Merge branch 'juju' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394/linux13...
[deliverable/linux.git] / drivers / usb / mon / mon_bin.c
1 /*
2 * The USB Monitor, inspired by Dave Harding's USBMon.
3 *
4 * This is a binary format reader.
5 *
6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7 * Copyright (C) 2006 Pete Zaitcev (zaitcev@redhat.com)
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
17 #include <linux/mm.h>
18
19 #include <asm/uaccess.h>
20
21 #include "usb_mon.h"
22
23 /*
24 * Defined by USB 2.0 clause 9.3, table 9.2.
25 */
26 #define SETUP_LEN 8
27
28 /* ioctl macros */
29 #define MON_IOC_MAGIC 0x92
30
31 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
32 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
33 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
34 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
35 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
36 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
37 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
38 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
39 #ifdef CONFIG_COMPAT
40 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
41 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
42 #endif
43
44 /*
45 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
46 * But it's all right. Just use a simple way to make sure the chunk is never
47 * smaller than a page.
48 *
49 * N.B. An application does not know our chunk size.
50 *
51 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
52 * page-sized chunks for the time being.
53 */
54 #define CHUNK_SIZE PAGE_SIZE
55 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
56
57 /*
58 * The magic limit was calculated so that it allows the monitoring
59 * application to pick data once in two ticks. This way, another application,
60 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
61 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
62 * enormous overhead built into the bus protocol, so we need about 1000 KB.
63 *
64 * This is still too much for most cases, where we just snoop a few
65 * descriptor fetches for enumeration. So, the default is a "reasonable"
66 * amount for systems with HZ=250 and incomplete bus saturation.
67 *
68 * XXX What about multi-megabyte URBs which take minutes to transfer?
69 */
70 #define BUFF_MAX CHUNK_ALIGN(1200*1024)
71 #define BUFF_DFL CHUNK_ALIGN(300*1024)
72 #define BUFF_MIN CHUNK_ALIGN(8*1024)
73
74 /*
75 * The per-event API header (2 per URB).
76 *
77 * This structure is seen in userland as defined by the documentation.
78 */
79 struct mon_bin_hdr {
80 u64 id; /* URB ID - from submission to callback */
81 unsigned char type; /* Same as in text API; extensible. */
82 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
83 unsigned char epnum; /* Endpoint number and transfer direction */
84 unsigned char devnum; /* Device address */
85 unsigned short busnum; /* Bus number */
86 char flag_setup;
87 char flag_data;
88 s64 ts_sec; /* gettimeofday */
89 s32 ts_usec; /* gettimeofday */
90 int status;
91 unsigned int len_urb; /* Length of data (submitted or actual) */
92 unsigned int len_cap; /* Delivered length */
93 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
94 };
95
96 /* per file statistic */
97 struct mon_bin_stats {
98 u32 queued;
99 u32 dropped;
100 };
101
102 struct mon_bin_get {
103 struct mon_bin_hdr __user *hdr; /* Only 48 bytes, not 64. */
104 void __user *data;
105 size_t alloc; /* Length of data (can be zero) */
106 };
107
108 struct mon_bin_mfetch {
109 u32 __user *offvec; /* Vector of events fetched */
110 u32 nfetch; /* Number of events to fetch (out: fetched) */
111 u32 nflush; /* Number of events to flush */
112 };
113
114 #ifdef CONFIG_COMPAT
115 struct mon_bin_get32 {
116 u32 hdr32;
117 u32 data32;
118 u32 alloc32;
119 };
120
121 struct mon_bin_mfetch32 {
122 u32 offvec32;
123 u32 nfetch32;
124 u32 nflush32;
125 };
126 #endif
127
128 /* Having these two values same prevents wrapping of the mon_bin_hdr */
129 #define PKT_ALIGN 64
130 #define PKT_SIZE 64
131
132 /* max number of USB bus supported */
133 #define MON_BIN_MAX_MINOR 128
134
135 /*
136 * The buffer: map of used pages.
137 */
138 struct mon_pgmap {
139 struct page *pg;
140 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
141 };
142
143 /*
144 * This gets associated with an open file struct.
145 */
146 struct mon_reader_bin {
147 /* The buffer: one per open. */
148 spinlock_t b_lock; /* Protect b_cnt, b_in */
149 unsigned int b_size; /* Current size of the buffer - bytes */
150 unsigned int b_cnt; /* Bytes used */
151 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
152 unsigned int b_read; /* Amount of read data in curr. pkt. */
153 struct mon_pgmap *b_vec; /* The map array */
154 wait_queue_head_t b_wait; /* Wait for data here */
155
156 struct mutex fetch_lock; /* Protect b_read, b_out */
157 int mmap_active;
158
159 /* A list of these is needed for "bus 0". Some time later. */
160 struct mon_reader r;
161
162 /* Stats */
163 unsigned int cnt_lost;
164 };
165
166 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
167 unsigned int offset)
168 {
169 return (struct mon_bin_hdr *)
170 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
171 }
172
173 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
174
175 static dev_t mon_bin_dev0;
176 static struct cdev mon_bin_cdev;
177
178 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
179 unsigned int offset, unsigned int size);
180 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
181 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
182 static void mon_free_buff(struct mon_pgmap *map, int npages);
183
184 /*
185 * This is a "chunked memcpy". It does not manipulate any counters.
186 * But it returns the new offset for repeated application.
187 */
188 unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
189 unsigned int off, const unsigned char *from, unsigned int length)
190 {
191 unsigned int step_len;
192 unsigned char *buf;
193 unsigned int in_page;
194
195 while (length) {
196 /*
197 * Determine step_len.
198 */
199 step_len = length;
200 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
201 if (in_page < step_len)
202 step_len = in_page;
203
204 /*
205 * Copy data and advance pointers.
206 */
207 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
208 memcpy(buf, from, step_len);
209 if ((off += step_len) >= this->b_size) off = 0;
210 from += step_len;
211 length -= step_len;
212 }
213 return off;
214 }
215
216 /*
217 * This is a little worse than the above because it's "chunked copy_to_user".
218 * The return value is an error code, not an offset.
219 */
220 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
221 char __user *to, int length)
222 {
223 unsigned int step_len;
224 unsigned char *buf;
225 unsigned int in_page;
226
227 while (length) {
228 /*
229 * Determine step_len.
230 */
231 step_len = length;
232 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
233 if (in_page < step_len)
234 step_len = in_page;
235
236 /*
237 * Copy data and advance pointers.
238 */
239 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
240 if (copy_to_user(to, buf, step_len))
241 return -EINVAL;
242 if ((off += step_len) >= this->b_size) off = 0;
243 to += step_len;
244 length -= step_len;
245 }
246 return 0;
247 }
248
249 /*
250 * Allocate an (aligned) area in the buffer.
251 * This is called under b_lock.
252 * Returns ~0 on failure.
253 */
254 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
255 unsigned int size)
256 {
257 unsigned int offset;
258
259 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
260 if (rp->b_cnt + size > rp->b_size)
261 return ~0;
262 offset = rp->b_in;
263 rp->b_cnt += size;
264 if ((rp->b_in += size) >= rp->b_size)
265 rp->b_in -= rp->b_size;
266 return offset;
267 }
268
269 /*
270 * This is the same thing as mon_buff_area_alloc, only it does not allow
271 * buffers to wrap. This is needed by applications which pass references
272 * into mmap-ed buffers up their stacks (libpcap can do that).
273 *
274 * Currently, we always have the header stuck with the data, although
275 * it is not strictly speaking necessary.
276 *
277 * When a buffer would wrap, we place a filler packet to mark the space.
278 */
279 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
280 unsigned int size)
281 {
282 unsigned int offset;
283 unsigned int fill_size;
284
285 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
286 if (rp->b_cnt + size > rp->b_size)
287 return ~0;
288 if (rp->b_in + size > rp->b_size) {
289 /*
290 * This would wrap. Find if we still have space after
291 * skipping to the end of the buffer. If we do, place
292 * a filler packet and allocate a new packet.
293 */
294 fill_size = rp->b_size - rp->b_in;
295 if (rp->b_cnt + size + fill_size > rp->b_size)
296 return ~0;
297 mon_buff_area_fill(rp, rp->b_in, fill_size);
298
299 offset = 0;
300 rp->b_in = size;
301 rp->b_cnt += size + fill_size;
302 } else if (rp->b_in + size == rp->b_size) {
303 offset = rp->b_in;
304 rp->b_in = 0;
305 rp->b_cnt += size;
306 } else {
307 offset = rp->b_in;
308 rp->b_in += size;
309 rp->b_cnt += size;
310 }
311 return offset;
312 }
313
314 /*
315 * Return a few (kilo-)bytes to the head of the buffer.
316 * This is used if a DMA fetch fails.
317 */
318 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
319 {
320
321 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
322 rp->b_cnt -= size;
323 if (rp->b_in < size)
324 rp->b_in += rp->b_size;
325 rp->b_in -= size;
326 }
327
328 /*
329 * This has to be called under both b_lock and fetch_lock, because
330 * it accesses both b_cnt and b_out.
331 */
332 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
333 {
334
335 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
336 rp->b_cnt -= size;
337 if ((rp->b_out += size) >= rp->b_size)
338 rp->b_out -= rp->b_size;
339 }
340
341 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
342 unsigned int offset, unsigned int size)
343 {
344 struct mon_bin_hdr *ep;
345
346 ep = MON_OFF2HDR(rp, offset);
347 memset(ep, 0, PKT_SIZE);
348 ep->type = '@';
349 ep->len_cap = size - PKT_SIZE;
350 }
351
352 static inline char mon_bin_get_setup(unsigned char *setupb,
353 const struct urb *urb, char ev_type)
354 {
355
356 if (!usb_pipecontrol(urb->pipe) || ev_type != 'S')
357 return '-';
358
359 if (urb->dev->bus->uses_dma &&
360 (urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
361 return mon_dmapeek(setupb, urb->setup_dma, SETUP_LEN);
362 }
363 if (urb->setup_packet == NULL)
364 return 'Z';
365
366 memcpy(setupb, urb->setup_packet, SETUP_LEN);
367 return 0;
368 }
369
370 static char mon_bin_get_data(const struct mon_reader_bin *rp,
371 unsigned int offset, struct urb *urb, unsigned int length)
372 {
373
374 if (urb->dev->bus->uses_dma &&
375 (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
376 mon_dmapeek_vec(rp, offset, urb->transfer_dma, length);
377 return 0;
378 }
379
380 if (urb->transfer_buffer == NULL)
381 return 'Z';
382
383 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
384 return 0;
385 }
386
387 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
388 char ev_type)
389 {
390 unsigned long flags;
391 struct timeval ts;
392 unsigned int urb_length;
393 unsigned int offset;
394 unsigned int length;
395 struct mon_bin_hdr *ep;
396 char data_tag = 0;
397
398 do_gettimeofday(&ts);
399
400 spin_lock_irqsave(&rp->b_lock, flags);
401
402 /*
403 * Find the maximum allowable length, then allocate space.
404 */
405 urb_length = (ev_type == 'S') ?
406 urb->transfer_buffer_length : urb->actual_length;
407 length = urb_length;
408
409 if (length >= rp->b_size/5)
410 length = rp->b_size/5;
411
412 if (usb_pipein(urb->pipe)) {
413 if (ev_type == 'S') {
414 length = 0;
415 data_tag = '<';
416 }
417 } else {
418 if (ev_type == 'C') {
419 length = 0;
420 data_tag = '>';
421 }
422 }
423
424 if (rp->mmap_active)
425 offset = mon_buff_area_alloc_contiguous(rp, length + PKT_SIZE);
426 else
427 offset = mon_buff_area_alloc(rp, length + PKT_SIZE);
428 if (offset == ~0) {
429 rp->cnt_lost++;
430 spin_unlock_irqrestore(&rp->b_lock, flags);
431 return;
432 }
433
434 ep = MON_OFF2HDR(rp, offset);
435 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
436
437 /*
438 * Fill the allocated area.
439 */
440 memset(ep, 0, PKT_SIZE);
441 ep->type = ev_type;
442 ep->xfer_type = usb_pipetype(urb->pipe);
443 /* We use the fact that usb_pipein() returns 0x80 */
444 ep->epnum = usb_pipeendpoint(urb->pipe) | usb_pipein(urb->pipe);
445 ep->devnum = usb_pipedevice(urb->pipe);
446 ep->busnum = urb->dev->bus->busnum;
447 ep->id = (unsigned long) urb;
448 ep->ts_sec = ts.tv_sec;
449 ep->ts_usec = ts.tv_usec;
450 ep->status = urb->status;
451 ep->len_urb = urb_length;
452 ep->len_cap = length;
453
454 ep->flag_setup = mon_bin_get_setup(ep->setup, urb, ev_type);
455 if (length != 0) {
456 ep->flag_data = mon_bin_get_data(rp, offset, urb, length);
457 if (ep->flag_data != 0) { /* Yes, it's 0x00, not '0' */
458 ep->len_cap = 0;
459 mon_buff_area_shrink(rp, length);
460 }
461 } else {
462 ep->flag_data = data_tag;
463 }
464
465 spin_unlock_irqrestore(&rp->b_lock, flags);
466
467 wake_up(&rp->b_wait);
468 }
469
470 static void mon_bin_submit(void *data, struct urb *urb)
471 {
472 struct mon_reader_bin *rp = data;
473 mon_bin_event(rp, urb, 'S');
474 }
475
476 static void mon_bin_complete(void *data, struct urb *urb)
477 {
478 struct mon_reader_bin *rp = data;
479 mon_bin_event(rp, urb, 'C');
480 }
481
482 static void mon_bin_error(void *data, struct urb *urb, int error)
483 {
484 struct mon_reader_bin *rp = data;
485 unsigned long flags;
486 unsigned int offset;
487 struct mon_bin_hdr *ep;
488
489 spin_lock_irqsave(&rp->b_lock, flags);
490
491 offset = mon_buff_area_alloc(rp, PKT_SIZE);
492 if (offset == ~0) {
493 /* Not incrementing cnt_lost. Just because. */
494 spin_unlock_irqrestore(&rp->b_lock, flags);
495 return;
496 }
497
498 ep = MON_OFF2HDR(rp, offset);
499
500 memset(ep, 0, PKT_SIZE);
501 ep->type = 'E';
502 ep->xfer_type = usb_pipetype(urb->pipe);
503 /* We use the fact that usb_pipein() returns 0x80 */
504 ep->epnum = usb_pipeendpoint(urb->pipe) | usb_pipein(urb->pipe);
505 ep->devnum = usb_pipedevice(urb->pipe);
506 ep->busnum = urb->dev->bus->busnum;
507 ep->id = (unsigned long) urb;
508 ep->status = error;
509
510 ep->flag_setup = '-';
511 ep->flag_data = 'E';
512
513 spin_unlock_irqrestore(&rp->b_lock, flags);
514
515 wake_up(&rp->b_wait);
516 }
517
518 static int mon_bin_open(struct inode *inode, struct file *file)
519 {
520 struct mon_bus *mbus;
521 struct mon_reader_bin *rp;
522 size_t size;
523 int rc;
524
525 mutex_lock(&mon_lock);
526 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
527 mutex_unlock(&mon_lock);
528 return -ENODEV;
529 }
530 if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
531 printk(KERN_ERR TAG ": consistency error on open\n");
532 mutex_unlock(&mon_lock);
533 return -ENODEV;
534 }
535
536 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
537 if (rp == NULL) {
538 rc = -ENOMEM;
539 goto err_alloc;
540 }
541 spin_lock_init(&rp->b_lock);
542 init_waitqueue_head(&rp->b_wait);
543 mutex_init(&rp->fetch_lock);
544
545 rp->b_size = BUFF_DFL;
546
547 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
548 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
549 rc = -ENOMEM;
550 goto err_allocvec;
551 }
552
553 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
554 goto err_allocbuff;
555
556 rp->r.m_bus = mbus;
557 rp->r.r_data = rp;
558 rp->r.rnf_submit = mon_bin_submit;
559 rp->r.rnf_error = mon_bin_error;
560 rp->r.rnf_complete = mon_bin_complete;
561
562 mon_reader_add(mbus, &rp->r);
563
564 file->private_data = rp;
565 mutex_unlock(&mon_lock);
566 return 0;
567
568 err_allocbuff:
569 kfree(rp->b_vec);
570 err_allocvec:
571 kfree(rp);
572 err_alloc:
573 mutex_unlock(&mon_lock);
574 return rc;
575 }
576
577 /*
578 * Extract an event from buffer and copy it to user space.
579 * Wait if there is no event ready.
580 * Returns zero or error.
581 */
582 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
583 struct mon_bin_hdr __user *hdr, void __user *data, unsigned int nbytes)
584 {
585 unsigned long flags;
586 struct mon_bin_hdr *ep;
587 size_t step_len;
588 unsigned int offset;
589 int rc;
590
591 mutex_lock(&rp->fetch_lock);
592
593 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
594 mutex_unlock(&rp->fetch_lock);
595 return rc;
596 }
597
598 ep = MON_OFF2HDR(rp, rp->b_out);
599
600 if (copy_to_user(hdr, ep, sizeof(struct mon_bin_hdr))) {
601 mutex_unlock(&rp->fetch_lock);
602 return -EFAULT;
603 }
604
605 step_len = min(ep->len_cap, nbytes);
606 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
607
608 if (copy_from_buf(rp, offset, data, step_len)) {
609 mutex_unlock(&rp->fetch_lock);
610 return -EFAULT;
611 }
612
613 spin_lock_irqsave(&rp->b_lock, flags);
614 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
615 spin_unlock_irqrestore(&rp->b_lock, flags);
616 rp->b_read = 0;
617
618 mutex_unlock(&rp->fetch_lock);
619 return 0;
620 }
621
622 static int mon_bin_release(struct inode *inode, struct file *file)
623 {
624 struct mon_reader_bin *rp = file->private_data;
625 struct mon_bus* mbus = rp->r.m_bus;
626
627 mutex_lock(&mon_lock);
628
629 if (mbus->nreaders <= 0) {
630 printk(KERN_ERR TAG ": consistency error on close\n");
631 mutex_unlock(&mon_lock);
632 return 0;
633 }
634 mon_reader_del(mbus, &rp->r);
635
636 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
637 kfree(rp->b_vec);
638 kfree(rp);
639
640 mutex_unlock(&mon_lock);
641 return 0;
642 }
643
644 static ssize_t mon_bin_read(struct file *file, char __user *buf,
645 size_t nbytes, loff_t *ppos)
646 {
647 struct mon_reader_bin *rp = file->private_data;
648 unsigned long flags;
649 struct mon_bin_hdr *ep;
650 unsigned int offset;
651 size_t step_len;
652 char *ptr;
653 ssize_t done = 0;
654 int rc;
655
656 mutex_lock(&rp->fetch_lock);
657
658 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
659 mutex_unlock(&rp->fetch_lock);
660 return rc;
661 }
662
663 ep = MON_OFF2HDR(rp, rp->b_out);
664
665 if (rp->b_read < sizeof(struct mon_bin_hdr)) {
666 step_len = min(nbytes, sizeof(struct mon_bin_hdr) - rp->b_read);
667 ptr = ((char *)ep) + rp->b_read;
668 if (step_len && copy_to_user(buf, ptr, step_len)) {
669 mutex_unlock(&rp->fetch_lock);
670 return -EFAULT;
671 }
672 nbytes -= step_len;
673 buf += step_len;
674 rp->b_read += step_len;
675 done += step_len;
676 }
677
678 if (rp->b_read >= sizeof(struct mon_bin_hdr)) {
679 step_len = min(nbytes, (size_t)ep->len_cap);
680 offset = rp->b_out + PKT_SIZE;
681 offset += rp->b_read - sizeof(struct mon_bin_hdr);
682 if (offset >= rp->b_size)
683 offset -= rp->b_size;
684 if (copy_from_buf(rp, offset, buf, step_len)) {
685 mutex_unlock(&rp->fetch_lock);
686 return -EFAULT;
687 }
688 nbytes -= step_len;
689 buf += step_len;
690 rp->b_read += step_len;
691 done += step_len;
692 }
693
694 /*
695 * Check if whole packet was read, and if so, jump to the next one.
696 */
697 if (rp->b_read >= sizeof(struct mon_bin_hdr) + ep->len_cap) {
698 spin_lock_irqsave(&rp->b_lock, flags);
699 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
700 spin_unlock_irqrestore(&rp->b_lock, flags);
701 rp->b_read = 0;
702 }
703
704 mutex_unlock(&rp->fetch_lock);
705 return done;
706 }
707
708 /*
709 * Remove at most nevents from chunked buffer.
710 * Returns the number of removed events.
711 */
712 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
713 {
714 unsigned long flags;
715 struct mon_bin_hdr *ep;
716 int i;
717
718 mutex_lock(&rp->fetch_lock);
719 spin_lock_irqsave(&rp->b_lock, flags);
720 for (i = 0; i < nevents; ++i) {
721 if (MON_RING_EMPTY(rp))
722 break;
723
724 ep = MON_OFF2HDR(rp, rp->b_out);
725 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
726 }
727 spin_unlock_irqrestore(&rp->b_lock, flags);
728 rp->b_read = 0;
729 mutex_unlock(&rp->fetch_lock);
730 return i;
731 }
732
733 /*
734 * Fetch at most max event offsets into the buffer and put them into vec.
735 * The events are usually freed later with mon_bin_flush.
736 * Return the effective number of events fetched.
737 */
738 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
739 u32 __user *vec, unsigned int max)
740 {
741 unsigned int cur_out;
742 unsigned int bytes, avail;
743 unsigned int size;
744 unsigned int nevents;
745 struct mon_bin_hdr *ep;
746 unsigned long flags;
747 int rc;
748
749 mutex_lock(&rp->fetch_lock);
750
751 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
752 mutex_unlock(&rp->fetch_lock);
753 return rc;
754 }
755
756 spin_lock_irqsave(&rp->b_lock, flags);
757 avail = rp->b_cnt;
758 spin_unlock_irqrestore(&rp->b_lock, flags);
759
760 cur_out = rp->b_out;
761 nevents = 0;
762 bytes = 0;
763 while (bytes < avail) {
764 if (nevents >= max)
765 break;
766
767 ep = MON_OFF2HDR(rp, cur_out);
768 if (put_user(cur_out, &vec[nevents])) {
769 mutex_unlock(&rp->fetch_lock);
770 return -EFAULT;
771 }
772
773 nevents++;
774 size = ep->len_cap + PKT_SIZE;
775 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
776 if ((cur_out += size) >= rp->b_size)
777 cur_out -= rp->b_size;
778 bytes += size;
779 }
780
781 mutex_unlock(&rp->fetch_lock);
782 return nevents;
783 }
784
785 /*
786 * Count events. This is almost the same as the above mon_bin_fetch,
787 * only we do not store offsets into user vector, and we have no limit.
788 */
789 static int mon_bin_queued(struct mon_reader_bin *rp)
790 {
791 unsigned int cur_out;
792 unsigned int bytes, avail;
793 unsigned int size;
794 unsigned int nevents;
795 struct mon_bin_hdr *ep;
796 unsigned long flags;
797
798 mutex_lock(&rp->fetch_lock);
799
800 spin_lock_irqsave(&rp->b_lock, flags);
801 avail = rp->b_cnt;
802 spin_unlock_irqrestore(&rp->b_lock, flags);
803
804 cur_out = rp->b_out;
805 nevents = 0;
806 bytes = 0;
807 while (bytes < avail) {
808 ep = MON_OFF2HDR(rp, cur_out);
809
810 nevents++;
811 size = ep->len_cap + PKT_SIZE;
812 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
813 if ((cur_out += size) >= rp->b_size)
814 cur_out -= rp->b_size;
815 bytes += size;
816 }
817
818 mutex_unlock(&rp->fetch_lock);
819 return nevents;
820 }
821
822 /*
823 */
824 static int mon_bin_ioctl(struct inode *inode, struct file *file,
825 unsigned int cmd, unsigned long arg)
826 {
827 struct mon_reader_bin *rp = file->private_data;
828 // struct mon_bus* mbus = rp->r.m_bus;
829 int ret = 0;
830 struct mon_bin_hdr *ep;
831 unsigned long flags;
832
833 switch (cmd) {
834
835 case MON_IOCQ_URB_LEN:
836 /*
837 * N.B. This only returns the size of data, without the header.
838 */
839 spin_lock_irqsave(&rp->b_lock, flags);
840 if (!MON_RING_EMPTY(rp)) {
841 ep = MON_OFF2HDR(rp, rp->b_out);
842 ret = ep->len_cap;
843 }
844 spin_unlock_irqrestore(&rp->b_lock, flags);
845 break;
846
847 case MON_IOCQ_RING_SIZE:
848 ret = rp->b_size;
849 break;
850
851 case MON_IOCT_RING_SIZE:
852 /*
853 * Changing the buffer size will flush it's contents; the new
854 * buffer is allocated before releasing the old one to be sure
855 * the device will stay functional also in case of memory
856 * pressure.
857 */
858 {
859 int size;
860 struct mon_pgmap *vec;
861
862 if (arg < BUFF_MIN || arg > BUFF_MAX)
863 return -EINVAL;
864
865 size = CHUNK_ALIGN(arg);
866 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
867 GFP_KERNEL)) == NULL) {
868 ret = -ENOMEM;
869 break;
870 }
871
872 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
873 if (ret < 0) {
874 kfree(vec);
875 break;
876 }
877
878 mutex_lock(&rp->fetch_lock);
879 spin_lock_irqsave(&rp->b_lock, flags);
880 mon_free_buff(rp->b_vec, size/CHUNK_SIZE);
881 kfree(rp->b_vec);
882 rp->b_vec = vec;
883 rp->b_size = size;
884 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
885 rp->cnt_lost = 0;
886 spin_unlock_irqrestore(&rp->b_lock, flags);
887 mutex_unlock(&rp->fetch_lock);
888 }
889 break;
890
891 case MON_IOCH_MFLUSH:
892 ret = mon_bin_flush(rp, arg);
893 break;
894
895 case MON_IOCX_GET:
896 {
897 struct mon_bin_get getb;
898
899 if (copy_from_user(&getb, (void __user *)arg,
900 sizeof(struct mon_bin_get)))
901 return -EFAULT;
902
903 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
904 return -EINVAL;
905 ret = mon_bin_get_event(file, rp,
906 getb.hdr, getb.data, (unsigned int)getb.alloc);
907 }
908 break;
909
910 #ifdef CONFIG_COMPAT
911 case MON_IOCX_GET32: {
912 struct mon_bin_get32 getb;
913
914 if (copy_from_user(&getb, (void __user *)arg,
915 sizeof(struct mon_bin_get32)))
916 return -EFAULT;
917
918 ret = mon_bin_get_event(file, rp,
919 compat_ptr(getb.hdr32), compat_ptr(getb.data32),
920 getb.alloc32);
921 }
922 break;
923 #endif
924
925 case MON_IOCX_MFETCH:
926 {
927 struct mon_bin_mfetch mfetch;
928 struct mon_bin_mfetch __user *uptr;
929
930 uptr = (struct mon_bin_mfetch __user *)arg;
931
932 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
933 return -EFAULT;
934
935 if (mfetch.nflush) {
936 ret = mon_bin_flush(rp, mfetch.nflush);
937 if (ret < 0)
938 return ret;
939 if (put_user(ret, &uptr->nflush))
940 return -EFAULT;
941 }
942 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
943 if (ret < 0)
944 return ret;
945 if (put_user(ret, &uptr->nfetch))
946 return -EFAULT;
947 ret = 0;
948 }
949 break;
950
951 #ifdef CONFIG_COMPAT
952 case MON_IOCX_MFETCH32:
953 {
954 struct mon_bin_mfetch32 mfetch;
955 struct mon_bin_mfetch32 __user *uptr;
956
957 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
958
959 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
960 return -EFAULT;
961
962 if (mfetch.nflush32) {
963 ret = mon_bin_flush(rp, mfetch.nflush32);
964 if (ret < 0)
965 return ret;
966 if (put_user(ret, &uptr->nflush32))
967 return -EFAULT;
968 }
969 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
970 mfetch.nfetch32);
971 if (ret < 0)
972 return ret;
973 if (put_user(ret, &uptr->nfetch32))
974 return -EFAULT;
975 ret = 0;
976 }
977 break;
978 #endif
979
980 case MON_IOCG_STATS: {
981 struct mon_bin_stats __user *sp;
982 unsigned int nevents;
983 unsigned int ndropped;
984
985 spin_lock_irqsave(&rp->b_lock, flags);
986 ndropped = rp->cnt_lost;
987 rp->cnt_lost = 0;
988 spin_unlock_irqrestore(&rp->b_lock, flags);
989 nevents = mon_bin_queued(rp);
990
991 sp = (struct mon_bin_stats __user *)arg;
992 if (put_user(rp->cnt_lost, &sp->dropped))
993 return -EFAULT;
994 if (put_user(nevents, &sp->queued))
995 return -EFAULT;
996
997 }
998 break;
999
1000 default:
1001 return -ENOTTY;
1002 }
1003
1004 return ret;
1005 }
1006
1007 static unsigned int
1008 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1009 {
1010 struct mon_reader_bin *rp = file->private_data;
1011 unsigned int mask = 0;
1012 unsigned long flags;
1013
1014 if (file->f_mode & FMODE_READ)
1015 poll_wait(file, &rp->b_wait, wait);
1016
1017 spin_lock_irqsave(&rp->b_lock, flags);
1018 if (!MON_RING_EMPTY(rp))
1019 mask |= POLLIN | POLLRDNORM; /* readable */
1020 spin_unlock_irqrestore(&rp->b_lock, flags);
1021 return mask;
1022 }
1023
1024 /*
1025 * open and close: just keep track of how many times the device is
1026 * mapped, to use the proper memory allocation function.
1027 */
1028 static void mon_bin_vma_open(struct vm_area_struct *vma)
1029 {
1030 struct mon_reader_bin *rp = vma->vm_private_data;
1031 rp->mmap_active++;
1032 }
1033
1034 static void mon_bin_vma_close(struct vm_area_struct *vma)
1035 {
1036 struct mon_reader_bin *rp = vma->vm_private_data;
1037 rp->mmap_active--;
1038 }
1039
1040 /*
1041 * Map ring pages to user space.
1042 */
1043 struct page *mon_bin_vma_nopage(struct vm_area_struct *vma,
1044 unsigned long address, int *type)
1045 {
1046 struct mon_reader_bin *rp = vma->vm_private_data;
1047 unsigned long offset, chunk_idx;
1048 struct page *pageptr;
1049
1050 offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
1051 if (offset >= rp->b_size)
1052 return NOPAGE_SIGBUS;
1053 chunk_idx = offset / CHUNK_SIZE;
1054 pageptr = rp->b_vec[chunk_idx].pg;
1055 get_page(pageptr);
1056 if (type)
1057 *type = VM_FAULT_MINOR;
1058 return pageptr;
1059 }
1060
1061 struct vm_operations_struct mon_bin_vm_ops = {
1062 .open = mon_bin_vma_open,
1063 .close = mon_bin_vma_close,
1064 .nopage = mon_bin_vma_nopage,
1065 };
1066
1067 int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1068 {
1069 /* don't do anything here: "nopage" will set up page table entries */
1070 vma->vm_ops = &mon_bin_vm_ops;
1071 vma->vm_flags |= VM_RESERVED;
1072 vma->vm_private_data = filp->private_data;
1073 mon_bin_vma_open(vma);
1074 return 0;
1075 }
1076
1077 struct file_operations mon_fops_binary = {
1078 .owner = THIS_MODULE,
1079 .open = mon_bin_open,
1080 .llseek = no_llseek,
1081 .read = mon_bin_read,
1082 /* .write = mon_text_write, */
1083 .poll = mon_bin_poll,
1084 .ioctl = mon_bin_ioctl,
1085 .release = mon_bin_release,
1086 };
1087
1088 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1089 {
1090 DECLARE_WAITQUEUE(waita, current);
1091 unsigned long flags;
1092
1093 add_wait_queue(&rp->b_wait, &waita);
1094 set_current_state(TASK_INTERRUPTIBLE);
1095
1096 spin_lock_irqsave(&rp->b_lock, flags);
1097 while (MON_RING_EMPTY(rp)) {
1098 spin_unlock_irqrestore(&rp->b_lock, flags);
1099
1100 if (file->f_flags & O_NONBLOCK) {
1101 set_current_state(TASK_RUNNING);
1102 remove_wait_queue(&rp->b_wait, &waita);
1103 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1104 }
1105 schedule();
1106 if (signal_pending(current)) {
1107 remove_wait_queue(&rp->b_wait, &waita);
1108 return -EINTR;
1109 }
1110 set_current_state(TASK_INTERRUPTIBLE);
1111
1112 spin_lock_irqsave(&rp->b_lock, flags);
1113 }
1114 spin_unlock_irqrestore(&rp->b_lock, flags);
1115
1116 set_current_state(TASK_RUNNING);
1117 remove_wait_queue(&rp->b_wait, &waita);
1118 return 0;
1119 }
1120
1121 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1122 {
1123 int n;
1124 unsigned long vaddr;
1125
1126 for (n = 0; n < npages; n++) {
1127 vaddr = get_zeroed_page(GFP_KERNEL);
1128 if (vaddr == 0) {
1129 while (n-- != 0)
1130 free_page((unsigned long) map[n].ptr);
1131 return -ENOMEM;
1132 }
1133 map[n].ptr = (unsigned char *) vaddr;
1134 map[n].pg = virt_to_page(vaddr);
1135 }
1136 return 0;
1137 }
1138
1139 static void mon_free_buff(struct mon_pgmap *map, int npages)
1140 {
1141 int n;
1142
1143 for (n = 0; n < npages; n++)
1144 free_page((unsigned long) map[n].ptr);
1145 }
1146
1147 int __init mon_bin_init(void)
1148 {
1149 int rc;
1150
1151 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1152 if (rc < 0)
1153 goto err_dev;
1154
1155 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1156 mon_bin_cdev.owner = THIS_MODULE;
1157
1158 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1159 if (rc < 0)
1160 goto err_add;
1161
1162 return 0;
1163
1164 err_add:
1165 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1166 err_dev:
1167 return rc;
1168 }
1169
1170 void mon_bin_exit(void)
1171 {
1172 cdev_del(&mon_bin_cdev);
1173 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1174 }
This page took 0.078703 seconds and 6 git commands to generate.