fb2b0f5b23bd7f114ac7c782845c45ed2797d62e
[deliverable/linux.git] / drivers / video / aty / aty128fb.c
1 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
2 * linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
3 *
4 * Copyright (C) 1999-2003, Brad Douglas <brad@neruo.com>
5 * Copyright (C) 1999, Anthony Tong <atong@uiuc.edu>
6 *
7 * Ani Joshi / Jeff Garzik
8 * - Code cleanup
9 *
10 * Michel Danzer <michdaen@iiic.ethz.ch>
11 * - 15/16 bit cleanup
12 * - fix panning
13 *
14 * Benjamin Herrenschmidt
15 * - pmac-specific PM stuff
16 * - various fixes & cleanups
17 *
18 * Andreas Hundt <andi@convergence.de>
19 * - FB_ACTIVATE fixes
20 *
21 * Paul Mackerras <paulus@samba.org>
22 * - Convert to new framebuffer API,
23 * fix colormap setting at 16 bits/pixel (565)
24 *
25 * Paul Mundt
26 * - PCI hotplug
27 *
28 * Jon Smirl <jonsmirl@yahoo.com>
29 * - PCI ID update
30 * - replace ROM BIOS search
31 *
32 * Based off of Geert's atyfb.c and vfb.c.
33 *
34 * TODO:
35 * - monitor sensing (DDC)
36 * - virtual display
37 * - other platform support (only ppc/x86 supported)
38 * - hardware cursor support
39 *
40 * Please cc: your patches to brad@neruo.com.
41 */
42
43 /*
44 * A special note of gratitude to ATI's devrel for providing documentation,
45 * example code and hardware. Thanks Nitya. -atong and brad
46 */
47
48
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/kernel.h>
52 #include <linux/errno.h>
53 #include <linux/string.h>
54 #include <linux/mm.h>
55 #include <linux/slab.h>
56 #include <linux/vmalloc.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/uaccess.h>
60 #include <linux/fb.h>
61 #include <linux/init.h>
62 #include <linux/pci.h>
63 #include <linux/ioport.h>
64 #include <linux/console.h>
65 #include <linux/backlight.h>
66 #include <asm/io.h>
67
68 #ifdef CONFIG_PPC_PMAC
69 #include <asm/machdep.h>
70 #include <asm/pmac_feature.h>
71 #include <asm/prom.h>
72 #include <asm/pci-bridge.h>
73 #include "../macmodes.h"
74 #endif
75
76 #ifdef CONFIG_PMAC_BACKLIGHT
77 #include <asm/backlight.h>
78 #endif
79
80 #ifdef CONFIG_BOOTX_TEXT
81 #include <asm/btext.h>
82 #endif /* CONFIG_BOOTX_TEXT */
83
84 #ifdef CONFIG_MTRR
85 #include <asm/mtrr.h>
86 #endif
87
88 #include <video/aty128.h>
89
90 /* Debug flag */
91 #undef DEBUG
92
93 #ifdef DEBUG
94 #define DBG(fmt, args...) printk(KERN_DEBUG "aty128fb: %s " fmt, __func__, ##args);
95 #else
96 #define DBG(fmt, args...)
97 #endif
98
99 #ifndef CONFIG_PPC_PMAC
100 /* default mode */
101 static struct fb_var_screeninfo default_var __devinitdata = {
102 /* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
103 640, 480, 640, 480, 0, 0, 8, 0,
104 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
105 0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
106 0, FB_VMODE_NONINTERLACED
107 };
108
109 #else /* CONFIG_PPC_PMAC */
110 /* default to 1024x768 at 75Hz on PPC - this will work
111 * on the iMac, the usual 640x480 @ 60Hz doesn't. */
112 static struct fb_var_screeninfo default_var = {
113 /* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
114 1024, 768, 1024, 768, 0, 0, 8, 0,
115 {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
116 0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
117 FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
118 FB_VMODE_NONINTERLACED
119 };
120 #endif /* CONFIG_PPC_PMAC */
121
122 /* default modedb mode */
123 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
124 static struct fb_videomode defaultmode __devinitdata = {
125 .refresh = 60,
126 .xres = 640,
127 .yres = 480,
128 .pixclock = 39722,
129 .left_margin = 48,
130 .right_margin = 16,
131 .upper_margin = 33,
132 .lower_margin = 10,
133 .hsync_len = 96,
134 .vsync_len = 2,
135 .sync = 0,
136 .vmode = FB_VMODE_NONINTERLACED
137 };
138
139 /* Chip generations */
140 enum {
141 rage_128,
142 rage_128_pci,
143 rage_128_pro,
144 rage_128_pro_pci,
145 rage_M3,
146 rage_M3_pci,
147 rage_M4,
148 rage_128_ultra,
149 };
150
151 /* Must match above enum */
152 static const char *r128_family[] __devinitdata = {
153 "AGP",
154 "PCI",
155 "PRO AGP",
156 "PRO PCI",
157 "M3 AGP",
158 "M3 PCI",
159 "M4 AGP",
160 "Ultra AGP",
161 };
162
163 /*
164 * PCI driver prototypes
165 */
166 static int aty128_probe(struct pci_dev *pdev,
167 const struct pci_device_id *ent);
168 static void aty128_remove(struct pci_dev *pdev);
169 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state);
170 static int aty128_pci_resume(struct pci_dev *pdev);
171 static int aty128_do_resume(struct pci_dev *pdev);
172
173 /* supported Rage128 chipsets */
174 static struct pci_device_id aty128_pci_tbl[] = {
175 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LE,
176 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3_pci },
177 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_LF,
178 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
179 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_MF,
180 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
181 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_ML,
182 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
183 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PA,
184 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
185 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PB,
186 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
187 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PC,
188 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
189 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PD,
190 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
191 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PE,
192 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
193 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PF,
194 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
195 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PG,
196 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
197 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PH,
198 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
199 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PI,
200 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
201 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PJ,
202 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
203 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PK,
204 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
205 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PL,
206 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
207 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PM,
208 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
209 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PN,
210 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
211 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PO,
212 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
213 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PP,
214 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
215 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PQ,
216 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
217 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PR,
218 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro_pci },
219 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PS,
220 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
221 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PT,
222 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
223 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PU,
224 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
225 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PV,
226 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
227 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PW,
228 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
229 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_PX,
230 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pro },
231 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RE,
232 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
233 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RF,
234 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
235 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RG,
236 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
237 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RK,
238 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
239 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_RL,
240 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
241 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SE,
242 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
243 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SF,
244 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_pci },
245 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SG,
246 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
247 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SH,
248 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
249 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SK,
250 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
251 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SL,
252 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
253 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SM,
254 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
255 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_SN,
256 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
257 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TF,
258 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
259 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TL,
260 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
261 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TR,
262 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
263 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TS,
264 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
265 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TT,
266 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
267 { PCI_VENDOR_ID_ATI, PCI_DEVICE_ID_ATI_RAGE128_TU,
268 PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128_ultra },
269 { 0, }
270 };
271
272 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
273
274 static struct pci_driver aty128fb_driver = {
275 .name = "aty128fb",
276 .id_table = aty128_pci_tbl,
277 .probe = aty128_probe,
278 .remove = __devexit_p(aty128_remove),
279 .suspend = aty128_pci_suspend,
280 .resume = aty128_pci_resume,
281 };
282
283 /* packed BIOS settings */
284 #ifndef CONFIG_PPC
285 typedef struct {
286 u8 clock_chip_type;
287 u8 struct_size;
288 u8 accelerator_entry;
289 u8 VGA_entry;
290 u16 VGA_table_offset;
291 u16 POST_table_offset;
292 u16 XCLK;
293 u16 MCLK;
294 u8 num_PLL_blocks;
295 u8 size_PLL_blocks;
296 u16 PCLK_ref_freq;
297 u16 PCLK_ref_divider;
298 u32 PCLK_min_freq;
299 u32 PCLK_max_freq;
300 u16 MCLK_ref_freq;
301 u16 MCLK_ref_divider;
302 u32 MCLK_min_freq;
303 u32 MCLK_max_freq;
304 u16 XCLK_ref_freq;
305 u16 XCLK_ref_divider;
306 u32 XCLK_min_freq;
307 u32 XCLK_max_freq;
308 } __attribute__ ((packed)) PLL_BLOCK;
309 #endif /* !CONFIG_PPC */
310
311 /* onboard memory information */
312 struct aty128_meminfo {
313 u8 ML;
314 u8 MB;
315 u8 Trcd;
316 u8 Trp;
317 u8 Twr;
318 u8 CL;
319 u8 Tr2w;
320 u8 LoopLatency;
321 u8 DspOn;
322 u8 Rloop;
323 const char *name;
324 };
325
326 /* various memory configurations */
327 static const struct aty128_meminfo sdr_128 =
328 { 4, 4, 3, 3, 1, 3, 1, 16, 30, 16, "128-bit SDR SGRAM (1:1)" };
329 static const struct aty128_meminfo sdr_64 =
330 { 4, 8, 3, 3, 1, 3, 1, 17, 46, 17, "64-bit SDR SGRAM (1:1)" };
331 static const struct aty128_meminfo sdr_sgram =
332 { 4, 4, 1, 2, 1, 2, 1, 16, 24, 16, "64-bit SDR SGRAM (2:1)" };
333 static const struct aty128_meminfo ddr_sgram =
334 { 4, 4, 3, 3, 2, 3, 1, 16, 31, 16, "64-bit DDR SGRAM" };
335
336 static struct fb_fix_screeninfo aty128fb_fix __devinitdata = {
337 .id = "ATY Rage128",
338 .type = FB_TYPE_PACKED_PIXELS,
339 .visual = FB_VISUAL_PSEUDOCOLOR,
340 .xpanstep = 8,
341 .ypanstep = 1,
342 .mmio_len = 0x2000,
343 .accel = FB_ACCEL_ATI_RAGE128,
344 };
345
346 static char *mode_option __devinitdata = NULL;
347
348 #ifdef CONFIG_PPC_PMAC
349 static int default_vmode __devinitdata = VMODE_1024_768_60;
350 static int default_cmode __devinitdata = CMODE_8;
351 #endif
352
353 static int default_crt_on __devinitdata = 0;
354 static int default_lcd_on __devinitdata = 1;
355
356 #ifdef CONFIG_MTRR
357 static int mtrr = 1;
358 #endif
359
360 #ifdef CONFIG_PMAC_BACKLIGHT
361 static int backlight __devinitdata = 1;
362 #else
363 static int backlight __devinitdata = 0;
364 #endif
365
366 /* PLL constants */
367 struct aty128_constants {
368 u32 ref_clk;
369 u32 ppll_min;
370 u32 ppll_max;
371 u32 ref_divider;
372 u32 xclk;
373 u32 fifo_width;
374 u32 fifo_depth;
375 };
376
377 struct aty128_crtc {
378 u32 gen_cntl;
379 u32 h_total, h_sync_strt_wid;
380 u32 v_total, v_sync_strt_wid;
381 u32 pitch;
382 u32 offset, offset_cntl;
383 u32 xoffset, yoffset;
384 u32 vxres, vyres;
385 u32 depth, bpp;
386 };
387
388 struct aty128_pll {
389 u32 post_divider;
390 u32 feedback_divider;
391 u32 vclk;
392 };
393
394 struct aty128_ddafifo {
395 u32 dda_config;
396 u32 dda_on_off;
397 };
398
399 /* register values for a specific mode */
400 struct aty128fb_par {
401 struct aty128_crtc crtc;
402 struct aty128_pll pll;
403 struct aty128_ddafifo fifo_reg;
404 u32 accel_flags;
405 struct aty128_constants constants; /* PLL and others */
406 void __iomem *regbase; /* remapped mmio */
407 u32 vram_size; /* onboard video ram */
408 int chip_gen;
409 const struct aty128_meminfo *mem; /* onboard mem info */
410 #ifdef CONFIG_MTRR
411 struct { int vram; int vram_valid; } mtrr;
412 #endif
413 int blitter_may_be_busy;
414 int fifo_slots; /* free slots in FIFO (64 max) */
415
416 int pm_reg;
417 int crt_on, lcd_on;
418 struct pci_dev *pdev;
419 struct fb_info *next;
420 int asleep;
421 int lock_blank;
422
423 u8 red[32]; /* see aty128fb_setcolreg */
424 u8 green[64];
425 u8 blue[32];
426 u32 pseudo_palette[16]; /* used for TRUECOLOR */
427 };
428
429
430 #define round_div(n, d) ((n+(d/2))/d)
431
432 static int aty128fb_check_var(struct fb_var_screeninfo *var,
433 struct fb_info *info);
434 static int aty128fb_set_par(struct fb_info *info);
435 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
436 u_int transp, struct fb_info *info);
437 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
438 struct fb_info *fb);
439 static int aty128fb_blank(int blank, struct fb_info *fb);
440 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
441 static int aty128fb_sync(struct fb_info *info);
442
443 /*
444 * Internal routines
445 */
446
447 static int aty128_encode_var(struct fb_var_screeninfo *var,
448 const struct aty128fb_par *par);
449 static int aty128_decode_var(struct fb_var_screeninfo *var,
450 struct aty128fb_par *par);
451 #if 0
452 static void __devinit aty128_get_pllinfo(struct aty128fb_par *par,
453 void __iomem *bios);
454 static void __devinit __iomem *aty128_map_ROM(struct pci_dev *pdev, const struct aty128fb_par *par);
455 #endif
456 static void aty128_timings(struct aty128fb_par *par);
457 static void aty128_init_engine(struct aty128fb_par *par);
458 static void aty128_reset_engine(const struct aty128fb_par *par);
459 static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
460 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
461 static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
462 static void wait_for_idle(struct aty128fb_par *par);
463 static u32 depth_to_dst(u32 depth);
464
465 #ifdef CONFIG_FB_ATY128_BACKLIGHT
466 static void aty128_bl_set_power(struct fb_info *info, int power);
467 #endif
468
469 #define BIOS_IN8(v) (readb(bios + (v)))
470 #define BIOS_IN16(v) (readb(bios + (v)) | \
471 (readb(bios + (v) + 1) << 8))
472 #define BIOS_IN32(v) (readb(bios + (v)) | \
473 (readb(bios + (v) + 1) << 8) | \
474 (readb(bios + (v) + 2) << 16) | \
475 (readb(bios + (v) + 3) << 24))
476
477
478 static struct fb_ops aty128fb_ops = {
479 .owner = THIS_MODULE,
480 .fb_check_var = aty128fb_check_var,
481 .fb_set_par = aty128fb_set_par,
482 .fb_setcolreg = aty128fb_setcolreg,
483 .fb_pan_display = aty128fb_pan_display,
484 .fb_blank = aty128fb_blank,
485 .fb_ioctl = aty128fb_ioctl,
486 .fb_sync = aty128fb_sync,
487 .fb_fillrect = cfb_fillrect,
488 .fb_copyarea = cfb_copyarea,
489 .fb_imageblit = cfb_imageblit,
490 };
491
492 /*
493 * Functions to read from/write to the mmio registers
494 * - endian conversions may possibly be avoided by
495 * using the other register aperture. TODO.
496 */
497 static inline u32 _aty_ld_le32(volatile unsigned int regindex,
498 const struct aty128fb_par *par)
499 {
500 return readl (par->regbase + regindex);
501 }
502
503 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
504 const struct aty128fb_par *par)
505 {
506 writel (val, par->regbase + regindex);
507 }
508
509 static inline u8 _aty_ld_8(unsigned int regindex,
510 const struct aty128fb_par *par)
511 {
512 return readb (par->regbase + regindex);
513 }
514
515 static inline void _aty_st_8(unsigned int regindex, u8 val,
516 const struct aty128fb_par *par)
517 {
518 writeb (val, par->regbase + regindex);
519 }
520
521 #define aty_ld_le32(regindex) _aty_ld_le32(regindex, par)
522 #define aty_st_le32(regindex, val) _aty_st_le32(regindex, val, par)
523 #define aty_ld_8(regindex) _aty_ld_8(regindex, par)
524 #define aty_st_8(regindex, val) _aty_st_8(regindex, val, par)
525
526 /*
527 * Functions to read from/write to the pll registers
528 */
529
530 #define aty_ld_pll(pll_index) _aty_ld_pll(pll_index, par)
531 #define aty_st_pll(pll_index, val) _aty_st_pll(pll_index, val, par)
532
533
534 static u32 _aty_ld_pll(unsigned int pll_index,
535 const struct aty128fb_par *par)
536 {
537 aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
538 return aty_ld_le32(CLOCK_CNTL_DATA);
539 }
540
541
542 static void _aty_st_pll(unsigned int pll_index, u32 val,
543 const struct aty128fb_par *par)
544 {
545 aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
546 aty_st_le32(CLOCK_CNTL_DATA, val);
547 }
548
549
550 /* return true when the PLL has completed an atomic update */
551 static int aty_pll_readupdate(const struct aty128fb_par *par)
552 {
553 return !(aty_ld_pll(PPLL_REF_DIV) & PPLL_ATOMIC_UPDATE_R);
554 }
555
556
557 static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
558 {
559 unsigned long timeout = jiffies + HZ/100; // should be more than enough
560 int reset = 1;
561
562 while (time_before(jiffies, timeout))
563 if (aty_pll_readupdate(par)) {
564 reset = 0;
565 break;
566 }
567
568 if (reset) /* reset engine?? */
569 printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
570 }
571
572
573 /* tell PLL to update */
574 static void aty_pll_writeupdate(const struct aty128fb_par *par)
575 {
576 aty_pll_wait_readupdate(par);
577
578 aty_st_pll(PPLL_REF_DIV,
579 aty_ld_pll(PPLL_REF_DIV) | PPLL_ATOMIC_UPDATE_W);
580 }
581
582
583 /* write to the scratch register to test r/w functionality */
584 static int __devinit register_test(const struct aty128fb_par *par)
585 {
586 u32 val;
587 int flag = 0;
588
589 val = aty_ld_le32(BIOS_0_SCRATCH);
590
591 aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
592 if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
593 aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
594
595 if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
596 flag = 1;
597 }
598
599 aty_st_le32(BIOS_0_SCRATCH, val); // restore value
600 return flag;
601 }
602
603
604 /*
605 * Accelerator engine functions
606 */
607 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
608 {
609 int i;
610
611 for (;;) {
612 for (i = 0; i < 2000000; i++) {
613 par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
614 if (par->fifo_slots >= entries)
615 return;
616 }
617 aty128_reset_engine(par);
618 }
619 }
620
621
622 static void wait_for_idle(struct aty128fb_par *par)
623 {
624 int i;
625
626 do_wait_for_fifo(64, par);
627
628 for (;;) {
629 for (i = 0; i < 2000000; i++) {
630 if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
631 aty128_flush_pixel_cache(par);
632 par->blitter_may_be_busy = 0;
633 return;
634 }
635 }
636 aty128_reset_engine(par);
637 }
638 }
639
640
641 static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
642 {
643 if (par->fifo_slots < entries)
644 do_wait_for_fifo(64, par);
645 par->fifo_slots -= entries;
646 }
647
648
649 static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
650 {
651 int i;
652 u32 tmp;
653
654 tmp = aty_ld_le32(PC_NGUI_CTLSTAT);
655 tmp &= ~(0x00ff);
656 tmp |= 0x00ff;
657 aty_st_le32(PC_NGUI_CTLSTAT, tmp);
658
659 for (i = 0; i < 2000000; i++)
660 if (!(aty_ld_le32(PC_NGUI_CTLSTAT) & PC_BUSY))
661 break;
662 }
663
664
665 static void aty128_reset_engine(const struct aty128fb_par *par)
666 {
667 u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
668
669 aty128_flush_pixel_cache(par);
670
671 clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
672 mclk_cntl = aty_ld_pll(MCLK_CNTL);
673
674 aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
675
676 gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
677 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
678 aty_ld_le32(GEN_RESET_CNTL);
679 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
680 aty_ld_le32(GEN_RESET_CNTL);
681
682 aty_st_pll(MCLK_CNTL, mclk_cntl);
683 aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
684 aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
685
686 /* use old pio mode */
687 aty_st_le32(PM4_BUFFER_CNTL, PM4_BUFFER_CNTL_NONPM4);
688
689 DBG("engine reset");
690 }
691
692
693 static void aty128_init_engine(struct aty128fb_par *par)
694 {
695 u32 pitch_value;
696
697 wait_for_idle(par);
698
699 /* 3D scaler not spoken here */
700 wait_for_fifo(1, par);
701 aty_st_le32(SCALE_3D_CNTL, 0x00000000);
702
703 aty128_reset_engine(par);
704
705 pitch_value = par->crtc.pitch;
706 if (par->crtc.bpp == 24) {
707 pitch_value = pitch_value * 3;
708 }
709
710 wait_for_fifo(4, par);
711 /* setup engine offset registers */
712 aty_st_le32(DEFAULT_OFFSET, 0x00000000);
713
714 /* setup engine pitch registers */
715 aty_st_le32(DEFAULT_PITCH, pitch_value);
716
717 /* set the default scissor register to max dimensions */
718 aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
719
720 /* set the drawing controls registers */
721 aty_st_le32(DP_GUI_MASTER_CNTL,
722 GMC_SRC_PITCH_OFFSET_DEFAULT |
723 GMC_DST_PITCH_OFFSET_DEFAULT |
724 GMC_SRC_CLIP_DEFAULT |
725 GMC_DST_CLIP_DEFAULT |
726 GMC_BRUSH_SOLIDCOLOR |
727 (depth_to_dst(par->crtc.depth) << 8) |
728 GMC_SRC_DSTCOLOR |
729 GMC_BYTE_ORDER_MSB_TO_LSB |
730 GMC_DP_CONVERSION_TEMP_6500 |
731 ROP3_PATCOPY |
732 GMC_DP_SRC_RECT |
733 GMC_3D_FCN_EN_CLR |
734 GMC_DST_CLR_CMP_FCN_CLEAR |
735 GMC_AUX_CLIP_CLEAR |
736 GMC_WRITE_MASK_SET);
737
738 wait_for_fifo(8, par);
739 /* clear the line drawing registers */
740 aty_st_le32(DST_BRES_ERR, 0);
741 aty_st_le32(DST_BRES_INC, 0);
742 aty_st_le32(DST_BRES_DEC, 0);
743
744 /* set brush color registers */
745 aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
746 aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
747
748 /* set source color registers */
749 aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF); /* white */
750 aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000); /* black */
751
752 /* default write mask */
753 aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
754
755 /* Wait for all the writes to be completed before returning */
756 wait_for_idle(par);
757 }
758
759
760 /* convert depth values to their register representation */
761 static u32 depth_to_dst(u32 depth)
762 {
763 if (depth <= 8)
764 return DST_8BPP;
765 else if (depth <= 15)
766 return DST_15BPP;
767 else if (depth == 16)
768 return DST_16BPP;
769 else if (depth <= 24)
770 return DST_24BPP;
771 else if (depth <= 32)
772 return DST_32BPP;
773
774 return -EINVAL;
775 }
776
777 /*
778 * PLL informations retreival
779 */
780
781
782 #ifndef __sparc__
783 static void __iomem * __devinit aty128_map_ROM(const struct aty128fb_par *par, struct pci_dev *dev)
784 {
785 u16 dptr;
786 u8 rom_type;
787 void __iomem *bios;
788 size_t rom_size;
789
790 /* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
791 unsigned int temp;
792 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
793 temp &= 0x00ffffffu;
794 temp |= 0x04 << 24;
795 aty_st_le32(RAGE128_MPP_TB_CONFIG, temp);
796 temp = aty_ld_le32(RAGE128_MPP_TB_CONFIG);
797
798 bios = pci_map_rom(dev, &rom_size);
799
800 if (!bios) {
801 printk(KERN_ERR "aty128fb: ROM failed to map\n");
802 return NULL;
803 }
804
805 /* Very simple test to make sure it appeared */
806 if (BIOS_IN16(0) != 0xaa55) {
807 printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
808 " be 0xaa55\n", BIOS_IN16(0));
809 goto failed;
810 }
811
812 /* Look for the PCI data to check the ROM type */
813 dptr = BIOS_IN16(0x18);
814
815 /* Check the PCI data signature. If it's wrong, we still assume a normal x86 ROM
816 * for now, until I've verified this works everywhere. The goal here is more
817 * to phase out Open Firmware images.
818 *
819 * Currently, we only look at the first PCI data, we could iteratre and deal with
820 * them all, and we should use fb_bios_start relative to start of image and not
821 * relative start of ROM, but so far, I never found a dual-image ATI card
822 *
823 * typedef struct {
824 * u32 signature; + 0x00
825 * u16 vendor; + 0x04
826 * u16 device; + 0x06
827 * u16 reserved_1; + 0x08
828 * u16 dlen; + 0x0a
829 * u8 drevision; + 0x0c
830 * u8 class_hi; + 0x0d
831 * u16 class_lo; + 0x0e
832 * u16 ilen; + 0x10
833 * u16 irevision; + 0x12
834 * u8 type; + 0x14
835 * u8 indicator; + 0x15
836 * u16 reserved_2; + 0x16
837 * } pci_data_t;
838 */
839 if (BIOS_IN32(dptr) != (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
840 printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
841 BIOS_IN32(dptr));
842 goto anyway;
843 }
844 rom_type = BIOS_IN8(dptr + 0x14);
845 switch(rom_type) {
846 case 0:
847 printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
848 break;
849 case 1:
850 printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
851 goto failed;
852 case 2:
853 printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
854 goto failed;
855 default:
856 printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n", rom_type);
857 goto failed;
858 }
859 anyway:
860 return bios;
861
862 failed:
863 pci_unmap_rom(dev, bios);
864 return NULL;
865 }
866
867 static void __devinit aty128_get_pllinfo(struct aty128fb_par *par, unsigned char __iomem *bios)
868 {
869 unsigned int bios_hdr;
870 unsigned int bios_pll;
871
872 bios_hdr = BIOS_IN16(0x48);
873 bios_pll = BIOS_IN16(bios_hdr + 0x30);
874
875 par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
876 par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
877 par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
878 par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
879 par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
880
881 DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
882 par->constants.ppll_max, par->constants.ppll_min,
883 par->constants.xclk, par->constants.ref_divider,
884 par->constants.ref_clk);
885
886 }
887
888 #ifdef CONFIG_X86
889 static void __iomem * __devinit aty128_find_mem_vbios(struct aty128fb_par *par)
890 {
891 /* I simplified this code as we used to miss the signatures in
892 * a lot of case. It's now closer to XFree, we just don't check
893 * for signatures at all... Something better will have to be done
894 * if we end up having conflicts
895 */
896 u32 segstart;
897 unsigned char __iomem *rom_base = NULL;
898
899 for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
900 rom_base = ioremap(segstart, 0x10000);
901 if (rom_base == NULL)
902 return NULL;
903 if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
904 break;
905 iounmap(rom_base);
906 rom_base = NULL;
907 }
908 return rom_base;
909 }
910 #endif
911 #endif /* ndef(__sparc__) */
912
913 /* fill in known card constants if pll_block is not available */
914 static void __devinit aty128_timings(struct aty128fb_par *par)
915 {
916 #ifdef CONFIG_PPC_OF
917 /* instead of a table lookup, assume OF has properly
918 * setup the PLL registers and use their values
919 * to set the XCLK values and reference divider values */
920
921 u32 x_mpll_ref_fb_div;
922 u32 xclk_cntl;
923 u32 Nx, M;
924 unsigned PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
925 #endif
926
927 if (!par->constants.ref_clk)
928 par->constants.ref_clk = 2950;
929
930 #ifdef CONFIG_PPC_OF
931 x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
932 xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
933 Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
934 M = x_mpll_ref_fb_div & 0x0000ff;
935
936 par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
937 (M * PostDivSet[xclk_cntl]));
938
939 par->constants.ref_divider =
940 aty_ld_pll(PPLL_REF_DIV) & PPLL_REF_DIV_MASK;
941 #endif
942
943 if (!par->constants.ref_divider) {
944 par->constants.ref_divider = 0x3b;
945
946 aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
947 aty_pll_writeupdate(par);
948 }
949 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
950 aty_pll_writeupdate(par);
951
952 /* from documentation */
953 if (!par->constants.ppll_min)
954 par->constants.ppll_min = 12500;
955 if (!par->constants.ppll_max)
956 par->constants.ppll_max = 25000; /* 23000 on some cards? */
957 if (!par->constants.xclk)
958 par->constants.xclk = 0x1d4d; /* same as mclk */
959
960 par->constants.fifo_width = 128;
961 par->constants.fifo_depth = 32;
962
963 switch (aty_ld_le32(MEM_CNTL) & 0x3) {
964 case 0:
965 par->mem = &sdr_128;
966 break;
967 case 1:
968 par->mem = &sdr_sgram;
969 break;
970 case 2:
971 par->mem = &ddr_sgram;
972 break;
973 default:
974 par->mem = &sdr_sgram;
975 }
976 }
977
978
979
980 /*
981 * CRTC programming
982 */
983
984 /* Program the CRTC registers */
985 static void aty128_set_crtc(const struct aty128_crtc *crtc,
986 const struct aty128fb_par *par)
987 {
988 aty_st_le32(CRTC_GEN_CNTL, crtc->gen_cntl);
989 aty_st_le32(CRTC_H_TOTAL_DISP, crtc->h_total);
990 aty_st_le32(CRTC_H_SYNC_STRT_WID, crtc->h_sync_strt_wid);
991 aty_st_le32(CRTC_V_TOTAL_DISP, crtc->v_total);
992 aty_st_le32(CRTC_V_SYNC_STRT_WID, crtc->v_sync_strt_wid);
993 aty_st_le32(CRTC_PITCH, crtc->pitch);
994 aty_st_le32(CRTC_OFFSET, crtc->offset);
995 aty_st_le32(CRTC_OFFSET_CNTL, crtc->offset_cntl);
996 /* Disable ATOMIC updating. Is this the right place? */
997 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
998 }
999
1000
1001 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
1002 struct aty128_crtc *crtc,
1003 const struct aty128fb_par *par)
1004 {
1005 u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
1006 u32 left, right, upper, lower, hslen, vslen, sync, vmode;
1007 u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
1008 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1009 u32 depth, bytpp;
1010 u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
1011
1012 /* input */
1013 xres = var->xres;
1014 yres = var->yres;
1015 vxres = var->xres_virtual;
1016 vyres = var->yres_virtual;
1017 xoffset = var->xoffset;
1018 yoffset = var->yoffset;
1019 bpp = var->bits_per_pixel;
1020 left = var->left_margin;
1021 right = var->right_margin;
1022 upper = var->upper_margin;
1023 lower = var->lower_margin;
1024 hslen = var->hsync_len;
1025 vslen = var->vsync_len;
1026 sync = var->sync;
1027 vmode = var->vmode;
1028
1029 if (bpp != 16)
1030 depth = bpp;
1031 else
1032 depth = (var->green.length == 6) ? 16 : 15;
1033
1034 /* check for mode eligibility
1035 * accept only non interlaced modes */
1036 if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
1037 return -EINVAL;
1038
1039 /* convert (and round up) and validate */
1040 xres = (xres + 7) & ~7;
1041 xoffset = (xoffset + 7) & ~7;
1042
1043 if (vxres < xres + xoffset)
1044 vxres = xres + xoffset;
1045
1046 if (vyres < yres + yoffset)
1047 vyres = yres + yoffset;
1048
1049 /* convert depth into ATI register depth */
1050 dst = depth_to_dst(depth);
1051
1052 if (dst == -EINVAL) {
1053 printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
1054 return -EINVAL;
1055 }
1056
1057 /* convert register depth to bytes per pixel */
1058 bytpp = mode_bytpp[dst];
1059
1060 /* make sure there is enough video ram for the mode */
1061 if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
1062 printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
1063 return -EINVAL;
1064 }
1065
1066 h_disp = (xres >> 3) - 1;
1067 h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
1068
1069 v_disp = yres - 1;
1070 v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
1071
1072 /* check to make sure h_total and v_total are in range */
1073 if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
1074 printk(KERN_ERR "aty128fb: invalid width ranges\n");
1075 return -EINVAL;
1076 }
1077
1078 h_sync_wid = (hslen + 7) >> 3;
1079 if (h_sync_wid == 0)
1080 h_sync_wid = 1;
1081 else if (h_sync_wid > 0x3f) /* 0x3f = max hwidth */
1082 h_sync_wid = 0x3f;
1083
1084 h_sync_strt = (h_disp << 3) + right;
1085
1086 v_sync_wid = vslen;
1087 if (v_sync_wid == 0)
1088 v_sync_wid = 1;
1089 else if (v_sync_wid > 0x1f) /* 0x1f = max vwidth */
1090 v_sync_wid = 0x1f;
1091
1092 v_sync_strt = v_disp + lower;
1093
1094 h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
1095 v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
1096
1097 c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
1098
1099 crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
1100
1101 crtc->h_total = h_total | (h_disp << 16);
1102 crtc->v_total = v_total | (v_disp << 16);
1103
1104 crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
1105 (h_sync_pol << 23);
1106 crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
1107 (v_sync_pol << 23);
1108
1109 crtc->pitch = vxres >> 3;
1110
1111 crtc->offset = 0;
1112
1113 if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
1114 crtc->offset_cntl = 0x00010000;
1115 else
1116 crtc->offset_cntl = 0;
1117
1118 crtc->vxres = vxres;
1119 crtc->vyres = vyres;
1120 crtc->xoffset = xoffset;
1121 crtc->yoffset = yoffset;
1122 crtc->depth = depth;
1123 crtc->bpp = bpp;
1124
1125 return 0;
1126 }
1127
1128
1129 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
1130 {
1131
1132 /* fill in pixel info */
1133 var->red.msb_right = 0;
1134 var->green.msb_right = 0;
1135 var->blue.offset = 0;
1136 var->blue.msb_right = 0;
1137 var->transp.offset = 0;
1138 var->transp.length = 0;
1139 var->transp.msb_right = 0;
1140 switch (pix_width) {
1141 case CRTC_PIX_WIDTH_8BPP:
1142 var->bits_per_pixel = 8;
1143 var->red.offset = 0;
1144 var->red.length = 8;
1145 var->green.offset = 0;
1146 var->green.length = 8;
1147 var->blue.length = 8;
1148 break;
1149 case CRTC_PIX_WIDTH_15BPP:
1150 var->bits_per_pixel = 16;
1151 var->red.offset = 10;
1152 var->red.length = 5;
1153 var->green.offset = 5;
1154 var->green.length = 5;
1155 var->blue.length = 5;
1156 break;
1157 case CRTC_PIX_WIDTH_16BPP:
1158 var->bits_per_pixel = 16;
1159 var->red.offset = 11;
1160 var->red.length = 5;
1161 var->green.offset = 5;
1162 var->green.length = 6;
1163 var->blue.length = 5;
1164 break;
1165 case CRTC_PIX_WIDTH_24BPP:
1166 var->bits_per_pixel = 24;
1167 var->red.offset = 16;
1168 var->red.length = 8;
1169 var->green.offset = 8;
1170 var->green.length = 8;
1171 var->blue.length = 8;
1172 break;
1173 case CRTC_PIX_WIDTH_32BPP:
1174 var->bits_per_pixel = 32;
1175 var->red.offset = 16;
1176 var->red.length = 8;
1177 var->green.offset = 8;
1178 var->green.length = 8;
1179 var->blue.length = 8;
1180 var->transp.offset = 24;
1181 var->transp.length = 8;
1182 break;
1183 default:
1184 printk(KERN_ERR "aty128fb: Invalid pixel width\n");
1185 return -EINVAL;
1186 }
1187
1188 return 0;
1189 }
1190
1191
1192 static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
1193 struct fb_var_screeninfo *var)
1194 {
1195 u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
1196 u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
1197 u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1198 u32 pix_width;
1199
1200 /* fun with masking */
1201 h_total = crtc->h_total & 0x1ff;
1202 h_disp = (crtc->h_total >> 16) & 0xff;
1203 h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
1204 h_sync_dly = crtc->h_sync_strt_wid & 0x7;
1205 h_sync_wid = (crtc->h_sync_strt_wid >> 16) & 0x3f;
1206 h_sync_pol = (crtc->h_sync_strt_wid >> 23) & 0x1;
1207 v_total = crtc->v_total & 0x7ff;
1208 v_disp = (crtc->v_total >> 16) & 0x7ff;
1209 v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
1210 v_sync_wid = (crtc->v_sync_strt_wid >> 16) & 0x1f;
1211 v_sync_pol = (crtc->v_sync_strt_wid >> 23) & 0x1;
1212 c_sync = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
1213 pix_width = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
1214
1215 /* do conversions */
1216 xres = (h_disp + 1) << 3;
1217 yres = v_disp + 1;
1218 left = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
1219 right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
1220 hslen = h_sync_wid << 3;
1221 upper = v_total - v_sync_strt - v_sync_wid;
1222 lower = v_sync_strt - v_disp;
1223 vslen = v_sync_wid;
1224 sync = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
1225 (v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
1226 (c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
1227
1228 aty128_pix_width_to_var(pix_width, var);
1229
1230 var->xres = xres;
1231 var->yres = yres;
1232 var->xres_virtual = crtc->vxres;
1233 var->yres_virtual = crtc->vyres;
1234 var->xoffset = crtc->xoffset;
1235 var->yoffset = crtc->yoffset;
1236 var->left_margin = left;
1237 var->right_margin = right;
1238 var->upper_margin = upper;
1239 var->lower_margin = lower;
1240 var->hsync_len = hslen;
1241 var->vsync_len = vslen;
1242 var->sync = sync;
1243 var->vmode = FB_VMODE_NONINTERLACED;
1244
1245 return 0;
1246 }
1247
1248 static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
1249 {
1250 if (on) {
1251 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) | CRT_CRTC_ON);
1252 aty_st_le32(DAC_CNTL, (aty_ld_le32(DAC_CNTL) | DAC_PALETTE2_SNOOP_EN));
1253 } else
1254 aty_st_le32(CRTC_EXT_CNTL, aty_ld_le32(CRTC_EXT_CNTL) & ~CRT_CRTC_ON);
1255 }
1256
1257 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
1258 {
1259 u32 reg;
1260 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1261 struct fb_info *info = pci_get_drvdata(par->pdev);
1262 #endif
1263
1264 if (on) {
1265 reg = aty_ld_le32(LVDS_GEN_CNTL);
1266 reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
1267 reg &= ~LVDS_DISPLAY_DIS;
1268 aty_st_le32(LVDS_GEN_CNTL, reg);
1269 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1270 aty128_bl_set_power(info, FB_BLANK_UNBLANK);
1271 #endif
1272 } else {
1273 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1274 aty128_bl_set_power(info, FB_BLANK_POWERDOWN);
1275 #endif
1276 reg = aty_ld_le32(LVDS_GEN_CNTL);
1277 reg |= LVDS_DISPLAY_DIS;
1278 aty_st_le32(LVDS_GEN_CNTL, reg);
1279 mdelay(100);
1280 reg &= ~(LVDS_ON /*| LVDS_EN*/);
1281 aty_st_le32(LVDS_GEN_CNTL, reg);
1282 }
1283 }
1284
1285 static void aty128_set_pll(struct aty128_pll *pll, const struct aty128fb_par *par)
1286 {
1287 u32 div3;
1288
1289 unsigned char post_conv[] = /* register values for post dividers */
1290 { 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 };
1291
1292 /* select PPLL_DIV_3 */
1293 aty_st_le32(CLOCK_CNTL_INDEX, aty_ld_le32(CLOCK_CNTL_INDEX) | (3 << 8));
1294
1295 /* reset PLL */
1296 aty_st_pll(PPLL_CNTL,
1297 aty_ld_pll(PPLL_CNTL) | PPLL_RESET | PPLL_ATOMIC_UPDATE_EN);
1298
1299 /* write the reference divider */
1300 aty_pll_wait_readupdate(par);
1301 aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
1302 aty_pll_writeupdate(par);
1303
1304 div3 = aty_ld_pll(PPLL_DIV_3);
1305 div3 &= ~PPLL_FB3_DIV_MASK;
1306 div3 |= pll->feedback_divider;
1307 div3 &= ~PPLL_POST3_DIV_MASK;
1308 div3 |= post_conv[pll->post_divider] << 16;
1309
1310 /* write feedback and post dividers */
1311 aty_pll_wait_readupdate(par);
1312 aty_st_pll(PPLL_DIV_3, div3);
1313 aty_pll_writeupdate(par);
1314
1315 aty_pll_wait_readupdate(par);
1316 aty_st_pll(HTOTAL_CNTL, 0); /* no horiz crtc adjustment */
1317 aty_pll_writeupdate(par);
1318
1319 /* clear the reset, just in case */
1320 aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~PPLL_RESET);
1321 }
1322
1323
1324 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
1325 const struct aty128fb_par *par)
1326 {
1327 const struct aty128_constants c = par->constants;
1328 unsigned char post_dividers[] = {1,2,4,8,3,6,12};
1329 u32 output_freq;
1330 u32 vclk; /* in .01 MHz */
1331 int i = 0;
1332 u32 n, d;
1333
1334 vclk = 100000000 / period_in_ps; /* convert units to 10 kHz */
1335
1336 /* adjust pixel clock if necessary */
1337 if (vclk > c.ppll_max)
1338 vclk = c.ppll_max;
1339 if (vclk * 12 < c.ppll_min)
1340 vclk = c.ppll_min/12;
1341
1342 /* now, find an acceptable divider */
1343 for (i = 0; i < ARRAY_SIZE(post_dividers); i++) {
1344 output_freq = post_dividers[i] * vclk;
1345 if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
1346 pll->post_divider = post_dividers[i];
1347 break;
1348 }
1349 }
1350
1351 if (i == ARRAY_SIZE(post_dividers))
1352 return -EINVAL;
1353
1354 /* calculate feedback divider */
1355 n = c.ref_divider * output_freq;
1356 d = c.ref_clk;
1357
1358 pll->feedback_divider = round_div(n, d);
1359 pll->vclk = vclk;
1360
1361 DBG("post %d feedback %d vlck %d output %d ref_divider %d "
1362 "vclk_per: %d\n", pll->post_divider,
1363 pll->feedback_divider, vclk, output_freq,
1364 c.ref_divider, period_in_ps);
1365
1366 return 0;
1367 }
1368
1369
1370 static int aty128_pll_to_var(const struct aty128_pll *pll, struct fb_var_screeninfo *var)
1371 {
1372 var->pixclock = 100000000 / pll->vclk;
1373
1374 return 0;
1375 }
1376
1377
1378 static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
1379 const struct aty128fb_par *par)
1380 {
1381 aty_st_le32(DDA_CONFIG, dsp->dda_config);
1382 aty_st_le32(DDA_ON_OFF, dsp->dda_on_off);
1383 }
1384
1385
1386 static int aty128_ddafifo(struct aty128_ddafifo *dsp,
1387 const struct aty128_pll *pll,
1388 u32 depth,
1389 const struct aty128fb_par *par)
1390 {
1391 const struct aty128_meminfo *m = par->mem;
1392 u32 xclk = par->constants.xclk;
1393 u32 fifo_width = par->constants.fifo_width;
1394 u32 fifo_depth = par->constants.fifo_depth;
1395 s32 x, b, p, ron, roff;
1396 u32 n, d, bpp;
1397
1398 /* round up to multiple of 8 */
1399 bpp = (depth+7) & ~7;
1400
1401 n = xclk * fifo_width;
1402 d = pll->vclk * bpp;
1403 x = round_div(n, d);
1404
1405 ron = 4 * m->MB +
1406 3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
1407 2 * m->Trp +
1408 m->Twr +
1409 m->CL +
1410 m->Tr2w +
1411 x;
1412
1413 DBG("x %x\n", x);
1414
1415 b = 0;
1416 while (x) {
1417 x >>= 1;
1418 b++;
1419 }
1420 p = b + 1;
1421
1422 ron <<= (11 - p);
1423
1424 n <<= (11 - p);
1425 x = round_div(n, d);
1426 roff = x * (fifo_depth - 4);
1427
1428 if ((ron + m->Rloop) >= roff) {
1429 printk(KERN_ERR "aty128fb: Mode out of range!\n");
1430 return -EINVAL;
1431 }
1432
1433 DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
1434 p, m->Rloop, x, ron, roff);
1435
1436 dsp->dda_config = p << 16 | m->Rloop << 20 | x;
1437 dsp->dda_on_off = ron << 16 | roff;
1438
1439 return 0;
1440 }
1441
1442
1443 /*
1444 * This actually sets the video mode.
1445 */
1446 static int aty128fb_set_par(struct fb_info *info)
1447 {
1448 struct aty128fb_par *par = info->par;
1449 u32 config;
1450 int err;
1451
1452 if ((err = aty128_decode_var(&info->var, par)) != 0)
1453 return err;
1454
1455 if (par->blitter_may_be_busy)
1456 wait_for_idle(par);
1457
1458 /* clear all registers that may interfere with mode setting */
1459 aty_st_le32(OVR_CLR, 0);
1460 aty_st_le32(OVR_WID_LEFT_RIGHT, 0);
1461 aty_st_le32(OVR_WID_TOP_BOTTOM, 0);
1462 aty_st_le32(OV0_SCALE_CNTL, 0);
1463 aty_st_le32(MPP_TB_CONFIG, 0);
1464 aty_st_le32(MPP_GP_CONFIG, 0);
1465 aty_st_le32(SUBPIC_CNTL, 0);
1466 aty_st_le32(VIPH_CONTROL, 0);
1467 aty_st_le32(I2C_CNTL_1, 0); /* turn off i2c */
1468 aty_st_le32(GEN_INT_CNTL, 0); /* turn off interrupts */
1469 aty_st_le32(CAP0_TRIG_CNTL, 0);
1470 aty_st_le32(CAP1_TRIG_CNTL, 0);
1471
1472 aty_st_8(CRTC_EXT_CNTL + 1, 4); /* turn video off */
1473
1474 aty128_set_crtc(&par->crtc, par);
1475 aty128_set_pll(&par->pll, par);
1476 aty128_set_fifo(&par->fifo_reg, par);
1477
1478 config = aty_ld_le32(CNFG_CNTL) & ~3;
1479
1480 #if defined(__BIG_ENDIAN)
1481 if (par->crtc.bpp == 32)
1482 config |= 2; /* make aperture do 32 bit swapping */
1483 else if (par->crtc.bpp == 16)
1484 config |= 1; /* make aperture do 16 bit swapping */
1485 #endif
1486
1487 aty_st_le32(CNFG_CNTL, config);
1488 aty_st_8(CRTC_EXT_CNTL + 1, 0); /* turn the video back on */
1489
1490 info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
1491 info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
1492 : FB_VISUAL_DIRECTCOLOR;
1493
1494 if (par->chip_gen == rage_M3) {
1495 aty128_set_crt_enable(par, par->crt_on);
1496 aty128_set_lcd_enable(par, par->lcd_on);
1497 }
1498 if (par->accel_flags & FB_ACCELF_TEXT)
1499 aty128_init_engine(par);
1500
1501 #ifdef CONFIG_BOOTX_TEXT
1502 btext_update_display(info->fix.smem_start,
1503 (((par->crtc.h_total>>16) & 0xff)+1)*8,
1504 ((par->crtc.v_total>>16) & 0x7ff)+1,
1505 par->crtc.bpp,
1506 par->crtc.vxres*par->crtc.bpp/8);
1507 #endif /* CONFIG_BOOTX_TEXT */
1508
1509 return 0;
1510 }
1511
1512 /*
1513 * encode/decode the User Defined Part of the Display
1514 */
1515
1516 static int aty128_decode_var(struct fb_var_screeninfo *var, struct aty128fb_par *par)
1517 {
1518 int err;
1519 struct aty128_crtc crtc;
1520 struct aty128_pll pll;
1521 struct aty128_ddafifo fifo_reg;
1522
1523 if ((err = aty128_var_to_crtc(var, &crtc, par)))
1524 return err;
1525
1526 if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
1527 return err;
1528
1529 if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
1530 return err;
1531
1532 par->crtc = crtc;
1533 par->pll = pll;
1534 par->fifo_reg = fifo_reg;
1535 par->accel_flags = var->accel_flags;
1536
1537 return 0;
1538 }
1539
1540
1541 static int aty128_encode_var(struct fb_var_screeninfo *var,
1542 const struct aty128fb_par *par)
1543 {
1544 int err;
1545
1546 if ((err = aty128_crtc_to_var(&par->crtc, var)))
1547 return err;
1548
1549 if ((err = aty128_pll_to_var(&par->pll, var)))
1550 return err;
1551
1552 var->nonstd = 0;
1553 var->activate = 0;
1554
1555 var->height = -1;
1556 var->width = -1;
1557 var->accel_flags = par->accel_flags;
1558
1559 return 0;
1560 }
1561
1562
1563 static int aty128fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
1564 {
1565 struct aty128fb_par par;
1566 int err;
1567
1568 par = *(struct aty128fb_par *)info->par;
1569 if ((err = aty128_decode_var(var, &par)) != 0)
1570 return err;
1571 aty128_encode_var(var, &par);
1572 return 0;
1573 }
1574
1575
1576 /*
1577 * Pan or Wrap the Display
1578 */
1579 static int aty128fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *fb)
1580 {
1581 struct aty128fb_par *par = fb->par;
1582 u32 xoffset, yoffset;
1583 u32 offset;
1584 u32 xres, yres;
1585
1586 xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
1587 yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
1588
1589 xoffset = (var->xoffset +7) & ~7;
1590 yoffset = var->yoffset;
1591
1592 if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
1593 return -EINVAL;
1594
1595 par->crtc.xoffset = xoffset;
1596 par->crtc.yoffset = yoffset;
1597
1598 offset = ((yoffset * par->crtc.vxres + xoffset)*(par->crtc.bpp >> 3)) & ~7;
1599
1600 if (par->crtc.bpp == 24)
1601 offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
1602
1603 aty_st_le32(CRTC_OFFSET, offset);
1604
1605 return 0;
1606 }
1607
1608
1609 /*
1610 * Helper function to store a single palette register
1611 */
1612 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
1613 struct aty128fb_par *par)
1614 {
1615 if (par->chip_gen == rage_M3) {
1616 #if 0
1617 /* Note: For now, on M3, we set palette on both heads, which may
1618 * be useless. Can someone with a M3 check this ?
1619 *
1620 * This code would still be useful if using the second CRTC to
1621 * do mirroring
1622 */
1623
1624 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PALETTE_ACCESS_CNTL);
1625 aty_st_8(PALETTE_INDEX, regno);
1626 aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1627 #endif
1628 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & ~DAC_PALETTE_ACCESS_CNTL);
1629 }
1630
1631 aty_st_8(PALETTE_INDEX, regno);
1632 aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1633 }
1634
1635 static int aty128fb_sync(struct fb_info *info)
1636 {
1637 struct aty128fb_par *par = info->par;
1638
1639 if (par->blitter_may_be_busy)
1640 wait_for_idle(par);
1641 return 0;
1642 }
1643
1644 #ifndef MODULE
1645 static int __devinit aty128fb_setup(char *options)
1646 {
1647 char *this_opt;
1648
1649 if (!options || !*options)
1650 return 0;
1651
1652 while ((this_opt = strsep(&options, ",")) != NULL) {
1653 if (!strncmp(this_opt, "lcd:", 4)) {
1654 default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
1655 continue;
1656 } else if (!strncmp(this_opt, "crt:", 4)) {
1657 default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
1658 continue;
1659 } else if (!strncmp(this_opt, "backlight:", 10)) {
1660 backlight = simple_strtoul(this_opt+10, NULL, 0);
1661 continue;
1662 }
1663 #ifdef CONFIG_MTRR
1664 if(!strncmp(this_opt, "nomtrr", 6)) {
1665 mtrr = 0;
1666 continue;
1667 }
1668 #endif
1669 #ifdef CONFIG_PPC_PMAC
1670 /* vmode and cmode deprecated */
1671 if (!strncmp(this_opt, "vmode:", 6)) {
1672 unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
1673 if (vmode > 0 && vmode <= VMODE_MAX)
1674 default_vmode = vmode;
1675 continue;
1676 } else if (!strncmp(this_opt, "cmode:", 6)) {
1677 unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
1678 switch (cmode) {
1679 case 0:
1680 case 8:
1681 default_cmode = CMODE_8;
1682 break;
1683 case 15:
1684 case 16:
1685 default_cmode = CMODE_16;
1686 break;
1687 case 24:
1688 case 32:
1689 default_cmode = CMODE_32;
1690 break;
1691 }
1692 continue;
1693 }
1694 #endif /* CONFIG_PPC_PMAC */
1695 mode_option = this_opt;
1696 }
1697 return 0;
1698 }
1699 #endif /* MODULE */
1700
1701 /* Backlight */
1702 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1703 #define MAX_LEVEL 0xFF
1704
1705 static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
1706 int level)
1707 {
1708 struct fb_info *info = pci_get_drvdata(par->pdev);
1709 int atylevel;
1710
1711 /* Get and convert the value */
1712 /* No locking of bl_curve since we read a single value */
1713 atylevel = MAX_LEVEL -
1714 (info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);
1715
1716 if (atylevel < 0)
1717 atylevel = 0;
1718 else if (atylevel > MAX_LEVEL)
1719 atylevel = MAX_LEVEL;
1720
1721 return atylevel;
1722 }
1723
1724 /* We turn off the LCD completely instead of just dimming the backlight.
1725 * This provides greater power saving and the display is useless without
1726 * backlight anyway
1727 */
1728 #define BACKLIGHT_LVDS_OFF
1729 /* That one prevents proper CRT output with LCD off */
1730 #undef BACKLIGHT_DAC_OFF
1731
1732 static int aty128_bl_update_status(struct backlight_device *bd)
1733 {
1734 struct aty128fb_par *par = bl_get_data(bd);
1735 unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
1736 int level;
1737
1738 if (bd->props.power != FB_BLANK_UNBLANK ||
1739 bd->props.fb_blank != FB_BLANK_UNBLANK ||
1740 !par->lcd_on)
1741 level = 0;
1742 else
1743 level = bd->props.brightness;
1744
1745 reg |= LVDS_BL_MOD_EN | LVDS_BLON;
1746 if (level > 0) {
1747 reg |= LVDS_DIGION;
1748 if (!(reg & LVDS_ON)) {
1749 reg &= ~LVDS_BLON;
1750 aty_st_le32(LVDS_GEN_CNTL, reg);
1751 aty_ld_le32(LVDS_GEN_CNTL);
1752 mdelay(10);
1753 reg |= LVDS_BLON;
1754 aty_st_le32(LVDS_GEN_CNTL, reg);
1755 }
1756 reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1757 reg |= (aty128_bl_get_level_brightness(par, level) << LVDS_BL_MOD_LEVEL_SHIFT);
1758 #ifdef BACKLIGHT_LVDS_OFF
1759 reg |= LVDS_ON | LVDS_EN;
1760 reg &= ~LVDS_DISPLAY_DIS;
1761 #endif
1762 aty_st_le32(LVDS_GEN_CNTL, reg);
1763 #ifdef BACKLIGHT_DAC_OFF
1764 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) & (~DAC_PDWN));
1765 #endif
1766 } else {
1767 reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1768 reg |= (aty128_bl_get_level_brightness(par, 0) << LVDS_BL_MOD_LEVEL_SHIFT);
1769 #ifdef BACKLIGHT_LVDS_OFF
1770 reg |= LVDS_DISPLAY_DIS;
1771 aty_st_le32(LVDS_GEN_CNTL, reg);
1772 aty_ld_le32(LVDS_GEN_CNTL);
1773 udelay(10);
1774 reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
1775 #endif
1776 aty_st_le32(LVDS_GEN_CNTL, reg);
1777 #ifdef BACKLIGHT_DAC_OFF
1778 aty_st_le32(DAC_CNTL, aty_ld_le32(DAC_CNTL) | DAC_PDWN);
1779 #endif
1780 }
1781
1782 return 0;
1783 }
1784
1785 static int aty128_bl_get_brightness(struct backlight_device *bd)
1786 {
1787 return bd->props.brightness;
1788 }
1789
1790 static struct backlight_ops aty128_bl_data = {
1791 .get_brightness = aty128_bl_get_brightness,
1792 .update_status = aty128_bl_update_status,
1793 };
1794
1795 static void aty128_bl_set_power(struct fb_info *info, int power)
1796 {
1797 if (info->bl_dev) {
1798 info->bl_dev->props.power = power;
1799 backlight_update_status(info->bl_dev);
1800 }
1801 }
1802
1803 static void aty128_bl_init(struct aty128fb_par *par)
1804 {
1805 struct fb_info *info = pci_get_drvdata(par->pdev);
1806 struct backlight_device *bd;
1807 char name[12];
1808
1809 /* Could be extended to Rage128Pro LVDS output too */
1810 if (par->chip_gen != rage_M3)
1811 return;
1812
1813 #ifdef CONFIG_PMAC_BACKLIGHT
1814 if (!pmac_has_backlight_type("ati"))
1815 return;
1816 #endif
1817
1818 snprintf(name, sizeof(name), "aty128bl%d", info->node);
1819
1820 bd = backlight_device_register(name, info->dev, par, &aty128_bl_data);
1821 if (IS_ERR(bd)) {
1822 info->bl_dev = NULL;
1823 printk(KERN_WARNING "aty128: Backlight registration failed\n");
1824 goto error;
1825 }
1826
1827 info->bl_dev = bd;
1828 fb_bl_default_curve(info, 0,
1829 63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
1830 219 * FB_BACKLIGHT_MAX / MAX_LEVEL);
1831
1832 bd->props.max_brightness = FB_BACKLIGHT_LEVELS - 1;
1833 bd->props.brightness = bd->props.max_brightness;
1834 bd->props.power = FB_BLANK_UNBLANK;
1835 backlight_update_status(bd);
1836
1837 printk("aty128: Backlight initialized (%s)\n", name);
1838
1839 return;
1840
1841 error:
1842 return;
1843 }
1844
1845 static void aty128_bl_exit(struct backlight_device *bd)
1846 {
1847 backlight_device_unregister(bd);
1848 printk("aty128: Backlight unloaded\n");
1849 }
1850 #endif /* CONFIG_FB_ATY128_BACKLIGHT */
1851
1852 /*
1853 * Initialisation
1854 */
1855
1856 #ifdef CONFIG_PPC_PMAC
1857 static void aty128_early_resume(void *data)
1858 {
1859 struct aty128fb_par *par = data;
1860
1861 if (try_acquire_console_sem())
1862 return;
1863 aty128_do_resume(par->pdev);
1864 release_console_sem();
1865 }
1866 #endif /* CONFIG_PPC_PMAC */
1867
1868 static int __devinit aty128_init(struct pci_dev *pdev, const struct pci_device_id *ent)
1869 {
1870 struct fb_info *info = pci_get_drvdata(pdev);
1871 struct aty128fb_par *par = info->par;
1872 struct fb_var_screeninfo var;
1873 char video_card[50];
1874 u8 chip_rev;
1875 u32 dac;
1876
1877 /* Get the chip revision */
1878 chip_rev = (aty_ld_le32(CNFG_CNTL) >> 16) & 0x1F;
1879
1880 strcpy(video_card, "Rage128 XX ");
1881 video_card[8] = ent->device >> 8;
1882 video_card[9] = ent->device & 0xFF;
1883
1884 /* range check to make sure */
1885 if (ent->driver_data < ARRAY_SIZE(r128_family))
1886 strlcat(video_card, r128_family[ent->driver_data], sizeof(video_card));
1887
1888 printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
1889
1890 if (par->vram_size % (1024 * 1024) == 0)
1891 printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
1892 else
1893 printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
1894
1895 par->chip_gen = ent->driver_data;
1896
1897 /* fill in info */
1898 info->fbops = &aty128fb_ops;
1899 info->flags = FBINFO_FLAG_DEFAULT;
1900
1901 par->lcd_on = default_lcd_on;
1902 par->crt_on = default_crt_on;
1903
1904 var = default_var;
1905 #ifdef CONFIG_PPC_PMAC
1906 if (machine_is(powermac)) {
1907 /* Indicate sleep capability */
1908 if (par->chip_gen == rage_M3) {
1909 pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
1910 pmac_set_early_video_resume(aty128_early_resume, par);
1911 }
1912
1913 /* Find default mode */
1914 if (mode_option) {
1915 if (!mac_find_mode(&var, info, mode_option, 8))
1916 var = default_var;
1917 } else {
1918 if (default_vmode <= 0 || default_vmode > VMODE_MAX)
1919 default_vmode = VMODE_1024_768_60;
1920
1921 /* iMacs need that resolution
1922 * PowerMac2,1 first r128 iMacs
1923 * PowerMac2,2 summer 2000 iMacs
1924 * PowerMac4,1 january 2001 iMacs "flower power"
1925 */
1926 if (machine_is_compatible("PowerMac2,1") ||
1927 machine_is_compatible("PowerMac2,2") ||
1928 machine_is_compatible("PowerMac4,1"))
1929 default_vmode = VMODE_1024_768_75;
1930
1931 /* iBook SE */
1932 if (machine_is_compatible("PowerBook2,2"))
1933 default_vmode = VMODE_800_600_60;
1934
1935 /* PowerBook Firewire (Pismo), iBook Dual USB */
1936 if (machine_is_compatible("PowerBook3,1") ||
1937 machine_is_compatible("PowerBook4,1"))
1938 default_vmode = VMODE_1024_768_60;
1939
1940 /* PowerBook Titanium */
1941 if (machine_is_compatible("PowerBook3,2"))
1942 default_vmode = VMODE_1152_768_60;
1943
1944 if (default_cmode > 16)
1945 default_cmode = CMODE_32;
1946 else if (default_cmode > 8)
1947 default_cmode = CMODE_16;
1948 else
1949 default_cmode = CMODE_8;
1950
1951 if (mac_vmode_to_var(default_vmode, default_cmode, &var))
1952 var = default_var;
1953 }
1954 } else
1955 #endif /* CONFIG_PPC_PMAC */
1956 {
1957 if (mode_option)
1958 if (fb_find_mode(&var, info, mode_option, NULL,
1959 0, &defaultmode, 8) == 0)
1960 var = default_var;
1961 }
1962
1963 var.accel_flags &= ~FB_ACCELF_TEXT;
1964 // var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
1965
1966 if (aty128fb_check_var(&var, info)) {
1967 printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
1968 return 0;
1969 }
1970
1971 /* setup the DAC the way we like it */
1972 dac = aty_ld_le32(DAC_CNTL);
1973 dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
1974 dac |= DAC_MASK;
1975 if (par->chip_gen == rage_M3)
1976 dac |= DAC_PALETTE2_SNOOP_EN;
1977 aty_st_le32(DAC_CNTL, dac);
1978
1979 /* turn off bus mastering, just in case */
1980 aty_st_le32(BUS_CNTL, aty_ld_le32(BUS_CNTL) | BUS_MASTER_DIS);
1981
1982 info->var = var;
1983 fb_alloc_cmap(&info->cmap, 256, 0);
1984
1985 var.activate = FB_ACTIVATE_NOW;
1986
1987 aty128_init_engine(par);
1988
1989 par->pm_reg = pci_find_capability(pdev, PCI_CAP_ID_PM);
1990 par->pdev = pdev;
1991 par->asleep = 0;
1992 par->lock_blank = 0;
1993
1994 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1995 if (backlight)
1996 aty128_bl_init(par);
1997 #endif
1998
1999 if (register_framebuffer(info) < 0)
2000 return 0;
2001
2002 printk(KERN_INFO "fb%d: %s frame buffer device on %s\n",
2003 info->node, info->fix.id, video_card);
2004
2005 return 1; /* success! */
2006 }
2007
2008 #ifdef CONFIG_PCI
2009 /* register a card ++ajoshi */
2010 static int __devinit aty128_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2011 {
2012 unsigned long fb_addr, reg_addr;
2013 struct aty128fb_par *par;
2014 struct fb_info *info;
2015 int err;
2016 #ifndef __sparc__
2017 void __iomem *bios = NULL;
2018 #endif
2019
2020 /* Enable device in PCI config */
2021 if ((err = pci_enable_device(pdev))) {
2022 printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
2023 err);
2024 return -ENODEV;
2025 }
2026
2027 fb_addr = pci_resource_start(pdev, 0);
2028 if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
2029 "aty128fb FB")) {
2030 printk(KERN_ERR "aty128fb: cannot reserve frame "
2031 "buffer memory\n");
2032 return -ENODEV;
2033 }
2034
2035 reg_addr = pci_resource_start(pdev, 2);
2036 if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
2037 "aty128fb MMIO")) {
2038 printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
2039 goto err_free_fb;
2040 }
2041
2042 /* We have the resources. Now virtualize them */
2043 info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
2044 if (info == NULL) {
2045 printk(KERN_ERR "aty128fb: can't alloc fb_info_aty128\n");
2046 goto err_free_mmio;
2047 }
2048 par = info->par;
2049
2050 info->pseudo_palette = par->pseudo_palette;
2051
2052 /* Virtualize mmio region */
2053 info->fix.mmio_start = reg_addr;
2054 par->regbase = pci_ioremap_bar(pdev, 2);
2055 if (!par->regbase)
2056 goto err_free_info;
2057
2058 /* Grab memory size from the card */
2059 // How does this relate to the resource length from the PCI hardware?
2060 par->vram_size = aty_ld_le32(CNFG_MEMSIZE) & 0x03FFFFFF;
2061
2062 /* Virtualize the framebuffer */
2063 info->screen_base = ioremap(fb_addr, par->vram_size);
2064 if (!info->screen_base)
2065 goto err_unmap_out;
2066
2067 /* Set up info->fix */
2068 info->fix = aty128fb_fix;
2069 info->fix.smem_start = fb_addr;
2070 info->fix.smem_len = par->vram_size;
2071 info->fix.mmio_start = reg_addr;
2072
2073 /* If we can't test scratch registers, something is seriously wrong */
2074 if (!register_test(par)) {
2075 printk(KERN_ERR "aty128fb: Can't write to video register!\n");
2076 goto err_out;
2077 }
2078
2079 #ifndef __sparc__
2080 bios = aty128_map_ROM(par, pdev);
2081 #ifdef CONFIG_X86
2082 if (bios == NULL)
2083 bios = aty128_find_mem_vbios(par);
2084 #endif
2085 if (bios == NULL)
2086 printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
2087 else {
2088 printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
2089 aty128_get_pllinfo(par, bios);
2090 pci_unmap_rom(pdev, bios);
2091 }
2092 #endif /* __sparc__ */
2093
2094 aty128_timings(par);
2095 pci_set_drvdata(pdev, info);
2096
2097 if (!aty128_init(pdev, ent))
2098 goto err_out;
2099
2100 #ifdef CONFIG_MTRR
2101 if (mtrr) {
2102 par->mtrr.vram = mtrr_add(info->fix.smem_start,
2103 par->vram_size, MTRR_TYPE_WRCOMB, 1);
2104 par->mtrr.vram_valid = 1;
2105 /* let there be speed */
2106 printk(KERN_INFO "aty128fb: Rage128 MTRR set to ON\n");
2107 }
2108 #endif /* CONFIG_MTRR */
2109 return 0;
2110
2111 err_out:
2112 iounmap(info->screen_base);
2113 err_unmap_out:
2114 iounmap(par->regbase);
2115 err_free_info:
2116 framebuffer_release(info);
2117 err_free_mmio:
2118 release_mem_region(pci_resource_start(pdev, 2),
2119 pci_resource_len(pdev, 2));
2120 err_free_fb:
2121 release_mem_region(pci_resource_start(pdev, 0),
2122 pci_resource_len(pdev, 0));
2123 return -ENODEV;
2124 }
2125
2126 static void __devexit aty128_remove(struct pci_dev *pdev)
2127 {
2128 struct fb_info *info = pci_get_drvdata(pdev);
2129 struct aty128fb_par *par;
2130
2131 if (!info)
2132 return;
2133
2134 par = info->par;
2135
2136 unregister_framebuffer(info);
2137
2138 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2139 aty128_bl_exit(info->bl_dev);
2140 #endif
2141
2142 #ifdef CONFIG_MTRR
2143 if (par->mtrr.vram_valid)
2144 mtrr_del(par->mtrr.vram, info->fix.smem_start,
2145 par->vram_size);
2146 #endif /* CONFIG_MTRR */
2147 iounmap(par->regbase);
2148 iounmap(info->screen_base);
2149
2150 release_mem_region(pci_resource_start(pdev, 0),
2151 pci_resource_len(pdev, 0));
2152 release_mem_region(pci_resource_start(pdev, 2),
2153 pci_resource_len(pdev, 2));
2154 framebuffer_release(info);
2155 }
2156 #endif /* CONFIG_PCI */
2157
2158
2159
2160 /*
2161 * Blank the display.
2162 */
2163 static int aty128fb_blank(int blank, struct fb_info *fb)
2164 {
2165 struct aty128fb_par *par = fb->par;
2166 u8 state;
2167
2168 if (par->lock_blank || par->asleep)
2169 return 0;
2170
2171 switch (blank) {
2172 case FB_BLANK_NORMAL:
2173 state = 4;
2174 break;
2175 case FB_BLANK_VSYNC_SUSPEND:
2176 state = 6;
2177 break;
2178 case FB_BLANK_HSYNC_SUSPEND:
2179 state = 5;
2180 break;
2181 case FB_BLANK_POWERDOWN:
2182 state = 7;
2183 break;
2184 case FB_BLANK_UNBLANK:
2185 default:
2186 state = 0;
2187 break;
2188 }
2189 aty_st_8(CRTC_EXT_CNTL+1, state);
2190
2191 if (par->chip_gen == rage_M3) {
2192 aty128_set_crt_enable(par, par->crt_on && !blank);
2193 aty128_set_lcd_enable(par, par->lcd_on && !blank);
2194 }
2195
2196 return 0;
2197 }
2198
2199 /*
2200 * Set a single color register. The values supplied are already
2201 * rounded down to the hardware's capabilities (according to the
2202 * entries in the var structure). Return != 0 for invalid regno.
2203 */
2204 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
2205 u_int transp, struct fb_info *info)
2206 {
2207 struct aty128fb_par *par = info->par;
2208
2209 if (regno > 255
2210 || (par->crtc.depth == 16 && regno > 63)
2211 || (par->crtc.depth == 15 && regno > 31))
2212 return 1;
2213
2214 red >>= 8;
2215 green >>= 8;
2216 blue >>= 8;
2217
2218 if (regno < 16) {
2219 int i;
2220 u32 *pal = info->pseudo_palette;
2221
2222 switch (par->crtc.depth) {
2223 case 15:
2224 pal[regno] = (regno << 10) | (regno << 5) | regno;
2225 break;
2226 case 16:
2227 pal[regno] = (regno << 11) | (regno << 6) | regno;
2228 break;
2229 case 24:
2230 pal[regno] = (regno << 16) | (regno << 8) | regno;
2231 break;
2232 case 32:
2233 i = (regno << 8) | regno;
2234 pal[regno] = (i << 16) | i;
2235 break;
2236 }
2237 }
2238
2239 if (par->crtc.depth == 16 && regno > 0) {
2240 /*
2241 * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
2242 * have 32 slots for R and B values but 64 slots for G values.
2243 * Thus the R and B values go in one slot but the G value
2244 * goes in a different slot, and we have to avoid disturbing
2245 * the other fields in the slots we touch.
2246 */
2247 par->green[regno] = green;
2248 if (regno < 32) {
2249 par->red[regno] = red;
2250 par->blue[regno] = blue;
2251 aty128_st_pal(regno * 8, red, par->green[regno*2],
2252 blue, par);
2253 }
2254 red = par->red[regno/2];
2255 blue = par->blue[regno/2];
2256 regno <<= 2;
2257 } else if (par->crtc.bpp == 16)
2258 regno <<= 3;
2259 aty128_st_pal(regno, red, green, blue, par);
2260
2261 return 0;
2262 }
2263
2264 #define ATY_MIRROR_LCD_ON 0x00000001
2265 #define ATY_MIRROR_CRT_ON 0x00000002
2266
2267 /* out param: u32* backlight value: 0 to 15 */
2268 #define FBIO_ATY128_GET_MIRROR _IOR('@', 1, __u32)
2269 /* in param: u32* backlight value: 0 to 15 */
2270 #define FBIO_ATY128_SET_MIRROR _IOW('@', 2, __u32)
2271
2272 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
2273 {
2274 struct aty128fb_par *par = info->par;
2275 u32 value;
2276 int rc;
2277
2278 switch (cmd) {
2279 case FBIO_ATY128_SET_MIRROR:
2280 if (par->chip_gen != rage_M3)
2281 return -EINVAL;
2282 rc = get_user(value, (__u32 __user *)arg);
2283 if (rc)
2284 return rc;
2285 par->lcd_on = (value & 0x01) != 0;
2286 par->crt_on = (value & 0x02) != 0;
2287 if (!par->crt_on && !par->lcd_on)
2288 par->lcd_on = 1;
2289 aty128_set_crt_enable(par, par->crt_on);
2290 aty128_set_lcd_enable(par, par->lcd_on);
2291 return 0;
2292 case FBIO_ATY128_GET_MIRROR:
2293 if (par->chip_gen != rage_M3)
2294 return -EINVAL;
2295 value = (par->crt_on << 1) | par->lcd_on;
2296 return put_user(value, (__u32 __user *)arg);
2297 }
2298 return -EINVAL;
2299 }
2300
2301 #if 0
2302 /*
2303 * Accelerated functions
2304 */
2305
2306 static inline void aty128_rectcopy(int srcx, int srcy, int dstx, int dsty,
2307 u_int width, u_int height,
2308 struct fb_info_aty128 *par)
2309 {
2310 u32 save_dp_datatype, save_dp_cntl, dstval;
2311
2312 if (!width || !height)
2313 return;
2314
2315 dstval = depth_to_dst(par->current_par.crtc.depth);
2316 if (dstval == DST_24BPP) {
2317 srcx *= 3;
2318 dstx *= 3;
2319 width *= 3;
2320 } else if (dstval == -EINVAL) {
2321 printk("aty128fb: invalid depth or RGBA\n");
2322 return;
2323 }
2324
2325 wait_for_fifo(2, par);
2326 save_dp_datatype = aty_ld_le32(DP_DATATYPE);
2327 save_dp_cntl = aty_ld_le32(DP_CNTL);
2328
2329 wait_for_fifo(6, par);
2330 aty_st_le32(SRC_Y_X, (srcy << 16) | srcx);
2331 aty_st_le32(DP_MIX, ROP3_SRCCOPY | DP_SRC_RECT);
2332 aty_st_le32(DP_CNTL, DST_X_LEFT_TO_RIGHT | DST_Y_TOP_TO_BOTTOM);
2333 aty_st_le32(DP_DATATYPE, save_dp_datatype | dstval | SRC_DSTCOLOR);
2334
2335 aty_st_le32(DST_Y_X, (dsty << 16) | dstx);
2336 aty_st_le32(DST_HEIGHT_WIDTH, (height << 16) | width);
2337
2338 par->blitter_may_be_busy = 1;
2339
2340 wait_for_fifo(2, par);
2341 aty_st_le32(DP_DATATYPE, save_dp_datatype);
2342 aty_st_le32(DP_CNTL, save_dp_cntl);
2343 }
2344
2345
2346 /*
2347 * Text mode accelerated functions
2348 */
2349
2350 static void fbcon_aty128_bmove(struct display *p, int sy, int sx, int dy, int dx,
2351 int height, int width)
2352 {
2353 sx *= fontwidth(p);
2354 sy *= fontheight(p);
2355 dx *= fontwidth(p);
2356 dy *= fontheight(p);
2357 width *= fontwidth(p);
2358 height *= fontheight(p);
2359
2360 aty128_rectcopy(sx, sy, dx, dy, width, height,
2361 (struct fb_info_aty128 *)p->fb_info);
2362 }
2363 #endif /* 0 */
2364
2365 static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
2366 {
2367 u32 pmgt;
2368 u16 pwr_command;
2369 struct pci_dev *pdev = par->pdev;
2370
2371 if (!par->pm_reg)
2372 return;
2373
2374 /* Set the chip into the appropriate suspend mode (we use D2,
2375 * D3 would require a complete re-initialisation of the chip,
2376 * including PCI config registers, clocks, AGP configuration, ...)
2377 */
2378 if (suspend) {
2379 /* Make sure CRTC2 is reset. Remove that the day we decide to
2380 * actually use CRTC2 and replace it with real code for disabling
2381 * the CRTC2 output during sleep
2382 */
2383 aty_st_le32(CRTC2_GEN_CNTL, aty_ld_le32(CRTC2_GEN_CNTL) &
2384 ~(CRTC2_EN));
2385
2386 /* Set the power management mode to be PCI based */
2387 /* Use this magic value for now */
2388 pmgt = 0x0c005407;
2389 aty_st_pll(POWER_MANAGEMENT, pmgt);
2390 (void)aty_ld_pll(POWER_MANAGEMENT);
2391 aty_st_le32(BUS_CNTL1, 0x00000010);
2392 aty_st_le32(MEM_POWER_MISC, 0x0c830000);
2393 mdelay(100);
2394 pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
2395 /* Switch PCI power management to D2 */
2396 pci_write_config_word(pdev, par->pm_reg+PCI_PM_CTRL,
2397 (pwr_command & ~PCI_PM_CTRL_STATE_MASK) | 2);
2398 pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
2399 } else {
2400 /* Switch back PCI power management to D0 */
2401 mdelay(100);
2402 pci_write_config_word(pdev, par->pm_reg+PCI_PM_CTRL, 0);
2403 pci_read_config_word(pdev, par->pm_reg+PCI_PM_CTRL, &pwr_command);
2404 mdelay(100);
2405 }
2406 }
2407
2408 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2409 {
2410 struct fb_info *info = pci_get_drvdata(pdev);
2411 struct aty128fb_par *par = info->par;
2412
2413 /* We don't do anything but D2, for now we return 0, but
2414 * we may want to change that. How do we know if the BIOS
2415 * can properly take care of D3 ? Also, with swsusp, we
2416 * know we'll be rebooted, ...
2417 */
2418 #ifndef CONFIG_PPC_PMAC
2419 /* HACK ALERT ! Once I find a proper way to say to each driver
2420 * individually what will happen with it's PCI slot, I'll change
2421 * that. On laptops, the AGP slot is just unclocked, so D2 is
2422 * expected, while on desktops, the card is powered off
2423 */
2424 return 0;
2425 #endif /* CONFIG_PPC_PMAC */
2426
2427 if (state.event == pdev->dev.power.power_state.event)
2428 return 0;
2429
2430 printk(KERN_DEBUG "aty128fb: suspending...\n");
2431
2432 acquire_console_sem();
2433
2434 fb_set_suspend(info, 1);
2435
2436 /* Make sure engine is reset */
2437 wait_for_idle(par);
2438 aty128_reset_engine(par);
2439 wait_for_idle(par);
2440
2441 /* Blank display and LCD */
2442 aty128fb_blank(FB_BLANK_POWERDOWN, info);
2443
2444 /* Sleep */
2445 par->asleep = 1;
2446 par->lock_blank = 1;
2447
2448 #ifdef CONFIG_PPC_PMAC
2449 /* On powermac, we have hooks to properly suspend/resume AGP now,
2450 * use them here. We'll ultimately need some generic support here,
2451 * but the generic code isn't quite ready for that yet
2452 */
2453 pmac_suspend_agp_for_card(pdev);
2454 #endif /* CONFIG_PPC_PMAC */
2455
2456 /* We need a way to make sure the fbdev layer will _not_ touch the
2457 * framebuffer before we put the chip to suspend state. On 2.4, I
2458 * used dummy fb ops, 2.5 need proper support for this at the
2459 * fbdev level
2460 */
2461 if (state.event != PM_EVENT_ON)
2462 aty128_set_suspend(par, 1);
2463
2464 release_console_sem();
2465
2466 pdev->dev.power.power_state = state;
2467
2468 return 0;
2469 }
2470
2471 static int aty128_do_resume(struct pci_dev *pdev)
2472 {
2473 struct fb_info *info = pci_get_drvdata(pdev);
2474 struct aty128fb_par *par = info->par;
2475
2476 if (pdev->dev.power.power_state.event == PM_EVENT_ON)
2477 return 0;
2478
2479 /* Wakeup chip */
2480 aty128_set_suspend(par, 0);
2481 par->asleep = 0;
2482
2483 /* Restore display & engine */
2484 aty128_reset_engine(par);
2485 wait_for_idle(par);
2486 aty128fb_set_par(info);
2487 fb_pan_display(info, &info->var);
2488 fb_set_cmap(&info->cmap, info);
2489
2490 /* Refresh */
2491 fb_set_suspend(info, 0);
2492
2493 /* Unblank */
2494 par->lock_blank = 0;
2495 aty128fb_blank(0, info);
2496
2497 #ifdef CONFIG_PPC_PMAC
2498 /* On powermac, we have hooks to properly suspend/resume AGP now,
2499 * use them here. We'll ultimately need some generic support here,
2500 * but the generic code isn't quite ready for that yet
2501 */
2502 pmac_resume_agp_for_card(pdev);
2503 #endif /* CONFIG_PPC_PMAC */
2504
2505 pdev->dev.power.power_state = PMSG_ON;
2506
2507 printk(KERN_DEBUG "aty128fb: resumed !\n");
2508
2509 return 0;
2510 }
2511
2512 static int aty128_pci_resume(struct pci_dev *pdev)
2513 {
2514 int rc;
2515
2516 acquire_console_sem();
2517 rc = aty128_do_resume(pdev);
2518 release_console_sem();
2519
2520 return rc;
2521 }
2522
2523
2524 static int __devinit aty128fb_init(void)
2525 {
2526 #ifndef MODULE
2527 char *option = NULL;
2528
2529 if (fb_get_options("aty128fb", &option))
2530 return -ENODEV;
2531 aty128fb_setup(option);
2532 #endif
2533
2534 return pci_register_driver(&aty128fb_driver);
2535 }
2536
2537 static void __exit aty128fb_exit(void)
2538 {
2539 pci_unregister_driver(&aty128fb_driver);
2540 }
2541
2542 module_init(aty128fb_init);
2543
2544 module_exit(aty128fb_exit);
2545
2546 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <brad@neruo.com>");
2547 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
2548 MODULE_LICENSE("GPL");
2549 module_param(mode_option, charp, 0);
2550 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
2551 #ifdef CONFIG_MTRR
2552 module_param_named(nomtrr, mtrr, invbool, 0);
2553 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
2554 #endif
2555
This page took 0.077474 seconds and 4 git commands to generate.