ARM: common: edma: Fix xbar mapping
[deliverable/linux.git] / drivers / video / vermilion / vermilion.c
1 /*
2 * Copyright (c) Intel Corp. 2007.
3 * All Rights Reserved.
4 *
5 * Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
6 * develop this driver.
7 *
8 * This file is part of the Vermilion Range fb driver.
9 * The Vermilion Range fb driver is free software;
10 * you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * The Vermilion Range fb driver is distributed
16 * in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this driver; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 *
25 * Authors:
26 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
27 * Michel Dänzer <michel-at-tungstengraphics-dot-com>
28 * Alan Hourihane <alanh-at-tungstengraphics-dot-com>
29 */
30
31 #include <linux/module.h>
32 #include <linux/kernel.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/delay.h>
36 #include <linux/slab.h>
37 #include <linux/mm.h>
38 #include <linux/fb.h>
39 #include <linux/pci.h>
40 #include <asm/cacheflush.h>
41 #include <asm/tlbflush.h>
42 #include <linux/mmzone.h>
43
44 /* #define VERMILION_DEBUG */
45
46 #include "vermilion.h"
47
48 #define MODULE_NAME "vmlfb"
49
50 #define VML_TOHW(_val, _width) ((((_val) << (_width)) + 0x7FFF - (_val)) >> 16)
51
52 static struct mutex vml_mutex;
53 static struct list_head global_no_mode;
54 static struct list_head global_has_mode;
55 static struct fb_ops vmlfb_ops;
56 static struct vml_sys *subsys = NULL;
57 static char *vml_default_mode = "1024x768@60";
58 static struct fb_videomode defaultmode = {
59 NULL, 60, 1024, 768, 12896, 144, 24, 29, 3, 136, 6,
60 0, FB_VMODE_NONINTERLACED
61 };
62
63 static u32 vml_mem_requested = (10 * 1024 * 1024);
64 static u32 vml_mem_contig = (4 * 1024 * 1024);
65 static u32 vml_mem_min = (4 * 1024 * 1024);
66
67 static u32 vml_clocks[] = {
68 6750,
69 13500,
70 27000,
71 29700,
72 37125,
73 54000,
74 59400,
75 74250,
76 120000,
77 148500
78 };
79
80 static u32 vml_num_clocks = ARRAY_SIZE(vml_clocks);
81
82 /*
83 * Allocate a contiguous vram area and make its linear kernel map
84 * uncached.
85 */
86
87 static int vmlfb_alloc_vram_area(struct vram_area *va, unsigned max_order,
88 unsigned min_order)
89 {
90 gfp_t flags;
91 unsigned long i;
92
93 max_order++;
94 do {
95 /*
96 * Really try hard to get the needed memory.
97 * We need memory below the first 32MB, so we
98 * add the __GFP_DMA flag that guarantees that we are
99 * below the first 16MB.
100 */
101
102 flags = __GFP_DMA | __GFP_HIGH;
103 va->logical =
104 __get_free_pages(flags, --max_order);
105 } while (va->logical == 0 && max_order > min_order);
106
107 if (!va->logical)
108 return -ENOMEM;
109
110 va->phys = virt_to_phys((void *)va->logical);
111 va->size = PAGE_SIZE << max_order;
112 va->order = max_order;
113
114 /*
115 * It seems like __get_free_pages only ups the usage count
116 * of the first page. This doesn't work with fault mapping, so
117 * up the usage count once more (XXX: should use split_page or
118 * compound page).
119 */
120
121 memset((void *)va->logical, 0x00, va->size);
122 for (i = va->logical; i < va->logical + va->size; i += PAGE_SIZE) {
123 get_page(virt_to_page(i));
124 }
125
126 /*
127 * Change caching policy of the linear kernel map to avoid
128 * mapping type conflicts with user-space mappings.
129 */
130 set_pages_uc(virt_to_page(va->logical), va->size >> PAGE_SHIFT);
131
132 printk(KERN_DEBUG MODULE_NAME
133 ": Allocated %ld bytes vram area at 0x%08lx\n",
134 va->size, va->phys);
135
136 return 0;
137 }
138
139 /*
140 * Free a contiguous vram area and reset its linear kernel map
141 * mapping type.
142 */
143
144 static void vmlfb_free_vram_area(struct vram_area *va)
145 {
146 unsigned long j;
147
148 if (va->logical) {
149
150 /*
151 * Reset the linear kernel map caching policy.
152 */
153
154 set_pages_wb(virt_to_page(va->logical),
155 va->size >> PAGE_SHIFT);
156
157 /*
158 * Decrease the usage count on the pages we've used
159 * to compensate for upping when allocating.
160 */
161
162 for (j = va->logical; j < va->logical + va->size;
163 j += PAGE_SIZE) {
164 (void)put_page_testzero(virt_to_page(j));
165 }
166
167 printk(KERN_DEBUG MODULE_NAME
168 ": Freeing %ld bytes vram area at 0x%08lx\n",
169 va->size, va->phys);
170 free_pages(va->logical, va->order);
171
172 va->logical = 0;
173 }
174 }
175
176 /*
177 * Free allocated vram.
178 */
179
180 static void vmlfb_free_vram(struct vml_info *vinfo)
181 {
182 int i;
183
184 for (i = 0; i < vinfo->num_areas; ++i) {
185 vmlfb_free_vram_area(&vinfo->vram[i]);
186 }
187 vinfo->num_areas = 0;
188 }
189
190 /*
191 * Allocate vram. Currently we try to allocate contiguous areas from the
192 * __GFP_DMA zone and puzzle them together. A better approach would be to
193 * allocate one contiguous area for scanout and use one-page allocations for
194 * offscreen areas. This requires user-space and GPU virtual mappings.
195 */
196
197 static int vmlfb_alloc_vram(struct vml_info *vinfo,
198 size_t requested,
199 size_t min_total, size_t min_contig)
200 {
201 int i, j;
202 int order;
203 int contiguous;
204 int err;
205 struct vram_area *va;
206 struct vram_area *va2;
207
208 vinfo->num_areas = 0;
209 for (i = 0; i < VML_VRAM_AREAS; ++i) {
210 va = &vinfo->vram[i];
211 order = 0;
212
213 while (requested > (PAGE_SIZE << order) && order < MAX_ORDER)
214 order++;
215
216 err = vmlfb_alloc_vram_area(va, order, 0);
217
218 if (err)
219 break;
220
221 if (i == 0) {
222 vinfo->vram_start = va->phys;
223 vinfo->vram_logical = (void __iomem *) va->logical;
224 vinfo->vram_contig_size = va->size;
225 vinfo->num_areas = 1;
226 } else {
227 contiguous = 0;
228
229 for (j = 0; j < i; ++j) {
230 va2 = &vinfo->vram[j];
231 if (va->phys + va->size == va2->phys ||
232 va2->phys + va2->size == va->phys) {
233 contiguous = 1;
234 break;
235 }
236 }
237
238 if (contiguous) {
239 vinfo->num_areas++;
240 if (va->phys < vinfo->vram_start) {
241 vinfo->vram_start = va->phys;
242 vinfo->vram_logical =
243 (void __iomem *)va->logical;
244 }
245 vinfo->vram_contig_size += va->size;
246 } else {
247 vmlfb_free_vram_area(va);
248 break;
249 }
250 }
251
252 if (requested < va->size)
253 break;
254 else
255 requested -= va->size;
256 }
257
258 if (vinfo->vram_contig_size > min_total &&
259 vinfo->vram_contig_size > min_contig) {
260
261 printk(KERN_DEBUG MODULE_NAME
262 ": Contiguous vram: %ld bytes at physical 0x%08lx.\n",
263 (unsigned long)vinfo->vram_contig_size,
264 (unsigned long)vinfo->vram_start);
265
266 return 0;
267 }
268
269 printk(KERN_ERR MODULE_NAME
270 ": Could not allocate requested minimal amount of vram.\n");
271
272 vmlfb_free_vram(vinfo);
273
274 return -ENOMEM;
275 }
276
277 /*
278 * Find the GPU to use with our display controller.
279 */
280
281 static int vmlfb_get_gpu(struct vml_par *par)
282 {
283 mutex_lock(&vml_mutex);
284
285 par->gpu = pci_get_device(PCI_VENDOR_ID_INTEL, VML_DEVICE_GPU, NULL);
286
287 if (!par->gpu) {
288 mutex_unlock(&vml_mutex);
289 return -ENODEV;
290 }
291
292 mutex_unlock(&vml_mutex);
293
294 if (pci_enable_device(par->gpu) < 0)
295 return -ENODEV;
296
297 return 0;
298 }
299
300 /*
301 * Find a contiguous vram area that contains a given offset from vram start.
302 */
303 static int vmlfb_vram_offset(struct vml_info *vinfo, unsigned long offset)
304 {
305 unsigned long aoffset;
306 unsigned i;
307
308 for (i = 0; i < vinfo->num_areas; ++i) {
309 aoffset = offset - (vinfo->vram[i].phys - vinfo->vram_start);
310
311 if (aoffset < vinfo->vram[i].size) {
312 return 0;
313 }
314 }
315
316 return -EINVAL;
317 }
318
319 /*
320 * Remap the MMIO register spaces of the VDC and the GPU.
321 */
322
323 static int vmlfb_enable_mmio(struct vml_par *par)
324 {
325 int err;
326
327 par->vdc_mem_base = pci_resource_start(par->vdc, 0);
328 par->vdc_mem_size = pci_resource_len(par->vdc, 0);
329 if (!request_mem_region(par->vdc_mem_base, par->vdc_mem_size, "vmlfb")) {
330 printk(KERN_ERR MODULE_NAME
331 ": Could not claim display controller MMIO.\n");
332 return -EBUSY;
333 }
334 par->vdc_mem = ioremap_nocache(par->vdc_mem_base, par->vdc_mem_size);
335 if (par->vdc_mem == NULL) {
336 printk(KERN_ERR MODULE_NAME
337 ": Could not map display controller MMIO.\n");
338 err = -ENOMEM;
339 goto out_err_0;
340 }
341
342 par->gpu_mem_base = pci_resource_start(par->gpu, 0);
343 par->gpu_mem_size = pci_resource_len(par->gpu, 0);
344 if (!request_mem_region(par->gpu_mem_base, par->gpu_mem_size, "vmlfb")) {
345 printk(KERN_ERR MODULE_NAME ": Could not claim GPU MMIO.\n");
346 err = -EBUSY;
347 goto out_err_1;
348 }
349 par->gpu_mem = ioremap_nocache(par->gpu_mem_base, par->gpu_mem_size);
350 if (par->gpu_mem == NULL) {
351 printk(KERN_ERR MODULE_NAME ": Could not map GPU MMIO.\n");
352 err = -ENOMEM;
353 goto out_err_2;
354 }
355
356 return 0;
357
358 out_err_2:
359 release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
360 out_err_1:
361 iounmap(par->vdc_mem);
362 out_err_0:
363 release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
364 return err;
365 }
366
367 /*
368 * Unmap the VDC and GPU register spaces.
369 */
370
371 static void vmlfb_disable_mmio(struct vml_par *par)
372 {
373 iounmap(par->gpu_mem);
374 release_mem_region(par->gpu_mem_base, par->gpu_mem_size);
375 iounmap(par->vdc_mem);
376 release_mem_region(par->vdc_mem_base, par->vdc_mem_size);
377 }
378
379 /*
380 * Release and uninit the VDC and GPU.
381 */
382
383 static void vmlfb_release_devices(struct vml_par *par)
384 {
385 if (atomic_dec_and_test(&par->refcount)) {
386 pci_disable_device(par->gpu);
387 pci_disable_device(par->vdc);
388 }
389 }
390
391 /*
392 * Free up allocated resources for a device.
393 */
394
395 static void vml_pci_remove(struct pci_dev *dev)
396 {
397 struct fb_info *info;
398 struct vml_info *vinfo;
399 struct vml_par *par;
400
401 info = pci_get_drvdata(dev);
402 if (info) {
403 vinfo = container_of(info, struct vml_info, info);
404 par = vinfo->par;
405 mutex_lock(&vml_mutex);
406 unregister_framebuffer(info);
407 fb_dealloc_cmap(&info->cmap);
408 vmlfb_free_vram(vinfo);
409 vmlfb_disable_mmio(par);
410 vmlfb_release_devices(par);
411 kfree(vinfo);
412 kfree(par);
413 mutex_unlock(&vml_mutex);
414 }
415 }
416
417 static void vmlfb_set_pref_pixel_format(struct fb_var_screeninfo *var)
418 {
419 switch (var->bits_per_pixel) {
420 case 16:
421 var->blue.offset = 0;
422 var->blue.length = 5;
423 var->green.offset = 5;
424 var->green.length = 5;
425 var->red.offset = 10;
426 var->red.length = 5;
427 var->transp.offset = 15;
428 var->transp.length = 1;
429 break;
430 case 32:
431 var->blue.offset = 0;
432 var->blue.length = 8;
433 var->green.offset = 8;
434 var->green.length = 8;
435 var->red.offset = 16;
436 var->red.length = 8;
437 var->transp.offset = 24;
438 var->transp.length = 0;
439 break;
440 default:
441 break;
442 }
443
444 var->blue.msb_right = var->green.msb_right =
445 var->red.msb_right = var->transp.msb_right = 0;
446 }
447
448 /*
449 * Device initialization.
450 * We initialize one vml_par struct per device and one vml_info
451 * struct per pipe. Currently we have only one pipe.
452 */
453
454 static int vml_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
455 {
456 struct vml_info *vinfo;
457 struct fb_info *info;
458 struct vml_par *par;
459 int err = 0;
460
461 par = kzalloc(sizeof(*par), GFP_KERNEL);
462 if (par == NULL)
463 return -ENOMEM;
464
465 vinfo = kzalloc(sizeof(*vinfo), GFP_KERNEL);
466 if (vinfo == NULL) {
467 err = -ENOMEM;
468 goto out_err_0;
469 }
470
471 vinfo->par = par;
472 par->vdc = dev;
473 atomic_set(&par->refcount, 1);
474
475 switch (id->device) {
476 case VML_DEVICE_VDC:
477 if ((err = vmlfb_get_gpu(par)))
478 goto out_err_1;
479 pci_set_drvdata(dev, &vinfo->info);
480 break;
481 default:
482 err = -ENODEV;
483 goto out_err_1;
484 break;
485 }
486
487 info = &vinfo->info;
488 info->flags = FBINFO_DEFAULT | FBINFO_PARTIAL_PAN_OK;
489
490 err = vmlfb_enable_mmio(par);
491 if (err)
492 goto out_err_2;
493
494 err = vmlfb_alloc_vram(vinfo, vml_mem_requested,
495 vml_mem_contig, vml_mem_min);
496 if (err)
497 goto out_err_3;
498
499 strcpy(info->fix.id, "Vermilion Range");
500 info->fix.mmio_start = 0;
501 info->fix.mmio_len = 0;
502 info->fix.smem_start = vinfo->vram_start;
503 info->fix.smem_len = vinfo->vram_contig_size;
504 info->fix.type = FB_TYPE_PACKED_PIXELS;
505 info->fix.visual = FB_VISUAL_TRUECOLOR;
506 info->fix.ypanstep = 1;
507 info->fix.xpanstep = 1;
508 info->fix.ywrapstep = 0;
509 info->fix.accel = FB_ACCEL_NONE;
510 info->screen_base = vinfo->vram_logical;
511 info->pseudo_palette = vinfo->pseudo_palette;
512 info->par = par;
513 info->fbops = &vmlfb_ops;
514 info->device = &dev->dev;
515
516 INIT_LIST_HEAD(&vinfo->head);
517 vinfo->pipe_disabled = 1;
518 vinfo->cur_blank_mode = FB_BLANK_UNBLANK;
519
520 info->var.grayscale = 0;
521 info->var.bits_per_pixel = 16;
522 vmlfb_set_pref_pixel_format(&info->var);
523
524 if (!fb_find_mode
525 (&info->var, info, vml_default_mode, NULL, 0, &defaultmode, 16)) {
526 printk(KERN_ERR MODULE_NAME ": Could not find initial mode\n");
527 }
528
529 if (fb_alloc_cmap(&info->cmap, 256, 1) < 0) {
530 err = -ENOMEM;
531 goto out_err_4;
532 }
533
534 err = register_framebuffer(info);
535 if (err) {
536 printk(KERN_ERR MODULE_NAME ": Register framebuffer error.\n");
537 goto out_err_5;
538 }
539
540 printk("Initialized vmlfb\n");
541
542 return 0;
543
544 out_err_5:
545 fb_dealloc_cmap(&info->cmap);
546 out_err_4:
547 vmlfb_free_vram(vinfo);
548 out_err_3:
549 vmlfb_disable_mmio(par);
550 out_err_2:
551 vmlfb_release_devices(par);
552 out_err_1:
553 kfree(vinfo);
554 out_err_0:
555 kfree(par);
556 return err;
557 }
558
559 static int vmlfb_open(struct fb_info *info, int user)
560 {
561 /*
562 * Save registers here?
563 */
564 return 0;
565 }
566
567 static int vmlfb_release(struct fb_info *info, int user)
568 {
569 /*
570 * Restore registers here.
571 */
572
573 return 0;
574 }
575
576 static int vml_nearest_clock(int clock)
577 {
578
579 int i;
580 int cur_index;
581 int cur_diff;
582 int diff;
583
584 cur_index = 0;
585 cur_diff = clock - vml_clocks[0];
586 cur_diff = (cur_diff < 0) ? -cur_diff : cur_diff;
587 for (i = 1; i < vml_num_clocks; ++i) {
588 diff = clock - vml_clocks[i];
589 diff = (diff < 0) ? -diff : diff;
590 if (diff < cur_diff) {
591 cur_index = i;
592 cur_diff = diff;
593 }
594 }
595 return vml_clocks[cur_index];
596 }
597
598 static int vmlfb_check_var_locked(struct fb_var_screeninfo *var,
599 struct vml_info *vinfo)
600 {
601 u32 pitch;
602 u64 mem;
603 int nearest_clock;
604 int clock;
605 int clock_diff;
606 struct fb_var_screeninfo v;
607
608 v = *var;
609 clock = PICOS2KHZ(var->pixclock);
610
611 if (subsys && subsys->nearest_clock) {
612 nearest_clock = subsys->nearest_clock(subsys, clock);
613 } else {
614 nearest_clock = vml_nearest_clock(clock);
615 }
616
617 /*
618 * Accept a 20% diff.
619 */
620
621 clock_diff = nearest_clock - clock;
622 clock_diff = (clock_diff < 0) ? -clock_diff : clock_diff;
623 if (clock_diff > clock / 5) {
624 #if 0
625 printk(KERN_DEBUG MODULE_NAME ": Diff failure. %d %d\n",clock_diff,clock);
626 #endif
627 return -EINVAL;
628 }
629
630 v.pixclock = KHZ2PICOS(nearest_clock);
631
632 if (var->xres > VML_MAX_XRES || var->yres > VML_MAX_YRES) {
633 printk(KERN_DEBUG MODULE_NAME ": Resolution failure.\n");
634 return -EINVAL;
635 }
636 if (var->xres_virtual > VML_MAX_XRES_VIRTUAL) {
637 printk(KERN_DEBUG MODULE_NAME
638 ": Virtual resolution failure.\n");
639 return -EINVAL;
640 }
641 switch (v.bits_per_pixel) {
642 case 0 ... 16:
643 v.bits_per_pixel = 16;
644 break;
645 case 17 ... 32:
646 v.bits_per_pixel = 32;
647 break;
648 default:
649 printk(KERN_DEBUG MODULE_NAME ": Invalid bpp: %d.\n",
650 var->bits_per_pixel);
651 return -EINVAL;
652 }
653
654 pitch = ALIGN((var->xres * var->bits_per_pixel) >> 3, 0x40);
655 mem = pitch * var->yres_virtual;
656 if (mem > vinfo->vram_contig_size) {
657 return -ENOMEM;
658 }
659
660 switch (v.bits_per_pixel) {
661 case 16:
662 if (var->blue.offset != 0 ||
663 var->blue.length != 5 ||
664 var->green.offset != 5 ||
665 var->green.length != 5 ||
666 var->red.offset != 10 ||
667 var->red.length != 5 ||
668 var->transp.offset != 15 || var->transp.length != 1) {
669 vmlfb_set_pref_pixel_format(&v);
670 }
671 break;
672 case 32:
673 if (var->blue.offset != 0 ||
674 var->blue.length != 8 ||
675 var->green.offset != 8 ||
676 var->green.length != 8 ||
677 var->red.offset != 16 ||
678 var->red.length != 8 ||
679 (var->transp.length != 0 && var->transp.length != 8) ||
680 (var->transp.length == 8 && var->transp.offset != 24)) {
681 vmlfb_set_pref_pixel_format(&v);
682 }
683 break;
684 default:
685 return -EINVAL;
686 }
687
688 *var = v;
689
690 return 0;
691 }
692
693 static int vmlfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
694 {
695 struct vml_info *vinfo = container_of(info, struct vml_info, info);
696 int ret;
697
698 mutex_lock(&vml_mutex);
699 ret = vmlfb_check_var_locked(var, vinfo);
700 mutex_unlock(&vml_mutex);
701
702 return ret;
703 }
704
705 static void vml_wait_vblank(struct vml_info *vinfo)
706 {
707 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
708 mdelay(20);
709 }
710
711 static void vmlfb_disable_pipe(struct vml_info *vinfo)
712 {
713 struct vml_par *par = vinfo->par;
714
715 /* Disable the MDVO pad */
716 VML_WRITE32(par, VML_RCOMPSTAT, 0);
717 while (!(VML_READ32(par, VML_RCOMPSTAT) & VML_MDVO_VDC_I_RCOMP)) ;
718
719 /* Disable display planes */
720 VML_WRITE32(par, VML_DSPCCNTR,
721 VML_READ32(par, VML_DSPCCNTR) & ~VML_GFX_ENABLE);
722 (void)VML_READ32(par, VML_DSPCCNTR);
723 /* Wait for vblank for the disable to take effect */
724 vml_wait_vblank(vinfo);
725
726 /* Next, disable display pipes */
727 VML_WRITE32(par, VML_PIPEACONF, 0);
728 (void)VML_READ32(par, VML_PIPEACONF);
729
730 vinfo->pipe_disabled = 1;
731 }
732
733 #ifdef VERMILION_DEBUG
734 static void vml_dump_regs(struct vml_info *vinfo)
735 {
736 struct vml_par *par = vinfo->par;
737
738 printk(KERN_DEBUG MODULE_NAME ": Modesetting register dump:\n");
739 printk(KERN_DEBUG MODULE_NAME ": \tHTOTAL_A : 0x%08x\n",
740 (unsigned)VML_READ32(par, VML_HTOTAL_A));
741 printk(KERN_DEBUG MODULE_NAME ": \tHBLANK_A : 0x%08x\n",
742 (unsigned)VML_READ32(par, VML_HBLANK_A));
743 printk(KERN_DEBUG MODULE_NAME ": \tHSYNC_A : 0x%08x\n",
744 (unsigned)VML_READ32(par, VML_HSYNC_A));
745 printk(KERN_DEBUG MODULE_NAME ": \tVTOTAL_A : 0x%08x\n",
746 (unsigned)VML_READ32(par, VML_VTOTAL_A));
747 printk(KERN_DEBUG MODULE_NAME ": \tVBLANK_A : 0x%08x\n",
748 (unsigned)VML_READ32(par, VML_VBLANK_A));
749 printk(KERN_DEBUG MODULE_NAME ": \tVSYNC_A : 0x%08x\n",
750 (unsigned)VML_READ32(par, VML_VSYNC_A));
751 printk(KERN_DEBUG MODULE_NAME ": \tDSPCSTRIDE : 0x%08x\n",
752 (unsigned)VML_READ32(par, VML_DSPCSTRIDE));
753 printk(KERN_DEBUG MODULE_NAME ": \tDSPCSIZE : 0x%08x\n",
754 (unsigned)VML_READ32(par, VML_DSPCSIZE));
755 printk(KERN_DEBUG MODULE_NAME ": \tDSPCPOS : 0x%08x\n",
756 (unsigned)VML_READ32(par, VML_DSPCPOS));
757 printk(KERN_DEBUG MODULE_NAME ": \tDSPARB : 0x%08x\n",
758 (unsigned)VML_READ32(par, VML_DSPARB));
759 printk(KERN_DEBUG MODULE_NAME ": \tDSPCADDR : 0x%08x\n",
760 (unsigned)VML_READ32(par, VML_DSPCADDR));
761 printk(KERN_DEBUG MODULE_NAME ": \tBCLRPAT_A : 0x%08x\n",
762 (unsigned)VML_READ32(par, VML_BCLRPAT_A));
763 printk(KERN_DEBUG MODULE_NAME ": \tCANVSCLR_A : 0x%08x\n",
764 (unsigned)VML_READ32(par, VML_CANVSCLR_A));
765 printk(KERN_DEBUG MODULE_NAME ": \tPIPEASRC : 0x%08x\n",
766 (unsigned)VML_READ32(par, VML_PIPEASRC));
767 printk(KERN_DEBUG MODULE_NAME ": \tPIPEACONF : 0x%08x\n",
768 (unsigned)VML_READ32(par, VML_PIPEACONF));
769 printk(KERN_DEBUG MODULE_NAME ": \tDSPCCNTR : 0x%08x\n",
770 (unsigned)VML_READ32(par, VML_DSPCCNTR));
771 printk(KERN_DEBUG MODULE_NAME ": \tRCOMPSTAT : 0x%08x\n",
772 (unsigned)VML_READ32(par, VML_RCOMPSTAT));
773 printk(KERN_DEBUG MODULE_NAME ": End of modesetting register dump.\n");
774 }
775 #endif
776
777 static int vmlfb_set_par_locked(struct vml_info *vinfo)
778 {
779 struct vml_par *par = vinfo->par;
780 struct fb_info *info = &vinfo->info;
781 struct fb_var_screeninfo *var = &info->var;
782 u32 htotal, hactive, hblank_start, hblank_end, hsync_start, hsync_end;
783 u32 vtotal, vactive, vblank_start, vblank_end, vsync_start, vsync_end;
784 u32 dspcntr;
785 int clock;
786
787 vinfo->bytes_per_pixel = var->bits_per_pixel >> 3;
788 vinfo->stride = ALIGN(var->xres_virtual * vinfo->bytes_per_pixel, 0x40);
789 info->fix.line_length = vinfo->stride;
790
791 if (!subsys)
792 return 0;
793
794 htotal =
795 var->xres + var->right_margin + var->hsync_len + var->left_margin;
796 hactive = var->xres;
797 hblank_start = var->xres;
798 hblank_end = htotal;
799 hsync_start = hactive + var->right_margin;
800 hsync_end = hsync_start + var->hsync_len;
801
802 vtotal =
803 var->yres + var->lower_margin + var->vsync_len + var->upper_margin;
804 vactive = var->yres;
805 vblank_start = var->yres;
806 vblank_end = vtotal;
807 vsync_start = vactive + var->lower_margin;
808 vsync_end = vsync_start + var->vsync_len;
809
810 dspcntr = VML_GFX_ENABLE | VML_GFX_GAMMABYPASS;
811 clock = PICOS2KHZ(var->pixclock);
812
813 if (subsys->nearest_clock) {
814 clock = subsys->nearest_clock(subsys, clock);
815 } else {
816 clock = vml_nearest_clock(clock);
817 }
818 printk(KERN_DEBUG MODULE_NAME
819 ": Set mode Hfreq : %d kHz, Vfreq : %d Hz.\n", clock / htotal,
820 ((clock / htotal) * 1000) / vtotal);
821
822 switch (var->bits_per_pixel) {
823 case 16:
824 dspcntr |= VML_GFX_ARGB1555;
825 break;
826 case 32:
827 if (var->transp.length == 8)
828 dspcntr |= VML_GFX_ARGB8888 | VML_GFX_ALPHAMULT;
829 else
830 dspcntr |= VML_GFX_RGB0888;
831 break;
832 default:
833 return -EINVAL;
834 }
835
836 vmlfb_disable_pipe(vinfo);
837 mb();
838
839 if (subsys->set_clock)
840 subsys->set_clock(subsys, clock);
841 else
842 return -EINVAL;
843
844 VML_WRITE32(par, VML_HTOTAL_A, ((htotal - 1) << 16) | (hactive - 1));
845 VML_WRITE32(par, VML_HBLANK_A,
846 ((hblank_end - 1) << 16) | (hblank_start - 1));
847 VML_WRITE32(par, VML_HSYNC_A,
848 ((hsync_end - 1) << 16) | (hsync_start - 1));
849 VML_WRITE32(par, VML_VTOTAL_A, ((vtotal - 1) << 16) | (vactive - 1));
850 VML_WRITE32(par, VML_VBLANK_A,
851 ((vblank_end - 1) << 16) | (vblank_start - 1));
852 VML_WRITE32(par, VML_VSYNC_A,
853 ((vsync_end - 1) << 16) | (vsync_start - 1));
854 VML_WRITE32(par, VML_DSPCSTRIDE, vinfo->stride);
855 VML_WRITE32(par, VML_DSPCSIZE,
856 ((var->yres - 1) << 16) | (var->xres - 1));
857 VML_WRITE32(par, VML_DSPCPOS, 0x00000000);
858 VML_WRITE32(par, VML_DSPARB, VML_FIFO_DEFAULT);
859 VML_WRITE32(par, VML_BCLRPAT_A, 0x00000000);
860 VML_WRITE32(par, VML_CANVSCLR_A, 0x00000000);
861 VML_WRITE32(par, VML_PIPEASRC,
862 ((var->xres - 1) << 16) | (var->yres - 1));
863
864 wmb();
865 VML_WRITE32(par, VML_PIPEACONF, VML_PIPE_ENABLE);
866 wmb();
867 VML_WRITE32(par, VML_DSPCCNTR, dspcntr);
868 wmb();
869 VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
870 var->yoffset * vinfo->stride +
871 var->xoffset * vinfo->bytes_per_pixel);
872
873 VML_WRITE32(par, VML_RCOMPSTAT, VML_MDVO_PAD_ENABLE);
874
875 while (!(VML_READ32(par, VML_RCOMPSTAT) &
876 (VML_MDVO_VDC_I_RCOMP | VML_MDVO_PAD_ENABLE))) ;
877
878 vinfo->pipe_disabled = 0;
879 #ifdef VERMILION_DEBUG
880 vml_dump_regs(vinfo);
881 #endif
882
883 return 0;
884 }
885
886 static int vmlfb_set_par(struct fb_info *info)
887 {
888 struct vml_info *vinfo = container_of(info, struct vml_info, info);
889 int ret;
890
891 mutex_lock(&vml_mutex);
892 list_move(&vinfo->head, (subsys) ? &global_has_mode : &global_no_mode);
893 ret = vmlfb_set_par_locked(vinfo);
894
895 mutex_unlock(&vml_mutex);
896 return ret;
897 }
898
899 static int vmlfb_blank_locked(struct vml_info *vinfo)
900 {
901 struct vml_par *par = vinfo->par;
902 u32 cur = VML_READ32(par, VML_PIPEACONF);
903
904 switch (vinfo->cur_blank_mode) {
905 case FB_BLANK_UNBLANK:
906 if (vinfo->pipe_disabled) {
907 vmlfb_set_par_locked(vinfo);
908 }
909 VML_WRITE32(par, VML_PIPEACONF, cur & ~VML_PIPE_FORCE_BORDER);
910 (void)VML_READ32(par, VML_PIPEACONF);
911 break;
912 case FB_BLANK_NORMAL:
913 if (vinfo->pipe_disabled) {
914 vmlfb_set_par_locked(vinfo);
915 }
916 VML_WRITE32(par, VML_PIPEACONF, cur | VML_PIPE_FORCE_BORDER);
917 (void)VML_READ32(par, VML_PIPEACONF);
918 break;
919 case FB_BLANK_VSYNC_SUSPEND:
920 case FB_BLANK_HSYNC_SUSPEND:
921 if (!vinfo->pipe_disabled) {
922 vmlfb_disable_pipe(vinfo);
923 }
924 break;
925 case FB_BLANK_POWERDOWN:
926 if (!vinfo->pipe_disabled) {
927 vmlfb_disable_pipe(vinfo);
928 }
929 break;
930 default:
931 return -EINVAL;
932 }
933
934 return 0;
935 }
936
937 static int vmlfb_blank(int blank_mode, struct fb_info *info)
938 {
939 struct vml_info *vinfo = container_of(info, struct vml_info, info);
940 int ret;
941
942 mutex_lock(&vml_mutex);
943 vinfo->cur_blank_mode = blank_mode;
944 ret = vmlfb_blank_locked(vinfo);
945 mutex_unlock(&vml_mutex);
946 return ret;
947 }
948
949 static int vmlfb_pan_display(struct fb_var_screeninfo *var,
950 struct fb_info *info)
951 {
952 struct vml_info *vinfo = container_of(info, struct vml_info, info);
953 struct vml_par *par = vinfo->par;
954
955 mutex_lock(&vml_mutex);
956 VML_WRITE32(par, VML_DSPCADDR, (u32) vinfo->vram_start +
957 var->yoffset * vinfo->stride +
958 var->xoffset * vinfo->bytes_per_pixel);
959 (void)VML_READ32(par, VML_DSPCADDR);
960 mutex_unlock(&vml_mutex);
961
962 return 0;
963 }
964
965 static int vmlfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
966 u_int transp, struct fb_info *info)
967 {
968 u32 v;
969
970 if (regno >= 16)
971 return -EINVAL;
972
973 if (info->var.grayscale) {
974 red = green = blue = (red * 77 + green * 151 + blue * 28) >> 8;
975 }
976
977 if (info->fix.visual != FB_VISUAL_TRUECOLOR)
978 return -EINVAL;
979
980 red = VML_TOHW(red, info->var.red.length);
981 blue = VML_TOHW(blue, info->var.blue.length);
982 green = VML_TOHW(green, info->var.green.length);
983 transp = VML_TOHW(transp, info->var.transp.length);
984
985 v = (red << info->var.red.offset) |
986 (green << info->var.green.offset) |
987 (blue << info->var.blue.offset) |
988 (transp << info->var.transp.offset);
989
990 switch (info->var.bits_per_pixel) {
991 case 16:
992 ((u32 *) info->pseudo_palette)[regno] = v;
993 break;
994 case 24:
995 case 32:
996 ((u32 *) info->pseudo_palette)[regno] = v;
997 break;
998 }
999 return 0;
1000 }
1001
1002 static int vmlfb_mmap(struct fb_info *info, struct vm_area_struct *vma)
1003 {
1004 struct vml_info *vinfo = container_of(info, struct vml_info, info);
1005 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
1006 int ret;
1007
1008 ret = vmlfb_vram_offset(vinfo, offset);
1009 if (ret)
1010 return -EINVAL;
1011
1012 pgprot_val(vma->vm_page_prot) |= _PAGE_PCD;
1013 pgprot_val(vma->vm_page_prot) &= ~_PAGE_PWT;
1014
1015 return vm_iomap_memory(vma, vinfo->vram_start,
1016 vinfo->vram_contig_size);
1017 }
1018
1019 static int vmlfb_sync(struct fb_info *info)
1020 {
1021 return 0;
1022 }
1023
1024 static int vmlfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1025 {
1026 return -EINVAL; /* just to force soft_cursor() call */
1027 }
1028
1029 static struct fb_ops vmlfb_ops = {
1030 .owner = THIS_MODULE,
1031 .fb_open = vmlfb_open,
1032 .fb_release = vmlfb_release,
1033 .fb_check_var = vmlfb_check_var,
1034 .fb_set_par = vmlfb_set_par,
1035 .fb_blank = vmlfb_blank,
1036 .fb_pan_display = vmlfb_pan_display,
1037 .fb_fillrect = cfb_fillrect,
1038 .fb_copyarea = cfb_copyarea,
1039 .fb_imageblit = cfb_imageblit,
1040 .fb_cursor = vmlfb_cursor,
1041 .fb_sync = vmlfb_sync,
1042 .fb_mmap = vmlfb_mmap,
1043 .fb_setcolreg = vmlfb_setcolreg
1044 };
1045
1046 static struct pci_device_id vml_ids[] = {
1047 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, VML_DEVICE_VDC)},
1048 {0}
1049 };
1050
1051 static struct pci_driver vmlfb_pci_driver = {
1052 .name = "vmlfb",
1053 .id_table = vml_ids,
1054 .probe = vml_pci_probe,
1055 .remove = vml_pci_remove,
1056 };
1057
1058 static void __exit vmlfb_cleanup(void)
1059 {
1060 pci_unregister_driver(&vmlfb_pci_driver);
1061 }
1062
1063 static int __init vmlfb_init(void)
1064 {
1065
1066 #ifndef MODULE
1067 char *option = NULL;
1068
1069 if (fb_get_options(MODULE_NAME, &option))
1070 return -ENODEV;
1071 #endif
1072
1073 printk(KERN_DEBUG MODULE_NAME ": initializing\n");
1074 mutex_init(&vml_mutex);
1075 INIT_LIST_HEAD(&global_no_mode);
1076 INIT_LIST_HEAD(&global_has_mode);
1077
1078 return pci_register_driver(&vmlfb_pci_driver);
1079 }
1080
1081 int vmlfb_register_subsys(struct vml_sys *sys)
1082 {
1083 struct vml_info *entry;
1084 struct list_head *list;
1085 u32 save_activate;
1086
1087 mutex_lock(&vml_mutex);
1088 if (subsys != NULL) {
1089 subsys->restore(subsys);
1090 }
1091 subsys = sys;
1092 subsys->save(subsys);
1093
1094 /*
1095 * We need to restart list traversal for each item, since we
1096 * release the list mutex in the loop.
1097 */
1098
1099 list = global_no_mode.next;
1100 while (list != &global_no_mode) {
1101 list_del_init(list);
1102 entry = list_entry(list, struct vml_info, head);
1103
1104 /*
1105 * First, try the current mode which might not be
1106 * completely validated with respect to the pixel clock.
1107 */
1108
1109 if (!vmlfb_check_var_locked(&entry->info.var, entry)) {
1110 vmlfb_set_par_locked(entry);
1111 list_add_tail(list, &global_has_mode);
1112 } else {
1113
1114 /*
1115 * Didn't work. Try to find another mode,
1116 * that matches this subsys.
1117 */
1118
1119 mutex_unlock(&vml_mutex);
1120 save_activate = entry->info.var.activate;
1121 entry->info.var.bits_per_pixel = 16;
1122 vmlfb_set_pref_pixel_format(&entry->info.var);
1123 if (fb_find_mode(&entry->info.var,
1124 &entry->info,
1125 vml_default_mode, NULL, 0, NULL, 16)) {
1126 entry->info.var.activate |=
1127 FB_ACTIVATE_FORCE | FB_ACTIVATE_NOW;
1128 fb_set_var(&entry->info, &entry->info.var);
1129 } else {
1130 printk(KERN_ERR MODULE_NAME
1131 ": Sorry. no mode found for this subsys.\n");
1132 }
1133 entry->info.var.activate = save_activate;
1134 mutex_lock(&vml_mutex);
1135 }
1136 vmlfb_blank_locked(entry);
1137 list = global_no_mode.next;
1138 }
1139 mutex_unlock(&vml_mutex);
1140
1141 printk(KERN_DEBUG MODULE_NAME ": Registered %s subsystem.\n",
1142 subsys->name ? subsys->name : "unknown");
1143 return 0;
1144 }
1145
1146 EXPORT_SYMBOL_GPL(vmlfb_register_subsys);
1147
1148 void vmlfb_unregister_subsys(struct vml_sys *sys)
1149 {
1150 struct vml_info *entry, *next;
1151
1152 mutex_lock(&vml_mutex);
1153 if (subsys != sys) {
1154 mutex_unlock(&vml_mutex);
1155 return;
1156 }
1157 subsys->restore(subsys);
1158 subsys = NULL;
1159 list_for_each_entry_safe(entry, next, &global_has_mode, head) {
1160 printk(KERN_DEBUG MODULE_NAME ": subsys disable pipe\n");
1161 vmlfb_disable_pipe(entry);
1162 list_move_tail(&entry->head, &global_no_mode);
1163 }
1164 mutex_unlock(&vml_mutex);
1165 }
1166
1167 EXPORT_SYMBOL_GPL(vmlfb_unregister_subsys);
1168
1169 module_init(vmlfb_init);
1170 module_exit(vmlfb_cleanup);
1171
1172 MODULE_AUTHOR("Tungsten Graphics");
1173 MODULE_DESCRIPTION("Initialization of the Vermilion display devices");
1174 MODULE_VERSION("1.0.0");
1175 MODULE_LICENSE("GPL");
This page took 0.060544 seconds and 5 git commands to generate.