Merge branch 'for-airlied' of git://people.freedesktop.org/~danvet/drm-intel into...
[deliverable/linux.git] / drivers / usb / host / xhci.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29
30 #include "xhci.h"
31
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42 * handshake - spin reading hc until handshake completes or fails
43 * @ptr: address of hc register to be read
44 * @mask: bits to look at in result of read
45 * @done: value of those bits when handshake succeeds
46 * @usec: timeout in microseconds
47 *
48 * Returns negative errno, or zero on success
49 *
50 * Success happens when the "mask" bits have the specified value (hardware
51 * handshake done). There are two failure modes: "usec" have passed (major
52 * hardware flakeout), or the register reads as all-ones (hardware removed).
53 */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55 u32 mask, u32 done, int usec)
56 {
57 u32 result;
58
59 do {
60 result = xhci_readl(xhci, ptr);
61 if (result == ~(u32)0) /* card removed */
62 return -ENODEV;
63 result &= mask;
64 if (result == done)
65 return 0;
66 udelay(1);
67 usec--;
68 } while (usec > 0);
69 return -ETIMEDOUT;
70 }
71
72 /*
73 * Disable interrupts and begin the xHCI halting process.
74 */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77 u32 halted;
78 u32 cmd;
79 u32 mask;
80
81 mask = ~(XHCI_IRQS);
82 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83 if (!halted)
84 mask &= ~CMD_RUN;
85
86 cmd = xhci_readl(xhci, &xhci->op_regs->command);
87 cmd &= mask;
88 xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90
91 /*
92 * Force HC into halt state.
93 *
94 * Disable any IRQs and clear the run/stop bit.
95 * HC will complete any current and actively pipelined transactions, and
96 * should halt within 16 ms of the run/stop bit being cleared.
97 * Read HC Halted bit in the status register to see when the HC is finished.
98 */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101 int ret;
102 xhci_dbg(xhci, "// Halt the HC\n");
103 xhci_quiesce(xhci);
104
105 ret = handshake(xhci, &xhci->op_regs->status,
106 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107 if (!ret)
108 xhci->xhc_state |= XHCI_STATE_HALTED;
109 else
110 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
111 XHCI_MAX_HALT_USEC);
112 return ret;
113 }
114
115 /*
116 * Set the run bit and wait for the host to be running.
117 */
118 static int xhci_start(struct xhci_hcd *xhci)
119 {
120 u32 temp;
121 int ret;
122
123 temp = xhci_readl(xhci, &xhci->op_regs->command);
124 temp |= (CMD_RUN);
125 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
126 temp);
127 xhci_writel(xhci, temp, &xhci->op_regs->command);
128
129 /*
130 * Wait for the HCHalted Status bit to be 0 to indicate the host is
131 * running.
132 */
133 ret = handshake(xhci, &xhci->op_regs->status,
134 STS_HALT, 0, XHCI_MAX_HALT_USEC);
135 if (ret == -ETIMEDOUT)
136 xhci_err(xhci, "Host took too long to start, "
137 "waited %u microseconds.\n",
138 XHCI_MAX_HALT_USEC);
139 if (!ret)
140 xhci->xhc_state &= ~XHCI_STATE_HALTED;
141 return ret;
142 }
143
144 /*
145 * Reset a halted HC.
146 *
147 * This resets pipelines, timers, counters, state machines, etc.
148 * Transactions will be terminated immediately, and operational registers
149 * will be set to their defaults.
150 */
151 int xhci_reset(struct xhci_hcd *xhci)
152 {
153 u32 command;
154 u32 state;
155 int ret, i;
156
157 state = xhci_readl(xhci, &xhci->op_regs->status);
158 if ((state & STS_HALT) == 0) {
159 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
160 return 0;
161 }
162
163 xhci_dbg(xhci, "// Reset the HC\n");
164 command = xhci_readl(xhci, &xhci->op_regs->command);
165 command |= CMD_RESET;
166 xhci_writel(xhci, command, &xhci->op_regs->command);
167
168 ret = handshake(xhci, &xhci->op_regs->command,
169 CMD_RESET, 0, 10 * 1000 * 1000);
170 if (ret)
171 return ret;
172
173 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
174 /*
175 * xHCI cannot write to any doorbells or operational registers other
176 * than status until the "Controller Not Ready" flag is cleared.
177 */
178 ret = handshake(xhci, &xhci->op_regs->status,
179 STS_CNR, 0, 10 * 1000 * 1000);
180
181 for (i = 0; i < 2; ++i) {
182 xhci->bus_state[i].port_c_suspend = 0;
183 xhci->bus_state[i].suspended_ports = 0;
184 xhci->bus_state[i].resuming_ports = 0;
185 }
186
187 return ret;
188 }
189
190 #ifdef CONFIG_PCI
191 static int xhci_free_msi(struct xhci_hcd *xhci)
192 {
193 int i;
194
195 if (!xhci->msix_entries)
196 return -EINVAL;
197
198 for (i = 0; i < xhci->msix_count; i++)
199 if (xhci->msix_entries[i].vector)
200 free_irq(xhci->msix_entries[i].vector,
201 xhci_to_hcd(xhci));
202 return 0;
203 }
204
205 /*
206 * Set up MSI
207 */
208 static int xhci_setup_msi(struct xhci_hcd *xhci)
209 {
210 int ret;
211 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
212
213 ret = pci_enable_msi(pdev);
214 if (ret) {
215 xhci_dbg(xhci, "failed to allocate MSI entry\n");
216 return ret;
217 }
218
219 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
220 0, "xhci_hcd", xhci_to_hcd(xhci));
221 if (ret) {
222 xhci_dbg(xhci, "disable MSI interrupt\n");
223 pci_disable_msi(pdev);
224 }
225
226 return ret;
227 }
228
229 /*
230 * Free IRQs
231 * free all IRQs request
232 */
233 static void xhci_free_irq(struct xhci_hcd *xhci)
234 {
235 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
236 int ret;
237
238 /* return if using legacy interrupt */
239 if (xhci_to_hcd(xhci)->irq > 0)
240 return;
241
242 ret = xhci_free_msi(xhci);
243 if (!ret)
244 return;
245 if (pdev->irq > 0)
246 free_irq(pdev->irq, xhci_to_hcd(xhci));
247
248 return;
249 }
250
251 /*
252 * Set up MSI-X
253 */
254 static int xhci_setup_msix(struct xhci_hcd *xhci)
255 {
256 int i, ret = 0;
257 struct usb_hcd *hcd = xhci_to_hcd(xhci);
258 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
259
260 /*
261 * calculate number of msi-x vectors supported.
262 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
263 * with max number of interrupters based on the xhci HCSPARAMS1.
264 * - num_online_cpus: maximum msi-x vectors per CPUs core.
265 * Add additional 1 vector to ensure always available interrupt.
266 */
267 xhci->msix_count = min(num_online_cpus() + 1,
268 HCS_MAX_INTRS(xhci->hcs_params1));
269
270 xhci->msix_entries =
271 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
272 GFP_KERNEL);
273 if (!xhci->msix_entries) {
274 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
275 return -ENOMEM;
276 }
277
278 for (i = 0; i < xhci->msix_count; i++) {
279 xhci->msix_entries[i].entry = i;
280 xhci->msix_entries[i].vector = 0;
281 }
282
283 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
284 if (ret) {
285 xhci_dbg(xhci, "Failed to enable MSI-X\n");
286 goto free_entries;
287 }
288
289 for (i = 0; i < xhci->msix_count; i++) {
290 ret = request_irq(xhci->msix_entries[i].vector,
291 (irq_handler_t)xhci_msi_irq,
292 0, "xhci_hcd", xhci_to_hcd(xhci));
293 if (ret)
294 goto disable_msix;
295 }
296
297 hcd->msix_enabled = 1;
298 return ret;
299
300 disable_msix:
301 xhci_dbg(xhci, "disable MSI-X interrupt\n");
302 xhci_free_irq(xhci);
303 pci_disable_msix(pdev);
304 free_entries:
305 kfree(xhci->msix_entries);
306 xhci->msix_entries = NULL;
307 return ret;
308 }
309
310 /* Free any IRQs and disable MSI-X */
311 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
312 {
313 struct usb_hcd *hcd = xhci_to_hcd(xhci);
314 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
315
316 xhci_free_irq(xhci);
317
318 if (xhci->msix_entries) {
319 pci_disable_msix(pdev);
320 kfree(xhci->msix_entries);
321 xhci->msix_entries = NULL;
322 } else {
323 pci_disable_msi(pdev);
324 }
325
326 hcd->msix_enabled = 0;
327 return;
328 }
329
330 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
331 {
332 int i;
333
334 if (xhci->msix_entries) {
335 for (i = 0; i < xhci->msix_count; i++)
336 synchronize_irq(xhci->msix_entries[i].vector);
337 }
338 }
339
340 static int xhci_try_enable_msi(struct usb_hcd *hcd)
341 {
342 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
343 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
344 int ret;
345
346 /*
347 * Some Fresco Logic host controllers advertise MSI, but fail to
348 * generate interrupts. Don't even try to enable MSI.
349 */
350 if (xhci->quirks & XHCI_BROKEN_MSI)
351 return 0;
352
353 /* unregister the legacy interrupt */
354 if (hcd->irq)
355 free_irq(hcd->irq, hcd);
356 hcd->irq = 0;
357
358 ret = xhci_setup_msix(xhci);
359 if (ret)
360 /* fall back to msi*/
361 ret = xhci_setup_msi(xhci);
362
363 if (!ret)
364 /* hcd->irq is 0, we have MSI */
365 return 0;
366
367 if (!pdev->irq) {
368 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
369 return -EINVAL;
370 }
371
372 /* fall back to legacy interrupt*/
373 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
374 hcd->irq_descr, hcd);
375 if (ret) {
376 xhci_err(xhci, "request interrupt %d failed\n",
377 pdev->irq);
378 return ret;
379 }
380 hcd->irq = pdev->irq;
381 return 0;
382 }
383
384 #else
385
386 static int xhci_try_enable_msi(struct usb_hcd *hcd)
387 {
388 return 0;
389 }
390
391 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
392 {
393 }
394
395 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
396 {
397 }
398
399 #endif
400
401 /*
402 * Initialize memory for HCD and xHC (one-time init).
403 *
404 * Program the PAGESIZE register, initialize the device context array, create
405 * device contexts (?), set up a command ring segment (or two?), create event
406 * ring (one for now).
407 */
408 int xhci_init(struct usb_hcd *hcd)
409 {
410 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
411 int retval = 0;
412
413 xhci_dbg(xhci, "xhci_init\n");
414 spin_lock_init(&xhci->lock);
415 if (xhci->hci_version == 0x95 && link_quirk) {
416 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
417 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
418 } else {
419 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
420 }
421 retval = xhci_mem_init(xhci, GFP_KERNEL);
422 xhci_dbg(xhci, "Finished xhci_init\n");
423
424 return retval;
425 }
426
427 /*-------------------------------------------------------------------------*/
428
429
430 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
431 static void xhci_event_ring_work(unsigned long arg)
432 {
433 unsigned long flags;
434 int temp;
435 u64 temp_64;
436 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
437 int i, j;
438
439 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
440
441 spin_lock_irqsave(&xhci->lock, flags);
442 temp = xhci_readl(xhci, &xhci->op_regs->status);
443 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
444 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
445 (xhci->xhc_state & XHCI_STATE_HALTED)) {
446 xhci_dbg(xhci, "HW died, polling stopped.\n");
447 spin_unlock_irqrestore(&xhci->lock, flags);
448 return;
449 }
450
451 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
452 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
453 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
454 xhci->error_bitmask = 0;
455 xhci_dbg(xhci, "Event ring:\n");
456 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
457 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
458 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
459 temp_64 &= ~ERST_PTR_MASK;
460 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
461 xhci_dbg(xhci, "Command ring:\n");
462 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
463 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
464 xhci_dbg_cmd_ptrs(xhci);
465 for (i = 0; i < MAX_HC_SLOTS; ++i) {
466 if (!xhci->devs[i])
467 continue;
468 for (j = 0; j < 31; ++j) {
469 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
470 }
471 }
472 spin_unlock_irqrestore(&xhci->lock, flags);
473
474 if (!xhci->zombie)
475 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
476 else
477 xhci_dbg(xhci, "Quit polling the event ring.\n");
478 }
479 #endif
480
481 static int xhci_run_finished(struct xhci_hcd *xhci)
482 {
483 if (xhci_start(xhci)) {
484 xhci_halt(xhci);
485 return -ENODEV;
486 }
487 xhci->shared_hcd->state = HC_STATE_RUNNING;
488
489 if (xhci->quirks & XHCI_NEC_HOST)
490 xhci_ring_cmd_db(xhci);
491
492 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
493 return 0;
494 }
495
496 /*
497 * Start the HC after it was halted.
498 *
499 * This function is called by the USB core when the HC driver is added.
500 * Its opposite is xhci_stop().
501 *
502 * xhci_init() must be called once before this function can be called.
503 * Reset the HC, enable device slot contexts, program DCBAAP, and
504 * set command ring pointer and event ring pointer.
505 *
506 * Setup MSI-X vectors and enable interrupts.
507 */
508 int xhci_run(struct usb_hcd *hcd)
509 {
510 u32 temp;
511 u64 temp_64;
512 int ret;
513 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
514
515 /* Start the xHCI host controller running only after the USB 2.0 roothub
516 * is setup.
517 */
518
519 hcd->uses_new_polling = 1;
520 if (!usb_hcd_is_primary_hcd(hcd))
521 return xhci_run_finished(xhci);
522
523 xhci_dbg(xhci, "xhci_run\n");
524
525 ret = xhci_try_enable_msi(hcd);
526 if (ret)
527 return ret;
528
529 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
530 init_timer(&xhci->event_ring_timer);
531 xhci->event_ring_timer.data = (unsigned long) xhci;
532 xhci->event_ring_timer.function = xhci_event_ring_work;
533 /* Poll the event ring */
534 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
535 xhci->zombie = 0;
536 xhci_dbg(xhci, "Setting event ring polling timer\n");
537 add_timer(&xhci->event_ring_timer);
538 #endif
539
540 xhci_dbg(xhci, "Command ring memory map follows:\n");
541 xhci_debug_ring(xhci, xhci->cmd_ring);
542 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
543 xhci_dbg_cmd_ptrs(xhci);
544
545 xhci_dbg(xhci, "ERST memory map follows:\n");
546 xhci_dbg_erst(xhci, &xhci->erst);
547 xhci_dbg(xhci, "Event ring:\n");
548 xhci_debug_ring(xhci, xhci->event_ring);
549 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
550 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
551 temp_64 &= ~ERST_PTR_MASK;
552 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
553
554 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
555 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
556 temp &= ~ER_IRQ_INTERVAL_MASK;
557 temp |= (u32) 160;
558 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
559
560 /* Set the HCD state before we enable the irqs */
561 temp = xhci_readl(xhci, &xhci->op_regs->command);
562 temp |= (CMD_EIE);
563 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
564 temp);
565 xhci_writel(xhci, temp, &xhci->op_regs->command);
566
567 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
568 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
569 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
570 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
571 &xhci->ir_set->irq_pending);
572 xhci_print_ir_set(xhci, 0);
573
574 if (xhci->quirks & XHCI_NEC_HOST)
575 xhci_queue_vendor_command(xhci, 0, 0, 0,
576 TRB_TYPE(TRB_NEC_GET_FW));
577
578 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
579 return 0;
580 }
581
582 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
583 {
584 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
585
586 spin_lock_irq(&xhci->lock);
587 xhci_halt(xhci);
588
589 /* The shared_hcd is going to be deallocated shortly (the USB core only
590 * calls this function when allocation fails in usb_add_hcd(), or
591 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
592 */
593 xhci->shared_hcd = NULL;
594 spin_unlock_irq(&xhci->lock);
595 }
596
597 /*
598 * Stop xHCI driver.
599 *
600 * This function is called by the USB core when the HC driver is removed.
601 * Its opposite is xhci_run().
602 *
603 * Disable device contexts, disable IRQs, and quiesce the HC.
604 * Reset the HC, finish any completed transactions, and cleanup memory.
605 */
606 void xhci_stop(struct usb_hcd *hcd)
607 {
608 u32 temp;
609 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
610
611 if (!usb_hcd_is_primary_hcd(hcd)) {
612 xhci_only_stop_hcd(xhci->shared_hcd);
613 return;
614 }
615
616 spin_lock_irq(&xhci->lock);
617 /* Make sure the xHC is halted for a USB3 roothub
618 * (xhci_stop() could be called as part of failed init).
619 */
620 xhci_halt(xhci);
621 xhci_reset(xhci);
622 spin_unlock_irq(&xhci->lock);
623
624 xhci_cleanup_msix(xhci);
625
626 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
627 /* Tell the event ring poll function not to reschedule */
628 xhci->zombie = 1;
629 del_timer_sync(&xhci->event_ring_timer);
630 #endif
631
632 if (xhci->quirks & XHCI_AMD_PLL_FIX)
633 usb_amd_dev_put();
634
635 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
636 temp = xhci_readl(xhci, &xhci->op_regs->status);
637 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
638 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
639 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
640 &xhci->ir_set->irq_pending);
641 xhci_print_ir_set(xhci, 0);
642
643 xhci_dbg(xhci, "cleaning up memory\n");
644 xhci_mem_cleanup(xhci);
645 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
646 xhci_readl(xhci, &xhci->op_regs->status));
647 }
648
649 /*
650 * Shutdown HC (not bus-specific)
651 *
652 * This is called when the machine is rebooting or halting. We assume that the
653 * machine will be powered off, and the HC's internal state will be reset.
654 * Don't bother to free memory.
655 *
656 * This will only ever be called with the main usb_hcd (the USB3 roothub).
657 */
658 void xhci_shutdown(struct usb_hcd *hcd)
659 {
660 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
661
662 if (xhci->quirks && XHCI_SPURIOUS_REBOOT)
663 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
664
665 spin_lock_irq(&xhci->lock);
666 xhci_halt(xhci);
667 spin_unlock_irq(&xhci->lock);
668
669 xhci_cleanup_msix(xhci);
670
671 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
672 xhci_readl(xhci, &xhci->op_regs->status));
673 }
674
675 #ifdef CONFIG_PM
676 static void xhci_save_registers(struct xhci_hcd *xhci)
677 {
678 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
679 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
680 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
681 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
682 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
683 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
684 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
685 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
686 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
687 }
688
689 static void xhci_restore_registers(struct xhci_hcd *xhci)
690 {
691 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
692 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
693 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
694 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
695 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
696 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
697 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
698 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
699 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
700 }
701
702 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
703 {
704 u64 val_64;
705
706 /* step 2: initialize command ring buffer */
707 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
708 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
709 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
710 xhci->cmd_ring->dequeue) &
711 (u64) ~CMD_RING_RSVD_BITS) |
712 xhci->cmd_ring->cycle_state;
713 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
714 (long unsigned long) val_64);
715 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
716 }
717
718 /*
719 * The whole command ring must be cleared to zero when we suspend the host.
720 *
721 * The host doesn't save the command ring pointer in the suspend well, so we
722 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
723 * aligned, because of the reserved bits in the command ring dequeue pointer
724 * register. Therefore, we can't just set the dequeue pointer back in the
725 * middle of the ring (TRBs are 16-byte aligned).
726 */
727 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
728 {
729 struct xhci_ring *ring;
730 struct xhci_segment *seg;
731
732 ring = xhci->cmd_ring;
733 seg = ring->deq_seg;
734 do {
735 memset(seg->trbs, 0,
736 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
737 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
738 cpu_to_le32(~TRB_CYCLE);
739 seg = seg->next;
740 } while (seg != ring->deq_seg);
741
742 /* Reset the software enqueue and dequeue pointers */
743 ring->deq_seg = ring->first_seg;
744 ring->dequeue = ring->first_seg->trbs;
745 ring->enq_seg = ring->deq_seg;
746 ring->enqueue = ring->dequeue;
747
748 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
749 /*
750 * Ring is now zeroed, so the HW should look for change of ownership
751 * when the cycle bit is set to 1.
752 */
753 ring->cycle_state = 1;
754
755 /*
756 * Reset the hardware dequeue pointer.
757 * Yes, this will need to be re-written after resume, but we're paranoid
758 * and want to make sure the hardware doesn't access bogus memory
759 * because, say, the BIOS or an SMI started the host without changing
760 * the command ring pointers.
761 */
762 xhci_set_cmd_ring_deq(xhci);
763 }
764
765 /*
766 * Stop HC (not bus-specific)
767 *
768 * This is called when the machine transition into S3/S4 mode.
769 *
770 */
771 int xhci_suspend(struct xhci_hcd *xhci)
772 {
773 int rc = 0;
774 struct usb_hcd *hcd = xhci_to_hcd(xhci);
775 u32 command;
776
777 spin_lock_irq(&xhci->lock);
778 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
779 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
780 /* step 1: stop endpoint */
781 /* skipped assuming that port suspend has done */
782
783 /* step 2: clear Run/Stop bit */
784 command = xhci_readl(xhci, &xhci->op_regs->command);
785 command &= ~CMD_RUN;
786 xhci_writel(xhci, command, &xhci->op_regs->command);
787 if (handshake(xhci, &xhci->op_regs->status,
788 STS_HALT, STS_HALT, 100*100)) {
789 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
790 spin_unlock_irq(&xhci->lock);
791 return -ETIMEDOUT;
792 }
793 xhci_clear_command_ring(xhci);
794
795 /* step 3: save registers */
796 xhci_save_registers(xhci);
797
798 /* step 4: set CSS flag */
799 command = xhci_readl(xhci, &xhci->op_regs->command);
800 command |= CMD_CSS;
801 xhci_writel(xhci, command, &xhci->op_regs->command);
802 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
803 xhci_warn(xhci, "WARN: xHC save state timeout\n");
804 spin_unlock_irq(&xhci->lock);
805 return -ETIMEDOUT;
806 }
807 spin_unlock_irq(&xhci->lock);
808
809 /* step 5: remove core well power */
810 /* synchronize irq when using MSI-X */
811 xhci_msix_sync_irqs(xhci);
812
813 return rc;
814 }
815
816 /*
817 * start xHC (not bus-specific)
818 *
819 * This is called when the machine transition from S3/S4 mode.
820 *
821 */
822 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
823 {
824 u32 command, temp = 0;
825 struct usb_hcd *hcd = xhci_to_hcd(xhci);
826 struct usb_hcd *secondary_hcd;
827 int retval = 0;
828
829 /* Wait a bit if either of the roothubs need to settle from the
830 * transition into bus suspend.
831 */
832 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
833 time_before(jiffies,
834 xhci->bus_state[1].next_statechange))
835 msleep(100);
836
837 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
838 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
839
840 spin_lock_irq(&xhci->lock);
841 if (xhci->quirks & XHCI_RESET_ON_RESUME)
842 hibernated = true;
843
844 if (!hibernated) {
845 /* step 1: restore register */
846 xhci_restore_registers(xhci);
847 /* step 2: initialize command ring buffer */
848 xhci_set_cmd_ring_deq(xhci);
849 /* step 3: restore state and start state*/
850 /* step 3: set CRS flag */
851 command = xhci_readl(xhci, &xhci->op_regs->command);
852 command |= CMD_CRS;
853 xhci_writel(xhci, command, &xhci->op_regs->command);
854 if (handshake(xhci, &xhci->op_regs->status,
855 STS_RESTORE, 0, 10 * 1000)) {
856 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
857 spin_unlock_irq(&xhci->lock);
858 return -ETIMEDOUT;
859 }
860 temp = xhci_readl(xhci, &xhci->op_regs->status);
861 }
862
863 /* If restore operation fails, re-initialize the HC during resume */
864 if ((temp & STS_SRE) || hibernated) {
865 /* Let the USB core know _both_ roothubs lost power. */
866 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
867 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
868
869 xhci_dbg(xhci, "Stop HCD\n");
870 xhci_halt(xhci);
871 xhci_reset(xhci);
872 spin_unlock_irq(&xhci->lock);
873 xhci_cleanup_msix(xhci);
874
875 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
876 /* Tell the event ring poll function not to reschedule */
877 xhci->zombie = 1;
878 del_timer_sync(&xhci->event_ring_timer);
879 #endif
880
881 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
882 temp = xhci_readl(xhci, &xhci->op_regs->status);
883 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
884 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
885 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
886 &xhci->ir_set->irq_pending);
887 xhci_print_ir_set(xhci, 0);
888
889 xhci_dbg(xhci, "cleaning up memory\n");
890 xhci_mem_cleanup(xhci);
891 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
892 xhci_readl(xhci, &xhci->op_regs->status));
893
894 /* USB core calls the PCI reinit and start functions twice:
895 * first with the primary HCD, and then with the secondary HCD.
896 * If we don't do the same, the host will never be started.
897 */
898 if (!usb_hcd_is_primary_hcd(hcd))
899 secondary_hcd = hcd;
900 else
901 secondary_hcd = xhci->shared_hcd;
902
903 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
904 retval = xhci_init(hcd->primary_hcd);
905 if (retval)
906 return retval;
907 xhci_dbg(xhci, "Start the primary HCD\n");
908 retval = xhci_run(hcd->primary_hcd);
909 if (!retval) {
910 xhci_dbg(xhci, "Start the secondary HCD\n");
911 retval = xhci_run(secondary_hcd);
912 }
913 hcd->state = HC_STATE_SUSPENDED;
914 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
915 goto done;
916 }
917
918 /* step 4: set Run/Stop bit */
919 command = xhci_readl(xhci, &xhci->op_regs->command);
920 command |= CMD_RUN;
921 xhci_writel(xhci, command, &xhci->op_regs->command);
922 handshake(xhci, &xhci->op_regs->status, STS_HALT,
923 0, 250 * 1000);
924
925 /* step 5: walk topology and initialize portsc,
926 * portpmsc and portli
927 */
928 /* this is done in bus_resume */
929
930 /* step 6: restart each of the previously
931 * Running endpoints by ringing their doorbells
932 */
933
934 spin_unlock_irq(&xhci->lock);
935
936 done:
937 if (retval == 0) {
938 usb_hcd_resume_root_hub(hcd);
939 usb_hcd_resume_root_hub(xhci->shared_hcd);
940 }
941 return retval;
942 }
943 #endif /* CONFIG_PM */
944
945 /*-------------------------------------------------------------------------*/
946
947 /**
948 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
949 * HCDs. Find the index for an endpoint given its descriptor. Use the return
950 * value to right shift 1 for the bitmask.
951 *
952 * Index = (epnum * 2) + direction - 1,
953 * where direction = 0 for OUT, 1 for IN.
954 * For control endpoints, the IN index is used (OUT index is unused), so
955 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
956 */
957 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
958 {
959 unsigned int index;
960 if (usb_endpoint_xfer_control(desc))
961 index = (unsigned int) (usb_endpoint_num(desc)*2);
962 else
963 index = (unsigned int) (usb_endpoint_num(desc)*2) +
964 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
965 return index;
966 }
967
968 /* Find the flag for this endpoint (for use in the control context). Use the
969 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
970 * bit 1, etc.
971 */
972 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
973 {
974 return 1 << (xhci_get_endpoint_index(desc) + 1);
975 }
976
977 /* Find the flag for this endpoint (for use in the control context). Use the
978 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
979 * bit 1, etc.
980 */
981 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
982 {
983 return 1 << (ep_index + 1);
984 }
985
986 /* Compute the last valid endpoint context index. Basically, this is the
987 * endpoint index plus one. For slot contexts with more than valid endpoint,
988 * we find the most significant bit set in the added contexts flags.
989 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
990 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
991 */
992 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
993 {
994 return fls(added_ctxs) - 1;
995 }
996
997 /* Returns 1 if the arguments are OK;
998 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
999 */
1000 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1001 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1002 const char *func) {
1003 struct xhci_hcd *xhci;
1004 struct xhci_virt_device *virt_dev;
1005
1006 if (!hcd || (check_ep && !ep) || !udev) {
1007 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1008 func);
1009 return -EINVAL;
1010 }
1011 if (!udev->parent) {
1012 printk(KERN_DEBUG "xHCI %s called for root hub\n",
1013 func);
1014 return 0;
1015 }
1016
1017 xhci = hcd_to_xhci(hcd);
1018 if (xhci->xhc_state & XHCI_STATE_HALTED)
1019 return -ENODEV;
1020
1021 if (check_virt_dev) {
1022 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1023 printk(KERN_DEBUG "xHCI %s called with unaddressed "
1024 "device\n", func);
1025 return -EINVAL;
1026 }
1027
1028 virt_dev = xhci->devs[udev->slot_id];
1029 if (virt_dev->udev != udev) {
1030 printk(KERN_DEBUG "xHCI %s called with udev and "
1031 "virt_dev does not match\n", func);
1032 return -EINVAL;
1033 }
1034 }
1035
1036 return 1;
1037 }
1038
1039 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1040 struct usb_device *udev, struct xhci_command *command,
1041 bool ctx_change, bool must_succeed);
1042
1043 /*
1044 * Full speed devices may have a max packet size greater than 8 bytes, but the
1045 * USB core doesn't know that until it reads the first 8 bytes of the
1046 * descriptor. If the usb_device's max packet size changes after that point,
1047 * we need to issue an evaluate context command and wait on it.
1048 */
1049 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1050 unsigned int ep_index, struct urb *urb)
1051 {
1052 struct xhci_container_ctx *in_ctx;
1053 struct xhci_container_ctx *out_ctx;
1054 struct xhci_input_control_ctx *ctrl_ctx;
1055 struct xhci_ep_ctx *ep_ctx;
1056 int max_packet_size;
1057 int hw_max_packet_size;
1058 int ret = 0;
1059
1060 out_ctx = xhci->devs[slot_id]->out_ctx;
1061 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1062 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1063 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1064 if (hw_max_packet_size != max_packet_size) {
1065 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1066 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1067 max_packet_size);
1068 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1069 hw_max_packet_size);
1070 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1071
1072 /* Set up the modified control endpoint 0 */
1073 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1074 xhci->devs[slot_id]->out_ctx, ep_index);
1075 in_ctx = xhci->devs[slot_id]->in_ctx;
1076 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1077 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1078 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1079
1080 /* Set up the input context flags for the command */
1081 /* FIXME: This won't work if a non-default control endpoint
1082 * changes max packet sizes.
1083 */
1084 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1085 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1086 ctrl_ctx->drop_flags = 0;
1087
1088 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1089 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1090 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1091 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1092
1093 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1094 true, false);
1095
1096 /* Clean up the input context for later use by bandwidth
1097 * functions.
1098 */
1099 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1100 }
1101 return ret;
1102 }
1103
1104 /*
1105 * non-error returns are a promise to giveback() the urb later
1106 * we drop ownership so next owner (or urb unlink) can get it
1107 */
1108 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1109 {
1110 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1111 struct xhci_td *buffer;
1112 unsigned long flags;
1113 int ret = 0;
1114 unsigned int slot_id, ep_index;
1115 struct urb_priv *urb_priv;
1116 int size, i;
1117
1118 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1119 true, true, __func__) <= 0)
1120 return -EINVAL;
1121
1122 slot_id = urb->dev->slot_id;
1123 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1124
1125 if (!HCD_HW_ACCESSIBLE(hcd)) {
1126 if (!in_interrupt())
1127 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1128 ret = -ESHUTDOWN;
1129 goto exit;
1130 }
1131
1132 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1133 size = urb->number_of_packets;
1134 else
1135 size = 1;
1136
1137 urb_priv = kzalloc(sizeof(struct urb_priv) +
1138 size * sizeof(struct xhci_td *), mem_flags);
1139 if (!urb_priv)
1140 return -ENOMEM;
1141
1142 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1143 if (!buffer) {
1144 kfree(urb_priv);
1145 return -ENOMEM;
1146 }
1147
1148 for (i = 0; i < size; i++) {
1149 urb_priv->td[i] = buffer;
1150 buffer++;
1151 }
1152
1153 urb_priv->length = size;
1154 urb_priv->td_cnt = 0;
1155 urb->hcpriv = urb_priv;
1156
1157 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1158 /* Check to see if the max packet size for the default control
1159 * endpoint changed during FS device enumeration
1160 */
1161 if (urb->dev->speed == USB_SPEED_FULL) {
1162 ret = xhci_check_maxpacket(xhci, slot_id,
1163 ep_index, urb);
1164 if (ret < 0) {
1165 xhci_urb_free_priv(xhci, urb_priv);
1166 urb->hcpriv = NULL;
1167 return ret;
1168 }
1169 }
1170
1171 /* We have a spinlock and interrupts disabled, so we must pass
1172 * atomic context to this function, which may allocate memory.
1173 */
1174 spin_lock_irqsave(&xhci->lock, flags);
1175 if (xhci->xhc_state & XHCI_STATE_DYING)
1176 goto dying;
1177 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1178 slot_id, ep_index);
1179 if (ret)
1180 goto free_priv;
1181 spin_unlock_irqrestore(&xhci->lock, flags);
1182 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1183 spin_lock_irqsave(&xhci->lock, flags);
1184 if (xhci->xhc_state & XHCI_STATE_DYING)
1185 goto dying;
1186 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1187 EP_GETTING_STREAMS) {
1188 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1189 "is transitioning to using streams.\n");
1190 ret = -EINVAL;
1191 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1192 EP_GETTING_NO_STREAMS) {
1193 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1194 "is transitioning to "
1195 "not having streams.\n");
1196 ret = -EINVAL;
1197 } else {
1198 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1199 slot_id, ep_index);
1200 }
1201 if (ret)
1202 goto free_priv;
1203 spin_unlock_irqrestore(&xhci->lock, flags);
1204 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1205 spin_lock_irqsave(&xhci->lock, flags);
1206 if (xhci->xhc_state & XHCI_STATE_DYING)
1207 goto dying;
1208 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1209 slot_id, ep_index);
1210 if (ret)
1211 goto free_priv;
1212 spin_unlock_irqrestore(&xhci->lock, flags);
1213 } else {
1214 spin_lock_irqsave(&xhci->lock, flags);
1215 if (xhci->xhc_state & XHCI_STATE_DYING)
1216 goto dying;
1217 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1218 slot_id, ep_index);
1219 if (ret)
1220 goto free_priv;
1221 spin_unlock_irqrestore(&xhci->lock, flags);
1222 }
1223 exit:
1224 return ret;
1225 dying:
1226 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1227 "non-responsive xHCI host.\n",
1228 urb->ep->desc.bEndpointAddress, urb);
1229 ret = -ESHUTDOWN;
1230 free_priv:
1231 xhci_urb_free_priv(xhci, urb_priv);
1232 urb->hcpriv = NULL;
1233 spin_unlock_irqrestore(&xhci->lock, flags);
1234 return ret;
1235 }
1236
1237 /* Get the right ring for the given URB.
1238 * If the endpoint supports streams, boundary check the URB's stream ID.
1239 * If the endpoint doesn't support streams, return the singular endpoint ring.
1240 */
1241 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1242 struct urb *urb)
1243 {
1244 unsigned int slot_id;
1245 unsigned int ep_index;
1246 unsigned int stream_id;
1247 struct xhci_virt_ep *ep;
1248
1249 slot_id = urb->dev->slot_id;
1250 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1251 stream_id = urb->stream_id;
1252 ep = &xhci->devs[slot_id]->eps[ep_index];
1253 /* Common case: no streams */
1254 if (!(ep->ep_state & EP_HAS_STREAMS))
1255 return ep->ring;
1256
1257 if (stream_id == 0) {
1258 xhci_warn(xhci,
1259 "WARN: Slot ID %u, ep index %u has streams, "
1260 "but URB has no stream ID.\n",
1261 slot_id, ep_index);
1262 return NULL;
1263 }
1264
1265 if (stream_id < ep->stream_info->num_streams)
1266 return ep->stream_info->stream_rings[stream_id];
1267
1268 xhci_warn(xhci,
1269 "WARN: Slot ID %u, ep index %u has "
1270 "stream IDs 1 to %u allocated, "
1271 "but stream ID %u is requested.\n",
1272 slot_id, ep_index,
1273 ep->stream_info->num_streams - 1,
1274 stream_id);
1275 return NULL;
1276 }
1277
1278 /*
1279 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1280 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1281 * should pick up where it left off in the TD, unless a Set Transfer Ring
1282 * Dequeue Pointer is issued.
1283 *
1284 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1285 * the ring. Since the ring is a contiguous structure, they can't be physically
1286 * removed. Instead, there are two options:
1287 *
1288 * 1) If the HC is in the middle of processing the URB to be canceled, we
1289 * simply move the ring's dequeue pointer past those TRBs using the Set
1290 * Transfer Ring Dequeue Pointer command. This will be the common case,
1291 * when drivers timeout on the last submitted URB and attempt to cancel.
1292 *
1293 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1294 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1295 * HC will need to invalidate the any TRBs it has cached after the stop
1296 * endpoint command, as noted in the xHCI 0.95 errata.
1297 *
1298 * 3) The TD may have completed by the time the Stop Endpoint Command
1299 * completes, so software needs to handle that case too.
1300 *
1301 * This function should protect against the TD enqueueing code ringing the
1302 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1303 * It also needs to account for multiple cancellations on happening at the same
1304 * time for the same endpoint.
1305 *
1306 * Note that this function can be called in any context, or so says
1307 * usb_hcd_unlink_urb()
1308 */
1309 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1310 {
1311 unsigned long flags;
1312 int ret, i;
1313 u32 temp;
1314 struct xhci_hcd *xhci;
1315 struct urb_priv *urb_priv;
1316 struct xhci_td *td;
1317 unsigned int ep_index;
1318 struct xhci_ring *ep_ring;
1319 struct xhci_virt_ep *ep;
1320
1321 xhci = hcd_to_xhci(hcd);
1322 spin_lock_irqsave(&xhci->lock, flags);
1323 /* Make sure the URB hasn't completed or been unlinked already */
1324 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1325 if (ret || !urb->hcpriv)
1326 goto done;
1327 temp = xhci_readl(xhci, &xhci->op_regs->status);
1328 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1329 xhci_dbg(xhci, "HW died, freeing TD.\n");
1330 urb_priv = urb->hcpriv;
1331 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1332 td = urb_priv->td[i];
1333 if (!list_empty(&td->td_list))
1334 list_del_init(&td->td_list);
1335 if (!list_empty(&td->cancelled_td_list))
1336 list_del_init(&td->cancelled_td_list);
1337 }
1338
1339 usb_hcd_unlink_urb_from_ep(hcd, urb);
1340 spin_unlock_irqrestore(&xhci->lock, flags);
1341 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1342 xhci_urb_free_priv(xhci, urb_priv);
1343 return ret;
1344 }
1345 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1346 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1347 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1348 "non-responsive xHCI host.\n",
1349 urb->ep->desc.bEndpointAddress, urb);
1350 /* Let the stop endpoint command watchdog timer (which set this
1351 * state) finish cleaning up the endpoint TD lists. We must
1352 * have caught it in the middle of dropping a lock and giving
1353 * back an URB.
1354 */
1355 goto done;
1356 }
1357
1358 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1359 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1360 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1361 if (!ep_ring) {
1362 ret = -EINVAL;
1363 goto done;
1364 }
1365
1366 urb_priv = urb->hcpriv;
1367 i = urb_priv->td_cnt;
1368 if (i < urb_priv->length)
1369 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1370 "starting at offset 0x%llx\n",
1371 urb, urb->dev->devpath,
1372 urb->ep->desc.bEndpointAddress,
1373 (unsigned long long) xhci_trb_virt_to_dma(
1374 urb_priv->td[i]->start_seg,
1375 urb_priv->td[i]->first_trb));
1376
1377 for (; i < urb_priv->length; i++) {
1378 td = urb_priv->td[i];
1379 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1380 }
1381
1382 /* Queue a stop endpoint command, but only if this is
1383 * the first cancellation to be handled.
1384 */
1385 if (!(ep->ep_state & EP_HALT_PENDING)) {
1386 ep->ep_state |= EP_HALT_PENDING;
1387 ep->stop_cmds_pending++;
1388 ep->stop_cmd_timer.expires = jiffies +
1389 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1390 add_timer(&ep->stop_cmd_timer);
1391 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1392 xhci_ring_cmd_db(xhci);
1393 }
1394 done:
1395 spin_unlock_irqrestore(&xhci->lock, flags);
1396 return ret;
1397 }
1398
1399 /* Drop an endpoint from a new bandwidth configuration for this device.
1400 * Only one call to this function is allowed per endpoint before
1401 * check_bandwidth() or reset_bandwidth() must be called.
1402 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1403 * add the endpoint to the schedule with possibly new parameters denoted by a
1404 * different endpoint descriptor in usb_host_endpoint.
1405 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1406 * not allowed.
1407 *
1408 * The USB core will not allow URBs to be queued to an endpoint that is being
1409 * disabled, so there's no need for mutual exclusion to protect
1410 * the xhci->devs[slot_id] structure.
1411 */
1412 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1413 struct usb_host_endpoint *ep)
1414 {
1415 struct xhci_hcd *xhci;
1416 struct xhci_container_ctx *in_ctx, *out_ctx;
1417 struct xhci_input_control_ctx *ctrl_ctx;
1418 struct xhci_slot_ctx *slot_ctx;
1419 unsigned int last_ctx;
1420 unsigned int ep_index;
1421 struct xhci_ep_ctx *ep_ctx;
1422 u32 drop_flag;
1423 u32 new_add_flags, new_drop_flags, new_slot_info;
1424 int ret;
1425
1426 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1427 if (ret <= 0)
1428 return ret;
1429 xhci = hcd_to_xhci(hcd);
1430 if (xhci->xhc_state & XHCI_STATE_DYING)
1431 return -ENODEV;
1432
1433 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1434 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1435 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1436 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1437 __func__, drop_flag);
1438 return 0;
1439 }
1440
1441 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1442 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1443 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1444 ep_index = xhci_get_endpoint_index(&ep->desc);
1445 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1446 /* If the HC already knows the endpoint is disabled,
1447 * or the HCD has noted it is disabled, ignore this request
1448 */
1449 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1450 cpu_to_le32(EP_STATE_DISABLED)) ||
1451 le32_to_cpu(ctrl_ctx->drop_flags) &
1452 xhci_get_endpoint_flag(&ep->desc)) {
1453 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1454 __func__, ep);
1455 return 0;
1456 }
1457
1458 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1459 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1460
1461 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1462 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1463
1464 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1465 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1466 /* Update the last valid endpoint context, if we deleted the last one */
1467 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1468 LAST_CTX(last_ctx)) {
1469 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1470 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1471 }
1472 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1473
1474 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1475
1476 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1477 (unsigned int) ep->desc.bEndpointAddress,
1478 udev->slot_id,
1479 (unsigned int) new_drop_flags,
1480 (unsigned int) new_add_flags,
1481 (unsigned int) new_slot_info);
1482 return 0;
1483 }
1484
1485 /* Add an endpoint to a new possible bandwidth configuration for this device.
1486 * Only one call to this function is allowed per endpoint before
1487 * check_bandwidth() or reset_bandwidth() must be called.
1488 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1489 * add the endpoint to the schedule with possibly new parameters denoted by a
1490 * different endpoint descriptor in usb_host_endpoint.
1491 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1492 * not allowed.
1493 *
1494 * The USB core will not allow URBs to be queued to an endpoint until the
1495 * configuration or alt setting is installed in the device, so there's no need
1496 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1497 */
1498 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1499 struct usb_host_endpoint *ep)
1500 {
1501 struct xhci_hcd *xhci;
1502 struct xhci_container_ctx *in_ctx, *out_ctx;
1503 unsigned int ep_index;
1504 struct xhci_ep_ctx *ep_ctx;
1505 struct xhci_slot_ctx *slot_ctx;
1506 struct xhci_input_control_ctx *ctrl_ctx;
1507 u32 added_ctxs;
1508 unsigned int last_ctx;
1509 u32 new_add_flags, new_drop_flags, new_slot_info;
1510 struct xhci_virt_device *virt_dev;
1511 int ret = 0;
1512
1513 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1514 if (ret <= 0) {
1515 /* So we won't queue a reset ep command for a root hub */
1516 ep->hcpriv = NULL;
1517 return ret;
1518 }
1519 xhci = hcd_to_xhci(hcd);
1520 if (xhci->xhc_state & XHCI_STATE_DYING)
1521 return -ENODEV;
1522
1523 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1524 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1525 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1526 /* FIXME when we have to issue an evaluate endpoint command to
1527 * deal with ep0 max packet size changing once we get the
1528 * descriptors
1529 */
1530 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1531 __func__, added_ctxs);
1532 return 0;
1533 }
1534
1535 virt_dev = xhci->devs[udev->slot_id];
1536 in_ctx = virt_dev->in_ctx;
1537 out_ctx = virt_dev->out_ctx;
1538 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1539 ep_index = xhci_get_endpoint_index(&ep->desc);
1540 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1541
1542 /* If this endpoint is already in use, and the upper layers are trying
1543 * to add it again without dropping it, reject the addition.
1544 */
1545 if (virt_dev->eps[ep_index].ring &&
1546 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1547 xhci_get_endpoint_flag(&ep->desc))) {
1548 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1549 "without dropping it.\n",
1550 (unsigned int) ep->desc.bEndpointAddress);
1551 return -EINVAL;
1552 }
1553
1554 /* If the HCD has already noted the endpoint is enabled,
1555 * ignore this request.
1556 */
1557 if (le32_to_cpu(ctrl_ctx->add_flags) &
1558 xhci_get_endpoint_flag(&ep->desc)) {
1559 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1560 __func__, ep);
1561 return 0;
1562 }
1563
1564 /*
1565 * Configuration and alternate setting changes must be done in
1566 * process context, not interrupt context (or so documenation
1567 * for usb_set_interface() and usb_set_configuration() claim).
1568 */
1569 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1570 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1571 __func__, ep->desc.bEndpointAddress);
1572 return -ENOMEM;
1573 }
1574
1575 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1576 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1577
1578 /* If xhci_endpoint_disable() was called for this endpoint, but the
1579 * xHC hasn't been notified yet through the check_bandwidth() call,
1580 * this re-adds a new state for the endpoint from the new endpoint
1581 * descriptors. We must drop and re-add this endpoint, so we leave the
1582 * drop flags alone.
1583 */
1584 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1585
1586 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1587 /* Update the last valid endpoint context, if we just added one past */
1588 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1589 LAST_CTX(last_ctx)) {
1590 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1591 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1592 }
1593 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1594
1595 /* Store the usb_device pointer for later use */
1596 ep->hcpriv = udev;
1597
1598 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1599 (unsigned int) ep->desc.bEndpointAddress,
1600 udev->slot_id,
1601 (unsigned int) new_drop_flags,
1602 (unsigned int) new_add_flags,
1603 (unsigned int) new_slot_info);
1604 return 0;
1605 }
1606
1607 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1608 {
1609 struct xhci_input_control_ctx *ctrl_ctx;
1610 struct xhci_ep_ctx *ep_ctx;
1611 struct xhci_slot_ctx *slot_ctx;
1612 int i;
1613
1614 /* When a device's add flag and drop flag are zero, any subsequent
1615 * configure endpoint command will leave that endpoint's state
1616 * untouched. Make sure we don't leave any old state in the input
1617 * endpoint contexts.
1618 */
1619 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1620 ctrl_ctx->drop_flags = 0;
1621 ctrl_ctx->add_flags = 0;
1622 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1623 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1624 /* Endpoint 0 is always valid */
1625 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1626 for (i = 1; i < 31; ++i) {
1627 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1628 ep_ctx->ep_info = 0;
1629 ep_ctx->ep_info2 = 0;
1630 ep_ctx->deq = 0;
1631 ep_ctx->tx_info = 0;
1632 }
1633 }
1634
1635 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1636 struct usb_device *udev, u32 *cmd_status)
1637 {
1638 int ret;
1639
1640 switch (*cmd_status) {
1641 case COMP_ENOMEM:
1642 dev_warn(&udev->dev, "Not enough host controller resources "
1643 "for new device state.\n");
1644 ret = -ENOMEM;
1645 /* FIXME: can we allocate more resources for the HC? */
1646 break;
1647 case COMP_BW_ERR:
1648 case COMP_2ND_BW_ERR:
1649 dev_warn(&udev->dev, "Not enough bandwidth "
1650 "for new device state.\n");
1651 ret = -ENOSPC;
1652 /* FIXME: can we go back to the old state? */
1653 break;
1654 case COMP_TRB_ERR:
1655 /* the HCD set up something wrong */
1656 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1657 "add flag = 1, "
1658 "and endpoint is not disabled.\n");
1659 ret = -EINVAL;
1660 break;
1661 case COMP_DEV_ERR:
1662 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1663 "configure command.\n");
1664 ret = -ENODEV;
1665 break;
1666 case COMP_SUCCESS:
1667 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1668 ret = 0;
1669 break;
1670 default:
1671 xhci_err(xhci, "ERROR: unexpected command completion "
1672 "code 0x%x.\n", *cmd_status);
1673 ret = -EINVAL;
1674 break;
1675 }
1676 return ret;
1677 }
1678
1679 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1680 struct usb_device *udev, u32 *cmd_status)
1681 {
1682 int ret;
1683 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1684
1685 switch (*cmd_status) {
1686 case COMP_EINVAL:
1687 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1688 "context command.\n");
1689 ret = -EINVAL;
1690 break;
1691 case COMP_EBADSLT:
1692 dev_warn(&udev->dev, "WARN: slot not enabled for"
1693 "evaluate context command.\n");
1694 case COMP_CTX_STATE:
1695 dev_warn(&udev->dev, "WARN: invalid context state for "
1696 "evaluate context command.\n");
1697 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1698 ret = -EINVAL;
1699 break;
1700 case COMP_DEV_ERR:
1701 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1702 "context command.\n");
1703 ret = -ENODEV;
1704 break;
1705 case COMP_MEL_ERR:
1706 /* Max Exit Latency too large error */
1707 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1708 ret = -EINVAL;
1709 break;
1710 case COMP_SUCCESS:
1711 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1712 ret = 0;
1713 break;
1714 default:
1715 xhci_err(xhci, "ERROR: unexpected command completion "
1716 "code 0x%x.\n", *cmd_status);
1717 ret = -EINVAL;
1718 break;
1719 }
1720 return ret;
1721 }
1722
1723 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1724 struct xhci_container_ctx *in_ctx)
1725 {
1726 struct xhci_input_control_ctx *ctrl_ctx;
1727 u32 valid_add_flags;
1728 u32 valid_drop_flags;
1729
1730 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1731 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1732 * (bit 1). The default control endpoint is added during the Address
1733 * Device command and is never removed until the slot is disabled.
1734 */
1735 valid_add_flags = ctrl_ctx->add_flags >> 2;
1736 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1737
1738 /* Use hweight32 to count the number of ones in the add flags, or
1739 * number of endpoints added. Don't count endpoints that are changed
1740 * (both added and dropped).
1741 */
1742 return hweight32(valid_add_flags) -
1743 hweight32(valid_add_flags & valid_drop_flags);
1744 }
1745
1746 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1747 struct xhci_container_ctx *in_ctx)
1748 {
1749 struct xhci_input_control_ctx *ctrl_ctx;
1750 u32 valid_add_flags;
1751 u32 valid_drop_flags;
1752
1753 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1754 valid_add_flags = ctrl_ctx->add_flags >> 2;
1755 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1756
1757 return hweight32(valid_drop_flags) -
1758 hweight32(valid_add_flags & valid_drop_flags);
1759 }
1760
1761 /*
1762 * We need to reserve the new number of endpoints before the configure endpoint
1763 * command completes. We can't subtract the dropped endpoints from the number
1764 * of active endpoints until the command completes because we can oversubscribe
1765 * the host in this case:
1766 *
1767 * - the first configure endpoint command drops more endpoints than it adds
1768 * - a second configure endpoint command that adds more endpoints is queued
1769 * - the first configure endpoint command fails, so the config is unchanged
1770 * - the second command may succeed, even though there isn't enough resources
1771 *
1772 * Must be called with xhci->lock held.
1773 */
1774 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1775 struct xhci_container_ctx *in_ctx)
1776 {
1777 u32 added_eps;
1778
1779 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1780 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1781 xhci_dbg(xhci, "Not enough ep ctxs: "
1782 "%u active, need to add %u, limit is %u.\n",
1783 xhci->num_active_eps, added_eps,
1784 xhci->limit_active_eps);
1785 return -ENOMEM;
1786 }
1787 xhci->num_active_eps += added_eps;
1788 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1789 xhci->num_active_eps);
1790 return 0;
1791 }
1792
1793 /*
1794 * The configure endpoint was failed by the xHC for some other reason, so we
1795 * need to revert the resources that failed configuration would have used.
1796 *
1797 * Must be called with xhci->lock held.
1798 */
1799 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1800 struct xhci_container_ctx *in_ctx)
1801 {
1802 u32 num_failed_eps;
1803
1804 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1805 xhci->num_active_eps -= num_failed_eps;
1806 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1807 num_failed_eps,
1808 xhci->num_active_eps);
1809 }
1810
1811 /*
1812 * Now that the command has completed, clean up the active endpoint count by
1813 * subtracting out the endpoints that were dropped (but not changed).
1814 *
1815 * Must be called with xhci->lock held.
1816 */
1817 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1818 struct xhci_container_ctx *in_ctx)
1819 {
1820 u32 num_dropped_eps;
1821
1822 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1823 xhci->num_active_eps -= num_dropped_eps;
1824 if (num_dropped_eps)
1825 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1826 num_dropped_eps,
1827 xhci->num_active_eps);
1828 }
1829
1830 unsigned int xhci_get_block_size(struct usb_device *udev)
1831 {
1832 switch (udev->speed) {
1833 case USB_SPEED_LOW:
1834 case USB_SPEED_FULL:
1835 return FS_BLOCK;
1836 case USB_SPEED_HIGH:
1837 return HS_BLOCK;
1838 case USB_SPEED_SUPER:
1839 return SS_BLOCK;
1840 case USB_SPEED_UNKNOWN:
1841 case USB_SPEED_WIRELESS:
1842 default:
1843 /* Should never happen */
1844 return 1;
1845 }
1846 }
1847
1848 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1849 {
1850 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1851 return LS_OVERHEAD;
1852 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1853 return FS_OVERHEAD;
1854 return HS_OVERHEAD;
1855 }
1856
1857 /* If we are changing a LS/FS device under a HS hub,
1858 * make sure (if we are activating a new TT) that the HS bus has enough
1859 * bandwidth for this new TT.
1860 */
1861 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1862 struct xhci_virt_device *virt_dev,
1863 int old_active_eps)
1864 {
1865 struct xhci_interval_bw_table *bw_table;
1866 struct xhci_tt_bw_info *tt_info;
1867
1868 /* Find the bandwidth table for the root port this TT is attached to. */
1869 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1870 tt_info = virt_dev->tt_info;
1871 /* If this TT already had active endpoints, the bandwidth for this TT
1872 * has already been added. Removing all periodic endpoints (and thus
1873 * making the TT enactive) will only decrease the bandwidth used.
1874 */
1875 if (old_active_eps)
1876 return 0;
1877 if (old_active_eps == 0 && tt_info->active_eps != 0) {
1878 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1879 return -ENOMEM;
1880 return 0;
1881 }
1882 /* Not sure why we would have no new active endpoints...
1883 *
1884 * Maybe because of an Evaluate Context change for a hub update or a
1885 * control endpoint 0 max packet size change?
1886 * FIXME: skip the bandwidth calculation in that case.
1887 */
1888 return 0;
1889 }
1890
1891 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
1892 struct xhci_virt_device *virt_dev)
1893 {
1894 unsigned int bw_reserved;
1895
1896 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
1897 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
1898 return -ENOMEM;
1899
1900 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
1901 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
1902 return -ENOMEM;
1903
1904 return 0;
1905 }
1906
1907 /*
1908 * This algorithm is a very conservative estimate of the worst-case scheduling
1909 * scenario for any one interval. The hardware dynamically schedules the
1910 * packets, so we can't tell which microframe could be the limiting factor in
1911 * the bandwidth scheduling. This only takes into account periodic endpoints.
1912 *
1913 * Obviously, we can't solve an NP complete problem to find the minimum worst
1914 * case scenario. Instead, we come up with an estimate that is no less than
1915 * the worst case bandwidth used for any one microframe, but may be an
1916 * over-estimate.
1917 *
1918 * We walk the requirements for each endpoint by interval, starting with the
1919 * smallest interval, and place packets in the schedule where there is only one
1920 * possible way to schedule packets for that interval. In order to simplify
1921 * this algorithm, we record the largest max packet size for each interval, and
1922 * assume all packets will be that size.
1923 *
1924 * For interval 0, we obviously must schedule all packets for each interval.
1925 * The bandwidth for interval 0 is just the amount of data to be transmitted
1926 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1927 * the number of packets).
1928 *
1929 * For interval 1, we have two possible microframes to schedule those packets
1930 * in. For this algorithm, if we can schedule the same number of packets for
1931 * each possible scheduling opportunity (each microframe), we will do so. The
1932 * remaining number of packets will be saved to be transmitted in the gaps in
1933 * the next interval's scheduling sequence.
1934 *
1935 * As we move those remaining packets to be scheduled with interval 2 packets,
1936 * we have to double the number of remaining packets to transmit. This is
1937 * because the intervals are actually powers of 2, and we would be transmitting
1938 * the previous interval's packets twice in this interval. We also have to be
1939 * sure that when we look at the largest max packet size for this interval, we
1940 * also look at the largest max packet size for the remaining packets and take
1941 * the greater of the two.
1942 *
1943 * The algorithm continues to evenly distribute packets in each scheduling
1944 * opportunity, and push the remaining packets out, until we get to the last
1945 * interval. Then those packets and their associated overhead are just added
1946 * to the bandwidth used.
1947 */
1948 static int xhci_check_bw_table(struct xhci_hcd *xhci,
1949 struct xhci_virt_device *virt_dev,
1950 int old_active_eps)
1951 {
1952 unsigned int bw_reserved;
1953 unsigned int max_bandwidth;
1954 unsigned int bw_used;
1955 unsigned int block_size;
1956 struct xhci_interval_bw_table *bw_table;
1957 unsigned int packet_size = 0;
1958 unsigned int overhead = 0;
1959 unsigned int packets_transmitted = 0;
1960 unsigned int packets_remaining = 0;
1961 unsigned int i;
1962
1963 if (virt_dev->udev->speed == USB_SPEED_SUPER)
1964 return xhci_check_ss_bw(xhci, virt_dev);
1965
1966 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
1967 max_bandwidth = HS_BW_LIMIT;
1968 /* Convert percent of bus BW reserved to blocks reserved */
1969 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
1970 } else {
1971 max_bandwidth = FS_BW_LIMIT;
1972 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
1973 }
1974
1975 bw_table = virt_dev->bw_table;
1976 /* We need to translate the max packet size and max ESIT payloads into
1977 * the units the hardware uses.
1978 */
1979 block_size = xhci_get_block_size(virt_dev->udev);
1980
1981 /* If we are manipulating a LS/FS device under a HS hub, double check
1982 * that the HS bus has enough bandwidth if we are activing a new TT.
1983 */
1984 if (virt_dev->tt_info) {
1985 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1986 virt_dev->real_port);
1987 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
1988 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
1989 "newly activated TT.\n");
1990 return -ENOMEM;
1991 }
1992 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
1993 virt_dev->tt_info->slot_id,
1994 virt_dev->tt_info->ttport);
1995 } else {
1996 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1997 virt_dev->real_port);
1998 }
1999
2000 /* Add in how much bandwidth will be used for interval zero, or the
2001 * rounded max ESIT payload + number of packets * largest overhead.
2002 */
2003 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2004 bw_table->interval_bw[0].num_packets *
2005 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2006
2007 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2008 unsigned int bw_added;
2009 unsigned int largest_mps;
2010 unsigned int interval_overhead;
2011
2012 /*
2013 * How many packets could we transmit in this interval?
2014 * If packets didn't fit in the previous interval, we will need
2015 * to transmit that many packets twice within this interval.
2016 */
2017 packets_remaining = 2 * packets_remaining +
2018 bw_table->interval_bw[i].num_packets;
2019
2020 /* Find the largest max packet size of this or the previous
2021 * interval.
2022 */
2023 if (list_empty(&bw_table->interval_bw[i].endpoints))
2024 largest_mps = 0;
2025 else {
2026 struct xhci_virt_ep *virt_ep;
2027 struct list_head *ep_entry;
2028
2029 ep_entry = bw_table->interval_bw[i].endpoints.next;
2030 virt_ep = list_entry(ep_entry,
2031 struct xhci_virt_ep, bw_endpoint_list);
2032 /* Convert to blocks, rounding up */
2033 largest_mps = DIV_ROUND_UP(
2034 virt_ep->bw_info.max_packet_size,
2035 block_size);
2036 }
2037 if (largest_mps > packet_size)
2038 packet_size = largest_mps;
2039
2040 /* Use the larger overhead of this or the previous interval. */
2041 interval_overhead = xhci_get_largest_overhead(
2042 &bw_table->interval_bw[i]);
2043 if (interval_overhead > overhead)
2044 overhead = interval_overhead;
2045
2046 /* How many packets can we evenly distribute across
2047 * (1 << (i + 1)) possible scheduling opportunities?
2048 */
2049 packets_transmitted = packets_remaining >> (i + 1);
2050
2051 /* Add in the bandwidth used for those scheduled packets */
2052 bw_added = packets_transmitted * (overhead + packet_size);
2053
2054 /* How many packets do we have remaining to transmit? */
2055 packets_remaining = packets_remaining % (1 << (i + 1));
2056
2057 /* What largest max packet size should those packets have? */
2058 /* If we've transmitted all packets, don't carry over the
2059 * largest packet size.
2060 */
2061 if (packets_remaining == 0) {
2062 packet_size = 0;
2063 overhead = 0;
2064 } else if (packets_transmitted > 0) {
2065 /* Otherwise if we do have remaining packets, and we've
2066 * scheduled some packets in this interval, take the
2067 * largest max packet size from endpoints with this
2068 * interval.
2069 */
2070 packet_size = largest_mps;
2071 overhead = interval_overhead;
2072 }
2073 /* Otherwise carry over packet_size and overhead from the last
2074 * time we had a remainder.
2075 */
2076 bw_used += bw_added;
2077 if (bw_used > max_bandwidth) {
2078 xhci_warn(xhci, "Not enough bandwidth. "
2079 "Proposed: %u, Max: %u\n",
2080 bw_used, max_bandwidth);
2081 return -ENOMEM;
2082 }
2083 }
2084 /*
2085 * Ok, we know we have some packets left over after even-handedly
2086 * scheduling interval 15. We don't know which microframes they will
2087 * fit into, so we over-schedule and say they will be scheduled every
2088 * microframe.
2089 */
2090 if (packets_remaining > 0)
2091 bw_used += overhead + packet_size;
2092
2093 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2094 unsigned int port_index = virt_dev->real_port - 1;
2095
2096 /* OK, we're manipulating a HS device attached to a
2097 * root port bandwidth domain. Include the number of active TTs
2098 * in the bandwidth used.
2099 */
2100 bw_used += TT_HS_OVERHEAD *
2101 xhci->rh_bw[port_index].num_active_tts;
2102 }
2103
2104 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2105 "Available: %u " "percent\n",
2106 bw_used, max_bandwidth, bw_reserved,
2107 (max_bandwidth - bw_used - bw_reserved) * 100 /
2108 max_bandwidth);
2109
2110 bw_used += bw_reserved;
2111 if (bw_used > max_bandwidth) {
2112 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2113 bw_used, max_bandwidth);
2114 return -ENOMEM;
2115 }
2116
2117 bw_table->bw_used = bw_used;
2118 return 0;
2119 }
2120
2121 static bool xhci_is_async_ep(unsigned int ep_type)
2122 {
2123 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2124 ep_type != ISOC_IN_EP &&
2125 ep_type != INT_IN_EP);
2126 }
2127
2128 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2129 {
2130 return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2131 }
2132
2133 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2134 {
2135 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2136
2137 if (ep_bw->ep_interval == 0)
2138 return SS_OVERHEAD_BURST +
2139 (ep_bw->mult * ep_bw->num_packets *
2140 (SS_OVERHEAD + mps));
2141 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2142 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2143 1 << ep_bw->ep_interval);
2144
2145 }
2146
2147 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2148 struct xhci_bw_info *ep_bw,
2149 struct xhci_interval_bw_table *bw_table,
2150 struct usb_device *udev,
2151 struct xhci_virt_ep *virt_ep,
2152 struct xhci_tt_bw_info *tt_info)
2153 {
2154 struct xhci_interval_bw *interval_bw;
2155 int normalized_interval;
2156
2157 if (xhci_is_async_ep(ep_bw->type))
2158 return;
2159
2160 if (udev->speed == USB_SPEED_SUPER) {
2161 if (xhci_is_sync_in_ep(ep_bw->type))
2162 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2163 xhci_get_ss_bw_consumed(ep_bw);
2164 else
2165 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2166 xhci_get_ss_bw_consumed(ep_bw);
2167 return;
2168 }
2169
2170 /* SuperSpeed endpoints never get added to intervals in the table, so
2171 * this check is only valid for HS/FS/LS devices.
2172 */
2173 if (list_empty(&virt_ep->bw_endpoint_list))
2174 return;
2175 /* For LS/FS devices, we need to translate the interval expressed in
2176 * microframes to frames.
2177 */
2178 if (udev->speed == USB_SPEED_HIGH)
2179 normalized_interval = ep_bw->ep_interval;
2180 else
2181 normalized_interval = ep_bw->ep_interval - 3;
2182
2183 if (normalized_interval == 0)
2184 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2185 interval_bw = &bw_table->interval_bw[normalized_interval];
2186 interval_bw->num_packets -= ep_bw->num_packets;
2187 switch (udev->speed) {
2188 case USB_SPEED_LOW:
2189 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2190 break;
2191 case USB_SPEED_FULL:
2192 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2193 break;
2194 case USB_SPEED_HIGH:
2195 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2196 break;
2197 case USB_SPEED_SUPER:
2198 case USB_SPEED_UNKNOWN:
2199 case USB_SPEED_WIRELESS:
2200 /* Should never happen because only LS/FS/HS endpoints will get
2201 * added to the endpoint list.
2202 */
2203 return;
2204 }
2205 if (tt_info)
2206 tt_info->active_eps -= 1;
2207 list_del_init(&virt_ep->bw_endpoint_list);
2208 }
2209
2210 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2211 struct xhci_bw_info *ep_bw,
2212 struct xhci_interval_bw_table *bw_table,
2213 struct usb_device *udev,
2214 struct xhci_virt_ep *virt_ep,
2215 struct xhci_tt_bw_info *tt_info)
2216 {
2217 struct xhci_interval_bw *interval_bw;
2218 struct xhci_virt_ep *smaller_ep;
2219 int normalized_interval;
2220
2221 if (xhci_is_async_ep(ep_bw->type))
2222 return;
2223
2224 if (udev->speed == USB_SPEED_SUPER) {
2225 if (xhci_is_sync_in_ep(ep_bw->type))
2226 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2227 xhci_get_ss_bw_consumed(ep_bw);
2228 else
2229 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2230 xhci_get_ss_bw_consumed(ep_bw);
2231 return;
2232 }
2233
2234 /* For LS/FS devices, we need to translate the interval expressed in
2235 * microframes to frames.
2236 */
2237 if (udev->speed == USB_SPEED_HIGH)
2238 normalized_interval = ep_bw->ep_interval;
2239 else
2240 normalized_interval = ep_bw->ep_interval - 3;
2241
2242 if (normalized_interval == 0)
2243 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2244 interval_bw = &bw_table->interval_bw[normalized_interval];
2245 interval_bw->num_packets += ep_bw->num_packets;
2246 switch (udev->speed) {
2247 case USB_SPEED_LOW:
2248 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2249 break;
2250 case USB_SPEED_FULL:
2251 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2252 break;
2253 case USB_SPEED_HIGH:
2254 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2255 break;
2256 case USB_SPEED_SUPER:
2257 case USB_SPEED_UNKNOWN:
2258 case USB_SPEED_WIRELESS:
2259 /* Should never happen because only LS/FS/HS endpoints will get
2260 * added to the endpoint list.
2261 */
2262 return;
2263 }
2264
2265 if (tt_info)
2266 tt_info->active_eps += 1;
2267 /* Insert the endpoint into the list, largest max packet size first. */
2268 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2269 bw_endpoint_list) {
2270 if (ep_bw->max_packet_size >=
2271 smaller_ep->bw_info.max_packet_size) {
2272 /* Add the new ep before the smaller endpoint */
2273 list_add_tail(&virt_ep->bw_endpoint_list,
2274 &smaller_ep->bw_endpoint_list);
2275 return;
2276 }
2277 }
2278 /* Add the new endpoint at the end of the list. */
2279 list_add_tail(&virt_ep->bw_endpoint_list,
2280 &interval_bw->endpoints);
2281 }
2282
2283 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2284 struct xhci_virt_device *virt_dev,
2285 int old_active_eps)
2286 {
2287 struct xhci_root_port_bw_info *rh_bw_info;
2288 if (!virt_dev->tt_info)
2289 return;
2290
2291 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2292 if (old_active_eps == 0 &&
2293 virt_dev->tt_info->active_eps != 0) {
2294 rh_bw_info->num_active_tts += 1;
2295 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2296 } else if (old_active_eps != 0 &&
2297 virt_dev->tt_info->active_eps == 0) {
2298 rh_bw_info->num_active_tts -= 1;
2299 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2300 }
2301 }
2302
2303 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2304 struct xhci_virt_device *virt_dev,
2305 struct xhci_container_ctx *in_ctx)
2306 {
2307 struct xhci_bw_info ep_bw_info[31];
2308 int i;
2309 struct xhci_input_control_ctx *ctrl_ctx;
2310 int old_active_eps = 0;
2311
2312 if (virt_dev->tt_info)
2313 old_active_eps = virt_dev->tt_info->active_eps;
2314
2315 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2316
2317 for (i = 0; i < 31; i++) {
2318 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2319 continue;
2320
2321 /* Make a copy of the BW info in case we need to revert this */
2322 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2323 sizeof(ep_bw_info[i]));
2324 /* Drop the endpoint from the interval table if the endpoint is
2325 * being dropped or changed.
2326 */
2327 if (EP_IS_DROPPED(ctrl_ctx, i))
2328 xhci_drop_ep_from_interval_table(xhci,
2329 &virt_dev->eps[i].bw_info,
2330 virt_dev->bw_table,
2331 virt_dev->udev,
2332 &virt_dev->eps[i],
2333 virt_dev->tt_info);
2334 }
2335 /* Overwrite the information stored in the endpoints' bw_info */
2336 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2337 for (i = 0; i < 31; i++) {
2338 /* Add any changed or added endpoints to the interval table */
2339 if (EP_IS_ADDED(ctrl_ctx, i))
2340 xhci_add_ep_to_interval_table(xhci,
2341 &virt_dev->eps[i].bw_info,
2342 virt_dev->bw_table,
2343 virt_dev->udev,
2344 &virt_dev->eps[i],
2345 virt_dev->tt_info);
2346 }
2347
2348 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2349 /* Ok, this fits in the bandwidth we have.
2350 * Update the number of active TTs.
2351 */
2352 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2353 return 0;
2354 }
2355
2356 /* We don't have enough bandwidth for this, revert the stored info. */
2357 for (i = 0; i < 31; i++) {
2358 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2359 continue;
2360
2361 /* Drop the new copies of any added or changed endpoints from
2362 * the interval table.
2363 */
2364 if (EP_IS_ADDED(ctrl_ctx, i)) {
2365 xhci_drop_ep_from_interval_table(xhci,
2366 &virt_dev->eps[i].bw_info,
2367 virt_dev->bw_table,
2368 virt_dev->udev,
2369 &virt_dev->eps[i],
2370 virt_dev->tt_info);
2371 }
2372 /* Revert the endpoint back to its old information */
2373 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2374 sizeof(ep_bw_info[i]));
2375 /* Add any changed or dropped endpoints back into the table */
2376 if (EP_IS_DROPPED(ctrl_ctx, i))
2377 xhci_add_ep_to_interval_table(xhci,
2378 &virt_dev->eps[i].bw_info,
2379 virt_dev->bw_table,
2380 virt_dev->udev,
2381 &virt_dev->eps[i],
2382 virt_dev->tt_info);
2383 }
2384 return -ENOMEM;
2385 }
2386
2387
2388 /* Issue a configure endpoint command or evaluate context command
2389 * and wait for it to finish.
2390 */
2391 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2392 struct usb_device *udev,
2393 struct xhci_command *command,
2394 bool ctx_change, bool must_succeed)
2395 {
2396 int ret;
2397 int timeleft;
2398 unsigned long flags;
2399 struct xhci_container_ctx *in_ctx;
2400 struct completion *cmd_completion;
2401 u32 *cmd_status;
2402 struct xhci_virt_device *virt_dev;
2403
2404 spin_lock_irqsave(&xhci->lock, flags);
2405 virt_dev = xhci->devs[udev->slot_id];
2406
2407 if (command)
2408 in_ctx = command->in_ctx;
2409 else
2410 in_ctx = virt_dev->in_ctx;
2411
2412 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2413 xhci_reserve_host_resources(xhci, in_ctx)) {
2414 spin_unlock_irqrestore(&xhci->lock, flags);
2415 xhci_warn(xhci, "Not enough host resources, "
2416 "active endpoint contexts = %u\n",
2417 xhci->num_active_eps);
2418 return -ENOMEM;
2419 }
2420 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2421 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2422 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2423 xhci_free_host_resources(xhci, in_ctx);
2424 spin_unlock_irqrestore(&xhci->lock, flags);
2425 xhci_warn(xhci, "Not enough bandwidth\n");
2426 return -ENOMEM;
2427 }
2428
2429 if (command) {
2430 cmd_completion = command->completion;
2431 cmd_status = &command->status;
2432 command->command_trb = xhci->cmd_ring->enqueue;
2433
2434 /* Enqueue pointer can be left pointing to the link TRB,
2435 * we must handle that
2436 */
2437 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2438 command->command_trb =
2439 xhci->cmd_ring->enq_seg->next->trbs;
2440
2441 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2442 } else {
2443 cmd_completion = &virt_dev->cmd_completion;
2444 cmd_status = &virt_dev->cmd_status;
2445 }
2446 init_completion(cmd_completion);
2447
2448 if (!ctx_change)
2449 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2450 udev->slot_id, must_succeed);
2451 else
2452 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2453 udev->slot_id, must_succeed);
2454 if (ret < 0) {
2455 if (command)
2456 list_del(&command->cmd_list);
2457 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2458 xhci_free_host_resources(xhci, in_ctx);
2459 spin_unlock_irqrestore(&xhci->lock, flags);
2460 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2461 return -ENOMEM;
2462 }
2463 xhci_ring_cmd_db(xhci);
2464 spin_unlock_irqrestore(&xhci->lock, flags);
2465
2466 /* Wait for the configure endpoint command to complete */
2467 timeleft = wait_for_completion_interruptible_timeout(
2468 cmd_completion,
2469 USB_CTRL_SET_TIMEOUT);
2470 if (timeleft <= 0) {
2471 xhci_warn(xhci, "%s while waiting for %s command\n",
2472 timeleft == 0 ? "Timeout" : "Signal",
2473 ctx_change == 0 ?
2474 "configure endpoint" :
2475 "evaluate context");
2476 /* FIXME cancel the configure endpoint command */
2477 return -ETIME;
2478 }
2479
2480 if (!ctx_change)
2481 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2482 else
2483 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2484
2485 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2486 spin_lock_irqsave(&xhci->lock, flags);
2487 /* If the command failed, remove the reserved resources.
2488 * Otherwise, clean up the estimate to include dropped eps.
2489 */
2490 if (ret)
2491 xhci_free_host_resources(xhci, in_ctx);
2492 else
2493 xhci_finish_resource_reservation(xhci, in_ctx);
2494 spin_unlock_irqrestore(&xhci->lock, flags);
2495 }
2496 return ret;
2497 }
2498
2499 /* Called after one or more calls to xhci_add_endpoint() or
2500 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2501 * to call xhci_reset_bandwidth().
2502 *
2503 * Since we are in the middle of changing either configuration or
2504 * installing a new alt setting, the USB core won't allow URBs to be
2505 * enqueued for any endpoint on the old config or interface. Nothing
2506 * else should be touching the xhci->devs[slot_id] structure, so we
2507 * don't need to take the xhci->lock for manipulating that.
2508 */
2509 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2510 {
2511 int i;
2512 int ret = 0;
2513 struct xhci_hcd *xhci;
2514 struct xhci_virt_device *virt_dev;
2515 struct xhci_input_control_ctx *ctrl_ctx;
2516 struct xhci_slot_ctx *slot_ctx;
2517
2518 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2519 if (ret <= 0)
2520 return ret;
2521 xhci = hcd_to_xhci(hcd);
2522 if (xhci->xhc_state & XHCI_STATE_DYING)
2523 return -ENODEV;
2524
2525 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2526 virt_dev = xhci->devs[udev->slot_id];
2527
2528 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2529 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2530 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2531 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2532 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2533
2534 /* Don't issue the command if there's no endpoints to update. */
2535 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2536 ctrl_ctx->drop_flags == 0)
2537 return 0;
2538
2539 xhci_dbg(xhci, "New Input Control Context:\n");
2540 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2541 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2542 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2543
2544 ret = xhci_configure_endpoint(xhci, udev, NULL,
2545 false, false);
2546 if (ret) {
2547 /* Callee should call reset_bandwidth() */
2548 return ret;
2549 }
2550
2551 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2552 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2553 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2554
2555 /* Free any rings that were dropped, but not changed. */
2556 for (i = 1; i < 31; ++i) {
2557 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2558 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2559 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2560 }
2561 xhci_zero_in_ctx(xhci, virt_dev);
2562 /*
2563 * Install any rings for completely new endpoints or changed endpoints,
2564 * and free or cache any old rings from changed endpoints.
2565 */
2566 for (i = 1; i < 31; ++i) {
2567 if (!virt_dev->eps[i].new_ring)
2568 continue;
2569 /* Only cache or free the old ring if it exists.
2570 * It may not if this is the first add of an endpoint.
2571 */
2572 if (virt_dev->eps[i].ring) {
2573 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2574 }
2575 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2576 virt_dev->eps[i].new_ring = NULL;
2577 }
2578
2579 return ret;
2580 }
2581
2582 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2583 {
2584 struct xhci_hcd *xhci;
2585 struct xhci_virt_device *virt_dev;
2586 int i, ret;
2587
2588 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2589 if (ret <= 0)
2590 return;
2591 xhci = hcd_to_xhci(hcd);
2592
2593 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2594 virt_dev = xhci->devs[udev->slot_id];
2595 /* Free any rings allocated for added endpoints */
2596 for (i = 0; i < 31; ++i) {
2597 if (virt_dev->eps[i].new_ring) {
2598 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2599 virt_dev->eps[i].new_ring = NULL;
2600 }
2601 }
2602 xhci_zero_in_ctx(xhci, virt_dev);
2603 }
2604
2605 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2606 struct xhci_container_ctx *in_ctx,
2607 struct xhci_container_ctx *out_ctx,
2608 u32 add_flags, u32 drop_flags)
2609 {
2610 struct xhci_input_control_ctx *ctrl_ctx;
2611 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2612 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2613 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2614 xhci_slot_copy(xhci, in_ctx, out_ctx);
2615 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2616
2617 xhci_dbg(xhci, "Input Context:\n");
2618 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2619 }
2620
2621 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2622 unsigned int slot_id, unsigned int ep_index,
2623 struct xhci_dequeue_state *deq_state)
2624 {
2625 struct xhci_container_ctx *in_ctx;
2626 struct xhci_ep_ctx *ep_ctx;
2627 u32 added_ctxs;
2628 dma_addr_t addr;
2629
2630 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2631 xhci->devs[slot_id]->out_ctx, ep_index);
2632 in_ctx = xhci->devs[slot_id]->in_ctx;
2633 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2634 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2635 deq_state->new_deq_ptr);
2636 if (addr == 0) {
2637 xhci_warn(xhci, "WARN Cannot submit config ep after "
2638 "reset ep command\n");
2639 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2640 deq_state->new_deq_seg,
2641 deq_state->new_deq_ptr);
2642 return;
2643 }
2644 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2645
2646 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2647 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2648 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2649 }
2650
2651 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2652 struct usb_device *udev, unsigned int ep_index)
2653 {
2654 struct xhci_dequeue_state deq_state;
2655 struct xhci_virt_ep *ep;
2656
2657 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2658 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2659 /* We need to move the HW's dequeue pointer past this TD,
2660 * or it will attempt to resend it on the next doorbell ring.
2661 */
2662 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2663 ep_index, ep->stopped_stream, ep->stopped_td,
2664 &deq_state);
2665
2666 /* HW with the reset endpoint quirk will use the saved dequeue state to
2667 * issue a configure endpoint command later.
2668 */
2669 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2670 xhci_dbg(xhci, "Queueing new dequeue state\n");
2671 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2672 ep_index, ep->stopped_stream, &deq_state);
2673 } else {
2674 /* Better hope no one uses the input context between now and the
2675 * reset endpoint completion!
2676 * XXX: No idea how this hardware will react when stream rings
2677 * are enabled.
2678 */
2679 xhci_dbg(xhci, "Setting up input context for "
2680 "configure endpoint command\n");
2681 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2682 ep_index, &deq_state);
2683 }
2684 }
2685
2686 /* Deal with stalled endpoints. The core should have sent the control message
2687 * to clear the halt condition. However, we need to make the xHCI hardware
2688 * reset its sequence number, since a device will expect a sequence number of
2689 * zero after the halt condition is cleared.
2690 * Context: in_interrupt
2691 */
2692 void xhci_endpoint_reset(struct usb_hcd *hcd,
2693 struct usb_host_endpoint *ep)
2694 {
2695 struct xhci_hcd *xhci;
2696 struct usb_device *udev;
2697 unsigned int ep_index;
2698 unsigned long flags;
2699 int ret;
2700 struct xhci_virt_ep *virt_ep;
2701
2702 xhci = hcd_to_xhci(hcd);
2703 udev = (struct usb_device *) ep->hcpriv;
2704 /* Called with a root hub endpoint (or an endpoint that wasn't added
2705 * with xhci_add_endpoint()
2706 */
2707 if (!ep->hcpriv)
2708 return;
2709 ep_index = xhci_get_endpoint_index(&ep->desc);
2710 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2711 if (!virt_ep->stopped_td) {
2712 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2713 ep->desc.bEndpointAddress);
2714 return;
2715 }
2716 if (usb_endpoint_xfer_control(&ep->desc)) {
2717 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2718 return;
2719 }
2720
2721 xhci_dbg(xhci, "Queueing reset endpoint command\n");
2722 spin_lock_irqsave(&xhci->lock, flags);
2723 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2724 /*
2725 * Can't change the ring dequeue pointer until it's transitioned to the
2726 * stopped state, which is only upon a successful reset endpoint
2727 * command. Better hope that last command worked!
2728 */
2729 if (!ret) {
2730 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2731 kfree(virt_ep->stopped_td);
2732 xhci_ring_cmd_db(xhci);
2733 }
2734 virt_ep->stopped_td = NULL;
2735 virt_ep->stopped_trb = NULL;
2736 virt_ep->stopped_stream = 0;
2737 spin_unlock_irqrestore(&xhci->lock, flags);
2738
2739 if (ret)
2740 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2741 }
2742
2743 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2744 struct usb_device *udev, struct usb_host_endpoint *ep,
2745 unsigned int slot_id)
2746 {
2747 int ret;
2748 unsigned int ep_index;
2749 unsigned int ep_state;
2750
2751 if (!ep)
2752 return -EINVAL;
2753 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2754 if (ret <= 0)
2755 return -EINVAL;
2756 if (ep->ss_ep_comp.bmAttributes == 0) {
2757 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2758 " descriptor for ep 0x%x does not support streams\n",
2759 ep->desc.bEndpointAddress);
2760 return -EINVAL;
2761 }
2762
2763 ep_index = xhci_get_endpoint_index(&ep->desc);
2764 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2765 if (ep_state & EP_HAS_STREAMS ||
2766 ep_state & EP_GETTING_STREAMS) {
2767 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2768 "already has streams set up.\n",
2769 ep->desc.bEndpointAddress);
2770 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2771 "dynamic stream context array reallocation.\n");
2772 return -EINVAL;
2773 }
2774 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2775 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2776 "endpoint 0x%x; URBs are pending.\n",
2777 ep->desc.bEndpointAddress);
2778 return -EINVAL;
2779 }
2780 return 0;
2781 }
2782
2783 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2784 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2785 {
2786 unsigned int max_streams;
2787
2788 /* The stream context array size must be a power of two */
2789 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2790 /*
2791 * Find out how many primary stream array entries the host controller
2792 * supports. Later we may use secondary stream arrays (similar to 2nd
2793 * level page entries), but that's an optional feature for xHCI host
2794 * controllers. xHCs must support at least 4 stream IDs.
2795 */
2796 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2797 if (*num_stream_ctxs > max_streams) {
2798 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2799 max_streams);
2800 *num_stream_ctxs = max_streams;
2801 *num_streams = max_streams;
2802 }
2803 }
2804
2805 /* Returns an error code if one of the endpoint already has streams.
2806 * This does not change any data structures, it only checks and gathers
2807 * information.
2808 */
2809 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2810 struct usb_device *udev,
2811 struct usb_host_endpoint **eps, unsigned int num_eps,
2812 unsigned int *num_streams, u32 *changed_ep_bitmask)
2813 {
2814 unsigned int max_streams;
2815 unsigned int endpoint_flag;
2816 int i;
2817 int ret;
2818
2819 for (i = 0; i < num_eps; i++) {
2820 ret = xhci_check_streams_endpoint(xhci, udev,
2821 eps[i], udev->slot_id);
2822 if (ret < 0)
2823 return ret;
2824
2825 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2826 if (max_streams < (*num_streams - 1)) {
2827 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2828 eps[i]->desc.bEndpointAddress,
2829 max_streams);
2830 *num_streams = max_streams+1;
2831 }
2832
2833 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2834 if (*changed_ep_bitmask & endpoint_flag)
2835 return -EINVAL;
2836 *changed_ep_bitmask |= endpoint_flag;
2837 }
2838 return 0;
2839 }
2840
2841 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2842 struct usb_device *udev,
2843 struct usb_host_endpoint **eps, unsigned int num_eps)
2844 {
2845 u32 changed_ep_bitmask = 0;
2846 unsigned int slot_id;
2847 unsigned int ep_index;
2848 unsigned int ep_state;
2849 int i;
2850
2851 slot_id = udev->slot_id;
2852 if (!xhci->devs[slot_id])
2853 return 0;
2854
2855 for (i = 0; i < num_eps; i++) {
2856 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2857 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2858 /* Are streams already being freed for the endpoint? */
2859 if (ep_state & EP_GETTING_NO_STREAMS) {
2860 xhci_warn(xhci, "WARN Can't disable streams for "
2861 "endpoint 0x%x\n, "
2862 "streams are being disabled already.",
2863 eps[i]->desc.bEndpointAddress);
2864 return 0;
2865 }
2866 /* Are there actually any streams to free? */
2867 if (!(ep_state & EP_HAS_STREAMS) &&
2868 !(ep_state & EP_GETTING_STREAMS)) {
2869 xhci_warn(xhci, "WARN Can't disable streams for "
2870 "endpoint 0x%x\n, "
2871 "streams are already disabled!",
2872 eps[i]->desc.bEndpointAddress);
2873 xhci_warn(xhci, "WARN xhci_free_streams() called "
2874 "with non-streams endpoint\n");
2875 return 0;
2876 }
2877 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2878 }
2879 return changed_ep_bitmask;
2880 }
2881
2882 /*
2883 * The USB device drivers use this function (though the HCD interface in USB
2884 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
2885 * coordinate mass storage command queueing across multiple endpoints (basically
2886 * a stream ID == a task ID).
2887 *
2888 * Setting up streams involves allocating the same size stream context array
2889 * for each endpoint and issuing a configure endpoint command for all endpoints.
2890 *
2891 * Don't allow the call to succeed if one endpoint only supports one stream
2892 * (which means it doesn't support streams at all).
2893 *
2894 * Drivers may get less stream IDs than they asked for, if the host controller
2895 * hardware or endpoints claim they can't support the number of requested
2896 * stream IDs.
2897 */
2898 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2899 struct usb_host_endpoint **eps, unsigned int num_eps,
2900 unsigned int num_streams, gfp_t mem_flags)
2901 {
2902 int i, ret;
2903 struct xhci_hcd *xhci;
2904 struct xhci_virt_device *vdev;
2905 struct xhci_command *config_cmd;
2906 unsigned int ep_index;
2907 unsigned int num_stream_ctxs;
2908 unsigned long flags;
2909 u32 changed_ep_bitmask = 0;
2910
2911 if (!eps)
2912 return -EINVAL;
2913
2914 /* Add one to the number of streams requested to account for
2915 * stream 0 that is reserved for xHCI usage.
2916 */
2917 num_streams += 1;
2918 xhci = hcd_to_xhci(hcd);
2919 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2920 num_streams);
2921
2922 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2923 if (!config_cmd) {
2924 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2925 return -ENOMEM;
2926 }
2927
2928 /* Check to make sure all endpoints are not already configured for
2929 * streams. While we're at it, find the maximum number of streams that
2930 * all the endpoints will support and check for duplicate endpoints.
2931 */
2932 spin_lock_irqsave(&xhci->lock, flags);
2933 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2934 num_eps, &num_streams, &changed_ep_bitmask);
2935 if (ret < 0) {
2936 xhci_free_command(xhci, config_cmd);
2937 spin_unlock_irqrestore(&xhci->lock, flags);
2938 return ret;
2939 }
2940 if (num_streams <= 1) {
2941 xhci_warn(xhci, "WARN: endpoints can't handle "
2942 "more than one stream.\n");
2943 xhci_free_command(xhci, config_cmd);
2944 spin_unlock_irqrestore(&xhci->lock, flags);
2945 return -EINVAL;
2946 }
2947 vdev = xhci->devs[udev->slot_id];
2948 /* Mark each endpoint as being in transition, so
2949 * xhci_urb_enqueue() will reject all URBs.
2950 */
2951 for (i = 0; i < num_eps; i++) {
2952 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2953 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2954 }
2955 spin_unlock_irqrestore(&xhci->lock, flags);
2956
2957 /* Setup internal data structures and allocate HW data structures for
2958 * streams (but don't install the HW structures in the input context
2959 * until we're sure all memory allocation succeeded).
2960 */
2961 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2962 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2963 num_stream_ctxs, num_streams);
2964
2965 for (i = 0; i < num_eps; i++) {
2966 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2967 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2968 num_stream_ctxs,
2969 num_streams, mem_flags);
2970 if (!vdev->eps[ep_index].stream_info)
2971 goto cleanup;
2972 /* Set maxPstreams in endpoint context and update deq ptr to
2973 * point to stream context array. FIXME
2974 */
2975 }
2976
2977 /* Set up the input context for a configure endpoint command. */
2978 for (i = 0; i < num_eps; i++) {
2979 struct xhci_ep_ctx *ep_ctx;
2980
2981 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2982 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2983
2984 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2985 vdev->out_ctx, ep_index);
2986 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2987 vdev->eps[ep_index].stream_info);
2988 }
2989 /* Tell the HW to drop its old copy of the endpoint context info
2990 * and add the updated copy from the input context.
2991 */
2992 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2993 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2994
2995 /* Issue and wait for the configure endpoint command */
2996 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2997 false, false);
2998
2999 /* xHC rejected the configure endpoint command for some reason, so we
3000 * leave the old ring intact and free our internal streams data
3001 * structure.
3002 */
3003 if (ret < 0)
3004 goto cleanup;
3005
3006 spin_lock_irqsave(&xhci->lock, flags);
3007 for (i = 0; i < num_eps; i++) {
3008 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3009 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3010 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3011 udev->slot_id, ep_index);
3012 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3013 }
3014 xhci_free_command(xhci, config_cmd);
3015 spin_unlock_irqrestore(&xhci->lock, flags);
3016
3017 /* Subtract 1 for stream 0, which drivers can't use */
3018 return num_streams - 1;
3019
3020 cleanup:
3021 /* If it didn't work, free the streams! */
3022 for (i = 0; i < num_eps; i++) {
3023 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3024 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3025 vdev->eps[ep_index].stream_info = NULL;
3026 /* FIXME Unset maxPstreams in endpoint context and
3027 * update deq ptr to point to normal string ring.
3028 */
3029 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3030 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3031 xhci_endpoint_zero(xhci, vdev, eps[i]);
3032 }
3033 xhci_free_command(xhci, config_cmd);
3034 return -ENOMEM;
3035 }
3036
3037 /* Transition the endpoint from using streams to being a "normal" endpoint
3038 * without streams.
3039 *
3040 * Modify the endpoint context state, submit a configure endpoint command,
3041 * and free all endpoint rings for streams if that completes successfully.
3042 */
3043 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3044 struct usb_host_endpoint **eps, unsigned int num_eps,
3045 gfp_t mem_flags)
3046 {
3047 int i, ret;
3048 struct xhci_hcd *xhci;
3049 struct xhci_virt_device *vdev;
3050 struct xhci_command *command;
3051 unsigned int ep_index;
3052 unsigned long flags;
3053 u32 changed_ep_bitmask;
3054
3055 xhci = hcd_to_xhci(hcd);
3056 vdev = xhci->devs[udev->slot_id];
3057
3058 /* Set up a configure endpoint command to remove the streams rings */
3059 spin_lock_irqsave(&xhci->lock, flags);
3060 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3061 udev, eps, num_eps);
3062 if (changed_ep_bitmask == 0) {
3063 spin_unlock_irqrestore(&xhci->lock, flags);
3064 return -EINVAL;
3065 }
3066
3067 /* Use the xhci_command structure from the first endpoint. We may have
3068 * allocated too many, but the driver may call xhci_free_streams() for
3069 * each endpoint it grouped into one call to xhci_alloc_streams().
3070 */
3071 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3072 command = vdev->eps[ep_index].stream_info->free_streams_command;
3073 for (i = 0; i < num_eps; i++) {
3074 struct xhci_ep_ctx *ep_ctx;
3075
3076 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3077 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3078 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3079 EP_GETTING_NO_STREAMS;
3080
3081 xhci_endpoint_copy(xhci, command->in_ctx,
3082 vdev->out_ctx, ep_index);
3083 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3084 &vdev->eps[ep_index]);
3085 }
3086 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3087 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3088 spin_unlock_irqrestore(&xhci->lock, flags);
3089
3090 /* Issue and wait for the configure endpoint command,
3091 * which must succeed.
3092 */
3093 ret = xhci_configure_endpoint(xhci, udev, command,
3094 false, true);
3095
3096 /* xHC rejected the configure endpoint command for some reason, so we
3097 * leave the streams rings intact.
3098 */
3099 if (ret < 0)
3100 return ret;
3101
3102 spin_lock_irqsave(&xhci->lock, flags);
3103 for (i = 0; i < num_eps; i++) {
3104 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3105 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3106 vdev->eps[ep_index].stream_info = NULL;
3107 /* FIXME Unset maxPstreams in endpoint context and
3108 * update deq ptr to point to normal string ring.
3109 */
3110 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3111 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3112 }
3113 spin_unlock_irqrestore(&xhci->lock, flags);
3114
3115 return 0;
3116 }
3117
3118 /*
3119 * Deletes endpoint resources for endpoints that were active before a Reset
3120 * Device command, or a Disable Slot command. The Reset Device command leaves
3121 * the control endpoint intact, whereas the Disable Slot command deletes it.
3122 *
3123 * Must be called with xhci->lock held.
3124 */
3125 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3126 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3127 {
3128 int i;
3129 unsigned int num_dropped_eps = 0;
3130 unsigned int drop_flags = 0;
3131
3132 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3133 if (virt_dev->eps[i].ring) {
3134 drop_flags |= 1 << i;
3135 num_dropped_eps++;
3136 }
3137 }
3138 xhci->num_active_eps -= num_dropped_eps;
3139 if (num_dropped_eps)
3140 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3141 "%u now active.\n",
3142 num_dropped_eps, drop_flags,
3143 xhci->num_active_eps);
3144 }
3145
3146 /*
3147 * This submits a Reset Device Command, which will set the device state to 0,
3148 * set the device address to 0, and disable all the endpoints except the default
3149 * control endpoint. The USB core should come back and call
3150 * xhci_address_device(), and then re-set up the configuration. If this is
3151 * called because of a usb_reset_and_verify_device(), then the old alternate
3152 * settings will be re-installed through the normal bandwidth allocation
3153 * functions.
3154 *
3155 * Wait for the Reset Device command to finish. Remove all structures
3156 * associated with the endpoints that were disabled. Clear the input device
3157 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3158 *
3159 * If the virt_dev to be reset does not exist or does not match the udev,
3160 * it means the device is lost, possibly due to the xHC restore error and
3161 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3162 * re-allocate the device.
3163 */
3164 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3165 {
3166 int ret, i;
3167 unsigned long flags;
3168 struct xhci_hcd *xhci;
3169 unsigned int slot_id;
3170 struct xhci_virt_device *virt_dev;
3171 struct xhci_command *reset_device_cmd;
3172 int timeleft;
3173 int last_freed_endpoint;
3174 struct xhci_slot_ctx *slot_ctx;
3175 int old_active_eps = 0;
3176
3177 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3178 if (ret <= 0)
3179 return ret;
3180 xhci = hcd_to_xhci(hcd);
3181 slot_id = udev->slot_id;
3182 virt_dev = xhci->devs[slot_id];
3183 if (!virt_dev) {
3184 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3185 "not exist. Re-allocate the device\n", slot_id);
3186 ret = xhci_alloc_dev(hcd, udev);
3187 if (ret == 1)
3188 return 0;
3189 else
3190 return -EINVAL;
3191 }
3192
3193 if (virt_dev->udev != udev) {
3194 /* If the virt_dev and the udev does not match, this virt_dev
3195 * may belong to another udev.
3196 * Re-allocate the device.
3197 */
3198 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3199 "not match the udev. Re-allocate the device\n",
3200 slot_id);
3201 ret = xhci_alloc_dev(hcd, udev);
3202 if (ret == 1)
3203 return 0;
3204 else
3205 return -EINVAL;
3206 }
3207
3208 /* If device is not setup, there is no point in resetting it */
3209 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3210 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3211 SLOT_STATE_DISABLED)
3212 return 0;
3213
3214 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3215 /* Allocate the command structure that holds the struct completion.
3216 * Assume we're in process context, since the normal device reset
3217 * process has to wait for the device anyway. Storage devices are
3218 * reset as part of error handling, so use GFP_NOIO instead of
3219 * GFP_KERNEL.
3220 */
3221 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3222 if (!reset_device_cmd) {
3223 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3224 return -ENOMEM;
3225 }
3226
3227 /* Attempt to submit the Reset Device command to the command ring */
3228 spin_lock_irqsave(&xhci->lock, flags);
3229 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3230
3231 /* Enqueue pointer can be left pointing to the link TRB,
3232 * we must handle that
3233 */
3234 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3235 reset_device_cmd->command_trb =
3236 xhci->cmd_ring->enq_seg->next->trbs;
3237
3238 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3239 ret = xhci_queue_reset_device(xhci, slot_id);
3240 if (ret) {
3241 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3242 list_del(&reset_device_cmd->cmd_list);
3243 spin_unlock_irqrestore(&xhci->lock, flags);
3244 goto command_cleanup;
3245 }
3246 xhci_ring_cmd_db(xhci);
3247 spin_unlock_irqrestore(&xhci->lock, flags);
3248
3249 /* Wait for the Reset Device command to finish */
3250 timeleft = wait_for_completion_interruptible_timeout(
3251 reset_device_cmd->completion,
3252 USB_CTRL_SET_TIMEOUT);
3253 if (timeleft <= 0) {
3254 xhci_warn(xhci, "%s while waiting for reset device command\n",
3255 timeleft == 0 ? "Timeout" : "Signal");
3256 spin_lock_irqsave(&xhci->lock, flags);
3257 /* The timeout might have raced with the event ring handler, so
3258 * only delete from the list if the item isn't poisoned.
3259 */
3260 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3261 list_del(&reset_device_cmd->cmd_list);
3262 spin_unlock_irqrestore(&xhci->lock, flags);
3263 ret = -ETIME;
3264 goto command_cleanup;
3265 }
3266
3267 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3268 * unless we tried to reset a slot ID that wasn't enabled,
3269 * or the device wasn't in the addressed or configured state.
3270 */
3271 ret = reset_device_cmd->status;
3272 switch (ret) {
3273 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3274 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3275 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3276 slot_id,
3277 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3278 xhci_info(xhci, "Not freeing device rings.\n");
3279 /* Don't treat this as an error. May change my mind later. */
3280 ret = 0;
3281 goto command_cleanup;
3282 case COMP_SUCCESS:
3283 xhci_dbg(xhci, "Successful reset device command.\n");
3284 break;
3285 default:
3286 if (xhci_is_vendor_info_code(xhci, ret))
3287 break;
3288 xhci_warn(xhci, "Unknown completion code %u for "
3289 "reset device command.\n", ret);
3290 ret = -EINVAL;
3291 goto command_cleanup;
3292 }
3293
3294 /* Free up host controller endpoint resources */
3295 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3296 spin_lock_irqsave(&xhci->lock, flags);
3297 /* Don't delete the default control endpoint resources */
3298 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3299 spin_unlock_irqrestore(&xhci->lock, flags);
3300 }
3301
3302 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3303 last_freed_endpoint = 1;
3304 for (i = 1; i < 31; ++i) {
3305 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3306
3307 if (ep->ep_state & EP_HAS_STREAMS) {
3308 xhci_free_stream_info(xhci, ep->stream_info);
3309 ep->stream_info = NULL;
3310 ep->ep_state &= ~EP_HAS_STREAMS;
3311 }
3312
3313 if (ep->ring) {
3314 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3315 last_freed_endpoint = i;
3316 }
3317 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3318 xhci_drop_ep_from_interval_table(xhci,
3319 &virt_dev->eps[i].bw_info,
3320 virt_dev->bw_table,
3321 udev,
3322 &virt_dev->eps[i],
3323 virt_dev->tt_info);
3324 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3325 }
3326 /* If necessary, update the number of active TTs on this root port */
3327 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3328
3329 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3330 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3331 ret = 0;
3332
3333 command_cleanup:
3334 xhci_free_command(xhci, reset_device_cmd);
3335 return ret;
3336 }
3337
3338 /*
3339 * At this point, the struct usb_device is about to go away, the device has
3340 * disconnected, and all traffic has been stopped and the endpoints have been
3341 * disabled. Free any HC data structures associated with that device.
3342 */
3343 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3344 {
3345 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3346 struct xhci_virt_device *virt_dev;
3347 unsigned long flags;
3348 u32 state;
3349 int i, ret;
3350
3351 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3352 /* If the host is halted due to driver unload, we still need to free the
3353 * device.
3354 */
3355 if (ret <= 0 && ret != -ENODEV)
3356 return;
3357
3358 virt_dev = xhci->devs[udev->slot_id];
3359
3360 /* Stop any wayward timer functions (which may grab the lock) */
3361 for (i = 0; i < 31; ++i) {
3362 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3363 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3364 }
3365
3366 if (udev->usb2_hw_lpm_enabled) {
3367 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3368 udev->usb2_hw_lpm_enabled = 0;
3369 }
3370
3371 spin_lock_irqsave(&xhci->lock, flags);
3372 /* Don't disable the slot if the host controller is dead. */
3373 state = xhci_readl(xhci, &xhci->op_regs->status);
3374 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3375 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3376 xhci_free_virt_device(xhci, udev->slot_id);
3377 spin_unlock_irqrestore(&xhci->lock, flags);
3378 return;
3379 }
3380
3381 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3382 spin_unlock_irqrestore(&xhci->lock, flags);
3383 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3384 return;
3385 }
3386 xhci_ring_cmd_db(xhci);
3387 spin_unlock_irqrestore(&xhci->lock, flags);
3388 /*
3389 * Event command completion handler will free any data structures
3390 * associated with the slot. XXX Can free sleep?
3391 */
3392 }
3393
3394 /*
3395 * Checks if we have enough host controller resources for the default control
3396 * endpoint.
3397 *
3398 * Must be called with xhci->lock held.
3399 */
3400 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3401 {
3402 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3403 xhci_dbg(xhci, "Not enough ep ctxs: "
3404 "%u active, need to add 1, limit is %u.\n",
3405 xhci->num_active_eps, xhci->limit_active_eps);
3406 return -ENOMEM;
3407 }
3408 xhci->num_active_eps += 1;
3409 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3410 xhci->num_active_eps);
3411 return 0;
3412 }
3413
3414
3415 /*
3416 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3417 * timed out, or allocating memory failed. Returns 1 on success.
3418 */
3419 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3420 {
3421 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3422 unsigned long flags;
3423 int timeleft;
3424 int ret;
3425
3426 spin_lock_irqsave(&xhci->lock, flags);
3427 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3428 if (ret) {
3429 spin_unlock_irqrestore(&xhci->lock, flags);
3430 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3431 return 0;
3432 }
3433 xhci_ring_cmd_db(xhci);
3434 spin_unlock_irqrestore(&xhci->lock, flags);
3435
3436 /* XXX: how much time for xHC slot assignment? */
3437 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3438 USB_CTRL_SET_TIMEOUT);
3439 if (timeleft <= 0) {
3440 xhci_warn(xhci, "%s while waiting for a slot\n",
3441 timeleft == 0 ? "Timeout" : "Signal");
3442 /* FIXME cancel the enable slot request */
3443 return 0;
3444 }
3445
3446 if (!xhci->slot_id) {
3447 xhci_err(xhci, "Error while assigning device slot ID\n");
3448 return 0;
3449 }
3450
3451 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3452 spin_lock_irqsave(&xhci->lock, flags);
3453 ret = xhci_reserve_host_control_ep_resources(xhci);
3454 if (ret) {
3455 spin_unlock_irqrestore(&xhci->lock, flags);
3456 xhci_warn(xhci, "Not enough host resources, "
3457 "active endpoint contexts = %u\n",
3458 xhci->num_active_eps);
3459 goto disable_slot;
3460 }
3461 spin_unlock_irqrestore(&xhci->lock, flags);
3462 }
3463 /* Use GFP_NOIO, since this function can be called from
3464 * xhci_discover_or_reset_device(), which may be called as part of
3465 * mass storage driver error handling.
3466 */
3467 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3468 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3469 goto disable_slot;
3470 }
3471 udev->slot_id = xhci->slot_id;
3472 /* Is this a LS or FS device under a HS hub? */
3473 /* Hub or peripherial? */
3474 return 1;
3475
3476 disable_slot:
3477 /* Disable slot, if we can do it without mem alloc */
3478 spin_lock_irqsave(&xhci->lock, flags);
3479 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3480 xhci_ring_cmd_db(xhci);
3481 spin_unlock_irqrestore(&xhci->lock, flags);
3482 return 0;
3483 }
3484
3485 /*
3486 * Issue an Address Device command (which will issue a SetAddress request to
3487 * the device).
3488 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3489 * we should only issue and wait on one address command at the same time.
3490 *
3491 * We add one to the device address issued by the hardware because the USB core
3492 * uses address 1 for the root hubs (even though they're not really devices).
3493 */
3494 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3495 {
3496 unsigned long flags;
3497 int timeleft;
3498 struct xhci_virt_device *virt_dev;
3499 int ret = 0;
3500 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3501 struct xhci_slot_ctx *slot_ctx;
3502 struct xhci_input_control_ctx *ctrl_ctx;
3503 u64 temp_64;
3504
3505 if (!udev->slot_id) {
3506 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3507 return -EINVAL;
3508 }
3509
3510 virt_dev = xhci->devs[udev->slot_id];
3511
3512 if (WARN_ON(!virt_dev)) {
3513 /*
3514 * In plug/unplug torture test with an NEC controller,
3515 * a zero-dereference was observed once due to virt_dev = 0.
3516 * Print useful debug rather than crash if it is observed again!
3517 */
3518 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3519 udev->slot_id);
3520 return -EINVAL;
3521 }
3522
3523 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3524 /*
3525 * If this is the first Set Address since device plug-in or
3526 * virt_device realloaction after a resume with an xHCI power loss,
3527 * then set up the slot context.
3528 */
3529 if (!slot_ctx->dev_info)
3530 xhci_setup_addressable_virt_dev(xhci, udev);
3531 /* Otherwise, update the control endpoint ring enqueue pointer. */
3532 else
3533 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3534 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3535 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3536 ctrl_ctx->drop_flags = 0;
3537
3538 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3539 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3540
3541 spin_lock_irqsave(&xhci->lock, flags);
3542 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3543 udev->slot_id);
3544 if (ret) {
3545 spin_unlock_irqrestore(&xhci->lock, flags);
3546 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3547 return ret;
3548 }
3549 xhci_ring_cmd_db(xhci);
3550 spin_unlock_irqrestore(&xhci->lock, flags);
3551
3552 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3553 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3554 USB_CTRL_SET_TIMEOUT);
3555 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3556 * the SetAddress() "recovery interval" required by USB and aborting the
3557 * command on a timeout.
3558 */
3559 if (timeleft <= 0) {
3560 xhci_warn(xhci, "%s while waiting for address device command\n",
3561 timeleft == 0 ? "Timeout" : "Signal");
3562 /* FIXME cancel the address device command */
3563 return -ETIME;
3564 }
3565
3566 switch (virt_dev->cmd_status) {
3567 case COMP_CTX_STATE:
3568 case COMP_EBADSLT:
3569 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3570 udev->slot_id);
3571 ret = -EINVAL;
3572 break;
3573 case COMP_TX_ERR:
3574 dev_warn(&udev->dev, "Device not responding to set address.\n");
3575 ret = -EPROTO;
3576 break;
3577 case COMP_DEV_ERR:
3578 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3579 "device command.\n");
3580 ret = -ENODEV;
3581 break;
3582 case COMP_SUCCESS:
3583 xhci_dbg(xhci, "Successful Address Device command\n");
3584 break;
3585 default:
3586 xhci_err(xhci, "ERROR: unexpected command completion "
3587 "code 0x%x.\n", virt_dev->cmd_status);
3588 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3589 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3590 ret = -EINVAL;
3591 break;
3592 }
3593 if (ret) {
3594 return ret;
3595 }
3596 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3597 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3598 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3599 udev->slot_id,
3600 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3601 (unsigned long long)
3602 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3603 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3604 (unsigned long long)virt_dev->out_ctx->dma);
3605 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3606 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3607 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3608 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3609 /*
3610 * USB core uses address 1 for the roothubs, so we add one to the
3611 * address given back to us by the HC.
3612 */
3613 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3614 /* Use kernel assigned address for devices; store xHC assigned
3615 * address locally. */
3616 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3617 + 1;
3618 /* Zero the input context control for later use */
3619 ctrl_ctx->add_flags = 0;
3620 ctrl_ctx->drop_flags = 0;
3621
3622 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3623
3624 return 0;
3625 }
3626
3627 #ifdef CONFIG_USB_SUSPEND
3628
3629 /* BESL to HIRD Encoding array for USB2 LPM */
3630 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3631 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3632
3633 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3634 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3635 struct usb_device *udev)
3636 {
3637 int u2del, besl, besl_host;
3638 int besl_device = 0;
3639 u32 field;
3640
3641 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3642 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3643
3644 if (field & USB_BESL_SUPPORT) {
3645 for (besl_host = 0; besl_host < 16; besl_host++) {
3646 if (xhci_besl_encoding[besl_host] >= u2del)
3647 break;
3648 }
3649 /* Use baseline BESL value as default */
3650 if (field & USB_BESL_BASELINE_VALID)
3651 besl_device = USB_GET_BESL_BASELINE(field);
3652 else if (field & USB_BESL_DEEP_VALID)
3653 besl_device = USB_GET_BESL_DEEP(field);
3654 } else {
3655 if (u2del <= 50)
3656 besl_host = 0;
3657 else
3658 besl_host = (u2del - 51) / 75 + 1;
3659 }
3660
3661 besl = besl_host + besl_device;
3662 if (besl > 15)
3663 besl = 15;
3664
3665 return besl;
3666 }
3667
3668 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3669 struct usb_device *udev)
3670 {
3671 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3672 struct dev_info *dev_info;
3673 __le32 __iomem **port_array;
3674 __le32 __iomem *addr, *pm_addr;
3675 u32 temp, dev_id;
3676 unsigned int port_num;
3677 unsigned long flags;
3678 int hird;
3679 int ret;
3680
3681 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3682 !udev->lpm_capable)
3683 return -EINVAL;
3684
3685 /* we only support lpm for non-hub device connected to root hub yet */
3686 if (!udev->parent || udev->parent->parent ||
3687 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3688 return -EINVAL;
3689
3690 spin_lock_irqsave(&xhci->lock, flags);
3691
3692 /* Look for devices in lpm_failed_devs list */
3693 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3694 le16_to_cpu(udev->descriptor.idProduct);
3695 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3696 if (dev_info->dev_id == dev_id) {
3697 ret = -EINVAL;
3698 goto finish;
3699 }
3700 }
3701
3702 port_array = xhci->usb2_ports;
3703 port_num = udev->portnum - 1;
3704
3705 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3706 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3707 ret = -EINVAL;
3708 goto finish;
3709 }
3710
3711 /*
3712 * Test USB 2.0 software LPM.
3713 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3714 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3715 * in the June 2011 errata release.
3716 */
3717 xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3718 /*
3719 * Set L1 Device Slot and HIRD/BESL.
3720 * Check device's USB 2.0 extension descriptor to determine whether
3721 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3722 */
3723 pm_addr = port_array[port_num] + 1;
3724 hird = xhci_calculate_hird_besl(xhci, udev);
3725 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3726 xhci_writel(xhci, temp, pm_addr);
3727
3728 /* Set port link state to U2(L1) */
3729 addr = port_array[port_num];
3730 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3731
3732 /* wait for ACK */
3733 spin_unlock_irqrestore(&xhci->lock, flags);
3734 msleep(10);
3735 spin_lock_irqsave(&xhci->lock, flags);
3736
3737 /* Check L1 Status */
3738 ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3739 if (ret != -ETIMEDOUT) {
3740 /* enter L1 successfully */
3741 temp = xhci_readl(xhci, addr);
3742 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3743 port_num, temp);
3744 ret = 0;
3745 } else {
3746 temp = xhci_readl(xhci, pm_addr);
3747 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3748 port_num, temp & PORT_L1S_MASK);
3749 ret = -EINVAL;
3750 }
3751
3752 /* Resume the port */
3753 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3754
3755 spin_unlock_irqrestore(&xhci->lock, flags);
3756 msleep(10);
3757 spin_lock_irqsave(&xhci->lock, flags);
3758
3759 /* Clear PLC */
3760 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3761
3762 /* Check PORTSC to make sure the device is in the right state */
3763 if (!ret) {
3764 temp = xhci_readl(xhci, addr);
3765 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3766 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3767 (temp & PORT_PLS_MASK) != XDEV_U0) {
3768 xhci_dbg(xhci, "port L1 resume fail\n");
3769 ret = -EINVAL;
3770 }
3771 }
3772
3773 if (ret) {
3774 /* Insert dev to lpm_failed_devs list */
3775 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3776 "re-enumerate\n");
3777 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3778 if (!dev_info) {
3779 ret = -ENOMEM;
3780 goto finish;
3781 }
3782 dev_info->dev_id = dev_id;
3783 INIT_LIST_HEAD(&dev_info->list);
3784 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3785 } else {
3786 xhci_ring_device(xhci, udev->slot_id);
3787 }
3788
3789 finish:
3790 spin_unlock_irqrestore(&xhci->lock, flags);
3791 return ret;
3792 }
3793
3794 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3795 struct usb_device *udev, int enable)
3796 {
3797 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3798 __le32 __iomem **port_array;
3799 __le32 __iomem *pm_addr;
3800 u32 temp;
3801 unsigned int port_num;
3802 unsigned long flags;
3803 int hird;
3804
3805 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3806 !udev->lpm_capable)
3807 return -EPERM;
3808
3809 if (!udev->parent || udev->parent->parent ||
3810 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3811 return -EPERM;
3812
3813 if (udev->usb2_hw_lpm_capable != 1)
3814 return -EPERM;
3815
3816 spin_lock_irqsave(&xhci->lock, flags);
3817
3818 port_array = xhci->usb2_ports;
3819 port_num = udev->portnum - 1;
3820 pm_addr = port_array[port_num] + 1;
3821 temp = xhci_readl(xhci, pm_addr);
3822
3823 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3824 enable ? "enable" : "disable", port_num);
3825
3826 hird = xhci_calculate_hird_besl(xhci, udev);
3827
3828 if (enable) {
3829 temp &= ~PORT_HIRD_MASK;
3830 temp |= PORT_HIRD(hird) | PORT_RWE;
3831 xhci_writel(xhci, temp, pm_addr);
3832 temp = xhci_readl(xhci, pm_addr);
3833 temp |= PORT_HLE;
3834 xhci_writel(xhci, temp, pm_addr);
3835 } else {
3836 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3837 xhci_writel(xhci, temp, pm_addr);
3838 }
3839
3840 spin_unlock_irqrestore(&xhci->lock, flags);
3841 return 0;
3842 }
3843
3844 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3845 {
3846 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3847 int ret;
3848
3849 ret = xhci_usb2_software_lpm_test(hcd, udev);
3850 if (!ret) {
3851 xhci_dbg(xhci, "software LPM test succeed\n");
3852 if (xhci->hw_lpm_support == 1) {
3853 udev->usb2_hw_lpm_capable = 1;
3854 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3855 if (!ret)
3856 udev->usb2_hw_lpm_enabled = 1;
3857 }
3858 }
3859
3860 return 0;
3861 }
3862
3863 #else
3864
3865 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3866 struct usb_device *udev, int enable)
3867 {
3868 return 0;
3869 }
3870
3871 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3872 {
3873 return 0;
3874 }
3875
3876 #endif /* CONFIG_USB_SUSPEND */
3877
3878 /*---------------------- USB 3.0 Link PM functions ------------------------*/
3879
3880 #ifdef CONFIG_PM
3881 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
3882 static unsigned long long xhci_service_interval_to_ns(
3883 struct usb_endpoint_descriptor *desc)
3884 {
3885 return (1 << (desc->bInterval - 1)) * 125 * 1000;
3886 }
3887
3888 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
3889 enum usb3_link_state state)
3890 {
3891 unsigned long long sel;
3892 unsigned long long pel;
3893 unsigned int max_sel_pel;
3894 char *state_name;
3895
3896 switch (state) {
3897 case USB3_LPM_U1:
3898 /* Convert SEL and PEL stored in nanoseconds to microseconds */
3899 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
3900 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
3901 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
3902 state_name = "U1";
3903 break;
3904 case USB3_LPM_U2:
3905 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
3906 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
3907 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
3908 state_name = "U2";
3909 break;
3910 default:
3911 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
3912 __func__);
3913 return USB3_LPM_DISABLED;
3914 }
3915
3916 if (sel <= max_sel_pel && pel <= max_sel_pel)
3917 return USB3_LPM_DEVICE_INITIATED;
3918
3919 if (sel > max_sel_pel)
3920 dev_dbg(&udev->dev, "Device-initiated %s disabled "
3921 "due to long SEL %llu ms\n",
3922 state_name, sel);
3923 else
3924 dev_dbg(&udev->dev, "Device-initiated %s disabled "
3925 "due to long PEL %llu\n ms",
3926 state_name, pel);
3927 return USB3_LPM_DISABLED;
3928 }
3929
3930 /* Returns the hub-encoded U1 timeout value.
3931 * The U1 timeout should be the maximum of the following values:
3932 * - For control endpoints, U1 system exit latency (SEL) * 3
3933 * - For bulk endpoints, U1 SEL * 5
3934 * - For interrupt endpoints:
3935 * - Notification EPs, U1 SEL * 3
3936 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
3937 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
3938 */
3939 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
3940 struct usb_endpoint_descriptor *desc)
3941 {
3942 unsigned long long timeout_ns;
3943 int ep_type;
3944 int intr_type;
3945
3946 ep_type = usb_endpoint_type(desc);
3947 switch (ep_type) {
3948 case USB_ENDPOINT_XFER_CONTROL:
3949 timeout_ns = udev->u1_params.sel * 3;
3950 break;
3951 case USB_ENDPOINT_XFER_BULK:
3952 timeout_ns = udev->u1_params.sel * 5;
3953 break;
3954 case USB_ENDPOINT_XFER_INT:
3955 intr_type = usb_endpoint_interrupt_type(desc);
3956 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
3957 timeout_ns = udev->u1_params.sel * 3;
3958 break;
3959 }
3960 /* Otherwise the calculation is the same as isoc eps */
3961 case USB_ENDPOINT_XFER_ISOC:
3962 timeout_ns = xhci_service_interval_to_ns(desc);
3963 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
3964 if (timeout_ns < udev->u1_params.sel * 2)
3965 timeout_ns = udev->u1_params.sel * 2;
3966 break;
3967 default:
3968 return 0;
3969 }
3970
3971 /* The U1 timeout is encoded in 1us intervals. */
3972 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
3973 /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
3974 if (timeout_ns == USB3_LPM_DISABLED)
3975 timeout_ns++;
3976
3977 /* If the necessary timeout value is bigger than what we can set in the
3978 * USB 3.0 hub, we have to disable hub-initiated U1.
3979 */
3980 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
3981 return timeout_ns;
3982 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
3983 "due to long timeout %llu ms\n", timeout_ns);
3984 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
3985 }
3986
3987 /* Returns the hub-encoded U2 timeout value.
3988 * The U2 timeout should be the maximum of:
3989 * - 10 ms (to avoid the bandwidth impact on the scheduler)
3990 * - largest bInterval of any active periodic endpoint (to avoid going
3991 * into lower power link states between intervals).
3992 * - the U2 Exit Latency of the device
3993 */
3994 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
3995 struct usb_endpoint_descriptor *desc)
3996 {
3997 unsigned long long timeout_ns;
3998 unsigned long long u2_del_ns;
3999
4000 timeout_ns = 10 * 1000 * 1000;
4001
4002 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4003 (xhci_service_interval_to_ns(desc) > timeout_ns))
4004 timeout_ns = xhci_service_interval_to_ns(desc);
4005
4006 u2_del_ns = udev->bos->ss_cap->bU2DevExitLat * 1000;
4007 if (u2_del_ns > timeout_ns)
4008 timeout_ns = u2_del_ns;
4009
4010 /* The U2 timeout is encoded in 256us intervals */
4011 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4012 /* If the necessary timeout value is bigger than what we can set in the
4013 * USB 3.0 hub, we have to disable hub-initiated U2.
4014 */
4015 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4016 return timeout_ns;
4017 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4018 "due to long timeout %llu ms\n", timeout_ns);
4019 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4020 }
4021
4022 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4023 struct usb_device *udev,
4024 struct usb_endpoint_descriptor *desc,
4025 enum usb3_link_state state,
4026 u16 *timeout)
4027 {
4028 if (state == USB3_LPM_U1) {
4029 if (xhci->quirks & XHCI_INTEL_HOST)
4030 return xhci_calculate_intel_u1_timeout(udev, desc);
4031 } else {
4032 if (xhci->quirks & XHCI_INTEL_HOST)
4033 return xhci_calculate_intel_u2_timeout(udev, desc);
4034 }
4035
4036 return USB3_LPM_DISABLED;
4037 }
4038
4039 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4040 struct usb_device *udev,
4041 struct usb_endpoint_descriptor *desc,
4042 enum usb3_link_state state,
4043 u16 *timeout)
4044 {
4045 u16 alt_timeout;
4046
4047 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4048 desc, state, timeout);
4049
4050 /* If we found we can't enable hub-initiated LPM, or
4051 * the U1 or U2 exit latency was too high to allow
4052 * device-initiated LPM as well, just stop searching.
4053 */
4054 if (alt_timeout == USB3_LPM_DISABLED ||
4055 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4056 *timeout = alt_timeout;
4057 return -E2BIG;
4058 }
4059 if (alt_timeout > *timeout)
4060 *timeout = alt_timeout;
4061 return 0;
4062 }
4063
4064 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4065 struct usb_device *udev,
4066 struct usb_host_interface *alt,
4067 enum usb3_link_state state,
4068 u16 *timeout)
4069 {
4070 int j;
4071
4072 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4073 if (xhci_update_timeout_for_endpoint(xhci, udev,
4074 &alt->endpoint[j].desc, state, timeout))
4075 return -E2BIG;
4076 continue;
4077 }
4078 return 0;
4079 }
4080
4081 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4082 enum usb3_link_state state)
4083 {
4084 struct usb_device *parent;
4085 unsigned int num_hubs;
4086
4087 if (state == USB3_LPM_U2)
4088 return 0;
4089
4090 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4091 for (parent = udev->parent, num_hubs = 0; parent->parent;
4092 parent = parent->parent)
4093 num_hubs++;
4094
4095 if (num_hubs < 2)
4096 return 0;
4097
4098 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4099 " below second-tier hub.\n");
4100 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4101 "to decrease power consumption.\n");
4102 return -E2BIG;
4103 }
4104
4105 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4106 struct usb_device *udev,
4107 enum usb3_link_state state)
4108 {
4109 if (xhci->quirks & XHCI_INTEL_HOST)
4110 return xhci_check_intel_tier_policy(udev, state);
4111 return -EINVAL;
4112 }
4113
4114 /* Returns the U1 or U2 timeout that should be enabled.
4115 * If the tier check or timeout setting functions return with a non-zero exit
4116 * code, that means the timeout value has been finalized and we shouldn't look
4117 * at any more endpoints.
4118 */
4119 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4120 struct usb_device *udev, enum usb3_link_state state)
4121 {
4122 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4123 struct usb_host_config *config;
4124 char *state_name;
4125 int i;
4126 u16 timeout = USB3_LPM_DISABLED;
4127
4128 if (state == USB3_LPM_U1)
4129 state_name = "U1";
4130 else if (state == USB3_LPM_U2)
4131 state_name = "U2";
4132 else {
4133 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4134 state);
4135 return timeout;
4136 }
4137
4138 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4139 return timeout;
4140
4141 /* Gather some information about the currently installed configuration
4142 * and alternate interface settings.
4143 */
4144 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4145 state, &timeout))
4146 return timeout;
4147
4148 config = udev->actconfig;
4149 if (!config)
4150 return timeout;
4151
4152 for (i = 0; i < USB_MAXINTERFACES; i++) {
4153 struct usb_driver *driver;
4154 struct usb_interface *intf = config->interface[i];
4155
4156 if (!intf)
4157 continue;
4158
4159 /* Check if any currently bound drivers want hub-initiated LPM
4160 * disabled.
4161 */
4162 if (intf->dev.driver) {
4163 driver = to_usb_driver(intf->dev.driver);
4164 if (driver && driver->disable_hub_initiated_lpm) {
4165 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4166 "at request of driver %s\n",
4167 state_name, driver->name);
4168 return xhci_get_timeout_no_hub_lpm(udev, state);
4169 }
4170 }
4171
4172 /* Not sure how this could happen... */
4173 if (!intf->cur_altsetting)
4174 continue;
4175
4176 if (xhci_update_timeout_for_interface(xhci, udev,
4177 intf->cur_altsetting,
4178 state, &timeout))
4179 return timeout;
4180 }
4181 return timeout;
4182 }
4183
4184 /*
4185 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4186 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4187 */
4188 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4189 struct usb_device *udev, u16 max_exit_latency)
4190 {
4191 struct xhci_virt_device *virt_dev;
4192 struct xhci_command *command;
4193 struct xhci_input_control_ctx *ctrl_ctx;
4194 struct xhci_slot_ctx *slot_ctx;
4195 unsigned long flags;
4196 int ret;
4197
4198 spin_lock_irqsave(&xhci->lock, flags);
4199 if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4200 spin_unlock_irqrestore(&xhci->lock, flags);
4201 return 0;
4202 }
4203
4204 /* Attempt to issue an Evaluate Context command to change the MEL. */
4205 virt_dev = xhci->devs[udev->slot_id];
4206 command = xhci->lpm_command;
4207 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4208 spin_unlock_irqrestore(&xhci->lock, flags);
4209
4210 ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4211 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4212 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4213 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4214 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4215
4216 xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4217 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4218 xhci_dbg_ctx(xhci, command->in_ctx, 0);
4219
4220 /* Issue and wait for the evaluate context command. */
4221 ret = xhci_configure_endpoint(xhci, udev, command,
4222 true, true);
4223 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4224 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4225
4226 if (!ret) {
4227 spin_lock_irqsave(&xhci->lock, flags);
4228 virt_dev->current_mel = max_exit_latency;
4229 spin_unlock_irqrestore(&xhci->lock, flags);
4230 }
4231 return ret;
4232 }
4233
4234 static int calculate_max_exit_latency(struct usb_device *udev,
4235 enum usb3_link_state state_changed,
4236 u16 hub_encoded_timeout)
4237 {
4238 unsigned long long u1_mel_us = 0;
4239 unsigned long long u2_mel_us = 0;
4240 unsigned long long mel_us = 0;
4241 bool disabling_u1;
4242 bool disabling_u2;
4243 bool enabling_u1;
4244 bool enabling_u2;
4245
4246 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4247 hub_encoded_timeout == USB3_LPM_DISABLED);
4248 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4249 hub_encoded_timeout == USB3_LPM_DISABLED);
4250
4251 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4252 hub_encoded_timeout != USB3_LPM_DISABLED);
4253 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4254 hub_encoded_timeout != USB3_LPM_DISABLED);
4255
4256 /* If U1 was already enabled and we're not disabling it,
4257 * or we're going to enable U1, account for the U1 max exit latency.
4258 */
4259 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4260 enabling_u1)
4261 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4262 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4263 enabling_u2)
4264 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4265
4266 if (u1_mel_us > u2_mel_us)
4267 mel_us = u1_mel_us;
4268 else
4269 mel_us = u2_mel_us;
4270 /* xHCI host controller max exit latency field is only 16 bits wide. */
4271 if (mel_us > MAX_EXIT) {
4272 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4273 "is too big.\n", mel_us);
4274 return -E2BIG;
4275 }
4276 return mel_us;
4277 }
4278
4279 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4280 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4281 struct usb_device *udev, enum usb3_link_state state)
4282 {
4283 struct xhci_hcd *xhci;
4284 u16 hub_encoded_timeout;
4285 int mel;
4286 int ret;
4287
4288 xhci = hcd_to_xhci(hcd);
4289 /* The LPM timeout values are pretty host-controller specific, so don't
4290 * enable hub-initiated timeouts unless the vendor has provided
4291 * information about their timeout algorithm.
4292 */
4293 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4294 !xhci->devs[udev->slot_id])
4295 return USB3_LPM_DISABLED;
4296
4297 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4298 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4299 if (mel < 0) {
4300 /* Max Exit Latency is too big, disable LPM. */
4301 hub_encoded_timeout = USB3_LPM_DISABLED;
4302 mel = 0;
4303 }
4304
4305 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4306 if (ret)
4307 return ret;
4308 return hub_encoded_timeout;
4309 }
4310
4311 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4312 struct usb_device *udev, enum usb3_link_state state)
4313 {
4314 struct xhci_hcd *xhci;
4315 u16 mel;
4316 int ret;
4317
4318 xhci = hcd_to_xhci(hcd);
4319 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4320 !xhci->devs[udev->slot_id])
4321 return 0;
4322
4323 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4324 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4325 if (ret)
4326 return ret;
4327 return 0;
4328 }
4329 #else /* CONFIG_PM */
4330
4331 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4332 struct usb_device *udev, enum usb3_link_state state)
4333 {
4334 return USB3_LPM_DISABLED;
4335 }
4336
4337 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4338 struct usb_device *udev, enum usb3_link_state state)
4339 {
4340 return 0;
4341 }
4342 #endif /* CONFIG_PM */
4343
4344 /*-------------------------------------------------------------------------*/
4345
4346 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4347 * internal data structures for the device.
4348 */
4349 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4350 struct usb_tt *tt, gfp_t mem_flags)
4351 {
4352 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4353 struct xhci_virt_device *vdev;
4354 struct xhci_command *config_cmd;
4355 struct xhci_input_control_ctx *ctrl_ctx;
4356 struct xhci_slot_ctx *slot_ctx;
4357 unsigned long flags;
4358 unsigned think_time;
4359 int ret;
4360
4361 /* Ignore root hubs */
4362 if (!hdev->parent)
4363 return 0;
4364
4365 vdev = xhci->devs[hdev->slot_id];
4366 if (!vdev) {
4367 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4368 return -EINVAL;
4369 }
4370 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4371 if (!config_cmd) {
4372 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4373 return -ENOMEM;
4374 }
4375
4376 spin_lock_irqsave(&xhci->lock, flags);
4377 if (hdev->speed == USB_SPEED_HIGH &&
4378 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4379 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4380 xhci_free_command(xhci, config_cmd);
4381 spin_unlock_irqrestore(&xhci->lock, flags);
4382 return -ENOMEM;
4383 }
4384
4385 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4386 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4387 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4388 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4389 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4390 if (tt->multi)
4391 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4392 if (xhci->hci_version > 0x95) {
4393 xhci_dbg(xhci, "xHCI version %x needs hub "
4394 "TT think time and number of ports\n",
4395 (unsigned int) xhci->hci_version);
4396 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4397 /* Set TT think time - convert from ns to FS bit times.
4398 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4399 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4400 *
4401 * xHCI 1.0: this field shall be 0 if the device is not a
4402 * High-spped hub.
4403 */
4404 think_time = tt->think_time;
4405 if (think_time != 0)
4406 think_time = (think_time / 666) - 1;
4407 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4408 slot_ctx->tt_info |=
4409 cpu_to_le32(TT_THINK_TIME(think_time));
4410 } else {
4411 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4412 "TT think time or number of ports\n",
4413 (unsigned int) xhci->hci_version);
4414 }
4415 slot_ctx->dev_state = 0;
4416 spin_unlock_irqrestore(&xhci->lock, flags);
4417
4418 xhci_dbg(xhci, "Set up %s for hub device.\n",
4419 (xhci->hci_version > 0x95) ?
4420 "configure endpoint" : "evaluate context");
4421 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4422 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4423
4424 /* Issue and wait for the configure endpoint or
4425 * evaluate context command.
4426 */
4427 if (xhci->hci_version > 0x95)
4428 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4429 false, false);
4430 else
4431 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4432 true, false);
4433
4434 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4435 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4436
4437 xhci_free_command(xhci, config_cmd);
4438 return ret;
4439 }
4440
4441 int xhci_get_frame(struct usb_hcd *hcd)
4442 {
4443 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4444 /* EHCI mods by the periodic size. Why? */
4445 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4446 }
4447
4448 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4449 {
4450 struct xhci_hcd *xhci;
4451 struct device *dev = hcd->self.controller;
4452 int retval;
4453 u32 temp;
4454
4455 /* Accept arbitrarily long scatter-gather lists */
4456 hcd->self.sg_tablesize = ~0;
4457 /* XHCI controllers don't stop the ep queue on short packets :| */
4458 hcd->self.no_stop_on_short = 1;
4459
4460 if (usb_hcd_is_primary_hcd(hcd)) {
4461 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4462 if (!xhci)
4463 return -ENOMEM;
4464 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4465 xhci->main_hcd = hcd;
4466 /* Mark the first roothub as being USB 2.0.
4467 * The xHCI driver will register the USB 3.0 roothub.
4468 */
4469 hcd->speed = HCD_USB2;
4470 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4471 /*
4472 * USB 2.0 roothub under xHCI has an integrated TT,
4473 * (rate matching hub) as opposed to having an OHCI/UHCI
4474 * companion controller.
4475 */
4476 hcd->has_tt = 1;
4477 } else {
4478 /* xHCI private pointer was set in xhci_pci_probe for the second
4479 * registered roothub.
4480 */
4481 xhci = hcd_to_xhci(hcd);
4482 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4483 if (HCC_64BIT_ADDR(temp)) {
4484 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4485 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4486 } else {
4487 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4488 }
4489 return 0;
4490 }
4491
4492 xhci->cap_regs = hcd->regs;
4493 xhci->op_regs = hcd->regs +
4494 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4495 xhci->run_regs = hcd->regs +
4496 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4497 /* Cache read-only capability registers */
4498 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4499 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4500 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4501 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4502 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4503 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4504 xhci_print_registers(xhci);
4505
4506 get_quirks(dev, xhci);
4507
4508 /* Make sure the HC is halted. */
4509 retval = xhci_halt(xhci);
4510 if (retval)
4511 goto error;
4512
4513 xhci_dbg(xhci, "Resetting HCD\n");
4514 /* Reset the internal HC memory state and registers. */
4515 retval = xhci_reset(xhci);
4516 if (retval)
4517 goto error;
4518 xhci_dbg(xhci, "Reset complete\n");
4519
4520 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4521 if (HCC_64BIT_ADDR(temp)) {
4522 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4523 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4524 } else {
4525 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4526 }
4527
4528 xhci_dbg(xhci, "Calling HCD init\n");
4529 /* Initialize HCD and host controller data structures. */
4530 retval = xhci_init(hcd);
4531 if (retval)
4532 goto error;
4533 xhci_dbg(xhci, "Called HCD init\n");
4534 return 0;
4535 error:
4536 kfree(xhci);
4537 return retval;
4538 }
4539
4540 MODULE_DESCRIPTION(DRIVER_DESC);
4541 MODULE_AUTHOR(DRIVER_AUTHOR);
4542 MODULE_LICENSE("GPL");
4543
4544 static int __init xhci_hcd_init(void)
4545 {
4546 int retval;
4547
4548 retval = xhci_register_pci();
4549 if (retval < 0) {
4550 printk(KERN_DEBUG "Problem registering PCI driver.");
4551 return retval;
4552 }
4553 retval = xhci_register_plat();
4554 if (retval < 0) {
4555 printk(KERN_DEBUG "Problem registering platform driver.");
4556 goto unreg_pci;
4557 }
4558 /*
4559 * Check the compiler generated sizes of structures that must be laid
4560 * out in specific ways for hardware access.
4561 */
4562 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4563 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4564 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4565 /* xhci_device_control has eight fields, and also
4566 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4567 */
4568 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4569 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4570 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4571 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4572 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4573 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4574 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4575 return 0;
4576 unreg_pci:
4577 xhci_unregister_pci();
4578 return retval;
4579 }
4580 module_init(xhci_hcd_init);
4581
4582 static void __exit xhci_hcd_cleanup(void)
4583 {
4584 xhci_unregister_pci();
4585 xhci_unregister_plat();
4586 }
4587 module_exit(xhci_hcd_cleanup);
This page took 0.131216 seconds and 5 git commands to generate.