xhci: remove CONFIG_USB_XHCI_HCD_DEBUGGING and unused code
[deliverable/linux.git] / drivers / usb / host / xhci.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30
31 #include "xhci.h"
32
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43 * xhci_handshake - spin reading hc until handshake completes or fails
44 * @ptr: address of hc register to be read
45 * @mask: bits to look at in result of read
46 * @done: value of those bits when handshake succeeds
47 * @usec: timeout in microseconds
48 *
49 * Returns negative errno, or zero on success
50 *
51 * Success happens when the "mask" bits have the specified value (hardware
52 * handshake done). There are two failure modes: "usec" have passed (major
53 * hardware flakeout), or the register reads as all-ones (hardware removed).
54 */
55 int xhci_handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56 u32 mask, u32 done, int usec)
57 {
58 u32 result;
59
60 do {
61 result = xhci_readl(xhci, ptr);
62 if (result == ~(u32)0) /* card removed */
63 return -ENODEV;
64 result &= mask;
65 if (result == done)
66 return 0;
67 udelay(1);
68 usec--;
69 } while (usec > 0);
70 return -ETIMEDOUT;
71 }
72
73 /*
74 * Disable interrupts and begin the xHCI halting process.
75 */
76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78 u32 halted;
79 u32 cmd;
80 u32 mask;
81
82 mask = ~(XHCI_IRQS);
83 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84 if (!halted)
85 mask &= ~CMD_RUN;
86
87 cmd = xhci_readl(xhci, &xhci->op_regs->command);
88 cmd &= mask;
89 xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91
92 /*
93 * Force HC into halt state.
94 *
95 * Disable any IRQs and clear the run/stop bit.
96 * HC will complete any current and actively pipelined transactions, and
97 * should halt within 16 ms of the run/stop bit being cleared.
98 * Read HC Halted bit in the status register to see when the HC is finished.
99 */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102 int ret;
103 xhci_dbg(xhci, "// Halt the HC\n");
104 xhci_quiesce(xhci);
105
106 ret = xhci_handshake(xhci, &xhci->op_regs->status,
107 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
108 if (!ret) {
109 xhci->xhc_state |= XHCI_STATE_HALTED;
110 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
111 } else
112 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
113 XHCI_MAX_HALT_USEC);
114 return ret;
115 }
116
117 /*
118 * Set the run bit and wait for the host to be running.
119 */
120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122 u32 temp;
123 int ret;
124
125 temp = xhci_readl(xhci, &xhci->op_regs->command);
126 temp |= (CMD_RUN);
127 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128 temp);
129 xhci_writel(xhci, temp, &xhci->op_regs->command);
130
131 /*
132 * Wait for the HCHalted Status bit to be 0 to indicate the host is
133 * running.
134 */
135 ret = xhci_handshake(xhci, &xhci->op_regs->status,
136 STS_HALT, 0, XHCI_MAX_HALT_USEC);
137 if (ret == -ETIMEDOUT)
138 xhci_err(xhci, "Host took too long to start, "
139 "waited %u microseconds.\n",
140 XHCI_MAX_HALT_USEC);
141 if (!ret)
142 xhci->xhc_state &= ~XHCI_STATE_HALTED;
143 return ret;
144 }
145
146 /*
147 * Reset a halted HC.
148 *
149 * This resets pipelines, timers, counters, state machines, etc.
150 * Transactions will be terminated immediately, and operational registers
151 * will be set to their defaults.
152 */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155 u32 command;
156 u32 state;
157 int ret, i;
158
159 state = xhci_readl(xhci, &xhci->op_regs->status);
160 if ((state & STS_HALT) == 0) {
161 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162 return 0;
163 }
164
165 xhci_dbg(xhci, "// Reset the HC\n");
166 command = xhci_readl(xhci, &xhci->op_regs->command);
167 command |= CMD_RESET;
168 xhci_writel(xhci, command, &xhci->op_regs->command);
169
170 ret = xhci_handshake(xhci, &xhci->op_regs->command,
171 CMD_RESET, 0, 10 * 1000 * 1000);
172 if (ret)
173 return ret;
174
175 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176 /*
177 * xHCI cannot write to any doorbells or operational registers other
178 * than status until the "Controller Not Ready" flag is cleared.
179 */
180 ret = xhci_handshake(xhci, &xhci->op_regs->status,
181 STS_CNR, 0, 10 * 1000 * 1000);
182
183 for (i = 0; i < 2; ++i) {
184 xhci->bus_state[i].port_c_suspend = 0;
185 xhci->bus_state[i].suspended_ports = 0;
186 xhci->bus_state[i].resuming_ports = 0;
187 }
188
189 return ret;
190 }
191
192 #ifdef CONFIG_PCI
193 static int xhci_free_msi(struct xhci_hcd *xhci)
194 {
195 int i;
196
197 if (!xhci->msix_entries)
198 return -EINVAL;
199
200 for (i = 0; i < xhci->msix_count; i++)
201 if (xhci->msix_entries[i].vector)
202 free_irq(xhci->msix_entries[i].vector,
203 xhci_to_hcd(xhci));
204 return 0;
205 }
206
207 /*
208 * Set up MSI
209 */
210 static int xhci_setup_msi(struct xhci_hcd *xhci)
211 {
212 int ret;
213 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214
215 ret = pci_enable_msi(pdev);
216 if (ret) {
217 xhci_dbg(xhci, "failed to allocate MSI entry\n");
218 return ret;
219 }
220
221 ret = request_irq(pdev->irq, xhci_msi_irq,
222 0, "xhci_hcd", xhci_to_hcd(xhci));
223 if (ret) {
224 xhci_dbg(xhci, "disable MSI interrupt\n");
225 pci_disable_msi(pdev);
226 }
227
228 return ret;
229 }
230
231 /*
232 * Free IRQs
233 * free all IRQs request
234 */
235 static void xhci_free_irq(struct xhci_hcd *xhci)
236 {
237 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238 int ret;
239
240 /* return if using legacy interrupt */
241 if (xhci_to_hcd(xhci)->irq > 0)
242 return;
243
244 ret = xhci_free_msi(xhci);
245 if (!ret)
246 return;
247 if (pdev->irq > 0)
248 free_irq(pdev->irq, xhci_to_hcd(xhci));
249
250 return;
251 }
252
253 /*
254 * Set up MSI-X
255 */
256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258 int i, ret = 0;
259 struct usb_hcd *hcd = xhci_to_hcd(xhci);
260 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261
262 /*
263 * calculate number of msi-x vectors supported.
264 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265 * with max number of interrupters based on the xhci HCSPARAMS1.
266 * - num_online_cpus: maximum msi-x vectors per CPUs core.
267 * Add additional 1 vector to ensure always available interrupt.
268 */
269 xhci->msix_count = min(num_online_cpus() + 1,
270 HCS_MAX_INTRS(xhci->hcs_params1));
271
272 xhci->msix_entries =
273 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
274 GFP_KERNEL);
275 if (!xhci->msix_entries) {
276 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
277 return -ENOMEM;
278 }
279
280 for (i = 0; i < xhci->msix_count; i++) {
281 xhci->msix_entries[i].entry = i;
282 xhci->msix_entries[i].vector = 0;
283 }
284
285 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286 if (ret) {
287 xhci_dbg(xhci, "Failed to enable MSI-X\n");
288 goto free_entries;
289 }
290
291 for (i = 0; i < xhci->msix_count; i++) {
292 ret = request_irq(xhci->msix_entries[i].vector,
293 xhci_msi_irq,
294 0, "xhci_hcd", xhci_to_hcd(xhci));
295 if (ret)
296 goto disable_msix;
297 }
298
299 hcd->msix_enabled = 1;
300 return ret;
301
302 disable_msix:
303 xhci_dbg(xhci, "disable MSI-X interrupt\n");
304 xhci_free_irq(xhci);
305 pci_disable_msix(pdev);
306 free_entries:
307 kfree(xhci->msix_entries);
308 xhci->msix_entries = NULL;
309 return ret;
310 }
311
312 /* Free any IRQs and disable MSI-X */
313 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314 {
315 struct usb_hcd *hcd = xhci_to_hcd(xhci);
316 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
317
318 xhci_free_irq(xhci);
319
320 if (xhci->msix_entries) {
321 pci_disable_msix(pdev);
322 kfree(xhci->msix_entries);
323 xhci->msix_entries = NULL;
324 } else {
325 pci_disable_msi(pdev);
326 }
327
328 hcd->msix_enabled = 0;
329 return;
330 }
331
332 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
333 {
334 int i;
335
336 if (xhci->msix_entries) {
337 for (i = 0; i < xhci->msix_count; i++)
338 synchronize_irq(xhci->msix_entries[i].vector);
339 }
340 }
341
342 static int xhci_try_enable_msi(struct usb_hcd *hcd)
343 {
344 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
345 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
346 int ret;
347
348 /*
349 * Some Fresco Logic host controllers advertise MSI, but fail to
350 * generate interrupts. Don't even try to enable MSI.
351 */
352 if (xhci->quirks & XHCI_BROKEN_MSI)
353 goto legacy_irq;
354
355 /* unregister the legacy interrupt */
356 if (hcd->irq)
357 free_irq(hcd->irq, hcd);
358 hcd->irq = 0;
359
360 ret = xhci_setup_msix(xhci);
361 if (ret)
362 /* fall back to msi*/
363 ret = xhci_setup_msi(xhci);
364
365 if (!ret)
366 /* hcd->irq is 0, we have MSI */
367 return 0;
368
369 if (!pdev->irq) {
370 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
371 return -EINVAL;
372 }
373
374 legacy_irq:
375 /* fall back to legacy interrupt*/
376 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
377 hcd->irq_descr, hcd);
378 if (ret) {
379 xhci_err(xhci, "request interrupt %d failed\n",
380 pdev->irq);
381 return ret;
382 }
383 hcd->irq = pdev->irq;
384 return 0;
385 }
386
387 #else
388
389 static int xhci_try_enable_msi(struct usb_hcd *hcd)
390 {
391 return 0;
392 }
393
394 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
395 {
396 }
397
398 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
399 {
400 }
401
402 #endif
403
404 static void compliance_mode_recovery(unsigned long arg)
405 {
406 struct xhci_hcd *xhci;
407 struct usb_hcd *hcd;
408 u32 temp;
409 int i;
410
411 xhci = (struct xhci_hcd *)arg;
412
413 for (i = 0; i < xhci->num_usb3_ports; i++) {
414 temp = xhci_readl(xhci, xhci->usb3_ports[i]);
415 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
416 /*
417 * Compliance Mode Detected. Letting USB Core
418 * handle the Warm Reset
419 */
420 xhci_dbg(xhci, "Compliance mode detected->port %d\n",
421 i + 1);
422 xhci_dbg(xhci, "Attempting compliance mode recovery\n");
423 hcd = xhci->shared_hcd;
424
425 if (hcd->state == HC_STATE_SUSPENDED)
426 usb_hcd_resume_root_hub(hcd);
427
428 usb_hcd_poll_rh_status(hcd);
429 }
430 }
431
432 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
433 mod_timer(&xhci->comp_mode_recovery_timer,
434 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
435 }
436
437 /*
438 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
439 * that causes ports behind that hardware to enter compliance mode sometimes.
440 * The quirk creates a timer that polls every 2 seconds the link state of
441 * each host controller's port and recovers it by issuing a Warm reset
442 * if Compliance mode is detected, otherwise the port will become "dead" (no
443 * device connections or disconnections will be detected anymore). Becasue no
444 * status event is generated when entering compliance mode (per xhci spec),
445 * this quirk is needed on systems that have the failing hardware installed.
446 */
447 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
448 {
449 xhci->port_status_u0 = 0;
450 init_timer(&xhci->comp_mode_recovery_timer);
451
452 xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
453 xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
454 xhci->comp_mode_recovery_timer.expires = jiffies +
455 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
456
457 set_timer_slack(&xhci->comp_mode_recovery_timer,
458 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
459 add_timer(&xhci->comp_mode_recovery_timer);
460 xhci_dbg(xhci, "Compliance mode recovery timer initialized\n");
461 }
462
463 /*
464 * This function identifies the systems that have installed the SN65LVPE502CP
465 * USB3.0 re-driver and that need the Compliance Mode Quirk.
466 * Systems:
467 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
468 */
469 bool xhci_compliance_mode_recovery_timer_quirk_check(void)
470 {
471 const char *dmi_product_name, *dmi_sys_vendor;
472
473 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
474 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
475 if (!dmi_product_name || !dmi_sys_vendor)
476 return false;
477
478 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
479 return false;
480
481 if (strstr(dmi_product_name, "Z420") ||
482 strstr(dmi_product_name, "Z620") ||
483 strstr(dmi_product_name, "Z820") ||
484 strstr(dmi_product_name, "Z1 Workstation"))
485 return true;
486
487 return false;
488 }
489
490 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
491 {
492 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
493 }
494
495
496 /*
497 * Initialize memory for HCD and xHC (one-time init).
498 *
499 * Program the PAGESIZE register, initialize the device context array, create
500 * device contexts (?), set up a command ring segment (or two?), create event
501 * ring (one for now).
502 */
503 int xhci_init(struct usb_hcd *hcd)
504 {
505 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
506 int retval = 0;
507
508 xhci_dbg(xhci, "xhci_init\n");
509 spin_lock_init(&xhci->lock);
510 if (xhci->hci_version == 0x95 && link_quirk) {
511 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
512 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
513 } else {
514 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
515 }
516 retval = xhci_mem_init(xhci, GFP_KERNEL);
517 xhci_dbg(xhci, "Finished xhci_init\n");
518
519 /* Initializing Compliance Mode Recovery Data If Needed */
520 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
521 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
522 compliance_mode_recovery_timer_init(xhci);
523 }
524
525 return retval;
526 }
527
528 /*-------------------------------------------------------------------------*/
529
530
531 static int xhci_run_finished(struct xhci_hcd *xhci)
532 {
533 if (xhci_start(xhci)) {
534 xhci_halt(xhci);
535 return -ENODEV;
536 }
537 xhci->shared_hcd->state = HC_STATE_RUNNING;
538 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
539
540 if (xhci->quirks & XHCI_NEC_HOST)
541 xhci_ring_cmd_db(xhci);
542
543 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
544 return 0;
545 }
546
547 /*
548 * Start the HC after it was halted.
549 *
550 * This function is called by the USB core when the HC driver is added.
551 * Its opposite is xhci_stop().
552 *
553 * xhci_init() must be called once before this function can be called.
554 * Reset the HC, enable device slot contexts, program DCBAAP, and
555 * set command ring pointer and event ring pointer.
556 *
557 * Setup MSI-X vectors and enable interrupts.
558 */
559 int xhci_run(struct usb_hcd *hcd)
560 {
561 u32 temp;
562 u64 temp_64;
563 int ret;
564 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
565
566 /* Start the xHCI host controller running only after the USB 2.0 roothub
567 * is setup.
568 */
569
570 hcd->uses_new_polling = 1;
571 if (!usb_hcd_is_primary_hcd(hcd))
572 return xhci_run_finished(xhci);
573
574 xhci_dbg(xhci, "xhci_run\n");
575
576 ret = xhci_try_enable_msi(hcd);
577 if (ret)
578 return ret;
579
580 xhci_dbg(xhci, "Command ring memory map follows:\n");
581 xhci_debug_ring(xhci, xhci->cmd_ring);
582 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
583 xhci_dbg_cmd_ptrs(xhci);
584
585 xhci_dbg(xhci, "ERST memory map follows:\n");
586 xhci_dbg_erst(xhci, &xhci->erst);
587 xhci_dbg(xhci, "Event ring:\n");
588 xhci_debug_ring(xhci, xhci->event_ring);
589 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
590 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
591 temp_64 &= ~ERST_PTR_MASK;
592 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
593
594 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
595 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
596 temp &= ~ER_IRQ_INTERVAL_MASK;
597 temp |= (u32) 160;
598 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
599
600 /* Set the HCD state before we enable the irqs */
601 temp = xhci_readl(xhci, &xhci->op_regs->command);
602 temp |= (CMD_EIE);
603 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
604 temp);
605 xhci_writel(xhci, temp, &xhci->op_regs->command);
606
607 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
608 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
609 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
610 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
611 &xhci->ir_set->irq_pending);
612 xhci_print_ir_set(xhci, 0);
613
614 if (xhci->quirks & XHCI_NEC_HOST)
615 xhci_queue_vendor_command(xhci, 0, 0, 0,
616 TRB_TYPE(TRB_NEC_GET_FW));
617
618 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
619 return 0;
620 }
621
622 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
623 {
624 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
625
626 spin_lock_irq(&xhci->lock);
627 xhci_halt(xhci);
628
629 /* The shared_hcd is going to be deallocated shortly (the USB core only
630 * calls this function when allocation fails in usb_add_hcd(), or
631 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
632 */
633 xhci->shared_hcd = NULL;
634 spin_unlock_irq(&xhci->lock);
635 }
636
637 /*
638 * Stop xHCI driver.
639 *
640 * This function is called by the USB core when the HC driver is removed.
641 * Its opposite is xhci_run().
642 *
643 * Disable device contexts, disable IRQs, and quiesce the HC.
644 * Reset the HC, finish any completed transactions, and cleanup memory.
645 */
646 void xhci_stop(struct usb_hcd *hcd)
647 {
648 u32 temp;
649 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
650
651 if (!usb_hcd_is_primary_hcd(hcd)) {
652 xhci_only_stop_hcd(xhci->shared_hcd);
653 return;
654 }
655
656 spin_lock_irq(&xhci->lock);
657 /* Make sure the xHC is halted for a USB3 roothub
658 * (xhci_stop() could be called as part of failed init).
659 */
660 xhci_halt(xhci);
661 xhci_reset(xhci);
662 spin_unlock_irq(&xhci->lock);
663
664 xhci_cleanup_msix(xhci);
665
666 /* Deleting Compliance Mode Recovery Timer */
667 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
668 (!(xhci_all_ports_seen_u0(xhci)))) {
669 del_timer_sync(&xhci->comp_mode_recovery_timer);
670 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
671 __func__);
672 }
673
674 if (xhci->quirks & XHCI_AMD_PLL_FIX)
675 usb_amd_dev_put();
676
677 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
678 temp = xhci_readl(xhci, &xhci->op_regs->status);
679 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
680 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
681 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
682 &xhci->ir_set->irq_pending);
683 xhci_print_ir_set(xhci, 0);
684
685 xhci_dbg(xhci, "cleaning up memory\n");
686 xhci_mem_cleanup(xhci);
687 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
688 xhci_readl(xhci, &xhci->op_regs->status));
689 }
690
691 /*
692 * Shutdown HC (not bus-specific)
693 *
694 * This is called when the machine is rebooting or halting. We assume that the
695 * machine will be powered off, and the HC's internal state will be reset.
696 * Don't bother to free memory.
697 *
698 * This will only ever be called with the main usb_hcd (the USB3 roothub).
699 */
700 void xhci_shutdown(struct usb_hcd *hcd)
701 {
702 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
703
704 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
705 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
706
707 spin_lock_irq(&xhci->lock);
708 xhci_halt(xhci);
709 spin_unlock_irq(&xhci->lock);
710
711 xhci_cleanup_msix(xhci);
712
713 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
714 xhci_readl(xhci, &xhci->op_regs->status));
715 }
716
717 #ifdef CONFIG_PM
718 static void xhci_save_registers(struct xhci_hcd *xhci)
719 {
720 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
721 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
722 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
723 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
724 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
725 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
726 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
727 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
728 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
729 }
730
731 static void xhci_restore_registers(struct xhci_hcd *xhci)
732 {
733 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
734 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
735 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
736 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
737 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
738 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
739 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
740 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
741 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
742 }
743
744 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
745 {
746 u64 val_64;
747
748 /* step 2: initialize command ring buffer */
749 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
750 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
751 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
752 xhci->cmd_ring->dequeue) &
753 (u64) ~CMD_RING_RSVD_BITS) |
754 xhci->cmd_ring->cycle_state;
755 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
756 (long unsigned long) val_64);
757 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
758 }
759
760 /*
761 * The whole command ring must be cleared to zero when we suspend the host.
762 *
763 * The host doesn't save the command ring pointer in the suspend well, so we
764 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
765 * aligned, because of the reserved bits in the command ring dequeue pointer
766 * register. Therefore, we can't just set the dequeue pointer back in the
767 * middle of the ring (TRBs are 16-byte aligned).
768 */
769 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
770 {
771 struct xhci_ring *ring;
772 struct xhci_segment *seg;
773
774 ring = xhci->cmd_ring;
775 seg = ring->deq_seg;
776 do {
777 memset(seg->trbs, 0,
778 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
779 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
780 cpu_to_le32(~TRB_CYCLE);
781 seg = seg->next;
782 } while (seg != ring->deq_seg);
783
784 /* Reset the software enqueue and dequeue pointers */
785 ring->deq_seg = ring->first_seg;
786 ring->dequeue = ring->first_seg->trbs;
787 ring->enq_seg = ring->deq_seg;
788 ring->enqueue = ring->dequeue;
789
790 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
791 /*
792 * Ring is now zeroed, so the HW should look for change of ownership
793 * when the cycle bit is set to 1.
794 */
795 ring->cycle_state = 1;
796
797 /*
798 * Reset the hardware dequeue pointer.
799 * Yes, this will need to be re-written after resume, but we're paranoid
800 * and want to make sure the hardware doesn't access bogus memory
801 * because, say, the BIOS or an SMI started the host without changing
802 * the command ring pointers.
803 */
804 xhci_set_cmd_ring_deq(xhci);
805 }
806
807 /*
808 * Stop HC (not bus-specific)
809 *
810 * This is called when the machine transition into S3/S4 mode.
811 *
812 */
813 int xhci_suspend(struct xhci_hcd *xhci)
814 {
815 int rc = 0;
816 struct usb_hcd *hcd = xhci_to_hcd(xhci);
817 u32 command;
818
819 if (hcd->state != HC_STATE_SUSPENDED ||
820 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
821 return -EINVAL;
822
823 /* Don't poll the roothubs on bus suspend. */
824 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
825 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
826 del_timer_sync(&hcd->rh_timer);
827
828 spin_lock_irq(&xhci->lock);
829 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
830 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
831 /* step 1: stop endpoint */
832 /* skipped assuming that port suspend has done */
833
834 /* step 2: clear Run/Stop bit */
835 command = xhci_readl(xhci, &xhci->op_regs->command);
836 command &= ~CMD_RUN;
837 xhci_writel(xhci, command, &xhci->op_regs->command);
838 if (xhci_handshake(xhci, &xhci->op_regs->status,
839 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC)) {
840 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
841 spin_unlock_irq(&xhci->lock);
842 return -ETIMEDOUT;
843 }
844 xhci_clear_command_ring(xhci);
845
846 /* step 3: save registers */
847 xhci_save_registers(xhci);
848
849 /* step 4: set CSS flag */
850 command = xhci_readl(xhci, &xhci->op_regs->command);
851 command |= CMD_CSS;
852 xhci_writel(xhci, command, &xhci->op_regs->command);
853 if (xhci_handshake(xhci, &xhci->op_regs->status,
854 STS_SAVE, 0, 10 * 1000)) {
855 xhci_warn(xhci, "WARN: xHC save state timeout\n");
856 spin_unlock_irq(&xhci->lock);
857 return -ETIMEDOUT;
858 }
859 spin_unlock_irq(&xhci->lock);
860
861 /*
862 * Deleting Compliance Mode Recovery Timer because the xHCI Host
863 * is about to be suspended.
864 */
865 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
866 (!(xhci_all_ports_seen_u0(xhci)))) {
867 del_timer_sync(&xhci->comp_mode_recovery_timer);
868 xhci_dbg(xhci, "%s: compliance mode recovery timer deleted\n",
869 __func__);
870 }
871
872 /* step 5: remove core well power */
873 /* synchronize irq when using MSI-X */
874 xhci_msix_sync_irqs(xhci);
875
876 return rc;
877 }
878
879 /*
880 * start xHC (not bus-specific)
881 *
882 * This is called when the machine transition from S3/S4 mode.
883 *
884 */
885 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
886 {
887 u32 command, temp = 0;
888 struct usb_hcd *hcd = xhci_to_hcd(xhci);
889 struct usb_hcd *secondary_hcd;
890 int retval = 0;
891 bool comp_timer_running = false;
892
893 /* Wait a bit if either of the roothubs need to settle from the
894 * transition into bus suspend.
895 */
896 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
897 time_before(jiffies,
898 xhci->bus_state[1].next_statechange))
899 msleep(100);
900
901 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
902 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
903
904 spin_lock_irq(&xhci->lock);
905 if (xhci->quirks & XHCI_RESET_ON_RESUME)
906 hibernated = true;
907
908 if (!hibernated) {
909 /* step 1: restore register */
910 xhci_restore_registers(xhci);
911 /* step 2: initialize command ring buffer */
912 xhci_set_cmd_ring_deq(xhci);
913 /* step 3: restore state and start state*/
914 /* step 3: set CRS flag */
915 command = xhci_readl(xhci, &xhci->op_regs->command);
916 command |= CMD_CRS;
917 xhci_writel(xhci, command, &xhci->op_regs->command);
918 if (xhci_handshake(xhci, &xhci->op_regs->status,
919 STS_RESTORE, 0, 10 * 1000)) {
920 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
921 spin_unlock_irq(&xhci->lock);
922 return -ETIMEDOUT;
923 }
924 temp = xhci_readl(xhci, &xhci->op_regs->status);
925 }
926
927 /* If restore operation fails, re-initialize the HC during resume */
928 if ((temp & STS_SRE) || hibernated) {
929
930 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
931 !(xhci_all_ports_seen_u0(xhci))) {
932 del_timer_sync(&xhci->comp_mode_recovery_timer);
933 xhci_dbg(xhci, "Compliance Mode Recovery Timer deleted!\n");
934 }
935
936 /* Let the USB core know _both_ roothubs lost power. */
937 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
938 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
939
940 xhci_dbg(xhci, "Stop HCD\n");
941 xhci_halt(xhci);
942 xhci_reset(xhci);
943 spin_unlock_irq(&xhci->lock);
944 xhci_cleanup_msix(xhci);
945
946 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
947 temp = xhci_readl(xhci, &xhci->op_regs->status);
948 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
949 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
950 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
951 &xhci->ir_set->irq_pending);
952 xhci_print_ir_set(xhci, 0);
953
954 xhci_dbg(xhci, "cleaning up memory\n");
955 xhci_mem_cleanup(xhci);
956 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
957 xhci_readl(xhci, &xhci->op_regs->status));
958
959 /* USB core calls the PCI reinit and start functions twice:
960 * first with the primary HCD, and then with the secondary HCD.
961 * If we don't do the same, the host will never be started.
962 */
963 if (!usb_hcd_is_primary_hcd(hcd))
964 secondary_hcd = hcd;
965 else
966 secondary_hcd = xhci->shared_hcd;
967
968 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
969 retval = xhci_init(hcd->primary_hcd);
970 if (retval)
971 return retval;
972 comp_timer_running = true;
973
974 xhci_dbg(xhci, "Start the primary HCD\n");
975 retval = xhci_run(hcd->primary_hcd);
976 if (!retval) {
977 xhci_dbg(xhci, "Start the secondary HCD\n");
978 retval = xhci_run(secondary_hcd);
979 }
980 hcd->state = HC_STATE_SUSPENDED;
981 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
982 goto done;
983 }
984
985 /* step 4: set Run/Stop bit */
986 command = xhci_readl(xhci, &xhci->op_regs->command);
987 command |= CMD_RUN;
988 xhci_writel(xhci, command, &xhci->op_regs->command);
989 xhci_handshake(xhci, &xhci->op_regs->status, STS_HALT,
990 0, 250 * 1000);
991
992 /* step 5: walk topology and initialize portsc,
993 * portpmsc and portli
994 */
995 /* this is done in bus_resume */
996
997 /* step 6: restart each of the previously
998 * Running endpoints by ringing their doorbells
999 */
1000
1001 spin_unlock_irq(&xhci->lock);
1002
1003 done:
1004 if (retval == 0) {
1005 usb_hcd_resume_root_hub(hcd);
1006 usb_hcd_resume_root_hub(xhci->shared_hcd);
1007 }
1008
1009 /*
1010 * If system is subject to the Quirk, Compliance Mode Timer needs to
1011 * be re-initialized Always after a system resume. Ports are subject
1012 * to suffer the Compliance Mode issue again. It doesn't matter if
1013 * ports have entered previously to U0 before system's suspension.
1014 */
1015 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1016 compliance_mode_recovery_timer_init(xhci);
1017
1018 /* Re-enable port polling. */
1019 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1020 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1021 usb_hcd_poll_rh_status(hcd);
1022
1023 return retval;
1024 }
1025 #endif /* CONFIG_PM */
1026
1027 /*-------------------------------------------------------------------------*/
1028
1029 /**
1030 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1031 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1032 * value to right shift 1 for the bitmask.
1033 *
1034 * Index = (epnum * 2) + direction - 1,
1035 * where direction = 0 for OUT, 1 for IN.
1036 * For control endpoints, the IN index is used (OUT index is unused), so
1037 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1038 */
1039 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1040 {
1041 unsigned int index;
1042 if (usb_endpoint_xfer_control(desc))
1043 index = (unsigned int) (usb_endpoint_num(desc)*2);
1044 else
1045 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1046 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1047 return index;
1048 }
1049
1050 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1051 * address from the XHCI endpoint index.
1052 */
1053 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1054 {
1055 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1056 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1057 return direction | number;
1058 }
1059
1060 /* Find the flag for this endpoint (for use in the control context). Use the
1061 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1062 * bit 1, etc.
1063 */
1064 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1065 {
1066 return 1 << (xhci_get_endpoint_index(desc) + 1);
1067 }
1068
1069 /* Find the flag for this endpoint (for use in the control context). Use the
1070 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1071 * bit 1, etc.
1072 */
1073 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1074 {
1075 return 1 << (ep_index + 1);
1076 }
1077
1078 /* Compute the last valid endpoint context index. Basically, this is the
1079 * endpoint index plus one. For slot contexts with more than valid endpoint,
1080 * we find the most significant bit set in the added contexts flags.
1081 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1082 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1083 */
1084 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1085 {
1086 return fls(added_ctxs) - 1;
1087 }
1088
1089 /* Returns 1 if the arguments are OK;
1090 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1091 */
1092 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1093 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1094 const char *func) {
1095 struct xhci_hcd *xhci;
1096 struct xhci_virt_device *virt_dev;
1097
1098 if (!hcd || (check_ep && !ep) || !udev) {
1099 pr_debug("xHCI %s called with invalid args\n", func);
1100 return -EINVAL;
1101 }
1102 if (!udev->parent) {
1103 pr_debug("xHCI %s called for root hub\n", func);
1104 return 0;
1105 }
1106
1107 xhci = hcd_to_xhci(hcd);
1108 if (check_virt_dev) {
1109 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1110 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1111 func);
1112 return -EINVAL;
1113 }
1114
1115 virt_dev = xhci->devs[udev->slot_id];
1116 if (virt_dev->udev != udev) {
1117 xhci_dbg(xhci, "xHCI %s called with udev and "
1118 "virt_dev does not match\n", func);
1119 return -EINVAL;
1120 }
1121 }
1122
1123 if (xhci->xhc_state & XHCI_STATE_HALTED)
1124 return -ENODEV;
1125
1126 return 1;
1127 }
1128
1129 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1130 struct usb_device *udev, struct xhci_command *command,
1131 bool ctx_change, bool must_succeed);
1132
1133 /*
1134 * Full speed devices may have a max packet size greater than 8 bytes, but the
1135 * USB core doesn't know that until it reads the first 8 bytes of the
1136 * descriptor. If the usb_device's max packet size changes after that point,
1137 * we need to issue an evaluate context command and wait on it.
1138 */
1139 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1140 unsigned int ep_index, struct urb *urb)
1141 {
1142 struct xhci_container_ctx *in_ctx;
1143 struct xhci_container_ctx *out_ctx;
1144 struct xhci_input_control_ctx *ctrl_ctx;
1145 struct xhci_ep_ctx *ep_ctx;
1146 int max_packet_size;
1147 int hw_max_packet_size;
1148 int ret = 0;
1149
1150 out_ctx = xhci->devs[slot_id]->out_ctx;
1151 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1152 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1153 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1154 if (hw_max_packet_size != max_packet_size) {
1155 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1156 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1157 max_packet_size);
1158 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1159 hw_max_packet_size);
1160 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1161
1162 /* Set up the input context flags for the command */
1163 /* FIXME: This won't work if a non-default control endpoint
1164 * changes max packet sizes.
1165 */
1166 in_ctx = xhci->devs[slot_id]->in_ctx;
1167 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1168 if (!ctrl_ctx) {
1169 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1170 __func__);
1171 return -ENOMEM;
1172 }
1173 /* Set up the modified control endpoint 0 */
1174 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1175 xhci->devs[slot_id]->out_ctx, ep_index);
1176
1177 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1178 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1179 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1180
1181 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1182 ctrl_ctx->drop_flags = 0;
1183
1184 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1185 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1186 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1187 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1188
1189 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1190 true, false);
1191
1192 /* Clean up the input context for later use by bandwidth
1193 * functions.
1194 */
1195 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1196 }
1197 return ret;
1198 }
1199
1200 /*
1201 * non-error returns are a promise to giveback() the urb later
1202 * we drop ownership so next owner (or urb unlink) can get it
1203 */
1204 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1205 {
1206 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1207 struct xhci_td *buffer;
1208 unsigned long flags;
1209 int ret = 0;
1210 unsigned int slot_id, ep_index;
1211 struct urb_priv *urb_priv;
1212 int size, i;
1213
1214 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1215 true, true, __func__) <= 0)
1216 return -EINVAL;
1217
1218 slot_id = urb->dev->slot_id;
1219 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1220
1221 if (!HCD_HW_ACCESSIBLE(hcd)) {
1222 if (!in_interrupt())
1223 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1224 ret = -ESHUTDOWN;
1225 goto exit;
1226 }
1227
1228 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1229 size = urb->number_of_packets;
1230 else
1231 size = 1;
1232
1233 urb_priv = kzalloc(sizeof(struct urb_priv) +
1234 size * sizeof(struct xhci_td *), mem_flags);
1235 if (!urb_priv)
1236 return -ENOMEM;
1237
1238 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1239 if (!buffer) {
1240 kfree(urb_priv);
1241 return -ENOMEM;
1242 }
1243
1244 for (i = 0; i < size; i++) {
1245 urb_priv->td[i] = buffer;
1246 buffer++;
1247 }
1248
1249 urb_priv->length = size;
1250 urb_priv->td_cnt = 0;
1251 urb->hcpriv = urb_priv;
1252
1253 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1254 /* Check to see if the max packet size for the default control
1255 * endpoint changed during FS device enumeration
1256 */
1257 if (urb->dev->speed == USB_SPEED_FULL) {
1258 ret = xhci_check_maxpacket(xhci, slot_id,
1259 ep_index, urb);
1260 if (ret < 0) {
1261 xhci_urb_free_priv(xhci, urb_priv);
1262 urb->hcpriv = NULL;
1263 return ret;
1264 }
1265 }
1266
1267 /* We have a spinlock and interrupts disabled, so we must pass
1268 * atomic context to this function, which may allocate memory.
1269 */
1270 spin_lock_irqsave(&xhci->lock, flags);
1271 if (xhci->xhc_state & XHCI_STATE_DYING)
1272 goto dying;
1273 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1274 slot_id, ep_index);
1275 if (ret)
1276 goto free_priv;
1277 spin_unlock_irqrestore(&xhci->lock, flags);
1278 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1279 spin_lock_irqsave(&xhci->lock, flags);
1280 if (xhci->xhc_state & XHCI_STATE_DYING)
1281 goto dying;
1282 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1283 EP_GETTING_STREAMS) {
1284 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1285 "is transitioning to using streams.\n");
1286 ret = -EINVAL;
1287 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1288 EP_GETTING_NO_STREAMS) {
1289 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1290 "is transitioning to "
1291 "not having streams.\n");
1292 ret = -EINVAL;
1293 } else {
1294 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1295 slot_id, ep_index);
1296 }
1297 if (ret)
1298 goto free_priv;
1299 spin_unlock_irqrestore(&xhci->lock, flags);
1300 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1301 spin_lock_irqsave(&xhci->lock, flags);
1302 if (xhci->xhc_state & XHCI_STATE_DYING)
1303 goto dying;
1304 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1305 slot_id, ep_index);
1306 if (ret)
1307 goto free_priv;
1308 spin_unlock_irqrestore(&xhci->lock, flags);
1309 } else {
1310 spin_lock_irqsave(&xhci->lock, flags);
1311 if (xhci->xhc_state & XHCI_STATE_DYING)
1312 goto dying;
1313 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1314 slot_id, ep_index);
1315 if (ret)
1316 goto free_priv;
1317 spin_unlock_irqrestore(&xhci->lock, flags);
1318 }
1319 exit:
1320 return ret;
1321 dying:
1322 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1323 "non-responsive xHCI host.\n",
1324 urb->ep->desc.bEndpointAddress, urb);
1325 ret = -ESHUTDOWN;
1326 free_priv:
1327 xhci_urb_free_priv(xhci, urb_priv);
1328 urb->hcpriv = NULL;
1329 spin_unlock_irqrestore(&xhci->lock, flags);
1330 return ret;
1331 }
1332
1333 /* Get the right ring for the given URB.
1334 * If the endpoint supports streams, boundary check the URB's stream ID.
1335 * If the endpoint doesn't support streams, return the singular endpoint ring.
1336 */
1337 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1338 struct urb *urb)
1339 {
1340 unsigned int slot_id;
1341 unsigned int ep_index;
1342 unsigned int stream_id;
1343 struct xhci_virt_ep *ep;
1344
1345 slot_id = urb->dev->slot_id;
1346 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1347 stream_id = urb->stream_id;
1348 ep = &xhci->devs[slot_id]->eps[ep_index];
1349 /* Common case: no streams */
1350 if (!(ep->ep_state & EP_HAS_STREAMS))
1351 return ep->ring;
1352
1353 if (stream_id == 0) {
1354 xhci_warn(xhci,
1355 "WARN: Slot ID %u, ep index %u has streams, "
1356 "but URB has no stream ID.\n",
1357 slot_id, ep_index);
1358 return NULL;
1359 }
1360
1361 if (stream_id < ep->stream_info->num_streams)
1362 return ep->stream_info->stream_rings[stream_id];
1363
1364 xhci_warn(xhci,
1365 "WARN: Slot ID %u, ep index %u has "
1366 "stream IDs 1 to %u allocated, "
1367 "but stream ID %u is requested.\n",
1368 slot_id, ep_index,
1369 ep->stream_info->num_streams - 1,
1370 stream_id);
1371 return NULL;
1372 }
1373
1374 /*
1375 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1376 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1377 * should pick up where it left off in the TD, unless a Set Transfer Ring
1378 * Dequeue Pointer is issued.
1379 *
1380 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1381 * the ring. Since the ring is a contiguous structure, they can't be physically
1382 * removed. Instead, there are two options:
1383 *
1384 * 1) If the HC is in the middle of processing the URB to be canceled, we
1385 * simply move the ring's dequeue pointer past those TRBs using the Set
1386 * Transfer Ring Dequeue Pointer command. This will be the common case,
1387 * when drivers timeout on the last submitted URB and attempt to cancel.
1388 *
1389 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1390 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1391 * HC will need to invalidate the any TRBs it has cached after the stop
1392 * endpoint command, as noted in the xHCI 0.95 errata.
1393 *
1394 * 3) The TD may have completed by the time the Stop Endpoint Command
1395 * completes, so software needs to handle that case too.
1396 *
1397 * This function should protect against the TD enqueueing code ringing the
1398 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1399 * It also needs to account for multiple cancellations on happening at the same
1400 * time for the same endpoint.
1401 *
1402 * Note that this function can be called in any context, or so says
1403 * usb_hcd_unlink_urb()
1404 */
1405 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1406 {
1407 unsigned long flags;
1408 int ret, i;
1409 u32 temp;
1410 struct xhci_hcd *xhci;
1411 struct urb_priv *urb_priv;
1412 struct xhci_td *td;
1413 unsigned int ep_index;
1414 struct xhci_ring *ep_ring;
1415 struct xhci_virt_ep *ep;
1416
1417 xhci = hcd_to_xhci(hcd);
1418 spin_lock_irqsave(&xhci->lock, flags);
1419 /* Make sure the URB hasn't completed or been unlinked already */
1420 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1421 if (ret || !urb->hcpriv)
1422 goto done;
1423 temp = xhci_readl(xhci, &xhci->op_regs->status);
1424 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1425 xhci_dbg(xhci, "HW died, freeing TD.\n");
1426 urb_priv = urb->hcpriv;
1427 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1428 td = urb_priv->td[i];
1429 if (!list_empty(&td->td_list))
1430 list_del_init(&td->td_list);
1431 if (!list_empty(&td->cancelled_td_list))
1432 list_del_init(&td->cancelled_td_list);
1433 }
1434
1435 usb_hcd_unlink_urb_from_ep(hcd, urb);
1436 spin_unlock_irqrestore(&xhci->lock, flags);
1437 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1438 xhci_urb_free_priv(xhci, urb_priv);
1439 return ret;
1440 }
1441 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1442 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1443 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1444 "non-responsive xHCI host.\n",
1445 urb->ep->desc.bEndpointAddress, urb);
1446 /* Let the stop endpoint command watchdog timer (which set this
1447 * state) finish cleaning up the endpoint TD lists. We must
1448 * have caught it in the middle of dropping a lock and giving
1449 * back an URB.
1450 */
1451 goto done;
1452 }
1453
1454 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1455 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1456 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1457 if (!ep_ring) {
1458 ret = -EINVAL;
1459 goto done;
1460 }
1461
1462 urb_priv = urb->hcpriv;
1463 i = urb_priv->td_cnt;
1464 if (i < urb_priv->length)
1465 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1466 "starting at offset 0x%llx\n",
1467 urb, urb->dev->devpath,
1468 urb->ep->desc.bEndpointAddress,
1469 (unsigned long long) xhci_trb_virt_to_dma(
1470 urb_priv->td[i]->start_seg,
1471 urb_priv->td[i]->first_trb));
1472
1473 for (; i < urb_priv->length; i++) {
1474 td = urb_priv->td[i];
1475 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1476 }
1477
1478 /* Queue a stop endpoint command, but only if this is
1479 * the first cancellation to be handled.
1480 */
1481 if (!(ep->ep_state & EP_HALT_PENDING)) {
1482 ep->ep_state |= EP_HALT_PENDING;
1483 ep->stop_cmds_pending++;
1484 ep->stop_cmd_timer.expires = jiffies +
1485 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1486 add_timer(&ep->stop_cmd_timer);
1487 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1488 xhci_ring_cmd_db(xhci);
1489 }
1490 done:
1491 spin_unlock_irqrestore(&xhci->lock, flags);
1492 return ret;
1493 }
1494
1495 /* Drop an endpoint from a new bandwidth configuration for this device.
1496 * Only one call to this function is allowed per endpoint before
1497 * check_bandwidth() or reset_bandwidth() must be called.
1498 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1499 * add the endpoint to the schedule with possibly new parameters denoted by a
1500 * different endpoint descriptor in usb_host_endpoint.
1501 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1502 * not allowed.
1503 *
1504 * The USB core will not allow URBs to be queued to an endpoint that is being
1505 * disabled, so there's no need for mutual exclusion to protect
1506 * the xhci->devs[slot_id] structure.
1507 */
1508 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1509 struct usb_host_endpoint *ep)
1510 {
1511 struct xhci_hcd *xhci;
1512 struct xhci_container_ctx *in_ctx, *out_ctx;
1513 struct xhci_input_control_ctx *ctrl_ctx;
1514 struct xhci_slot_ctx *slot_ctx;
1515 unsigned int last_ctx;
1516 unsigned int ep_index;
1517 struct xhci_ep_ctx *ep_ctx;
1518 u32 drop_flag;
1519 u32 new_add_flags, new_drop_flags, new_slot_info;
1520 int ret;
1521
1522 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1523 if (ret <= 0)
1524 return ret;
1525 xhci = hcd_to_xhci(hcd);
1526 if (xhci->xhc_state & XHCI_STATE_DYING)
1527 return -ENODEV;
1528
1529 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1530 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1531 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1532 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1533 __func__, drop_flag);
1534 return 0;
1535 }
1536
1537 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1538 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1539 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1540 if (!ctrl_ctx) {
1541 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1542 __func__);
1543 return 0;
1544 }
1545
1546 ep_index = xhci_get_endpoint_index(&ep->desc);
1547 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1548 /* If the HC already knows the endpoint is disabled,
1549 * or the HCD has noted it is disabled, ignore this request
1550 */
1551 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1552 cpu_to_le32(EP_STATE_DISABLED)) ||
1553 le32_to_cpu(ctrl_ctx->drop_flags) &
1554 xhci_get_endpoint_flag(&ep->desc)) {
1555 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1556 __func__, ep);
1557 return 0;
1558 }
1559
1560 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1561 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1562
1563 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1564 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1565
1566 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1567 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1568 /* Update the last valid endpoint context, if we deleted the last one */
1569 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1570 LAST_CTX(last_ctx)) {
1571 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1572 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1573 }
1574 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1575
1576 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1577
1578 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1579 (unsigned int) ep->desc.bEndpointAddress,
1580 udev->slot_id,
1581 (unsigned int) new_drop_flags,
1582 (unsigned int) new_add_flags,
1583 (unsigned int) new_slot_info);
1584 return 0;
1585 }
1586
1587 /* Add an endpoint to a new possible bandwidth configuration for this device.
1588 * Only one call to this function is allowed per endpoint before
1589 * check_bandwidth() or reset_bandwidth() must be called.
1590 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1591 * add the endpoint to the schedule with possibly new parameters denoted by a
1592 * different endpoint descriptor in usb_host_endpoint.
1593 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1594 * not allowed.
1595 *
1596 * The USB core will not allow URBs to be queued to an endpoint until the
1597 * configuration or alt setting is installed in the device, so there's no need
1598 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1599 */
1600 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1601 struct usb_host_endpoint *ep)
1602 {
1603 struct xhci_hcd *xhci;
1604 struct xhci_container_ctx *in_ctx, *out_ctx;
1605 unsigned int ep_index;
1606 struct xhci_slot_ctx *slot_ctx;
1607 struct xhci_input_control_ctx *ctrl_ctx;
1608 u32 added_ctxs;
1609 unsigned int last_ctx;
1610 u32 new_add_flags, new_drop_flags, new_slot_info;
1611 struct xhci_virt_device *virt_dev;
1612 int ret = 0;
1613
1614 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1615 if (ret <= 0) {
1616 /* So we won't queue a reset ep command for a root hub */
1617 ep->hcpriv = NULL;
1618 return ret;
1619 }
1620 xhci = hcd_to_xhci(hcd);
1621 if (xhci->xhc_state & XHCI_STATE_DYING)
1622 return -ENODEV;
1623
1624 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1625 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1626 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1627 /* FIXME when we have to issue an evaluate endpoint command to
1628 * deal with ep0 max packet size changing once we get the
1629 * descriptors
1630 */
1631 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1632 __func__, added_ctxs);
1633 return 0;
1634 }
1635
1636 virt_dev = xhci->devs[udev->slot_id];
1637 in_ctx = virt_dev->in_ctx;
1638 out_ctx = virt_dev->out_ctx;
1639 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1640 if (!ctrl_ctx) {
1641 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1642 __func__);
1643 return 0;
1644 }
1645
1646 ep_index = xhci_get_endpoint_index(&ep->desc);
1647 /* If this endpoint is already in use, and the upper layers are trying
1648 * to add it again without dropping it, reject the addition.
1649 */
1650 if (virt_dev->eps[ep_index].ring &&
1651 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1652 xhci_get_endpoint_flag(&ep->desc))) {
1653 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1654 "without dropping it.\n",
1655 (unsigned int) ep->desc.bEndpointAddress);
1656 return -EINVAL;
1657 }
1658
1659 /* If the HCD has already noted the endpoint is enabled,
1660 * ignore this request.
1661 */
1662 if (le32_to_cpu(ctrl_ctx->add_flags) &
1663 xhci_get_endpoint_flag(&ep->desc)) {
1664 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1665 __func__, ep);
1666 return 0;
1667 }
1668
1669 /*
1670 * Configuration and alternate setting changes must be done in
1671 * process context, not interrupt context (or so documenation
1672 * for usb_set_interface() and usb_set_configuration() claim).
1673 */
1674 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1675 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1676 __func__, ep->desc.bEndpointAddress);
1677 return -ENOMEM;
1678 }
1679
1680 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1681 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1682
1683 /* If xhci_endpoint_disable() was called for this endpoint, but the
1684 * xHC hasn't been notified yet through the check_bandwidth() call,
1685 * this re-adds a new state for the endpoint from the new endpoint
1686 * descriptors. We must drop and re-add this endpoint, so we leave the
1687 * drop flags alone.
1688 */
1689 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1690
1691 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1692 /* Update the last valid endpoint context, if we just added one past */
1693 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1694 LAST_CTX(last_ctx)) {
1695 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1696 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1697 }
1698 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1699
1700 /* Store the usb_device pointer for later use */
1701 ep->hcpriv = udev;
1702
1703 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1704 (unsigned int) ep->desc.bEndpointAddress,
1705 udev->slot_id,
1706 (unsigned int) new_drop_flags,
1707 (unsigned int) new_add_flags,
1708 (unsigned int) new_slot_info);
1709 return 0;
1710 }
1711
1712 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1713 {
1714 struct xhci_input_control_ctx *ctrl_ctx;
1715 struct xhci_ep_ctx *ep_ctx;
1716 struct xhci_slot_ctx *slot_ctx;
1717 int i;
1718
1719 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1720 if (!ctrl_ctx) {
1721 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1722 __func__);
1723 return;
1724 }
1725
1726 /* When a device's add flag and drop flag are zero, any subsequent
1727 * configure endpoint command will leave that endpoint's state
1728 * untouched. Make sure we don't leave any old state in the input
1729 * endpoint contexts.
1730 */
1731 ctrl_ctx->drop_flags = 0;
1732 ctrl_ctx->add_flags = 0;
1733 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1734 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1735 /* Endpoint 0 is always valid */
1736 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1737 for (i = 1; i < 31; ++i) {
1738 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1739 ep_ctx->ep_info = 0;
1740 ep_ctx->ep_info2 = 0;
1741 ep_ctx->deq = 0;
1742 ep_ctx->tx_info = 0;
1743 }
1744 }
1745
1746 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1747 struct usb_device *udev, u32 *cmd_status)
1748 {
1749 int ret;
1750
1751 switch (*cmd_status) {
1752 case COMP_ENOMEM:
1753 dev_warn(&udev->dev, "Not enough host controller resources "
1754 "for new device state.\n");
1755 ret = -ENOMEM;
1756 /* FIXME: can we allocate more resources for the HC? */
1757 break;
1758 case COMP_BW_ERR:
1759 case COMP_2ND_BW_ERR:
1760 dev_warn(&udev->dev, "Not enough bandwidth "
1761 "for new device state.\n");
1762 ret = -ENOSPC;
1763 /* FIXME: can we go back to the old state? */
1764 break;
1765 case COMP_TRB_ERR:
1766 /* the HCD set up something wrong */
1767 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1768 "add flag = 1, "
1769 "and endpoint is not disabled.\n");
1770 ret = -EINVAL;
1771 break;
1772 case COMP_DEV_ERR:
1773 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1774 "configure command.\n");
1775 ret = -ENODEV;
1776 break;
1777 case COMP_SUCCESS:
1778 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1779 ret = 0;
1780 break;
1781 default:
1782 xhci_err(xhci, "ERROR: unexpected command completion "
1783 "code 0x%x.\n", *cmd_status);
1784 ret = -EINVAL;
1785 break;
1786 }
1787 return ret;
1788 }
1789
1790 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1791 struct usb_device *udev, u32 *cmd_status)
1792 {
1793 int ret;
1794 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1795
1796 switch (*cmd_status) {
1797 case COMP_EINVAL:
1798 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1799 "context command.\n");
1800 ret = -EINVAL;
1801 break;
1802 case COMP_EBADSLT:
1803 dev_warn(&udev->dev, "WARN: slot not enabled for"
1804 "evaluate context command.\n");
1805 ret = -EINVAL;
1806 break;
1807 case COMP_CTX_STATE:
1808 dev_warn(&udev->dev, "WARN: invalid context state for "
1809 "evaluate context command.\n");
1810 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1811 ret = -EINVAL;
1812 break;
1813 case COMP_DEV_ERR:
1814 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1815 "context command.\n");
1816 ret = -ENODEV;
1817 break;
1818 case COMP_MEL_ERR:
1819 /* Max Exit Latency too large error */
1820 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1821 ret = -EINVAL;
1822 break;
1823 case COMP_SUCCESS:
1824 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1825 ret = 0;
1826 break;
1827 default:
1828 xhci_err(xhci, "ERROR: unexpected command completion "
1829 "code 0x%x.\n", *cmd_status);
1830 ret = -EINVAL;
1831 break;
1832 }
1833 return ret;
1834 }
1835
1836 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1837 struct xhci_input_control_ctx *ctrl_ctx)
1838 {
1839 u32 valid_add_flags;
1840 u32 valid_drop_flags;
1841
1842 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1843 * (bit 1). The default control endpoint is added during the Address
1844 * Device command and is never removed until the slot is disabled.
1845 */
1846 valid_add_flags = ctrl_ctx->add_flags >> 2;
1847 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1848
1849 /* Use hweight32 to count the number of ones in the add flags, or
1850 * number of endpoints added. Don't count endpoints that are changed
1851 * (both added and dropped).
1852 */
1853 return hweight32(valid_add_flags) -
1854 hweight32(valid_add_flags & valid_drop_flags);
1855 }
1856
1857 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1858 struct xhci_input_control_ctx *ctrl_ctx)
1859 {
1860 u32 valid_add_flags;
1861 u32 valid_drop_flags;
1862
1863 valid_add_flags = ctrl_ctx->add_flags >> 2;
1864 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1865
1866 return hweight32(valid_drop_flags) -
1867 hweight32(valid_add_flags & valid_drop_flags);
1868 }
1869
1870 /*
1871 * We need to reserve the new number of endpoints before the configure endpoint
1872 * command completes. We can't subtract the dropped endpoints from the number
1873 * of active endpoints until the command completes because we can oversubscribe
1874 * the host in this case:
1875 *
1876 * - the first configure endpoint command drops more endpoints than it adds
1877 * - a second configure endpoint command that adds more endpoints is queued
1878 * - the first configure endpoint command fails, so the config is unchanged
1879 * - the second command may succeed, even though there isn't enough resources
1880 *
1881 * Must be called with xhci->lock held.
1882 */
1883 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1884 struct xhci_input_control_ctx *ctrl_ctx)
1885 {
1886 u32 added_eps;
1887
1888 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1889 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1890 xhci_dbg(xhci, "Not enough ep ctxs: "
1891 "%u active, need to add %u, limit is %u.\n",
1892 xhci->num_active_eps, added_eps,
1893 xhci->limit_active_eps);
1894 return -ENOMEM;
1895 }
1896 xhci->num_active_eps += added_eps;
1897 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1898 xhci->num_active_eps);
1899 return 0;
1900 }
1901
1902 /*
1903 * The configure endpoint was failed by the xHC for some other reason, so we
1904 * need to revert the resources that failed configuration would have used.
1905 *
1906 * Must be called with xhci->lock held.
1907 */
1908 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1909 struct xhci_input_control_ctx *ctrl_ctx)
1910 {
1911 u32 num_failed_eps;
1912
1913 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1914 xhci->num_active_eps -= num_failed_eps;
1915 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1916 num_failed_eps,
1917 xhci->num_active_eps);
1918 }
1919
1920 /*
1921 * Now that the command has completed, clean up the active endpoint count by
1922 * subtracting out the endpoints that were dropped (but not changed).
1923 *
1924 * Must be called with xhci->lock held.
1925 */
1926 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1927 struct xhci_input_control_ctx *ctrl_ctx)
1928 {
1929 u32 num_dropped_eps;
1930
1931 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1932 xhci->num_active_eps -= num_dropped_eps;
1933 if (num_dropped_eps)
1934 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1935 num_dropped_eps,
1936 xhci->num_active_eps);
1937 }
1938
1939 static unsigned int xhci_get_block_size(struct usb_device *udev)
1940 {
1941 switch (udev->speed) {
1942 case USB_SPEED_LOW:
1943 case USB_SPEED_FULL:
1944 return FS_BLOCK;
1945 case USB_SPEED_HIGH:
1946 return HS_BLOCK;
1947 case USB_SPEED_SUPER:
1948 return SS_BLOCK;
1949 case USB_SPEED_UNKNOWN:
1950 case USB_SPEED_WIRELESS:
1951 default:
1952 /* Should never happen */
1953 return 1;
1954 }
1955 }
1956
1957 static unsigned int
1958 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1959 {
1960 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1961 return LS_OVERHEAD;
1962 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1963 return FS_OVERHEAD;
1964 return HS_OVERHEAD;
1965 }
1966
1967 /* If we are changing a LS/FS device under a HS hub,
1968 * make sure (if we are activating a new TT) that the HS bus has enough
1969 * bandwidth for this new TT.
1970 */
1971 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1972 struct xhci_virt_device *virt_dev,
1973 int old_active_eps)
1974 {
1975 struct xhci_interval_bw_table *bw_table;
1976 struct xhci_tt_bw_info *tt_info;
1977
1978 /* Find the bandwidth table for the root port this TT is attached to. */
1979 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1980 tt_info = virt_dev->tt_info;
1981 /* If this TT already had active endpoints, the bandwidth for this TT
1982 * has already been added. Removing all periodic endpoints (and thus
1983 * making the TT enactive) will only decrease the bandwidth used.
1984 */
1985 if (old_active_eps)
1986 return 0;
1987 if (old_active_eps == 0 && tt_info->active_eps != 0) {
1988 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1989 return -ENOMEM;
1990 return 0;
1991 }
1992 /* Not sure why we would have no new active endpoints...
1993 *
1994 * Maybe because of an Evaluate Context change for a hub update or a
1995 * control endpoint 0 max packet size change?
1996 * FIXME: skip the bandwidth calculation in that case.
1997 */
1998 return 0;
1999 }
2000
2001 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2002 struct xhci_virt_device *virt_dev)
2003 {
2004 unsigned int bw_reserved;
2005
2006 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2007 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2008 return -ENOMEM;
2009
2010 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2011 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2012 return -ENOMEM;
2013
2014 return 0;
2015 }
2016
2017 /*
2018 * This algorithm is a very conservative estimate of the worst-case scheduling
2019 * scenario for any one interval. The hardware dynamically schedules the
2020 * packets, so we can't tell which microframe could be the limiting factor in
2021 * the bandwidth scheduling. This only takes into account periodic endpoints.
2022 *
2023 * Obviously, we can't solve an NP complete problem to find the minimum worst
2024 * case scenario. Instead, we come up with an estimate that is no less than
2025 * the worst case bandwidth used for any one microframe, but may be an
2026 * over-estimate.
2027 *
2028 * We walk the requirements for each endpoint by interval, starting with the
2029 * smallest interval, and place packets in the schedule where there is only one
2030 * possible way to schedule packets for that interval. In order to simplify
2031 * this algorithm, we record the largest max packet size for each interval, and
2032 * assume all packets will be that size.
2033 *
2034 * For interval 0, we obviously must schedule all packets for each interval.
2035 * The bandwidth for interval 0 is just the amount of data to be transmitted
2036 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2037 * the number of packets).
2038 *
2039 * For interval 1, we have two possible microframes to schedule those packets
2040 * in. For this algorithm, if we can schedule the same number of packets for
2041 * each possible scheduling opportunity (each microframe), we will do so. The
2042 * remaining number of packets will be saved to be transmitted in the gaps in
2043 * the next interval's scheduling sequence.
2044 *
2045 * As we move those remaining packets to be scheduled with interval 2 packets,
2046 * we have to double the number of remaining packets to transmit. This is
2047 * because the intervals are actually powers of 2, and we would be transmitting
2048 * the previous interval's packets twice in this interval. We also have to be
2049 * sure that when we look at the largest max packet size for this interval, we
2050 * also look at the largest max packet size for the remaining packets and take
2051 * the greater of the two.
2052 *
2053 * The algorithm continues to evenly distribute packets in each scheduling
2054 * opportunity, and push the remaining packets out, until we get to the last
2055 * interval. Then those packets and their associated overhead are just added
2056 * to the bandwidth used.
2057 */
2058 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2059 struct xhci_virt_device *virt_dev,
2060 int old_active_eps)
2061 {
2062 unsigned int bw_reserved;
2063 unsigned int max_bandwidth;
2064 unsigned int bw_used;
2065 unsigned int block_size;
2066 struct xhci_interval_bw_table *bw_table;
2067 unsigned int packet_size = 0;
2068 unsigned int overhead = 0;
2069 unsigned int packets_transmitted = 0;
2070 unsigned int packets_remaining = 0;
2071 unsigned int i;
2072
2073 if (virt_dev->udev->speed == USB_SPEED_SUPER)
2074 return xhci_check_ss_bw(xhci, virt_dev);
2075
2076 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2077 max_bandwidth = HS_BW_LIMIT;
2078 /* Convert percent of bus BW reserved to blocks reserved */
2079 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2080 } else {
2081 max_bandwidth = FS_BW_LIMIT;
2082 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2083 }
2084
2085 bw_table = virt_dev->bw_table;
2086 /* We need to translate the max packet size and max ESIT payloads into
2087 * the units the hardware uses.
2088 */
2089 block_size = xhci_get_block_size(virt_dev->udev);
2090
2091 /* If we are manipulating a LS/FS device under a HS hub, double check
2092 * that the HS bus has enough bandwidth if we are activing a new TT.
2093 */
2094 if (virt_dev->tt_info) {
2095 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2096 virt_dev->real_port);
2097 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2098 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2099 "newly activated TT.\n");
2100 return -ENOMEM;
2101 }
2102 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2103 virt_dev->tt_info->slot_id,
2104 virt_dev->tt_info->ttport);
2105 } else {
2106 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2107 virt_dev->real_port);
2108 }
2109
2110 /* Add in how much bandwidth will be used for interval zero, or the
2111 * rounded max ESIT payload + number of packets * largest overhead.
2112 */
2113 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2114 bw_table->interval_bw[0].num_packets *
2115 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2116
2117 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2118 unsigned int bw_added;
2119 unsigned int largest_mps;
2120 unsigned int interval_overhead;
2121
2122 /*
2123 * How many packets could we transmit in this interval?
2124 * If packets didn't fit in the previous interval, we will need
2125 * to transmit that many packets twice within this interval.
2126 */
2127 packets_remaining = 2 * packets_remaining +
2128 bw_table->interval_bw[i].num_packets;
2129
2130 /* Find the largest max packet size of this or the previous
2131 * interval.
2132 */
2133 if (list_empty(&bw_table->interval_bw[i].endpoints))
2134 largest_mps = 0;
2135 else {
2136 struct xhci_virt_ep *virt_ep;
2137 struct list_head *ep_entry;
2138
2139 ep_entry = bw_table->interval_bw[i].endpoints.next;
2140 virt_ep = list_entry(ep_entry,
2141 struct xhci_virt_ep, bw_endpoint_list);
2142 /* Convert to blocks, rounding up */
2143 largest_mps = DIV_ROUND_UP(
2144 virt_ep->bw_info.max_packet_size,
2145 block_size);
2146 }
2147 if (largest_mps > packet_size)
2148 packet_size = largest_mps;
2149
2150 /* Use the larger overhead of this or the previous interval. */
2151 interval_overhead = xhci_get_largest_overhead(
2152 &bw_table->interval_bw[i]);
2153 if (interval_overhead > overhead)
2154 overhead = interval_overhead;
2155
2156 /* How many packets can we evenly distribute across
2157 * (1 << (i + 1)) possible scheduling opportunities?
2158 */
2159 packets_transmitted = packets_remaining >> (i + 1);
2160
2161 /* Add in the bandwidth used for those scheduled packets */
2162 bw_added = packets_transmitted * (overhead + packet_size);
2163
2164 /* How many packets do we have remaining to transmit? */
2165 packets_remaining = packets_remaining % (1 << (i + 1));
2166
2167 /* What largest max packet size should those packets have? */
2168 /* If we've transmitted all packets, don't carry over the
2169 * largest packet size.
2170 */
2171 if (packets_remaining == 0) {
2172 packet_size = 0;
2173 overhead = 0;
2174 } else if (packets_transmitted > 0) {
2175 /* Otherwise if we do have remaining packets, and we've
2176 * scheduled some packets in this interval, take the
2177 * largest max packet size from endpoints with this
2178 * interval.
2179 */
2180 packet_size = largest_mps;
2181 overhead = interval_overhead;
2182 }
2183 /* Otherwise carry over packet_size and overhead from the last
2184 * time we had a remainder.
2185 */
2186 bw_used += bw_added;
2187 if (bw_used > max_bandwidth) {
2188 xhci_warn(xhci, "Not enough bandwidth. "
2189 "Proposed: %u, Max: %u\n",
2190 bw_used, max_bandwidth);
2191 return -ENOMEM;
2192 }
2193 }
2194 /*
2195 * Ok, we know we have some packets left over after even-handedly
2196 * scheduling interval 15. We don't know which microframes they will
2197 * fit into, so we over-schedule and say they will be scheduled every
2198 * microframe.
2199 */
2200 if (packets_remaining > 0)
2201 bw_used += overhead + packet_size;
2202
2203 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2204 unsigned int port_index = virt_dev->real_port - 1;
2205
2206 /* OK, we're manipulating a HS device attached to a
2207 * root port bandwidth domain. Include the number of active TTs
2208 * in the bandwidth used.
2209 */
2210 bw_used += TT_HS_OVERHEAD *
2211 xhci->rh_bw[port_index].num_active_tts;
2212 }
2213
2214 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2215 "Available: %u " "percent\n",
2216 bw_used, max_bandwidth, bw_reserved,
2217 (max_bandwidth - bw_used - bw_reserved) * 100 /
2218 max_bandwidth);
2219
2220 bw_used += bw_reserved;
2221 if (bw_used > max_bandwidth) {
2222 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2223 bw_used, max_bandwidth);
2224 return -ENOMEM;
2225 }
2226
2227 bw_table->bw_used = bw_used;
2228 return 0;
2229 }
2230
2231 static bool xhci_is_async_ep(unsigned int ep_type)
2232 {
2233 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2234 ep_type != ISOC_IN_EP &&
2235 ep_type != INT_IN_EP);
2236 }
2237
2238 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2239 {
2240 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2241 }
2242
2243 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2244 {
2245 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2246
2247 if (ep_bw->ep_interval == 0)
2248 return SS_OVERHEAD_BURST +
2249 (ep_bw->mult * ep_bw->num_packets *
2250 (SS_OVERHEAD + mps));
2251 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2252 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2253 1 << ep_bw->ep_interval);
2254
2255 }
2256
2257 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2258 struct xhci_bw_info *ep_bw,
2259 struct xhci_interval_bw_table *bw_table,
2260 struct usb_device *udev,
2261 struct xhci_virt_ep *virt_ep,
2262 struct xhci_tt_bw_info *tt_info)
2263 {
2264 struct xhci_interval_bw *interval_bw;
2265 int normalized_interval;
2266
2267 if (xhci_is_async_ep(ep_bw->type))
2268 return;
2269
2270 if (udev->speed == USB_SPEED_SUPER) {
2271 if (xhci_is_sync_in_ep(ep_bw->type))
2272 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2273 xhci_get_ss_bw_consumed(ep_bw);
2274 else
2275 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2276 xhci_get_ss_bw_consumed(ep_bw);
2277 return;
2278 }
2279
2280 /* SuperSpeed endpoints never get added to intervals in the table, so
2281 * this check is only valid for HS/FS/LS devices.
2282 */
2283 if (list_empty(&virt_ep->bw_endpoint_list))
2284 return;
2285 /* For LS/FS devices, we need to translate the interval expressed in
2286 * microframes to frames.
2287 */
2288 if (udev->speed == USB_SPEED_HIGH)
2289 normalized_interval = ep_bw->ep_interval;
2290 else
2291 normalized_interval = ep_bw->ep_interval - 3;
2292
2293 if (normalized_interval == 0)
2294 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2295 interval_bw = &bw_table->interval_bw[normalized_interval];
2296 interval_bw->num_packets -= ep_bw->num_packets;
2297 switch (udev->speed) {
2298 case USB_SPEED_LOW:
2299 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2300 break;
2301 case USB_SPEED_FULL:
2302 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2303 break;
2304 case USB_SPEED_HIGH:
2305 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2306 break;
2307 case USB_SPEED_SUPER:
2308 case USB_SPEED_UNKNOWN:
2309 case USB_SPEED_WIRELESS:
2310 /* Should never happen because only LS/FS/HS endpoints will get
2311 * added to the endpoint list.
2312 */
2313 return;
2314 }
2315 if (tt_info)
2316 tt_info->active_eps -= 1;
2317 list_del_init(&virt_ep->bw_endpoint_list);
2318 }
2319
2320 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2321 struct xhci_bw_info *ep_bw,
2322 struct xhci_interval_bw_table *bw_table,
2323 struct usb_device *udev,
2324 struct xhci_virt_ep *virt_ep,
2325 struct xhci_tt_bw_info *tt_info)
2326 {
2327 struct xhci_interval_bw *interval_bw;
2328 struct xhci_virt_ep *smaller_ep;
2329 int normalized_interval;
2330
2331 if (xhci_is_async_ep(ep_bw->type))
2332 return;
2333
2334 if (udev->speed == USB_SPEED_SUPER) {
2335 if (xhci_is_sync_in_ep(ep_bw->type))
2336 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2337 xhci_get_ss_bw_consumed(ep_bw);
2338 else
2339 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2340 xhci_get_ss_bw_consumed(ep_bw);
2341 return;
2342 }
2343
2344 /* For LS/FS devices, we need to translate the interval expressed in
2345 * microframes to frames.
2346 */
2347 if (udev->speed == USB_SPEED_HIGH)
2348 normalized_interval = ep_bw->ep_interval;
2349 else
2350 normalized_interval = ep_bw->ep_interval - 3;
2351
2352 if (normalized_interval == 0)
2353 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2354 interval_bw = &bw_table->interval_bw[normalized_interval];
2355 interval_bw->num_packets += ep_bw->num_packets;
2356 switch (udev->speed) {
2357 case USB_SPEED_LOW:
2358 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2359 break;
2360 case USB_SPEED_FULL:
2361 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2362 break;
2363 case USB_SPEED_HIGH:
2364 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2365 break;
2366 case USB_SPEED_SUPER:
2367 case USB_SPEED_UNKNOWN:
2368 case USB_SPEED_WIRELESS:
2369 /* Should never happen because only LS/FS/HS endpoints will get
2370 * added to the endpoint list.
2371 */
2372 return;
2373 }
2374
2375 if (tt_info)
2376 tt_info->active_eps += 1;
2377 /* Insert the endpoint into the list, largest max packet size first. */
2378 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2379 bw_endpoint_list) {
2380 if (ep_bw->max_packet_size >=
2381 smaller_ep->bw_info.max_packet_size) {
2382 /* Add the new ep before the smaller endpoint */
2383 list_add_tail(&virt_ep->bw_endpoint_list,
2384 &smaller_ep->bw_endpoint_list);
2385 return;
2386 }
2387 }
2388 /* Add the new endpoint at the end of the list. */
2389 list_add_tail(&virt_ep->bw_endpoint_list,
2390 &interval_bw->endpoints);
2391 }
2392
2393 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2394 struct xhci_virt_device *virt_dev,
2395 int old_active_eps)
2396 {
2397 struct xhci_root_port_bw_info *rh_bw_info;
2398 if (!virt_dev->tt_info)
2399 return;
2400
2401 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2402 if (old_active_eps == 0 &&
2403 virt_dev->tt_info->active_eps != 0) {
2404 rh_bw_info->num_active_tts += 1;
2405 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2406 } else if (old_active_eps != 0 &&
2407 virt_dev->tt_info->active_eps == 0) {
2408 rh_bw_info->num_active_tts -= 1;
2409 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2410 }
2411 }
2412
2413 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2414 struct xhci_virt_device *virt_dev,
2415 struct xhci_container_ctx *in_ctx)
2416 {
2417 struct xhci_bw_info ep_bw_info[31];
2418 int i;
2419 struct xhci_input_control_ctx *ctrl_ctx;
2420 int old_active_eps = 0;
2421
2422 if (virt_dev->tt_info)
2423 old_active_eps = virt_dev->tt_info->active_eps;
2424
2425 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2426 if (!ctrl_ctx) {
2427 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2428 __func__);
2429 return -ENOMEM;
2430 }
2431
2432 for (i = 0; i < 31; i++) {
2433 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2434 continue;
2435
2436 /* Make a copy of the BW info in case we need to revert this */
2437 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2438 sizeof(ep_bw_info[i]));
2439 /* Drop the endpoint from the interval table if the endpoint is
2440 * being dropped or changed.
2441 */
2442 if (EP_IS_DROPPED(ctrl_ctx, i))
2443 xhci_drop_ep_from_interval_table(xhci,
2444 &virt_dev->eps[i].bw_info,
2445 virt_dev->bw_table,
2446 virt_dev->udev,
2447 &virt_dev->eps[i],
2448 virt_dev->tt_info);
2449 }
2450 /* Overwrite the information stored in the endpoints' bw_info */
2451 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2452 for (i = 0; i < 31; i++) {
2453 /* Add any changed or added endpoints to the interval table */
2454 if (EP_IS_ADDED(ctrl_ctx, i))
2455 xhci_add_ep_to_interval_table(xhci,
2456 &virt_dev->eps[i].bw_info,
2457 virt_dev->bw_table,
2458 virt_dev->udev,
2459 &virt_dev->eps[i],
2460 virt_dev->tt_info);
2461 }
2462
2463 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2464 /* Ok, this fits in the bandwidth we have.
2465 * Update the number of active TTs.
2466 */
2467 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2468 return 0;
2469 }
2470
2471 /* We don't have enough bandwidth for this, revert the stored info. */
2472 for (i = 0; i < 31; i++) {
2473 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2474 continue;
2475
2476 /* Drop the new copies of any added or changed endpoints from
2477 * the interval table.
2478 */
2479 if (EP_IS_ADDED(ctrl_ctx, i)) {
2480 xhci_drop_ep_from_interval_table(xhci,
2481 &virt_dev->eps[i].bw_info,
2482 virt_dev->bw_table,
2483 virt_dev->udev,
2484 &virt_dev->eps[i],
2485 virt_dev->tt_info);
2486 }
2487 /* Revert the endpoint back to its old information */
2488 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2489 sizeof(ep_bw_info[i]));
2490 /* Add any changed or dropped endpoints back into the table */
2491 if (EP_IS_DROPPED(ctrl_ctx, i))
2492 xhci_add_ep_to_interval_table(xhci,
2493 &virt_dev->eps[i].bw_info,
2494 virt_dev->bw_table,
2495 virt_dev->udev,
2496 &virt_dev->eps[i],
2497 virt_dev->tt_info);
2498 }
2499 return -ENOMEM;
2500 }
2501
2502
2503 /* Issue a configure endpoint command or evaluate context command
2504 * and wait for it to finish.
2505 */
2506 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2507 struct usb_device *udev,
2508 struct xhci_command *command,
2509 bool ctx_change, bool must_succeed)
2510 {
2511 int ret;
2512 int timeleft;
2513 unsigned long flags;
2514 struct xhci_container_ctx *in_ctx;
2515 struct xhci_input_control_ctx *ctrl_ctx;
2516 struct completion *cmd_completion;
2517 u32 *cmd_status;
2518 struct xhci_virt_device *virt_dev;
2519 union xhci_trb *cmd_trb;
2520
2521 spin_lock_irqsave(&xhci->lock, flags);
2522 virt_dev = xhci->devs[udev->slot_id];
2523
2524 if (command)
2525 in_ctx = command->in_ctx;
2526 else
2527 in_ctx = virt_dev->in_ctx;
2528 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2529 if (!ctrl_ctx) {
2530 spin_unlock_irqrestore(&xhci->lock, flags);
2531 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2532 __func__);
2533 return -ENOMEM;
2534 }
2535
2536 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2537 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2538 spin_unlock_irqrestore(&xhci->lock, flags);
2539 xhci_warn(xhci, "Not enough host resources, "
2540 "active endpoint contexts = %u\n",
2541 xhci->num_active_eps);
2542 return -ENOMEM;
2543 }
2544 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2545 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2546 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2547 xhci_free_host_resources(xhci, ctrl_ctx);
2548 spin_unlock_irqrestore(&xhci->lock, flags);
2549 xhci_warn(xhci, "Not enough bandwidth\n");
2550 return -ENOMEM;
2551 }
2552
2553 if (command) {
2554 cmd_completion = command->completion;
2555 cmd_status = &command->status;
2556 command->command_trb = xhci->cmd_ring->enqueue;
2557
2558 /* Enqueue pointer can be left pointing to the link TRB,
2559 * we must handle that
2560 */
2561 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2562 command->command_trb =
2563 xhci->cmd_ring->enq_seg->next->trbs;
2564
2565 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2566 } else {
2567 cmd_completion = &virt_dev->cmd_completion;
2568 cmd_status = &virt_dev->cmd_status;
2569 }
2570 init_completion(cmd_completion);
2571
2572 cmd_trb = xhci->cmd_ring->dequeue;
2573 if (!ctx_change)
2574 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2575 udev->slot_id, must_succeed);
2576 else
2577 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2578 udev->slot_id, must_succeed);
2579 if (ret < 0) {
2580 if (command)
2581 list_del(&command->cmd_list);
2582 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2583 xhci_free_host_resources(xhci, ctrl_ctx);
2584 spin_unlock_irqrestore(&xhci->lock, flags);
2585 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2586 return -ENOMEM;
2587 }
2588 xhci_ring_cmd_db(xhci);
2589 spin_unlock_irqrestore(&xhci->lock, flags);
2590
2591 /* Wait for the configure endpoint command to complete */
2592 timeleft = wait_for_completion_interruptible_timeout(
2593 cmd_completion,
2594 XHCI_CMD_DEFAULT_TIMEOUT);
2595 if (timeleft <= 0) {
2596 xhci_warn(xhci, "%s while waiting for %s command\n",
2597 timeleft == 0 ? "Timeout" : "Signal",
2598 ctx_change == 0 ?
2599 "configure endpoint" :
2600 "evaluate context");
2601 /* cancel the configure endpoint command */
2602 ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2603 if (ret < 0)
2604 return ret;
2605 return -ETIME;
2606 }
2607
2608 if (!ctx_change)
2609 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2610 else
2611 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2612
2613 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2614 spin_lock_irqsave(&xhci->lock, flags);
2615 /* If the command failed, remove the reserved resources.
2616 * Otherwise, clean up the estimate to include dropped eps.
2617 */
2618 if (ret)
2619 xhci_free_host_resources(xhci, ctrl_ctx);
2620 else
2621 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2622 spin_unlock_irqrestore(&xhci->lock, flags);
2623 }
2624 return ret;
2625 }
2626
2627 /* Called after one or more calls to xhci_add_endpoint() or
2628 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2629 * to call xhci_reset_bandwidth().
2630 *
2631 * Since we are in the middle of changing either configuration or
2632 * installing a new alt setting, the USB core won't allow URBs to be
2633 * enqueued for any endpoint on the old config or interface. Nothing
2634 * else should be touching the xhci->devs[slot_id] structure, so we
2635 * don't need to take the xhci->lock for manipulating that.
2636 */
2637 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2638 {
2639 int i;
2640 int ret = 0;
2641 struct xhci_hcd *xhci;
2642 struct xhci_virt_device *virt_dev;
2643 struct xhci_input_control_ctx *ctrl_ctx;
2644 struct xhci_slot_ctx *slot_ctx;
2645
2646 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2647 if (ret <= 0)
2648 return ret;
2649 xhci = hcd_to_xhci(hcd);
2650 if (xhci->xhc_state & XHCI_STATE_DYING)
2651 return -ENODEV;
2652
2653 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2654 virt_dev = xhci->devs[udev->slot_id];
2655
2656 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2657 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2658 if (!ctrl_ctx) {
2659 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2660 __func__);
2661 return -ENOMEM;
2662 }
2663 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2664 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2665 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2666
2667 /* Don't issue the command if there's no endpoints to update. */
2668 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2669 ctrl_ctx->drop_flags == 0)
2670 return 0;
2671
2672 xhci_dbg(xhci, "New Input Control Context:\n");
2673 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2674 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2675 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2676
2677 ret = xhci_configure_endpoint(xhci, udev, NULL,
2678 false, false);
2679 if (ret) {
2680 /* Callee should call reset_bandwidth() */
2681 return ret;
2682 }
2683
2684 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2685 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2686 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2687
2688 /* Free any rings that were dropped, but not changed. */
2689 for (i = 1; i < 31; ++i) {
2690 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2691 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2692 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2693 }
2694 xhci_zero_in_ctx(xhci, virt_dev);
2695 /*
2696 * Install any rings for completely new endpoints or changed endpoints,
2697 * and free or cache any old rings from changed endpoints.
2698 */
2699 for (i = 1; i < 31; ++i) {
2700 if (!virt_dev->eps[i].new_ring)
2701 continue;
2702 /* Only cache or free the old ring if it exists.
2703 * It may not if this is the first add of an endpoint.
2704 */
2705 if (virt_dev->eps[i].ring) {
2706 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2707 }
2708 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2709 virt_dev->eps[i].new_ring = NULL;
2710 }
2711
2712 return ret;
2713 }
2714
2715 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2716 {
2717 struct xhci_hcd *xhci;
2718 struct xhci_virt_device *virt_dev;
2719 int i, ret;
2720
2721 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2722 if (ret <= 0)
2723 return;
2724 xhci = hcd_to_xhci(hcd);
2725
2726 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2727 virt_dev = xhci->devs[udev->slot_id];
2728 /* Free any rings allocated for added endpoints */
2729 for (i = 0; i < 31; ++i) {
2730 if (virt_dev->eps[i].new_ring) {
2731 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2732 virt_dev->eps[i].new_ring = NULL;
2733 }
2734 }
2735 xhci_zero_in_ctx(xhci, virt_dev);
2736 }
2737
2738 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2739 struct xhci_container_ctx *in_ctx,
2740 struct xhci_container_ctx *out_ctx,
2741 struct xhci_input_control_ctx *ctrl_ctx,
2742 u32 add_flags, u32 drop_flags)
2743 {
2744 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2745 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2746 xhci_slot_copy(xhci, in_ctx, out_ctx);
2747 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2748
2749 xhci_dbg(xhci, "Input Context:\n");
2750 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2751 }
2752
2753 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2754 unsigned int slot_id, unsigned int ep_index,
2755 struct xhci_dequeue_state *deq_state)
2756 {
2757 struct xhci_input_control_ctx *ctrl_ctx;
2758 struct xhci_container_ctx *in_ctx;
2759 struct xhci_ep_ctx *ep_ctx;
2760 u32 added_ctxs;
2761 dma_addr_t addr;
2762
2763 in_ctx = xhci->devs[slot_id]->in_ctx;
2764 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2765 if (!ctrl_ctx) {
2766 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2767 __func__);
2768 return;
2769 }
2770
2771 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2772 xhci->devs[slot_id]->out_ctx, ep_index);
2773 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2774 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2775 deq_state->new_deq_ptr);
2776 if (addr == 0) {
2777 xhci_warn(xhci, "WARN Cannot submit config ep after "
2778 "reset ep command\n");
2779 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2780 deq_state->new_deq_seg,
2781 deq_state->new_deq_ptr);
2782 return;
2783 }
2784 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2785
2786 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2787 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2788 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2789 added_ctxs, added_ctxs);
2790 }
2791
2792 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2793 struct usb_device *udev, unsigned int ep_index)
2794 {
2795 struct xhci_dequeue_state deq_state;
2796 struct xhci_virt_ep *ep;
2797
2798 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2799 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2800 /* We need to move the HW's dequeue pointer past this TD,
2801 * or it will attempt to resend it on the next doorbell ring.
2802 */
2803 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2804 ep_index, ep->stopped_stream, ep->stopped_td,
2805 &deq_state);
2806
2807 /* HW with the reset endpoint quirk will use the saved dequeue state to
2808 * issue a configure endpoint command later.
2809 */
2810 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2811 xhci_dbg(xhci, "Queueing new dequeue state\n");
2812 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2813 ep_index, ep->stopped_stream, &deq_state);
2814 } else {
2815 /* Better hope no one uses the input context between now and the
2816 * reset endpoint completion!
2817 * XXX: No idea how this hardware will react when stream rings
2818 * are enabled.
2819 */
2820 xhci_dbg(xhci, "Setting up input context for "
2821 "configure endpoint command\n");
2822 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2823 ep_index, &deq_state);
2824 }
2825 }
2826
2827 /* Deal with stalled endpoints. The core should have sent the control message
2828 * to clear the halt condition. However, we need to make the xHCI hardware
2829 * reset its sequence number, since a device will expect a sequence number of
2830 * zero after the halt condition is cleared.
2831 * Context: in_interrupt
2832 */
2833 void xhci_endpoint_reset(struct usb_hcd *hcd,
2834 struct usb_host_endpoint *ep)
2835 {
2836 struct xhci_hcd *xhci;
2837 struct usb_device *udev;
2838 unsigned int ep_index;
2839 unsigned long flags;
2840 int ret;
2841 struct xhci_virt_ep *virt_ep;
2842
2843 xhci = hcd_to_xhci(hcd);
2844 udev = (struct usb_device *) ep->hcpriv;
2845 /* Called with a root hub endpoint (or an endpoint that wasn't added
2846 * with xhci_add_endpoint()
2847 */
2848 if (!ep->hcpriv)
2849 return;
2850 ep_index = xhci_get_endpoint_index(&ep->desc);
2851 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2852 if (!virt_ep->stopped_td) {
2853 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2854 ep->desc.bEndpointAddress);
2855 return;
2856 }
2857 if (usb_endpoint_xfer_control(&ep->desc)) {
2858 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2859 return;
2860 }
2861
2862 xhci_dbg(xhci, "Queueing reset endpoint command\n");
2863 spin_lock_irqsave(&xhci->lock, flags);
2864 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2865 /*
2866 * Can't change the ring dequeue pointer until it's transitioned to the
2867 * stopped state, which is only upon a successful reset endpoint
2868 * command. Better hope that last command worked!
2869 */
2870 if (!ret) {
2871 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2872 kfree(virt_ep->stopped_td);
2873 xhci_ring_cmd_db(xhci);
2874 }
2875 virt_ep->stopped_td = NULL;
2876 virt_ep->stopped_trb = NULL;
2877 virt_ep->stopped_stream = 0;
2878 spin_unlock_irqrestore(&xhci->lock, flags);
2879
2880 if (ret)
2881 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2882 }
2883
2884 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2885 struct usb_device *udev, struct usb_host_endpoint *ep,
2886 unsigned int slot_id)
2887 {
2888 int ret;
2889 unsigned int ep_index;
2890 unsigned int ep_state;
2891
2892 if (!ep)
2893 return -EINVAL;
2894 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2895 if (ret <= 0)
2896 return -EINVAL;
2897 if (ep->ss_ep_comp.bmAttributes == 0) {
2898 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2899 " descriptor for ep 0x%x does not support streams\n",
2900 ep->desc.bEndpointAddress);
2901 return -EINVAL;
2902 }
2903
2904 ep_index = xhci_get_endpoint_index(&ep->desc);
2905 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2906 if (ep_state & EP_HAS_STREAMS ||
2907 ep_state & EP_GETTING_STREAMS) {
2908 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2909 "already has streams set up.\n",
2910 ep->desc.bEndpointAddress);
2911 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2912 "dynamic stream context array reallocation.\n");
2913 return -EINVAL;
2914 }
2915 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2916 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2917 "endpoint 0x%x; URBs are pending.\n",
2918 ep->desc.bEndpointAddress);
2919 return -EINVAL;
2920 }
2921 return 0;
2922 }
2923
2924 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2925 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2926 {
2927 unsigned int max_streams;
2928
2929 /* The stream context array size must be a power of two */
2930 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2931 /*
2932 * Find out how many primary stream array entries the host controller
2933 * supports. Later we may use secondary stream arrays (similar to 2nd
2934 * level page entries), but that's an optional feature for xHCI host
2935 * controllers. xHCs must support at least 4 stream IDs.
2936 */
2937 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2938 if (*num_stream_ctxs > max_streams) {
2939 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2940 max_streams);
2941 *num_stream_ctxs = max_streams;
2942 *num_streams = max_streams;
2943 }
2944 }
2945
2946 /* Returns an error code if one of the endpoint already has streams.
2947 * This does not change any data structures, it only checks and gathers
2948 * information.
2949 */
2950 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2951 struct usb_device *udev,
2952 struct usb_host_endpoint **eps, unsigned int num_eps,
2953 unsigned int *num_streams, u32 *changed_ep_bitmask)
2954 {
2955 unsigned int max_streams;
2956 unsigned int endpoint_flag;
2957 int i;
2958 int ret;
2959
2960 for (i = 0; i < num_eps; i++) {
2961 ret = xhci_check_streams_endpoint(xhci, udev,
2962 eps[i], udev->slot_id);
2963 if (ret < 0)
2964 return ret;
2965
2966 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2967 if (max_streams < (*num_streams - 1)) {
2968 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2969 eps[i]->desc.bEndpointAddress,
2970 max_streams);
2971 *num_streams = max_streams+1;
2972 }
2973
2974 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2975 if (*changed_ep_bitmask & endpoint_flag)
2976 return -EINVAL;
2977 *changed_ep_bitmask |= endpoint_flag;
2978 }
2979 return 0;
2980 }
2981
2982 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2983 struct usb_device *udev,
2984 struct usb_host_endpoint **eps, unsigned int num_eps)
2985 {
2986 u32 changed_ep_bitmask = 0;
2987 unsigned int slot_id;
2988 unsigned int ep_index;
2989 unsigned int ep_state;
2990 int i;
2991
2992 slot_id = udev->slot_id;
2993 if (!xhci->devs[slot_id])
2994 return 0;
2995
2996 for (i = 0; i < num_eps; i++) {
2997 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2998 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2999 /* Are streams already being freed for the endpoint? */
3000 if (ep_state & EP_GETTING_NO_STREAMS) {
3001 xhci_warn(xhci, "WARN Can't disable streams for "
3002 "endpoint 0x%x, "
3003 "streams are being disabled already\n",
3004 eps[i]->desc.bEndpointAddress);
3005 return 0;
3006 }
3007 /* Are there actually any streams to free? */
3008 if (!(ep_state & EP_HAS_STREAMS) &&
3009 !(ep_state & EP_GETTING_STREAMS)) {
3010 xhci_warn(xhci, "WARN Can't disable streams for "
3011 "endpoint 0x%x, "
3012 "streams are already disabled!\n",
3013 eps[i]->desc.bEndpointAddress);
3014 xhci_warn(xhci, "WARN xhci_free_streams() called "
3015 "with non-streams endpoint\n");
3016 return 0;
3017 }
3018 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3019 }
3020 return changed_ep_bitmask;
3021 }
3022
3023 /*
3024 * The USB device drivers use this function (though the HCD interface in USB
3025 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3026 * coordinate mass storage command queueing across multiple endpoints (basically
3027 * a stream ID == a task ID).
3028 *
3029 * Setting up streams involves allocating the same size stream context array
3030 * for each endpoint and issuing a configure endpoint command for all endpoints.
3031 *
3032 * Don't allow the call to succeed if one endpoint only supports one stream
3033 * (which means it doesn't support streams at all).
3034 *
3035 * Drivers may get less stream IDs than they asked for, if the host controller
3036 * hardware or endpoints claim they can't support the number of requested
3037 * stream IDs.
3038 */
3039 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3040 struct usb_host_endpoint **eps, unsigned int num_eps,
3041 unsigned int num_streams, gfp_t mem_flags)
3042 {
3043 int i, ret;
3044 struct xhci_hcd *xhci;
3045 struct xhci_virt_device *vdev;
3046 struct xhci_command *config_cmd;
3047 struct xhci_input_control_ctx *ctrl_ctx;
3048 unsigned int ep_index;
3049 unsigned int num_stream_ctxs;
3050 unsigned long flags;
3051 u32 changed_ep_bitmask = 0;
3052
3053 if (!eps)
3054 return -EINVAL;
3055
3056 /* Add one to the number of streams requested to account for
3057 * stream 0 that is reserved for xHCI usage.
3058 */
3059 num_streams += 1;
3060 xhci = hcd_to_xhci(hcd);
3061 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3062 num_streams);
3063
3064 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3065 if (!config_cmd) {
3066 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3067 return -ENOMEM;
3068 }
3069 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3070 if (!ctrl_ctx) {
3071 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3072 __func__);
3073 xhci_free_command(xhci, config_cmd);
3074 return -ENOMEM;
3075 }
3076
3077 /* Check to make sure all endpoints are not already configured for
3078 * streams. While we're at it, find the maximum number of streams that
3079 * all the endpoints will support and check for duplicate endpoints.
3080 */
3081 spin_lock_irqsave(&xhci->lock, flags);
3082 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3083 num_eps, &num_streams, &changed_ep_bitmask);
3084 if (ret < 0) {
3085 xhci_free_command(xhci, config_cmd);
3086 spin_unlock_irqrestore(&xhci->lock, flags);
3087 return ret;
3088 }
3089 if (num_streams <= 1) {
3090 xhci_warn(xhci, "WARN: endpoints can't handle "
3091 "more than one stream.\n");
3092 xhci_free_command(xhci, config_cmd);
3093 spin_unlock_irqrestore(&xhci->lock, flags);
3094 return -EINVAL;
3095 }
3096 vdev = xhci->devs[udev->slot_id];
3097 /* Mark each endpoint as being in transition, so
3098 * xhci_urb_enqueue() will reject all URBs.
3099 */
3100 for (i = 0; i < num_eps; i++) {
3101 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3102 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3103 }
3104 spin_unlock_irqrestore(&xhci->lock, flags);
3105
3106 /* Setup internal data structures and allocate HW data structures for
3107 * streams (but don't install the HW structures in the input context
3108 * until we're sure all memory allocation succeeded).
3109 */
3110 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3111 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3112 num_stream_ctxs, num_streams);
3113
3114 for (i = 0; i < num_eps; i++) {
3115 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3116 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3117 num_stream_ctxs,
3118 num_streams, mem_flags);
3119 if (!vdev->eps[ep_index].stream_info)
3120 goto cleanup;
3121 /* Set maxPstreams in endpoint context and update deq ptr to
3122 * point to stream context array. FIXME
3123 */
3124 }
3125
3126 /* Set up the input context for a configure endpoint command. */
3127 for (i = 0; i < num_eps; i++) {
3128 struct xhci_ep_ctx *ep_ctx;
3129
3130 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3131 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3132
3133 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3134 vdev->out_ctx, ep_index);
3135 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3136 vdev->eps[ep_index].stream_info);
3137 }
3138 /* Tell the HW to drop its old copy of the endpoint context info
3139 * and add the updated copy from the input context.
3140 */
3141 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3142 vdev->out_ctx, ctrl_ctx,
3143 changed_ep_bitmask, changed_ep_bitmask);
3144
3145 /* Issue and wait for the configure endpoint command */
3146 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3147 false, false);
3148
3149 /* xHC rejected the configure endpoint command for some reason, so we
3150 * leave the old ring intact and free our internal streams data
3151 * structure.
3152 */
3153 if (ret < 0)
3154 goto cleanup;
3155
3156 spin_lock_irqsave(&xhci->lock, flags);
3157 for (i = 0; i < num_eps; i++) {
3158 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3159 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3160 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3161 udev->slot_id, ep_index);
3162 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3163 }
3164 xhci_free_command(xhci, config_cmd);
3165 spin_unlock_irqrestore(&xhci->lock, flags);
3166
3167 /* Subtract 1 for stream 0, which drivers can't use */
3168 return num_streams - 1;
3169
3170 cleanup:
3171 /* If it didn't work, free the streams! */
3172 for (i = 0; i < num_eps; i++) {
3173 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3174 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3175 vdev->eps[ep_index].stream_info = NULL;
3176 /* FIXME Unset maxPstreams in endpoint context and
3177 * update deq ptr to point to normal string ring.
3178 */
3179 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3180 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3181 xhci_endpoint_zero(xhci, vdev, eps[i]);
3182 }
3183 xhci_free_command(xhci, config_cmd);
3184 return -ENOMEM;
3185 }
3186
3187 /* Transition the endpoint from using streams to being a "normal" endpoint
3188 * without streams.
3189 *
3190 * Modify the endpoint context state, submit a configure endpoint command,
3191 * and free all endpoint rings for streams if that completes successfully.
3192 */
3193 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3194 struct usb_host_endpoint **eps, unsigned int num_eps,
3195 gfp_t mem_flags)
3196 {
3197 int i, ret;
3198 struct xhci_hcd *xhci;
3199 struct xhci_virt_device *vdev;
3200 struct xhci_command *command;
3201 struct xhci_input_control_ctx *ctrl_ctx;
3202 unsigned int ep_index;
3203 unsigned long flags;
3204 u32 changed_ep_bitmask;
3205
3206 xhci = hcd_to_xhci(hcd);
3207 vdev = xhci->devs[udev->slot_id];
3208
3209 /* Set up a configure endpoint command to remove the streams rings */
3210 spin_lock_irqsave(&xhci->lock, flags);
3211 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3212 udev, eps, num_eps);
3213 if (changed_ep_bitmask == 0) {
3214 spin_unlock_irqrestore(&xhci->lock, flags);
3215 return -EINVAL;
3216 }
3217
3218 /* Use the xhci_command structure from the first endpoint. We may have
3219 * allocated too many, but the driver may call xhci_free_streams() for
3220 * each endpoint it grouped into one call to xhci_alloc_streams().
3221 */
3222 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3223 command = vdev->eps[ep_index].stream_info->free_streams_command;
3224 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3225 if (!ctrl_ctx) {
3226 spin_unlock_irqrestore(&xhci->lock, flags);
3227 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3228 __func__);
3229 return -EINVAL;
3230 }
3231
3232 for (i = 0; i < num_eps; i++) {
3233 struct xhci_ep_ctx *ep_ctx;
3234
3235 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3236 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3237 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3238 EP_GETTING_NO_STREAMS;
3239
3240 xhci_endpoint_copy(xhci, command->in_ctx,
3241 vdev->out_ctx, ep_index);
3242 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3243 &vdev->eps[ep_index]);
3244 }
3245 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3246 vdev->out_ctx, ctrl_ctx,
3247 changed_ep_bitmask, changed_ep_bitmask);
3248 spin_unlock_irqrestore(&xhci->lock, flags);
3249
3250 /* Issue and wait for the configure endpoint command,
3251 * which must succeed.
3252 */
3253 ret = xhci_configure_endpoint(xhci, udev, command,
3254 false, true);
3255
3256 /* xHC rejected the configure endpoint command for some reason, so we
3257 * leave the streams rings intact.
3258 */
3259 if (ret < 0)
3260 return ret;
3261
3262 spin_lock_irqsave(&xhci->lock, flags);
3263 for (i = 0; i < num_eps; i++) {
3264 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3265 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3266 vdev->eps[ep_index].stream_info = NULL;
3267 /* FIXME Unset maxPstreams in endpoint context and
3268 * update deq ptr to point to normal string ring.
3269 */
3270 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3271 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3272 }
3273 spin_unlock_irqrestore(&xhci->lock, flags);
3274
3275 return 0;
3276 }
3277
3278 /*
3279 * Deletes endpoint resources for endpoints that were active before a Reset
3280 * Device command, or a Disable Slot command. The Reset Device command leaves
3281 * the control endpoint intact, whereas the Disable Slot command deletes it.
3282 *
3283 * Must be called with xhci->lock held.
3284 */
3285 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3286 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3287 {
3288 int i;
3289 unsigned int num_dropped_eps = 0;
3290 unsigned int drop_flags = 0;
3291
3292 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3293 if (virt_dev->eps[i].ring) {
3294 drop_flags |= 1 << i;
3295 num_dropped_eps++;
3296 }
3297 }
3298 xhci->num_active_eps -= num_dropped_eps;
3299 if (num_dropped_eps)
3300 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3301 "%u now active.\n",
3302 num_dropped_eps, drop_flags,
3303 xhci->num_active_eps);
3304 }
3305
3306 /*
3307 * This submits a Reset Device Command, which will set the device state to 0,
3308 * set the device address to 0, and disable all the endpoints except the default
3309 * control endpoint. The USB core should come back and call
3310 * xhci_address_device(), and then re-set up the configuration. If this is
3311 * called because of a usb_reset_and_verify_device(), then the old alternate
3312 * settings will be re-installed through the normal bandwidth allocation
3313 * functions.
3314 *
3315 * Wait for the Reset Device command to finish. Remove all structures
3316 * associated with the endpoints that were disabled. Clear the input device
3317 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3318 *
3319 * If the virt_dev to be reset does not exist or does not match the udev,
3320 * it means the device is lost, possibly due to the xHC restore error and
3321 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3322 * re-allocate the device.
3323 */
3324 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3325 {
3326 int ret, i;
3327 unsigned long flags;
3328 struct xhci_hcd *xhci;
3329 unsigned int slot_id;
3330 struct xhci_virt_device *virt_dev;
3331 struct xhci_command *reset_device_cmd;
3332 int timeleft;
3333 int last_freed_endpoint;
3334 struct xhci_slot_ctx *slot_ctx;
3335 int old_active_eps = 0;
3336
3337 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3338 if (ret <= 0)
3339 return ret;
3340 xhci = hcd_to_xhci(hcd);
3341 slot_id = udev->slot_id;
3342 virt_dev = xhci->devs[slot_id];
3343 if (!virt_dev) {
3344 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3345 "not exist. Re-allocate the device\n", slot_id);
3346 ret = xhci_alloc_dev(hcd, udev);
3347 if (ret == 1)
3348 return 0;
3349 else
3350 return -EINVAL;
3351 }
3352
3353 if (virt_dev->udev != udev) {
3354 /* If the virt_dev and the udev does not match, this virt_dev
3355 * may belong to another udev.
3356 * Re-allocate the device.
3357 */
3358 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3359 "not match the udev. Re-allocate the device\n",
3360 slot_id);
3361 ret = xhci_alloc_dev(hcd, udev);
3362 if (ret == 1)
3363 return 0;
3364 else
3365 return -EINVAL;
3366 }
3367
3368 /* If device is not setup, there is no point in resetting it */
3369 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3370 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3371 SLOT_STATE_DISABLED)
3372 return 0;
3373
3374 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3375 /* Allocate the command structure that holds the struct completion.
3376 * Assume we're in process context, since the normal device reset
3377 * process has to wait for the device anyway. Storage devices are
3378 * reset as part of error handling, so use GFP_NOIO instead of
3379 * GFP_KERNEL.
3380 */
3381 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3382 if (!reset_device_cmd) {
3383 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3384 return -ENOMEM;
3385 }
3386
3387 /* Attempt to submit the Reset Device command to the command ring */
3388 spin_lock_irqsave(&xhci->lock, flags);
3389 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3390
3391 /* Enqueue pointer can be left pointing to the link TRB,
3392 * we must handle that
3393 */
3394 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3395 reset_device_cmd->command_trb =
3396 xhci->cmd_ring->enq_seg->next->trbs;
3397
3398 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3399 ret = xhci_queue_reset_device(xhci, slot_id);
3400 if (ret) {
3401 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3402 list_del(&reset_device_cmd->cmd_list);
3403 spin_unlock_irqrestore(&xhci->lock, flags);
3404 goto command_cleanup;
3405 }
3406 xhci_ring_cmd_db(xhci);
3407 spin_unlock_irqrestore(&xhci->lock, flags);
3408
3409 /* Wait for the Reset Device command to finish */
3410 timeleft = wait_for_completion_interruptible_timeout(
3411 reset_device_cmd->completion,
3412 USB_CTRL_SET_TIMEOUT);
3413 if (timeleft <= 0) {
3414 xhci_warn(xhci, "%s while waiting for reset device command\n",
3415 timeleft == 0 ? "Timeout" : "Signal");
3416 spin_lock_irqsave(&xhci->lock, flags);
3417 /* The timeout might have raced with the event ring handler, so
3418 * only delete from the list if the item isn't poisoned.
3419 */
3420 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3421 list_del(&reset_device_cmd->cmd_list);
3422 spin_unlock_irqrestore(&xhci->lock, flags);
3423 ret = -ETIME;
3424 goto command_cleanup;
3425 }
3426
3427 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3428 * unless we tried to reset a slot ID that wasn't enabled,
3429 * or the device wasn't in the addressed or configured state.
3430 */
3431 ret = reset_device_cmd->status;
3432 switch (ret) {
3433 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3434 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3435 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3436 slot_id,
3437 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3438 xhci_dbg(xhci, "Not freeing device rings.\n");
3439 /* Don't treat this as an error. May change my mind later. */
3440 ret = 0;
3441 goto command_cleanup;
3442 case COMP_SUCCESS:
3443 xhci_dbg(xhci, "Successful reset device command.\n");
3444 break;
3445 default:
3446 if (xhci_is_vendor_info_code(xhci, ret))
3447 break;
3448 xhci_warn(xhci, "Unknown completion code %u for "
3449 "reset device command.\n", ret);
3450 ret = -EINVAL;
3451 goto command_cleanup;
3452 }
3453
3454 /* Free up host controller endpoint resources */
3455 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3456 spin_lock_irqsave(&xhci->lock, flags);
3457 /* Don't delete the default control endpoint resources */
3458 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3459 spin_unlock_irqrestore(&xhci->lock, flags);
3460 }
3461
3462 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3463 last_freed_endpoint = 1;
3464 for (i = 1; i < 31; ++i) {
3465 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3466
3467 if (ep->ep_state & EP_HAS_STREAMS) {
3468 xhci_free_stream_info(xhci, ep->stream_info);
3469 ep->stream_info = NULL;
3470 ep->ep_state &= ~EP_HAS_STREAMS;
3471 }
3472
3473 if (ep->ring) {
3474 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3475 last_freed_endpoint = i;
3476 }
3477 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3478 xhci_drop_ep_from_interval_table(xhci,
3479 &virt_dev->eps[i].bw_info,
3480 virt_dev->bw_table,
3481 udev,
3482 &virt_dev->eps[i],
3483 virt_dev->tt_info);
3484 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3485 }
3486 /* If necessary, update the number of active TTs on this root port */
3487 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3488
3489 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3490 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3491 ret = 0;
3492
3493 command_cleanup:
3494 xhci_free_command(xhci, reset_device_cmd);
3495 return ret;
3496 }
3497
3498 /*
3499 * At this point, the struct usb_device is about to go away, the device has
3500 * disconnected, and all traffic has been stopped and the endpoints have been
3501 * disabled. Free any HC data structures associated with that device.
3502 */
3503 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3504 {
3505 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3506 struct xhci_virt_device *virt_dev;
3507 unsigned long flags;
3508 u32 state;
3509 int i, ret;
3510
3511 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3512 /* If the host is halted due to driver unload, we still need to free the
3513 * device.
3514 */
3515 if (ret <= 0 && ret != -ENODEV)
3516 return;
3517
3518 virt_dev = xhci->devs[udev->slot_id];
3519
3520 /* Stop any wayward timer functions (which may grab the lock) */
3521 for (i = 0; i < 31; ++i) {
3522 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3523 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3524 }
3525
3526 if (udev->usb2_hw_lpm_enabled) {
3527 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3528 udev->usb2_hw_lpm_enabled = 0;
3529 }
3530
3531 spin_lock_irqsave(&xhci->lock, flags);
3532 /* Don't disable the slot if the host controller is dead. */
3533 state = xhci_readl(xhci, &xhci->op_regs->status);
3534 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3535 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3536 xhci_free_virt_device(xhci, udev->slot_id);
3537 spin_unlock_irqrestore(&xhci->lock, flags);
3538 return;
3539 }
3540
3541 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3542 spin_unlock_irqrestore(&xhci->lock, flags);
3543 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3544 return;
3545 }
3546 xhci_ring_cmd_db(xhci);
3547 spin_unlock_irqrestore(&xhci->lock, flags);
3548 /*
3549 * Event command completion handler will free any data structures
3550 * associated with the slot. XXX Can free sleep?
3551 */
3552 }
3553
3554 /*
3555 * Checks if we have enough host controller resources for the default control
3556 * endpoint.
3557 *
3558 * Must be called with xhci->lock held.
3559 */
3560 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3561 {
3562 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3563 xhci_dbg(xhci, "Not enough ep ctxs: "
3564 "%u active, need to add 1, limit is %u.\n",
3565 xhci->num_active_eps, xhci->limit_active_eps);
3566 return -ENOMEM;
3567 }
3568 xhci->num_active_eps += 1;
3569 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3570 xhci->num_active_eps);
3571 return 0;
3572 }
3573
3574
3575 /*
3576 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3577 * timed out, or allocating memory failed. Returns 1 on success.
3578 */
3579 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3580 {
3581 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3582 unsigned long flags;
3583 int timeleft;
3584 int ret;
3585 union xhci_trb *cmd_trb;
3586
3587 spin_lock_irqsave(&xhci->lock, flags);
3588 cmd_trb = xhci->cmd_ring->dequeue;
3589 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3590 if (ret) {
3591 spin_unlock_irqrestore(&xhci->lock, flags);
3592 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3593 return 0;
3594 }
3595 xhci_ring_cmd_db(xhci);
3596 spin_unlock_irqrestore(&xhci->lock, flags);
3597
3598 /* XXX: how much time for xHC slot assignment? */
3599 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3600 XHCI_CMD_DEFAULT_TIMEOUT);
3601 if (timeleft <= 0) {
3602 xhci_warn(xhci, "%s while waiting for a slot\n",
3603 timeleft == 0 ? "Timeout" : "Signal");
3604 /* cancel the enable slot request */
3605 return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3606 }
3607
3608 if (!xhci->slot_id) {
3609 xhci_err(xhci, "Error while assigning device slot ID\n");
3610 return 0;
3611 }
3612
3613 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3614 spin_lock_irqsave(&xhci->lock, flags);
3615 ret = xhci_reserve_host_control_ep_resources(xhci);
3616 if (ret) {
3617 spin_unlock_irqrestore(&xhci->lock, flags);
3618 xhci_warn(xhci, "Not enough host resources, "
3619 "active endpoint contexts = %u\n",
3620 xhci->num_active_eps);
3621 goto disable_slot;
3622 }
3623 spin_unlock_irqrestore(&xhci->lock, flags);
3624 }
3625 /* Use GFP_NOIO, since this function can be called from
3626 * xhci_discover_or_reset_device(), which may be called as part of
3627 * mass storage driver error handling.
3628 */
3629 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3630 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3631 goto disable_slot;
3632 }
3633 udev->slot_id = xhci->slot_id;
3634 /* Is this a LS or FS device under a HS hub? */
3635 /* Hub or peripherial? */
3636 return 1;
3637
3638 disable_slot:
3639 /* Disable slot, if we can do it without mem alloc */
3640 spin_lock_irqsave(&xhci->lock, flags);
3641 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3642 xhci_ring_cmd_db(xhci);
3643 spin_unlock_irqrestore(&xhci->lock, flags);
3644 return 0;
3645 }
3646
3647 /*
3648 * Issue an Address Device command (which will issue a SetAddress request to
3649 * the device).
3650 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3651 * we should only issue and wait on one address command at the same time.
3652 *
3653 * We add one to the device address issued by the hardware because the USB core
3654 * uses address 1 for the root hubs (even though they're not really devices).
3655 */
3656 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3657 {
3658 unsigned long flags;
3659 int timeleft;
3660 struct xhci_virt_device *virt_dev;
3661 int ret = 0;
3662 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3663 struct xhci_slot_ctx *slot_ctx;
3664 struct xhci_input_control_ctx *ctrl_ctx;
3665 u64 temp_64;
3666 union xhci_trb *cmd_trb;
3667
3668 if (!udev->slot_id) {
3669 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3670 return -EINVAL;
3671 }
3672
3673 virt_dev = xhci->devs[udev->slot_id];
3674
3675 if (WARN_ON(!virt_dev)) {
3676 /*
3677 * In plug/unplug torture test with an NEC controller,
3678 * a zero-dereference was observed once due to virt_dev = 0.
3679 * Print useful debug rather than crash if it is observed again!
3680 */
3681 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3682 udev->slot_id);
3683 return -EINVAL;
3684 }
3685
3686 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3687 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3688 if (!ctrl_ctx) {
3689 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3690 __func__);
3691 return -EINVAL;
3692 }
3693 /*
3694 * If this is the first Set Address since device plug-in or
3695 * virt_device realloaction after a resume with an xHCI power loss,
3696 * then set up the slot context.
3697 */
3698 if (!slot_ctx->dev_info)
3699 xhci_setup_addressable_virt_dev(xhci, udev);
3700 /* Otherwise, update the control endpoint ring enqueue pointer. */
3701 else
3702 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3703 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3704 ctrl_ctx->drop_flags = 0;
3705
3706 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3707 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3708
3709 spin_lock_irqsave(&xhci->lock, flags);
3710 cmd_trb = xhci->cmd_ring->dequeue;
3711 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3712 udev->slot_id);
3713 if (ret) {
3714 spin_unlock_irqrestore(&xhci->lock, flags);
3715 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3716 return ret;
3717 }
3718 xhci_ring_cmd_db(xhci);
3719 spin_unlock_irqrestore(&xhci->lock, flags);
3720
3721 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3722 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3723 XHCI_CMD_DEFAULT_TIMEOUT);
3724 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3725 * the SetAddress() "recovery interval" required by USB and aborting the
3726 * command on a timeout.
3727 */
3728 if (timeleft <= 0) {
3729 xhci_warn(xhci, "%s while waiting for address device command\n",
3730 timeleft == 0 ? "Timeout" : "Signal");
3731 /* cancel the address device command */
3732 ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3733 if (ret < 0)
3734 return ret;
3735 return -ETIME;
3736 }
3737
3738 switch (virt_dev->cmd_status) {
3739 case COMP_CTX_STATE:
3740 case COMP_EBADSLT:
3741 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3742 udev->slot_id);
3743 ret = -EINVAL;
3744 break;
3745 case COMP_TX_ERR:
3746 dev_warn(&udev->dev, "Device not responding to set address.\n");
3747 ret = -EPROTO;
3748 break;
3749 case COMP_DEV_ERR:
3750 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3751 "device command.\n");
3752 ret = -ENODEV;
3753 break;
3754 case COMP_SUCCESS:
3755 xhci_dbg(xhci, "Successful Address Device command\n");
3756 break;
3757 default:
3758 xhci_err(xhci, "ERROR: unexpected command completion "
3759 "code 0x%x.\n", virt_dev->cmd_status);
3760 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3761 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3762 ret = -EINVAL;
3763 break;
3764 }
3765 if (ret) {
3766 return ret;
3767 }
3768 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3769 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3770 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3771 udev->slot_id,
3772 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3773 (unsigned long long)
3774 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3775 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3776 (unsigned long long)virt_dev->out_ctx->dma);
3777 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3778 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3779 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3780 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3781 /*
3782 * USB core uses address 1 for the roothubs, so we add one to the
3783 * address given back to us by the HC.
3784 */
3785 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3786 /* Use kernel assigned address for devices; store xHC assigned
3787 * address locally. */
3788 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3789 + 1;
3790 /* Zero the input context control for later use */
3791 ctrl_ctx->add_flags = 0;
3792 ctrl_ctx->drop_flags = 0;
3793
3794 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3795
3796 return 0;
3797 }
3798
3799 /*
3800 * Transfer the port index into real index in the HW port status
3801 * registers. Caculate offset between the port's PORTSC register
3802 * and port status base. Divide the number of per port register
3803 * to get the real index. The raw port number bases 1.
3804 */
3805 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3806 {
3807 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3808 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3809 __le32 __iomem *addr;
3810 int raw_port;
3811
3812 if (hcd->speed != HCD_USB3)
3813 addr = xhci->usb2_ports[port1 - 1];
3814 else
3815 addr = xhci->usb3_ports[port1 - 1];
3816
3817 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3818 return raw_port;
3819 }
3820
3821 /*
3822 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3823 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
3824 */
3825 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3826 struct usb_device *udev, u16 max_exit_latency)
3827 {
3828 struct xhci_virt_device *virt_dev;
3829 struct xhci_command *command;
3830 struct xhci_input_control_ctx *ctrl_ctx;
3831 struct xhci_slot_ctx *slot_ctx;
3832 unsigned long flags;
3833 int ret;
3834
3835 spin_lock_irqsave(&xhci->lock, flags);
3836 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
3837 spin_unlock_irqrestore(&xhci->lock, flags);
3838 return 0;
3839 }
3840
3841 /* Attempt to issue an Evaluate Context command to change the MEL. */
3842 virt_dev = xhci->devs[udev->slot_id];
3843 command = xhci->lpm_command;
3844 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
3845 if (!ctrl_ctx) {
3846 spin_unlock_irqrestore(&xhci->lock, flags);
3847 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3848 __func__);
3849 return -ENOMEM;
3850 }
3851
3852 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3853 spin_unlock_irqrestore(&xhci->lock, flags);
3854
3855 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3856 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3857 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3858 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3859
3860 xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
3861 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
3862 xhci_dbg_ctx(xhci, command->in_ctx, 0);
3863
3864 /* Issue and wait for the evaluate context command. */
3865 ret = xhci_configure_endpoint(xhci, udev, command,
3866 true, true);
3867 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
3868 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
3869
3870 if (!ret) {
3871 spin_lock_irqsave(&xhci->lock, flags);
3872 virt_dev->current_mel = max_exit_latency;
3873 spin_unlock_irqrestore(&xhci->lock, flags);
3874 }
3875 return ret;
3876 }
3877
3878 #ifdef CONFIG_PM_RUNTIME
3879
3880 /* BESL to HIRD Encoding array for USB2 LPM */
3881 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3882 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3883
3884 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3885 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3886 struct usb_device *udev)
3887 {
3888 int u2del, besl, besl_host;
3889 int besl_device = 0;
3890 u32 field;
3891
3892 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3893 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3894
3895 if (field & USB_BESL_SUPPORT) {
3896 for (besl_host = 0; besl_host < 16; besl_host++) {
3897 if (xhci_besl_encoding[besl_host] >= u2del)
3898 break;
3899 }
3900 /* Use baseline BESL value as default */
3901 if (field & USB_BESL_BASELINE_VALID)
3902 besl_device = USB_GET_BESL_BASELINE(field);
3903 else if (field & USB_BESL_DEEP_VALID)
3904 besl_device = USB_GET_BESL_DEEP(field);
3905 } else {
3906 if (u2del <= 50)
3907 besl_host = 0;
3908 else
3909 besl_host = (u2del - 51) / 75 + 1;
3910 }
3911
3912 besl = besl_host + besl_device;
3913 if (besl > 15)
3914 besl = 15;
3915
3916 return besl;
3917 }
3918
3919 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
3920 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
3921 {
3922 u32 field;
3923 int l1;
3924 int besld = 0;
3925 int hirdm = 0;
3926
3927 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3928
3929 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
3930 l1 = udev->l1_params.timeout / 256;
3931
3932 /* device has preferred BESLD */
3933 if (field & USB_BESL_DEEP_VALID) {
3934 besld = USB_GET_BESL_DEEP(field);
3935 hirdm = 1;
3936 }
3937
3938 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
3939 }
3940
3941 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3942 struct usb_device *udev)
3943 {
3944 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3945 struct dev_info *dev_info;
3946 __le32 __iomem **port_array;
3947 __le32 __iomem *addr, *pm_addr;
3948 u32 temp, dev_id;
3949 unsigned int port_num;
3950 unsigned long flags;
3951 int hird;
3952 int ret;
3953
3954 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3955 !udev->lpm_capable)
3956 return -EINVAL;
3957
3958 /* we only support lpm for non-hub device connected to root hub yet */
3959 if (!udev->parent || udev->parent->parent ||
3960 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3961 return -EINVAL;
3962
3963 spin_lock_irqsave(&xhci->lock, flags);
3964
3965 /* Look for devices in lpm_failed_devs list */
3966 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3967 le16_to_cpu(udev->descriptor.idProduct);
3968 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3969 if (dev_info->dev_id == dev_id) {
3970 ret = -EINVAL;
3971 goto finish;
3972 }
3973 }
3974
3975 port_array = xhci->usb2_ports;
3976 port_num = udev->portnum - 1;
3977
3978 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3979 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3980 ret = -EINVAL;
3981 goto finish;
3982 }
3983
3984 /*
3985 * Test USB 2.0 software LPM.
3986 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3987 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3988 * in the June 2011 errata release.
3989 */
3990 xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3991 /*
3992 * Set L1 Device Slot and HIRD/BESL.
3993 * Check device's USB 2.0 extension descriptor to determine whether
3994 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3995 */
3996 pm_addr = port_array[port_num] + PORTPMSC;
3997 hird = xhci_calculate_hird_besl(xhci, udev);
3998 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3999 xhci_writel(xhci, temp, pm_addr);
4000
4001 /* Set port link state to U2(L1) */
4002 addr = port_array[port_num];
4003 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
4004
4005 /* wait for ACK */
4006 spin_unlock_irqrestore(&xhci->lock, flags);
4007 msleep(10);
4008 spin_lock_irqsave(&xhci->lock, flags);
4009
4010 /* Check L1 Status */
4011 ret = xhci_handshake(xhci, pm_addr,
4012 PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
4013 if (ret != -ETIMEDOUT) {
4014 /* enter L1 successfully */
4015 temp = xhci_readl(xhci, addr);
4016 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
4017 port_num, temp);
4018 ret = 0;
4019 } else {
4020 temp = xhci_readl(xhci, pm_addr);
4021 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
4022 port_num, temp & PORT_L1S_MASK);
4023 ret = -EINVAL;
4024 }
4025
4026 /* Resume the port */
4027 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
4028
4029 spin_unlock_irqrestore(&xhci->lock, flags);
4030 msleep(10);
4031 spin_lock_irqsave(&xhci->lock, flags);
4032
4033 /* Clear PLC */
4034 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
4035
4036 /* Check PORTSC to make sure the device is in the right state */
4037 if (!ret) {
4038 temp = xhci_readl(xhci, addr);
4039 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
4040 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
4041 (temp & PORT_PLS_MASK) != XDEV_U0) {
4042 xhci_dbg(xhci, "port L1 resume fail\n");
4043 ret = -EINVAL;
4044 }
4045 }
4046
4047 if (ret) {
4048 /* Insert dev to lpm_failed_devs list */
4049 xhci_warn(xhci, "device LPM test failed, may disconnect and "
4050 "re-enumerate\n");
4051 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
4052 if (!dev_info) {
4053 ret = -ENOMEM;
4054 goto finish;
4055 }
4056 dev_info->dev_id = dev_id;
4057 INIT_LIST_HEAD(&dev_info->list);
4058 list_add(&dev_info->list, &xhci->lpm_failed_devs);
4059 } else {
4060 xhci_ring_device(xhci, udev->slot_id);
4061 }
4062
4063 finish:
4064 spin_unlock_irqrestore(&xhci->lock, flags);
4065 return ret;
4066 }
4067
4068 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4069 struct usb_device *udev, int enable)
4070 {
4071 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4072 __le32 __iomem **port_array;
4073 __le32 __iomem *pm_addr, *hlpm_addr;
4074 u32 pm_val, hlpm_val, field;
4075 unsigned int port_num;
4076 unsigned long flags;
4077 int hird, exit_latency;
4078 int ret;
4079
4080 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
4081 !udev->lpm_capable)
4082 return -EPERM;
4083
4084 if (!udev->parent || udev->parent->parent ||
4085 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4086 return -EPERM;
4087
4088 if (udev->usb2_hw_lpm_capable != 1)
4089 return -EPERM;
4090
4091 spin_lock_irqsave(&xhci->lock, flags);
4092
4093 port_array = xhci->usb2_ports;
4094 port_num = udev->portnum - 1;
4095 pm_addr = port_array[port_num] + PORTPMSC;
4096 pm_val = xhci_readl(xhci, pm_addr);
4097 hlpm_addr = port_array[port_num] + PORTHLPMC;
4098 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4099
4100 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4101 enable ? "enable" : "disable", port_num);
4102
4103 if (enable) {
4104 /* Host supports BESL timeout instead of HIRD */
4105 if (udev->usb2_hw_lpm_besl_capable) {
4106 /* if device doesn't have a preferred BESL value use a
4107 * default one which works with mixed HIRD and BESL
4108 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4109 */
4110 if ((field & USB_BESL_SUPPORT) &&
4111 (field & USB_BESL_BASELINE_VALID))
4112 hird = USB_GET_BESL_BASELINE(field);
4113 else
4114 hird = udev->l1_params.besl;
4115
4116 exit_latency = xhci_besl_encoding[hird];
4117 spin_unlock_irqrestore(&xhci->lock, flags);
4118
4119 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4120 * input context for link powermanagement evaluate
4121 * context commands. It is protected by hcd->bandwidth
4122 * mutex and is shared by all devices. We need to set
4123 * the max ext latency in USB 2 BESL LPM as well, so
4124 * use the same mutex and xhci_change_max_exit_latency()
4125 */
4126 mutex_lock(hcd->bandwidth_mutex);
4127 ret = xhci_change_max_exit_latency(xhci, udev,
4128 exit_latency);
4129 mutex_unlock(hcd->bandwidth_mutex);
4130
4131 if (ret < 0)
4132 return ret;
4133 spin_lock_irqsave(&xhci->lock, flags);
4134
4135 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4136 xhci_writel(xhci, hlpm_val, hlpm_addr);
4137 /* flush write */
4138 xhci_readl(xhci, hlpm_addr);
4139 } else {
4140 hird = xhci_calculate_hird_besl(xhci, udev);
4141 }
4142
4143 pm_val &= ~PORT_HIRD_MASK;
4144 pm_val |= PORT_HIRD(hird) | PORT_RWE;
4145 xhci_writel(xhci, pm_val, pm_addr);
4146 pm_val = xhci_readl(xhci, pm_addr);
4147 pm_val |= PORT_HLE;
4148 xhci_writel(xhci, pm_val, pm_addr);
4149 /* flush write */
4150 xhci_readl(xhci, pm_addr);
4151 } else {
4152 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
4153 xhci_writel(xhci, pm_val, pm_addr);
4154 /* flush write */
4155 xhci_readl(xhci, pm_addr);
4156 if (udev->usb2_hw_lpm_besl_capable) {
4157 spin_unlock_irqrestore(&xhci->lock, flags);
4158 mutex_lock(hcd->bandwidth_mutex);
4159 xhci_change_max_exit_latency(xhci, udev, 0);
4160 mutex_unlock(hcd->bandwidth_mutex);
4161 return 0;
4162 }
4163 }
4164
4165 spin_unlock_irqrestore(&xhci->lock, flags);
4166 return 0;
4167 }
4168
4169 /* check if a usb2 port supports a given extened capability protocol
4170 * only USB2 ports extended protocol capability values are cached.
4171 * Return 1 if capability is supported
4172 */
4173 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4174 unsigned capability)
4175 {
4176 u32 port_offset, port_count;
4177 int i;
4178
4179 for (i = 0; i < xhci->num_ext_caps; i++) {
4180 if (xhci->ext_caps[i] & capability) {
4181 /* port offsets starts at 1 */
4182 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4183 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4184 if (port >= port_offset &&
4185 port < port_offset + port_count)
4186 return 1;
4187 }
4188 }
4189 return 0;
4190 }
4191
4192 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4193 {
4194 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4195 int ret;
4196 int portnum = udev->portnum - 1;
4197
4198 ret = xhci_usb2_software_lpm_test(hcd, udev);
4199 if (!ret) {
4200 xhci_dbg(xhci, "software LPM test succeed\n");
4201 if (xhci->hw_lpm_support == 1 &&
4202 xhci_check_usb2_port_capability(xhci, portnum, XHCI_HLC)) {
4203 udev->usb2_hw_lpm_capable = 1;
4204 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4205 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4206 if (xhci_check_usb2_port_capability(xhci, portnum,
4207 XHCI_BLC))
4208 udev->usb2_hw_lpm_besl_capable = 1;
4209 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
4210 if (!ret)
4211 udev->usb2_hw_lpm_enabled = 1;
4212 }
4213 }
4214
4215 return 0;
4216 }
4217
4218 #else
4219
4220 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4221 struct usb_device *udev, int enable)
4222 {
4223 return 0;
4224 }
4225
4226 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4227 {
4228 return 0;
4229 }
4230
4231 #endif /* CONFIG_PM_RUNTIME */
4232
4233 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4234
4235 #ifdef CONFIG_PM
4236 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4237 static unsigned long long xhci_service_interval_to_ns(
4238 struct usb_endpoint_descriptor *desc)
4239 {
4240 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4241 }
4242
4243 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4244 enum usb3_link_state state)
4245 {
4246 unsigned long long sel;
4247 unsigned long long pel;
4248 unsigned int max_sel_pel;
4249 char *state_name;
4250
4251 switch (state) {
4252 case USB3_LPM_U1:
4253 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4254 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4255 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4256 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4257 state_name = "U1";
4258 break;
4259 case USB3_LPM_U2:
4260 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4261 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4262 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4263 state_name = "U2";
4264 break;
4265 default:
4266 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4267 __func__);
4268 return USB3_LPM_DISABLED;
4269 }
4270
4271 if (sel <= max_sel_pel && pel <= max_sel_pel)
4272 return USB3_LPM_DEVICE_INITIATED;
4273
4274 if (sel > max_sel_pel)
4275 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4276 "due to long SEL %llu ms\n",
4277 state_name, sel);
4278 else
4279 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4280 "due to long PEL %llu ms\n",
4281 state_name, pel);
4282 return USB3_LPM_DISABLED;
4283 }
4284
4285 /* Returns the hub-encoded U1 timeout value.
4286 * The U1 timeout should be the maximum of the following values:
4287 * - For control endpoints, U1 system exit latency (SEL) * 3
4288 * - For bulk endpoints, U1 SEL * 5
4289 * - For interrupt endpoints:
4290 * - Notification EPs, U1 SEL * 3
4291 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4292 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4293 */
4294 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4295 struct usb_endpoint_descriptor *desc)
4296 {
4297 unsigned long long timeout_ns;
4298 int ep_type;
4299 int intr_type;
4300
4301 ep_type = usb_endpoint_type(desc);
4302 switch (ep_type) {
4303 case USB_ENDPOINT_XFER_CONTROL:
4304 timeout_ns = udev->u1_params.sel * 3;
4305 break;
4306 case USB_ENDPOINT_XFER_BULK:
4307 timeout_ns = udev->u1_params.sel * 5;
4308 break;
4309 case USB_ENDPOINT_XFER_INT:
4310 intr_type = usb_endpoint_interrupt_type(desc);
4311 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4312 timeout_ns = udev->u1_params.sel * 3;
4313 break;
4314 }
4315 /* Otherwise the calculation is the same as isoc eps */
4316 case USB_ENDPOINT_XFER_ISOC:
4317 timeout_ns = xhci_service_interval_to_ns(desc);
4318 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4319 if (timeout_ns < udev->u1_params.sel * 2)
4320 timeout_ns = udev->u1_params.sel * 2;
4321 break;
4322 default:
4323 return 0;
4324 }
4325
4326 /* The U1 timeout is encoded in 1us intervals. */
4327 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4328 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4329 if (timeout_ns == USB3_LPM_DISABLED)
4330 timeout_ns++;
4331
4332 /* If the necessary timeout value is bigger than what we can set in the
4333 * USB 3.0 hub, we have to disable hub-initiated U1.
4334 */
4335 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4336 return timeout_ns;
4337 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4338 "due to long timeout %llu ms\n", timeout_ns);
4339 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4340 }
4341
4342 /* Returns the hub-encoded U2 timeout value.
4343 * The U2 timeout should be the maximum of:
4344 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4345 * - largest bInterval of any active periodic endpoint (to avoid going
4346 * into lower power link states between intervals).
4347 * - the U2 Exit Latency of the device
4348 */
4349 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4350 struct usb_endpoint_descriptor *desc)
4351 {
4352 unsigned long long timeout_ns;
4353 unsigned long long u2_del_ns;
4354
4355 timeout_ns = 10 * 1000 * 1000;
4356
4357 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4358 (xhci_service_interval_to_ns(desc) > timeout_ns))
4359 timeout_ns = xhci_service_interval_to_ns(desc);
4360
4361 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4362 if (u2_del_ns > timeout_ns)
4363 timeout_ns = u2_del_ns;
4364
4365 /* The U2 timeout is encoded in 256us intervals */
4366 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4367 /* If the necessary timeout value is bigger than what we can set in the
4368 * USB 3.0 hub, we have to disable hub-initiated U2.
4369 */
4370 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4371 return timeout_ns;
4372 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4373 "due to long timeout %llu ms\n", timeout_ns);
4374 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4375 }
4376
4377 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4378 struct usb_device *udev,
4379 struct usb_endpoint_descriptor *desc,
4380 enum usb3_link_state state,
4381 u16 *timeout)
4382 {
4383 if (state == USB3_LPM_U1) {
4384 if (xhci->quirks & XHCI_INTEL_HOST)
4385 return xhci_calculate_intel_u1_timeout(udev, desc);
4386 } else {
4387 if (xhci->quirks & XHCI_INTEL_HOST)
4388 return xhci_calculate_intel_u2_timeout(udev, desc);
4389 }
4390
4391 return USB3_LPM_DISABLED;
4392 }
4393
4394 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4395 struct usb_device *udev,
4396 struct usb_endpoint_descriptor *desc,
4397 enum usb3_link_state state,
4398 u16 *timeout)
4399 {
4400 u16 alt_timeout;
4401
4402 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4403 desc, state, timeout);
4404
4405 /* If we found we can't enable hub-initiated LPM, or
4406 * the U1 or U2 exit latency was too high to allow
4407 * device-initiated LPM as well, just stop searching.
4408 */
4409 if (alt_timeout == USB3_LPM_DISABLED ||
4410 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4411 *timeout = alt_timeout;
4412 return -E2BIG;
4413 }
4414 if (alt_timeout > *timeout)
4415 *timeout = alt_timeout;
4416 return 0;
4417 }
4418
4419 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4420 struct usb_device *udev,
4421 struct usb_host_interface *alt,
4422 enum usb3_link_state state,
4423 u16 *timeout)
4424 {
4425 int j;
4426
4427 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4428 if (xhci_update_timeout_for_endpoint(xhci, udev,
4429 &alt->endpoint[j].desc, state, timeout))
4430 return -E2BIG;
4431 continue;
4432 }
4433 return 0;
4434 }
4435
4436 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4437 enum usb3_link_state state)
4438 {
4439 struct usb_device *parent;
4440 unsigned int num_hubs;
4441
4442 if (state == USB3_LPM_U2)
4443 return 0;
4444
4445 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4446 for (parent = udev->parent, num_hubs = 0; parent->parent;
4447 parent = parent->parent)
4448 num_hubs++;
4449
4450 if (num_hubs < 2)
4451 return 0;
4452
4453 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4454 " below second-tier hub.\n");
4455 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4456 "to decrease power consumption.\n");
4457 return -E2BIG;
4458 }
4459
4460 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4461 struct usb_device *udev,
4462 enum usb3_link_state state)
4463 {
4464 if (xhci->quirks & XHCI_INTEL_HOST)
4465 return xhci_check_intel_tier_policy(udev, state);
4466 return -EINVAL;
4467 }
4468
4469 /* Returns the U1 or U2 timeout that should be enabled.
4470 * If the tier check or timeout setting functions return with a non-zero exit
4471 * code, that means the timeout value has been finalized and we shouldn't look
4472 * at any more endpoints.
4473 */
4474 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4475 struct usb_device *udev, enum usb3_link_state state)
4476 {
4477 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4478 struct usb_host_config *config;
4479 char *state_name;
4480 int i;
4481 u16 timeout = USB3_LPM_DISABLED;
4482
4483 if (state == USB3_LPM_U1)
4484 state_name = "U1";
4485 else if (state == USB3_LPM_U2)
4486 state_name = "U2";
4487 else {
4488 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4489 state);
4490 return timeout;
4491 }
4492
4493 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4494 return timeout;
4495
4496 /* Gather some information about the currently installed configuration
4497 * and alternate interface settings.
4498 */
4499 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4500 state, &timeout))
4501 return timeout;
4502
4503 config = udev->actconfig;
4504 if (!config)
4505 return timeout;
4506
4507 for (i = 0; i < USB_MAXINTERFACES; i++) {
4508 struct usb_driver *driver;
4509 struct usb_interface *intf = config->interface[i];
4510
4511 if (!intf)
4512 continue;
4513
4514 /* Check if any currently bound drivers want hub-initiated LPM
4515 * disabled.
4516 */
4517 if (intf->dev.driver) {
4518 driver = to_usb_driver(intf->dev.driver);
4519 if (driver && driver->disable_hub_initiated_lpm) {
4520 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4521 "at request of driver %s\n",
4522 state_name, driver->name);
4523 return xhci_get_timeout_no_hub_lpm(udev, state);
4524 }
4525 }
4526
4527 /* Not sure how this could happen... */
4528 if (!intf->cur_altsetting)
4529 continue;
4530
4531 if (xhci_update_timeout_for_interface(xhci, udev,
4532 intf->cur_altsetting,
4533 state, &timeout))
4534 return timeout;
4535 }
4536 return timeout;
4537 }
4538
4539 static int calculate_max_exit_latency(struct usb_device *udev,
4540 enum usb3_link_state state_changed,
4541 u16 hub_encoded_timeout)
4542 {
4543 unsigned long long u1_mel_us = 0;
4544 unsigned long long u2_mel_us = 0;
4545 unsigned long long mel_us = 0;
4546 bool disabling_u1;
4547 bool disabling_u2;
4548 bool enabling_u1;
4549 bool enabling_u2;
4550
4551 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4552 hub_encoded_timeout == USB3_LPM_DISABLED);
4553 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4554 hub_encoded_timeout == USB3_LPM_DISABLED);
4555
4556 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4557 hub_encoded_timeout != USB3_LPM_DISABLED);
4558 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4559 hub_encoded_timeout != USB3_LPM_DISABLED);
4560
4561 /* If U1 was already enabled and we're not disabling it,
4562 * or we're going to enable U1, account for the U1 max exit latency.
4563 */
4564 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4565 enabling_u1)
4566 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4567 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4568 enabling_u2)
4569 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4570
4571 if (u1_mel_us > u2_mel_us)
4572 mel_us = u1_mel_us;
4573 else
4574 mel_us = u2_mel_us;
4575 /* xHCI host controller max exit latency field is only 16 bits wide. */
4576 if (mel_us > MAX_EXIT) {
4577 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4578 "is too big.\n", mel_us);
4579 return -E2BIG;
4580 }
4581 return mel_us;
4582 }
4583
4584 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4585 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4586 struct usb_device *udev, enum usb3_link_state state)
4587 {
4588 struct xhci_hcd *xhci;
4589 u16 hub_encoded_timeout;
4590 int mel;
4591 int ret;
4592
4593 xhci = hcd_to_xhci(hcd);
4594 /* The LPM timeout values are pretty host-controller specific, so don't
4595 * enable hub-initiated timeouts unless the vendor has provided
4596 * information about their timeout algorithm.
4597 */
4598 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4599 !xhci->devs[udev->slot_id])
4600 return USB3_LPM_DISABLED;
4601
4602 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4603 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4604 if (mel < 0) {
4605 /* Max Exit Latency is too big, disable LPM. */
4606 hub_encoded_timeout = USB3_LPM_DISABLED;
4607 mel = 0;
4608 }
4609
4610 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4611 if (ret)
4612 return ret;
4613 return hub_encoded_timeout;
4614 }
4615
4616 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4617 struct usb_device *udev, enum usb3_link_state state)
4618 {
4619 struct xhci_hcd *xhci;
4620 u16 mel;
4621 int ret;
4622
4623 xhci = hcd_to_xhci(hcd);
4624 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4625 !xhci->devs[udev->slot_id])
4626 return 0;
4627
4628 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4629 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4630 if (ret)
4631 return ret;
4632 return 0;
4633 }
4634 #else /* CONFIG_PM */
4635
4636 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4637 struct usb_device *udev, enum usb3_link_state state)
4638 {
4639 return USB3_LPM_DISABLED;
4640 }
4641
4642 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4643 struct usb_device *udev, enum usb3_link_state state)
4644 {
4645 return 0;
4646 }
4647 #endif /* CONFIG_PM */
4648
4649 /*-------------------------------------------------------------------------*/
4650
4651 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4652 * internal data structures for the device.
4653 */
4654 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4655 struct usb_tt *tt, gfp_t mem_flags)
4656 {
4657 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4658 struct xhci_virt_device *vdev;
4659 struct xhci_command *config_cmd;
4660 struct xhci_input_control_ctx *ctrl_ctx;
4661 struct xhci_slot_ctx *slot_ctx;
4662 unsigned long flags;
4663 unsigned think_time;
4664 int ret;
4665
4666 /* Ignore root hubs */
4667 if (!hdev->parent)
4668 return 0;
4669
4670 vdev = xhci->devs[hdev->slot_id];
4671 if (!vdev) {
4672 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4673 return -EINVAL;
4674 }
4675 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4676 if (!config_cmd) {
4677 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4678 return -ENOMEM;
4679 }
4680 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4681 if (!ctrl_ctx) {
4682 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4683 __func__);
4684 xhci_free_command(xhci, config_cmd);
4685 return -ENOMEM;
4686 }
4687
4688 spin_lock_irqsave(&xhci->lock, flags);
4689 if (hdev->speed == USB_SPEED_HIGH &&
4690 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4691 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4692 xhci_free_command(xhci, config_cmd);
4693 spin_unlock_irqrestore(&xhci->lock, flags);
4694 return -ENOMEM;
4695 }
4696
4697 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4698 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4699 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4700 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4701 if (tt->multi)
4702 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4703 if (xhci->hci_version > 0x95) {
4704 xhci_dbg(xhci, "xHCI version %x needs hub "
4705 "TT think time and number of ports\n",
4706 (unsigned int) xhci->hci_version);
4707 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4708 /* Set TT think time - convert from ns to FS bit times.
4709 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4710 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4711 *
4712 * xHCI 1.0: this field shall be 0 if the device is not a
4713 * High-spped hub.
4714 */
4715 think_time = tt->think_time;
4716 if (think_time != 0)
4717 think_time = (think_time / 666) - 1;
4718 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4719 slot_ctx->tt_info |=
4720 cpu_to_le32(TT_THINK_TIME(think_time));
4721 } else {
4722 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4723 "TT think time or number of ports\n",
4724 (unsigned int) xhci->hci_version);
4725 }
4726 slot_ctx->dev_state = 0;
4727 spin_unlock_irqrestore(&xhci->lock, flags);
4728
4729 xhci_dbg(xhci, "Set up %s for hub device.\n",
4730 (xhci->hci_version > 0x95) ?
4731 "configure endpoint" : "evaluate context");
4732 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4733 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4734
4735 /* Issue and wait for the configure endpoint or
4736 * evaluate context command.
4737 */
4738 if (xhci->hci_version > 0x95)
4739 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4740 false, false);
4741 else
4742 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4743 true, false);
4744
4745 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4746 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4747
4748 xhci_free_command(xhci, config_cmd);
4749 return ret;
4750 }
4751
4752 int xhci_get_frame(struct usb_hcd *hcd)
4753 {
4754 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4755 /* EHCI mods by the periodic size. Why? */
4756 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4757 }
4758
4759 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4760 {
4761 struct xhci_hcd *xhci;
4762 struct device *dev = hcd->self.controller;
4763 int retval;
4764 u32 temp;
4765
4766 /* Accept arbitrarily long scatter-gather lists */
4767 hcd->self.sg_tablesize = ~0;
4768 /* XHCI controllers don't stop the ep queue on short packets :| */
4769 hcd->self.no_stop_on_short = 1;
4770
4771 if (usb_hcd_is_primary_hcd(hcd)) {
4772 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4773 if (!xhci)
4774 return -ENOMEM;
4775 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4776 xhci->main_hcd = hcd;
4777 /* Mark the first roothub as being USB 2.0.
4778 * The xHCI driver will register the USB 3.0 roothub.
4779 */
4780 hcd->speed = HCD_USB2;
4781 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4782 /*
4783 * USB 2.0 roothub under xHCI has an integrated TT,
4784 * (rate matching hub) as opposed to having an OHCI/UHCI
4785 * companion controller.
4786 */
4787 hcd->has_tt = 1;
4788 } else {
4789 /* xHCI private pointer was set in xhci_pci_probe for the second
4790 * registered roothub.
4791 */
4792 xhci = hcd_to_xhci(hcd);
4793 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4794 if (HCC_64BIT_ADDR(temp)) {
4795 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4796 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4797 } else {
4798 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4799 }
4800 return 0;
4801 }
4802
4803 xhci->cap_regs = hcd->regs;
4804 xhci->op_regs = hcd->regs +
4805 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4806 xhci->run_regs = hcd->regs +
4807 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4808 /* Cache read-only capability registers */
4809 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4810 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4811 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4812 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4813 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4814 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4815 xhci_print_registers(xhci);
4816
4817 get_quirks(dev, xhci);
4818
4819 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4820 * success event after a short transfer. This quirk will ignore such
4821 * spurious event.
4822 */
4823 if (xhci->hci_version > 0x96)
4824 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4825
4826 /* Make sure the HC is halted. */
4827 retval = xhci_halt(xhci);
4828 if (retval)
4829 goto error;
4830
4831 xhci_dbg(xhci, "Resetting HCD\n");
4832 /* Reset the internal HC memory state and registers. */
4833 retval = xhci_reset(xhci);
4834 if (retval)
4835 goto error;
4836 xhci_dbg(xhci, "Reset complete\n");
4837
4838 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4839 if (HCC_64BIT_ADDR(temp)) {
4840 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4841 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4842 } else {
4843 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4844 }
4845
4846 xhci_dbg(xhci, "Calling HCD init\n");
4847 /* Initialize HCD and host controller data structures. */
4848 retval = xhci_init(hcd);
4849 if (retval)
4850 goto error;
4851 xhci_dbg(xhci, "Called HCD init\n");
4852 return 0;
4853 error:
4854 kfree(xhci);
4855 return retval;
4856 }
4857
4858 MODULE_DESCRIPTION(DRIVER_DESC);
4859 MODULE_AUTHOR(DRIVER_AUTHOR);
4860 MODULE_LICENSE("GPL");
4861
4862 static int __init xhci_hcd_init(void)
4863 {
4864 int retval;
4865
4866 retval = xhci_register_pci();
4867 if (retval < 0) {
4868 pr_debug("Problem registering PCI driver.\n");
4869 return retval;
4870 }
4871 retval = xhci_register_plat();
4872 if (retval < 0) {
4873 pr_debug("Problem registering platform driver.\n");
4874 goto unreg_pci;
4875 }
4876 /*
4877 * Check the compiler generated sizes of structures that must be laid
4878 * out in specific ways for hardware access.
4879 */
4880 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4881 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4882 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4883 /* xhci_device_control has eight fields, and also
4884 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4885 */
4886 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4887 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4888 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4889 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4890 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4891 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4892 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4893 return 0;
4894 unreg_pci:
4895 xhci_unregister_pci();
4896 return retval;
4897 }
4898 module_init(xhci_hcd_init);
4899
4900 static void __exit xhci_hcd_cleanup(void)
4901 {
4902 xhci_unregister_pci();
4903 xhci_unregister_plat();
4904 }
4905 module_exit(xhci_hcd_cleanup);
This page took 0.143561 seconds and 5 git commands to generate.