Pull acpi-debug into release branch
[deliverable/linux.git] / drivers / usb / mon / mon_bin.c
1 /*
2 * The USB Monitor, inspired by Dave Harding's USBMon.
3 *
4 * This is a binary format reader.
5 *
6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
17 #include <linux/mm.h>
18
19 #include <asm/uaccess.h>
20
21 #include "usb_mon.h"
22
23 /*
24 * Defined by USB 2.0 clause 9.3, table 9.2.
25 */
26 #define SETUP_LEN 8
27
28 /* ioctl macros */
29 #define MON_IOC_MAGIC 0x92
30
31 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
32 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
33 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
34 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
35 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
36 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
37 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
38 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
39 #ifdef CONFIG_COMPAT
40 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
41 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
42 #endif
43
44 /*
45 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
46 * But it's all right. Just use a simple way to make sure the chunk is never
47 * smaller than a page.
48 *
49 * N.B. An application does not know our chunk size.
50 *
51 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
52 * page-sized chunks for the time being.
53 */
54 #define CHUNK_SIZE PAGE_SIZE
55 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
56
57 /*
58 * The magic limit was calculated so that it allows the monitoring
59 * application to pick data once in two ticks. This way, another application,
60 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
61 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
62 * enormous overhead built into the bus protocol, so we need about 1000 KB.
63 *
64 * This is still too much for most cases, where we just snoop a few
65 * descriptor fetches for enumeration. So, the default is a "reasonable"
66 * amount for systems with HZ=250 and incomplete bus saturation.
67 *
68 * XXX What about multi-megabyte URBs which take minutes to transfer?
69 */
70 #define BUFF_MAX CHUNK_ALIGN(1200*1024)
71 #define BUFF_DFL CHUNK_ALIGN(300*1024)
72 #define BUFF_MIN CHUNK_ALIGN(8*1024)
73
74 /*
75 * The per-event API header (2 per URB).
76 *
77 * This structure is seen in userland as defined by the documentation.
78 */
79 struct mon_bin_hdr {
80 u64 id; /* URB ID - from submission to callback */
81 unsigned char type; /* Same as in text API; extensible. */
82 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
83 unsigned char epnum; /* Endpoint number and transfer direction */
84 unsigned char devnum; /* Device address */
85 unsigned short busnum; /* Bus number */
86 char flag_setup;
87 char flag_data;
88 s64 ts_sec; /* gettimeofday */
89 s32 ts_usec; /* gettimeofday */
90 int status;
91 unsigned int len_urb; /* Length of data (submitted or actual) */
92 unsigned int len_cap; /* Delivered length */
93 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
94 };
95
96 /* per file statistic */
97 struct mon_bin_stats {
98 u32 queued;
99 u32 dropped;
100 };
101
102 struct mon_bin_get {
103 struct mon_bin_hdr __user *hdr; /* Only 48 bytes, not 64. */
104 void __user *data;
105 size_t alloc; /* Length of data (can be zero) */
106 };
107
108 struct mon_bin_mfetch {
109 u32 __user *offvec; /* Vector of events fetched */
110 u32 nfetch; /* Number of events to fetch (out: fetched) */
111 u32 nflush; /* Number of events to flush */
112 };
113
114 #ifdef CONFIG_COMPAT
115 struct mon_bin_get32 {
116 u32 hdr32;
117 u32 data32;
118 u32 alloc32;
119 };
120
121 struct mon_bin_mfetch32 {
122 u32 offvec32;
123 u32 nfetch32;
124 u32 nflush32;
125 };
126 #endif
127
128 /* Having these two values same prevents wrapping of the mon_bin_hdr */
129 #define PKT_ALIGN 64
130 #define PKT_SIZE 64
131
132 /* max number of USB bus supported */
133 #define MON_BIN_MAX_MINOR 128
134
135 /*
136 * The buffer: map of used pages.
137 */
138 struct mon_pgmap {
139 struct page *pg;
140 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
141 };
142
143 /*
144 * This gets associated with an open file struct.
145 */
146 struct mon_reader_bin {
147 /* The buffer: one per open. */
148 spinlock_t b_lock; /* Protect b_cnt, b_in */
149 unsigned int b_size; /* Current size of the buffer - bytes */
150 unsigned int b_cnt; /* Bytes used */
151 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
152 unsigned int b_read; /* Amount of read data in curr. pkt. */
153 struct mon_pgmap *b_vec; /* The map array */
154 wait_queue_head_t b_wait; /* Wait for data here */
155
156 struct mutex fetch_lock; /* Protect b_read, b_out */
157 int mmap_active;
158
159 /* A list of these is needed for "bus 0". Some time later. */
160 struct mon_reader r;
161
162 /* Stats */
163 unsigned int cnt_lost;
164 };
165
166 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
167 unsigned int offset)
168 {
169 return (struct mon_bin_hdr *)
170 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
171 }
172
173 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
174
175 static struct class *mon_bin_class;
176 static dev_t mon_bin_dev0;
177 static struct cdev mon_bin_cdev;
178
179 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
180 unsigned int offset, unsigned int size);
181 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
182 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
183 static void mon_free_buff(struct mon_pgmap *map, int npages);
184
185 /*
186 * This is a "chunked memcpy". It does not manipulate any counters.
187 * But it returns the new offset for repeated application.
188 */
189 unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
190 unsigned int off, const unsigned char *from, unsigned int length)
191 {
192 unsigned int step_len;
193 unsigned char *buf;
194 unsigned int in_page;
195
196 while (length) {
197 /*
198 * Determine step_len.
199 */
200 step_len = length;
201 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
202 if (in_page < step_len)
203 step_len = in_page;
204
205 /*
206 * Copy data and advance pointers.
207 */
208 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
209 memcpy(buf, from, step_len);
210 if ((off += step_len) >= this->b_size) off = 0;
211 from += step_len;
212 length -= step_len;
213 }
214 return off;
215 }
216
217 /*
218 * This is a little worse than the above because it's "chunked copy_to_user".
219 * The return value is an error code, not an offset.
220 */
221 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
222 char __user *to, int length)
223 {
224 unsigned int step_len;
225 unsigned char *buf;
226 unsigned int in_page;
227
228 while (length) {
229 /*
230 * Determine step_len.
231 */
232 step_len = length;
233 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
234 if (in_page < step_len)
235 step_len = in_page;
236
237 /*
238 * Copy data and advance pointers.
239 */
240 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
241 if (copy_to_user(to, buf, step_len))
242 return -EINVAL;
243 if ((off += step_len) >= this->b_size) off = 0;
244 to += step_len;
245 length -= step_len;
246 }
247 return 0;
248 }
249
250 /*
251 * Allocate an (aligned) area in the buffer.
252 * This is called under b_lock.
253 * Returns ~0 on failure.
254 */
255 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
256 unsigned int size)
257 {
258 unsigned int offset;
259
260 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
261 if (rp->b_cnt + size > rp->b_size)
262 return ~0;
263 offset = rp->b_in;
264 rp->b_cnt += size;
265 if ((rp->b_in += size) >= rp->b_size)
266 rp->b_in -= rp->b_size;
267 return offset;
268 }
269
270 /*
271 * This is the same thing as mon_buff_area_alloc, only it does not allow
272 * buffers to wrap. This is needed by applications which pass references
273 * into mmap-ed buffers up their stacks (libpcap can do that).
274 *
275 * Currently, we always have the header stuck with the data, although
276 * it is not strictly speaking necessary.
277 *
278 * When a buffer would wrap, we place a filler packet to mark the space.
279 */
280 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
281 unsigned int size)
282 {
283 unsigned int offset;
284 unsigned int fill_size;
285
286 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
287 if (rp->b_cnt + size > rp->b_size)
288 return ~0;
289 if (rp->b_in + size > rp->b_size) {
290 /*
291 * This would wrap. Find if we still have space after
292 * skipping to the end of the buffer. If we do, place
293 * a filler packet and allocate a new packet.
294 */
295 fill_size = rp->b_size - rp->b_in;
296 if (rp->b_cnt + size + fill_size > rp->b_size)
297 return ~0;
298 mon_buff_area_fill(rp, rp->b_in, fill_size);
299
300 offset = 0;
301 rp->b_in = size;
302 rp->b_cnt += size + fill_size;
303 } else if (rp->b_in + size == rp->b_size) {
304 offset = rp->b_in;
305 rp->b_in = 0;
306 rp->b_cnt += size;
307 } else {
308 offset = rp->b_in;
309 rp->b_in += size;
310 rp->b_cnt += size;
311 }
312 return offset;
313 }
314
315 /*
316 * Return a few (kilo-)bytes to the head of the buffer.
317 * This is used if a DMA fetch fails.
318 */
319 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
320 {
321
322 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
323 rp->b_cnt -= size;
324 if (rp->b_in < size)
325 rp->b_in += rp->b_size;
326 rp->b_in -= size;
327 }
328
329 /*
330 * This has to be called under both b_lock and fetch_lock, because
331 * it accesses both b_cnt and b_out.
332 */
333 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
334 {
335
336 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
337 rp->b_cnt -= size;
338 if ((rp->b_out += size) >= rp->b_size)
339 rp->b_out -= rp->b_size;
340 }
341
342 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
343 unsigned int offset, unsigned int size)
344 {
345 struct mon_bin_hdr *ep;
346
347 ep = MON_OFF2HDR(rp, offset);
348 memset(ep, 0, PKT_SIZE);
349 ep->type = '@';
350 ep->len_cap = size - PKT_SIZE;
351 }
352
353 static inline char mon_bin_get_setup(unsigned char *setupb,
354 const struct urb *urb, char ev_type)
355 {
356
357 if (!usb_pipecontrol(urb->pipe) || ev_type != 'S')
358 return '-';
359
360 if (urb->dev->bus->uses_dma &&
361 (urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
362 return mon_dmapeek(setupb, urb->setup_dma, SETUP_LEN);
363 }
364 if (urb->setup_packet == NULL)
365 return 'Z';
366
367 memcpy(setupb, urb->setup_packet, SETUP_LEN);
368 return 0;
369 }
370
371 static char mon_bin_get_data(const struct mon_reader_bin *rp,
372 unsigned int offset, struct urb *urb, unsigned int length)
373 {
374
375 if (urb->dev->bus->uses_dma &&
376 (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
377 mon_dmapeek_vec(rp, offset, urb->transfer_dma, length);
378 return 0;
379 }
380
381 if (urb->transfer_buffer == NULL)
382 return 'Z';
383
384 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
385 return 0;
386 }
387
388 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
389 char ev_type)
390 {
391 unsigned long flags;
392 struct timeval ts;
393 unsigned int urb_length;
394 unsigned int offset;
395 unsigned int length;
396 struct mon_bin_hdr *ep;
397 char data_tag = 0;
398
399 do_gettimeofday(&ts);
400
401 spin_lock_irqsave(&rp->b_lock, flags);
402
403 /*
404 * Find the maximum allowable length, then allocate space.
405 */
406 urb_length = (ev_type == 'S') ?
407 urb->transfer_buffer_length : urb->actual_length;
408 length = urb_length;
409
410 if (length >= rp->b_size/5)
411 length = rp->b_size/5;
412
413 if (usb_pipein(urb->pipe)) {
414 if (ev_type == 'S') {
415 length = 0;
416 data_tag = '<';
417 }
418 } else {
419 if (ev_type == 'C') {
420 length = 0;
421 data_tag = '>';
422 }
423 }
424
425 if (rp->mmap_active)
426 offset = mon_buff_area_alloc_contiguous(rp, length + PKT_SIZE);
427 else
428 offset = mon_buff_area_alloc(rp, length + PKT_SIZE);
429 if (offset == ~0) {
430 rp->cnt_lost++;
431 spin_unlock_irqrestore(&rp->b_lock, flags);
432 return;
433 }
434
435 ep = MON_OFF2HDR(rp, offset);
436 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
437
438 /*
439 * Fill the allocated area.
440 */
441 memset(ep, 0, PKT_SIZE);
442 ep->type = ev_type;
443 ep->xfer_type = usb_pipetype(urb->pipe);
444 /* We use the fact that usb_pipein() returns 0x80 */
445 ep->epnum = usb_pipeendpoint(urb->pipe) | usb_pipein(urb->pipe);
446 ep->devnum = usb_pipedevice(urb->pipe);
447 ep->busnum = urb->dev->bus->busnum;
448 ep->id = (unsigned long) urb;
449 ep->ts_sec = ts.tv_sec;
450 ep->ts_usec = ts.tv_usec;
451 ep->status = urb->status;
452 ep->len_urb = urb_length;
453 ep->len_cap = length;
454
455 ep->flag_setup = mon_bin_get_setup(ep->setup, urb, ev_type);
456 if (length != 0) {
457 ep->flag_data = mon_bin_get_data(rp, offset, urb, length);
458 if (ep->flag_data != 0) { /* Yes, it's 0x00, not '0' */
459 ep->len_cap = 0;
460 mon_buff_area_shrink(rp, length);
461 }
462 } else {
463 ep->flag_data = data_tag;
464 }
465
466 spin_unlock_irqrestore(&rp->b_lock, flags);
467
468 wake_up(&rp->b_wait);
469 }
470
471 static void mon_bin_submit(void *data, struct urb *urb)
472 {
473 struct mon_reader_bin *rp = data;
474 mon_bin_event(rp, urb, 'S');
475 }
476
477 static void mon_bin_complete(void *data, struct urb *urb)
478 {
479 struct mon_reader_bin *rp = data;
480 mon_bin_event(rp, urb, 'C');
481 }
482
483 static void mon_bin_error(void *data, struct urb *urb, int error)
484 {
485 struct mon_reader_bin *rp = data;
486 unsigned long flags;
487 unsigned int offset;
488 struct mon_bin_hdr *ep;
489
490 spin_lock_irqsave(&rp->b_lock, flags);
491
492 offset = mon_buff_area_alloc(rp, PKT_SIZE);
493 if (offset == ~0) {
494 /* Not incrementing cnt_lost. Just because. */
495 spin_unlock_irqrestore(&rp->b_lock, flags);
496 return;
497 }
498
499 ep = MON_OFF2HDR(rp, offset);
500
501 memset(ep, 0, PKT_SIZE);
502 ep->type = 'E';
503 ep->xfer_type = usb_pipetype(urb->pipe);
504 /* We use the fact that usb_pipein() returns 0x80 */
505 ep->epnum = usb_pipeendpoint(urb->pipe) | usb_pipein(urb->pipe);
506 ep->devnum = usb_pipedevice(urb->pipe);
507 ep->busnum = urb->dev->bus->busnum;
508 ep->id = (unsigned long) urb;
509 ep->status = error;
510
511 ep->flag_setup = '-';
512 ep->flag_data = 'E';
513
514 spin_unlock_irqrestore(&rp->b_lock, flags);
515
516 wake_up(&rp->b_wait);
517 }
518
519 static int mon_bin_open(struct inode *inode, struct file *file)
520 {
521 struct mon_bus *mbus;
522 struct mon_reader_bin *rp;
523 size_t size;
524 int rc;
525
526 mutex_lock(&mon_lock);
527 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
528 mutex_unlock(&mon_lock);
529 return -ENODEV;
530 }
531 if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
532 printk(KERN_ERR TAG ": consistency error on open\n");
533 mutex_unlock(&mon_lock);
534 return -ENODEV;
535 }
536
537 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
538 if (rp == NULL) {
539 rc = -ENOMEM;
540 goto err_alloc;
541 }
542 spin_lock_init(&rp->b_lock);
543 init_waitqueue_head(&rp->b_wait);
544 mutex_init(&rp->fetch_lock);
545
546 rp->b_size = BUFF_DFL;
547
548 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
549 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
550 rc = -ENOMEM;
551 goto err_allocvec;
552 }
553
554 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
555 goto err_allocbuff;
556
557 rp->r.m_bus = mbus;
558 rp->r.r_data = rp;
559 rp->r.rnf_submit = mon_bin_submit;
560 rp->r.rnf_error = mon_bin_error;
561 rp->r.rnf_complete = mon_bin_complete;
562
563 mon_reader_add(mbus, &rp->r);
564
565 file->private_data = rp;
566 mutex_unlock(&mon_lock);
567 return 0;
568
569 err_allocbuff:
570 kfree(rp->b_vec);
571 err_allocvec:
572 kfree(rp);
573 err_alloc:
574 mutex_unlock(&mon_lock);
575 return rc;
576 }
577
578 /*
579 * Extract an event from buffer and copy it to user space.
580 * Wait if there is no event ready.
581 * Returns zero or error.
582 */
583 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
584 struct mon_bin_hdr __user *hdr, void __user *data, unsigned int nbytes)
585 {
586 unsigned long flags;
587 struct mon_bin_hdr *ep;
588 size_t step_len;
589 unsigned int offset;
590 int rc;
591
592 mutex_lock(&rp->fetch_lock);
593
594 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
595 mutex_unlock(&rp->fetch_lock);
596 return rc;
597 }
598
599 ep = MON_OFF2HDR(rp, rp->b_out);
600
601 if (copy_to_user(hdr, ep, sizeof(struct mon_bin_hdr))) {
602 mutex_unlock(&rp->fetch_lock);
603 return -EFAULT;
604 }
605
606 step_len = min(ep->len_cap, nbytes);
607 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
608
609 if (copy_from_buf(rp, offset, data, step_len)) {
610 mutex_unlock(&rp->fetch_lock);
611 return -EFAULT;
612 }
613
614 spin_lock_irqsave(&rp->b_lock, flags);
615 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
616 spin_unlock_irqrestore(&rp->b_lock, flags);
617 rp->b_read = 0;
618
619 mutex_unlock(&rp->fetch_lock);
620 return 0;
621 }
622
623 static int mon_bin_release(struct inode *inode, struct file *file)
624 {
625 struct mon_reader_bin *rp = file->private_data;
626 struct mon_bus* mbus = rp->r.m_bus;
627
628 mutex_lock(&mon_lock);
629
630 if (mbus->nreaders <= 0) {
631 printk(KERN_ERR TAG ": consistency error on close\n");
632 mutex_unlock(&mon_lock);
633 return 0;
634 }
635 mon_reader_del(mbus, &rp->r);
636
637 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
638 kfree(rp->b_vec);
639 kfree(rp);
640
641 mutex_unlock(&mon_lock);
642 return 0;
643 }
644
645 static ssize_t mon_bin_read(struct file *file, char __user *buf,
646 size_t nbytes, loff_t *ppos)
647 {
648 struct mon_reader_bin *rp = file->private_data;
649 unsigned long flags;
650 struct mon_bin_hdr *ep;
651 unsigned int offset;
652 size_t step_len;
653 char *ptr;
654 ssize_t done = 0;
655 int rc;
656
657 mutex_lock(&rp->fetch_lock);
658
659 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
660 mutex_unlock(&rp->fetch_lock);
661 return rc;
662 }
663
664 ep = MON_OFF2HDR(rp, rp->b_out);
665
666 if (rp->b_read < sizeof(struct mon_bin_hdr)) {
667 step_len = min(nbytes, sizeof(struct mon_bin_hdr) - rp->b_read);
668 ptr = ((char *)ep) + rp->b_read;
669 if (step_len && copy_to_user(buf, ptr, step_len)) {
670 mutex_unlock(&rp->fetch_lock);
671 return -EFAULT;
672 }
673 nbytes -= step_len;
674 buf += step_len;
675 rp->b_read += step_len;
676 done += step_len;
677 }
678
679 if (rp->b_read >= sizeof(struct mon_bin_hdr)) {
680 step_len = min(nbytes, (size_t)ep->len_cap);
681 offset = rp->b_out + PKT_SIZE;
682 offset += rp->b_read - sizeof(struct mon_bin_hdr);
683 if (offset >= rp->b_size)
684 offset -= rp->b_size;
685 if (copy_from_buf(rp, offset, buf, step_len)) {
686 mutex_unlock(&rp->fetch_lock);
687 return -EFAULT;
688 }
689 nbytes -= step_len;
690 buf += step_len;
691 rp->b_read += step_len;
692 done += step_len;
693 }
694
695 /*
696 * Check if whole packet was read, and if so, jump to the next one.
697 */
698 if (rp->b_read >= sizeof(struct mon_bin_hdr) + ep->len_cap) {
699 spin_lock_irqsave(&rp->b_lock, flags);
700 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
701 spin_unlock_irqrestore(&rp->b_lock, flags);
702 rp->b_read = 0;
703 }
704
705 mutex_unlock(&rp->fetch_lock);
706 return done;
707 }
708
709 /*
710 * Remove at most nevents from chunked buffer.
711 * Returns the number of removed events.
712 */
713 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
714 {
715 unsigned long flags;
716 struct mon_bin_hdr *ep;
717 int i;
718
719 mutex_lock(&rp->fetch_lock);
720 spin_lock_irqsave(&rp->b_lock, flags);
721 for (i = 0; i < nevents; ++i) {
722 if (MON_RING_EMPTY(rp))
723 break;
724
725 ep = MON_OFF2HDR(rp, rp->b_out);
726 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
727 }
728 spin_unlock_irqrestore(&rp->b_lock, flags);
729 rp->b_read = 0;
730 mutex_unlock(&rp->fetch_lock);
731 return i;
732 }
733
734 /*
735 * Fetch at most max event offsets into the buffer and put them into vec.
736 * The events are usually freed later with mon_bin_flush.
737 * Return the effective number of events fetched.
738 */
739 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
740 u32 __user *vec, unsigned int max)
741 {
742 unsigned int cur_out;
743 unsigned int bytes, avail;
744 unsigned int size;
745 unsigned int nevents;
746 struct mon_bin_hdr *ep;
747 unsigned long flags;
748 int rc;
749
750 mutex_lock(&rp->fetch_lock);
751
752 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
753 mutex_unlock(&rp->fetch_lock);
754 return rc;
755 }
756
757 spin_lock_irqsave(&rp->b_lock, flags);
758 avail = rp->b_cnt;
759 spin_unlock_irqrestore(&rp->b_lock, flags);
760
761 cur_out = rp->b_out;
762 nevents = 0;
763 bytes = 0;
764 while (bytes < avail) {
765 if (nevents >= max)
766 break;
767
768 ep = MON_OFF2HDR(rp, cur_out);
769 if (put_user(cur_out, &vec[nevents])) {
770 mutex_unlock(&rp->fetch_lock);
771 return -EFAULT;
772 }
773
774 nevents++;
775 size = ep->len_cap + PKT_SIZE;
776 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
777 if ((cur_out += size) >= rp->b_size)
778 cur_out -= rp->b_size;
779 bytes += size;
780 }
781
782 mutex_unlock(&rp->fetch_lock);
783 return nevents;
784 }
785
786 /*
787 * Count events. This is almost the same as the above mon_bin_fetch,
788 * only we do not store offsets into user vector, and we have no limit.
789 */
790 static int mon_bin_queued(struct mon_reader_bin *rp)
791 {
792 unsigned int cur_out;
793 unsigned int bytes, avail;
794 unsigned int size;
795 unsigned int nevents;
796 struct mon_bin_hdr *ep;
797 unsigned long flags;
798
799 mutex_lock(&rp->fetch_lock);
800
801 spin_lock_irqsave(&rp->b_lock, flags);
802 avail = rp->b_cnt;
803 spin_unlock_irqrestore(&rp->b_lock, flags);
804
805 cur_out = rp->b_out;
806 nevents = 0;
807 bytes = 0;
808 while (bytes < avail) {
809 ep = MON_OFF2HDR(rp, cur_out);
810
811 nevents++;
812 size = ep->len_cap + PKT_SIZE;
813 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
814 if ((cur_out += size) >= rp->b_size)
815 cur_out -= rp->b_size;
816 bytes += size;
817 }
818
819 mutex_unlock(&rp->fetch_lock);
820 return nevents;
821 }
822
823 /*
824 */
825 static int mon_bin_ioctl(struct inode *inode, struct file *file,
826 unsigned int cmd, unsigned long arg)
827 {
828 struct mon_reader_bin *rp = file->private_data;
829 // struct mon_bus* mbus = rp->r.m_bus;
830 int ret = 0;
831 struct mon_bin_hdr *ep;
832 unsigned long flags;
833
834 switch (cmd) {
835
836 case MON_IOCQ_URB_LEN:
837 /*
838 * N.B. This only returns the size of data, without the header.
839 */
840 spin_lock_irqsave(&rp->b_lock, flags);
841 if (!MON_RING_EMPTY(rp)) {
842 ep = MON_OFF2HDR(rp, rp->b_out);
843 ret = ep->len_cap;
844 }
845 spin_unlock_irqrestore(&rp->b_lock, flags);
846 break;
847
848 case MON_IOCQ_RING_SIZE:
849 ret = rp->b_size;
850 break;
851
852 case MON_IOCT_RING_SIZE:
853 /*
854 * Changing the buffer size will flush it's contents; the new
855 * buffer is allocated before releasing the old one to be sure
856 * the device will stay functional also in case of memory
857 * pressure.
858 */
859 {
860 int size;
861 struct mon_pgmap *vec;
862
863 if (arg < BUFF_MIN || arg > BUFF_MAX)
864 return -EINVAL;
865
866 size = CHUNK_ALIGN(arg);
867 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
868 GFP_KERNEL)) == NULL) {
869 ret = -ENOMEM;
870 break;
871 }
872
873 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
874 if (ret < 0) {
875 kfree(vec);
876 break;
877 }
878
879 mutex_lock(&rp->fetch_lock);
880 spin_lock_irqsave(&rp->b_lock, flags);
881 mon_free_buff(rp->b_vec, size/CHUNK_SIZE);
882 kfree(rp->b_vec);
883 rp->b_vec = vec;
884 rp->b_size = size;
885 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
886 rp->cnt_lost = 0;
887 spin_unlock_irqrestore(&rp->b_lock, flags);
888 mutex_unlock(&rp->fetch_lock);
889 }
890 break;
891
892 case MON_IOCH_MFLUSH:
893 ret = mon_bin_flush(rp, arg);
894 break;
895
896 case MON_IOCX_GET:
897 {
898 struct mon_bin_get getb;
899
900 if (copy_from_user(&getb, (void __user *)arg,
901 sizeof(struct mon_bin_get)))
902 return -EFAULT;
903
904 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
905 return -EINVAL;
906 ret = mon_bin_get_event(file, rp,
907 getb.hdr, getb.data, (unsigned int)getb.alloc);
908 }
909 break;
910
911 #ifdef CONFIG_COMPAT
912 case MON_IOCX_GET32: {
913 struct mon_bin_get32 getb;
914
915 if (copy_from_user(&getb, (void __user *)arg,
916 sizeof(struct mon_bin_get32)))
917 return -EFAULT;
918
919 ret = mon_bin_get_event(file, rp,
920 compat_ptr(getb.hdr32), compat_ptr(getb.data32),
921 getb.alloc32);
922 }
923 break;
924 #endif
925
926 case MON_IOCX_MFETCH:
927 {
928 struct mon_bin_mfetch mfetch;
929 struct mon_bin_mfetch __user *uptr;
930
931 uptr = (struct mon_bin_mfetch __user *)arg;
932
933 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
934 return -EFAULT;
935
936 if (mfetch.nflush) {
937 ret = mon_bin_flush(rp, mfetch.nflush);
938 if (ret < 0)
939 return ret;
940 if (put_user(ret, &uptr->nflush))
941 return -EFAULT;
942 }
943 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
944 if (ret < 0)
945 return ret;
946 if (put_user(ret, &uptr->nfetch))
947 return -EFAULT;
948 ret = 0;
949 }
950 break;
951
952 #ifdef CONFIG_COMPAT
953 case MON_IOCX_MFETCH32:
954 {
955 struct mon_bin_mfetch32 mfetch;
956 struct mon_bin_mfetch32 __user *uptr;
957
958 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
959
960 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
961 return -EFAULT;
962
963 if (mfetch.nflush32) {
964 ret = mon_bin_flush(rp, mfetch.nflush32);
965 if (ret < 0)
966 return ret;
967 if (put_user(ret, &uptr->nflush32))
968 return -EFAULT;
969 }
970 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
971 mfetch.nfetch32);
972 if (ret < 0)
973 return ret;
974 if (put_user(ret, &uptr->nfetch32))
975 return -EFAULT;
976 ret = 0;
977 }
978 break;
979 #endif
980
981 case MON_IOCG_STATS: {
982 struct mon_bin_stats __user *sp;
983 unsigned int nevents;
984 unsigned int ndropped;
985
986 spin_lock_irqsave(&rp->b_lock, flags);
987 ndropped = rp->cnt_lost;
988 rp->cnt_lost = 0;
989 spin_unlock_irqrestore(&rp->b_lock, flags);
990 nevents = mon_bin_queued(rp);
991
992 sp = (struct mon_bin_stats __user *)arg;
993 if (put_user(rp->cnt_lost, &sp->dropped))
994 return -EFAULT;
995 if (put_user(nevents, &sp->queued))
996 return -EFAULT;
997
998 }
999 break;
1000
1001 default:
1002 return -ENOTTY;
1003 }
1004
1005 return ret;
1006 }
1007
1008 static unsigned int
1009 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1010 {
1011 struct mon_reader_bin *rp = file->private_data;
1012 unsigned int mask = 0;
1013 unsigned long flags;
1014
1015 if (file->f_mode & FMODE_READ)
1016 poll_wait(file, &rp->b_wait, wait);
1017
1018 spin_lock_irqsave(&rp->b_lock, flags);
1019 if (!MON_RING_EMPTY(rp))
1020 mask |= POLLIN | POLLRDNORM; /* readable */
1021 spin_unlock_irqrestore(&rp->b_lock, flags);
1022 return mask;
1023 }
1024
1025 /*
1026 * open and close: just keep track of how many times the device is
1027 * mapped, to use the proper memory allocation function.
1028 */
1029 static void mon_bin_vma_open(struct vm_area_struct *vma)
1030 {
1031 struct mon_reader_bin *rp = vma->vm_private_data;
1032 rp->mmap_active++;
1033 }
1034
1035 static void mon_bin_vma_close(struct vm_area_struct *vma)
1036 {
1037 struct mon_reader_bin *rp = vma->vm_private_data;
1038 rp->mmap_active--;
1039 }
1040
1041 /*
1042 * Map ring pages to user space.
1043 */
1044 struct page *mon_bin_vma_nopage(struct vm_area_struct *vma,
1045 unsigned long address, int *type)
1046 {
1047 struct mon_reader_bin *rp = vma->vm_private_data;
1048 unsigned long offset, chunk_idx;
1049 struct page *pageptr;
1050
1051 offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
1052 if (offset >= rp->b_size)
1053 return NOPAGE_SIGBUS;
1054 chunk_idx = offset / CHUNK_SIZE;
1055 pageptr = rp->b_vec[chunk_idx].pg;
1056 get_page(pageptr);
1057 if (type)
1058 *type = VM_FAULT_MINOR;
1059 return pageptr;
1060 }
1061
1062 struct vm_operations_struct mon_bin_vm_ops = {
1063 .open = mon_bin_vma_open,
1064 .close = mon_bin_vma_close,
1065 .nopage = mon_bin_vma_nopage,
1066 };
1067
1068 int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1069 {
1070 /* don't do anything here: "nopage" will set up page table entries */
1071 vma->vm_ops = &mon_bin_vm_ops;
1072 vma->vm_flags |= VM_RESERVED;
1073 vma->vm_private_data = filp->private_data;
1074 mon_bin_vma_open(vma);
1075 return 0;
1076 }
1077
1078 struct file_operations mon_fops_binary = {
1079 .owner = THIS_MODULE,
1080 .open = mon_bin_open,
1081 .llseek = no_llseek,
1082 .read = mon_bin_read,
1083 /* .write = mon_text_write, */
1084 .poll = mon_bin_poll,
1085 .ioctl = mon_bin_ioctl,
1086 .release = mon_bin_release,
1087 };
1088
1089 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1090 {
1091 DECLARE_WAITQUEUE(waita, current);
1092 unsigned long flags;
1093
1094 add_wait_queue(&rp->b_wait, &waita);
1095 set_current_state(TASK_INTERRUPTIBLE);
1096
1097 spin_lock_irqsave(&rp->b_lock, flags);
1098 while (MON_RING_EMPTY(rp)) {
1099 spin_unlock_irqrestore(&rp->b_lock, flags);
1100
1101 if (file->f_flags & O_NONBLOCK) {
1102 set_current_state(TASK_RUNNING);
1103 remove_wait_queue(&rp->b_wait, &waita);
1104 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1105 }
1106 schedule();
1107 if (signal_pending(current)) {
1108 remove_wait_queue(&rp->b_wait, &waita);
1109 return -EINTR;
1110 }
1111 set_current_state(TASK_INTERRUPTIBLE);
1112
1113 spin_lock_irqsave(&rp->b_lock, flags);
1114 }
1115 spin_unlock_irqrestore(&rp->b_lock, flags);
1116
1117 set_current_state(TASK_RUNNING);
1118 remove_wait_queue(&rp->b_wait, &waita);
1119 return 0;
1120 }
1121
1122 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1123 {
1124 int n;
1125 unsigned long vaddr;
1126
1127 for (n = 0; n < npages; n++) {
1128 vaddr = get_zeroed_page(GFP_KERNEL);
1129 if (vaddr == 0) {
1130 while (n-- != 0)
1131 free_page((unsigned long) map[n].ptr);
1132 return -ENOMEM;
1133 }
1134 map[n].ptr = (unsigned char *) vaddr;
1135 map[n].pg = virt_to_page(vaddr);
1136 }
1137 return 0;
1138 }
1139
1140 static void mon_free_buff(struct mon_pgmap *map, int npages)
1141 {
1142 int n;
1143
1144 for (n = 0; n < npages; n++)
1145 free_page((unsigned long) map[n].ptr);
1146 }
1147
1148 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1149 {
1150 struct device *dev;
1151 unsigned minor = ubus? ubus->busnum: 0;
1152
1153 if (minor >= MON_BIN_MAX_MINOR)
1154 return 0;
1155
1156 dev = device_create(mon_bin_class, ubus? ubus->controller: NULL,
1157 MKDEV(MAJOR(mon_bin_dev0), minor), "usbmon%d", minor);
1158 if (IS_ERR(dev))
1159 return 0;
1160
1161 mbus->classdev = dev;
1162 return 1;
1163 }
1164
1165 void mon_bin_del(struct mon_bus *mbus)
1166 {
1167 device_destroy(mon_bin_class, mbus->classdev->devt);
1168 }
1169
1170 int __init mon_bin_init(void)
1171 {
1172 int rc;
1173
1174 mon_bin_class = class_create(THIS_MODULE, "usbmon");
1175 if (IS_ERR(mon_bin_class)) {
1176 rc = PTR_ERR(mon_bin_class);
1177 goto err_class;
1178 }
1179
1180 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1181 if (rc < 0)
1182 goto err_dev;
1183
1184 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1185 mon_bin_cdev.owner = THIS_MODULE;
1186
1187 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1188 if (rc < 0)
1189 goto err_add;
1190
1191 return 0;
1192
1193 err_add:
1194 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1195 err_dev:
1196 class_destroy(mon_bin_class);
1197 err_class:
1198 return rc;
1199 }
1200
1201 void mon_bin_exit(void)
1202 {
1203 cdev_del(&mon_bin_cdev);
1204 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1205 class_destroy(mon_bin_class);
1206 }
This page took 0.220345 seconds and 6 git commands to generate.