopped_td,
2881 &deq_state);
2882
2883 /* HW with the reset endpoint quirk will use the saved dequeue state to
2884 * issue a configure endpoint command later.
2885 */
2886 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2887 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2888 "Queueing new dequeue state");
2889 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2890 ep_index, ep->stopped_stream, &deq_state);
2891 } else {
2892 /* Better hope no one uses the input context between now and the
2893 * reset endpoint completion!
2894 * XXX: No idea how this hardware will react when stream rings
2895 * are enabled.
2896 */
2897 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2898 "Setting up input context for "
2899 "configure endpoint command");
2900 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2901 ep_index, &deq_state);
2902 }
2903 }
2904
2905 /* Deal with stalled endpoints. The core should have sent the control message
2906 * to clear the halt condition. However, we need to make the xHCI hardware
2907 * reset its sequence number, since a device will expect a sequence number of
2908 * zero after the halt condition is cleared.
2909 * Context: in_interrupt
2910 */
2911 void xhci_endpoint_reset(struct usb_hcd *hcd,
2912 struct usb_host_endpoint *ep)
2913 {
2914 struct xhci_hcd *xhci;
2915 struct usb_device *udev;
2916 unsigned int ep_index;
2917 unsigned long flags;
2918 int ret;
2919 struct xhci_virt_ep *virt_ep;
2920
2921 xhci = hcd_to_xhci(hcd);
2922 udev = (struct usb_device *) ep->hcpriv;
2923 /* Called with a root hub endpoint (or an endpoint that wasn't added
2924 * with xhci_add_endpoint()
2925 */
2926 if (!ep->hcpriv)
2927 return;
2928 ep_index = xhci_get_endpoint_index(&ep->desc);
2929 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2930 if (!virt_ep->stopped_td) {
2931 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2932 "Endpoint 0x%x not halted, refusing to reset.",
2933 ep->desc.bEndpointAddress);
2934 return;
2935 }
2936 if (usb_endpoint_xfer_control(&ep->desc)) {
2937 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2938 "Control endpoint stall already handled.");
2939 return;
2940 }
2941
2942 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2943 "Queueing reset endpoint command");
2944 spin_lock_irqsave(&xhci->lock, flags);
2945 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2946 /*
2947 * Can't change the ring dequeue pointer until it's transitioned to the
2948 * stopped state, which is only upon a successful reset endpoint
2949 * command. Better hope that last command worked!
2950 */
2951 if (!ret) {
2952 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2953 kfree(virt_ep->stopped_td);
2954 xhci_ring_cmd_db(xhci);
2955 }
2956 virt_ep->stopped_td = NULL;
2957 virt_ep->stopped_trb = NULL;
2958 virt_ep->stopped_stream = 0;
2959 spin_unlock_irqrestore(&xhci->lock, flags);
2960
2961 if (ret)
2962 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2963 }
2964
2965 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2966 struct usb_device *udev, struct usb_host_endpoint *ep,
2967 unsigned int slot_id)
2968 {
2969 int ret;
2970 unsigned int ep_index;
2971 unsigned int ep_state;
2972
2973 if (!ep)
2974 return -EINVAL;
2975 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2976 if (ret <= 0)
2977 return -EINVAL;
2978 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2979 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2980 " descriptor for ep 0x%x does not support streams\n",
2981 ep->desc.bEndpointAddress);
2982 return -EINVAL;
2983 }
2984
2985 ep_index = xhci_get_endpoint_index(&ep->desc);
2986 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2987 if (ep_state & EP_HAS_STREAMS ||
2988 ep_state & EP_GETTING_STREAMS) {
2989 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2990 "already has streams set up.\n",
2991 ep->desc.bEndpointAddress);
2992 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2993 "dynamic stream context array reallocation.\n");
2994 return -EINVAL;
2995 }
2996 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2997 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2998 "endpoint 0x%x; URBs are pending.\n",
2999 ep->desc.bEndpointAddress);
3000 return -EINVAL;
3001 }
3002 return 0;
3003 }
3004
3005 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3006 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3007 {
3008 unsigned int max_streams;
3009
3010 /* The stream context array size must be a power of two */
3011 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3012 /*
3013 * Find out how many primary stream array entries the host controller
3014 * supports. Later we may use secondary stream arrays (similar to 2nd
3015 * level page entries), but that's an optional feature for xHCI host
3016 * controllers. xHCs must support at least 4 stream IDs.
3017 */
3018 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3019 if (*num_stream_ctxs > max_streams) {
3020 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3021 max_streams);
3022 *num_stream_ctxs = max_streams;
3023 *num_streams = max_streams;
3024 }
3025 }
3026
3027 /* Returns an error code if one of the endpoint already has streams.
3028 * This does not change any data structures, it only checks and gathers
3029 * information.
3030 */
3031 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3032 struct usb_device *udev,
3033 struct usb_host_endpoint **eps, unsigned int num_eps,
3034 unsigned int *num_streams, u32 *changed_ep_bitmask)
3035 {
3036 unsigned int max_streams;
3037 unsigned int endpoint_flag;
3038 int i;
3039 int ret;
3040
3041 for (i = 0; i < num_eps; i++) {
3042 ret = xhci_check_streams_endpoint(xhci, udev,
3043 eps[i], udev->slot_id);
3044 if (ret < 0)
3045 return ret;
3046
3047 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3048 if (max_streams < (*num_streams - 1)) {
3049 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3050 eps[i]->desc.bEndpointAddress,
3051 max_streams);
3052 *num_streams = max_streams+1;
3053 }
3054
3055 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3056 if (*changed_ep_bitmask & endpoint_flag)
3057 return -EINVAL;
3058 *changed_ep_bitmask |= endpoint_flag;
3059 }
3060 return 0;
3061 }
3062
3063 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3064 struct usb_device *udev,
3065 struct usb_host_endpoint **eps, unsigned int num_eps)
3066 {
3067 u32 changed_ep_bitmask = 0;
3068 unsigned int slot_id;
3069 unsigned int ep_index;
3070 unsigned int ep_state;
3071 int i;
3072
3073 slot_id = udev->slot_id;
3074 if (!xhci->devs[slot_id])
3075 return 0;
3076
3077 for (i = 0; i < num_eps; i++) {
3078 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3079 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3080 /* Are streams already being freed for the endpoint? */
3081 if (ep_state & EP_GETTING_NO_STREAMS) {
3082 xhci_warn(xhci, "WARN Can't disable streams for "
3083 "endpoint 0x%x, "
3084 "streams are being disabled already\n",
3085 eps[i]->desc.bEndpointAddress);
3086 return 0;
3087 }
3088 /* Are there actually any streams to free? */
3089 if (!(ep_state & EP_HAS_STREAMS) &&
3090 !(ep_state & EP_GETTING_STREAMS)) {
3091 xhci_warn(xhci, "WARN Can't disable streams for "
3092 "endpoint 0x%x, "
3093 "streams are already disabled!\n",
3094 eps[i]->desc.bEndpointAddress);
3095 xhci_warn(xhci, "WARN xhci_free_streams() called "
3096 "with non-streams endpoint\n");
3097 return 0;
3098 }
3099 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3100 }
3101 return changed_ep_bitmask;
3102 }
3103
3104 /*
3105 * The USB device drivers use this function (though the HCD interface in USB
3106 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3107 * coordinate mass storage command queueing across multiple endpoints (basically
3108 * a stream ID == a task ID).
3109 *
3110 * Setting up streams involves allocating the same size stream context array
3111 * for each endpoint and issuing a configure endpoint command for all endpoints.
3112 *
3113 * Don't allow the call to succeed if one endpoint only supports one stream
3114 * (which means it doesn't support streams at all).
3115 *
3116 * Drivers may get less stream IDs than they asked for, if the host controller
3117 * hardware or endpoints claim they can't support the number of requested
3118 * stream IDs.
3119 */
3120 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3121 struct usb_host_endpoint **eps, unsigned int num_eps,
3122 unsigned int num_streams, gfp_t mem_flags)
3123 {
3124 int i, ret;
3125 struct xhci_hcd *xhci;
3126 struct xhci_virt_device *vdev;
3127 struct xhci_command *config_cmd;
3128 struct xhci_input_control_ctx *ctrl_ctx;
3129 unsigned int ep_index;
3130 unsigned int num_stream_ctxs;
3131 unsigned long flags;
3132 u32 changed_ep_bitmask = 0;
3133
3134 if (!eps)
3135 return -EINVAL;
3136
3137 /* Add one to the number of streams requested to account for
3138 * stream 0 that is reserved for xHCI usage.
3139 */
3140 num_streams += 1;
3141 xhci = hcd_to_xhci(hcd);
3142 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3143 num_streams);
3144
3145 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3146 if (HCC_MAX_PSA(xhci->hcc_params) < 4) {
3147 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3148 return -ENOSYS;
3149 }
3150
3151 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3152 if (!config_cmd) {
3153 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3154 return -ENOMEM;
3155 }
3156 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3157 if (!ctrl_ctx) {
3158 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3159 __func__);
3160 xhci_free_command(xhci, config_cmd);
3161 return -ENOMEM;
3162 }
3163
3164 /* Check to make sure all endpoints are not already configured for
3165 * streams. While we're at it, find the maximum number of streams that
3166 * all the endpoints will support and check for duplicate endpoints.
3167 */
3168 spin_lock_irqsave(&xhci->lock, flags);
3169 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3170 num_eps, &num_streams, &changed_ep_bitmask);
3171 if (ret < 0) {
3172 xhci_free_command(xhci, config_cmd);
3173 spin_unlock_irqrestore(&xhci->lock, flags);
3174 return ret;
3175 }
3176 if (num_streams <= 1) {
3177 xhci_warn(xhci, "WARN: endpoints can't handle "
3178 "more than one stream.\n");
3179 xhci_free_command(xhci, config_cmd);
3180 spin_unlock_irqrestore(&xhci->lock, flags);
3181 return -EINVAL;
3182 }
3183 vdev = xhci->devs[udev->slot_id];
3184 /* Mark each endpoint as being in transition, so
3185 * xhci_urb_enqueue() will reject all URBs.
3186 */
3187 for (i = 0; i < num_eps; i++) {
3188 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3189 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3190 }
3191 spin_unlock_irqrestore(&xhci->lock, flags);
3192
3193 /* Setup internal data structures and allocate HW data structures for
3194 * streams (but don't install the HW structures in the input context
3195 * until we're sure all memory allocation succeeded).
3196 */
3197 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3198 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3199 num_stream_ctxs, num_streams);
3200
3201 for (i = 0; i < num_eps; i++) {
3202 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3203 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3204 num_stream_ctxs,
3205 num_streams, mem_flags);
3206 if (!vdev->eps[ep_index].stream_info)
3207 goto cleanup;
3208 /* Set maxPstreams in endpoint context and update deq ptr to
3209 * point to stream context array. FIXME
3210 */
3211 }
3212
3213 /* Set up the input context for a configure endpoint command. */
3214 for (i = 0; i < num_eps; i++) {
3215 struct xhci_ep_ctx *ep_ctx;
3216
3217 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3218 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3219
3220 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3221 vdev->out_ctx, ep_index);
3222 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3223 vdev->eps[ep_index].stream_info);
3224 }
3225 /* Tell the HW to drop its old copy of the endpoint context info
3226 * and add the updated copy from the input context.
3227 */
3228 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3229 vdev->out_ctx, ctrl_ctx,
3230 changed_ep_bitmask, changed_ep_bitmask);
3231
3232 /* Issue and wait for the configure endpoint command */
3233 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3234 false, false);
3235
3236 /* xHC rejected the configure endpoint command for some reason, so we
3237 * leave the old ring intact and free our internal streams data
3238 * structure.
3239 */
3240 if (ret < 0)
3241 goto cleanup;
3242
3243 spin_lock_irqsave(&xhci->lock, flags);
3244 for (i = 0; i < num_eps; i++) {
3245 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3246 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3247 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3248 udev->slot_id, ep_index);
3249 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3250 }
3251 xhci_free_command(xhci, config_cmd);
3252 spin_unlock_irqrestore(&xhci->lock, flags);
3253
3254 /* Subtract 1 for stream 0, which drivers can't use */
3255 return num_streams - 1;
3256
3257 cleanup:
3258 /* If it didn't work, free the streams! */
3259 for (i = 0; i < num_eps; i++) {
3260 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3261 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3262 vdev->eps[ep_index].stream_info = NULL;
3263 /* FIXME Unset maxPstreams in endpoint context and
3264 * update deq ptr to point to normal string ring.
3265 */
3266 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3267 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3268 xhci_endpoint_zero(xhci, vdev, eps[i]);
3269 }
3270 xhci_free_command(xhci, config_cmd);
3271 return -ENOMEM;
3272 }
3273
3274 /* Transition the endpoint from using streams to being a "normal" endpoint
3275 * without streams.
3276 *
3277 * Modify the endpoint context state, submit a configure endpoint command,
3278 * and free all endpoint rings for streams if that completes successfully.
3279 */
3280 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3281 struct usb_host_endpoint **eps, unsigned int num_eps,
3282 gfp_t mem_flags)
3283 {
3284 int i, ret;
3285 struct xhci_hcd *xhci;
3286 struct xhci_virt_device *vdev;
3287 struct xhci_command *command;
3288 struct xhci_input_control_ctx *ctrl_ctx;
3289 unsigned int ep_index;
3290 unsigned long flags;
3291 u32 changed_ep_bitmask;
3292
3293 xhci = hcd_to_xhci(hcd);
3294 vdev = xhci->devs[udev->slot_id];
3295
3296 /* Set up a configure endpoint command to remove the streams rings */
3297 spin_lock_irqsave(&xhci->lock, flags);
3298 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3299 udev, eps, num_eps);
3300 if (changed_ep_bitmask == 0) {
3301 spin_unlock_irqrestore(&xhci->lock, flags);
3302 return -EINVAL;
3303 }
3304
3305 /* Use the xhci_command structure from the first endpoint. We may have
3306 * allocated too many, but the driver may call xhci_free_streams() for
3307 * each endpoint it grouped into one call to xhci_alloc_streams().
3308 */
3309 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3310 command = vdev->eps[ep_index].stream_info->free_streams_command;
3311 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3312 if (!ctrl_ctx) {
3313 spin_unlock_irqrestore(&xhci->lock, flags);
3314 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3315 __func__);
3316 return -EINVAL;
3317 }
3318
3319 for (i = 0; i < num_eps; i++) {
3320 struct xhci_ep_ctx *ep_ctx;
3321
3322 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3323 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3324 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3325 EP_GETTING_NO_STREAMS;
3326
3327 xhci_endpoint_copy(xhci, command->in_ctx,
3328 vdev->out_ctx, ep_index);
3329 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3330 &vdev->eps[ep_index]);
3331 }
3332 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3333 vdev->out_ctx, ctrl_ctx,
3334 changed_ep_bitmask, changed_ep_bitmask);
3335 spin_unlock_irqrestore(&xhci->lock, flags);
3336
3337 /* Issue and wait for the configure endpoint command,
3338 * which must succeed.
3339 */
3340 ret = xhci_configure_endpoint(xhci, udev, command,
3341 false, true);
3342
3343 /* xHC rejected the configure endpoint command for some reason, so we
3344 * leave the streams rings intact.
3345 */
3346 if (ret < 0)
3347 return ret;
3348
3349 spin_lock_irqsave(&xhci->lock, flags);
3350 for (i = 0; i < num_eps; i++) {
3351 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3352 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3353 vdev->eps[ep_index].stream_info = NULL;
3354 /* FIXME Unset maxPstreams in endpoint context and
3355 * update deq ptr to point to normal string ring.
3356 */
3357 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3358 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3359 }
3360 spin_unlock_irqrestore(&xhci->lock, flags);
3361
3362 return 0;
3363 }
3364
3365 /*
3366 * Deletes endpoint resources for endpoints that were active before a Reset
3367 * Device command, or a Disable Slot command. The Reset Device command leaves
3368 * the control endpoint intact, whereas the Disable Slot command deletes it.
3369 *
3370 * Must be called with xhci->lock held.
3371 */
3372 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3373 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3374 {
3375 int i;
3376 unsigned int num_dropped_eps = 0;
3377 unsigned int drop_flags = 0;
3378
3379 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3380 if (virt_dev->eps[i].ring) {
3381 drop_flags |= 1 << i;
3382 num_dropped_eps++;
3383 }
3384 }
3385 xhci->num_active_eps -= num_dropped_eps;
3386 if (num_dropped_eps)
3387 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3388 "Dropped %u ep ctxs, flags = 0x%x, "
3389 "%u now active.",
3390 num_dropped_eps, drop_flags,
3391 xhci->num_active_eps);
3392 }
3393
3394 /*
3395 * This submits a Reset Device Command, which will set the device state to 0,
3396 * set the device address to 0, and disable all the endpoints except the default
3397 * control endpoint. The USB core should come back and call
3398 * xhci_address_device(), and then re-set up the configuration. If this is
3399 * called because of a usb_reset_and_verify_device(), then the old alternate
3400 * settings will be re-installed through the normal bandwidth allocation
3401 * functions.
3402 *
3403 * Wait for the Reset Device command to finish. Remove all structures
3404 * associated with the endpoints that were disabled. Clear the input device
3405 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3406 *
3407 * If the virt_dev to be reset does not exist or does not match the udev,
3408 * it means the device is lost, possibly due to the xHC restore error and
3409 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3410 * re-allocate the device.
3411 */
3412 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3413 {
3414 int ret, i;
3415 unsigned long flags;
3416 struct xhci_hcd *xhci;
3417 unsigned int slot_id;
3418 struct xhci_virt_device *virt_dev;
3419 struct xhci_command *reset_device_cmd;
3420 int timeleft;
3421 int last_freed_endpoint;
3422 struct xhci_slot_ctx *slot_ctx;
3423 int old_active_eps = 0;
3424
3425 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3426 if (ret <= 0)
3427 return ret;
3428 xhci = hcd_to_xhci(hcd);
3429 slot_id = udev->slot_id;
3430 virt_dev = xhci->devs[slot_id];
3431 if (!virt_dev) {
3432 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3433 "not exist. Re-allocate the device\n", slot_id);
3434 ret = xhci_alloc_dev(hcd, udev);
3435 if (ret == 1)
3436 return 0;
3437 else
3438 return -EINVAL;
3439 }
3440
3441 if (virt_dev->udev != udev) {
3442 /* If the virt_dev and the udev does not match, this virt_dev
3443 * may belong to another udev.
3444 * Re-allocate the device.
3445 */
3446 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3447 "not match the udev. Re-allocate the device\n",
3448 slot_id);
3449 ret = xhci_alloc_dev(hcd, udev);
3450 if (ret == 1)
3451 return 0;
3452 else
3453 return -EINVAL;
3454 }
3455
3456 /* If device is not setup, there is no point in resetting it */
3457 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3458 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3459 SLOT_STATE_DISABLED)
3460 return 0;
3461
3462 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3463 /* Allocate the command structure that holds the struct completion.
3464 * Assume we're in process context, since the normal device reset
3465 * process has to wait for the device anyway. Storage devices are
3466 * reset as part of error handling, so use GFP_NOIO instead of
3467 * GFP_KERNEL.
3468 */
3469 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3470 if (!reset_device_cmd) {
3471 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3472 return -ENOMEM;
3473 }
3474
3475 /* Attempt to submit the Reset Device command to the command ring */
3476 spin_lock_irqsave(&xhci->lock, flags);
3477 reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3478
3479 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3480 ret = xhci_queue_reset_device(xhci, slot_id);
3481 if (ret) {
3482 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3483 list_del(&reset_device_cmd->cmd_list);
3484 spin_unlock_irqrestore(&xhci->lock, flags);
3485 goto command_cleanup;
3486 }
3487 xhci_ring_cmd_db(xhci);
3488 spin_unlock_irqrestore(&xhci->lock, flags);
3489
3490 /* Wait for the Reset Device command to finish */
3491 timeleft = wait_for_completion_interruptible_timeout(
3492 reset_device_cmd->completion,
3493 XHCI_CMD_DEFAULT_TIMEOUT);
3494 if (timeleft <= 0) {
3495 xhci_warn(xhci, "%s while waiting for reset device command\n",
3496 timeleft == 0 ? "Timeout" : "Signal");
3497 spin_lock_irqsave(&xhci->lock, flags);
3498 /* The timeout might have raced with the event ring handler, so
3499 * only delete from the list if the item isn't poisoned.
3500 */
3501 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3502 list_del(&reset_device_cmd->cmd_list);
3503 spin_unlock_irqrestore(&xhci->lock, flags);
3504 ret = -ETIME;
3505 goto command_cleanup;
3506 }
3507
3508 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3509 * unless we tried to reset a slot ID that wasn't enabled,
3510 * or the device wasn't in the addressed or configured state.
3511 */
3512 ret = reset_device_cmd->status;
3513 switch (ret) {
3514 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3515 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3516 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3517 slot_id,
3518 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3519 xhci_dbg(xhci, "Not freeing device rings.\n");
3520 /* Don't treat this as an error. May change my mind later. */
3521 ret = 0;
3522 goto command_cleanup;
3523 case COMP_SUCCESS:
3524 xhci_dbg(xhci, "Successful reset device command.\n");
3525 break;
3526 default:
3527 if (xhci_is_vendor_info_code(xhci, ret))
3528 break;
3529 xhci_warn(xhci, "Unknown completion code %u for "
3530 "reset device command.\n", ret);
3531 ret = -EINVAL;
3532 goto command_cleanup;
3533 }
3534
3535 /* Free up host controller endpoint resources */
3536 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3537 spin_lock_irqsave(&xhci->lock, flags);
3538 /* Don't delete the default control endpoint resources */
3539 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3540 spin_unlock_irqrestore(&xhci->lock, flags);
3541 }
3542
3543 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3544 last_freed_endpoint = 1;
3545 for (i = 1; i < 31; ++i) {
3546 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3547
3548 if (ep->ep_state & EP_HAS_STREAMS) {
3549 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3550 xhci_get_endpoint_address(i));
3551 xhci_free_stream_info(xhci, ep->stream_info);
3552 ep->stream_info = NULL;
3553 ep->ep_state &= ~EP_HAS_STREAMS;
3554 }
3555
3556 if (ep->ring) {
3557 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3558 last_freed_endpoint = i;
3559 }
3560 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3561 xhci_drop_ep_from_interval_table(xhci,
3562 &virt_dev->eps[i].bw_info,
3563 virt_dev->bw_table,
3564 udev,
3565 &virt_dev->eps[i],
3566 virt_dev->tt_info);
3567 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3568 }
3569 /* If necessary, update the number of active TTs on this root port */
3570 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3571
3572 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3573 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3574 ret = 0;
3575
3576 command_cleanup:
3577 xhci_free_command(xhci, reset_device_cmd);
3578 return ret;
3579 }
3580
3581 /*
3582 * At this point, the struct usb_device is about to go away, the device has
3583 * disconnected, and all traffic has been stopped and the endpoints have been
3584 * disabled. Free any HC data structures associated with that device.
3585 */
3586 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3587 {
3588 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3589 struct xhci_virt_device *virt_dev;
3590 unsigned long flags;
3591 u32 state;
3592 int i, ret;
3593
3594 #ifndef CONFIG_USB_DEFAULT_PERSIST
3595 /*
3596 * We called pm_runtime_get_noresume when the device was attached.
3597 * Decrement the counter here to allow controller to runtime suspend
3598 * if no devices remain.
3599 */
3600 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3601 pm_runtime_put_noidle(hcd->self.controller);
3602 #endif
3603
3604 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3605 /* If the host is halted due to driver unload, we still need to free the
3606 * device.
3607 */
3608 if (ret <= 0 && ret != -ENODEV)
3609 return;
3610
3611 virt_dev = xhci->devs[udev->slot_id];
3612
3613 /* Stop any wayward timer functions (which may grab the lock) */
3614 for (i = 0; i < 31; ++i) {
3615 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3616 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3617 }
3618
3619 spin_lock_irqsave(&xhci->lock, flags);
3620 /* Don't disable the slot if the host controller is dead. */
3621 state = readl(&xhci->op_regs->status);
3622 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3623 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3624 xhci_free_virt_device(xhci, udev->slot_id);
3625 spin_unlock_irqrestore(&xhci->lock, flags);
3626 return;
3627 }
3628
3629 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3630 spin_unlock_irqrestore(&xhci->lock, flags);
3631 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3632 return;
3633 }
3634 xhci_ring_cmd_db(xhci);
3635 spin_unlock_irqrestore(&xhci->lock, flags);
3636 /*
3637 * Event command completion handler will free any data structures
3638 * associated with the slot. XXX Can free sleep?
3639 */
3640 }
3641
3642 /*
3643 * Checks if we have enough host controller resources for the default control
3644 * endpoint.
3645 *
3646 * Must be called with xhci->lock held.
3647 */
3648 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3649 {
3650 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3651 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3652 "Not enough ep ctxs: "
3653 "%u active, need to add 1, limit is %u.",
3654 xhci->num_active_eps, xhci->limit_active_eps);
3655 return -ENOMEM;
3656 }
3657 xhci->num_active_eps += 1;
3658 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3659 "Adding 1 ep ctx, %u now active.",
3660 xhci->num_active_eps);
3661 return 0;
3662 }
3663
3664
3665 /*
3666 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3667 * timed out, or allocating memory failed. Returns 1 on success.
3668 */
3669 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3670 {
3671 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3672 unsigned long flags;
3673 int timeleft;
3674 int ret;
3675 union xhci_trb *cmd_trb;
3676
3677 spin_lock_irqsave(&xhci->lock, flags);
3678 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3679 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3680 if (ret) {
3681 spin_unlock_irqrestore(&xhci->lock, flags);
3682 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3683 return 0;
3684 }
3685 xhci_ring_cmd_db(xhci);
3686 spin_unlock_irqrestore(&xhci->lock, flags);
3687
3688 /* XXX: how much time for xHC slot assignment? */
3689 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3690 XHCI_CMD_DEFAULT_TIMEOUT);
3691 if (timeleft <= 0) {
3692 xhci_warn(xhci, "%s while waiting for a slot\n",
3693 timeleft == 0 ? "Timeout" : "Signal");
3694 /* cancel the enable slot request */
3695 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3696 }
3697
3698 if (!xhci->slot_id) {
3699 xhci_err(xhci, "Error while assigning device slot ID\n");
3700 return 0;
3701 }
3702
3703 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3704 spin_lock_irqsave(&xhci->lock, flags);
3705 ret = xhci_reserve_host_control_ep_resources(xhci);
3706 if (ret) {
3707 spin_unlock_irqrestore(&xhci->lock, flags);
3708 xhci_warn(xhci, "Not enough host resources, "
3709 "active endpoint contexts = %u\n",
3710 xhci->num_active_eps);
3711 goto disable_slot;
3712 }
3713 spin_unlock_irqrestore(&xhci->lock, flags);
3714 }
3715 /* Use GFP_NOIO, since this function can be called from
3716 * xhci_discover_or_reset_device(), which may be called as part of
3717 * mass storage driver error handling.
3718 */
3719 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3720 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3721 goto disable_slot;
3722 }
3723 udev->slot_id = xhci->slot_id;
3724
3725 #ifndef CONFIG_USB_DEFAULT_PERSIST
3726 /*
3727 * If resetting upon resume, we can't put the controller into runtime
3728 * suspend if there is a device attached.
3729 */
3730 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3731 pm_runtime_get_noresume(hcd->self.controller);
3732 #endif
3733
3734 /* Is this a LS or FS device under a HS hub? */
3735 /* Hub or peripherial? */
3736 return 1;
3737
3738 disable_slot:
3739 /* Disable slot, if we can do it without mem alloc */
3740 spin_lock_irqsave(&xhci->lock, flags);
3741 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3742 xhci_ring_cmd_db(xhci);
3743 spin_unlock_irqrestore(&xhci->lock, flags);
3744 return 0;
3745 }
3746
3747 /*
3748 * Issue an Address Device command and optionally send a corresponding
3749 * SetAddress request to the device.
3750 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3751 * we should only issue and wait on one address command at the same time.
3752 */
3753 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3754 enum xhci_setup_dev setup)
3755 {
3756 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3757 unsigned long flags;
3758 int timeleft;
3759 struct xhci_virt_device *virt_dev;
3760 int ret = 0;
3761 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3762 struct xhci_slot_ctx *slot_ctx;
3763 struct xhci_input_control_ctx *ctrl_ctx;
3764 u64 temp_64;
3765 union xhci_trb *cmd_trb;
3766
3767 if (!udev->slot_id) {
3768 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3769 "Bad Slot ID %d", udev->slot_id);
3770 return -EINVAL;
3771 }
3772
3773 virt_dev = xhci->devs[udev->slot_id];
3774
3775 if (WARN_ON(!virt_dev)) {
3776 /*
3777 * In plug/unplug torture test with an NEC controller,
3778 * a zero-dereference was observed once due to virt_dev = 0.
3779 * Print useful debug rather than crash if it is observed again!
3780 */
3781 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3782 udev->slot_id);
3783 return -EINVAL;
3784 }
3785
3786 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3787 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3788 if (!ctrl_ctx) {
3789 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3790 __func__);
3791 return -EINVAL;
3792 }
3793 /*
3794 * If this is the first Set Address since device plug-in or
3795 * virt_device realloaction after a resume with an xHCI power loss,
3796 * then set up the slot context.
3797 */
3798 if (!slot_ctx->dev_info)
3799 xhci_setup_addressable_virt_dev(xhci, udev);
3800 /* Otherwise, update the control endpoint ring enqueue pointer. */
3801 else
3802 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3803 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3804 ctrl_ctx->drop_flags = 0;
3805
3806 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3807 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3808 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3809 le32_to_cpu(slot_ctx->dev_info) >> 27);
3810
3811 spin_lock_irqsave(&xhci->lock, flags);
3812 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3813 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3814 udev->slot_id, setup);
3815 if (ret) {
3816 spin_unlock_irqrestore(&xhci->lock, flags);
3817 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3818 "FIXME: allocate a command ring segment");
3819 return ret;
3820 }
3821 xhci_ring_cmd_db(xhci);
3822 spin_unlock_irqrestore(&xhci->lock, flags);
3823
3824 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3825 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3826 XHCI_CMD_DEFAULT_TIMEOUT);
3827 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3828 * the SetAddress() "recovery interval" required by USB and aborting the
3829 * command on a timeout.
3830 */
3831 if (timeleft <= 0) {
3832 xhci_warn(xhci, "%s while waiting for setup %s command\n",
3833 timeleft == 0 ? "Timeout" : "Signal", act);
3834 /* cancel the address device command */
3835 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3836 if (ret < 0)
3837 return ret;
3838 return -ETIME;
3839 }
3840
3841 switch (virt_dev->cmd_status) {
3842 case COMP_CTX_STATE:
3843 case COMP_EBADSLT:
3844 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3845 act, udev->slot_id);
3846 ret = -EINVAL;
3847 break;
3848 case COMP_TX_ERR:
3849 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3850 ret = -EPROTO;
3851 break;
3852 case COMP_DEV_ERR:
3853 dev_warn(&udev->dev,
3854 "ERROR: Incompatible device for setup %s command\n", act);
3855 ret = -ENODEV;
3856 break;
3857 case COMP_SUCCESS:
3858 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3859 "Successful setup %s command", act);
3860 break;
3861 default:
3862 xhci_err(xhci,
3863 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3864 act, virt_dev->cmd_status);
3865 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3866 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3867 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3868 ret = -EINVAL;
3869 break;
3870 }
3871 if (ret) {
3872 return ret;
3873 }
3874 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3875 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3876 "Op regs DCBAA ptr = %#016llx", temp_64);
3877 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3878 "Slot ID %d dcbaa entry @%p = %#016llx",
3879 udev->slot_id,
3880 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3881 (unsigned long long)
3882 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3883 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3884 "Output Context DMA address = %#08llx",
3885 (unsigned long long)virt_dev->out_ctx->dma);
3886 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3887 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3888 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3889 le32_to_cpu(slot_ctx->dev_info) >> 27);
3890 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3891 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3892 /*
3893 * USB core uses address 1 for the roothubs, so we add one to the
3894 * address given back to us by the HC.
3895 */
3896 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3897 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3898 le32_to_cpu(slot_ctx->dev_info) >> 27);
3899 /* Zero the input context control for later use */
3900 ctrl_ctx->add_flags = 0;
3901 ctrl_ctx->drop_flags = 0;
3902
3903 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3904 "Internal device address = %d",
3905 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3906
3907 return 0;
3908 }
3909
3910 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3911 {
3912 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3913 }
3914
3915 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3916 {
3917 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3918 }
3919
3920 /*
3921 * Transfer the port index into real index in the HW port status
3922 * registers. Caculate offset between the port's PORTSC register
3923 * and port status base. Divide the number of per port register
3924 * to get the real index. The raw port number bases 1.
3925 */
3926 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3927 {
3928 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3929 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3930 __le32 __iomem *addr;
3931 int raw_port;
3932
3933 if (hcd->speed != HCD_USB3)
3934 addr = xhci->usb2_ports[port1 - 1];
3935 else
3936 addr = xhci->usb3_ports[port1 - 1];
3937
3938 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3939 return raw_port;
3940 }
3941
3942 /*
3943 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3944 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3945 */
3946 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3947 struct usb_device *udev, u16 max_exit_latency)
3948 {
3949 struct xhci_virt_device *virt_dev;
3950 struct xhci_command *command;
3951 struct xhci_input_control_ctx *ctrl_ctx;
3952 struct xhci_slot_ctx *slot_ctx;
3953 unsigned long flags;
3954 int ret;
3955
3956 spin_lock_irqsave(&xhci->lock, flags);
3957 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3958 spin_unlock_irqrestore(&xhci->lock, flags);
3959 return 0;
3960 }
3961
3962 /* Attempt to issue an Evaluate Context command to change the MEL. */
3963 virt_dev = xhci->devs[udev->slot_id];
3964 command = xhci->lpm_command;
3965 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3966 if (!ctrl_ctx) {
3967 spin_unlock_irqrestore(&xhci->lock, flags);
3968 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3969 __func__);
3970 return -ENOMEM;
3971 }
3972
3973 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3974 spin_unlock_irqrestore(&xhci->lock, flags);
3975
3976 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3977 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3978 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3979 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3980
3981 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3982 "Set up evaluate context for LPM MEL change.");
3983 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3984 xhci_dbg_ctx(xhci, command->in_ctx, 0);
3985
3986 /* Issue and wait for the evaluate context command. */
3987 ret = xhci_configure_endpoint(xhci, udev, command,
3988 true, true);
3989 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3990 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3991
3992 if (!ret) {
3993 spin_lock_irqsave(&xhci->lock, flags);
3994 virt_dev->current_mel = max_exit_latency;
3995 spin_unlock_irqrestore(&xhci->lock, flags);
3996 }
3997 return ret;
3998 }
3999
4000 #ifdef CONFIG_PM_RUNTIME
4001
4002 /* BESL to HIRD Encoding array for USB2 LPM */
4003 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4004 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4005
4006 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4007 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4008 struct usb_device *udev)
4009 {
4010 int u2del, besl, besl_host;
4011 int besl_device = 0;
4012 u32 field;
4013
4014 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4015 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4016
4017 if (field & USB_BESL_SUPPORT) {
4018 for (besl_host = 0; besl_host < 16; besl_host++) {
4019 if (xhci_besl_encoding[besl_host] >= u2del)
4020 break;
4021 }
4022 /* Use baseline BESL value as default */
4023 if (field & USB_BESL_BASELINE_VALID)
4024 besl_device = USB_GET_BESL_BASELINE(field);
4025 else if (field & USB_BESL_DEEP_VALID)
4026 besl_device = USB_GET_BESL_DEEP(field);
4027 } else {
4028 if (u2del <= 50)
4029 besl_host = 0;
4030 else
4031 besl_host = (u2del - 51) / 75 + 1;
4032 }
4033
4034 besl = besl_host + besl_device;
4035 if (besl > 15)
4036 besl = 15;
4037
4038 return besl;
4039 }
4040
4041 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4042 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4043 {
4044 u32 field;
4045 int l1;
4046 int besld = 0;
4047 int hirdm = 0;
4048
4049 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4050
4051 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4052 l1 = udev->l1_params.timeout / 256;
4053
4054 /* device has preferred BESLD */
4055 if (field & USB_BESL_DEEP_VALID) {
4056 besld = USB_GET_BESL_DEEP(field);
4057 hirdm = 1;
4058 }
4059
4060 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4061 }
4062
4063 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4064 struct usb_device *udev, int enable)
4065 {
4066 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4067 __le32 __iomem **port_array;
4068 __le32 __iomem *pm_addr, *hlpm_addr;
4069 u32 pm_val, hlpm_val, field;
4070 unsigned int port_num;
4071 unsigned long flags;
4072 int hird, exit_latency;
4073 int ret;
4074
4075 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4076 !udev->lpm_capable)
4077 return -EPERM;
4078
4079 if (!udev->parent || udev->parent->parent ||
4080 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4081 return -EPERM;
4082
4083 if (udev->usb2_hw_lpm_capable != 1)
4084 return -EPERM;
4085
4086 spin_lock_irqsave(&xhci->lock, flags);
4087
4088 port_array = xhci->usb2_ports;
4089 port_num = udev->portnum - 1;
4090 pm_addr = port_array[port_num] + PORTPMSC;
4091 pm_val = readl(pm_addr);
4092 hlpm_addr = port_array[port_num] + PORTHLPMC;
4093 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4094
4095 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4096 enable ? "enable" : "disable", port_num);
4097
4098 if (enable) {
4099 /* Host supports BESL timeout instead of HIRD */
4100 if (udev->usb2_hw_lpm_besl_capable) {
4101 /* if device doesn't have a preferred BESL value use a
4102 * default one which works with mixed HIRD and BESL
4103 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4104 */
4105 if ((field & USB_BESL_SUPPORT) &&
4106 (field & USB_BESL_BASELINE_VALID))
4107 hird = USB_GET_BESL_BASELINE(field);
4108 else
4109 hird = udev->l1_params.besl;
4110
4111 exit_latency = xhci_besl_encoding[hird];
4112 spin_unlock_irqrestore(&xhci->lock, flags);
4113
4114 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4115 * input context for link powermanagement evaluate
4116 * context commands. It is protected by hcd->bandwidth
4117 * mutex and is shared by all devices. We need to set
4118 * the max ext latency in USB 2 BESL LPM as well, so
4119 * use the same mutex and xhci_change_max_exit_latency()
4120 */
4121 mutex_lock(hcd->bandwidth_mutex);
4122 ret = xhci_change_max_exit_latency(xhci, udev,
4123 exit_latency);
4124 mutex_unlock(hcd->bandwidth_mutex);
4125
4126 if (ret < 0)
4127 return ret;
4128 spin_lock_irqsave(&xhci->lock, flags);
4129
4130 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4131 writel(hlpm_val, hlpm_addr);
4132 /* flush write */
4133 readl(hlpm_addr);
4134 } else {
4135 hird = xhci_calculate_hird_besl(xhci, udev);
4136 }
4137
4138 pm_val &= ~PORT_HIRD_MASK;
4139 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4140 writel(pm_val, pm_addr);
4141 pm_val = readl(pm_addr);
4142 pm_val |= PORT_HLE;
4143 writel(pm_val, pm_addr);
4144 /* flush write */
4145 readl(pm_addr);
4146 } else {
4147 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4148 writel(pm_val, pm_addr);
4149 /* flush write */
4150 readl(pm_addr);
4151 if (udev->usb2_hw_lpm_besl_capable) {
4152 spin_unlock_irqrestore(&xhci->lock, flags);
4153 mutex_lock(hcd->bandwidth_mutex);
4154 xhci_change_max_exit_latency(xhci, udev, 0);
4155 mutex_unlock(hcd->bandwidth_mutex);
4156 return 0;
4157 }
4158 }
4159
4160 spin_unlock_irqrestore(&xhci->lock, flags);
4161 return 0;
4162 }
4163
4164 /* check if a usb2 port supports a given extened capability protocol
4165 * only USB2 ports extended protocol capability values are cached.
4166 * Return 1 if capability is supported
4167 */
4168 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4169 unsigned capability)
4170 {
4171 u32 port_offset, port_count;
4172 int i;
4173
4174 for (i = 0; i < xhci->num_ext_caps; i++) {
4175 if (xhci->ext_caps[i] & capability) {
4176 /* port offsets starts at 1 */
4177 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4178 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4179 if (port >= port_offset &&
4180 port < port_offset + port_count)
4181 return 1;
4182 }
4183 }
4184 return 0;
4185 }
4186
4187 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4188 {
4189 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4190 int portnum = udev->portnum - 1;
4191
4192 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4193 !udev->lpm_capable)
4194 return 0;
4195
4196 /* we only support lpm for non-hub device connected to root hub yet */
4197 if (!udev->parent || udev->parent->parent ||
4198 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4199 return 0;
4200
4201 if (xhci->hw_lpm_support == 1 &&
4202 xhci_check_usb2_port_capability(
4203 xhci, portnum, XHCI_HLC)) {
4204 udev->usb2_hw_lpm_capable = 1;
4205 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4206 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4207 if (xhci_check_usb2_port_capability(xhci, portnum,
4208 XHCI_BLC))
4209 udev->usb2_hw_lpm_besl_capable = 1;
4210 }
4211
4212 return 0;
4213 }
4214
4215 #else
4216
4217 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4218 struct usb_device *udev, int enable)
4219 {
4220 return 0;
4221 }
4222
4223 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4224 {
4225 return 0;
4226 }
4227
4228 #endif /* CONFIG_PM_RUNTIME */
4229
4230 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4231
4232 #ifdef CONFIG_PM
4233 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4234 static unsigned long long xhci_service_interval_to_ns(
4235 struct usb_endpoint_descriptor *desc)
4236 {
4237 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4238 }
4239
4240 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4241 enum usb3_link_state state)
4242 {
4243 unsigned long long sel;
4244 unsigned long long pel;
4245 unsigned int max_sel_pel;
4246 char *state_name;
4247
4248 switch (state) {
4249 case USB3_LPM_U1:
4250 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4251 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4252 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4253 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4254 state_name = "U1";
4255 break;
4256 case USB3_LPM_U2:
4257 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4258 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4259 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4260 state_name = "U2";
4261 break;
4262 default:
4263 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4264 __func__);
4265 return USB3_LPM_DISABLED;
4266 }
4267
4268 if (sel <= max_sel_pel && pel <= max_sel_pel)
4269 return USB3_LPM_DEVICE_INITIATED;
4270
4271 if (sel > max_sel_pel)
4272 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4273 "due to long SEL %llu ms\n",
4274 state_name, sel);
4275 else
4276 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4277 "due to long PEL %llu ms\n",
4278 state_name, pel);
4279 return USB3_LPM_DISABLED;
4280 }
4281
4282 /* Returns the hub-encoded U1 timeout value.
4283 * The U1 timeout should be the maximum of the following values:
4284 * - For control endpoints, U1 system exit latency (SEL) * 3
4285 * - For bulk endpoints, U1 SEL * 5
4286 * - For interrupt endpoints:
4287 * - Notification EPs, U1 SEL * 3
4288 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4289 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4290 */
4291 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4292 struct usb_endpoint_descriptor *desc)
4293 {
4294 unsigned long long timeout_ns;
4295 int ep_type;
4296 int intr_type;
4297
4298 ep_type = usb_endpoint_type(desc);
4299 switch (ep_type) {
4300 case USB_ENDPOINT_XFER_CONTROL:
4301 timeout_ns = udev->u1_params.sel * 3;
4302 break;
4303 case USB_ENDPOINT_XFER_BULK:
4304 timeout_ns = udev->u1_params.sel * 5;
4305 break;
4306 case USB_ENDPOINT_XFER_INT:
4307 intr_type = usb_endpoint_interrupt_type(desc);
4308 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4309 timeout_ns = udev->u1_params.sel * 3;
4310 break;
4311 }
4312 /* Otherwise the calculation is the same as isoc eps */
4313 case USB_ENDPOINT_XFER_ISOC:
4314 timeout_ns = xhci_service_interval_to_ns(desc);
4315 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4316 if (timeout_ns < udev->u1_params.sel * 2)
4317 timeout_ns = udev->u1_params.sel * 2;
4318 break;
4319 default:
4320 return 0;
4321 }
4322
4323 /* The U1 timeout is encoded in 1us intervals. */
4324 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4325 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4326 if (timeout_ns == USB3_LPM_DISABLED)
4327 timeout_ns++;
4328
4329 /* If the necessary timeout value is bigger than what we can set in the
4330 * USB 3.0 hub, we have to disable hub-initiated U1.
4331 */
4332 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4333 return timeout_ns;
4334 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4335 "due to long timeout %llu ms\n", timeout_ns);
4336 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4337 }
4338
4339 /* Returns the hub-encoded U2 timeout value.
4340 * The U2 timeout should be the maximum of:
4341 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4342 * - largest bInterval of any active periodic endpoint (to avoid going
4343 * into lower power link states between intervals).
4344 * - the U2 Exit Latency of the device
4345 */
4346 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4347 struct usb_endpoint_descriptor *desc)
4348 {
4349 unsigned long long timeout_ns;
4350 unsigned long long u2_del_ns;
4351
4352 timeout_ns = 10 * 1000 * 1000;
4353
4354 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4355 (xhci_service_interval_to_ns(desc) > timeout_ns))
4356 timeout_ns = xhci_service_interval_to_ns(desc);
4357
4358 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4359 if (u2_del_ns > timeout_ns)
4360 timeout_ns = u2_del_ns;
4361
4362 /* The U2 timeout is encoded in 256us intervals */
4363 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4364 /* If the necessary timeout value is bigger than what we can set in the
4365 * USB 3.0 hub, we have to disable hub-initiated U2.
4366 */
4367 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4368 return timeout_ns;
4369 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4370 "due to long timeout %llu ms\n", timeout_ns);
4371 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4372 }
4373
4374 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4375 struct usb_device *udev,
4376 struct usb_endpoint_descriptor *desc,
4377 enum usb3_link_state state,
4378 u16 *timeout)
4379 {
4380 if (state == USB3_LPM_U1) {
4381 if (xhci->quirks & XHCI_INTEL_HOST)
4382 return xhci_calculate_intel_u1_timeout(udev, desc);
4383 } else {
4384 if (xhci->quirks & XHCI_INTEL_HOST)
4385 return xhci_calculate_intel_u2_timeout(udev, desc);
4386 }
4387
4388 return USB3_LPM_DISABLED;
4389 }
4390
4391 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4392 struct usb_device *udev,
4393 struct usb_endpoint_descriptor *desc,
4394 enum usb3_link_state state,
4395 u16 *timeout)
4396 {
4397 u16 alt_timeout;
4398
4399 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4400 desc, state, timeout);
4401
4402 /* If we found we can't enable hub-initiated LPM, or
4403 * the U1 or U2 exit latency was too high to allow
4404 * device-initiated LPM as well, just stop searching.
4405 */
4406 if (alt_timeout == USB3_LPM_DISABLED ||
4407 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4408 *timeout = alt_timeout;
4409 return -E2BIG;
4410 }
4411 if (alt_timeout > *timeout)
4412 *timeout = alt_timeout;
4413 return 0;
4414 }
4415
4416 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4417 struct usb_device *udev,
4418 struct usb_host_interface *alt,
4419 enum usb3_link_state state,
4420 u16 *timeout)
4421 {
4422 int j;
4423
4424 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4425 if (xhci_update_timeout_for_endpoint(xhci, udev,
4426 &alt->endpoint[j].desc, state, timeout))
4427 return -E2BIG;
4428 continue;
4429 }
4430 return 0;
4431 }
4432
4433 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4434 enum usb3_link_state state)
4435 {
4436 struct usb_device *parent;
4437 unsigned int num_hubs;
4438
4439 if (state == USB3_LPM_U2)
4440 return 0;
4441
4442 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4443 for (parent = udev->parent, num_hubs = 0; parent->parent;
4444 parent = parent->parent)
4445 num_hubs++;
4446
4447 if (num_hubs < 2)
4448 return 0;
4449
4450 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4451 " below second-tier hub.\n");
4452 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4453 "to decrease power consumption.\n");
4454 return -E2BIG;
4455 }
4456
4457 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4458 struct usb_device *udev,
4459 enum usb3_link_state state)
4460 {
4461 if (xhci->quirks & XHCI_INTEL_HOST)
4462 return xhci_check_intel_tier_policy(udev, state);
4463 return -EINVAL;
4464 }
4465
4466 /* Returns the U1 or U2 timeout that should be enabled.
4467 * If the tier check or timeout setting functions return with a non-zero exit
4468 * code, that means the timeout value has been finalized and we shouldn't look
4469 * at any more endpoints.
4470 */
4471 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4472 struct usb_device *udev, enum usb3_link_state state)
4473 {
4474 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4475 struct usb_host_config *config;
4476 char *state_name;
4477 int i;
4478 u16 timeout = USB3_LPM_DISABLED;
4479
4480 if (state == USB3_LPM_U1)
4481 state_name = "U1";
4482 else if (state == USB3_LPM_U2)
4483 state_name = "U2";
4484 else {
4485 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4486 state);
4487 return timeout;
4488 }
4489
4490 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4491 return timeout;
4492
4493 /* Gather some information about the currently installed configuration
4494 * and alternate interface settings.
4495 */
4496 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4497 state, &timeout))
4498 return timeout;
4499
4500 config = udev->actconfig;
4501 if (!config)
4502 return timeout;
4503
4504 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4505 struct usb_driver *driver;
4506 struct usb_interface *intf = config->interface[i];
4507
4508 if (!intf)
4509 continue;
4510
4511 /* Check if any currently bound drivers want hub-initiated LPM
4512 * disabled.
4513 */
4514 if (intf->dev.driver) {
4515 driver = to_usb_driver(intf->dev.driver);
4516 if (driver && driver->disable_hub_initiated_lpm) {
4517 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4518 "at request of driver %s\n",
4519 state_name, driver->name);
4520 return xhci_get_timeout_no_hub_lpm(udev, state);
4521 }
4522 }
4523
4524 /* Not sure how this could happen... */
4525 if (!intf->cur_altsetting)
4526 continue;
4527
4528 if (xhci_update_timeout_for_interface(xhci, udev,
4529 intf->cur_altsetting,
4530 state, &timeout))
4531 return timeout;
4532 }
4533 return timeout;
4534 }
4535
4536 static int calculate_max_exit_latency(struct usb_device *udev,
4537 enum usb3_link_state state_changed,
4538 u16 hub_encoded_timeout)
4539 {
4540 unsigned long long u1_mel_us = 0;
4541 unsigned long long u2_mel_us = 0;
4542 unsigned long long mel_us = 0;
4543 bool disabling_u1;
4544 bool disabling_u2;
4545 bool enabling_u1;
4546 bool enabling_u2;
4547
4548 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4549 hub_encoded_timeout == USB3_LPM_DISABLED);
4550 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4551 hub_encoded_timeout == USB3_LPM_DISABLED);
4552
4553 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4554 hub_encoded_timeout != USB3_LPM_DISABLED);
4555 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4556 hub_encoded_timeout != USB3_LPM_DISABLED);
4557
4558 /* If U1 was already enabled and we're not disabling it,
4559 * or we're going to enable U1, account for the U1 max exit latency.
4560 */
4561 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4562 enabling_u1)
4563 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4564 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4565 enabling_u2)
4566 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4567
4568 if (u1_mel_us > u2_mel_us)
4569 mel_us = u1_mel_us;
4570 else
4571 mel_us = u2_mel_us;
4572 /* xHCI host controller max exit latency field is only 16 bits wide. */
4573 if (mel_us > MAX_EXIT) {
4574 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4575 "is too big.\n", mel_us);
4576 return -E2BIG;
4577 }
4578 return mel_us;
4579 }
4580
4581 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4582 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4583 struct usb_device *udev, enum usb3_link_state state)
4584 {
4585 struct xhci_hcd *xhci;
4586 u16 hub_encoded_timeout;
4587 int mel;
4588 int ret;
4589
4590 xhci = hcd_to_xhci(hcd);
4591 /* The LPM timeout values are pretty host-controller specific, so don't
4592 * enable hub-initiated timeouts unless the vendor has provided
4593 * information about their timeout algorithm.
4594 */
4595 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4596 !xhci->devs[udev->slot_id])
4597 return USB3_LPM_DISABLED;
4598
4599 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4600 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4601 if (mel < 0) {
4602 /* Max Exit Latency is too big, disable LPM. */
4603 hub_encoded_timeout = USB3_LPM_DISABLED;
4604 mel = 0;
4605 }
4606
4607 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4608 if (ret)
4609 return ret;
4610 return hub_encoded_timeout;
4611 }
4612
4613 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4614 struct usb_device *udev, enum usb3_link_state state)
4615 {
4616 struct xhci_hcd *xhci;
4617 u16 mel;
4618 int ret;
4619
4620 xhci = hcd_to_xhci(hcd);
4621 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4622 !xhci->devs[udev->slot_id])
4623 return 0;
4624
4625 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4626 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4627 if (ret)
4628 return ret;
4629 return 0;
4630 }
4631 #else /* CONFIG_PM */
4632
4633 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4634 struct usb_device *udev, enum usb3_link_state state)
4635 {
4636 return USB3_LPM_DISABLED;
4637 }
4638
4639 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4640 struct usb_device *udev, enum usb3_link_state state)
4641 {
4642 return 0;
4643 }
4644 #endif /* CONFIG_PM */
4645
4646 /*-------------------------------------------------------------------------*/
4647
4648 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4649 * internal data structures for the device.
4650 */
4651 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4652 struct usb_tt *tt, gfp_t mem_flags)
4653 {
4654 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4655 struct xhci_virt_device *vdev;
4656 struct xhci_command *config_cmd;
4657 struct xhci_input_control_ctx *ctrl_ctx;
4658 struct xhci_slot_ctx *slot_ctx;
4659 unsigned long flags;
4660 unsigned think_time;
4661 int ret;
4662
4663 /* Ignore root hubs */
4664 if (!hdev->parent)
4665 return 0;
4666
4667 vdev = xhci->devs[hdev->slot_id];
4668 if (!vdev) {
4669 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4670 return -EINVAL;
4671 }
4672 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4673 if (!config_cmd) {
4674 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4675 return -ENOMEM;
4676 }
4677 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4678 if (!ctrl_ctx) {
4679 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4680 __func__);
4681 xhci_free_command(xhci, config_cmd);
4682 return -ENOMEM;
4683 }
4684
4685 spin_lock_irqsave(&xhci->lock, flags);
4686 if (hdev->speed == USB_SPEED_HIGH &&
4687 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4688 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4689 xhci_free_command(xhci, config_cmd);
4690 spin_unlock_irqrestore(&xhci->lock, flags);
4691 return -ENOMEM;
4692 }
4693
4694 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4695 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4696 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4697 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4698 if (tt->multi)
4699 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4700 if (xhci->hci_version > 0x95) {
4701 xhci_dbg(xhci, "xHCI version %x needs hub "
4702 "TT think time and number of ports\n",
4703 (unsigned int) xhci->hci_version);
4704 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4705 /* Set TT think time - convert from ns to FS bit times.
4706 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4707 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4708 *
4709 * xHCI 1.0: this field shall be 0 if the device is not a
4710 * High-spped hub.
4711 */
4712 think_time = tt->think_time;
4713 if (think_time != 0)
4714 think_time = (think_time / 666) - 1;
4715 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4716 slot_ctx->tt_info |=
4717 cpu_to_le32(TT_THINK_TIME(think_time));
4718 } else {
4719 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4720 "TT think time or number of ports\n",
4721 (unsigned int) xhci->hci_version);
4722 }
4723 slot_ctx->dev_state = 0;
4724 spin_unlock_irqrestore(&xhci->lock, flags);
4725
4726 xhci_dbg(xhci, "Set up %s for hub device.\n",
4727 (xhci->hci_version > 0x95) ?
4728 "configure endpoint" : "evaluate context");
4729 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4730 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4731
4732 /* Issue and wait for the configure endpoint or
4733 * evaluate context command.
4734 */
4735 if (xhci->hci_version > 0x95)
4736 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4737 false, false);
4738 else
4739 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4740 true, false);
4741
4742 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4743 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4744
4745 xhci_free_command(xhci, config_cmd);
4746 return ret;
4747 }
4748
4749 int xhci_get_frame(struct usb_hcd *hcd)
4750 {
4751 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4752 /* EHCI mods by the periodic size. Why? */
4753 return readl(&xhci->run_regs->microframe_index) >> 3;
4754 }
4755
4756 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4757 {
4758 struct xhci_hcd *xhci;
4759 struct device *dev = hcd->self.controller;
4760 int retval;
4761
4762 /* Accept arbitrarily long scatter-gather lists */
4763 hcd->self.sg_tablesize = ~0;
4764
4765 /* XHCI controllers don't stop the ep queue on short packets :| */
4766 hcd->self.no_stop_on_short = 1;
4767
4768 if (usb_hcd_is_primary_hcd(hcd)) {
4769 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4770 if (!xhci)
4771 return -ENOMEM;
4772 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4773 xhci->main_hcd = hcd;
4774 /* Mark the first roothub as being USB 2.0.
4775 * The xHCI driver will register the USB 3.0 roothub.
4776 */
4777 hcd->speed = HCD_USB2;
4778 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4779 /*
4780 * USB 2.0 roothub under xHCI has an integrated TT,
4781 * (rate matching hub) as opposed to having an OHCI/UHCI
4782 * companion controller.
4783 */
4784 hcd->has_tt = 1;
4785 } else {
4786 /* xHCI private pointer was set in xhci_pci_probe for the second
4787 * registered roothub.
4788 */
4789 xhci = hcd_to_xhci(hcd);
4790 /*
4791 * Support arbitrarily aligned sg-list entries on hosts without
4792 * TD fragment rules (which are currently unsupported).
4793 */
4794 if (xhci->hci_version < 0x100)
4795 hcd->self.no_sg_constraint = 1;
4796
4797 return 0;
4798 }
4799
4800 xhci->cap_regs = hcd->regs;
4801 xhci->op_regs = hcd->regs +
4802 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4803 xhci->run_regs = hcd->regs +
4804 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4805 /* Cache read-only capability registers */
4806 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4807 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4808 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4809 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4810 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4811 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4812 xhci_print_registers(xhci);
4813
4814 xhci->quirks = quirks;
4815
4816 get_quirks(dev, xhci);
4817
4818 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4819 * success event after a short transfer. This quirk will ignore such
4820 * spurious event.
4821 */
4822 if (xhci->hci_version > 0x96)
4823 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4824
4825 if (xhci->hci_version < 0x100)
4826 hcd->self.no_sg_constraint = 1;
4827
4828 /* Make sure the HC is halted. */
4829 retval = xhci_halt(xhci);
4830 if (retval)
4831 goto error;
4832
4833 xhci_dbg(xhci, "Resetting HCD\n");
4834 /* Reset the internal HC memory state and registers. */
4835 retval = xhci_reset(xhci);
4836 if (retval)
4837 goto error;
4838 xhci_dbg(xhci, "Reset complete\n");
4839
4840 /* Set dma_mask and coherent_dma_mask to 64-bits,
4841 * if xHC supports 64-bit addressing */
4842 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4843 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4844 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4845 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4846 }
4847
4848 xhci_dbg(xhci, "Calling HCD init\n");
4849 /* Initialize HCD and host controller data structures. */
4850 retval = xhci_init(hcd);
4851 if (retval)
4852 goto error;
4853 xhci_dbg(xhci, "Called HCD init\n");
4854 return 0;
4855 error:
4856 kfree(xhci);
4857 return retval;
4858 }
4859
4860 MODULE_DESCRIPTION(DRIVER_DESC);
4861 MODULE_AUTHOR(DRIVER_AUTHOR);
4862 MODULE_LICENSE("GPL");
4863
4864 static int __init xhci_hcd_init(void)
4865 {
4866 int retval;
4867
4868 retval = xhci_register_pci();
4869 if (retval < 0) {
4870 pr_debug("Problem registering PCI driver.\n");
4871 return retval;
4872 }
4873 retval = xhci_register_plat();
4874 if (retval < 0) {
4875 pr_debug("Problem registering platform driver.\n");
4876 goto unreg_pci;
4877 }
4878 /*
4879 * Check the compiler generated sizes of structures that must be laid
4880 * out in specific ways for hardware access.
4881 */
4882 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4883 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4884 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4885 /* xhci_device_control has eight fields, and also
4886 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4887 */
4888 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4889 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4890 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4891 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4892 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4893 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4894 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4895 return 0;
4896 unreg_pci:
4897 xhci_unregister_pci();
4898 return retval;
4899 }
4900 module_init(xhci_hcd_init);
4901
4902 static void __exit xhci_hcd_cleanup(void)
4903 {
4904 xhci_unregister_pci();
4905 xhci_unregister_plat();
4906 }
4907 module_exit(xhci_hcd_cleanup);
This page took 0.25569 seconds and 5 git commands to generate.