usbmon: Update pipe removal to suit my taste
[deliverable/linux.git] / drivers / usb / mon / mon_bin.c
1 /*
2 * The USB Monitor, inspired by Dave Harding's USBMon.
3 *
4 * This is a binary format reader.
5 *
6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
17 #include <linux/mm.h>
18
19 #include <asm/uaccess.h>
20
21 #include "usb_mon.h"
22
23 /*
24 * Defined by USB 2.0 clause 9.3, table 9.2.
25 */
26 #define SETUP_LEN 8
27
28 /* ioctl macros */
29 #define MON_IOC_MAGIC 0x92
30
31 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
32 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
33 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
34 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
35 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
36 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
37 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
38 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
39 #ifdef CONFIG_COMPAT
40 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
41 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
42 #endif
43
44 /*
45 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
46 * But it's all right. Just use a simple way to make sure the chunk is never
47 * smaller than a page.
48 *
49 * N.B. An application does not know our chunk size.
50 *
51 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
52 * page-sized chunks for the time being.
53 */
54 #define CHUNK_SIZE PAGE_SIZE
55 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
56
57 /*
58 * The magic limit was calculated so that it allows the monitoring
59 * application to pick data once in two ticks. This way, another application,
60 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
61 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
62 * enormous overhead built into the bus protocol, so we need about 1000 KB.
63 *
64 * This is still too much for most cases, where we just snoop a few
65 * descriptor fetches for enumeration. So, the default is a "reasonable"
66 * amount for systems with HZ=250 and incomplete bus saturation.
67 *
68 * XXX What about multi-megabyte URBs which take minutes to transfer?
69 */
70 #define BUFF_MAX CHUNK_ALIGN(1200*1024)
71 #define BUFF_DFL CHUNK_ALIGN(300*1024)
72 #define BUFF_MIN CHUNK_ALIGN(8*1024)
73
74 /*
75 * The per-event API header (2 per URB).
76 *
77 * This structure is seen in userland as defined by the documentation.
78 */
79 struct mon_bin_hdr {
80 u64 id; /* URB ID - from submission to callback */
81 unsigned char type; /* Same as in text API; extensible. */
82 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
83 unsigned char epnum; /* Endpoint number and transfer direction */
84 unsigned char devnum; /* Device address */
85 unsigned short busnum; /* Bus number */
86 char flag_setup;
87 char flag_data;
88 s64 ts_sec; /* gettimeofday */
89 s32 ts_usec; /* gettimeofday */
90 int status;
91 unsigned int len_urb; /* Length of data (submitted or actual) */
92 unsigned int len_cap; /* Delivered length */
93 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
94 };
95
96 /* per file statistic */
97 struct mon_bin_stats {
98 u32 queued;
99 u32 dropped;
100 };
101
102 struct mon_bin_get {
103 struct mon_bin_hdr __user *hdr; /* Only 48 bytes, not 64. */
104 void __user *data;
105 size_t alloc; /* Length of data (can be zero) */
106 };
107
108 struct mon_bin_mfetch {
109 u32 __user *offvec; /* Vector of events fetched */
110 u32 nfetch; /* Number of events to fetch (out: fetched) */
111 u32 nflush; /* Number of events to flush */
112 };
113
114 #ifdef CONFIG_COMPAT
115 struct mon_bin_get32 {
116 u32 hdr32;
117 u32 data32;
118 u32 alloc32;
119 };
120
121 struct mon_bin_mfetch32 {
122 u32 offvec32;
123 u32 nfetch32;
124 u32 nflush32;
125 };
126 #endif
127
128 /* Having these two values same prevents wrapping of the mon_bin_hdr */
129 #define PKT_ALIGN 64
130 #define PKT_SIZE 64
131
132 /* max number of USB bus supported */
133 #define MON_BIN_MAX_MINOR 128
134
135 /*
136 * The buffer: map of used pages.
137 */
138 struct mon_pgmap {
139 struct page *pg;
140 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
141 };
142
143 /*
144 * This gets associated with an open file struct.
145 */
146 struct mon_reader_bin {
147 /* The buffer: one per open. */
148 spinlock_t b_lock; /* Protect b_cnt, b_in */
149 unsigned int b_size; /* Current size of the buffer - bytes */
150 unsigned int b_cnt; /* Bytes used */
151 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
152 unsigned int b_read; /* Amount of read data in curr. pkt. */
153 struct mon_pgmap *b_vec; /* The map array */
154 wait_queue_head_t b_wait; /* Wait for data here */
155
156 struct mutex fetch_lock; /* Protect b_read, b_out */
157 int mmap_active;
158
159 /* A list of these is needed for "bus 0". Some time later. */
160 struct mon_reader r;
161
162 /* Stats */
163 unsigned int cnt_lost;
164 };
165
166 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
167 unsigned int offset)
168 {
169 return (struct mon_bin_hdr *)
170 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
171 }
172
173 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
174
175 static unsigned char xfer_to_pipe[4] = {
176 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
177 };
178
179 static struct class *mon_bin_class;
180 static dev_t mon_bin_dev0;
181 static struct cdev mon_bin_cdev;
182
183 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
184 unsigned int offset, unsigned int size);
185 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
186 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
187 static void mon_free_buff(struct mon_pgmap *map, int npages);
188
189 /*
190 * This is a "chunked memcpy". It does not manipulate any counters.
191 * But it returns the new offset for repeated application.
192 */
193 unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
194 unsigned int off, const unsigned char *from, unsigned int length)
195 {
196 unsigned int step_len;
197 unsigned char *buf;
198 unsigned int in_page;
199
200 while (length) {
201 /*
202 * Determine step_len.
203 */
204 step_len = length;
205 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
206 if (in_page < step_len)
207 step_len = in_page;
208
209 /*
210 * Copy data and advance pointers.
211 */
212 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
213 memcpy(buf, from, step_len);
214 if ((off += step_len) >= this->b_size) off = 0;
215 from += step_len;
216 length -= step_len;
217 }
218 return off;
219 }
220
221 /*
222 * This is a little worse than the above because it's "chunked copy_to_user".
223 * The return value is an error code, not an offset.
224 */
225 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
226 char __user *to, int length)
227 {
228 unsigned int step_len;
229 unsigned char *buf;
230 unsigned int in_page;
231
232 while (length) {
233 /*
234 * Determine step_len.
235 */
236 step_len = length;
237 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
238 if (in_page < step_len)
239 step_len = in_page;
240
241 /*
242 * Copy data and advance pointers.
243 */
244 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
245 if (copy_to_user(to, buf, step_len))
246 return -EINVAL;
247 if ((off += step_len) >= this->b_size) off = 0;
248 to += step_len;
249 length -= step_len;
250 }
251 return 0;
252 }
253
254 /*
255 * Allocate an (aligned) area in the buffer.
256 * This is called under b_lock.
257 * Returns ~0 on failure.
258 */
259 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
260 unsigned int size)
261 {
262 unsigned int offset;
263
264 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
265 if (rp->b_cnt + size > rp->b_size)
266 return ~0;
267 offset = rp->b_in;
268 rp->b_cnt += size;
269 if ((rp->b_in += size) >= rp->b_size)
270 rp->b_in -= rp->b_size;
271 return offset;
272 }
273
274 /*
275 * This is the same thing as mon_buff_area_alloc, only it does not allow
276 * buffers to wrap. This is needed by applications which pass references
277 * into mmap-ed buffers up their stacks (libpcap can do that).
278 *
279 * Currently, we always have the header stuck with the data, although
280 * it is not strictly speaking necessary.
281 *
282 * When a buffer would wrap, we place a filler packet to mark the space.
283 */
284 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
285 unsigned int size)
286 {
287 unsigned int offset;
288 unsigned int fill_size;
289
290 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
291 if (rp->b_cnt + size > rp->b_size)
292 return ~0;
293 if (rp->b_in + size > rp->b_size) {
294 /*
295 * This would wrap. Find if we still have space after
296 * skipping to the end of the buffer. If we do, place
297 * a filler packet and allocate a new packet.
298 */
299 fill_size = rp->b_size - rp->b_in;
300 if (rp->b_cnt + size + fill_size > rp->b_size)
301 return ~0;
302 mon_buff_area_fill(rp, rp->b_in, fill_size);
303
304 offset = 0;
305 rp->b_in = size;
306 rp->b_cnt += size + fill_size;
307 } else if (rp->b_in + size == rp->b_size) {
308 offset = rp->b_in;
309 rp->b_in = 0;
310 rp->b_cnt += size;
311 } else {
312 offset = rp->b_in;
313 rp->b_in += size;
314 rp->b_cnt += size;
315 }
316 return offset;
317 }
318
319 /*
320 * Return a few (kilo-)bytes to the head of the buffer.
321 * This is used if a DMA fetch fails.
322 */
323 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
324 {
325
326 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
327 rp->b_cnt -= size;
328 if (rp->b_in < size)
329 rp->b_in += rp->b_size;
330 rp->b_in -= size;
331 }
332
333 /*
334 * This has to be called under both b_lock and fetch_lock, because
335 * it accesses both b_cnt and b_out.
336 */
337 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
338 {
339
340 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
341 rp->b_cnt -= size;
342 if ((rp->b_out += size) >= rp->b_size)
343 rp->b_out -= rp->b_size;
344 }
345
346 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
347 unsigned int offset, unsigned int size)
348 {
349 struct mon_bin_hdr *ep;
350
351 ep = MON_OFF2HDR(rp, offset);
352 memset(ep, 0, PKT_SIZE);
353 ep->type = '@';
354 ep->len_cap = size - PKT_SIZE;
355 }
356
357 static inline char mon_bin_get_setup(unsigned char *setupb,
358 const struct urb *urb, char ev_type)
359 {
360
361 if (!usb_endpoint_xfer_control(&urb->ep->desc) || ev_type != 'S')
362 return '-';
363
364 if (urb->dev->bus->uses_dma &&
365 (urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
366 return mon_dmapeek(setupb, urb->setup_dma, SETUP_LEN);
367 }
368 if (urb->setup_packet == NULL)
369 return 'Z';
370
371 memcpy(setupb, urb->setup_packet, SETUP_LEN);
372 return 0;
373 }
374
375 static char mon_bin_get_data(const struct mon_reader_bin *rp,
376 unsigned int offset, struct urb *urb, unsigned int length)
377 {
378
379 if (urb->dev->bus->uses_dma &&
380 (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
381 mon_dmapeek_vec(rp, offset, urb->transfer_dma, length);
382 return 0;
383 }
384
385 if (urb->transfer_buffer == NULL)
386 return 'Z';
387
388 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
389 return 0;
390 }
391
392 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
393 char ev_type)
394 {
395 const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
396 unsigned long flags;
397 struct timeval ts;
398 unsigned int urb_length;
399 unsigned int offset;
400 unsigned int length;
401 unsigned char dir;
402 struct mon_bin_hdr *ep;
403 char data_tag = 0;
404
405 do_gettimeofday(&ts);
406
407 spin_lock_irqsave(&rp->b_lock, flags);
408
409 /*
410 * Find the maximum allowable length, then allocate space.
411 */
412 urb_length = (ev_type == 'S') ?
413 urb->transfer_buffer_length : urb->actual_length;
414 length = urb_length;
415
416 if (length >= rp->b_size/5)
417 length = rp->b_size/5;
418
419 if (usb_urb_dir_in(urb)) {
420 if (ev_type == 'S') {
421 length = 0;
422 data_tag = '<';
423 }
424 /* Cannot rely on endpoint number in case of control ep.0 */
425 dir = USB_DIR_IN;
426 } else {
427 if (ev_type == 'C') {
428 length = 0;
429 data_tag = '>';
430 }
431 dir = 0;
432 }
433
434 if (rp->mmap_active)
435 offset = mon_buff_area_alloc_contiguous(rp, length + PKT_SIZE);
436 else
437 offset = mon_buff_area_alloc(rp, length + PKT_SIZE);
438 if (offset == ~0) {
439 rp->cnt_lost++;
440 spin_unlock_irqrestore(&rp->b_lock, flags);
441 return;
442 }
443
444 ep = MON_OFF2HDR(rp, offset);
445 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
446
447 /*
448 * Fill the allocated area.
449 */
450 memset(ep, 0, PKT_SIZE);
451 ep->type = ev_type;
452 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
453 ep->epnum = dir | usb_endpoint_num(epd);
454 ep->devnum = urb->dev->devnum;
455 ep->busnum = urb->dev->bus->busnum;
456 ep->id = (unsigned long) urb;
457 ep->ts_sec = ts.tv_sec;
458 ep->ts_usec = ts.tv_usec;
459 ep->status = urb->status;
460 ep->len_urb = urb_length;
461 ep->len_cap = length;
462
463 ep->flag_setup = mon_bin_get_setup(ep->setup, urb, ev_type);
464 if (length != 0) {
465 ep->flag_data = mon_bin_get_data(rp, offset, urb, length);
466 if (ep->flag_data != 0) { /* Yes, it's 0x00, not '0' */
467 ep->len_cap = 0;
468 mon_buff_area_shrink(rp, length);
469 }
470 } else {
471 ep->flag_data = data_tag;
472 }
473
474 spin_unlock_irqrestore(&rp->b_lock, flags);
475
476 wake_up(&rp->b_wait);
477 }
478
479 static void mon_bin_submit(void *data, struct urb *urb)
480 {
481 struct mon_reader_bin *rp = data;
482 mon_bin_event(rp, urb, 'S');
483 }
484
485 static void mon_bin_complete(void *data, struct urb *urb)
486 {
487 struct mon_reader_bin *rp = data;
488 mon_bin_event(rp, urb, 'C');
489 }
490
491 static void mon_bin_error(void *data, struct urb *urb, int error)
492 {
493 struct mon_reader_bin *rp = data;
494 unsigned long flags;
495 unsigned int offset;
496 struct mon_bin_hdr *ep;
497
498 spin_lock_irqsave(&rp->b_lock, flags);
499
500 offset = mon_buff_area_alloc(rp, PKT_SIZE);
501 if (offset == ~0) {
502 /* Not incrementing cnt_lost. Just because. */
503 spin_unlock_irqrestore(&rp->b_lock, flags);
504 return;
505 }
506
507 ep = MON_OFF2HDR(rp, offset);
508
509 memset(ep, 0, PKT_SIZE);
510 ep->type = 'E';
511 ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
512 ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
513 ep->epnum |= usb_endpoint_num(&urb->ep->desc);
514 ep->devnum = urb->dev->devnum;
515 ep->busnum = urb->dev->bus->busnum;
516 ep->id = (unsigned long) urb;
517 ep->status = error;
518
519 ep->flag_setup = '-';
520 ep->flag_data = 'E';
521
522 spin_unlock_irqrestore(&rp->b_lock, flags);
523
524 wake_up(&rp->b_wait);
525 }
526
527 static int mon_bin_open(struct inode *inode, struct file *file)
528 {
529 struct mon_bus *mbus;
530 struct mon_reader_bin *rp;
531 size_t size;
532 int rc;
533
534 mutex_lock(&mon_lock);
535 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
536 mutex_unlock(&mon_lock);
537 return -ENODEV;
538 }
539 if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
540 printk(KERN_ERR TAG ": consistency error on open\n");
541 mutex_unlock(&mon_lock);
542 return -ENODEV;
543 }
544
545 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
546 if (rp == NULL) {
547 rc = -ENOMEM;
548 goto err_alloc;
549 }
550 spin_lock_init(&rp->b_lock);
551 init_waitqueue_head(&rp->b_wait);
552 mutex_init(&rp->fetch_lock);
553
554 rp->b_size = BUFF_DFL;
555
556 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
557 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
558 rc = -ENOMEM;
559 goto err_allocvec;
560 }
561
562 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
563 goto err_allocbuff;
564
565 rp->r.m_bus = mbus;
566 rp->r.r_data = rp;
567 rp->r.rnf_submit = mon_bin_submit;
568 rp->r.rnf_error = mon_bin_error;
569 rp->r.rnf_complete = mon_bin_complete;
570
571 mon_reader_add(mbus, &rp->r);
572
573 file->private_data = rp;
574 mutex_unlock(&mon_lock);
575 return 0;
576
577 err_allocbuff:
578 kfree(rp->b_vec);
579 err_allocvec:
580 kfree(rp);
581 err_alloc:
582 mutex_unlock(&mon_lock);
583 return rc;
584 }
585
586 /*
587 * Extract an event from buffer and copy it to user space.
588 * Wait if there is no event ready.
589 * Returns zero or error.
590 */
591 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
592 struct mon_bin_hdr __user *hdr, void __user *data, unsigned int nbytes)
593 {
594 unsigned long flags;
595 struct mon_bin_hdr *ep;
596 size_t step_len;
597 unsigned int offset;
598 int rc;
599
600 mutex_lock(&rp->fetch_lock);
601
602 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
603 mutex_unlock(&rp->fetch_lock);
604 return rc;
605 }
606
607 ep = MON_OFF2HDR(rp, rp->b_out);
608
609 if (copy_to_user(hdr, ep, sizeof(struct mon_bin_hdr))) {
610 mutex_unlock(&rp->fetch_lock);
611 return -EFAULT;
612 }
613
614 step_len = min(ep->len_cap, nbytes);
615 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
616
617 if (copy_from_buf(rp, offset, data, step_len)) {
618 mutex_unlock(&rp->fetch_lock);
619 return -EFAULT;
620 }
621
622 spin_lock_irqsave(&rp->b_lock, flags);
623 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
624 spin_unlock_irqrestore(&rp->b_lock, flags);
625 rp->b_read = 0;
626
627 mutex_unlock(&rp->fetch_lock);
628 return 0;
629 }
630
631 static int mon_bin_release(struct inode *inode, struct file *file)
632 {
633 struct mon_reader_bin *rp = file->private_data;
634 struct mon_bus* mbus = rp->r.m_bus;
635
636 mutex_lock(&mon_lock);
637
638 if (mbus->nreaders <= 0) {
639 printk(KERN_ERR TAG ": consistency error on close\n");
640 mutex_unlock(&mon_lock);
641 return 0;
642 }
643 mon_reader_del(mbus, &rp->r);
644
645 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
646 kfree(rp->b_vec);
647 kfree(rp);
648
649 mutex_unlock(&mon_lock);
650 return 0;
651 }
652
653 static ssize_t mon_bin_read(struct file *file, char __user *buf,
654 size_t nbytes, loff_t *ppos)
655 {
656 struct mon_reader_bin *rp = file->private_data;
657 unsigned long flags;
658 struct mon_bin_hdr *ep;
659 unsigned int offset;
660 size_t step_len;
661 char *ptr;
662 ssize_t done = 0;
663 int rc;
664
665 mutex_lock(&rp->fetch_lock);
666
667 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
668 mutex_unlock(&rp->fetch_lock);
669 return rc;
670 }
671
672 ep = MON_OFF2HDR(rp, rp->b_out);
673
674 if (rp->b_read < sizeof(struct mon_bin_hdr)) {
675 step_len = min(nbytes, sizeof(struct mon_bin_hdr) - rp->b_read);
676 ptr = ((char *)ep) + rp->b_read;
677 if (step_len && copy_to_user(buf, ptr, step_len)) {
678 mutex_unlock(&rp->fetch_lock);
679 return -EFAULT;
680 }
681 nbytes -= step_len;
682 buf += step_len;
683 rp->b_read += step_len;
684 done += step_len;
685 }
686
687 if (rp->b_read >= sizeof(struct mon_bin_hdr)) {
688 step_len = min(nbytes, (size_t)ep->len_cap);
689 offset = rp->b_out + PKT_SIZE;
690 offset += rp->b_read - sizeof(struct mon_bin_hdr);
691 if (offset >= rp->b_size)
692 offset -= rp->b_size;
693 if (copy_from_buf(rp, offset, buf, step_len)) {
694 mutex_unlock(&rp->fetch_lock);
695 return -EFAULT;
696 }
697 nbytes -= step_len;
698 buf += step_len;
699 rp->b_read += step_len;
700 done += step_len;
701 }
702
703 /*
704 * Check if whole packet was read, and if so, jump to the next one.
705 */
706 if (rp->b_read >= sizeof(struct mon_bin_hdr) + ep->len_cap) {
707 spin_lock_irqsave(&rp->b_lock, flags);
708 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
709 spin_unlock_irqrestore(&rp->b_lock, flags);
710 rp->b_read = 0;
711 }
712
713 mutex_unlock(&rp->fetch_lock);
714 return done;
715 }
716
717 /*
718 * Remove at most nevents from chunked buffer.
719 * Returns the number of removed events.
720 */
721 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
722 {
723 unsigned long flags;
724 struct mon_bin_hdr *ep;
725 int i;
726
727 mutex_lock(&rp->fetch_lock);
728 spin_lock_irqsave(&rp->b_lock, flags);
729 for (i = 0; i < nevents; ++i) {
730 if (MON_RING_EMPTY(rp))
731 break;
732
733 ep = MON_OFF2HDR(rp, rp->b_out);
734 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
735 }
736 spin_unlock_irqrestore(&rp->b_lock, flags);
737 rp->b_read = 0;
738 mutex_unlock(&rp->fetch_lock);
739 return i;
740 }
741
742 /*
743 * Fetch at most max event offsets into the buffer and put them into vec.
744 * The events are usually freed later with mon_bin_flush.
745 * Return the effective number of events fetched.
746 */
747 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
748 u32 __user *vec, unsigned int max)
749 {
750 unsigned int cur_out;
751 unsigned int bytes, avail;
752 unsigned int size;
753 unsigned int nevents;
754 struct mon_bin_hdr *ep;
755 unsigned long flags;
756 int rc;
757
758 mutex_lock(&rp->fetch_lock);
759
760 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
761 mutex_unlock(&rp->fetch_lock);
762 return rc;
763 }
764
765 spin_lock_irqsave(&rp->b_lock, flags);
766 avail = rp->b_cnt;
767 spin_unlock_irqrestore(&rp->b_lock, flags);
768
769 cur_out = rp->b_out;
770 nevents = 0;
771 bytes = 0;
772 while (bytes < avail) {
773 if (nevents >= max)
774 break;
775
776 ep = MON_OFF2HDR(rp, cur_out);
777 if (put_user(cur_out, &vec[nevents])) {
778 mutex_unlock(&rp->fetch_lock);
779 return -EFAULT;
780 }
781
782 nevents++;
783 size = ep->len_cap + PKT_SIZE;
784 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
785 if ((cur_out += size) >= rp->b_size)
786 cur_out -= rp->b_size;
787 bytes += size;
788 }
789
790 mutex_unlock(&rp->fetch_lock);
791 return nevents;
792 }
793
794 /*
795 * Count events. This is almost the same as the above mon_bin_fetch,
796 * only we do not store offsets into user vector, and we have no limit.
797 */
798 static int mon_bin_queued(struct mon_reader_bin *rp)
799 {
800 unsigned int cur_out;
801 unsigned int bytes, avail;
802 unsigned int size;
803 unsigned int nevents;
804 struct mon_bin_hdr *ep;
805 unsigned long flags;
806
807 mutex_lock(&rp->fetch_lock);
808
809 spin_lock_irqsave(&rp->b_lock, flags);
810 avail = rp->b_cnt;
811 spin_unlock_irqrestore(&rp->b_lock, flags);
812
813 cur_out = rp->b_out;
814 nevents = 0;
815 bytes = 0;
816 while (bytes < avail) {
817 ep = MON_OFF2HDR(rp, cur_out);
818
819 nevents++;
820 size = ep->len_cap + PKT_SIZE;
821 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
822 if ((cur_out += size) >= rp->b_size)
823 cur_out -= rp->b_size;
824 bytes += size;
825 }
826
827 mutex_unlock(&rp->fetch_lock);
828 return nevents;
829 }
830
831 /*
832 */
833 static int mon_bin_ioctl(struct inode *inode, struct file *file,
834 unsigned int cmd, unsigned long arg)
835 {
836 struct mon_reader_bin *rp = file->private_data;
837 // struct mon_bus* mbus = rp->r.m_bus;
838 int ret = 0;
839 struct mon_bin_hdr *ep;
840 unsigned long flags;
841
842 switch (cmd) {
843
844 case MON_IOCQ_URB_LEN:
845 /*
846 * N.B. This only returns the size of data, without the header.
847 */
848 spin_lock_irqsave(&rp->b_lock, flags);
849 if (!MON_RING_EMPTY(rp)) {
850 ep = MON_OFF2HDR(rp, rp->b_out);
851 ret = ep->len_cap;
852 }
853 spin_unlock_irqrestore(&rp->b_lock, flags);
854 break;
855
856 case MON_IOCQ_RING_SIZE:
857 ret = rp->b_size;
858 break;
859
860 case MON_IOCT_RING_SIZE:
861 /*
862 * Changing the buffer size will flush it's contents; the new
863 * buffer is allocated before releasing the old one to be sure
864 * the device will stay functional also in case of memory
865 * pressure.
866 */
867 {
868 int size;
869 struct mon_pgmap *vec;
870
871 if (arg < BUFF_MIN || arg > BUFF_MAX)
872 return -EINVAL;
873
874 size = CHUNK_ALIGN(arg);
875 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
876 GFP_KERNEL)) == NULL) {
877 ret = -ENOMEM;
878 break;
879 }
880
881 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
882 if (ret < 0) {
883 kfree(vec);
884 break;
885 }
886
887 mutex_lock(&rp->fetch_lock);
888 spin_lock_irqsave(&rp->b_lock, flags);
889 mon_free_buff(rp->b_vec, size/CHUNK_SIZE);
890 kfree(rp->b_vec);
891 rp->b_vec = vec;
892 rp->b_size = size;
893 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
894 rp->cnt_lost = 0;
895 spin_unlock_irqrestore(&rp->b_lock, flags);
896 mutex_unlock(&rp->fetch_lock);
897 }
898 break;
899
900 case MON_IOCH_MFLUSH:
901 ret = mon_bin_flush(rp, arg);
902 break;
903
904 case MON_IOCX_GET:
905 {
906 struct mon_bin_get getb;
907
908 if (copy_from_user(&getb, (void __user *)arg,
909 sizeof(struct mon_bin_get)))
910 return -EFAULT;
911
912 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
913 return -EINVAL;
914 ret = mon_bin_get_event(file, rp,
915 getb.hdr, getb.data, (unsigned int)getb.alloc);
916 }
917 break;
918
919 #ifdef CONFIG_COMPAT
920 case MON_IOCX_GET32: {
921 struct mon_bin_get32 getb;
922
923 if (copy_from_user(&getb, (void __user *)arg,
924 sizeof(struct mon_bin_get32)))
925 return -EFAULT;
926
927 ret = mon_bin_get_event(file, rp,
928 compat_ptr(getb.hdr32), compat_ptr(getb.data32),
929 getb.alloc32);
930 }
931 break;
932 #endif
933
934 case MON_IOCX_MFETCH:
935 {
936 struct mon_bin_mfetch mfetch;
937 struct mon_bin_mfetch __user *uptr;
938
939 uptr = (struct mon_bin_mfetch __user *)arg;
940
941 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
942 return -EFAULT;
943
944 if (mfetch.nflush) {
945 ret = mon_bin_flush(rp, mfetch.nflush);
946 if (ret < 0)
947 return ret;
948 if (put_user(ret, &uptr->nflush))
949 return -EFAULT;
950 }
951 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
952 if (ret < 0)
953 return ret;
954 if (put_user(ret, &uptr->nfetch))
955 return -EFAULT;
956 ret = 0;
957 }
958 break;
959
960 #ifdef CONFIG_COMPAT
961 case MON_IOCX_MFETCH32:
962 {
963 struct mon_bin_mfetch32 mfetch;
964 struct mon_bin_mfetch32 __user *uptr;
965
966 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
967
968 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
969 return -EFAULT;
970
971 if (mfetch.nflush32) {
972 ret = mon_bin_flush(rp, mfetch.nflush32);
973 if (ret < 0)
974 return ret;
975 if (put_user(ret, &uptr->nflush32))
976 return -EFAULT;
977 }
978 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
979 mfetch.nfetch32);
980 if (ret < 0)
981 return ret;
982 if (put_user(ret, &uptr->nfetch32))
983 return -EFAULT;
984 ret = 0;
985 }
986 break;
987 #endif
988
989 case MON_IOCG_STATS: {
990 struct mon_bin_stats __user *sp;
991 unsigned int nevents;
992 unsigned int ndropped;
993
994 spin_lock_irqsave(&rp->b_lock, flags);
995 ndropped = rp->cnt_lost;
996 rp->cnt_lost = 0;
997 spin_unlock_irqrestore(&rp->b_lock, flags);
998 nevents = mon_bin_queued(rp);
999
1000 sp = (struct mon_bin_stats __user *)arg;
1001 if (put_user(rp->cnt_lost, &sp->dropped))
1002 return -EFAULT;
1003 if (put_user(nevents, &sp->queued))
1004 return -EFAULT;
1005
1006 }
1007 break;
1008
1009 default:
1010 return -ENOTTY;
1011 }
1012
1013 return ret;
1014 }
1015
1016 static unsigned int
1017 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1018 {
1019 struct mon_reader_bin *rp = file->private_data;
1020 unsigned int mask = 0;
1021 unsigned long flags;
1022
1023 if (file->f_mode & FMODE_READ)
1024 poll_wait(file, &rp->b_wait, wait);
1025
1026 spin_lock_irqsave(&rp->b_lock, flags);
1027 if (!MON_RING_EMPTY(rp))
1028 mask |= POLLIN | POLLRDNORM; /* readable */
1029 spin_unlock_irqrestore(&rp->b_lock, flags);
1030 return mask;
1031 }
1032
1033 /*
1034 * open and close: just keep track of how many times the device is
1035 * mapped, to use the proper memory allocation function.
1036 */
1037 static void mon_bin_vma_open(struct vm_area_struct *vma)
1038 {
1039 struct mon_reader_bin *rp = vma->vm_private_data;
1040 rp->mmap_active++;
1041 }
1042
1043 static void mon_bin_vma_close(struct vm_area_struct *vma)
1044 {
1045 struct mon_reader_bin *rp = vma->vm_private_data;
1046 rp->mmap_active--;
1047 }
1048
1049 /*
1050 * Map ring pages to user space.
1051 */
1052 struct page *mon_bin_vma_nopage(struct vm_area_struct *vma,
1053 unsigned long address, int *type)
1054 {
1055 struct mon_reader_bin *rp = vma->vm_private_data;
1056 unsigned long offset, chunk_idx;
1057 struct page *pageptr;
1058
1059 offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
1060 if (offset >= rp->b_size)
1061 return NOPAGE_SIGBUS;
1062 chunk_idx = offset / CHUNK_SIZE;
1063 pageptr = rp->b_vec[chunk_idx].pg;
1064 get_page(pageptr);
1065 if (type)
1066 *type = VM_FAULT_MINOR;
1067 return pageptr;
1068 }
1069
1070 struct vm_operations_struct mon_bin_vm_ops = {
1071 .open = mon_bin_vma_open,
1072 .close = mon_bin_vma_close,
1073 .nopage = mon_bin_vma_nopage,
1074 };
1075
1076 int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1077 {
1078 /* don't do anything here: "nopage" will set up page table entries */
1079 vma->vm_ops = &mon_bin_vm_ops;
1080 vma->vm_flags |= VM_RESERVED;
1081 vma->vm_private_data = filp->private_data;
1082 mon_bin_vma_open(vma);
1083 return 0;
1084 }
1085
1086 struct file_operations mon_fops_binary = {
1087 .owner = THIS_MODULE,
1088 .open = mon_bin_open,
1089 .llseek = no_llseek,
1090 .read = mon_bin_read,
1091 /* .write = mon_text_write, */
1092 .poll = mon_bin_poll,
1093 .ioctl = mon_bin_ioctl,
1094 .release = mon_bin_release,
1095 };
1096
1097 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1098 {
1099 DECLARE_WAITQUEUE(waita, current);
1100 unsigned long flags;
1101
1102 add_wait_queue(&rp->b_wait, &waita);
1103 set_current_state(TASK_INTERRUPTIBLE);
1104
1105 spin_lock_irqsave(&rp->b_lock, flags);
1106 while (MON_RING_EMPTY(rp)) {
1107 spin_unlock_irqrestore(&rp->b_lock, flags);
1108
1109 if (file->f_flags & O_NONBLOCK) {
1110 set_current_state(TASK_RUNNING);
1111 remove_wait_queue(&rp->b_wait, &waita);
1112 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1113 }
1114 schedule();
1115 if (signal_pending(current)) {
1116 remove_wait_queue(&rp->b_wait, &waita);
1117 return -EINTR;
1118 }
1119 set_current_state(TASK_INTERRUPTIBLE);
1120
1121 spin_lock_irqsave(&rp->b_lock, flags);
1122 }
1123 spin_unlock_irqrestore(&rp->b_lock, flags);
1124
1125 set_current_state(TASK_RUNNING);
1126 remove_wait_queue(&rp->b_wait, &waita);
1127 return 0;
1128 }
1129
1130 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1131 {
1132 int n;
1133 unsigned long vaddr;
1134
1135 for (n = 0; n < npages; n++) {
1136 vaddr = get_zeroed_page(GFP_KERNEL);
1137 if (vaddr == 0) {
1138 while (n-- != 0)
1139 free_page((unsigned long) map[n].ptr);
1140 return -ENOMEM;
1141 }
1142 map[n].ptr = (unsigned char *) vaddr;
1143 map[n].pg = virt_to_page(vaddr);
1144 }
1145 return 0;
1146 }
1147
1148 static void mon_free_buff(struct mon_pgmap *map, int npages)
1149 {
1150 int n;
1151
1152 for (n = 0; n < npages; n++)
1153 free_page((unsigned long) map[n].ptr);
1154 }
1155
1156 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1157 {
1158 struct device *dev;
1159 unsigned minor = ubus? ubus->busnum: 0;
1160
1161 if (minor >= MON_BIN_MAX_MINOR)
1162 return 0;
1163
1164 dev = device_create(mon_bin_class, ubus? ubus->controller: NULL,
1165 MKDEV(MAJOR(mon_bin_dev0), minor), "usbmon%d", minor);
1166 if (IS_ERR(dev))
1167 return 0;
1168
1169 mbus->classdev = dev;
1170 return 1;
1171 }
1172
1173 void mon_bin_del(struct mon_bus *mbus)
1174 {
1175 device_destroy(mon_bin_class, mbus->classdev->devt);
1176 }
1177
1178 int __init mon_bin_init(void)
1179 {
1180 int rc;
1181
1182 mon_bin_class = class_create(THIS_MODULE, "usbmon");
1183 if (IS_ERR(mon_bin_class)) {
1184 rc = PTR_ERR(mon_bin_class);
1185 goto err_class;
1186 }
1187
1188 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1189 if (rc < 0)
1190 goto err_dev;
1191
1192 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1193 mon_bin_cdev.owner = THIS_MODULE;
1194
1195 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1196 if (rc < 0)
1197 goto err_add;
1198
1199 return 0;
1200
1201 err_add:
1202 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1203 err_dev:
1204 class_destroy(mon_bin_class);
1205 err_class:
1206 return rc;
1207 }
1208
1209 void mon_bin_exit(void)
1210 {
1211 cdev_del(&mon_bin_cdev);
1212 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1213 class_destroy(mon_bin_class);
1214 }
This page took 0.054003 seconds and 6 git commands to generate.