xhci: replace xhci_writel() with writel()
[deliverable/linux.git] / drivers / usb / host / xhci.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34
35 #define DRIVER_AUTHOR "Sarah Sharp"
36 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
37
38 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
39 static int link_quirk;
40 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
41 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
42
43 /* TODO: copied from ehci-hcd.c - can this be refactored? */
44 /*
45 * xhci_handshake - spin reading hc until handshake completes or fails
46 * @ptr: address of hc register to be read
47 * @mask: bits to look at in result of read
48 * @done: value of those bits when handshake succeeds
49 * @usec: timeout in microseconds
50 *
51 * Returns negative errno, or zero on success
52 *
53 * Success happens when the "mask" bits have the specified value (hardware
54 * handshake done). There are two failure modes: "usec" have passed (major
55 * hardware flakeout), or the register reads as all-ones (hardware removed).
56 */
57 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
58 u32 mask, u32 done, int usec)
59 {
60 u32 result;
61
62 do {
63 result = readl(ptr);
64 if (result == ~(u32)0) /* card removed */
65 return -ENODEV;
66 result &= mask;
67 if (result == done)
68 return 0;
69 udelay(1);
70 usec--;
71 } while (usec > 0);
72 return -ETIMEDOUT;
73 }
74
75 /*
76 * Disable interrupts and begin the xHCI halting process.
77 */
78 void xhci_quiesce(struct xhci_hcd *xhci)
79 {
80 u32 halted;
81 u32 cmd;
82 u32 mask;
83
84 mask = ~(XHCI_IRQS);
85 halted = readl(&xhci->op_regs->status) & STS_HALT;
86 if (!halted)
87 mask &= ~CMD_RUN;
88
89 cmd = readl(&xhci->op_regs->command);
90 cmd &= mask;
91 writel(cmd, &xhci->op_regs->command);
92 }
93
94 /*
95 * Force HC into halt state.
96 *
97 * Disable any IRQs and clear the run/stop bit.
98 * HC will complete any current and actively pipelined transactions, and
99 * should halt within 16 ms of the run/stop bit being cleared.
100 * Read HC Halted bit in the status register to see when the HC is finished.
101 */
102 int xhci_halt(struct xhci_hcd *xhci)
103 {
104 int ret;
105 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
106 xhci_quiesce(xhci);
107
108 ret = xhci_handshake(xhci, &xhci->op_regs->status,
109 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
110 if (!ret) {
111 xhci->xhc_state |= XHCI_STATE_HALTED;
112 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
113 } else
114 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
115 XHCI_MAX_HALT_USEC);
116 return ret;
117 }
118
119 /*
120 * Set the run bit and wait for the host to be running.
121 */
122 static int xhci_start(struct xhci_hcd *xhci)
123 {
124 u32 temp;
125 int ret;
126
127 temp = readl(&xhci->op_regs->command);
128 temp |= (CMD_RUN);
129 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
130 temp);
131 writel(temp, &xhci->op_regs->command);
132
133 /*
134 * Wait for the HCHalted Status bit to be 0 to indicate the host is
135 * running.
136 */
137 ret = xhci_handshake(xhci, &xhci->op_regs->status,
138 STS_HALT, 0, XHCI_MAX_HALT_USEC);
139 if (ret == -ETIMEDOUT)
140 xhci_err(xhci, "Host took too long to start, "
141 "waited %u microseconds.\n",
142 XHCI_MAX_HALT_USEC);
143 if (!ret)
144 xhci->xhc_state &= ~XHCI_STATE_HALTED;
145 return ret;
146 }
147
148 /*
149 * Reset a halted HC.
150 *
151 * This resets pipelines, timers, counters, state machines, etc.
152 * Transactions will be terminated immediately, and operational registers
153 * will be set to their defaults.
154 */
155 int xhci_reset(struct xhci_hcd *xhci)
156 {
157 u32 command;
158 u32 state;
159 int ret, i;
160
161 state = readl(&xhci->op_regs->status);
162 if ((state & STS_HALT) == 0) {
163 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
164 return 0;
165 }
166
167 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
168 command = readl(&xhci->op_regs->command);
169 command |= CMD_RESET;
170 writel(command, &xhci->op_regs->command);
171
172 ret = xhci_handshake(xhci, &xhci->op_regs->command,
173 CMD_RESET, 0, 10 * 1000 * 1000);
174 if (ret)
175 return ret;
176
177 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
178 "Wait for controller to be ready for doorbell rings");
179 /*
180 * xHCI cannot write to any doorbells or operational registers other
181 * than status until the "Controller Not Ready" flag is cleared.
182 */
183 ret = xhci_handshake(xhci, &xhci->op_regs->status,
184 STS_CNR, 0, 10 * 1000 * 1000);
185
186 for (i = 0; i < 2; ++i) {
187 xhci->bus_state[i].port_c_suspend = 0;
188 xhci->bus_state[i].suspended_ports = 0;
189 xhci->bus_state[i].resuming_ports = 0;
190 }
191
192 return ret;
193 }
194
195 #ifdef CONFIG_PCI
196 static int xhci_free_msi(struct xhci_hcd *xhci)
197 {
198 int i;
199
200 if (!xhci->msix_entries)
201 return -EINVAL;
202
203 for (i = 0; i < xhci->msix_count; i++)
204 if (xhci->msix_entries[i].vector)
205 free_irq(xhci->msix_entries[i].vector,
206 xhci_to_hcd(xhci));
207 return 0;
208 }
209
210 /*
211 * Set up MSI
212 */
213 static int xhci_setup_msi(struct xhci_hcd *xhci)
214 {
215 int ret;
216 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
217
218 ret = pci_enable_msi(pdev);
219 if (ret) {
220 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
221 "failed to allocate MSI entry");
222 return ret;
223 }
224
225 ret = request_irq(pdev->irq, xhci_msi_irq,
226 0, "xhci_hcd", xhci_to_hcd(xhci));
227 if (ret) {
228 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
229 "disable MSI interrupt");
230 pci_disable_msi(pdev);
231 }
232
233 return ret;
234 }
235
236 /*
237 * Free IRQs
238 * free all IRQs request
239 */
240 static void xhci_free_irq(struct xhci_hcd *xhci)
241 {
242 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
243 int ret;
244
245 /* return if using legacy interrupt */
246 if (xhci_to_hcd(xhci)->irq > 0)
247 return;
248
249 ret = xhci_free_msi(xhci);
250 if (!ret)
251 return;
252 if (pdev->irq > 0)
253 free_irq(pdev->irq, xhci_to_hcd(xhci));
254
255 return;
256 }
257
258 /*
259 * Set up MSI-X
260 */
261 static int xhci_setup_msix(struct xhci_hcd *xhci)
262 {
263 int i, ret = 0;
264 struct usb_hcd *hcd = xhci_to_hcd(xhci);
265 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
266
267 /*
268 * calculate number of msi-x vectors supported.
269 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
270 * with max number of interrupters based on the xhci HCSPARAMS1.
271 * - num_online_cpus: maximum msi-x vectors per CPUs core.
272 * Add additional 1 vector to ensure always available interrupt.
273 */
274 xhci->msix_count = min(num_online_cpus() + 1,
275 HCS_MAX_INTRS(xhci->hcs_params1));
276
277 xhci->msix_entries =
278 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
279 GFP_KERNEL);
280 if (!xhci->msix_entries) {
281 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
282 return -ENOMEM;
283 }
284
285 for (i = 0; i < xhci->msix_count; i++) {
286 xhci->msix_entries[i].entry = i;
287 xhci->msix_entries[i].vector = 0;
288 }
289
290 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
291 if (ret) {
292 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
293 "Failed to enable MSI-X");
294 goto free_entries;
295 }
296
297 for (i = 0; i < xhci->msix_count; i++) {
298 ret = request_irq(xhci->msix_entries[i].vector,
299 xhci_msi_irq,
300 0, "xhci_hcd", xhci_to_hcd(xhci));
301 if (ret)
302 goto disable_msix;
303 }
304
305 hcd->msix_enabled = 1;
306 return ret;
307
308 disable_msix:
309 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
310 xhci_free_irq(xhci);
311 pci_disable_msix(pdev);
312 free_entries:
313 kfree(xhci->msix_entries);
314 xhci->msix_entries = NULL;
315 return ret;
316 }
317
318 /* Free any IRQs and disable MSI-X */
319 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
320 {
321 struct usb_hcd *hcd = xhci_to_hcd(xhci);
322 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
323
324 xhci_free_irq(xhci);
325
326 if (xhci->msix_entries) {
327 pci_disable_msix(pdev);
328 kfree(xhci->msix_entries);
329 xhci->msix_entries = NULL;
330 } else {
331 pci_disable_msi(pdev);
332 }
333
334 hcd->msix_enabled = 0;
335 return;
336 }
337
338 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
339 {
340 int i;
341
342 if (xhci->msix_entries) {
343 for (i = 0; i < xhci->msix_count; i++)
344 synchronize_irq(xhci->msix_entries[i].vector);
345 }
346 }
347
348 static int xhci_try_enable_msi(struct usb_hcd *hcd)
349 {
350 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
351 struct pci_dev *pdev;
352 int ret;
353
354 /* The xhci platform device has set up IRQs through usb_add_hcd. */
355 if (xhci->quirks & XHCI_PLAT)
356 return 0;
357
358 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
359 /*
360 * Some Fresco Logic host controllers advertise MSI, but fail to
361 * generate interrupts. Don't even try to enable MSI.
362 */
363 if (xhci->quirks & XHCI_BROKEN_MSI)
364 goto legacy_irq;
365
366 /* unregister the legacy interrupt */
367 if (hcd->irq)
368 free_irq(hcd->irq, hcd);
369 hcd->irq = 0;
370
371 ret = xhci_setup_msix(xhci);
372 if (ret)
373 /* fall back to msi*/
374 ret = xhci_setup_msi(xhci);
375
376 if (!ret)
377 /* hcd->irq is 0, we have MSI */
378 return 0;
379
380 if (!pdev->irq) {
381 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
382 return -EINVAL;
383 }
384
385 legacy_irq:
386 /* fall back to legacy interrupt*/
387 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
388 hcd->irq_descr, hcd);
389 if (ret) {
390 xhci_err(xhci, "request interrupt %d failed\n",
391 pdev->irq);
392 return ret;
393 }
394 hcd->irq = pdev->irq;
395 return 0;
396 }
397
398 #else
399
400 static int xhci_try_enable_msi(struct usb_hcd *hcd)
401 {
402 return 0;
403 }
404
405 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
406 {
407 }
408
409 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
410 {
411 }
412
413 #endif
414
415 static void compliance_mode_recovery(unsigned long arg)
416 {
417 struct xhci_hcd *xhci;
418 struct usb_hcd *hcd;
419 u32 temp;
420 int i;
421
422 xhci = (struct xhci_hcd *)arg;
423
424 for (i = 0; i < xhci->num_usb3_ports; i++) {
425 temp = readl(xhci->usb3_ports[i]);
426 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
427 /*
428 * Compliance Mode Detected. Letting USB Core
429 * handle the Warm Reset
430 */
431 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
432 "Compliance mode detected->port %d",
433 i + 1);
434 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
435 "Attempting compliance mode recovery");
436 hcd = xhci->shared_hcd;
437
438 if (hcd->state == HC_STATE_SUSPENDED)
439 usb_hcd_resume_root_hub(hcd);
440
441 usb_hcd_poll_rh_status(hcd);
442 }
443 }
444
445 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
446 mod_timer(&xhci->comp_mode_recovery_timer,
447 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
448 }
449
450 /*
451 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
452 * that causes ports behind that hardware to enter compliance mode sometimes.
453 * The quirk creates a timer that polls every 2 seconds the link state of
454 * each host controller's port and recovers it by issuing a Warm reset
455 * if Compliance mode is detected, otherwise the port will become "dead" (no
456 * device connections or disconnections will be detected anymore). Becasue no
457 * status event is generated when entering compliance mode (per xhci spec),
458 * this quirk is needed on systems that have the failing hardware installed.
459 */
460 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
461 {
462 xhci->port_status_u0 = 0;
463 init_timer(&xhci->comp_mode_recovery_timer);
464
465 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
466 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
467 xhci->comp_mode_recovery_timer.expires = jiffies +
468 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
469
470 set_timer_slack(&xhci->comp_mode_recovery_timer,
471 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 add_timer(&xhci->comp_mode_recovery_timer);
473 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
474 "Compliance mode recovery timer initialized");
475 }
476
477 /*
478 * This function identifies the systems that have installed the SN65LVPE502CP
479 * USB3.0 re-driver and that need the Compliance Mode Quirk.
480 * Systems:
481 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
482 */
483 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
484 {
485 const char *dmi_product_name, *dmi_sys_vendor;
486
487 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
488 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
489 if (!dmi_product_name || !dmi_sys_vendor)
490 return false;
491
492 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
493 return false;
494
495 if (strstr(dmi_product_name, "Z420") ||
496 strstr(dmi_product_name, "Z620") ||
497 strstr(dmi_product_name, "Z820") ||
498 strstr(dmi_product_name, "Z1 Workstation"))
499 return true;
500
501 return false;
502 }
503
504 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
505 {
506 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
507 }
508
509
510 /*
511 * Initialize memory for HCD and xHC (one-time init).
512 *
513 * Program the PAGESIZE register, initialize the device context array, create
514 * device contexts (?), set up a command ring segment (or two?), create event
515 * ring (one for now).
516 */
517 int xhci_init(struct usb_hcd *hcd)
518 {
519 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
520 int retval = 0;
521
522 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
523 spin_lock_init(&xhci->lock);
524 if (xhci->hci_version == 0x95 && link_quirk) {
525 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
526 "QUIRK: Not clearing Link TRB chain bits.");
527 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
528 } else {
529 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
530 "xHCI doesn't need link TRB QUIRK");
531 }
532 retval = xhci_mem_init(xhci, GFP_KERNEL);
533 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
534
535 /* Initializing Compliance Mode Recovery Data If Needed */
536 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
537 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
538 compliance_mode_recovery_timer_init(xhci);
539 }
540
541 return retval;
542 }
543
544 /*-------------------------------------------------------------------------*/
545
546
547 static int xhci_run_finished(struct xhci_hcd *xhci)
548 {
549 if (xhci_start(xhci)) {
550 xhci_halt(xhci);
551 return -ENODEV;
552 }
553 xhci->shared_hcd->state = HC_STATE_RUNNING;
554 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
555
556 if (xhci->quirks & XHCI_NEC_HOST)
557 xhci_ring_cmd_db(xhci);
558
559 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
560 "Finished xhci_run for USB3 roothub");
561 return 0;
562 }
563
564 /*
565 * Start the HC after it was halted.
566 *
567 * This function is called by the USB core when the HC driver is added.
568 * Its opposite is xhci_stop().
569 *
570 * xhci_init() must be called once before this function can be called.
571 * Reset the HC, enable device slot contexts, program DCBAAP, and
572 * set command ring pointer and event ring pointer.
573 *
574 * Setup MSI-X vectors and enable interrupts.
575 */
576 int xhci_run(struct usb_hcd *hcd)
577 {
578 u32 temp;
579 u64 temp_64;
580 int ret;
581 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
582
583 /* Start the xHCI host controller running only after the USB 2.0 roothub
584 * is setup.
585 */
586
587 hcd->uses_new_polling = 1;
588 if (!usb_hcd_is_primary_hcd(hcd))
589 return xhci_run_finished(xhci);
590
591 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
592
593 ret = xhci_try_enable_msi(hcd);
594 if (ret)
595 return ret;
596
597 xhci_dbg(xhci, "Command ring memory map follows:\n");
598 xhci_debug_ring(xhci, xhci->cmd_ring);
599 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
600 xhci_dbg_cmd_ptrs(xhci);
601
602 xhci_dbg(xhci, "ERST memory map follows:\n");
603 xhci_dbg_erst(xhci, &xhci->erst);
604 xhci_dbg(xhci, "Event ring:\n");
605 xhci_debug_ring(xhci, xhci->event_ring);
606 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
607 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
608 temp_64 &= ~ERST_PTR_MASK;
609 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
610 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
611
612 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
613 "// Set the interrupt modulation register");
614 temp = readl(&xhci->ir_set->irq_control);
615 temp &= ~ER_IRQ_INTERVAL_MASK;
616 temp |= (u32) 160;
617 writel(temp, &xhci->ir_set->irq_control);
618
619 /* Set the HCD state before we enable the irqs */
620 temp = readl(&xhci->op_regs->command);
621 temp |= (CMD_EIE);
622 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
623 "// Enable interrupts, cmd = 0x%x.", temp);
624 writel(temp, &xhci->op_regs->command);
625
626 temp = readl(&xhci->ir_set->irq_pending);
627 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
628 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
629 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
630 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
631 xhci_print_ir_set(xhci, 0);
632
633 if (xhci->quirks & XHCI_NEC_HOST)
634 xhci_queue_vendor_command(xhci, 0, 0, 0,
635 TRB_TYPE(TRB_NEC_GET_FW));
636
637 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
638 "Finished xhci_run for USB2 roothub");
639 return 0;
640 }
641
642 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
643 {
644 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
645
646 spin_lock_irq(&xhci->lock);
647 xhci_halt(xhci);
648
649 /* The shared_hcd is going to be deallocated shortly (the USB core only
650 * calls this function when allocation fails in usb_add_hcd(), or
651 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
652 */
653 xhci->shared_hcd = NULL;
654 spin_unlock_irq(&xhci->lock);
655 }
656
657 /*
658 * Stop xHCI driver.
659 *
660 * This function is called by the USB core when the HC driver is removed.
661 * Its opposite is xhci_run().
662 *
663 * Disable device contexts, disable IRQs, and quiesce the HC.
664 * Reset the HC, finish any completed transactions, and cleanup memory.
665 */
666 void xhci_stop(struct usb_hcd *hcd)
667 {
668 u32 temp;
669 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
670
671 if (!usb_hcd_is_primary_hcd(hcd)) {
672 xhci_only_stop_hcd(xhci->shared_hcd);
673 return;
674 }
675
676 spin_lock_irq(&xhci->lock);
677 /* Make sure the xHC is halted for a USB3 roothub
678 * (xhci_stop() could be called as part of failed init).
679 */
680 xhci_halt(xhci);
681 xhci_reset(xhci);
682 spin_unlock_irq(&xhci->lock);
683
684 xhci_cleanup_msix(xhci);
685
686 /* Deleting Compliance Mode Recovery Timer */
687 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
688 (!(xhci_all_ports_seen_u0(xhci)))) {
689 del_timer_sync(&xhci->comp_mode_recovery_timer);
690 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
691 "%s: compliance mode recovery timer deleted",
692 __func__);
693 }
694
695 if (xhci->quirks & XHCI_AMD_PLL_FIX)
696 usb_amd_dev_put();
697
698 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
699 "// Disabling event ring interrupts");
700 temp = readl(&xhci->op_regs->status);
701 writel(temp & ~STS_EINT, &xhci->op_regs->status);
702 temp = readl(&xhci->ir_set->irq_pending);
703 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
704 xhci_print_ir_set(xhci, 0);
705
706 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
707 xhci_mem_cleanup(xhci);
708 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
709 "xhci_stop completed - status = %x",
710 readl(&xhci->op_regs->status));
711 }
712
713 /*
714 * Shutdown HC (not bus-specific)
715 *
716 * This is called when the machine is rebooting or halting. We assume that the
717 * machine will be powered off, and the HC's internal state will be reset.
718 * Don't bother to free memory.
719 *
720 * This will only ever be called with the main usb_hcd (the USB3 roothub).
721 */
722 void xhci_shutdown(struct usb_hcd *hcd)
723 {
724 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
725
726 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
727 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
728
729 spin_lock_irq(&xhci->lock);
730 xhci_halt(xhci);
731 /* Workaround for spurious wakeups at shutdown with HSW */
732 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
733 xhci_reset(xhci);
734 spin_unlock_irq(&xhci->lock);
735
736 xhci_cleanup_msix(xhci);
737
738 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
739 "xhci_shutdown completed - status = %x",
740 readl(&xhci->op_regs->status));
741
742 /* Yet another workaround for spurious wakeups at shutdown with HSW */
743 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
744 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
745 }
746
747 #ifdef CONFIG_PM
748 static void xhci_save_registers(struct xhci_hcd *xhci)
749 {
750 xhci->s3.command = readl(&xhci->op_regs->command);
751 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
752 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
753 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
754 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
755 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
756 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
757 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
758 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
759 }
760
761 static void xhci_restore_registers(struct xhci_hcd *xhci)
762 {
763 writel(xhci->s3.command, &xhci->op_regs->command);
764 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
765 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
766 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
767 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
768 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
769 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
770 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
771 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
772 }
773
774 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
775 {
776 u64 val_64;
777
778 /* step 2: initialize command ring buffer */
779 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
780 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
781 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
782 xhci->cmd_ring->dequeue) &
783 (u64) ~CMD_RING_RSVD_BITS) |
784 xhci->cmd_ring->cycle_state;
785 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
786 "// Setting command ring address to 0x%llx",
787 (long unsigned long) val_64);
788 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
789 }
790
791 /*
792 * The whole command ring must be cleared to zero when we suspend the host.
793 *
794 * The host doesn't save the command ring pointer in the suspend well, so we
795 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
796 * aligned, because of the reserved bits in the command ring dequeue pointer
797 * register. Therefore, we can't just set the dequeue pointer back in the
798 * middle of the ring (TRBs are 16-byte aligned).
799 */
800 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
801 {
802 struct xhci_ring *ring;
803 struct xhci_segment *seg;
804
805 ring = xhci->cmd_ring;
806 seg = ring->deq_seg;
807 do {
808 memset(seg->trbs, 0,
809 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
810 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
811 cpu_to_le32(~TRB_CYCLE);
812 seg = seg->next;
813 } while (seg != ring->deq_seg);
814
815 /* Reset the software enqueue and dequeue pointers */
816 ring->deq_seg = ring->first_seg;
817 ring->dequeue = ring->first_seg->trbs;
818 ring->enq_seg = ring->deq_seg;
819 ring->enqueue = ring->dequeue;
820
821 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
822 /*
823 * Ring is now zeroed, so the HW should look for change of ownership
824 * when the cycle bit is set to 1.
825 */
826 ring->cycle_state = 1;
827
828 /*
829 * Reset the hardware dequeue pointer.
830 * Yes, this will need to be re-written after resume, but we're paranoid
831 * and want to make sure the hardware doesn't access bogus memory
832 * because, say, the BIOS or an SMI started the host without changing
833 * the command ring pointers.
834 */
835 xhci_set_cmd_ring_deq(xhci);
836 }
837
838 /*
839 * Stop HC (not bus-specific)
840 *
841 * This is called when the machine transition into S3/S4 mode.
842 *
843 */
844 int xhci_suspend(struct xhci_hcd *xhci)
845 {
846 int rc = 0;
847 unsigned int delay = XHCI_MAX_HALT_USEC;
848 struct usb_hcd *hcd = xhci_to_hcd(xhci);
849 u32 command;
850
851 if (hcd->state != HC_STATE_SUSPENDED ||
852 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
853 return -EINVAL;
854
855 /* Don't poll the roothubs on bus suspend. */
856 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
857 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
858 del_timer_sync(&hcd->rh_timer);
859
860 spin_lock_irq(&xhci->lock);
861 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
862 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
863 /* step 1: stop endpoint */
864 /* skipped assuming that port suspend has done */
865
866 /* step 2: clear Run/Stop bit */
867 command = readl(&xhci->op_regs->command);
868 command &= ~CMD_RUN;
869 writel(command, &xhci->op_regs->command);
870
871 /* Some chips from Fresco Logic need an extraordinary delay */
872 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
873
874 if (xhci_handshake(xhci, &xhci->op_regs->status,
875 STS_HALT, STS_HALT, delay)) {
876 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
877 spin_unlock_irq(&xhci->lock);
878 return -ETIMEDOUT;
879 }
880 xhci_clear_command_ring(xhci);
881
882 /* step 3: save registers */
883 xhci_save_registers(xhci);
884
885 /* step 4: set CSS flag */
886 command = readl(&xhci->op_regs->command);
887 command |= CMD_CSS;
888 writel(command, &xhci->op_regs->command);
889 if (xhci_handshake(xhci, &xhci->op_regs->status,
890 STS_SAVE, 0, 10 * 1000)) {
891 xhci_warn(xhci, "WARN: xHC save state timeout\n");
892 spin_unlock_irq(&xhci->lock);
893 return -ETIMEDOUT;
894 }
895 spin_unlock_irq(&xhci->lock);
896
897 /*
898 * Deleting Compliance Mode Recovery Timer because the xHCI Host
899 * is about to be suspended.
900 */
901 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
902 (!(xhci_all_ports_seen_u0(xhci)))) {
903 del_timer_sync(&xhci->comp_mode_recovery_timer);
904 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
905 "%s: compliance mode recovery timer deleted",
906 __func__);
907 }
908
909 /* step 5: remove core well power */
910 /* synchronize irq when using MSI-X */
911 xhci_msix_sync_irqs(xhci);
912
913 return rc;
914 }
915
916 /*
917 * start xHC (not bus-specific)
918 *
919 * This is called when the machine transition from S3/S4 mode.
920 *
921 */
922 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
923 {
924 u32 command, temp = 0;
925 struct usb_hcd *hcd = xhci_to_hcd(xhci);
926 struct usb_hcd *secondary_hcd;
927 int retval = 0;
928 bool comp_timer_running = false;
929
930 /* Wait a bit if either of the roothubs need to settle from the
931 * transition into bus suspend.
932 */
933 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
934 time_before(jiffies,
935 xhci->bus_state[1].next_statechange))
936 msleep(100);
937
938 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
939 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
940
941 spin_lock_irq(&xhci->lock);
942 if (xhci->quirks & XHCI_RESET_ON_RESUME)
943 hibernated = true;
944
945 if (!hibernated) {
946 /* step 1: restore register */
947 xhci_restore_registers(xhci);
948 /* step 2: initialize command ring buffer */
949 xhci_set_cmd_ring_deq(xhci);
950 /* step 3: restore state and start state*/
951 /* step 3: set CRS flag */
952 command = readl(&xhci->op_regs->command);
953 command |= CMD_CRS;
954 writel(command, &xhci->op_regs->command);
955 if (xhci_handshake(xhci, &xhci->op_regs->status,
956 STS_RESTORE, 0, 10 * 1000)) {
957 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
958 spin_unlock_irq(&xhci->lock);
959 return -ETIMEDOUT;
960 }
961 temp = readl(&xhci->op_regs->status);
962 }
963
964 /* If restore operation fails, re-initialize the HC during resume */
965 if ((temp & STS_SRE) || hibernated) {
966
967 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
968 !(xhci_all_ports_seen_u0(xhci))) {
969 del_timer_sync(&xhci->comp_mode_recovery_timer);
970 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
971 "Compliance Mode Recovery Timer deleted!");
972 }
973
974 /* Let the USB core know _both_ roothubs lost power. */
975 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
976 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
977
978 xhci_dbg(xhci, "Stop HCD\n");
979 xhci_halt(xhci);
980 xhci_reset(xhci);
981 spin_unlock_irq(&xhci->lock);
982 xhci_cleanup_msix(xhci);
983
984 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
985 temp = readl(&xhci->op_regs->status);
986 writel(temp & ~STS_EINT, &xhci->op_regs->status);
987 temp = readl(&xhci->ir_set->irq_pending);
988 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
989 xhci_print_ir_set(xhci, 0);
990
991 xhci_dbg(xhci, "cleaning up memory\n");
992 xhci_mem_cleanup(xhci);
993 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
994 readl(&xhci->op_regs->status));
995
996 /* USB core calls the PCI reinit and start functions twice:
997 * first with the primary HCD, and then with the secondary HCD.
998 * If we don't do the same, the host will never be started.
999 */
1000 if (!usb_hcd_is_primary_hcd(hcd))
1001 secondary_hcd = hcd;
1002 else
1003 secondary_hcd = xhci->shared_hcd;
1004
1005 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1006 retval = xhci_init(hcd->primary_hcd);
1007 if (retval)
1008 return retval;
1009 comp_timer_running = true;
1010
1011 xhci_dbg(xhci, "Start the primary HCD\n");
1012 retval = xhci_run(hcd->primary_hcd);
1013 if (!retval) {
1014 xhci_dbg(xhci, "Start the secondary HCD\n");
1015 retval = xhci_run(secondary_hcd);
1016 }
1017 hcd->state = HC_STATE_SUSPENDED;
1018 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1019 goto done;
1020 }
1021
1022 /* step 4: set Run/Stop bit */
1023 command = readl(&xhci->op_regs->command);
1024 command |= CMD_RUN;
1025 writel(command, &xhci->op_regs->command);
1026 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
1027 0, 250 * 1000);
1028
1029 /* step 5: walk topology and initialize portsc,
1030 * portpmsc and portli
1031 */
1032 /* this is done in bus_resume */
1033
1034 /* step 6: restart each of the previously
1035 * Running endpoints by ringing their doorbells
1036 */
1037
1038 spin_unlock_irq(&xhci->lock);
1039
1040 done:
1041 if (retval == 0) {
1042 usb_hcd_resume_root_hub(hcd);
1043 usb_hcd_resume_root_hub(xhci->shared_hcd);
1044 }
1045
1046 /*
1047 * If system is subject to the Quirk, Compliance Mode Timer needs to
1048 * be re-initialized Always after a system resume. Ports are subject
1049 * to suffer the Compliance Mode issue again. It doesn't matter if
1050 * ports have entered previously to U0 before system's suspension.
1051 */
1052 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1053 compliance_mode_recovery_timer_init(xhci);
1054
1055 /* Re-enable port polling. */
1056 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1057 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1058 usb_hcd_poll_rh_status(hcd);
1059
1060 return retval;
1061 }
1062 #endif /* CONFIG_PM */
1063
1064 /*-------------------------------------------------------------------------*/
1065
1066 /**
1067 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1068 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1069 * value to right shift 1 for the bitmask.
1070 *
1071 * Index = (epnum * 2) + direction - 1,
1072 * where direction = 0 for OUT, 1 for IN.
1073 * For control endpoints, the IN index is used (OUT index is unused), so
1074 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1075 */
1076 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1077 {
1078 unsigned int index;
1079 if (usb_endpoint_xfer_control(desc))
1080 index = (unsigned int) (usb_endpoint_num(desc)*2);
1081 else
1082 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1083 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1084 return index;
1085 }
1086
1087 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1088 * address from the XHCI endpoint index.
1089 */
1090 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1091 {
1092 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1093 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1094 return direction | number;
1095 }
1096
1097 /* Find the flag for this endpoint (for use in the control context). Use the
1098 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1099 * bit 1, etc.
1100 */
1101 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1102 {
1103 return 1 << (xhci_get_endpoint_index(desc) + 1);
1104 }
1105
1106 /* Find the flag for this endpoint (for use in the control context). Use the
1107 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1108 * bit 1, etc.
1109 */
1110 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1111 {
1112 return 1 << (ep_index + 1);
1113 }
1114
1115 /* Compute the last valid endpoint context index. Basically, this is the
1116 * endpoint index plus one. For slot contexts with more than valid endpoint,
1117 * we find the most significant bit set in the added contexts flags.
1118 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1119 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1120 */
1121 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1122 {
1123 return fls(added_ctxs) - 1;
1124 }
1125
1126 /* Returns 1 if the arguments are OK;
1127 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1128 */
1129 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1130 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1131 const char *func) {
1132 struct xhci_hcd *xhci;
1133 struct xhci_virt_device *virt_dev;
1134
1135 if (!hcd || (check_ep && !ep) || !udev) {
1136 pr_debug("xHCI %s called with invalid args\n", func);
1137 return -EINVAL;
1138 }
1139 if (!udev->parent) {
1140 pr_debug("xHCI %s called for root hub\n", func);
1141 return 0;
1142 }
1143
1144 xhci = hcd_to_xhci(hcd);
1145 if (check_virt_dev) {
1146 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1147 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1148 func);
1149 return -EINVAL;
1150 }
1151
1152 virt_dev = xhci->devs[udev->slot_id];
1153 if (virt_dev->udev != udev) {
1154 xhci_dbg(xhci, "xHCI %s called with udev and "
1155 "virt_dev does not match\n", func);
1156 return -EINVAL;
1157 }
1158 }
1159
1160 if (xhci->xhc_state & XHCI_STATE_HALTED)
1161 return -ENODEV;
1162
1163 return 1;
1164 }
1165
1166 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1167 struct usb_device *udev, struct xhci_command *command,
1168 bool ctx_change, bool must_succeed);
1169
1170 /*
1171 * Full speed devices may have a max packet size greater than 8 bytes, but the
1172 * USB core doesn't know that until it reads the first 8 bytes of the
1173 * descriptor. If the usb_device's max packet size changes after that point,
1174 * we need to issue an evaluate context command and wait on it.
1175 */
1176 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1177 unsigned int ep_index, struct urb *urb)
1178 {
1179 struct xhci_container_ctx *in_ctx;
1180 struct xhci_container_ctx *out_ctx;
1181 struct xhci_input_control_ctx *ctrl_ctx;
1182 struct xhci_ep_ctx *ep_ctx;
1183 int max_packet_size;
1184 int hw_max_packet_size;
1185 int ret = 0;
1186
1187 out_ctx = xhci->devs[slot_id]->out_ctx;
1188 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1189 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1190 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1191 if (hw_max_packet_size != max_packet_size) {
1192 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1193 "Max Packet Size for ep 0 changed.");
1194 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1195 "Max packet size in usb_device = %d",
1196 max_packet_size);
1197 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1198 "Max packet size in xHCI HW = %d",
1199 hw_max_packet_size);
1200 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1201 "Issuing evaluate context command.");
1202
1203 /* Set up the input context flags for the command */
1204 /* FIXME: This won't work if a non-default control endpoint
1205 * changes max packet sizes.
1206 */
1207 in_ctx = xhci->devs[slot_id]->in_ctx;
1208 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1209 if (!ctrl_ctx) {
1210 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1211 __func__);
1212 return -ENOMEM;
1213 }
1214 /* Set up the modified control endpoint 0 */
1215 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1216 xhci->devs[slot_id]->out_ctx, ep_index);
1217
1218 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1219 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1220 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1221
1222 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1223 ctrl_ctx->drop_flags = 0;
1224
1225 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1226 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1227 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1228 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1229
1230 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1231 true, false);
1232
1233 /* Clean up the input context for later use by bandwidth
1234 * functions.
1235 */
1236 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1237 }
1238 return ret;
1239 }
1240
1241 /*
1242 * non-error returns are a promise to giveback() the urb later
1243 * we drop ownership so next owner (or urb unlink) can get it
1244 */
1245 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1246 {
1247 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1248 struct xhci_td *buffer;
1249 unsigned long flags;
1250 int ret = 0;
1251 unsigned int slot_id, ep_index;
1252 struct urb_priv *urb_priv;
1253 int size, i;
1254
1255 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1256 true, true, __func__) <= 0)
1257 return -EINVAL;
1258
1259 slot_id = urb->dev->slot_id;
1260 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1261
1262 if (!HCD_HW_ACCESSIBLE(hcd)) {
1263 if (!in_interrupt())
1264 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1265 ret = -ESHUTDOWN;
1266 goto exit;
1267 }
1268
1269 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1270 size = urb->number_of_packets;
1271 else
1272 size = 1;
1273
1274 urb_priv = kzalloc(sizeof(struct urb_priv) +
1275 size * sizeof(struct xhci_td *), mem_flags);
1276 if (!urb_priv)
1277 return -ENOMEM;
1278
1279 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1280 if (!buffer) {
1281 kfree(urb_priv);
1282 return -ENOMEM;
1283 }
1284
1285 for (i = 0; i < size; i++) {
1286 urb_priv->td[i] = buffer;
1287 buffer++;
1288 }
1289
1290 urb_priv->length = size;
1291 urb_priv->td_cnt = 0;
1292 urb->hcpriv = urb_priv;
1293
1294 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1295 /* Check to see if the max packet size for the default control
1296 * endpoint changed during FS device enumeration
1297 */
1298 if (urb->dev->speed == USB_SPEED_FULL) {
1299 ret = xhci_check_maxpacket(xhci, slot_id,
1300 ep_index, urb);
1301 if (ret < 0) {
1302 xhci_urb_free_priv(xhci, urb_priv);
1303 urb->hcpriv = NULL;
1304 return ret;
1305 }
1306 }
1307
1308 /* We have a spinlock and interrupts disabled, so we must pass
1309 * atomic context to this function, which may allocate memory.
1310 */
1311 spin_lock_irqsave(&xhci->lock, flags);
1312 if (xhci->xhc_state & XHCI_STATE_DYING)
1313 goto dying;
1314 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1315 slot_id, ep_index);
1316 if (ret)
1317 goto free_priv;
1318 spin_unlock_irqrestore(&xhci->lock, flags);
1319 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1320 spin_lock_irqsave(&xhci->lock, flags);
1321 if (xhci->xhc_state & XHCI_STATE_DYING)
1322 goto dying;
1323 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1324 EP_GETTING_STREAMS) {
1325 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1326 "is transitioning to using streams.\n");
1327 ret = -EINVAL;
1328 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1329 EP_GETTING_NO_STREAMS) {
1330 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1331 "is transitioning to "
1332 "not having streams.\n");
1333 ret = -EINVAL;
1334 } else {
1335 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1336 slot_id, ep_index);
1337 }
1338 if (ret)
1339 goto free_priv;
1340 spin_unlock_irqrestore(&xhci->lock, flags);
1341 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1342 spin_lock_irqsave(&xhci->lock, flags);
1343 if (xhci->xhc_state & XHCI_STATE_DYING)
1344 goto dying;
1345 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1346 slot_id, ep_index);
1347 if (ret)
1348 goto free_priv;
1349 spin_unlock_irqrestore(&xhci->lock, flags);
1350 } else {
1351 spin_lock_irqsave(&xhci->lock, flags);
1352 if (xhci->xhc_state & XHCI_STATE_DYING)
1353 goto dying;
1354 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1355 slot_id, ep_index);
1356 if (ret)
1357 goto free_priv;
1358 spin_unlock_irqrestore(&xhci->lock, flags);
1359 }
1360 exit:
1361 return ret;
1362 dying:
1363 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1364 "non-responsive xHCI host.\n",
1365 urb->ep->desc.bEndpointAddress, urb);
1366 ret = -ESHUTDOWN;
1367 free_priv:
1368 xhci_urb_free_priv(xhci, urb_priv);
1369 urb->hcpriv = NULL;
1370 spin_unlock_irqrestore(&xhci->lock, flags);
1371 return ret;
1372 }
1373
1374 /* Get the right ring for the given URB.
1375 * If the endpoint supports streams, boundary check the URB's stream ID.
1376 * If the endpoint doesn't support streams, return the singular endpoint ring.
1377 */
1378 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1379 struct urb *urb)
1380 {
1381 unsigned int slot_id;
1382 unsigned int ep_index;
1383 unsigned int stream_id;
1384 struct xhci_virt_ep *ep;
1385
1386 slot_id = urb->dev->slot_id;
1387 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1388 stream_id = urb->stream_id;
1389 ep = &xhci->devs[slot_id]->eps[ep_index];
1390 /* Common case: no streams */
1391 if (!(ep->ep_state & EP_HAS_STREAMS))
1392 return ep->ring;
1393
1394 if (stream_id == 0) {
1395 xhci_warn(xhci,
1396 "WARN: Slot ID %u, ep index %u has streams, "
1397 "but URB has no stream ID.\n",
1398 slot_id, ep_index);
1399 return NULL;
1400 }
1401
1402 if (stream_id < ep->stream_info->num_streams)
1403 return ep->stream_info->stream_rings[stream_id];
1404
1405 xhci_warn(xhci,
1406 "WARN: Slot ID %u, ep index %u has "
1407 "stream IDs 1 to %u allocated, "
1408 "but stream ID %u is requested.\n",
1409 slot_id, ep_index,
1410 ep->stream_info->num_streams - 1,
1411 stream_id);
1412 return NULL;
1413 }
1414
1415 /*
1416 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1417 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1418 * should pick up where it left off in the TD, unless a Set Transfer Ring
1419 * Dequeue Pointer is issued.
1420 *
1421 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1422 * the ring. Since the ring is a contiguous structure, they can't be physically
1423 * removed. Instead, there are two options:
1424 *
1425 * 1) If the HC is in the middle of processing the URB to be canceled, we
1426 * simply move the ring's dequeue pointer past those TRBs using the Set
1427 * Transfer Ring Dequeue Pointer command. This will be the common case,
1428 * when drivers timeout on the last submitted URB and attempt to cancel.
1429 *
1430 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1431 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1432 * HC will need to invalidate the any TRBs it has cached after the stop
1433 * endpoint command, as noted in the xHCI 0.95 errata.
1434 *
1435 * 3) The TD may have completed by the time the Stop Endpoint Command
1436 * completes, so software needs to handle that case too.
1437 *
1438 * This function should protect against the TD enqueueing code ringing the
1439 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1440 * It also needs to account for multiple cancellations on happening at the same
1441 * time for the same endpoint.
1442 *
1443 * Note that this function can be called in any context, or so says
1444 * usb_hcd_unlink_urb()
1445 */
1446 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1447 {
1448 unsigned long flags;
1449 int ret, i;
1450 u32 temp;
1451 struct xhci_hcd *xhci;
1452 struct urb_priv *urb_priv;
1453 struct xhci_td *td;
1454 unsigned int ep_index;
1455 struct xhci_ring *ep_ring;
1456 struct xhci_virt_ep *ep;
1457
1458 xhci = hcd_to_xhci(hcd);
1459 spin_lock_irqsave(&xhci->lock, flags);
1460 /* Make sure the URB hasn't completed or been unlinked already */
1461 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1462 if (ret || !urb->hcpriv)
1463 goto done;
1464 temp = readl(&xhci->op_regs->status);
1465 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1466 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1467 "HW died, freeing TD.");
1468 urb_priv = urb->hcpriv;
1469 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1470 td = urb_priv->td[i];
1471 if (!list_empty(&td->td_list))
1472 list_del_init(&td->td_list);
1473 if (!list_empty(&td->cancelled_td_list))
1474 list_del_init(&td->cancelled_td_list);
1475 }
1476
1477 usb_hcd_unlink_urb_from_ep(hcd, urb);
1478 spin_unlock_irqrestore(&xhci->lock, flags);
1479 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1480 xhci_urb_free_priv(xhci, urb_priv);
1481 return ret;
1482 }
1483 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1484 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1485 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1486 "Ep 0x%x: URB %p to be canceled on "
1487 "non-responsive xHCI host.",
1488 urb->ep->desc.bEndpointAddress, urb);
1489 /* Let the stop endpoint command watchdog timer (which set this
1490 * state) finish cleaning up the endpoint TD lists. We must
1491 * have caught it in the middle of dropping a lock and giving
1492 * back an URB.
1493 */
1494 goto done;
1495 }
1496
1497 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1498 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1499 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1500 if (!ep_ring) {
1501 ret = -EINVAL;
1502 goto done;
1503 }
1504
1505 urb_priv = urb->hcpriv;
1506 i = urb_priv->td_cnt;
1507 if (i < urb_priv->length)
1508 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1509 "Cancel URB %p, dev %s, ep 0x%x, "
1510 "starting at offset 0x%llx",
1511 urb, urb->dev->devpath,
1512 urb->ep->desc.bEndpointAddress,
1513 (unsigned long long) xhci_trb_virt_to_dma(
1514 urb_priv->td[i]->start_seg,
1515 urb_priv->td[i]->first_trb));
1516
1517 for (; i < urb_priv->length; i++) {
1518 td = urb_priv->td[i];
1519 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1520 }
1521
1522 /* Queue a stop endpoint command, but only if this is
1523 * the first cancellation to be handled.
1524 */
1525 if (!(ep->ep_state & EP_HALT_PENDING)) {
1526 ep->ep_state |= EP_HALT_PENDING;
1527 ep->stop_cmds_pending++;
1528 ep->stop_cmd_timer.expires = jiffies +
1529 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1530 add_timer(&ep->stop_cmd_timer);
1531 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1532 xhci_ring_cmd_db(xhci);
1533 }
1534 done:
1535 spin_unlock_irqrestore(&xhci->lock, flags);
1536 return ret;
1537 }
1538
1539 /* Drop an endpoint from a new bandwidth configuration for this device.
1540 * Only one call to this function is allowed per endpoint before
1541 * check_bandwidth() or reset_bandwidth() must be called.
1542 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1543 * add the endpoint to the schedule with possibly new parameters denoted by a
1544 * different endpoint descriptor in usb_host_endpoint.
1545 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1546 * not allowed.
1547 *
1548 * The USB core will not allow URBs to be queued to an endpoint that is being
1549 * disabled, so there's no need for mutual exclusion to protect
1550 * the xhci->devs[slot_id] structure.
1551 */
1552 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1553 struct usb_host_endpoint *ep)
1554 {
1555 struct xhci_hcd *xhci;
1556 struct xhci_container_ctx *in_ctx, *out_ctx;
1557 struct xhci_input_control_ctx *ctrl_ctx;
1558 struct xhci_slot_ctx *slot_ctx;
1559 unsigned int last_ctx;
1560 unsigned int ep_index;
1561 struct xhci_ep_ctx *ep_ctx;
1562 u32 drop_flag;
1563 u32 new_add_flags, new_drop_flags, new_slot_info;
1564 int ret;
1565
1566 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1567 if (ret <= 0)
1568 return ret;
1569 xhci = hcd_to_xhci(hcd);
1570 if (xhci->xhc_state & XHCI_STATE_DYING)
1571 return -ENODEV;
1572
1573 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1574 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1575 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1576 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1577 __func__, drop_flag);
1578 return 0;
1579 }
1580
1581 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1582 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1583 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1584 if (!ctrl_ctx) {
1585 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1586 __func__);
1587 return 0;
1588 }
1589
1590 ep_index = xhci_get_endpoint_index(&ep->desc);
1591 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1592 /* If the HC already knows the endpoint is disabled,
1593 * or the HCD has noted it is disabled, ignore this request
1594 */
1595 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1596 cpu_to_le32(EP_STATE_DISABLED)) ||
1597 le32_to_cpu(ctrl_ctx->drop_flags) &
1598 xhci_get_endpoint_flag(&ep->desc)) {
1599 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1600 __func__, ep);
1601 return 0;
1602 }
1603
1604 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1605 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1606
1607 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1608 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1609
1610 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1611 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1612 /* Update the last valid endpoint context, if we deleted the last one */
1613 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1614 LAST_CTX(last_ctx)) {
1615 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1616 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1617 }
1618 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1619
1620 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1621
1622 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1623 (unsigned int) ep->desc.bEndpointAddress,
1624 udev->slot_id,
1625 (unsigned int) new_drop_flags,
1626 (unsigned int) new_add_flags,
1627 (unsigned int) new_slot_info);
1628 return 0;
1629 }
1630
1631 /* Add an endpoint to a new possible bandwidth configuration for this device.
1632 * Only one call to this function is allowed per endpoint before
1633 * check_bandwidth() or reset_bandwidth() must be called.
1634 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1635 * add the endpoint to the schedule with possibly new parameters denoted by a
1636 * different endpoint descriptor in usb_host_endpoint.
1637 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1638 * not allowed.
1639 *
1640 * The USB core will not allow URBs to be queued to an endpoint until the
1641 * configuration or alt setting is installed in the device, so there's no need
1642 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1643 */
1644 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1645 struct usb_host_endpoint *ep)
1646 {
1647 struct xhci_hcd *xhci;
1648 struct xhci_container_ctx *in_ctx, *out_ctx;
1649 unsigned int ep_index;
1650 struct xhci_slot_ctx *slot_ctx;
1651 struct xhci_input_control_ctx *ctrl_ctx;
1652 u32 added_ctxs;
1653 unsigned int last_ctx;
1654 u32 new_add_flags, new_drop_flags, new_slot_info;
1655 struct xhci_virt_device *virt_dev;
1656 int ret = 0;
1657
1658 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1659 if (ret <= 0) {
1660 /* So we won't queue a reset ep command for a root hub */
1661 ep->hcpriv = NULL;
1662 return ret;
1663 }
1664 xhci = hcd_to_xhci(hcd);
1665 if (xhci->xhc_state & XHCI_STATE_DYING)
1666 return -ENODEV;
1667
1668 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1669 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1670 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1671 /* FIXME when we have to issue an evaluate endpoint command to
1672 * deal with ep0 max packet size changing once we get the
1673 * descriptors
1674 */
1675 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1676 __func__, added_ctxs);
1677 return 0;
1678 }
1679
1680 virt_dev = xhci->devs[udev->slot_id];
1681 in_ctx = virt_dev->in_ctx;
1682 out_ctx = virt_dev->out_ctx;
1683 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1684 if (!ctrl_ctx) {
1685 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1686 __func__);
1687 return 0;
1688 }
1689
1690 ep_index = xhci_get_endpoint_index(&ep->desc);
1691 /* If this endpoint is already in use, and the upper layers are trying
1692 * to add it again without dropping it, reject the addition.
1693 */
1694 if (virt_dev->eps[ep_index].ring &&
1695 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1696 xhci_get_endpoint_flag(&ep->desc))) {
1697 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1698 "without dropping it.\n",
1699 (unsigned int) ep->desc.bEndpointAddress);
1700 return -EINVAL;
1701 }
1702
1703 /* If the HCD has already noted the endpoint is enabled,
1704 * ignore this request.
1705 */
1706 if (le32_to_cpu(ctrl_ctx->add_flags) &
1707 xhci_get_endpoint_flag(&ep->desc)) {
1708 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1709 __func__, ep);
1710 return 0;
1711 }
1712
1713 /*
1714 * Configuration and alternate setting changes must be done in
1715 * process context, not interrupt context (or so documenation
1716 * for usb_set_interface() and usb_set_configuration() claim).
1717 */
1718 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1719 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1720 __func__, ep->desc.bEndpointAddress);
1721 return -ENOMEM;
1722 }
1723
1724 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1725 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1726
1727 /* If xhci_endpoint_disable() was called for this endpoint, but the
1728 * xHC hasn't been notified yet through the check_bandwidth() call,
1729 * this re-adds a new state for the endpoint from the new endpoint
1730 * descriptors. We must drop and re-add this endpoint, so we leave the
1731 * drop flags alone.
1732 */
1733 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1734
1735 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1736 /* Update the last valid endpoint context, if we just added one past */
1737 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1738 LAST_CTX(last_ctx)) {
1739 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1740 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1741 }
1742 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1743
1744 /* Store the usb_device pointer for later use */
1745 ep->hcpriv = udev;
1746
1747 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1748 (unsigned int) ep->desc.bEndpointAddress,
1749 udev->slot_id,
1750 (unsigned int) new_drop_flags,
1751 (unsigned int) new_add_flags,
1752 (unsigned int) new_slot_info);
1753 return 0;
1754 }
1755
1756 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1757 {
1758 struct xhci_input_control_ctx *ctrl_ctx;
1759 struct xhci_ep_ctx *ep_ctx;
1760 struct xhci_slot_ctx *slot_ctx;
1761 int i;
1762
1763 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1764 if (!ctrl_ctx) {
1765 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1766 __func__);
1767 return;
1768 }
1769
1770 /* When a device's add flag and drop flag are zero, any subsequent
1771 * configure endpoint command will leave that endpoint's state
1772 * untouched. Make sure we don't leave any old state in the input
1773 * endpoint contexts.
1774 */
1775 ctrl_ctx->drop_flags = 0;
1776 ctrl_ctx->add_flags = 0;
1777 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1778 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1779 /* Endpoint 0 is always valid */
1780 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1781 for (i = 1; i < 31; ++i) {
1782 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1783 ep_ctx->ep_info = 0;
1784 ep_ctx->ep_info2 = 0;
1785 ep_ctx->deq = 0;
1786 ep_ctx->tx_info = 0;
1787 }
1788 }
1789
1790 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1791 struct usb_device *udev, u32 *cmd_status)
1792 {
1793 int ret;
1794
1795 switch (*cmd_status) {
1796 case COMP_ENOMEM:
1797 dev_warn(&udev->dev, "Not enough host controller resources "
1798 "for new device state.\n");
1799 ret = -ENOMEM;
1800 /* FIXME: can we allocate more resources for the HC? */
1801 break;
1802 case COMP_BW_ERR:
1803 case COMP_2ND_BW_ERR:
1804 dev_warn(&udev->dev, "Not enough bandwidth "
1805 "for new device state.\n");
1806 ret = -ENOSPC;
1807 /* FIXME: can we go back to the old state? */
1808 break;
1809 case COMP_TRB_ERR:
1810 /* the HCD set up something wrong */
1811 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1812 "add flag = 1, "
1813 "and endpoint is not disabled.\n");
1814 ret = -EINVAL;
1815 break;
1816 case COMP_DEV_ERR:
1817 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1818 "configure command.\n");
1819 ret = -ENODEV;
1820 break;
1821 case COMP_SUCCESS:
1822 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1823 "Successful Endpoint Configure command");
1824 ret = 0;
1825 break;
1826 default:
1827 xhci_err(xhci, "ERROR: unexpected command completion "
1828 "code 0x%x.\n", *cmd_status);
1829 ret = -EINVAL;
1830 break;
1831 }
1832 return ret;
1833 }
1834
1835 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1836 struct usb_device *udev, u32 *cmd_status)
1837 {
1838 int ret;
1839 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1840
1841 switch (*cmd_status) {
1842 case COMP_EINVAL:
1843 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1844 "context command.\n");
1845 ret = -EINVAL;
1846 break;
1847 case COMP_EBADSLT:
1848 dev_warn(&udev->dev, "WARN: slot not enabled for"
1849 "evaluate context command.\n");
1850 ret = -EINVAL;
1851 break;
1852 case COMP_CTX_STATE:
1853 dev_warn(&udev->dev, "WARN: invalid context state for "
1854 "evaluate context command.\n");
1855 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1856 ret = -EINVAL;
1857 break;
1858 case COMP_DEV_ERR:
1859 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1860 "context command.\n");
1861 ret = -ENODEV;
1862 break;
1863 case COMP_MEL_ERR:
1864 /* Max Exit Latency too large error */
1865 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1866 ret = -EINVAL;
1867 break;
1868 case COMP_SUCCESS:
1869 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1870 "Successful evaluate context command");
1871 ret = 0;
1872 break;
1873 default:
1874 xhci_err(xhci, "ERROR: unexpected command completion "
1875 "code 0x%x.\n", *cmd_status);
1876 ret = -EINVAL;
1877 break;
1878 }
1879 return ret;
1880 }
1881
1882 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1883 struct xhci_input_control_ctx *ctrl_ctx)
1884 {
1885 u32 valid_add_flags;
1886 u32 valid_drop_flags;
1887
1888 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1889 * (bit 1). The default control endpoint is added during the Address
1890 * Device command and is never removed until the slot is disabled.
1891 */
1892 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1893 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1894
1895 /* Use hweight32 to count the number of ones in the add flags, or
1896 * number of endpoints added. Don't count endpoints that are changed
1897 * (both added and dropped).
1898 */
1899 return hweight32(valid_add_flags) -
1900 hweight32(valid_add_flags & valid_drop_flags);
1901 }
1902
1903 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1904 struct xhci_input_control_ctx *ctrl_ctx)
1905 {
1906 u32 valid_add_flags;
1907 u32 valid_drop_flags;
1908
1909 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1910 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1911
1912 return hweight32(valid_drop_flags) -
1913 hweight32(valid_add_flags & valid_drop_flags);
1914 }
1915
1916 /*
1917 * We need to reserve the new number of endpoints before the configure endpoint
1918 * command completes. We can't subtract the dropped endpoints from the number
1919 * of active endpoints until the command completes because we can oversubscribe
1920 * the host in this case:
1921 *
1922 * - the first configure endpoint command drops more endpoints than it adds
1923 * - a second configure endpoint command that adds more endpoints is queued
1924 * - the first configure endpoint command fails, so the config is unchanged
1925 * - the second command may succeed, even though there isn't enough resources
1926 *
1927 * Must be called with xhci->lock held.
1928 */
1929 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1930 struct xhci_input_control_ctx *ctrl_ctx)
1931 {
1932 u32 added_eps;
1933
1934 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1935 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1936 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1937 "Not enough ep ctxs: "
1938 "%u active, need to add %u, limit is %u.",
1939 xhci->num_active_eps, added_eps,
1940 xhci->limit_active_eps);
1941 return -ENOMEM;
1942 }
1943 xhci->num_active_eps += added_eps;
1944 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1945 "Adding %u ep ctxs, %u now active.", added_eps,
1946 xhci->num_active_eps);
1947 return 0;
1948 }
1949
1950 /*
1951 * The configure endpoint was failed by the xHC for some other reason, so we
1952 * need to revert the resources that failed configuration would have used.
1953 *
1954 * Must be called with xhci->lock held.
1955 */
1956 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1957 struct xhci_input_control_ctx *ctrl_ctx)
1958 {
1959 u32 num_failed_eps;
1960
1961 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1962 xhci->num_active_eps -= num_failed_eps;
1963 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1964 "Removing %u failed ep ctxs, %u now active.",
1965 num_failed_eps,
1966 xhci->num_active_eps);
1967 }
1968
1969 /*
1970 * Now that the command has completed, clean up the active endpoint count by
1971 * subtracting out the endpoints that were dropped (but not changed).
1972 *
1973 * Must be called with xhci->lock held.
1974 */
1975 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1976 struct xhci_input_control_ctx *ctrl_ctx)
1977 {
1978 u32 num_dropped_eps;
1979
1980 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1981 xhci->num_active_eps -= num_dropped_eps;
1982 if (num_dropped_eps)
1983 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1984 "Removing %u dropped ep ctxs, %u now active.",
1985 num_dropped_eps,
1986 xhci->num_active_eps);
1987 }
1988
1989 static unsigned int xhci_get_block_size(struct usb_device *udev)
1990 {
1991 switch (udev->speed) {
1992 case USB_SPEED_LOW:
1993 case USB_SPEED_FULL:
1994 return FS_BLOCK;
1995 case USB_SPEED_HIGH:
1996 return HS_BLOCK;
1997 case USB_SPEED_SUPER:
1998 return SS_BLOCK;
1999 case USB_SPEED_UNKNOWN:
2000 case USB_SPEED_WIRELESS:
2001 default:
2002 /* Should never happen */
2003 return 1;
2004 }
2005 }
2006
2007 static unsigned int
2008 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2009 {
2010 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2011 return LS_OVERHEAD;
2012 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2013 return FS_OVERHEAD;
2014 return HS_OVERHEAD;
2015 }
2016
2017 /* If we are changing a LS/FS device under a HS hub,
2018 * make sure (if we are activating a new TT) that the HS bus has enough
2019 * bandwidth for this new TT.
2020 */
2021 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2022 struct xhci_virt_device *virt_dev,
2023 int old_active_eps)
2024 {
2025 struct xhci_interval_bw_table *bw_table;
2026 struct xhci_tt_bw_info *tt_info;
2027
2028 /* Find the bandwidth table for the root port this TT is attached to. */
2029 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2030 tt_info = virt_dev->tt_info;
2031 /* If this TT already had active endpoints, the bandwidth for this TT
2032 * has already been added. Removing all periodic endpoints (and thus
2033 * making the TT enactive) will only decrease the bandwidth used.
2034 */
2035 if (old_active_eps)
2036 return 0;
2037 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2038 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2039 return -ENOMEM;
2040 return 0;
2041 }
2042 /* Not sure why we would have no new active endpoints...
2043 *
2044 * Maybe because of an Evaluate Context change for a hub update or a
2045 * control endpoint 0 max packet size change?
2046 * FIXME: skip the bandwidth calculation in that case.
2047 */
2048 return 0;
2049 }
2050
2051 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2052 struct xhci_virt_device *virt_dev)
2053 {
2054 unsigned int bw_reserved;
2055
2056 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2057 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2058 return -ENOMEM;
2059
2060 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2061 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2062 return -ENOMEM;
2063
2064 return 0;
2065 }
2066
2067 /*
2068 * This algorithm is a very conservative estimate of the worst-case scheduling
2069 * scenario for any one interval. The hardware dynamically schedules the
2070 * packets, so we can't tell which microframe could be the limiting factor in
2071 * the bandwidth scheduling. This only takes into account periodic endpoints.
2072 *
2073 * Obviously, we can't solve an NP complete problem to find the minimum worst
2074 * case scenario. Instead, we come up with an estimate that is no less than
2075 * the worst case bandwidth used for any one microframe, but may be an
2076 * over-estimate.
2077 *
2078 * We walk the requirements for each endpoint by interval, starting with the
2079 * smallest interval, and place packets in the schedule where there is only one
2080 * possible way to schedule packets for that interval. In order to simplify
2081 * this algorithm, we record the largest max packet size for each interval, and
2082 * assume all packets will be that size.
2083 *
2084 * For interval 0, we obviously must schedule all packets for each interval.
2085 * The bandwidth for interval 0 is just the amount of data to be transmitted
2086 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2087 * the number of packets).
2088 *
2089 * For interval 1, we have two possible microframes to schedule those packets
2090 * in. For this algorithm, if we can schedule the same number of packets for
2091 * each possible scheduling opportunity (each microframe), we will do so. The
2092 * remaining number of packets will be saved to be transmitted in the gaps in
2093 * the next interval's scheduling sequence.
2094 *
2095 * As we move those remaining packets to be scheduled with interval 2 packets,
2096 * we have to double the number of remaining packets to transmit. This is
2097 * because the intervals are actually powers of 2, and we would be transmitting
2098 * the previous interval's packets twice in this interval. We also have to be
2099 * sure that when we look at the largest max packet size for this interval, we
2100 * also look at the largest max packet size for the remaining packets and take
2101 * the greater of the two.
2102 *
2103 * The algorithm continues to evenly distribute packets in each scheduling
2104 * opportunity, and push the remaining packets out, until we get to the last
2105 * interval. Then those packets and their associated overhead are just added
2106 * to the bandwidth used.
2107 */
2108 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2109 struct xhci_virt_device *virt_dev,
2110 int old_active_eps)
2111 {
2112 unsigned int bw_reserved;
2113 unsigned int max_bandwidth;
2114 unsigned int bw_used;
2115 unsigned int block_size;
2116 struct xhci_interval_bw_table *bw_table;
2117 unsigned int packet_size = 0;
2118 unsigned int overhead = 0;
2119 unsigned int packets_transmitted = 0;
2120 unsigned int packets_remaining = 0;
2121 unsigned int i;
2122
2123 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2124 return xhci_check_ss_bw(xhci, virt_dev);
2125
2126 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2127 max_bandwidth = HS_BW_LIMIT;
2128 /* Convert percent of bus BW reserved to blocks reserved */
2129 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2130 } else {
2131 max_bandwidth = FS_BW_LIMIT;
2132 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2133 }
2134
2135 bw_table = virt_dev->bw_table;
2136 /* We need to translate the max packet size and max ESIT payloads into
2137 * the units the hardware uses.
2138 */
2139 block_size = xhci_get_block_size(virt_dev->udev);
2140
2141 /* If we are manipulating a LS/FS device under a HS hub, double check
2142 * that the HS bus has enough bandwidth if we are activing a new TT.
2143 */
2144 if (virt_dev->tt_info) {
2145 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2146 "Recalculating BW for rootport %u",
2147 virt_dev->real_port);
2148 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2149 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2150 "newly activated TT.\n");
2151 return -ENOMEM;
2152 }
2153 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2154 "Recalculating BW for TT slot %u port %u",
2155 virt_dev->tt_info->slot_id,
2156 virt_dev->tt_info->ttport);
2157 } else {
2158 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2159 "Recalculating BW for rootport %u",
2160 virt_dev->real_port);
2161 }
2162
2163 /* Add in how much bandwidth will be used for interval zero, or the
2164 * rounded max ESIT payload + number of packets * largest overhead.
2165 */
2166 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2167 bw_table->interval_bw[0].num_packets *
2168 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2169
2170 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2171 unsigned int bw_added;
2172 unsigned int largest_mps;
2173 unsigned int interval_overhead;
2174
2175 /*
2176 * How many packets could we transmit in this interval?
2177 * If packets didn't fit in the previous interval, we will need
2178 * to transmit that many packets twice within this interval.
2179 */
2180 packets_remaining = 2 * packets_remaining +
2181 bw_table->interval_bw[i].num_packets;
2182
2183 /* Find the largest max packet size of this or the previous
2184 * interval.
2185 */
2186 if (list_empty(&bw_table->interval_bw[i].endpoints))
2187 largest_mps = 0;
2188 else {
2189 struct xhci_virt_ep *virt_ep;
2190 struct list_head *ep_entry;
2191
2192 ep_entry = bw_table->interval_bw[i].endpoints.next;
2193 virt_ep = list_entry(ep_entry,
2194 struct xhci_virt_ep, bw_endpoint_list);
2195 /* Convert to blocks, rounding up */
2196 largest_mps = DIV_ROUND_UP(
2197 virt_ep->bw_info.max_packet_size,
2198 block_size);
2199 }
2200 if (largest_mps > packet_size)
2201 packet_size = largest_mps;
2202
2203 /* Use the larger overhead of this or the previous interval. */
2204 interval_overhead = xhci_get_largest_overhead(
2205 &bw_table->interval_bw[i]);
2206 if (interval_overhead > overhead)
2207 overhead = interval_overhead;
2208
2209 /* How many packets can we evenly distribute across
2210 * (1 << (i + 1)) possible scheduling opportunities?
2211 */
2212 packets_transmitted = packets_remaining >> (i + 1);
2213
2214 /* Add in the bandwidth used for those scheduled packets */
2215 bw_added = packets_transmitted * (overhead + packet_size);
2216
2217 /* How many packets do we have remaining to transmit? */
2218 packets_remaining = packets_remaining % (1 << (i + 1));
2219
2220 /* What largest max packet size should those packets have? */
2221 /* If we've transmitted all packets, don't carry over the
2222 * largest packet size.
2223 */
2224 if (packets_remaining == 0) {
2225 packet_size = 0;
2226 overhead = 0;
2227 } else if (packets_transmitted > 0) {
2228 /* Otherwise if we do have remaining packets, and we've
2229 * scheduled some packets in this interval, take the
2230 * largest max packet size from endpoints with this
2231 * interval.
2232 */
2233 packet_size = largest_mps;
2234 overhead = interval_overhead;
2235 }
2236 /* Otherwise carry over packet_size and overhead from the last
2237 * time we had a remainder.
2238 */
2239 bw_used += bw_added;
2240 if (bw_used > max_bandwidth) {
2241 xhci_warn(xhci, "Not enough bandwidth. "
2242 "Proposed: %u, Max: %u\n",
2243 bw_used, max_bandwidth);
2244 return -ENOMEM;
2245 }
2246 }
2247 /*
2248 * Ok, we know we have some packets left over after even-handedly
2249 * scheduling interval 15. We don't know which microframes they will
2250 * fit into, so we over-schedule and say they will be scheduled every
2251 * microframe.
2252 */
2253 if (packets_remaining > 0)
2254 bw_used += overhead + packet_size;
2255
2256 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2257 unsigned int port_index = virt_dev->real_port - 1;
2258
2259 /* OK, we're manipulating a HS device attached to a
2260 * root port bandwidth domain. Include the number of active TTs
2261 * in the bandwidth used.
2262 */
2263 bw_used += TT_HS_OVERHEAD *
2264 xhci->rh_bw[port_index].num_active_tts;
2265 }
2266
2267 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2268 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2269 "Available: %u " "percent",
2270 bw_used, max_bandwidth, bw_reserved,
2271 (max_bandwidth - bw_used - bw_reserved) * 100 /
2272 max_bandwidth);
2273
2274 bw_used += bw_reserved;
2275 if (bw_used > max_bandwidth) {
2276 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2277 bw_used, max_bandwidth);
2278 return -ENOMEM;
2279 }
2280
2281 bw_table->bw_used = bw_used;
2282 return 0;
2283 }
2284
2285 static bool xhci_is_async_ep(unsigned int ep_type)
2286 {
2287 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2288 ep_type != ISOC_IN_EP &&
2289 ep_type != INT_IN_EP);
2290 }
2291
2292 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2293 {
2294 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2295 }
2296
2297 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2298 {
2299 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2300
2301 if (ep_bw->ep_interval == 0)
2302 return SS_OVERHEAD_BURST +
2303 (ep_bw->mult * ep_bw->num_packets *
2304 (SS_OVERHEAD + mps));
2305 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2306 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2307 1 << ep_bw->ep_interval);
2308
2309 }
2310
2311 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2312 struct xhci_bw_info *ep_bw,
2313 struct xhci_interval_bw_table *bw_table,
2314 struct usb_device *udev,
2315 struct xhci_virt_ep *virt_ep,
2316 struct xhci_tt_bw_info *tt_info)
2317 {
2318 struct xhci_interval_bw *interval_bw;
2319 int normalized_interval;
2320
2321 if (xhci_is_async_ep(ep_bw->type))
2322 return;
2323
2324 if (udev->speed == USB_SPEED_SUPER) {
2325 if (xhci_is_sync_in_ep(ep_bw->type))
2326 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2327 xhci_get_ss_bw_consumed(ep_bw);
2328 else
2329 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2330 xhci_get_ss_bw_consumed(ep_bw);
2331 return;
2332 }
2333
2334 /* SuperSpeed endpoints never get added to intervals in the table, so
2335 * this check is only valid for HS/FS/LS devices.
2336 */
2337 if (list_empty(&virt_ep->bw_endpoint_list))
2338 return;
2339 /* For LS/FS devices, we need to translate the interval expressed in
2340 * microframes to frames.
2341 */
2342 if (udev->speed == USB_SPEED_HIGH)
2343 normalized_interval = ep_bw->ep_interval;
2344 else
2345 normalized_interval = ep_bw->ep_interval - 3;
2346
2347 if (normalized_interval == 0)
2348 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2349 interval_bw = &bw_table->interval_bw[normalized_interval];
2350 interval_bw->num_packets -= ep_bw->num_packets;
2351 switch (udev->speed) {
2352 case USB_SPEED_LOW:
2353 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2354 break;
2355 case USB_SPEED_FULL:
2356 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2357 break;
2358 case USB_SPEED_HIGH:
2359 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2360 break;
2361 case USB_SPEED_SUPER:
2362 case USB_SPEED_UNKNOWN:
2363 case USB_SPEED_WIRELESS:
2364 /* Should never happen because only LS/FS/HS endpoints will get
2365 * added to the endpoint list.
2366 */
2367 return;
2368 }
2369 if (tt_info)
2370 tt_info->active_eps -= 1;
2371 list_del_init(&virt_ep->bw_endpoint_list);
2372 }
2373
2374 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2375 struct xhci_bw_info *ep_bw,
2376 struct xhci_interval_bw_table *bw_table,
2377 struct usb_device *udev,
2378 struct xhci_virt_ep *virt_ep,
2379 struct xhci_tt_bw_info *tt_info)
2380 {
2381 struct xhci_interval_bw *interval_bw;
2382 struct xhci_virt_ep *smaller_ep;
2383 int normalized_interval;
2384
2385 if (xhci_is_async_ep(ep_bw->type))
2386 return;
2387
2388 if (udev->speed == USB_SPEED_SUPER) {
2389 if (xhci_is_sync_in_ep(ep_bw->type))
2390 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2391 xhci_get_ss_bw_consumed(ep_bw);
2392 else
2393 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2394 xhci_get_ss_bw_consumed(ep_bw);
2395 return;
2396 }
2397
2398 /* For LS/FS devices, we need to translate the interval expressed in
2399 * microframes to frames.
2400 */
2401 if (udev->speed == USB_SPEED_HIGH)
2402 normalized_interval = ep_bw->ep_interval;
2403 else
2404 normalized_interval = ep_bw->ep_interval - 3;
2405
2406 if (normalized_interval == 0)
2407 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2408 interval_bw = &bw_table->interval_bw[normalized_interval];
2409 interval_bw->num_packets += ep_bw->num_packets;
2410 switch (udev->speed) {
2411 case USB_SPEED_LOW:
2412 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2413 break;
2414 case USB_SPEED_FULL:
2415 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2416 break;
2417 case USB_SPEED_HIGH:
2418 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2419 break;
2420 case USB_SPEED_SUPER:
2421 case USB_SPEED_UNKNOWN:
2422 case USB_SPEED_WIRELESS:
2423 /* Should never happen because only LS/FS/HS endpoints will get
2424 * added to the endpoint list.
2425 */
2426 return;
2427 }
2428
2429 if (tt_info)
2430 tt_info->active_eps += 1;
2431 /* Insert the endpoint into the list, largest max packet size first. */
2432 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2433 bw_endpoint_list) {
2434 if (ep_bw->max_packet_size >=
2435 smaller_ep->bw_info.max_packet_size) {
2436 /* Add the new ep before the smaller endpoint */
2437 list_add_tail(&virt_ep->bw_endpoint_list,
2438 &smaller_ep->bw_endpoint_list);
2439 return;
2440 }
2441 }
2442 /* Add the new endpoint at the end of the list. */
2443 list_add_tail(&virt_ep->bw_endpoint_list,
2444 &interval_bw->endpoints);
2445 }
2446
2447 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2448 struct xhci_virt_device *virt_dev,
2449 int old_active_eps)
2450 {
2451 struct xhci_root_port_bw_info *rh_bw_info;
2452 if (!virt_dev->tt_info)
2453 return;
2454
2455 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2456 if (old_active_eps == 0 &&
2457 virt_dev->tt_info->active_eps != 0) {
2458 rh_bw_info->num_active_tts += 1;
2459 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2460 } else if (old_active_eps != 0 &&
2461 virt_dev->tt_info->active_eps == 0) {
2462 rh_bw_info->num_active_tts -= 1;
2463 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2464 }
2465 }
2466
2467 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2468 struct xhci_virt_device *virt_dev,
2469 struct xhci_container_ctx *in_ctx)
2470 {
2471 struct xhci_bw_info ep_bw_info[31];
2472 int i;
2473 struct xhci_input_control_ctx *ctrl_ctx;
2474 int old_active_eps = 0;
2475
2476 if (virt_dev->tt_info)
2477 old_active_eps = virt_dev->tt_info->active_eps;
2478
2479 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2480 if (!ctrl_ctx) {
2481 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2482 __func__);
2483 return -ENOMEM;
2484 }
2485
2486 for (i = 0; i < 31; i++) {
2487 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2488 continue;
2489
2490 /* Make a copy of the BW info in case we need to revert this */
2491 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2492 sizeof(ep_bw_info[i]));
2493 /* Drop the endpoint from the interval table if the endpoint is
2494 * being dropped or changed.
2495 */
2496 if (EP_IS_DROPPED(ctrl_ctx, i))
2497 xhci_drop_ep_from_interval_table(xhci,
2498 &virt_dev->eps[i].bw_info,
2499 virt_dev->bw_table,
2500 virt_dev->udev,
2501 &virt_dev->eps[i],
2502 virt_dev->tt_info);
2503 }
2504 /* Overwrite the information stored in the endpoints' bw_info */
2505 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2506 for (i = 0; i < 31; i++) {
2507 /* Add any changed or added endpoints to the interval table */
2508 if (EP_IS_ADDED(ctrl_ctx, i))
2509 xhci_add_ep_to_interval_table(xhci,
2510 &virt_dev->eps[i].bw_info,
2511 virt_dev->bw_table,
2512 virt_dev->udev,
2513 &virt_dev->eps[i],
2514 virt_dev->tt_info);
2515 }
2516
2517 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2518 /* Ok, this fits in the bandwidth we have.
2519 * Update the number of active TTs.
2520 */
2521 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2522 return 0;
2523 }
2524
2525 /* We don't have enough bandwidth for this, revert the stored info. */
2526 for (i = 0; i < 31; i++) {
2527 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2528 continue;
2529
2530 /* Drop the new copies of any added or changed endpoints from
2531 * the interval table.
2532 */
2533 if (EP_IS_ADDED(ctrl_ctx, i)) {
2534 xhci_drop_ep_from_interval_table(xhci,
2535 &virt_dev->eps[i].bw_info,
2536 virt_dev->bw_table,
2537 virt_dev->udev,
2538 &virt_dev->eps[i],
2539 virt_dev->tt_info);
2540 }
2541 /* Revert the endpoint back to its old information */
2542 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2543 sizeof(ep_bw_info[i]));
2544 /* Add any changed or dropped endpoints back into the table */
2545 if (EP_IS_DROPPED(ctrl_ctx, i))
2546 xhci_add_ep_to_interval_table(xhci,
2547 &virt_dev->eps[i].bw_info,
2548 virt_dev->bw_table,
2549 virt_dev->udev,
2550 &virt_dev->eps[i],
2551 virt_dev->tt_info);
2552 }
2553 return -ENOMEM;
2554 }
2555
2556
2557 /* Issue a configure endpoint command or evaluate context command
2558 * and wait for it to finish.
2559 */
2560 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2561 struct usb_device *udev,
2562 struct xhci_command *command,
2563 bool ctx_change, bool must_succeed)
2564 {
2565 int ret;
2566 int timeleft;
2567 unsigned long flags;
2568 struct xhci_container_ctx *in_ctx;
2569 struct xhci_input_control_ctx *ctrl_ctx;
2570 struct completion *cmd_completion;
2571 u32 *cmd_status;
2572 struct xhci_virt_device *virt_dev;
2573 union xhci_trb *cmd_trb;
2574
2575 spin_lock_irqsave(&xhci->lock, flags);
2576 virt_dev = xhci->devs[udev->slot_id];
2577
2578 if (command)
2579 in_ctx = command->in_ctx;
2580 else
2581 in_ctx = virt_dev->in_ctx;
2582 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2583 if (!ctrl_ctx) {
2584 spin_unlock_irqrestore(&xhci->lock, flags);
2585 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2586 __func__);
2587 return -ENOMEM;
2588 }
2589
2590 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2591 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2592 spin_unlock_irqrestore(&xhci->lock, flags);
2593 xhci_warn(xhci, "Not enough host resources, "
2594 "active endpoint contexts = %u\n",
2595 xhci->num_active_eps);
2596 return -ENOMEM;
2597 }
2598 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2599 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2600 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2601 xhci_free_host_resources(xhci, ctrl_ctx);
2602 spin_unlock_irqrestore(&xhci->lock, flags);
2603 xhci_warn(xhci, "Not enough bandwidth\n");
2604 return -ENOMEM;
2605 }
2606
2607 if (command) {
2608 cmd_completion = command->completion;
2609 cmd_status = &command->status;
2610 command->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2611 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2612 } else {
2613 cmd_completion = &virt_dev->cmd_completion;
2614 cmd_status = &virt_dev->cmd_status;
2615 }
2616 init_completion(cmd_completion);
2617
2618 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
2619 if (!ctx_change)
2620 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2621 udev->slot_id, must_succeed);
2622 else
2623 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2624 udev->slot_id, must_succeed);
2625 if (ret < 0) {
2626 if (command)
2627 list_del(&command->cmd_list);
2628 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2629 xhci_free_host_resources(xhci, ctrl_ctx);
2630 spin_unlock_irqrestore(&xhci->lock, flags);
2631 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2632 "FIXME allocate a new ring segment");
2633 return -ENOMEM;
2634 }
2635 xhci_ring_cmd_db(xhci);
2636 spin_unlock_irqrestore(&xhci->lock, flags);
2637
2638 /* Wait for the configure endpoint command to complete */
2639 timeleft = wait_for_completion_interruptible_timeout(
2640 cmd_completion,
2641 XHCI_CMD_DEFAULT_TIMEOUT);
2642 if (timeleft <= 0) {
2643 xhci_warn(xhci, "%s while waiting for %s command\n",
2644 timeleft == 0 ? "Timeout" : "Signal",
2645 ctx_change == 0 ?
2646 "configure endpoint" :
2647 "evaluate context");
2648 /* cancel the configure endpoint command */
2649 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2650 if (ret < 0)
2651 return ret;
2652 return -ETIME;
2653 }
2654
2655 if (!ctx_change)
2656 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2657 else
2658 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2659
2660 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2661 spin_lock_irqsave(&xhci->lock, flags);
2662 /* If the command failed, remove the reserved resources.
2663 * Otherwise, clean up the estimate to include dropped eps.
2664 */
2665 if (ret)
2666 xhci_free_host_resources(xhci, ctrl_ctx);
2667 else
2668 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2669 spin_unlock_irqrestore(&xhci->lock, flags);
2670 }
2671 return ret;
2672 }
2673
2674 /* Called after one or more calls to xhci_add_endpoint() or
2675 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2676 * to call xhci_reset_bandwidth().
2677 *
2678 * Since we are in the middle of changing either configuration or
2679 * installing a new alt setting, the USB core won't allow URBs to be
2680 * enqueued for any endpoint on the old config or interface. Nothing
2681 * else should be touching the xhci->devs[slot_id] structure, so we
2682 * don't need to take the xhci->lock for manipulating that.
2683 */
2684 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2685 {
2686 int i;
2687 int ret = 0;
2688 struct xhci_hcd *xhci;
2689 struct xhci_virt_device *virt_dev;
2690 struct xhci_input_control_ctx *ctrl_ctx;
2691 struct xhci_slot_ctx *slot_ctx;
2692
2693 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2694 if (ret <= 0)
2695 return ret;
2696 xhci = hcd_to_xhci(hcd);
2697 if (xhci->xhc_state & XHCI_STATE_DYING)
2698 return -ENODEV;
2699
2700 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2701 virt_dev = xhci->devs[udev->slot_id];
2702
2703 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2704 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2705 if (!ctrl_ctx) {
2706 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2707 __func__);
2708 return -ENOMEM;
2709 }
2710 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2711 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2712 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2713
2714 /* Don't issue the command if there's no endpoints to update. */
2715 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2716 ctrl_ctx->drop_flags == 0)
2717 return 0;
2718
2719 xhci_dbg(xhci, "New Input Control Context:\n");
2720 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2721 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2722 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2723
2724 ret = xhci_configure_endpoint(xhci, udev, NULL,
2725 false, false);
2726 if (ret) {
2727 /* Callee should call reset_bandwidth() */
2728 return ret;
2729 }
2730
2731 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2732 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2733 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2734
2735 /* Free any rings that were dropped, but not changed. */
2736 for (i = 1; i < 31; ++i) {
2737 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2738 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2739 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2740 }
2741 xhci_zero_in_ctx(xhci, virt_dev);
2742 /*
2743 * Install any rings for completely new endpoints or changed endpoints,
2744 * and free or cache any old rings from changed endpoints.
2745 */
2746 for (i = 1; i < 31; ++i) {
2747 if (!virt_dev->eps[i].new_ring)
2748 continue;
2749 /* Only cache or free the old ring if it exists.
2750 * It may not if this is the first add of an endpoint.
2751 */
2752 if (virt_dev->eps[i].ring) {
2753 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2754 }
2755 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2756 virt_dev->eps[i].new_ring = NULL;
2757 }
2758
2759 return ret;
2760 }
2761
2762 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2763 {
2764 struct xhci_hcd *xhci;
2765 struct xhci_virt_device *virt_dev;
2766 int i, ret;
2767
2768 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2769 if (ret <= 0)
2770 return;
2771 xhci = hcd_to_xhci(hcd);
2772
2773 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2774 virt_dev = xhci->devs[udev->slot_id];
2775 /* Free any rings allocated for added endpoints */
2776 for (i = 0; i < 31; ++i) {
2777 if (virt_dev->eps[i].new_ring) {
2778 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2779 virt_dev->eps[i].new_ring = NULL;
2780 }
2781 }
2782 xhci_zero_in_ctx(xhci, virt_dev);
2783 }
2784
2785 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2786 struct xhci_container_ctx *in_ctx,
2787 struct xhci_container_ctx *out_ctx,
2788 struct xhci_input_control_ctx *ctrl_ctx,
2789 u32 add_flags, u32 drop_flags)
2790 {
2791 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2792 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2793 xhci_slot_copy(xhci, in_ctx, out_ctx);
2794 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2795
2796 xhci_dbg(xhci, "Input Context:\n");
2797 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2798 }
2799
2800 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2801 unsigned int slot_id, unsigned int ep_index,
2802 struct xhci_dequeue_state *deq_state)
2803 {
2804 struct xhci_input_control_ctx *ctrl_ctx;
2805 struct xhci_container_ctx *in_ctx;
2806 struct xhci_ep_ctx *ep_ctx;
2807 u32 added_ctxs;
2808 dma_addr_t addr;
2809
2810 in_ctx = xhci->devs[slot_id]->in_ctx;
2811 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2812 if (!ctrl_ctx) {
2813 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2814 __func__);
2815 return;
2816 }
2817
2818 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2819 xhci->devs[slot_id]->out_ctx, ep_index);
2820 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2821 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2822 deq_state->new_deq_ptr);
2823 if (addr == 0) {
2824 xhci_warn(xhci, "WARN Cannot submit config ep after "
2825 "reset ep command\n");
2826 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2827 deq_state->new_deq_seg,
2828 deq_state->new_deq_ptr);
2829 return;
2830 }
2831 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2832
2833 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2834 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2835 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2836 added_ctxs, added_ctxs);
2837 }
2838
2839 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2840 struct usb_device *udev, unsigned int ep_index)
2841 {
2842 struct xhci_dequeue_state deq_state;
2843 struct xhci_virt_ep *ep;
2844
2845 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2846 "Cleaning up stalled endpoint ring");
2847 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2848 /* We need to move the HW's dequeue pointer past this TD,
2849 * or it will attempt to resend it on the next doorbell ring.
2850 */
2851 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2852 ep_index, ep->stopped_stream, ep->stopped_td,
2853 &deq_state);
2854
2855 /* HW with the reset endpoint quirk will use the saved dequeue state to
2856 * issue a configure endpoint command later.
2857 */
2858 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2859 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2860 "Queueing new dequeue state");
2861 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2862 ep_index, ep->stopped_stream, &deq_state);
2863 } else {
2864 /* Better hope no one uses the input context between now and the
2865 * reset endpoint completion!
2866 * XXX: No idea how this hardware will react when stream rings
2867 * are enabled.
2868 */
2869 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2870 "Setting up input context for "
2871 "configure endpoint command");
2872 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2873 ep_index, &deq_state);
2874 }
2875 }
2876
2877 /* Deal with stalled endpoints. The core should have sent the control message
2878 * to clear the halt condition. However, we need to make the xHCI hardware
2879 * reset its sequence number, since a device will expect a sequence number of
2880 * zero after the halt condition is cleared.
2881 * Context: in_interrupt
2882 */
2883 void xhci_endpoint_reset(struct usb_hcd *hcd,
2884 struct usb_host_endpoint *ep)
2885 {
2886 struct xhci_hcd *xhci;
2887 struct usb_device *udev;
2888 unsigned int ep_index;
2889 unsigned long flags;
2890 int ret;
2891 struct xhci_virt_ep *virt_ep;
2892
2893 xhci = hcd_to_xhci(hcd);
2894 udev = (struct usb_device *) ep->hcpriv;
2895 /* Called with a root hub endpoint (or an endpoint that wasn't added
2896 * with xhci_add_endpoint()
2897 */
2898 if (!ep->hcpriv)
2899 return;
2900 ep_index = xhci_get_endpoint_index(&ep->desc);
2901 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2902 if (!virt_ep->stopped_td) {
2903 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2904 "Endpoint 0x%x not halted, refusing to reset.",
2905 ep->desc.bEndpointAddress);
2906 return;
2907 }
2908 if (usb_endpoint_xfer_control(&ep->desc)) {
2909 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2910 "Control endpoint stall already handled.");
2911 return;
2912 }
2913
2914 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2915 "Queueing reset endpoint command");
2916 spin_lock_irqsave(&xhci->lock, flags);
2917 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2918 /*
2919 * Can't change the ring dequeue pointer until it's transitioned to the
2920 * stopped state, which is only upon a successful reset endpoint
2921 * command. Better hope that last command worked!
2922 */
2923 if (!ret) {
2924 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2925 kfree(virt_ep->stopped_td);
2926 xhci_ring_cmd_db(xhci);
2927 }
2928 virt_ep->stopped_td = NULL;
2929 virt_ep->stopped_trb = NULL;
2930 virt_ep->stopped_stream = 0;
2931 spin_unlock_irqrestore(&xhci->lock, flags);
2932
2933 if (ret)
2934 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2935 }
2936
2937 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2938 struct usb_device *udev, struct usb_host_endpoint *ep,
2939 unsigned int slot_id)
2940 {
2941 int ret;
2942 unsigned int ep_index;
2943 unsigned int ep_state;
2944
2945 if (!ep)
2946 return -EINVAL;
2947 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2948 if (ret <= 0)
2949 return -EINVAL;
2950 if (ep->ss_ep_comp.bmAttributes == 0) {
2951 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2952 " descriptor for ep 0x%x does not support streams\n",
2953 ep->desc.bEndpointAddress);
2954 return -EINVAL;
2955 }
2956
2957 ep_index = xhci_get_endpoint_index(&ep->desc);
2958 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2959 if (ep_state & EP_HAS_STREAMS ||
2960 ep_state & EP_GETTING_STREAMS) {
2961 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2962 "already has streams set up.\n",
2963 ep->desc.bEndpointAddress);
2964 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2965 "dynamic stream context array reallocation.\n");
2966 return -EINVAL;
2967 }
2968 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2969 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2970 "endpoint 0x%x; URBs are pending.\n",
2971 ep->desc.bEndpointAddress);
2972 return -EINVAL;
2973 }
2974 return 0;
2975 }
2976
2977 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2978 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2979 {
2980 unsigned int max_streams;
2981
2982 /* The stream context array size must be a power of two */
2983 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2984 /*
2985 * Find out how many primary stream array entries the host controller
2986 * supports. Later we may use secondary stream arrays (similar to 2nd
2987 * level page entries), but that's an optional feature for xHCI host
2988 * controllers. xHCs must support at least 4 stream IDs.
2989 */
2990 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2991 if (*num_stream_ctxs > max_streams) {
2992 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2993 max_streams);
2994 *num_stream_ctxs = max_streams;
2995 *num_streams = max_streams;
2996 }
2997 }
2998
2999 /* Returns an error code if one of the endpoint already has streams.
3000 * This does not change any data structures, it only checks and gathers
3001 * information.
3002 */
3003 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3004 struct usb_device *udev,
3005 struct usb_host_endpoint **eps, unsigned int num_eps,
3006 unsigned int *num_streams, u32 *changed_ep_bitmask)
3007 {
3008 unsigned int max_streams;
3009 unsigned int endpoint_flag;
3010 int i;
3011 int ret;
3012
3013 for (i = 0; i < num_eps; i++) {
3014 ret = xhci_check_streams_endpoint(xhci, udev,
3015 eps[i], udev->slot_id);
3016 if (ret < 0)
3017 return ret;
3018
3019 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3020 if (max_streams < (*num_streams - 1)) {
3021 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3022 eps[i]->desc.bEndpointAddress,
3023 max_streams);
3024 *num_streams = max_streams+1;
3025 }
3026
3027 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3028 if (*changed_ep_bitmask & endpoint_flag)
3029 return -EINVAL;
3030 *changed_ep_bitmask |= endpoint_flag;
3031 }
3032 return 0;
3033 }
3034
3035 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3036 struct usb_device *udev,
3037 struct usb_host_endpoint **eps, unsigned int num_eps)
3038 {
3039 u32 changed_ep_bitmask = 0;
3040 unsigned int slot_id;
3041 unsigned int ep_index;
3042 unsigned int ep_state;
3043 int i;
3044
3045 slot_id = udev->slot_id;
3046 if (!xhci->devs[slot_id])
3047 return 0;
3048
3049 for (i = 0; i < num_eps; i++) {
3050 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3051 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3052 /* Are streams already being freed for the endpoint? */
3053 if (ep_state & EP_GETTING_NO_STREAMS) {
3054 xhci_warn(xhci, "WARN Can't disable streams for "
3055 "endpoint 0x%x, "
3056 "streams are being disabled already\n",
3057 eps[i]->desc.bEndpointAddress);
3058 return 0;
3059 }
3060 /* Are there actually any streams to free? */
3061 if (!(ep_state & EP_HAS_STREAMS) &&
3062 !(ep_state & EP_GETTING_STREAMS)) {
3063 xhci_warn(xhci, "WARN Can't disable streams for "
3064 "endpoint 0x%x, "
3065 "streams are already disabled!\n",
3066 eps[i]->desc.bEndpointAddress);
3067 xhci_warn(xhci, "WARN xhci_free_streams() called "
3068 "with non-streams endpoint\n");
3069 return 0;
3070 }
3071 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3072 }
3073 return changed_ep_bitmask;
3074 }
3075
3076 /*
3077 * The USB device drivers use this function (though the HCD interface in USB
3078 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3079 * coordinate mass storage command queueing across multiple endpoints (basically
3080 * a stream ID == a task ID).
3081 *
3082 * Setting up streams involves allocating the same size stream context array
3083 * for each endpoint and issuing a configure endpoint command for all endpoints.
3084 *
3085 * Don't allow the call to succeed if one endpoint only supports one stream
3086 * (which means it doesn't support streams at all).
3087 *
3088 * Drivers may get less stream IDs than they asked for, if the host controller
3089 * hardware or endpoints claim they can't support the number of requested
3090 * stream IDs.
3091 */
3092 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3093 struct usb_host_endpoint **eps, unsigned int num_eps,
3094 unsigned int num_streams, gfp_t mem_flags)
3095 {
3096 int i, ret;
3097 struct xhci_hcd *xhci;
3098 struct xhci_virt_device *vdev;
3099 struct xhci_command *config_cmd;
3100 struct xhci_input_control_ctx *ctrl_ctx;
3101 unsigned int ep_index;
3102 unsigned int num_stream_ctxs;
3103 unsigned long flags;
3104 u32 changed_ep_bitmask = 0;
3105
3106 if (!eps)
3107 return -EINVAL;
3108
3109 /* Add one to the number of streams requested to account for
3110 * stream 0 that is reserved for xHCI usage.
3111 */
3112 num_streams += 1;
3113 xhci = hcd_to_xhci(hcd);
3114 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3115 num_streams);
3116
3117 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3118 if (!config_cmd) {
3119 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3120 return -ENOMEM;
3121 }
3122 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3123 if (!ctrl_ctx) {
3124 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3125 __func__);
3126 xhci_free_command(xhci, config_cmd);
3127 return -ENOMEM;
3128 }
3129
3130 /* Check to make sure all endpoints are not already configured for
3131 * streams. While we're at it, find the maximum number of streams that
3132 * all the endpoints will support and check for duplicate endpoints.
3133 */
3134 spin_lock_irqsave(&xhci->lock, flags);
3135 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3136 num_eps, &num_streams, &changed_ep_bitmask);
3137 if (ret < 0) {
3138 xhci_free_command(xhci, config_cmd);
3139 spin_unlock_irqrestore(&xhci->lock, flags);
3140 return ret;
3141 }
3142 if (num_streams <= 1) {
3143 xhci_warn(xhci, "WARN: endpoints can't handle "
3144 "more than one stream.\n");
3145 xhci_free_command(xhci, config_cmd);
3146 spin_unlock_irqrestore(&xhci->lock, flags);
3147 return -EINVAL;
3148 }
3149 vdev = xhci->devs[udev->slot_id];
3150 /* Mark each endpoint as being in transition, so
3151 * xhci_urb_enqueue() will reject all URBs.
3152 */
3153 for (i = 0; i < num_eps; i++) {
3154 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3155 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3156 }
3157 spin_unlock_irqrestore(&xhci->lock, flags);
3158
3159 /* Setup internal data structures and allocate HW data structures for
3160 * streams (but don't install the HW structures in the input context
3161 * until we're sure all memory allocation succeeded).
3162 */
3163 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3164 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3165 num_stream_ctxs, num_streams);
3166
3167 for (i = 0; i < num_eps; i++) {
3168 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3169 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3170 num_stream_ctxs,
3171 num_streams, mem_flags);
3172 if (!vdev->eps[ep_index].stream_info)
3173 goto cleanup;
3174 /* Set maxPstreams in endpoint context and update deq ptr to
3175 * point to stream context array. FIXME
3176 */
3177 }
3178
3179 /* Set up the input context for a configure endpoint command. */
3180 for (i = 0; i < num_eps; i++) {
3181 struct xhci_ep_ctx *ep_ctx;
3182
3183 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3184 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3185
3186 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3187 vdev->out_ctx, ep_index);
3188 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3189 vdev->eps[ep_index].stream_info);
3190 }
3191 /* Tell the HW to drop its old copy of the endpoint context info
3192 * and add the updated copy from the input context.
3193 */
3194 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3195 vdev->out_ctx, ctrl_ctx,
3196 changed_ep_bitmask, changed_ep_bitmask);
3197
3198 /* Issue and wait for the configure endpoint command */
3199 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3200 false, false);
3201
3202 /* xHC rejected the configure endpoint command for some reason, so we
3203 * leave the old ring intact and free our internal streams data
3204 * structure.
3205 */
3206 if (ret < 0)
3207 goto cleanup;
3208
3209 spin_lock_irqsave(&xhci->lock, flags);
3210 for (i = 0; i < num_eps; i++) {
3211 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3212 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3213 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3214 udev->slot_id, ep_index);
3215 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3216 }
3217 xhci_free_command(xhci, config_cmd);
3218 spin_unlock_irqrestore(&xhci->lock, flags);
3219
3220 /* Subtract 1 for stream 0, which drivers can't use */
3221 return num_streams - 1;
3222
3223 cleanup:
3224 /* If it didn't work, free the streams! */
3225 for (i = 0; i < num_eps; i++) {
3226 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3227 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3228 vdev->eps[ep_index].stream_info = NULL;
3229 /* FIXME Unset maxPstreams in endpoint context and
3230 * update deq ptr to point to normal string ring.
3231 */
3232 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3233 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3234 xhci_endpoint_zero(xhci, vdev, eps[i]);
3235 }
3236 xhci_free_command(xhci, config_cmd);
3237 return -ENOMEM;
3238 }
3239
3240 /* Transition the endpoint from using streams to being a "normal" endpoint
3241 * without streams.
3242 *
3243 * Modify the endpoint context state, submit a configure endpoint command,
3244 * and free all endpoint rings for streams if that completes successfully.
3245 */
3246 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3247 struct usb_host_endpoint **eps, unsigned int num_eps,
3248 gfp_t mem_flags)
3249 {
3250 int i, ret;
3251 struct xhci_hcd *xhci;
3252 struct xhci_virt_device *vdev;
3253 struct xhci_command *command;
3254 struct xhci_input_control_ctx *ctrl_ctx;
3255 unsigned int ep_index;
3256 unsigned long flags;
3257 u32 changed_ep_bitmask;
3258
3259 xhci = hcd_to_xhci(hcd);
3260 vdev = xhci->devs[udev->slot_id];
3261
3262 /* Set up a configure endpoint command to remove the streams rings */
3263 spin_lock_irqsave(&xhci->lock, flags);
3264 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3265 udev, eps, num_eps);
3266 if (changed_ep_bitmask == 0) {
3267 spin_unlock_irqrestore(&xhci->lock, flags);
3268 return -EINVAL;
3269 }
3270
3271 /* Use the xhci_command structure from the first endpoint. We may have
3272 * allocated too many, but the driver may call xhci_free_streams() for
3273 * each endpoint it grouped into one call to xhci_alloc_streams().
3274 */
3275 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3276 command = vdev->eps[ep_index].stream_info->free_streams_command;
3277 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3278 if (!ctrl_ctx) {
3279 spin_unlock_irqrestore(&xhci->lock, flags);
3280 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3281 __func__);
3282 return -EINVAL;
3283 }
3284
3285 for (i = 0; i < num_eps; i++) {
3286 struct xhci_ep_ctx *ep_ctx;
3287
3288 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3289 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3290 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3291 EP_GETTING_NO_STREAMS;
3292
3293 xhci_endpoint_copy(xhci, command->in_ctx,
3294 vdev->out_ctx, ep_index);
3295 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3296 &vdev->eps[ep_index]);
3297 }
3298 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3299 vdev->out_ctx, ctrl_ctx,
3300 changed_ep_bitmask, changed_ep_bitmask);
3301 spin_unlock_irqrestore(&xhci->lock, flags);
3302
3303 /* Issue and wait for the configure endpoint command,
3304 * which must succeed.
3305 */
3306 ret = xhci_configure_endpoint(xhci, udev, command,
3307 false, true);
3308
3309 /* xHC rejected the configure endpoint command for some reason, so we
3310 * leave the streams rings intact.
3311 */
3312 if (ret < 0)
3313 return ret;
3314
3315 spin_lock_irqsave(&xhci->lock, flags);
3316 for (i = 0; i < num_eps; i++) {
3317 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3318 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3319 vdev->eps[ep_index].stream_info = NULL;
3320 /* FIXME Unset maxPstreams in endpoint context and
3321 * update deq ptr to point to normal string ring.
3322 */
3323 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3324 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3325 }
3326 spin_unlock_irqrestore(&xhci->lock, flags);
3327
3328 return 0;
3329 }
3330
3331 /*
3332 * Deletes endpoint resources for endpoints that were active before a Reset
3333 * Device command, or a Disable Slot command. The Reset Device command leaves
3334 * the control endpoint intact, whereas the Disable Slot command deletes it.
3335 *
3336 * Must be called with xhci->lock held.
3337 */
3338 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3339 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3340 {
3341 int i;
3342 unsigned int num_dropped_eps = 0;
3343 unsigned int drop_flags = 0;
3344
3345 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3346 if (virt_dev->eps[i].ring) {
3347 drop_flags |= 1 << i;
3348 num_dropped_eps++;
3349 }
3350 }
3351 xhci->num_active_eps -= num_dropped_eps;
3352 if (num_dropped_eps)
3353 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3354 "Dropped %u ep ctxs, flags = 0x%x, "
3355 "%u now active.",
3356 num_dropped_eps, drop_flags,
3357 xhci->num_active_eps);
3358 }
3359
3360 /*
3361 * This submits a Reset Device Command, which will set the device state to 0,
3362 * set the device address to 0, and disable all the endpoints except the default
3363 * control endpoint. The USB core should come back and call
3364 * xhci_address_device(), and then re-set up the configuration. If this is
3365 * called because of a usb_reset_and_verify_device(), then the old alternate
3366 * settings will be re-installed through the normal bandwidth allocation
3367 * functions.
3368 *
3369 * Wait for the Reset Device command to finish. Remove all structures
3370 * associated with the endpoints that were disabled. Clear the input device
3371 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3372 *
3373 * If the virt_dev to be reset does not exist or does not match the udev,
3374 * it means the device is lost, possibly due to the xHC restore error and
3375 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3376 * re-allocate the device.
3377 */
3378 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3379 {
3380 int ret, i;
3381 unsigned long flags;
3382 struct xhci_hcd *xhci;
3383 unsigned int slot_id;
3384 struct xhci_virt_device *virt_dev;
3385 struct xhci_command *reset_device_cmd;
3386 int timeleft;
3387 int last_freed_endpoint;
3388 struct xhci_slot_ctx *slot_ctx;
3389 int old_active_eps = 0;
3390
3391 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3392 if (ret <= 0)
3393 return ret;
3394 xhci = hcd_to_xhci(hcd);
3395 slot_id = udev->slot_id;
3396 virt_dev = xhci->devs[slot_id];
3397 if (!virt_dev) {
3398 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3399 "not exist. Re-allocate the device\n", slot_id);
3400 ret = xhci_alloc_dev(hcd, udev);
3401 if (ret == 1)
3402 return 0;
3403 else
3404 return -EINVAL;
3405 }
3406
3407 if (virt_dev->udev != udev) {
3408 /* If the virt_dev and the udev does not match, this virt_dev
3409 * may belong to another udev.
3410 * Re-allocate the device.
3411 */
3412 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3413 "not match the udev. Re-allocate the device\n",
3414 slot_id);
3415 ret = xhci_alloc_dev(hcd, udev);
3416 if (ret == 1)
3417 return 0;
3418 else
3419 return -EINVAL;
3420 }
3421
3422 /* If device is not setup, there is no point in resetting it */
3423 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3424 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3425 SLOT_STATE_DISABLED)
3426 return 0;
3427
3428 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3429 /* Allocate the command structure that holds the struct completion.
3430 * Assume we're in process context, since the normal device reset
3431 * process has to wait for the device anyway. Storage devices are
3432 * reset as part of error handling, so use GFP_NOIO instead of
3433 * GFP_KERNEL.
3434 */
3435 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3436 if (!reset_device_cmd) {
3437 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3438 return -ENOMEM;
3439 }
3440
3441 /* Attempt to submit the Reset Device command to the command ring */
3442 spin_lock_irqsave(&xhci->lock, flags);
3443 reset_device_cmd->command_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3444
3445 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3446 ret = xhci_queue_reset_device(xhci, slot_id);
3447 if (ret) {
3448 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3449 list_del(&reset_device_cmd->cmd_list);
3450 spin_unlock_irqrestore(&xhci->lock, flags);
3451 goto command_cleanup;
3452 }
3453 xhci_ring_cmd_db(xhci);
3454 spin_unlock_irqrestore(&xhci->lock, flags);
3455
3456 /* Wait for the Reset Device command to finish */
3457 timeleft = wait_for_completion_interruptible_timeout(
3458 reset_device_cmd->completion,
3459 XHCI_CMD_DEFAULT_TIMEOUT);
3460 if (timeleft <= 0) {
3461 xhci_warn(xhci, "%s while waiting for reset device command\n",
3462 timeleft == 0 ? "Timeout" : "Signal");
3463 spin_lock_irqsave(&xhci->lock, flags);
3464 /* The timeout might have raced with the event ring handler, so
3465 * only delete from the list if the item isn't poisoned.
3466 */
3467 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3468 list_del(&reset_device_cmd->cmd_list);
3469 spin_unlock_irqrestore(&xhci->lock, flags);
3470 ret = -ETIME;
3471 goto command_cleanup;
3472 }
3473
3474 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3475 * unless we tried to reset a slot ID that wasn't enabled,
3476 * or the device wasn't in the addressed or configured state.
3477 */
3478 ret = reset_device_cmd->status;
3479 switch (ret) {
3480 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3481 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3482 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3483 slot_id,
3484 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3485 xhci_dbg(xhci, "Not freeing device rings.\n");
3486 /* Don't treat this as an error. May change my mind later. */
3487 ret = 0;
3488 goto command_cleanup;
3489 case COMP_SUCCESS:
3490 xhci_dbg(xhci, "Successful reset device command.\n");
3491 break;
3492 default:
3493 if (xhci_is_vendor_info_code(xhci, ret))
3494 break;
3495 xhci_warn(xhci, "Unknown completion code %u for "
3496 "reset device command.\n", ret);
3497 ret = -EINVAL;
3498 goto command_cleanup;
3499 }
3500
3501 /* Free up host controller endpoint resources */
3502 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3503 spin_lock_irqsave(&xhci->lock, flags);
3504 /* Don't delete the default control endpoint resources */
3505 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3506 spin_unlock_irqrestore(&xhci->lock, flags);
3507 }
3508
3509 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3510 last_freed_endpoint = 1;
3511 for (i = 1; i < 31; ++i) {
3512 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3513
3514 if (ep->ep_state & EP_HAS_STREAMS) {
3515 xhci_free_stream_info(xhci, ep->stream_info);
3516 ep->stream_info = NULL;
3517 ep->ep_state &= ~EP_HAS_STREAMS;
3518 }
3519
3520 if (ep->ring) {
3521 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3522 last_freed_endpoint = i;
3523 }
3524 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3525 xhci_drop_ep_from_interval_table(xhci,
3526 &virt_dev->eps[i].bw_info,
3527 virt_dev->bw_table,
3528 udev,
3529 &virt_dev->eps[i],
3530 virt_dev->tt_info);
3531 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3532 }
3533 /* If necessary, update the number of active TTs on this root port */
3534 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3535
3536 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3537 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3538 ret = 0;
3539
3540 command_cleanup:
3541 xhci_free_command(xhci, reset_device_cmd);
3542 return ret;
3543 }
3544
3545 /*
3546 * At this point, the struct usb_device is about to go away, the device has
3547 * disconnected, and all traffic has been stopped and the endpoints have been
3548 * disabled. Free any HC data structures associated with that device.
3549 */
3550 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3551 {
3552 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3553 struct xhci_virt_device *virt_dev;
3554 unsigned long flags;
3555 u32 state;
3556 int i, ret;
3557
3558 #ifndef CONFIG_USB_DEFAULT_PERSIST
3559 /*
3560 * We called pm_runtime_get_noresume when the device was attached.
3561 * Decrement the counter here to allow controller to runtime suspend
3562 * if no devices remain.
3563 */
3564 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3565 pm_runtime_put_noidle(hcd->self.controller);
3566 #endif
3567
3568 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3569 /* If the host is halted due to driver unload, we still need to free the
3570 * device.
3571 */
3572 if (ret <= 0 && ret != -ENODEV)
3573 return;
3574
3575 virt_dev = xhci->devs[udev->slot_id];
3576
3577 /* Stop any wayward timer functions (which may grab the lock) */
3578 for (i = 0; i < 31; ++i) {
3579 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3580 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3581 }
3582
3583 spin_lock_irqsave(&xhci->lock, flags);
3584 /* Don't disable the slot if the host controller is dead. */
3585 state = readl(&xhci->op_regs->status);
3586 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3587 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3588 xhci_free_virt_device(xhci, udev->slot_id);
3589 spin_unlock_irqrestore(&xhci->lock, flags);
3590 return;
3591 }
3592
3593 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3594 spin_unlock_irqrestore(&xhci->lock, flags);
3595 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3596 return;
3597 }
3598 xhci_ring_cmd_db(xhci);
3599 spin_unlock_irqrestore(&xhci->lock, flags);
3600 /*
3601 * Event command completion handler will free any data structures
3602 * associated with the slot. XXX Can free sleep?
3603 */
3604 }
3605
3606 /*
3607 * Checks if we have enough host controller resources for the default control
3608 * endpoint.
3609 *
3610 * Must be called with xhci->lock held.
3611 */
3612 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3613 {
3614 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3615 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3616 "Not enough ep ctxs: "
3617 "%u active, need to add 1, limit is %u.",
3618 xhci->num_active_eps, xhci->limit_active_eps);
3619 return -ENOMEM;
3620 }
3621 xhci->num_active_eps += 1;
3622 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3623 "Adding 1 ep ctx, %u now active.",
3624 xhci->num_active_eps);
3625 return 0;
3626 }
3627
3628
3629 /*
3630 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3631 * timed out, or allocating memory failed. Returns 1 on success.
3632 */
3633 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3634 {
3635 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3636 unsigned long flags;
3637 int timeleft;
3638 int ret;
3639 union xhci_trb *cmd_trb;
3640
3641 spin_lock_irqsave(&xhci->lock, flags);
3642 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3643 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3644 if (ret) {
3645 spin_unlock_irqrestore(&xhci->lock, flags);
3646 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3647 return 0;
3648 }
3649 xhci_ring_cmd_db(xhci);
3650 spin_unlock_irqrestore(&xhci->lock, flags);
3651
3652 /* XXX: how much time for xHC slot assignment? */
3653 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3654 XHCI_CMD_DEFAULT_TIMEOUT);
3655 if (timeleft <= 0) {
3656 xhci_warn(xhci, "%s while waiting for a slot\n",
3657 timeleft == 0 ? "Timeout" : "Signal");
3658 /* cancel the enable slot request */
3659 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3660 }
3661
3662 if (!xhci->slot_id) {
3663 xhci_err(xhci, "Error while assigning device slot ID\n");
3664 return 0;
3665 }
3666
3667 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3668 spin_lock_irqsave(&xhci->lock, flags);
3669 ret = xhci_reserve_host_control_ep_resources(xhci);
3670 if (ret) {
3671 spin_unlock_irqrestore(&xhci->lock, flags);
3672 xhci_warn(xhci, "Not enough host resources, "
3673 "active endpoint contexts = %u\n",
3674 xhci->num_active_eps);
3675 goto disable_slot;
3676 }
3677 spin_unlock_irqrestore(&xhci->lock, flags);
3678 }
3679 /* Use GFP_NOIO, since this function can be called from
3680 * xhci_discover_or_reset_device(), which may be called as part of
3681 * mass storage driver error handling.
3682 */
3683 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3684 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3685 goto disable_slot;
3686 }
3687 udev->slot_id = xhci->slot_id;
3688
3689 #ifndef CONFIG_USB_DEFAULT_PERSIST
3690 /*
3691 * If resetting upon resume, we can't put the controller into runtime
3692 * suspend if there is a device attached.
3693 */
3694 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3695 pm_runtime_get_noresume(hcd->self.controller);
3696 #endif
3697
3698 /* Is this a LS or FS device under a HS hub? */
3699 /* Hub or peripherial? */
3700 return 1;
3701
3702 disable_slot:
3703 /* Disable slot, if we can do it without mem alloc */
3704 spin_lock_irqsave(&xhci->lock, flags);
3705 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3706 xhci_ring_cmd_db(xhci);
3707 spin_unlock_irqrestore(&xhci->lock, flags);
3708 return 0;
3709 }
3710
3711 /*
3712 * Issue an Address Device command (which will issue a SetAddress request to
3713 * the device).
3714 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3715 * we should only issue and wait on one address command at the same time.
3716 */
3717 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3718 {
3719 unsigned long flags;
3720 int timeleft;
3721 struct xhci_virt_device *virt_dev;
3722 int ret = 0;
3723 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3724 struct xhci_slot_ctx *slot_ctx;
3725 struct xhci_input_control_ctx *ctrl_ctx;
3726 u64 temp_64;
3727 union xhci_trb *cmd_trb;
3728
3729 if (!udev->slot_id) {
3730 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3731 "Bad Slot ID %d", udev->slot_id);
3732 return -EINVAL;
3733 }
3734
3735 virt_dev = xhci->devs[udev->slot_id];
3736
3737 if (WARN_ON(!virt_dev)) {
3738 /*
3739 * In plug/unplug torture test with an NEC controller,
3740 * a zero-dereference was observed once due to virt_dev = 0.
3741 * Print useful debug rather than crash if it is observed again!
3742 */
3743 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3744 udev->slot_id);
3745 return -EINVAL;
3746 }
3747
3748 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3749 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3750 if (!ctrl_ctx) {
3751 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3752 __func__);
3753 return -EINVAL;
3754 }
3755 /*
3756 * If this is the first Set Address since device plug-in or
3757 * virt_device realloaction after a resume with an xHCI power loss,
3758 * then set up the slot context.
3759 */
3760 if (!slot_ctx->dev_info)
3761 xhci_setup_addressable_virt_dev(xhci, udev);
3762 /* Otherwise, update the control endpoint ring enqueue pointer. */
3763 else
3764 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3765 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3766 ctrl_ctx->drop_flags = 0;
3767
3768 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3769 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3770 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3771 le32_to_cpu(slot_ctx->dev_info) >> 27);
3772
3773 spin_lock_irqsave(&xhci->lock, flags);
3774 cmd_trb = xhci_find_next_enqueue(xhci->cmd_ring);
3775 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3776 udev->slot_id);
3777 if (ret) {
3778 spin_unlock_irqrestore(&xhci->lock, flags);
3779 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3780 "FIXME: allocate a command ring segment");
3781 return ret;
3782 }
3783 xhci_ring_cmd_db(xhci);
3784 spin_unlock_irqrestore(&xhci->lock, flags);
3785
3786 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3787 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3788 XHCI_CMD_DEFAULT_TIMEOUT);
3789 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3790 * the SetAddress() "recovery interval" required by USB and aborting the
3791 * command on a timeout.
3792 */
3793 if (timeleft <= 0) {
3794 xhci_warn(xhci, "%s while waiting for address device command\n",
3795 timeleft == 0 ? "Timeout" : "Signal");
3796 /* cancel the address device command */
3797 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3798 if (ret < 0)
3799 return ret;
3800 return -ETIME;
3801 }
3802
3803 switch (virt_dev->cmd_status) {
3804 case COMP_CTX_STATE:
3805 case COMP_EBADSLT:
3806 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3807 udev->slot_id);
3808 ret = -EINVAL;
3809 break;
3810 case COMP_TX_ERR:
3811 dev_warn(&udev->dev, "Device not responding to set address.\n");
3812 ret = -EPROTO;
3813 break;
3814 case COMP_DEV_ERR:
3815 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3816 "device command.\n");
3817 ret = -ENODEV;
3818 break;
3819 case COMP_SUCCESS:
3820 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3821 "Successful Address Device command");
3822 break;
3823 default:
3824 xhci_err(xhci, "ERROR: unexpected command completion "
3825 "code 0x%x.\n", virt_dev->cmd_status);
3826 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3827 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3828 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3829 ret = -EINVAL;
3830 break;
3831 }
3832 if (ret) {
3833 return ret;
3834 }
3835 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3836 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3837 "Op regs DCBAA ptr = %#016llx", temp_64);
3838 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3839 "Slot ID %d dcbaa entry @%p = %#016llx",
3840 udev->slot_id,
3841 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3842 (unsigned long long)
3843 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3844 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3845 "Output Context DMA address = %#08llx",
3846 (unsigned long long)virt_dev->out_ctx->dma);
3847 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3848 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3849 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3850 le32_to_cpu(slot_ctx->dev_info) >> 27);
3851 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3852 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3853 /*
3854 * USB core uses address 1 for the roothubs, so we add one to the
3855 * address given back to us by the HC.
3856 */
3857 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3858 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3859 le32_to_cpu(slot_ctx->dev_info) >> 27);
3860 /* Zero the input context control for later use */
3861 ctrl_ctx->add_flags = 0;
3862 ctrl_ctx->drop_flags = 0;
3863
3864 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3865 "Internal device address = %d",
3866 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3867
3868 return 0;
3869 }
3870
3871 /*
3872 * Transfer the port index into real index in the HW port status
3873 * registers. Caculate offset between the port's PORTSC register
3874 * and port status base. Divide the number of per port register
3875 * to get the real index. The raw port number bases 1.
3876 */
3877 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3878 {
3879 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3880 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3881 __le32 __iomem *addr;
3882 int raw_port;
3883
3884 if (hcd->speed != HCD_USB3)
3885 addr = xhci->usb2_ports[port1 - 1];
3886 else
3887 addr = xhci->usb3_ports[port1 - 1];
3888
3889 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3890 return raw_port;
3891 }
3892
3893 /*
3894 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3895 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3896 */
3897 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3898 struct usb_device *udev, u16 max_exit_latency)
3899 {
3900 struct xhci_virt_device *virt_dev;
3901 struct xhci_command *command;
3902 struct xhci_input_control_ctx *ctrl_ctx;
3903 struct xhci_slot_ctx *slot_ctx;
3904 unsigned long flags;
3905 int ret;
3906
3907 spin_lock_irqsave(&xhci->lock, flags);
3908 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3909 spin_unlock_irqrestore(&xhci->lock, flags);
3910 return 0;
3911 }
3912
3913 /* Attempt to issue an Evaluate Context command to change the MEL. */
3914 virt_dev = xhci->devs[udev->slot_id];
3915 command = xhci->lpm_command;
3916 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3917 if (!ctrl_ctx) {
3918 spin_unlock_irqrestore(&xhci->lock, flags);
3919 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3920 __func__);
3921 return -ENOMEM;
3922 }
3923
3924 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3925 spin_unlock_irqrestore(&xhci->lock, flags);
3926
3927 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3928 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3929 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3930 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3931
3932 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3933 "Set up evaluate context for LPM MEL change.");
3934 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3935 xhci_dbg_ctx(xhci, command->in_ctx, 0);
3936
3937 /* Issue and wait for the evaluate context command. */
3938 ret = xhci_configure_endpoint(xhci, udev, command,
3939 true, true);
3940 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3941 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3942
3943 if (!ret) {
3944 spin_lock_irqsave(&xhci->lock, flags);
3945 virt_dev->current_mel = max_exit_latency;
3946 spin_unlock_irqrestore(&xhci->lock, flags);
3947 }
3948 return ret;
3949 }
3950
3951 #ifdef CONFIG_PM_RUNTIME
3952
3953 /* BESL to HIRD Encoding array for USB2 LPM */
3954 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3955 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3956
3957 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3958 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3959 struct usb_device *udev)
3960 {
3961 int u2del, besl, besl_host;
3962 int besl_device = 0;
3963 u32 field;
3964
3965 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3966 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3967
3968 if (field & USB_BESL_SUPPORT) {
3969 for (besl_host = 0; besl_host < 16; besl_host++) {
3970 if (xhci_besl_encoding[besl_host] >= u2del)
3971 break;
3972 }
3973 /* Use baseline BESL value as default */
3974 if (field & USB_BESL_BASELINE_VALID)
3975 besl_device = USB_GET_BESL_BASELINE(field);
3976 else if (field & USB_BESL_DEEP_VALID)
3977 besl_device = USB_GET_BESL_DEEP(field);
3978 } else {
3979 if (u2del <= 50)
3980 besl_host = 0;
3981 else
3982 besl_host = (u2del - 51) / 75 + 1;
3983 }
3984
3985 besl = besl_host + besl_device;
3986 if (besl > 15)
3987 besl = 15;
3988
3989 return besl;
3990 }
3991
3992 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
3993 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
3994 {
3995 u32 field;
3996 int l1;
3997 int besld = 0;
3998 int hirdm = 0;
3999
4000 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4001
4002 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4003 l1 = udev->l1_params.timeout / 256;
4004
4005 /* device has preferred BESLD */
4006 if (field & USB_BESL_DEEP_VALID) {
4007 besld = USB_GET_BESL_DEEP(field);
4008 hirdm = 1;
4009 }
4010
4011 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4012 }
4013
4014 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4015 struct usb_device *udev, int enable)
4016 {
4017 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4018 __le32 __iomem **port_array;
4019 __le32 __iomem *pm_addr, *hlpm_addr;
4020 u32 pm_val, hlpm_val, field;
4021 unsigned int port_num;
4022 unsigned long flags;
4023 int hird, exit_latency;
4024 int ret;
4025
4026 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4027 !udev->lpm_capable)
4028 return -EPERM;
4029
4030 if (!udev->parent || udev->parent->parent ||
4031 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4032 return -EPERM;
4033
4034 if (udev->usb2_hw_lpm_capable != 1)
4035 return -EPERM;
4036
4037 spin_lock_irqsave(&xhci->lock, flags);
4038
4039 port_array = xhci->usb2_ports;
4040 port_num = udev->portnum - 1;
4041 pm_addr = port_array[port_num] + PORTPMSC;
4042 pm_val = readl(pm_addr);
4043 hlpm_addr = port_array[port_num] + PORTHLPMC;
4044 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4045
4046 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4047 enable ? "enable" : "disable", port_num);
4048
4049 if (enable) {
4050 /* Host supports BESL timeout instead of HIRD */
4051 if (udev->usb2_hw_lpm_besl_capable) {
4052 /* if device doesn't have a preferred BESL value use a
4053 * default one which works with mixed HIRD and BESL
4054 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4055 */
4056 if ((field & USB_BESL_SUPPORT) &&
4057 (field & USB_BESL_BASELINE_VALID))
4058 hird = USB_GET_BESL_BASELINE(field);
4059 else
4060 hird = udev->l1_params.besl;
4061
4062 exit_latency = xhci_besl_encoding[hird];
4063 spin_unlock_irqrestore(&xhci->lock, flags);
4064
4065 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4066 * input context for link powermanagement evaluate
4067 * context commands. It is protected by hcd->bandwidth
4068 * mutex and is shared by all devices. We need to set
4069 * the max ext latency in USB 2 BESL LPM as well, so
4070 * use the same mutex and xhci_change_max_exit_latency()
4071 */
4072 mutex_lock(hcd->bandwidth_mutex);
4073 ret = xhci_change_max_exit_latency(xhci, udev,
4074 exit_latency);
4075 mutex_unlock(hcd->bandwidth_mutex);
4076
4077 if (ret < 0)
4078 return ret;
4079 spin_lock_irqsave(&xhci->lock, flags);
4080
4081 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4082 writel(hlpm_val, hlpm_addr);
4083 /* flush write */
4084 readl(hlpm_addr);
4085 } else {
4086 hird = xhci_calculate_hird_besl(xhci, udev);
4087 }
4088
4089 pm_val &= ~PORT_HIRD_MASK;
4090 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4091 writel(pm_val, pm_addr);
4092 pm_val = readl(pm_addr);
4093 pm_val |= PORT_HLE;
4094 writel(pm_val, pm_addr);
4095 /* flush write */
4096 readl(pm_addr);
4097 } else {
4098 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4099 writel(pm_val, pm_addr);
4100 /* flush write */
4101 readl(pm_addr);
4102 if (udev->usb2_hw_lpm_besl_capable) {
4103 spin_unlock_irqrestore(&xhci->lock, flags);
4104 mutex_lock(hcd->bandwidth_mutex);
4105 xhci_change_max_exit_latency(xhci, udev, 0);
4106 mutex_unlock(hcd->bandwidth_mutex);
4107 return 0;
4108 }
4109 }
4110
4111 spin_unlock_irqrestore(&xhci->lock, flags);
4112 return 0;
4113 }
4114
4115 /* check if a usb2 port supports a given extened capability protocol
4116 * only USB2 ports extended protocol capability values are cached.
4117 * Return 1 if capability is supported
4118 */
4119 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4120 unsigned capability)
4121 {
4122 u32 port_offset, port_count;
4123 int i;
4124
4125 for (i = 0; i < xhci->num_ext_caps; i++) {
4126 if (xhci->ext_caps[i] & capability) {
4127 /* port offsets starts at 1 */
4128 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4129 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4130 if (port >= port_offset &&
4131 port < port_offset + port_count)
4132 return 1;
4133 }
4134 }
4135 return 0;
4136 }
4137
4138 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4139 {
4140 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4141 int portnum = udev->portnum - 1;
4142
4143 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
4144 !udev->lpm_capable)
4145 return 0;
4146
4147 /* we only support lpm for non-hub device connected to root hub yet */
4148 if (!udev->parent || udev->parent->parent ||
4149 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4150 return 0;
4151
4152 if (xhci->hw_lpm_support == 1 &&
4153 xhci_check_usb2_port_capability(
4154 xhci, portnum, XHCI_HLC)) {
4155 udev->usb2_hw_lpm_capable = 1;
4156 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4157 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4158 if (xhci_check_usb2_port_capability(xhci, portnum,
4159 XHCI_BLC))
4160 udev->usb2_hw_lpm_besl_capable = 1;
4161 }
4162
4163 return 0;
4164 }
4165
4166 #else
4167
4168 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4169 struct usb_device *udev, int enable)
4170 {
4171 return 0;
4172 }
4173
4174 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4175 {
4176 return 0;
4177 }
4178
4179 #endif /* CONFIG_PM_RUNTIME */
4180
4181 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4182
4183 #ifdef CONFIG_PM
4184 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4185 static unsigned long long xhci_service_interval_to_ns(
4186 struct usb_endpoint_descriptor *desc)
4187 {
4188 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4189 }
4190
4191 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4192 enum usb3_link_state state)
4193 {
4194 unsigned long long sel;
4195 unsigned long long pel;
4196 unsigned int max_sel_pel;
4197 char *state_name;
4198
4199 switch (state) {
4200 case USB3_LPM_U1:
4201 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4202 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4203 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4204 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4205 state_name = "U1";
4206 break;
4207 case USB3_LPM_U2:
4208 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4209 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4210 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4211 state_name = "U2";
4212 break;
4213 default:
4214 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4215 __func__);
4216 return USB3_LPM_DISABLED;
4217 }
4218
4219 if (sel <= max_sel_pel && pel <= max_sel_pel)
4220 return USB3_LPM_DEVICE_INITIATED;
4221
4222 if (sel > max_sel_pel)
4223 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4224 "due to long SEL %llu ms\n",
4225 state_name, sel);
4226 else
4227 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4228 "due to long PEL %llu ms\n",
4229 state_name, pel);
4230 return USB3_LPM_DISABLED;
4231 }
4232
4233 /* Returns the hub-encoded U1 timeout value.
4234 * The U1 timeout should be the maximum of the following values:
4235 * - For control endpoints, U1 system exit latency (SEL) * 3
4236 * - For bulk endpoints, U1 SEL * 5
4237 * - For interrupt endpoints:
4238 * - Notification EPs, U1 SEL * 3
4239 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4240 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4241 */
4242 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4243 struct usb_endpoint_descriptor *desc)
4244 {
4245 unsigned long long timeout_ns;
4246 int ep_type;
4247 int intr_type;
4248
4249 ep_type = usb_endpoint_type(desc);
4250 switch (ep_type) {
4251 case USB_ENDPOINT_XFER_CONTROL:
4252 timeout_ns = udev->u1_params.sel * 3;
4253 break;
4254 case USB_ENDPOINT_XFER_BULK:
4255 timeout_ns = udev->u1_params.sel * 5;
4256 break;
4257 case USB_ENDPOINT_XFER_INT:
4258 intr_type = usb_endpoint_interrupt_type(desc);
4259 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4260 timeout_ns = udev->u1_params.sel * 3;
4261 break;
4262 }
4263 /* Otherwise the calculation is the same as isoc eps */
4264 case USB_ENDPOINT_XFER_ISOC:
4265 timeout_ns = xhci_service_interval_to_ns(desc);
4266 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4267 if (timeout_ns < udev->u1_params.sel * 2)
4268 timeout_ns = udev->u1_params.sel * 2;
4269 break;
4270 default:
4271 return 0;
4272 }
4273
4274 /* The U1 timeout is encoded in 1us intervals. */
4275 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4276 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4277 if (timeout_ns == USB3_LPM_DISABLED)
4278 timeout_ns++;
4279
4280 /* If the necessary timeout value is bigger than what we can set in the
4281 * USB 3.0 hub, we have to disable hub-initiated U1.
4282 */
4283 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4284 return timeout_ns;
4285 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4286 "due to long timeout %llu ms\n", timeout_ns);
4287 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4288 }
4289
4290 /* Returns the hub-encoded U2 timeout value.
4291 * The U2 timeout should be the maximum of:
4292 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4293 * - largest bInterval of any active periodic endpoint (to avoid going
4294 * into lower power link states between intervals).
4295 * - the U2 Exit Latency of the device
4296 */
4297 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4298 struct usb_endpoint_descriptor *desc)
4299 {
4300 unsigned long long timeout_ns;
4301 unsigned long long u2_del_ns;
4302
4303 timeout_ns = 10 * 1000 * 1000;
4304
4305 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4306 (xhci_service_interval_to_ns(desc) > timeout_ns))
4307 timeout_ns = xhci_service_interval_to_ns(desc);
4308
4309 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4310 if (u2_del_ns > timeout_ns)
4311 timeout_ns = u2_del_ns;
4312
4313 /* The U2 timeout is encoded in 256us intervals */
4314 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4315 /* If the necessary timeout value is bigger than what we can set in the
4316 * USB 3.0 hub, we have to disable hub-initiated U2.
4317 */
4318 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4319 return timeout_ns;
4320 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4321 "due to long timeout %llu ms\n", timeout_ns);
4322 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4323 }
4324
4325 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4326 struct usb_device *udev,
4327 struct usb_endpoint_descriptor *desc,
4328 enum usb3_link_state state,
4329 u16 *timeout)
4330 {
4331 if (state == USB3_LPM_U1) {
4332 if (xhci->quirks & XHCI_INTEL_HOST)
4333 return xhci_calculate_intel_u1_timeout(udev, desc);
4334 } else {
4335 if (xhci->quirks & XHCI_INTEL_HOST)
4336 return xhci_calculate_intel_u2_timeout(udev, desc);
4337 }
4338
4339 return USB3_LPM_DISABLED;
4340 }
4341
4342 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4343 struct usb_device *udev,
4344 struct usb_endpoint_descriptor *desc,
4345 enum usb3_link_state state,
4346 u16 *timeout)
4347 {
4348 u16 alt_timeout;
4349
4350 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4351 desc, state, timeout);
4352
4353 /* If we found we can't enable hub-initiated LPM, or
4354 * the U1 or U2 exit latency was too high to allow
4355 * device-initiated LPM as well, just stop searching.
4356 */
4357 if (alt_timeout == USB3_LPM_DISABLED ||
4358 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4359 *timeout = alt_timeout;
4360 return -E2BIG;
4361 }
4362 if (alt_timeout > *timeout)
4363 *timeout = alt_timeout;
4364 return 0;
4365 }
4366
4367 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4368 struct usb_device *udev,
4369 struct usb_host_interface *alt,
4370 enum usb3_link_state state,
4371 u16 *timeout)
4372 {
4373 int j;
4374
4375 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4376 if (xhci_update_timeout_for_endpoint(xhci, udev,
4377 &alt->endpoint[j].desc, state, timeout))
4378 return -E2BIG;
4379 continue;
4380 }
4381 return 0;
4382 }
4383
4384 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4385 enum usb3_link_state state)
4386 {
4387 struct usb_device *parent;
4388 unsigned int num_hubs;
4389
4390 if (state == USB3_LPM_U2)
4391 return 0;
4392
4393 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4394 for (parent = udev->parent, num_hubs = 0; parent->parent;
4395 parent = parent->parent)
4396 num_hubs++;
4397
4398 if (num_hubs < 2)
4399 return 0;
4400
4401 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4402 " below second-tier hub.\n");
4403 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4404 "to decrease power consumption.\n");
4405 return -E2BIG;
4406 }
4407
4408 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4409 struct usb_device *udev,
4410 enum usb3_link_state state)
4411 {
4412 if (xhci->quirks & XHCI_INTEL_HOST)
4413 return xhci_check_intel_tier_policy(udev, state);
4414 return -EINVAL;
4415 }
4416
4417 /* Returns the U1 or U2 timeout that should be enabled.
4418 * If the tier check or timeout setting functions return with a non-zero exit
4419 * code, that means the timeout value has been finalized and we shouldn't look
4420 * at any more endpoints.
4421 */
4422 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4423 struct usb_device *udev, enum usb3_link_state state)
4424 {
4425 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4426 struct usb_host_config *config;
4427 char *state_name;
4428 int i;
4429 u16 timeout = USB3_LPM_DISABLED;
4430
4431 if (state == USB3_LPM_U1)
4432 state_name = "U1";
4433 else if (state == USB3_LPM_U2)
4434 state_name = "U2";
4435 else {
4436 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4437 state);
4438 return timeout;
4439 }
4440
4441 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4442 return timeout;
4443
4444 /* Gather some information about the currently installed configuration
4445 * and alternate interface settings.
4446 */
4447 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4448 state, &timeout))
4449 return timeout;
4450
4451 config = udev->actconfig;
4452 if (!config)
4453 return timeout;
4454
4455 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4456 struct usb_driver *driver;
4457 struct usb_interface *intf = config->interface[i];
4458
4459 if (!intf)
4460 continue;
4461
4462 /* Check if any currently bound drivers want hub-initiated LPM
4463 * disabled.
4464 */
4465 if (intf->dev.driver) {
4466 driver = to_usb_driver(intf->dev.driver);
4467 if (driver && driver->disable_hub_initiated_lpm) {
4468 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4469 "at request of driver %s\n",
4470 state_name, driver->name);
4471 return xhci_get_timeout_no_hub_lpm(udev, state);
4472 }
4473 }
4474
4475 /* Not sure how this could happen... */
4476 if (!intf->cur_altsetting)
4477 continue;
4478
4479 if (xhci_update_timeout_for_interface(xhci, udev,
4480 intf->cur_altsetting,
4481 state, &timeout))
4482 return timeout;
4483 }
4484 return timeout;
4485 }
4486
4487 static int calculate_max_exit_latency(struct usb_device *udev,
4488 enum usb3_link_state state_changed,
4489 u16 hub_encoded_timeout)
4490 {
4491 unsigned long long u1_mel_us = 0;
4492 unsigned long long u2_mel_us = 0;
4493 unsigned long long mel_us = 0;
4494 bool disabling_u1;
4495 bool disabling_u2;
4496 bool enabling_u1;
4497 bool enabling_u2;
4498
4499 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4500 hub_encoded_timeout == USB3_LPM_DISABLED);
4501 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4502 hub_encoded_timeout == USB3_LPM_DISABLED);
4503
4504 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4505 hub_encoded_timeout != USB3_LPM_DISABLED);
4506 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4507 hub_encoded_timeout != USB3_LPM_DISABLED);
4508
4509 /* If U1 was already enabled and we're not disabling it,
4510 * or we're going to enable U1, account for the U1 max exit latency.
4511 */
4512 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4513 enabling_u1)
4514 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4515 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4516 enabling_u2)
4517 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4518
4519 if (u1_mel_us > u2_mel_us)
4520 mel_us = u1_mel_us;
4521 else
4522 mel_us = u2_mel_us;
4523 /* xHCI host controller max exit latency field is only 16 bits wide. */
4524 if (mel_us > MAX_EXIT) {
4525 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4526 "is too big.\n", mel_us);
4527 return -E2BIG;
4528 }
4529 return mel_us;
4530 }
4531
4532 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4533 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4534 struct usb_device *udev, enum usb3_link_state state)
4535 {
4536 struct xhci_hcd *xhci;
4537 u16 hub_encoded_timeout;
4538 int mel;
4539 int ret;
4540
4541 xhci = hcd_to_xhci(hcd);
4542 /* The LPM timeout values are pretty host-controller specific, so don't
4543 * enable hub-initiated timeouts unless the vendor has provided
4544 * information about their timeout algorithm.
4545 */
4546 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4547 !xhci->devs[udev->slot_id])
4548 return USB3_LPM_DISABLED;
4549
4550 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4551 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4552 if (mel < 0) {
4553 /* Max Exit Latency is too big, disable LPM. */
4554 hub_encoded_timeout = USB3_LPM_DISABLED;
4555 mel = 0;
4556 }
4557
4558 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4559 if (ret)
4560 return ret;
4561 return hub_encoded_timeout;
4562 }
4563
4564 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4565 struct usb_device *udev, enum usb3_link_state state)
4566 {
4567 struct xhci_hcd *xhci;
4568 u16 mel;
4569 int ret;
4570
4571 xhci = hcd_to_xhci(hcd);
4572 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4573 !xhci->devs[udev->slot_id])
4574 return 0;
4575
4576 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4577 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4578 if (ret)
4579 return ret;
4580 return 0;
4581 }
4582 #else /* CONFIG_PM */
4583
4584 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4585 struct usb_device *udev, enum usb3_link_state state)
4586 {
4587 return USB3_LPM_DISABLED;
4588 }
4589
4590 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4591 struct usb_device *udev, enum usb3_link_state state)
4592 {
4593 return 0;
4594 }
4595 #endif /* CONFIG_PM */
4596
4597 /*-------------------------------------------------------------------------*/
4598
4599 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4600 * internal data structures for the device.
4601 */
4602 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4603 struct usb_tt *tt, gfp_t mem_flags)
4604 {
4605 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4606 struct xhci_virt_device *vdev;
4607 struct xhci_command *config_cmd;
4608 struct xhci_input_control_ctx *ctrl_ctx;
4609 struct xhci_slot_ctx *slot_ctx;
4610 unsigned long flags;
4611 unsigned think_time;
4612 int ret;
4613
4614 /* Ignore root hubs */
4615 if (!hdev->parent)
4616 return 0;
4617
4618 vdev = xhci->devs[hdev->slot_id];
4619 if (!vdev) {
4620 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4621 return -EINVAL;
4622 }
4623 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4624 if (!config_cmd) {
4625 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4626 return -ENOMEM;
4627 }
4628 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4629 if (!ctrl_ctx) {
4630 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4631 __func__);
4632 xhci_free_command(xhci, config_cmd);
4633 return -ENOMEM;
4634 }
4635
4636 spin_lock_irqsave(&xhci->lock, flags);
4637 if (hdev->speed == USB_SPEED_HIGH &&
4638 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4639 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4640 xhci_free_command(xhci, config_cmd);
4641 spin_unlock_irqrestore(&xhci->lock, flags);
4642 return -ENOMEM;
4643 }
4644
4645 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4646 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4647 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4648 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4649 if (tt->multi)
4650 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4651 if (xhci->hci_version > 0x95) {
4652 xhci_dbg(xhci, "xHCI version %x needs hub "
4653 "TT think time and number of ports\n",
4654 (unsigned int) xhci->hci_version);
4655 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4656 /* Set TT think time - convert from ns to FS bit times.
4657 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4658 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4659 *
4660 * xHCI 1.0: this field shall be 0 if the device is not a
4661 * High-spped hub.
4662 */
4663 think_time = tt->think_time;
4664 if (think_time != 0)
4665 think_time = (think_time / 666) - 1;
4666 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4667 slot_ctx->tt_info |=
4668 cpu_to_le32(TT_THINK_TIME(think_time));
4669 } else {
4670 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4671 "TT think time or number of ports\n",
4672 (unsigned int) xhci->hci_version);
4673 }
4674 slot_ctx->dev_state = 0;
4675 spin_unlock_irqrestore(&xhci->lock, flags);
4676
4677 xhci_dbg(xhci, "Set up %s for hub device.\n",
4678 (xhci->hci_version > 0x95) ?
4679 "configure endpoint" : "evaluate context");
4680 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4681 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4682
4683 /* Issue and wait for the configure endpoint or
4684 * evaluate context command.
4685 */
4686 if (xhci->hci_version > 0x95)
4687 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4688 false, false);
4689 else
4690 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4691 true, false);
4692
4693 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4694 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4695
4696 xhci_free_command(xhci, config_cmd);
4697 return ret;
4698 }
4699
4700 int xhci_get_frame(struct usb_hcd *hcd)
4701 {
4702 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4703 /* EHCI mods by the periodic size. Why? */
4704 return readl(&xhci->run_regs->microframe_index) >> 3;
4705 }
4706
4707 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4708 {
4709 struct xhci_hcd *xhci;
4710 struct device *dev = hcd->self.controller;
4711 int retval;
4712
4713 /* Accept arbitrarily long scatter-gather lists */
4714 hcd->self.sg_tablesize = ~0;
4715
4716 /* support to build packet from discontinuous buffers */
4717 hcd->self.no_sg_constraint = 1;
4718
4719 /* XHCI controllers don't stop the ep queue on short packets :| */
4720 hcd->self.no_stop_on_short = 1;
4721
4722 if (usb_hcd_is_primary_hcd(hcd)) {
4723 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4724 if (!xhci)
4725 return -ENOMEM;
4726 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4727 xhci->main_hcd = hcd;
4728 /* Mark the first roothub as being USB 2.0.
4729 * The xHCI driver will register the USB 3.0 roothub.
4730 */
4731 hcd->speed = HCD_USB2;
4732 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4733 /*
4734 * USB 2.0 roothub under xHCI has an integrated TT,
4735 * (rate matching hub) as opposed to having an OHCI/UHCI
4736 * companion controller.
4737 */
4738 hcd->has_tt = 1;
4739 } else {
4740 /* xHCI private pointer was set in xhci_pci_probe for the second
4741 * registered roothub.
4742 */
4743 return 0;
4744 }
4745
4746 xhci->cap_regs = hcd->regs;
4747 xhci->op_regs = hcd->regs +
4748 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4749 xhci->run_regs = hcd->regs +
4750 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4751 /* Cache read-only capability registers */
4752 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4753 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4754 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4755 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4756 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4757 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4758 xhci_print_registers(xhci);
4759
4760 get_quirks(dev, xhci);
4761
4762 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4763 * success event after a short transfer. This quirk will ignore such
4764 * spurious event.
4765 */
4766 if (xhci->hci_version > 0x96)
4767 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4768
4769 /* Make sure the HC is halted. */
4770 retval = xhci_halt(xhci);
4771 if (retval)
4772 goto error;
4773
4774 xhci_dbg(xhci, "Resetting HCD\n");
4775 /* Reset the internal HC memory state and registers. */
4776 retval = xhci_reset(xhci);
4777 if (retval)
4778 goto error;
4779 xhci_dbg(xhci, "Reset complete\n");
4780
4781 /* Set dma_mask and coherent_dma_mask to 64-bits,
4782 * if xHC supports 64-bit addressing */
4783 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4784 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4785 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4786 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4787 }
4788
4789 xhci_dbg(xhci, "Calling HCD init\n");
4790 /* Initialize HCD and host controller data structures. */
4791 retval = xhci_init(hcd);
4792 if (retval)
4793 goto error;
4794 xhci_dbg(xhci, "Called HCD init\n");
4795 return 0;
4796 error:
4797 kfree(xhci);
4798 return retval;
4799 }
4800
4801 MODULE_DESCRIPTION(DRIVER_DESC);
4802 MODULE_AUTHOR(DRIVER_AUTHOR);
4803 MODULE_LICENSE("GPL");
4804
4805 static int __init xhci_hcd_init(void)
4806 {
4807 int retval;
4808
4809 retval = xhci_register_pci();
4810 if (retval < 0) {
4811 pr_debug("Problem registering PCI driver.\n");
4812 return retval;
4813 }
4814 retval = xhci_register_plat();
4815 if (retval < 0) {
4816 pr_debug("Problem registering platform driver.\n");
4817 goto unreg_pci;
4818 }
4819 /*
4820 * Check the compiler generated sizes of structures that must be laid
4821 * out in specific ways for hardware access.
4822 */
4823 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4824 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4825 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4826 /* xhci_device_control has eight fields, and also
4827 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4828 */
4829 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4830 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4831 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4832 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4833 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4834 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4835 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4836 return 0;
4837 unreg_pci:
4838 xhci_unregister_pci();
4839 return retval;
4840 }
4841 module_init(xhci_hcd_init);
4842
4843 static void __exit xhci_hcd_cleanup(void)
4844 {
4845 xhci_unregister_pci();
4846 xhci_unregister_plat();
4847 }
4848 module_exit(xhci_hcd_cleanup);
This page took 0.238083 seconds and 5 git commands to generate.