drm/i915: Stop tracking last calculated Sink CRC.
[deliverable/linux.git] / drivers / vme / vme.c
1 /*
2 * VME Bridge Framework
3 *
4 * Author: Martyn Welch <martyn.welch@ge.com>
5 * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
6 *
7 * Based on work by Tom Armistead and Ajit Prem
8 * Copyright 2004 Motorola Inc.
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 */
15
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/mm.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/pci.h>
23 #include <linux/poll.h>
24 #include <linux/highmem.h>
25 #include <linux/interrupt.h>
26 #include <linux/pagemap.h>
27 #include <linux/device.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/syscalls.h>
30 #include <linux/mutex.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/vme.h>
34
35 #include "vme_bridge.h"
36
37 /* Bitmask and list of registered buses both protected by common mutex */
38 static unsigned int vme_bus_numbers;
39 static LIST_HEAD(vme_bus_list);
40 static DEFINE_MUTEX(vme_buses_lock);
41
42 static void __exit vme_exit(void);
43 static int __init vme_init(void);
44
45 static struct vme_dev *dev_to_vme_dev(struct device *dev)
46 {
47 return container_of(dev, struct vme_dev, dev);
48 }
49
50 /*
51 * Find the bridge that the resource is associated with.
52 */
53 static struct vme_bridge *find_bridge(struct vme_resource *resource)
54 {
55 /* Get list to search */
56 switch (resource->type) {
57 case VME_MASTER:
58 return list_entry(resource->entry, struct vme_master_resource,
59 list)->parent;
60 break;
61 case VME_SLAVE:
62 return list_entry(resource->entry, struct vme_slave_resource,
63 list)->parent;
64 break;
65 case VME_DMA:
66 return list_entry(resource->entry, struct vme_dma_resource,
67 list)->parent;
68 break;
69 case VME_LM:
70 return list_entry(resource->entry, struct vme_lm_resource,
71 list)->parent;
72 break;
73 default:
74 printk(KERN_ERR "Unknown resource type\n");
75 return NULL;
76 break;
77 }
78 }
79
80 /*
81 * Allocate a contiguous block of memory for use by the driver. This is used to
82 * create the buffers for the slave windows.
83 */
84 void *vme_alloc_consistent(struct vme_resource *resource, size_t size,
85 dma_addr_t *dma)
86 {
87 struct vme_bridge *bridge;
88
89 if (resource == NULL) {
90 printk(KERN_ERR "No resource\n");
91 return NULL;
92 }
93
94 bridge = find_bridge(resource);
95 if (bridge == NULL) {
96 printk(KERN_ERR "Can't find bridge\n");
97 return NULL;
98 }
99
100 if (bridge->parent == NULL) {
101 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
102 return NULL;
103 }
104
105 if (bridge->alloc_consistent == NULL) {
106 printk(KERN_ERR "alloc_consistent not supported by bridge %s\n",
107 bridge->name);
108 return NULL;
109 }
110
111 return bridge->alloc_consistent(bridge->parent, size, dma);
112 }
113 EXPORT_SYMBOL(vme_alloc_consistent);
114
115 /*
116 * Free previously allocated contiguous block of memory.
117 */
118 void vme_free_consistent(struct vme_resource *resource, size_t size,
119 void *vaddr, dma_addr_t dma)
120 {
121 struct vme_bridge *bridge;
122
123 if (resource == NULL) {
124 printk(KERN_ERR "No resource\n");
125 return;
126 }
127
128 bridge = find_bridge(resource);
129 if (bridge == NULL) {
130 printk(KERN_ERR "Can't find bridge\n");
131 return;
132 }
133
134 if (bridge->parent == NULL) {
135 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
136 return;
137 }
138
139 if (bridge->free_consistent == NULL) {
140 printk(KERN_ERR "free_consistent not supported by bridge %s\n",
141 bridge->name);
142 return;
143 }
144
145 bridge->free_consistent(bridge->parent, size, vaddr, dma);
146 }
147 EXPORT_SYMBOL(vme_free_consistent);
148
149 size_t vme_get_size(struct vme_resource *resource)
150 {
151 int enabled, retval;
152 unsigned long long base, size;
153 dma_addr_t buf_base;
154 u32 aspace, cycle, dwidth;
155
156 switch (resource->type) {
157 case VME_MASTER:
158 retval = vme_master_get(resource, &enabled, &base, &size,
159 &aspace, &cycle, &dwidth);
160
161 return size;
162 break;
163 case VME_SLAVE:
164 retval = vme_slave_get(resource, &enabled, &base, &size,
165 &buf_base, &aspace, &cycle);
166
167 return size;
168 break;
169 case VME_DMA:
170 return 0;
171 break;
172 default:
173 printk(KERN_ERR "Unknown resource type\n");
174 return 0;
175 break;
176 }
177 }
178 EXPORT_SYMBOL(vme_get_size);
179
180 int vme_check_window(u32 aspace, unsigned long long vme_base,
181 unsigned long long size)
182 {
183 int retval = 0;
184
185 switch (aspace) {
186 case VME_A16:
187 if (((vme_base + size) > VME_A16_MAX) ||
188 (vme_base > VME_A16_MAX))
189 retval = -EFAULT;
190 break;
191 case VME_A24:
192 if (((vme_base + size) > VME_A24_MAX) ||
193 (vme_base > VME_A24_MAX))
194 retval = -EFAULT;
195 break;
196 case VME_A32:
197 if (((vme_base + size) > VME_A32_MAX) ||
198 (vme_base > VME_A32_MAX))
199 retval = -EFAULT;
200 break;
201 case VME_A64:
202 if ((size != 0) && (vme_base > U64_MAX + 1 - size))
203 retval = -EFAULT;
204 break;
205 case VME_CRCSR:
206 if (((vme_base + size) > VME_CRCSR_MAX) ||
207 (vme_base > VME_CRCSR_MAX))
208 retval = -EFAULT;
209 break;
210 case VME_USER1:
211 case VME_USER2:
212 case VME_USER3:
213 case VME_USER4:
214 /* User Defined */
215 break;
216 default:
217 printk(KERN_ERR "Invalid address space\n");
218 retval = -EINVAL;
219 break;
220 }
221
222 return retval;
223 }
224 EXPORT_SYMBOL(vme_check_window);
225
226 /*
227 * Request a slave image with specific attributes, return some unique
228 * identifier.
229 */
230 struct vme_resource *vme_slave_request(struct vme_dev *vdev, u32 address,
231 u32 cycle)
232 {
233 struct vme_bridge *bridge;
234 struct list_head *slave_pos = NULL;
235 struct vme_slave_resource *allocated_image = NULL;
236 struct vme_slave_resource *slave_image = NULL;
237 struct vme_resource *resource = NULL;
238
239 bridge = vdev->bridge;
240 if (bridge == NULL) {
241 printk(KERN_ERR "Can't find VME bus\n");
242 goto err_bus;
243 }
244
245 /* Loop through slave resources */
246 list_for_each(slave_pos, &bridge->slave_resources) {
247 slave_image = list_entry(slave_pos,
248 struct vme_slave_resource, list);
249
250 if (slave_image == NULL) {
251 printk(KERN_ERR "Registered NULL Slave resource\n");
252 continue;
253 }
254
255 /* Find an unlocked and compatible image */
256 mutex_lock(&slave_image->mtx);
257 if (((slave_image->address_attr & address) == address) &&
258 ((slave_image->cycle_attr & cycle) == cycle) &&
259 (slave_image->locked == 0)) {
260
261 slave_image->locked = 1;
262 mutex_unlock(&slave_image->mtx);
263 allocated_image = slave_image;
264 break;
265 }
266 mutex_unlock(&slave_image->mtx);
267 }
268
269 /* No free image */
270 if (allocated_image == NULL)
271 goto err_image;
272
273 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
274 if (resource == NULL) {
275 printk(KERN_WARNING "Unable to allocate resource structure\n");
276 goto err_alloc;
277 }
278 resource->type = VME_SLAVE;
279 resource->entry = &allocated_image->list;
280
281 return resource;
282
283 err_alloc:
284 /* Unlock image */
285 mutex_lock(&slave_image->mtx);
286 slave_image->locked = 0;
287 mutex_unlock(&slave_image->mtx);
288 err_image:
289 err_bus:
290 return NULL;
291 }
292 EXPORT_SYMBOL(vme_slave_request);
293
294 int vme_slave_set(struct vme_resource *resource, int enabled,
295 unsigned long long vme_base, unsigned long long size,
296 dma_addr_t buf_base, u32 aspace, u32 cycle)
297 {
298 struct vme_bridge *bridge = find_bridge(resource);
299 struct vme_slave_resource *image;
300 int retval;
301
302 if (resource->type != VME_SLAVE) {
303 printk(KERN_ERR "Not a slave resource\n");
304 return -EINVAL;
305 }
306
307 image = list_entry(resource->entry, struct vme_slave_resource, list);
308
309 if (bridge->slave_set == NULL) {
310 printk(KERN_ERR "Function not supported\n");
311 return -ENOSYS;
312 }
313
314 if (!(((image->address_attr & aspace) == aspace) &&
315 ((image->cycle_attr & cycle) == cycle))) {
316 printk(KERN_ERR "Invalid attributes\n");
317 return -EINVAL;
318 }
319
320 retval = vme_check_window(aspace, vme_base, size);
321 if (retval)
322 return retval;
323
324 return bridge->slave_set(image, enabled, vme_base, size, buf_base,
325 aspace, cycle);
326 }
327 EXPORT_SYMBOL(vme_slave_set);
328
329 int vme_slave_get(struct vme_resource *resource, int *enabled,
330 unsigned long long *vme_base, unsigned long long *size,
331 dma_addr_t *buf_base, u32 *aspace, u32 *cycle)
332 {
333 struct vme_bridge *bridge = find_bridge(resource);
334 struct vme_slave_resource *image;
335
336 if (resource->type != VME_SLAVE) {
337 printk(KERN_ERR "Not a slave resource\n");
338 return -EINVAL;
339 }
340
341 image = list_entry(resource->entry, struct vme_slave_resource, list);
342
343 if (bridge->slave_get == NULL) {
344 printk(KERN_ERR "vme_slave_get not supported\n");
345 return -EINVAL;
346 }
347
348 return bridge->slave_get(image, enabled, vme_base, size, buf_base,
349 aspace, cycle);
350 }
351 EXPORT_SYMBOL(vme_slave_get);
352
353 void vme_slave_free(struct vme_resource *resource)
354 {
355 struct vme_slave_resource *slave_image;
356
357 if (resource->type != VME_SLAVE) {
358 printk(KERN_ERR "Not a slave resource\n");
359 return;
360 }
361
362 slave_image = list_entry(resource->entry, struct vme_slave_resource,
363 list);
364 if (slave_image == NULL) {
365 printk(KERN_ERR "Can't find slave resource\n");
366 return;
367 }
368
369 /* Unlock image */
370 mutex_lock(&slave_image->mtx);
371 if (slave_image->locked == 0)
372 printk(KERN_ERR "Image is already free\n");
373
374 slave_image->locked = 0;
375 mutex_unlock(&slave_image->mtx);
376
377 /* Free up resource memory */
378 kfree(resource);
379 }
380 EXPORT_SYMBOL(vme_slave_free);
381
382 /*
383 * Request a master image with specific attributes, return some unique
384 * identifier.
385 */
386 struct vme_resource *vme_master_request(struct vme_dev *vdev, u32 address,
387 u32 cycle, u32 dwidth)
388 {
389 struct vme_bridge *bridge;
390 struct list_head *master_pos = NULL;
391 struct vme_master_resource *allocated_image = NULL;
392 struct vme_master_resource *master_image = NULL;
393 struct vme_resource *resource = NULL;
394
395 bridge = vdev->bridge;
396 if (bridge == NULL) {
397 printk(KERN_ERR "Can't find VME bus\n");
398 goto err_bus;
399 }
400
401 /* Loop through master resources */
402 list_for_each(master_pos, &bridge->master_resources) {
403 master_image = list_entry(master_pos,
404 struct vme_master_resource, list);
405
406 if (master_image == NULL) {
407 printk(KERN_WARNING "Registered NULL master resource\n");
408 continue;
409 }
410
411 /* Find an unlocked and compatible image */
412 spin_lock(&master_image->lock);
413 if (((master_image->address_attr & address) == address) &&
414 ((master_image->cycle_attr & cycle) == cycle) &&
415 ((master_image->width_attr & dwidth) == dwidth) &&
416 (master_image->locked == 0)) {
417
418 master_image->locked = 1;
419 spin_unlock(&master_image->lock);
420 allocated_image = master_image;
421 break;
422 }
423 spin_unlock(&master_image->lock);
424 }
425
426 /* Check to see if we found a resource */
427 if (allocated_image == NULL) {
428 printk(KERN_ERR "Can't find a suitable resource\n");
429 goto err_image;
430 }
431
432 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
433 if (resource == NULL) {
434 printk(KERN_ERR "Unable to allocate resource structure\n");
435 goto err_alloc;
436 }
437 resource->type = VME_MASTER;
438 resource->entry = &allocated_image->list;
439
440 return resource;
441
442 err_alloc:
443 /* Unlock image */
444 spin_lock(&master_image->lock);
445 master_image->locked = 0;
446 spin_unlock(&master_image->lock);
447 err_image:
448 err_bus:
449 return NULL;
450 }
451 EXPORT_SYMBOL(vme_master_request);
452
453 int vme_master_set(struct vme_resource *resource, int enabled,
454 unsigned long long vme_base, unsigned long long size, u32 aspace,
455 u32 cycle, u32 dwidth)
456 {
457 struct vme_bridge *bridge = find_bridge(resource);
458 struct vme_master_resource *image;
459 int retval;
460
461 if (resource->type != VME_MASTER) {
462 printk(KERN_ERR "Not a master resource\n");
463 return -EINVAL;
464 }
465
466 image = list_entry(resource->entry, struct vme_master_resource, list);
467
468 if (bridge->master_set == NULL) {
469 printk(KERN_WARNING "vme_master_set not supported\n");
470 return -EINVAL;
471 }
472
473 if (!(((image->address_attr & aspace) == aspace) &&
474 ((image->cycle_attr & cycle) == cycle) &&
475 ((image->width_attr & dwidth) == dwidth))) {
476 printk(KERN_WARNING "Invalid attributes\n");
477 return -EINVAL;
478 }
479
480 retval = vme_check_window(aspace, vme_base, size);
481 if (retval)
482 return retval;
483
484 return bridge->master_set(image, enabled, vme_base, size, aspace,
485 cycle, dwidth);
486 }
487 EXPORT_SYMBOL(vme_master_set);
488
489 int vme_master_get(struct vme_resource *resource, int *enabled,
490 unsigned long long *vme_base, unsigned long long *size, u32 *aspace,
491 u32 *cycle, u32 *dwidth)
492 {
493 struct vme_bridge *bridge = find_bridge(resource);
494 struct vme_master_resource *image;
495
496 if (resource->type != VME_MASTER) {
497 printk(KERN_ERR "Not a master resource\n");
498 return -EINVAL;
499 }
500
501 image = list_entry(resource->entry, struct vme_master_resource, list);
502
503 if (bridge->master_get == NULL) {
504 printk(KERN_WARNING "%s not supported\n", __func__);
505 return -EINVAL;
506 }
507
508 return bridge->master_get(image, enabled, vme_base, size, aspace,
509 cycle, dwidth);
510 }
511 EXPORT_SYMBOL(vme_master_get);
512
513 /*
514 * Read data out of VME space into a buffer.
515 */
516 ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count,
517 loff_t offset)
518 {
519 struct vme_bridge *bridge = find_bridge(resource);
520 struct vme_master_resource *image;
521 size_t length;
522
523 if (bridge->master_read == NULL) {
524 printk(KERN_WARNING "Reading from resource not supported\n");
525 return -EINVAL;
526 }
527
528 if (resource->type != VME_MASTER) {
529 printk(KERN_ERR "Not a master resource\n");
530 return -EINVAL;
531 }
532
533 image = list_entry(resource->entry, struct vme_master_resource, list);
534
535 length = vme_get_size(resource);
536
537 if (offset > length) {
538 printk(KERN_WARNING "Invalid Offset\n");
539 return -EFAULT;
540 }
541
542 if ((offset + count) > length)
543 count = length - offset;
544
545 return bridge->master_read(image, buf, count, offset);
546
547 }
548 EXPORT_SYMBOL(vme_master_read);
549
550 /*
551 * Write data out to VME space from a buffer.
552 */
553 ssize_t vme_master_write(struct vme_resource *resource, void *buf,
554 size_t count, loff_t offset)
555 {
556 struct vme_bridge *bridge = find_bridge(resource);
557 struct vme_master_resource *image;
558 size_t length;
559
560 if (bridge->master_write == NULL) {
561 printk(KERN_WARNING "Writing to resource not supported\n");
562 return -EINVAL;
563 }
564
565 if (resource->type != VME_MASTER) {
566 printk(KERN_ERR "Not a master resource\n");
567 return -EINVAL;
568 }
569
570 image = list_entry(resource->entry, struct vme_master_resource, list);
571
572 length = vme_get_size(resource);
573
574 if (offset > length) {
575 printk(KERN_WARNING "Invalid Offset\n");
576 return -EFAULT;
577 }
578
579 if ((offset + count) > length)
580 count = length - offset;
581
582 return bridge->master_write(image, buf, count, offset);
583 }
584 EXPORT_SYMBOL(vme_master_write);
585
586 /*
587 * Perform RMW cycle to provided location.
588 */
589 unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask,
590 unsigned int compare, unsigned int swap, loff_t offset)
591 {
592 struct vme_bridge *bridge = find_bridge(resource);
593 struct vme_master_resource *image;
594
595 if (bridge->master_rmw == NULL) {
596 printk(KERN_WARNING "Writing to resource not supported\n");
597 return -EINVAL;
598 }
599
600 if (resource->type != VME_MASTER) {
601 printk(KERN_ERR "Not a master resource\n");
602 return -EINVAL;
603 }
604
605 image = list_entry(resource->entry, struct vme_master_resource, list);
606
607 return bridge->master_rmw(image, mask, compare, swap, offset);
608 }
609 EXPORT_SYMBOL(vme_master_rmw);
610
611 int vme_master_mmap(struct vme_resource *resource, struct vm_area_struct *vma)
612 {
613 struct vme_master_resource *image;
614 phys_addr_t phys_addr;
615 unsigned long vma_size;
616
617 if (resource->type != VME_MASTER) {
618 pr_err("Not a master resource\n");
619 return -EINVAL;
620 }
621
622 image = list_entry(resource->entry, struct vme_master_resource, list);
623 phys_addr = image->bus_resource.start + (vma->vm_pgoff << PAGE_SHIFT);
624 vma_size = vma->vm_end - vma->vm_start;
625
626 if (phys_addr + vma_size > image->bus_resource.end + 1) {
627 pr_err("Map size cannot exceed the window size\n");
628 return -EFAULT;
629 }
630
631 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
632
633 return vm_iomap_memory(vma, phys_addr, vma->vm_end - vma->vm_start);
634 }
635 EXPORT_SYMBOL(vme_master_mmap);
636
637 void vme_master_free(struct vme_resource *resource)
638 {
639 struct vme_master_resource *master_image;
640
641 if (resource->type != VME_MASTER) {
642 printk(KERN_ERR "Not a master resource\n");
643 return;
644 }
645
646 master_image = list_entry(resource->entry, struct vme_master_resource,
647 list);
648 if (master_image == NULL) {
649 printk(KERN_ERR "Can't find master resource\n");
650 return;
651 }
652
653 /* Unlock image */
654 spin_lock(&master_image->lock);
655 if (master_image->locked == 0)
656 printk(KERN_ERR "Image is already free\n");
657
658 master_image->locked = 0;
659 spin_unlock(&master_image->lock);
660
661 /* Free up resource memory */
662 kfree(resource);
663 }
664 EXPORT_SYMBOL(vme_master_free);
665
666 /*
667 * Request a DMA controller with specific attributes, return some unique
668 * identifier.
669 */
670 struct vme_resource *vme_dma_request(struct vme_dev *vdev, u32 route)
671 {
672 struct vme_bridge *bridge;
673 struct list_head *dma_pos = NULL;
674 struct vme_dma_resource *allocated_ctrlr = NULL;
675 struct vme_dma_resource *dma_ctrlr = NULL;
676 struct vme_resource *resource = NULL;
677
678 /* XXX Not checking resource attributes */
679 printk(KERN_ERR "No VME resource Attribute tests done\n");
680
681 bridge = vdev->bridge;
682 if (bridge == NULL) {
683 printk(KERN_ERR "Can't find VME bus\n");
684 goto err_bus;
685 }
686
687 /* Loop through DMA resources */
688 list_for_each(dma_pos, &bridge->dma_resources) {
689 dma_ctrlr = list_entry(dma_pos,
690 struct vme_dma_resource, list);
691
692 if (dma_ctrlr == NULL) {
693 printk(KERN_ERR "Registered NULL DMA resource\n");
694 continue;
695 }
696
697 /* Find an unlocked and compatible controller */
698 mutex_lock(&dma_ctrlr->mtx);
699 if (((dma_ctrlr->route_attr & route) == route) &&
700 (dma_ctrlr->locked == 0)) {
701
702 dma_ctrlr->locked = 1;
703 mutex_unlock(&dma_ctrlr->mtx);
704 allocated_ctrlr = dma_ctrlr;
705 break;
706 }
707 mutex_unlock(&dma_ctrlr->mtx);
708 }
709
710 /* Check to see if we found a resource */
711 if (allocated_ctrlr == NULL)
712 goto err_ctrlr;
713
714 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
715 if (resource == NULL) {
716 printk(KERN_WARNING "Unable to allocate resource structure\n");
717 goto err_alloc;
718 }
719 resource->type = VME_DMA;
720 resource->entry = &allocated_ctrlr->list;
721
722 return resource;
723
724 err_alloc:
725 /* Unlock image */
726 mutex_lock(&dma_ctrlr->mtx);
727 dma_ctrlr->locked = 0;
728 mutex_unlock(&dma_ctrlr->mtx);
729 err_ctrlr:
730 err_bus:
731 return NULL;
732 }
733 EXPORT_SYMBOL(vme_dma_request);
734
735 /*
736 * Start new list
737 */
738 struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource)
739 {
740 struct vme_dma_resource *ctrlr;
741 struct vme_dma_list *dma_list;
742
743 if (resource->type != VME_DMA) {
744 printk(KERN_ERR "Not a DMA resource\n");
745 return NULL;
746 }
747
748 ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
749
750 dma_list = kmalloc(sizeof(struct vme_dma_list), GFP_KERNEL);
751 if (dma_list == NULL) {
752 printk(KERN_ERR "Unable to allocate memory for new dma list\n");
753 return NULL;
754 }
755 INIT_LIST_HEAD(&dma_list->entries);
756 dma_list->parent = ctrlr;
757 mutex_init(&dma_list->mtx);
758
759 return dma_list;
760 }
761 EXPORT_SYMBOL(vme_new_dma_list);
762
763 /*
764 * Create "Pattern" type attributes
765 */
766 struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type)
767 {
768 struct vme_dma_attr *attributes;
769 struct vme_dma_pattern *pattern_attr;
770
771 attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
772 if (attributes == NULL) {
773 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
774 goto err_attr;
775 }
776
777 pattern_attr = kmalloc(sizeof(struct vme_dma_pattern), GFP_KERNEL);
778 if (pattern_attr == NULL) {
779 printk(KERN_ERR "Unable to allocate memory for pattern attributes\n");
780 goto err_pat;
781 }
782
783 attributes->type = VME_DMA_PATTERN;
784 attributes->private = (void *)pattern_attr;
785
786 pattern_attr->pattern = pattern;
787 pattern_attr->type = type;
788
789 return attributes;
790
791 err_pat:
792 kfree(attributes);
793 err_attr:
794 return NULL;
795 }
796 EXPORT_SYMBOL(vme_dma_pattern_attribute);
797
798 /*
799 * Create "PCI" type attributes
800 */
801 struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address)
802 {
803 struct vme_dma_attr *attributes;
804 struct vme_dma_pci *pci_attr;
805
806 /* XXX Run some sanity checks here */
807
808 attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
809 if (attributes == NULL) {
810 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
811 goto err_attr;
812 }
813
814 pci_attr = kmalloc(sizeof(struct vme_dma_pci), GFP_KERNEL);
815 if (pci_attr == NULL) {
816 printk(KERN_ERR "Unable to allocate memory for pci attributes\n");
817 goto err_pci;
818 }
819
820
821
822 attributes->type = VME_DMA_PCI;
823 attributes->private = (void *)pci_attr;
824
825 pci_attr->address = address;
826
827 return attributes;
828
829 err_pci:
830 kfree(attributes);
831 err_attr:
832 return NULL;
833 }
834 EXPORT_SYMBOL(vme_dma_pci_attribute);
835
836 /*
837 * Create "VME" type attributes
838 */
839 struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address,
840 u32 aspace, u32 cycle, u32 dwidth)
841 {
842 struct vme_dma_attr *attributes;
843 struct vme_dma_vme *vme_attr;
844
845 attributes = kmalloc(
846 sizeof(struct vme_dma_attr), GFP_KERNEL);
847 if (attributes == NULL) {
848 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
849 goto err_attr;
850 }
851
852 vme_attr = kmalloc(sizeof(struct vme_dma_vme), GFP_KERNEL);
853 if (vme_attr == NULL) {
854 printk(KERN_ERR "Unable to allocate memory for vme attributes\n");
855 goto err_vme;
856 }
857
858 attributes->type = VME_DMA_VME;
859 attributes->private = (void *)vme_attr;
860
861 vme_attr->address = address;
862 vme_attr->aspace = aspace;
863 vme_attr->cycle = cycle;
864 vme_attr->dwidth = dwidth;
865
866 return attributes;
867
868 err_vme:
869 kfree(attributes);
870 err_attr:
871 return NULL;
872 }
873 EXPORT_SYMBOL(vme_dma_vme_attribute);
874
875 /*
876 * Free attribute
877 */
878 void vme_dma_free_attribute(struct vme_dma_attr *attributes)
879 {
880 kfree(attributes->private);
881 kfree(attributes);
882 }
883 EXPORT_SYMBOL(vme_dma_free_attribute);
884
885 int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src,
886 struct vme_dma_attr *dest, size_t count)
887 {
888 struct vme_bridge *bridge = list->parent->parent;
889 int retval;
890
891 if (bridge->dma_list_add == NULL) {
892 printk(KERN_WARNING "Link List DMA generation not supported\n");
893 return -EINVAL;
894 }
895
896 if (!mutex_trylock(&list->mtx)) {
897 printk(KERN_ERR "Link List already submitted\n");
898 return -EINVAL;
899 }
900
901 retval = bridge->dma_list_add(list, src, dest, count);
902
903 mutex_unlock(&list->mtx);
904
905 return retval;
906 }
907 EXPORT_SYMBOL(vme_dma_list_add);
908
909 int vme_dma_list_exec(struct vme_dma_list *list)
910 {
911 struct vme_bridge *bridge = list->parent->parent;
912 int retval;
913
914 if (bridge->dma_list_exec == NULL) {
915 printk(KERN_ERR "Link List DMA execution not supported\n");
916 return -EINVAL;
917 }
918
919 mutex_lock(&list->mtx);
920
921 retval = bridge->dma_list_exec(list);
922
923 mutex_unlock(&list->mtx);
924
925 return retval;
926 }
927 EXPORT_SYMBOL(vme_dma_list_exec);
928
929 int vme_dma_list_free(struct vme_dma_list *list)
930 {
931 struct vme_bridge *bridge = list->parent->parent;
932 int retval;
933
934 if (bridge->dma_list_empty == NULL) {
935 printk(KERN_WARNING "Emptying of Link Lists not supported\n");
936 return -EINVAL;
937 }
938
939 if (!mutex_trylock(&list->mtx)) {
940 printk(KERN_ERR "Link List in use\n");
941 return -EINVAL;
942 }
943
944 /*
945 * Empty out all of the entries from the dma list. We need to go to the
946 * low level driver as dma entries are driver specific.
947 */
948 retval = bridge->dma_list_empty(list);
949 if (retval) {
950 printk(KERN_ERR "Unable to empty link-list entries\n");
951 mutex_unlock(&list->mtx);
952 return retval;
953 }
954 mutex_unlock(&list->mtx);
955 kfree(list);
956
957 return retval;
958 }
959 EXPORT_SYMBOL(vme_dma_list_free);
960
961 int vme_dma_free(struct vme_resource *resource)
962 {
963 struct vme_dma_resource *ctrlr;
964
965 if (resource->type != VME_DMA) {
966 printk(KERN_ERR "Not a DMA resource\n");
967 return -EINVAL;
968 }
969
970 ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
971
972 if (!mutex_trylock(&ctrlr->mtx)) {
973 printk(KERN_ERR "Resource busy, can't free\n");
974 return -EBUSY;
975 }
976
977 if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) {
978 printk(KERN_WARNING "Resource still processing transfers\n");
979 mutex_unlock(&ctrlr->mtx);
980 return -EBUSY;
981 }
982
983 ctrlr->locked = 0;
984
985 mutex_unlock(&ctrlr->mtx);
986
987 kfree(resource);
988
989 return 0;
990 }
991 EXPORT_SYMBOL(vme_dma_free);
992
993 void vme_irq_handler(struct vme_bridge *bridge, int level, int statid)
994 {
995 void (*call)(int, int, void *);
996 void *priv_data;
997
998 call = bridge->irq[level - 1].callback[statid].func;
999 priv_data = bridge->irq[level - 1].callback[statid].priv_data;
1000
1001 if (call != NULL)
1002 call(level, statid, priv_data);
1003 else
1004 printk(KERN_WARNING "Spurilous VME interrupt, level:%x, vector:%x\n",
1005 level, statid);
1006 }
1007 EXPORT_SYMBOL(vme_irq_handler);
1008
1009 int vme_irq_request(struct vme_dev *vdev, int level, int statid,
1010 void (*callback)(int, int, void *),
1011 void *priv_data)
1012 {
1013 struct vme_bridge *bridge;
1014
1015 bridge = vdev->bridge;
1016 if (bridge == NULL) {
1017 printk(KERN_ERR "Can't find VME bus\n");
1018 return -EINVAL;
1019 }
1020
1021 if ((level < 1) || (level > 7)) {
1022 printk(KERN_ERR "Invalid interrupt level\n");
1023 return -EINVAL;
1024 }
1025
1026 if (bridge->irq_set == NULL) {
1027 printk(KERN_ERR "Configuring interrupts not supported\n");
1028 return -EINVAL;
1029 }
1030
1031 mutex_lock(&bridge->irq_mtx);
1032
1033 if (bridge->irq[level - 1].callback[statid].func) {
1034 mutex_unlock(&bridge->irq_mtx);
1035 printk(KERN_WARNING "VME Interrupt already taken\n");
1036 return -EBUSY;
1037 }
1038
1039 bridge->irq[level - 1].count++;
1040 bridge->irq[level - 1].callback[statid].priv_data = priv_data;
1041 bridge->irq[level - 1].callback[statid].func = callback;
1042
1043 /* Enable IRQ level */
1044 bridge->irq_set(bridge, level, 1, 1);
1045
1046 mutex_unlock(&bridge->irq_mtx);
1047
1048 return 0;
1049 }
1050 EXPORT_SYMBOL(vme_irq_request);
1051
1052 void vme_irq_free(struct vme_dev *vdev, int level, int statid)
1053 {
1054 struct vme_bridge *bridge;
1055
1056 bridge = vdev->bridge;
1057 if (bridge == NULL) {
1058 printk(KERN_ERR "Can't find VME bus\n");
1059 return;
1060 }
1061
1062 if ((level < 1) || (level > 7)) {
1063 printk(KERN_ERR "Invalid interrupt level\n");
1064 return;
1065 }
1066
1067 if (bridge->irq_set == NULL) {
1068 printk(KERN_ERR "Configuring interrupts not supported\n");
1069 return;
1070 }
1071
1072 mutex_lock(&bridge->irq_mtx);
1073
1074 bridge->irq[level - 1].count--;
1075
1076 /* Disable IRQ level if no more interrupts attached at this level*/
1077 if (bridge->irq[level - 1].count == 0)
1078 bridge->irq_set(bridge, level, 0, 1);
1079
1080 bridge->irq[level - 1].callback[statid].func = NULL;
1081 bridge->irq[level - 1].callback[statid].priv_data = NULL;
1082
1083 mutex_unlock(&bridge->irq_mtx);
1084 }
1085 EXPORT_SYMBOL(vme_irq_free);
1086
1087 int vme_irq_generate(struct vme_dev *vdev, int level, int statid)
1088 {
1089 struct vme_bridge *bridge;
1090
1091 bridge = vdev->bridge;
1092 if (bridge == NULL) {
1093 printk(KERN_ERR "Can't find VME bus\n");
1094 return -EINVAL;
1095 }
1096
1097 if ((level < 1) || (level > 7)) {
1098 printk(KERN_WARNING "Invalid interrupt level\n");
1099 return -EINVAL;
1100 }
1101
1102 if (bridge->irq_generate == NULL) {
1103 printk(KERN_WARNING "Interrupt generation not supported\n");
1104 return -EINVAL;
1105 }
1106
1107 return bridge->irq_generate(bridge, level, statid);
1108 }
1109 EXPORT_SYMBOL(vme_irq_generate);
1110
1111 /*
1112 * Request the location monitor, return resource or NULL
1113 */
1114 struct vme_resource *vme_lm_request(struct vme_dev *vdev)
1115 {
1116 struct vme_bridge *bridge;
1117 struct list_head *lm_pos = NULL;
1118 struct vme_lm_resource *allocated_lm = NULL;
1119 struct vme_lm_resource *lm = NULL;
1120 struct vme_resource *resource = NULL;
1121
1122 bridge = vdev->bridge;
1123 if (bridge == NULL) {
1124 printk(KERN_ERR "Can't find VME bus\n");
1125 goto err_bus;
1126 }
1127
1128 /* Loop through DMA resources */
1129 list_for_each(lm_pos, &bridge->lm_resources) {
1130 lm = list_entry(lm_pos,
1131 struct vme_lm_resource, list);
1132
1133 if (lm == NULL) {
1134 printk(KERN_ERR "Registered NULL Location Monitor resource\n");
1135 continue;
1136 }
1137
1138 /* Find an unlocked controller */
1139 mutex_lock(&lm->mtx);
1140 if (lm->locked == 0) {
1141 lm->locked = 1;
1142 mutex_unlock(&lm->mtx);
1143 allocated_lm = lm;
1144 break;
1145 }
1146 mutex_unlock(&lm->mtx);
1147 }
1148
1149 /* Check to see if we found a resource */
1150 if (allocated_lm == NULL)
1151 goto err_lm;
1152
1153 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
1154 if (resource == NULL) {
1155 printk(KERN_ERR "Unable to allocate resource structure\n");
1156 goto err_alloc;
1157 }
1158 resource->type = VME_LM;
1159 resource->entry = &allocated_lm->list;
1160
1161 return resource;
1162
1163 err_alloc:
1164 /* Unlock image */
1165 mutex_lock(&lm->mtx);
1166 lm->locked = 0;
1167 mutex_unlock(&lm->mtx);
1168 err_lm:
1169 err_bus:
1170 return NULL;
1171 }
1172 EXPORT_SYMBOL(vme_lm_request);
1173
1174 int vme_lm_count(struct vme_resource *resource)
1175 {
1176 struct vme_lm_resource *lm;
1177
1178 if (resource->type != VME_LM) {
1179 printk(KERN_ERR "Not a Location Monitor resource\n");
1180 return -EINVAL;
1181 }
1182
1183 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1184
1185 return lm->monitors;
1186 }
1187 EXPORT_SYMBOL(vme_lm_count);
1188
1189 int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base,
1190 u32 aspace, u32 cycle)
1191 {
1192 struct vme_bridge *bridge = find_bridge(resource);
1193 struct vme_lm_resource *lm;
1194
1195 if (resource->type != VME_LM) {
1196 printk(KERN_ERR "Not a Location Monitor resource\n");
1197 return -EINVAL;
1198 }
1199
1200 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1201
1202 if (bridge->lm_set == NULL) {
1203 printk(KERN_ERR "vme_lm_set not supported\n");
1204 return -EINVAL;
1205 }
1206
1207 return bridge->lm_set(lm, lm_base, aspace, cycle);
1208 }
1209 EXPORT_SYMBOL(vme_lm_set);
1210
1211 int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base,
1212 u32 *aspace, u32 *cycle)
1213 {
1214 struct vme_bridge *bridge = find_bridge(resource);
1215 struct vme_lm_resource *lm;
1216
1217 if (resource->type != VME_LM) {
1218 printk(KERN_ERR "Not a Location Monitor resource\n");
1219 return -EINVAL;
1220 }
1221
1222 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1223
1224 if (bridge->lm_get == NULL) {
1225 printk(KERN_ERR "vme_lm_get not supported\n");
1226 return -EINVAL;
1227 }
1228
1229 return bridge->lm_get(lm, lm_base, aspace, cycle);
1230 }
1231 EXPORT_SYMBOL(vme_lm_get);
1232
1233 int vme_lm_attach(struct vme_resource *resource, int monitor,
1234 void (*callback)(int))
1235 {
1236 struct vme_bridge *bridge = find_bridge(resource);
1237 struct vme_lm_resource *lm;
1238
1239 if (resource->type != VME_LM) {
1240 printk(KERN_ERR "Not a Location Monitor resource\n");
1241 return -EINVAL;
1242 }
1243
1244 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1245
1246 if (bridge->lm_attach == NULL) {
1247 printk(KERN_ERR "vme_lm_attach not supported\n");
1248 return -EINVAL;
1249 }
1250
1251 return bridge->lm_attach(lm, monitor, callback);
1252 }
1253 EXPORT_SYMBOL(vme_lm_attach);
1254
1255 int vme_lm_detach(struct vme_resource *resource, int monitor)
1256 {
1257 struct vme_bridge *bridge = find_bridge(resource);
1258 struct vme_lm_resource *lm;
1259
1260 if (resource->type != VME_LM) {
1261 printk(KERN_ERR "Not a Location Monitor resource\n");
1262 return -EINVAL;
1263 }
1264
1265 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1266
1267 if (bridge->lm_detach == NULL) {
1268 printk(KERN_ERR "vme_lm_detach not supported\n");
1269 return -EINVAL;
1270 }
1271
1272 return bridge->lm_detach(lm, monitor);
1273 }
1274 EXPORT_SYMBOL(vme_lm_detach);
1275
1276 void vme_lm_free(struct vme_resource *resource)
1277 {
1278 struct vme_lm_resource *lm;
1279
1280 if (resource->type != VME_LM) {
1281 printk(KERN_ERR "Not a Location Monitor resource\n");
1282 return;
1283 }
1284
1285 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1286
1287 mutex_lock(&lm->mtx);
1288
1289 /* XXX
1290 * Check to see that there aren't any callbacks still attached, if
1291 * there are we should probably be detaching them!
1292 */
1293
1294 lm->locked = 0;
1295
1296 mutex_unlock(&lm->mtx);
1297
1298 kfree(resource);
1299 }
1300 EXPORT_SYMBOL(vme_lm_free);
1301
1302 int vme_slot_num(struct vme_dev *vdev)
1303 {
1304 struct vme_bridge *bridge;
1305
1306 bridge = vdev->bridge;
1307 if (bridge == NULL) {
1308 printk(KERN_ERR "Can't find VME bus\n");
1309 return -EINVAL;
1310 }
1311
1312 if (bridge->slot_get == NULL) {
1313 printk(KERN_WARNING "vme_slot_num not supported\n");
1314 return -EINVAL;
1315 }
1316
1317 return bridge->slot_get(bridge);
1318 }
1319 EXPORT_SYMBOL(vme_slot_num);
1320
1321 int vme_bus_num(struct vme_dev *vdev)
1322 {
1323 struct vme_bridge *bridge;
1324
1325 bridge = vdev->bridge;
1326 if (bridge == NULL) {
1327 pr_err("Can't find VME bus\n");
1328 return -EINVAL;
1329 }
1330
1331 return bridge->num;
1332 }
1333 EXPORT_SYMBOL(vme_bus_num);
1334
1335 /* - Bridge Registration --------------------------------------------------- */
1336
1337 static void vme_dev_release(struct device *dev)
1338 {
1339 kfree(dev_to_vme_dev(dev));
1340 }
1341
1342 int vme_register_bridge(struct vme_bridge *bridge)
1343 {
1344 int i;
1345 int ret = -1;
1346
1347 mutex_lock(&vme_buses_lock);
1348 for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) {
1349 if ((vme_bus_numbers & (1 << i)) == 0) {
1350 vme_bus_numbers |= (1 << i);
1351 bridge->num = i;
1352 INIT_LIST_HEAD(&bridge->devices);
1353 list_add_tail(&bridge->bus_list, &vme_bus_list);
1354 ret = 0;
1355 break;
1356 }
1357 }
1358 mutex_unlock(&vme_buses_lock);
1359
1360 return ret;
1361 }
1362 EXPORT_SYMBOL(vme_register_bridge);
1363
1364 void vme_unregister_bridge(struct vme_bridge *bridge)
1365 {
1366 struct vme_dev *vdev;
1367 struct vme_dev *tmp;
1368
1369 mutex_lock(&vme_buses_lock);
1370 vme_bus_numbers &= ~(1 << bridge->num);
1371 list_for_each_entry_safe(vdev, tmp, &bridge->devices, bridge_list) {
1372 list_del(&vdev->drv_list);
1373 list_del(&vdev->bridge_list);
1374 device_unregister(&vdev->dev);
1375 }
1376 list_del(&bridge->bus_list);
1377 mutex_unlock(&vme_buses_lock);
1378 }
1379 EXPORT_SYMBOL(vme_unregister_bridge);
1380
1381 /* - Driver Registration --------------------------------------------------- */
1382
1383 static int __vme_register_driver_bus(struct vme_driver *drv,
1384 struct vme_bridge *bridge, unsigned int ndevs)
1385 {
1386 int err;
1387 unsigned int i;
1388 struct vme_dev *vdev;
1389 struct vme_dev *tmp;
1390
1391 for (i = 0; i < ndevs; i++) {
1392 vdev = kzalloc(sizeof(struct vme_dev), GFP_KERNEL);
1393 if (!vdev) {
1394 err = -ENOMEM;
1395 goto err_devalloc;
1396 }
1397 vdev->num = i;
1398 vdev->bridge = bridge;
1399 vdev->dev.platform_data = drv;
1400 vdev->dev.release = vme_dev_release;
1401 vdev->dev.parent = bridge->parent;
1402 vdev->dev.bus = &vme_bus_type;
1403 dev_set_name(&vdev->dev, "%s.%u-%u", drv->name, bridge->num,
1404 vdev->num);
1405
1406 err = device_register(&vdev->dev);
1407 if (err)
1408 goto err_reg;
1409
1410 if (vdev->dev.platform_data) {
1411 list_add_tail(&vdev->drv_list, &drv->devices);
1412 list_add_tail(&vdev->bridge_list, &bridge->devices);
1413 } else
1414 device_unregister(&vdev->dev);
1415 }
1416 return 0;
1417
1418 err_reg:
1419 put_device(&vdev->dev);
1420 kfree(vdev);
1421 err_devalloc:
1422 list_for_each_entry_safe(vdev, tmp, &drv->devices, drv_list) {
1423 list_del(&vdev->drv_list);
1424 list_del(&vdev->bridge_list);
1425 device_unregister(&vdev->dev);
1426 }
1427 return err;
1428 }
1429
1430 static int __vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1431 {
1432 struct vme_bridge *bridge;
1433 int err = 0;
1434
1435 mutex_lock(&vme_buses_lock);
1436 list_for_each_entry(bridge, &vme_bus_list, bus_list) {
1437 /*
1438 * This cannot cause trouble as we already have vme_buses_lock
1439 * and if the bridge is removed, it will have to go through
1440 * vme_unregister_bridge() to do it (which calls remove() on
1441 * the bridge which in turn tries to acquire vme_buses_lock and
1442 * will have to wait).
1443 */
1444 err = __vme_register_driver_bus(drv, bridge, ndevs);
1445 if (err)
1446 break;
1447 }
1448 mutex_unlock(&vme_buses_lock);
1449 return err;
1450 }
1451
1452 int vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1453 {
1454 int err;
1455
1456 drv->driver.name = drv->name;
1457 drv->driver.bus = &vme_bus_type;
1458 INIT_LIST_HEAD(&drv->devices);
1459
1460 err = driver_register(&drv->driver);
1461 if (err)
1462 return err;
1463
1464 err = __vme_register_driver(drv, ndevs);
1465 if (err)
1466 driver_unregister(&drv->driver);
1467
1468 return err;
1469 }
1470 EXPORT_SYMBOL(vme_register_driver);
1471
1472 void vme_unregister_driver(struct vme_driver *drv)
1473 {
1474 struct vme_dev *dev, *dev_tmp;
1475
1476 mutex_lock(&vme_buses_lock);
1477 list_for_each_entry_safe(dev, dev_tmp, &drv->devices, drv_list) {
1478 list_del(&dev->drv_list);
1479 list_del(&dev->bridge_list);
1480 device_unregister(&dev->dev);
1481 }
1482 mutex_unlock(&vme_buses_lock);
1483
1484 driver_unregister(&drv->driver);
1485 }
1486 EXPORT_SYMBOL(vme_unregister_driver);
1487
1488 /* - Bus Registration ------------------------------------------------------ */
1489
1490 static int vme_bus_match(struct device *dev, struct device_driver *drv)
1491 {
1492 struct vme_driver *vme_drv;
1493
1494 vme_drv = container_of(drv, struct vme_driver, driver);
1495
1496 if (dev->platform_data == vme_drv) {
1497 struct vme_dev *vdev = dev_to_vme_dev(dev);
1498
1499 if (vme_drv->match && vme_drv->match(vdev))
1500 return 1;
1501
1502 dev->platform_data = NULL;
1503 }
1504 return 0;
1505 }
1506
1507 static int vme_bus_probe(struct device *dev)
1508 {
1509 int retval = -ENODEV;
1510 struct vme_driver *driver;
1511 struct vme_dev *vdev = dev_to_vme_dev(dev);
1512
1513 driver = dev->platform_data;
1514
1515 if (driver->probe != NULL)
1516 retval = driver->probe(vdev);
1517
1518 return retval;
1519 }
1520
1521 static int vme_bus_remove(struct device *dev)
1522 {
1523 int retval = -ENODEV;
1524 struct vme_driver *driver;
1525 struct vme_dev *vdev = dev_to_vme_dev(dev);
1526
1527 driver = dev->platform_data;
1528
1529 if (driver->remove != NULL)
1530 retval = driver->remove(vdev);
1531
1532 return retval;
1533 }
1534
1535 struct bus_type vme_bus_type = {
1536 .name = "vme",
1537 .match = vme_bus_match,
1538 .probe = vme_bus_probe,
1539 .remove = vme_bus_remove,
1540 };
1541 EXPORT_SYMBOL(vme_bus_type);
1542
1543 static int __init vme_init(void)
1544 {
1545 return bus_register(&vme_bus_type);
1546 }
1547
1548 static void __exit vme_exit(void)
1549 {
1550 bus_unregister(&vme_bus_type);
1551 }
1552
1553 subsys_initcall(vme_init);
1554 module_exit(vme_exit);
This page took 0.065408 seconds and 5 git commands to generate.