Merge tag 'dm-4.1-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[deliverable/linux.git] / drivers / vme / vme.c
1 /*
2 * VME Bridge Framework
3 *
4 * Author: Martyn Welch <martyn.welch@ge.com>
5 * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
6 *
7 * Based on work by Tom Armistead and Ajit Prem
8 * Copyright 2004 Motorola Inc.
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 */
15
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/mm.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/pci.h>
23 #include <linux/poll.h>
24 #include <linux/highmem.h>
25 #include <linux/interrupt.h>
26 #include <linux/pagemap.h>
27 #include <linux/device.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/syscalls.h>
30 #include <linux/mutex.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/vme.h>
34
35 #include "vme_bridge.h"
36
37 /* Bitmask and list of registered buses both protected by common mutex */
38 static unsigned int vme_bus_numbers;
39 static LIST_HEAD(vme_bus_list);
40 static DEFINE_MUTEX(vme_buses_lock);
41
42 static void __exit vme_exit(void);
43 static int __init vme_init(void);
44
45 static struct vme_dev *dev_to_vme_dev(struct device *dev)
46 {
47 return container_of(dev, struct vme_dev, dev);
48 }
49
50 /*
51 * Find the bridge that the resource is associated with.
52 */
53 static struct vme_bridge *find_bridge(struct vme_resource *resource)
54 {
55 /* Get list to search */
56 switch (resource->type) {
57 case VME_MASTER:
58 return list_entry(resource->entry, struct vme_master_resource,
59 list)->parent;
60 break;
61 case VME_SLAVE:
62 return list_entry(resource->entry, struct vme_slave_resource,
63 list)->parent;
64 break;
65 case VME_DMA:
66 return list_entry(resource->entry, struct vme_dma_resource,
67 list)->parent;
68 break;
69 case VME_LM:
70 return list_entry(resource->entry, struct vme_lm_resource,
71 list)->parent;
72 break;
73 default:
74 printk(KERN_ERR "Unknown resource type\n");
75 return NULL;
76 break;
77 }
78 }
79
80 /*
81 * Allocate a contiguous block of memory for use by the driver. This is used to
82 * create the buffers for the slave windows.
83 */
84 void *vme_alloc_consistent(struct vme_resource *resource, size_t size,
85 dma_addr_t *dma)
86 {
87 struct vme_bridge *bridge;
88
89 if (resource == NULL) {
90 printk(KERN_ERR "No resource\n");
91 return NULL;
92 }
93
94 bridge = find_bridge(resource);
95 if (bridge == NULL) {
96 printk(KERN_ERR "Can't find bridge\n");
97 return NULL;
98 }
99
100 if (bridge->parent == NULL) {
101 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
102 return NULL;
103 }
104
105 if (bridge->alloc_consistent == NULL) {
106 printk(KERN_ERR "alloc_consistent not supported by bridge %s\n",
107 bridge->name);
108 return NULL;
109 }
110
111 return bridge->alloc_consistent(bridge->parent, size, dma);
112 }
113 EXPORT_SYMBOL(vme_alloc_consistent);
114
115 /*
116 * Free previously allocated contiguous block of memory.
117 */
118 void vme_free_consistent(struct vme_resource *resource, size_t size,
119 void *vaddr, dma_addr_t dma)
120 {
121 struct vme_bridge *bridge;
122
123 if (resource == NULL) {
124 printk(KERN_ERR "No resource\n");
125 return;
126 }
127
128 bridge = find_bridge(resource);
129 if (bridge == NULL) {
130 printk(KERN_ERR "Can't find bridge\n");
131 return;
132 }
133
134 if (bridge->parent == NULL) {
135 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
136 return;
137 }
138
139 if (bridge->free_consistent == NULL) {
140 printk(KERN_ERR "free_consistent not supported by bridge %s\n",
141 bridge->name);
142 return;
143 }
144
145 bridge->free_consistent(bridge->parent, size, vaddr, dma);
146 }
147 EXPORT_SYMBOL(vme_free_consistent);
148
149 size_t vme_get_size(struct vme_resource *resource)
150 {
151 int enabled, retval;
152 unsigned long long base, size;
153 dma_addr_t buf_base;
154 u32 aspace, cycle, dwidth;
155
156 switch (resource->type) {
157 case VME_MASTER:
158 retval = vme_master_get(resource, &enabled, &base, &size,
159 &aspace, &cycle, &dwidth);
160
161 return size;
162 break;
163 case VME_SLAVE:
164 retval = vme_slave_get(resource, &enabled, &base, &size,
165 &buf_base, &aspace, &cycle);
166
167 return size;
168 break;
169 case VME_DMA:
170 return 0;
171 break;
172 default:
173 printk(KERN_ERR "Unknown resource type\n");
174 return 0;
175 break;
176 }
177 }
178 EXPORT_SYMBOL(vme_get_size);
179
180 static int vme_check_window(u32 aspace, unsigned long long vme_base,
181 unsigned long long size)
182 {
183 int retval = 0;
184
185 switch (aspace) {
186 case VME_A16:
187 if (((vme_base + size) > VME_A16_MAX) ||
188 (vme_base > VME_A16_MAX))
189 retval = -EFAULT;
190 break;
191 case VME_A24:
192 if (((vme_base + size) > VME_A24_MAX) ||
193 (vme_base > VME_A24_MAX))
194 retval = -EFAULT;
195 break;
196 case VME_A32:
197 if (((vme_base + size) > VME_A32_MAX) ||
198 (vme_base > VME_A32_MAX))
199 retval = -EFAULT;
200 break;
201 case VME_A64:
202 /*
203 * Any value held in an unsigned long long can be used as the
204 * base
205 */
206 break;
207 case VME_CRCSR:
208 if (((vme_base + size) > VME_CRCSR_MAX) ||
209 (vme_base > VME_CRCSR_MAX))
210 retval = -EFAULT;
211 break;
212 case VME_USER1:
213 case VME_USER2:
214 case VME_USER3:
215 case VME_USER4:
216 /* User Defined */
217 break;
218 default:
219 printk(KERN_ERR "Invalid address space\n");
220 retval = -EINVAL;
221 break;
222 }
223
224 return retval;
225 }
226
227 /*
228 * Request a slave image with specific attributes, return some unique
229 * identifier.
230 */
231 struct vme_resource *vme_slave_request(struct vme_dev *vdev, u32 address,
232 u32 cycle)
233 {
234 struct vme_bridge *bridge;
235 struct list_head *slave_pos = NULL;
236 struct vme_slave_resource *allocated_image = NULL;
237 struct vme_slave_resource *slave_image = NULL;
238 struct vme_resource *resource = NULL;
239
240 bridge = vdev->bridge;
241 if (bridge == NULL) {
242 printk(KERN_ERR "Can't find VME bus\n");
243 goto err_bus;
244 }
245
246 /* Loop through slave resources */
247 list_for_each(slave_pos, &bridge->slave_resources) {
248 slave_image = list_entry(slave_pos,
249 struct vme_slave_resource, list);
250
251 if (slave_image == NULL) {
252 printk(KERN_ERR "Registered NULL Slave resource\n");
253 continue;
254 }
255
256 /* Find an unlocked and compatible image */
257 mutex_lock(&slave_image->mtx);
258 if (((slave_image->address_attr & address) == address) &&
259 ((slave_image->cycle_attr & cycle) == cycle) &&
260 (slave_image->locked == 0)) {
261
262 slave_image->locked = 1;
263 mutex_unlock(&slave_image->mtx);
264 allocated_image = slave_image;
265 break;
266 }
267 mutex_unlock(&slave_image->mtx);
268 }
269
270 /* No free image */
271 if (allocated_image == NULL)
272 goto err_image;
273
274 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
275 if (resource == NULL) {
276 printk(KERN_WARNING "Unable to allocate resource structure\n");
277 goto err_alloc;
278 }
279 resource->type = VME_SLAVE;
280 resource->entry = &allocated_image->list;
281
282 return resource;
283
284 err_alloc:
285 /* Unlock image */
286 mutex_lock(&slave_image->mtx);
287 slave_image->locked = 0;
288 mutex_unlock(&slave_image->mtx);
289 err_image:
290 err_bus:
291 return NULL;
292 }
293 EXPORT_SYMBOL(vme_slave_request);
294
295 int vme_slave_set(struct vme_resource *resource, int enabled,
296 unsigned long long vme_base, unsigned long long size,
297 dma_addr_t buf_base, u32 aspace, u32 cycle)
298 {
299 struct vme_bridge *bridge = find_bridge(resource);
300 struct vme_slave_resource *image;
301 int retval;
302
303 if (resource->type != VME_SLAVE) {
304 printk(KERN_ERR "Not a slave resource\n");
305 return -EINVAL;
306 }
307
308 image = list_entry(resource->entry, struct vme_slave_resource, list);
309
310 if (bridge->slave_set == NULL) {
311 printk(KERN_ERR "Function not supported\n");
312 return -ENOSYS;
313 }
314
315 if (!(((image->address_attr & aspace) == aspace) &&
316 ((image->cycle_attr & cycle) == cycle))) {
317 printk(KERN_ERR "Invalid attributes\n");
318 return -EINVAL;
319 }
320
321 retval = vme_check_window(aspace, vme_base, size);
322 if (retval)
323 return retval;
324
325 return bridge->slave_set(image, enabled, vme_base, size, buf_base,
326 aspace, cycle);
327 }
328 EXPORT_SYMBOL(vme_slave_set);
329
330 int vme_slave_get(struct vme_resource *resource, int *enabled,
331 unsigned long long *vme_base, unsigned long long *size,
332 dma_addr_t *buf_base, u32 *aspace, u32 *cycle)
333 {
334 struct vme_bridge *bridge = find_bridge(resource);
335 struct vme_slave_resource *image;
336
337 if (resource->type != VME_SLAVE) {
338 printk(KERN_ERR "Not a slave resource\n");
339 return -EINVAL;
340 }
341
342 image = list_entry(resource->entry, struct vme_slave_resource, list);
343
344 if (bridge->slave_get == NULL) {
345 printk(KERN_ERR "vme_slave_get not supported\n");
346 return -EINVAL;
347 }
348
349 return bridge->slave_get(image, enabled, vme_base, size, buf_base,
350 aspace, cycle);
351 }
352 EXPORT_SYMBOL(vme_slave_get);
353
354 void vme_slave_free(struct vme_resource *resource)
355 {
356 struct vme_slave_resource *slave_image;
357
358 if (resource->type != VME_SLAVE) {
359 printk(KERN_ERR "Not a slave resource\n");
360 return;
361 }
362
363 slave_image = list_entry(resource->entry, struct vme_slave_resource,
364 list);
365 if (slave_image == NULL) {
366 printk(KERN_ERR "Can't find slave resource\n");
367 return;
368 }
369
370 /* Unlock image */
371 mutex_lock(&slave_image->mtx);
372 if (slave_image->locked == 0)
373 printk(KERN_ERR "Image is already free\n");
374
375 slave_image->locked = 0;
376 mutex_unlock(&slave_image->mtx);
377
378 /* Free up resource memory */
379 kfree(resource);
380 }
381 EXPORT_SYMBOL(vme_slave_free);
382
383 /*
384 * Request a master image with specific attributes, return some unique
385 * identifier.
386 */
387 struct vme_resource *vme_master_request(struct vme_dev *vdev, u32 address,
388 u32 cycle, u32 dwidth)
389 {
390 struct vme_bridge *bridge;
391 struct list_head *master_pos = NULL;
392 struct vme_master_resource *allocated_image = NULL;
393 struct vme_master_resource *master_image = NULL;
394 struct vme_resource *resource = NULL;
395
396 bridge = vdev->bridge;
397 if (bridge == NULL) {
398 printk(KERN_ERR "Can't find VME bus\n");
399 goto err_bus;
400 }
401
402 /* Loop through master resources */
403 list_for_each(master_pos, &bridge->master_resources) {
404 master_image = list_entry(master_pos,
405 struct vme_master_resource, list);
406
407 if (master_image == NULL) {
408 printk(KERN_WARNING "Registered NULL master resource\n");
409 continue;
410 }
411
412 /* Find an unlocked and compatible image */
413 spin_lock(&master_image->lock);
414 if (((master_image->address_attr & address) == address) &&
415 ((master_image->cycle_attr & cycle) == cycle) &&
416 ((master_image->width_attr & dwidth) == dwidth) &&
417 (master_image->locked == 0)) {
418
419 master_image->locked = 1;
420 spin_unlock(&master_image->lock);
421 allocated_image = master_image;
422 break;
423 }
424 spin_unlock(&master_image->lock);
425 }
426
427 /* Check to see if we found a resource */
428 if (allocated_image == NULL) {
429 printk(KERN_ERR "Can't find a suitable resource\n");
430 goto err_image;
431 }
432
433 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
434 if (resource == NULL) {
435 printk(KERN_ERR "Unable to allocate resource structure\n");
436 goto err_alloc;
437 }
438 resource->type = VME_MASTER;
439 resource->entry = &allocated_image->list;
440
441 return resource;
442
443 err_alloc:
444 /* Unlock image */
445 spin_lock(&master_image->lock);
446 master_image->locked = 0;
447 spin_unlock(&master_image->lock);
448 err_image:
449 err_bus:
450 return NULL;
451 }
452 EXPORT_SYMBOL(vme_master_request);
453
454 int vme_master_set(struct vme_resource *resource, int enabled,
455 unsigned long long vme_base, unsigned long long size, u32 aspace,
456 u32 cycle, u32 dwidth)
457 {
458 struct vme_bridge *bridge = find_bridge(resource);
459 struct vme_master_resource *image;
460 int retval;
461
462 if (resource->type != VME_MASTER) {
463 printk(KERN_ERR "Not a master resource\n");
464 return -EINVAL;
465 }
466
467 image = list_entry(resource->entry, struct vme_master_resource, list);
468
469 if (bridge->master_set == NULL) {
470 printk(KERN_WARNING "vme_master_set not supported\n");
471 return -EINVAL;
472 }
473
474 if (!(((image->address_attr & aspace) == aspace) &&
475 ((image->cycle_attr & cycle) == cycle) &&
476 ((image->width_attr & dwidth) == dwidth))) {
477 printk(KERN_WARNING "Invalid attributes\n");
478 return -EINVAL;
479 }
480
481 retval = vme_check_window(aspace, vme_base, size);
482 if (retval)
483 return retval;
484
485 return bridge->master_set(image, enabled, vme_base, size, aspace,
486 cycle, dwidth);
487 }
488 EXPORT_SYMBOL(vme_master_set);
489
490 int vme_master_get(struct vme_resource *resource, int *enabled,
491 unsigned long long *vme_base, unsigned long long *size, u32 *aspace,
492 u32 *cycle, u32 *dwidth)
493 {
494 struct vme_bridge *bridge = find_bridge(resource);
495 struct vme_master_resource *image;
496
497 if (resource->type != VME_MASTER) {
498 printk(KERN_ERR "Not a master resource\n");
499 return -EINVAL;
500 }
501
502 image = list_entry(resource->entry, struct vme_master_resource, list);
503
504 if (bridge->master_get == NULL) {
505 printk(KERN_WARNING "%s not supported\n", __func__);
506 return -EINVAL;
507 }
508
509 return bridge->master_get(image, enabled, vme_base, size, aspace,
510 cycle, dwidth);
511 }
512 EXPORT_SYMBOL(vme_master_get);
513
514 /*
515 * Read data out of VME space into a buffer.
516 */
517 ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count,
518 loff_t offset)
519 {
520 struct vme_bridge *bridge = find_bridge(resource);
521 struct vme_master_resource *image;
522 size_t length;
523
524 if (bridge->master_read == NULL) {
525 printk(KERN_WARNING "Reading from resource not supported\n");
526 return -EINVAL;
527 }
528
529 if (resource->type != VME_MASTER) {
530 printk(KERN_ERR "Not a master resource\n");
531 return -EINVAL;
532 }
533
534 image = list_entry(resource->entry, struct vme_master_resource, list);
535
536 length = vme_get_size(resource);
537
538 if (offset > length) {
539 printk(KERN_WARNING "Invalid Offset\n");
540 return -EFAULT;
541 }
542
543 if ((offset + count) > length)
544 count = length - offset;
545
546 return bridge->master_read(image, buf, count, offset);
547
548 }
549 EXPORT_SYMBOL(vme_master_read);
550
551 /*
552 * Write data out to VME space from a buffer.
553 */
554 ssize_t vme_master_write(struct vme_resource *resource, void *buf,
555 size_t count, loff_t offset)
556 {
557 struct vme_bridge *bridge = find_bridge(resource);
558 struct vme_master_resource *image;
559 size_t length;
560
561 if (bridge->master_write == NULL) {
562 printk(KERN_WARNING "Writing to resource not supported\n");
563 return -EINVAL;
564 }
565
566 if (resource->type != VME_MASTER) {
567 printk(KERN_ERR "Not a master resource\n");
568 return -EINVAL;
569 }
570
571 image = list_entry(resource->entry, struct vme_master_resource, list);
572
573 length = vme_get_size(resource);
574
575 if (offset > length) {
576 printk(KERN_WARNING "Invalid Offset\n");
577 return -EFAULT;
578 }
579
580 if ((offset + count) > length)
581 count = length - offset;
582
583 return bridge->master_write(image, buf, count, offset);
584 }
585 EXPORT_SYMBOL(vme_master_write);
586
587 /*
588 * Perform RMW cycle to provided location.
589 */
590 unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask,
591 unsigned int compare, unsigned int swap, loff_t offset)
592 {
593 struct vme_bridge *bridge = find_bridge(resource);
594 struct vme_master_resource *image;
595
596 if (bridge->master_rmw == NULL) {
597 printk(KERN_WARNING "Writing to resource not supported\n");
598 return -EINVAL;
599 }
600
601 if (resource->type != VME_MASTER) {
602 printk(KERN_ERR "Not a master resource\n");
603 return -EINVAL;
604 }
605
606 image = list_entry(resource->entry, struct vme_master_resource, list);
607
608 return bridge->master_rmw(image, mask, compare, swap, offset);
609 }
610 EXPORT_SYMBOL(vme_master_rmw);
611
612 int vme_master_mmap(struct vme_resource *resource, struct vm_area_struct *vma)
613 {
614 struct vme_master_resource *image;
615 phys_addr_t phys_addr;
616 unsigned long vma_size;
617
618 if (resource->type != VME_MASTER) {
619 pr_err("Not a master resource\n");
620 return -EINVAL;
621 }
622
623 image = list_entry(resource->entry, struct vme_master_resource, list);
624 phys_addr = image->bus_resource.start + (vma->vm_pgoff << PAGE_SHIFT);
625 vma_size = vma->vm_end - vma->vm_start;
626
627 if (phys_addr + vma_size > image->bus_resource.end + 1) {
628 pr_err("Map size cannot exceed the window size\n");
629 return -EFAULT;
630 }
631
632 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
633
634 return vm_iomap_memory(vma, phys_addr, vma->vm_end - vma->vm_start);
635 }
636 EXPORT_SYMBOL(vme_master_mmap);
637
638 void vme_master_free(struct vme_resource *resource)
639 {
640 struct vme_master_resource *master_image;
641
642 if (resource->type != VME_MASTER) {
643 printk(KERN_ERR "Not a master resource\n");
644 return;
645 }
646
647 master_image = list_entry(resource->entry, struct vme_master_resource,
648 list);
649 if (master_image == NULL) {
650 printk(KERN_ERR "Can't find master resource\n");
651 return;
652 }
653
654 /* Unlock image */
655 spin_lock(&master_image->lock);
656 if (master_image->locked == 0)
657 printk(KERN_ERR "Image is already free\n");
658
659 master_image->locked = 0;
660 spin_unlock(&master_image->lock);
661
662 /* Free up resource memory */
663 kfree(resource);
664 }
665 EXPORT_SYMBOL(vme_master_free);
666
667 /*
668 * Request a DMA controller with specific attributes, return some unique
669 * identifier.
670 */
671 struct vme_resource *vme_dma_request(struct vme_dev *vdev, u32 route)
672 {
673 struct vme_bridge *bridge;
674 struct list_head *dma_pos = NULL;
675 struct vme_dma_resource *allocated_ctrlr = NULL;
676 struct vme_dma_resource *dma_ctrlr = NULL;
677 struct vme_resource *resource = NULL;
678
679 /* XXX Not checking resource attributes */
680 printk(KERN_ERR "No VME resource Attribute tests done\n");
681
682 bridge = vdev->bridge;
683 if (bridge == NULL) {
684 printk(KERN_ERR "Can't find VME bus\n");
685 goto err_bus;
686 }
687
688 /* Loop through DMA resources */
689 list_for_each(dma_pos, &bridge->dma_resources) {
690 dma_ctrlr = list_entry(dma_pos,
691 struct vme_dma_resource, list);
692
693 if (dma_ctrlr == NULL) {
694 printk(KERN_ERR "Registered NULL DMA resource\n");
695 continue;
696 }
697
698 /* Find an unlocked and compatible controller */
699 mutex_lock(&dma_ctrlr->mtx);
700 if (((dma_ctrlr->route_attr & route) == route) &&
701 (dma_ctrlr->locked == 0)) {
702
703 dma_ctrlr->locked = 1;
704 mutex_unlock(&dma_ctrlr->mtx);
705 allocated_ctrlr = dma_ctrlr;
706 break;
707 }
708 mutex_unlock(&dma_ctrlr->mtx);
709 }
710
711 /* Check to see if we found a resource */
712 if (allocated_ctrlr == NULL)
713 goto err_ctrlr;
714
715 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
716 if (resource == NULL) {
717 printk(KERN_WARNING "Unable to allocate resource structure\n");
718 goto err_alloc;
719 }
720 resource->type = VME_DMA;
721 resource->entry = &allocated_ctrlr->list;
722
723 return resource;
724
725 err_alloc:
726 /* Unlock image */
727 mutex_lock(&dma_ctrlr->mtx);
728 dma_ctrlr->locked = 0;
729 mutex_unlock(&dma_ctrlr->mtx);
730 err_ctrlr:
731 err_bus:
732 return NULL;
733 }
734 EXPORT_SYMBOL(vme_dma_request);
735
736 /*
737 * Start new list
738 */
739 struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource)
740 {
741 struct vme_dma_resource *ctrlr;
742 struct vme_dma_list *dma_list;
743
744 if (resource->type != VME_DMA) {
745 printk(KERN_ERR "Not a DMA resource\n");
746 return NULL;
747 }
748
749 ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
750
751 dma_list = kmalloc(sizeof(struct vme_dma_list), GFP_KERNEL);
752 if (dma_list == NULL) {
753 printk(KERN_ERR "Unable to allocate memory for new dma list\n");
754 return NULL;
755 }
756 INIT_LIST_HEAD(&dma_list->entries);
757 dma_list->parent = ctrlr;
758 mutex_init(&dma_list->mtx);
759
760 return dma_list;
761 }
762 EXPORT_SYMBOL(vme_new_dma_list);
763
764 /*
765 * Create "Pattern" type attributes
766 */
767 struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type)
768 {
769 struct vme_dma_attr *attributes;
770 struct vme_dma_pattern *pattern_attr;
771
772 attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
773 if (attributes == NULL) {
774 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
775 goto err_attr;
776 }
777
778 pattern_attr = kmalloc(sizeof(struct vme_dma_pattern), GFP_KERNEL);
779 if (pattern_attr == NULL) {
780 printk(KERN_ERR "Unable to allocate memory for pattern attributes\n");
781 goto err_pat;
782 }
783
784 attributes->type = VME_DMA_PATTERN;
785 attributes->private = (void *)pattern_attr;
786
787 pattern_attr->pattern = pattern;
788 pattern_attr->type = type;
789
790 return attributes;
791
792 err_pat:
793 kfree(attributes);
794 err_attr:
795 return NULL;
796 }
797 EXPORT_SYMBOL(vme_dma_pattern_attribute);
798
799 /*
800 * Create "PCI" type attributes
801 */
802 struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address)
803 {
804 struct vme_dma_attr *attributes;
805 struct vme_dma_pci *pci_attr;
806
807 /* XXX Run some sanity checks here */
808
809 attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
810 if (attributes == NULL) {
811 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
812 goto err_attr;
813 }
814
815 pci_attr = kmalloc(sizeof(struct vme_dma_pci), GFP_KERNEL);
816 if (pci_attr == NULL) {
817 printk(KERN_ERR "Unable to allocate memory for pci attributes\n");
818 goto err_pci;
819 }
820
821
822
823 attributes->type = VME_DMA_PCI;
824 attributes->private = (void *)pci_attr;
825
826 pci_attr->address = address;
827
828 return attributes;
829
830 err_pci:
831 kfree(attributes);
832 err_attr:
833 return NULL;
834 }
835 EXPORT_SYMBOL(vme_dma_pci_attribute);
836
837 /*
838 * Create "VME" type attributes
839 */
840 struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address,
841 u32 aspace, u32 cycle, u32 dwidth)
842 {
843 struct vme_dma_attr *attributes;
844 struct vme_dma_vme *vme_attr;
845
846 attributes = kmalloc(
847 sizeof(struct vme_dma_attr), GFP_KERNEL);
848 if (attributes == NULL) {
849 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
850 goto err_attr;
851 }
852
853 vme_attr = kmalloc(sizeof(struct vme_dma_vme), GFP_KERNEL);
854 if (vme_attr == NULL) {
855 printk(KERN_ERR "Unable to allocate memory for vme attributes\n");
856 goto err_vme;
857 }
858
859 attributes->type = VME_DMA_VME;
860 attributes->private = (void *)vme_attr;
861
862 vme_attr->address = address;
863 vme_attr->aspace = aspace;
864 vme_attr->cycle = cycle;
865 vme_attr->dwidth = dwidth;
866
867 return attributes;
868
869 err_vme:
870 kfree(attributes);
871 err_attr:
872 return NULL;
873 }
874 EXPORT_SYMBOL(vme_dma_vme_attribute);
875
876 /*
877 * Free attribute
878 */
879 void vme_dma_free_attribute(struct vme_dma_attr *attributes)
880 {
881 kfree(attributes->private);
882 kfree(attributes);
883 }
884 EXPORT_SYMBOL(vme_dma_free_attribute);
885
886 int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src,
887 struct vme_dma_attr *dest, size_t count)
888 {
889 struct vme_bridge *bridge = list->parent->parent;
890 int retval;
891
892 if (bridge->dma_list_add == NULL) {
893 printk(KERN_WARNING "Link List DMA generation not supported\n");
894 return -EINVAL;
895 }
896
897 if (!mutex_trylock(&list->mtx)) {
898 printk(KERN_ERR "Link List already submitted\n");
899 return -EINVAL;
900 }
901
902 retval = bridge->dma_list_add(list, src, dest, count);
903
904 mutex_unlock(&list->mtx);
905
906 return retval;
907 }
908 EXPORT_SYMBOL(vme_dma_list_add);
909
910 int vme_dma_list_exec(struct vme_dma_list *list)
911 {
912 struct vme_bridge *bridge = list->parent->parent;
913 int retval;
914
915 if (bridge->dma_list_exec == NULL) {
916 printk(KERN_ERR "Link List DMA execution not supported\n");
917 return -EINVAL;
918 }
919
920 mutex_lock(&list->mtx);
921
922 retval = bridge->dma_list_exec(list);
923
924 mutex_unlock(&list->mtx);
925
926 return retval;
927 }
928 EXPORT_SYMBOL(vme_dma_list_exec);
929
930 int vme_dma_list_free(struct vme_dma_list *list)
931 {
932 struct vme_bridge *bridge = list->parent->parent;
933 int retval;
934
935 if (bridge->dma_list_empty == NULL) {
936 printk(KERN_WARNING "Emptying of Link Lists not supported\n");
937 return -EINVAL;
938 }
939
940 if (!mutex_trylock(&list->mtx)) {
941 printk(KERN_ERR "Link List in use\n");
942 return -EINVAL;
943 }
944
945 /*
946 * Empty out all of the entries from the dma list. We need to go to the
947 * low level driver as dma entries are driver specific.
948 */
949 retval = bridge->dma_list_empty(list);
950 if (retval) {
951 printk(KERN_ERR "Unable to empty link-list entries\n");
952 mutex_unlock(&list->mtx);
953 return retval;
954 }
955 mutex_unlock(&list->mtx);
956 kfree(list);
957
958 return retval;
959 }
960 EXPORT_SYMBOL(vme_dma_list_free);
961
962 int vme_dma_free(struct vme_resource *resource)
963 {
964 struct vme_dma_resource *ctrlr;
965
966 if (resource->type != VME_DMA) {
967 printk(KERN_ERR "Not a DMA resource\n");
968 return -EINVAL;
969 }
970
971 ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
972
973 if (!mutex_trylock(&ctrlr->mtx)) {
974 printk(KERN_ERR "Resource busy, can't free\n");
975 return -EBUSY;
976 }
977
978 if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) {
979 printk(KERN_WARNING "Resource still processing transfers\n");
980 mutex_unlock(&ctrlr->mtx);
981 return -EBUSY;
982 }
983
984 ctrlr->locked = 0;
985
986 mutex_unlock(&ctrlr->mtx);
987
988 kfree(resource);
989
990 return 0;
991 }
992 EXPORT_SYMBOL(vme_dma_free);
993
994 void vme_irq_handler(struct vme_bridge *bridge, int level, int statid)
995 {
996 void (*call)(int, int, void *);
997 void *priv_data;
998
999 call = bridge->irq[level - 1].callback[statid].func;
1000 priv_data = bridge->irq[level - 1].callback[statid].priv_data;
1001
1002 if (call != NULL)
1003 call(level, statid, priv_data);
1004 else
1005 printk(KERN_WARNING "Spurilous VME interrupt, level:%x, vector:%x\n",
1006 level, statid);
1007 }
1008 EXPORT_SYMBOL(vme_irq_handler);
1009
1010 int vme_irq_request(struct vme_dev *vdev, int level, int statid,
1011 void (*callback)(int, int, void *),
1012 void *priv_data)
1013 {
1014 struct vme_bridge *bridge;
1015
1016 bridge = vdev->bridge;
1017 if (bridge == NULL) {
1018 printk(KERN_ERR "Can't find VME bus\n");
1019 return -EINVAL;
1020 }
1021
1022 if ((level < 1) || (level > 7)) {
1023 printk(KERN_ERR "Invalid interrupt level\n");
1024 return -EINVAL;
1025 }
1026
1027 if (bridge->irq_set == NULL) {
1028 printk(KERN_ERR "Configuring interrupts not supported\n");
1029 return -EINVAL;
1030 }
1031
1032 mutex_lock(&bridge->irq_mtx);
1033
1034 if (bridge->irq[level - 1].callback[statid].func) {
1035 mutex_unlock(&bridge->irq_mtx);
1036 printk(KERN_WARNING "VME Interrupt already taken\n");
1037 return -EBUSY;
1038 }
1039
1040 bridge->irq[level - 1].count++;
1041 bridge->irq[level - 1].callback[statid].priv_data = priv_data;
1042 bridge->irq[level - 1].callback[statid].func = callback;
1043
1044 /* Enable IRQ level */
1045 bridge->irq_set(bridge, level, 1, 1);
1046
1047 mutex_unlock(&bridge->irq_mtx);
1048
1049 return 0;
1050 }
1051 EXPORT_SYMBOL(vme_irq_request);
1052
1053 void vme_irq_free(struct vme_dev *vdev, int level, int statid)
1054 {
1055 struct vme_bridge *bridge;
1056
1057 bridge = vdev->bridge;
1058 if (bridge == NULL) {
1059 printk(KERN_ERR "Can't find VME bus\n");
1060 return;
1061 }
1062
1063 if ((level < 1) || (level > 7)) {
1064 printk(KERN_ERR "Invalid interrupt level\n");
1065 return;
1066 }
1067
1068 if (bridge->irq_set == NULL) {
1069 printk(KERN_ERR "Configuring interrupts not supported\n");
1070 return;
1071 }
1072
1073 mutex_lock(&bridge->irq_mtx);
1074
1075 bridge->irq[level - 1].count--;
1076
1077 /* Disable IRQ level if no more interrupts attached at this level*/
1078 if (bridge->irq[level - 1].count == 0)
1079 bridge->irq_set(bridge, level, 0, 1);
1080
1081 bridge->irq[level - 1].callback[statid].func = NULL;
1082 bridge->irq[level - 1].callback[statid].priv_data = NULL;
1083
1084 mutex_unlock(&bridge->irq_mtx);
1085 }
1086 EXPORT_SYMBOL(vme_irq_free);
1087
1088 int vme_irq_generate(struct vme_dev *vdev, int level, int statid)
1089 {
1090 struct vme_bridge *bridge;
1091
1092 bridge = vdev->bridge;
1093 if (bridge == NULL) {
1094 printk(KERN_ERR "Can't find VME bus\n");
1095 return -EINVAL;
1096 }
1097
1098 if ((level < 1) || (level > 7)) {
1099 printk(KERN_WARNING "Invalid interrupt level\n");
1100 return -EINVAL;
1101 }
1102
1103 if (bridge->irq_generate == NULL) {
1104 printk(KERN_WARNING "Interrupt generation not supported\n");
1105 return -EINVAL;
1106 }
1107
1108 return bridge->irq_generate(bridge, level, statid);
1109 }
1110 EXPORT_SYMBOL(vme_irq_generate);
1111
1112 /*
1113 * Request the location monitor, return resource or NULL
1114 */
1115 struct vme_resource *vme_lm_request(struct vme_dev *vdev)
1116 {
1117 struct vme_bridge *bridge;
1118 struct list_head *lm_pos = NULL;
1119 struct vme_lm_resource *allocated_lm = NULL;
1120 struct vme_lm_resource *lm = NULL;
1121 struct vme_resource *resource = NULL;
1122
1123 bridge = vdev->bridge;
1124 if (bridge == NULL) {
1125 printk(KERN_ERR "Can't find VME bus\n");
1126 goto err_bus;
1127 }
1128
1129 /* Loop through DMA resources */
1130 list_for_each(lm_pos, &bridge->lm_resources) {
1131 lm = list_entry(lm_pos,
1132 struct vme_lm_resource, list);
1133
1134 if (lm == NULL) {
1135 printk(KERN_ERR "Registered NULL Location Monitor resource\n");
1136 continue;
1137 }
1138
1139 /* Find an unlocked controller */
1140 mutex_lock(&lm->mtx);
1141 if (lm->locked == 0) {
1142 lm->locked = 1;
1143 mutex_unlock(&lm->mtx);
1144 allocated_lm = lm;
1145 break;
1146 }
1147 mutex_unlock(&lm->mtx);
1148 }
1149
1150 /* Check to see if we found a resource */
1151 if (allocated_lm == NULL)
1152 goto err_lm;
1153
1154 resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
1155 if (resource == NULL) {
1156 printk(KERN_ERR "Unable to allocate resource structure\n");
1157 goto err_alloc;
1158 }
1159 resource->type = VME_LM;
1160 resource->entry = &allocated_lm->list;
1161
1162 return resource;
1163
1164 err_alloc:
1165 /* Unlock image */
1166 mutex_lock(&lm->mtx);
1167 lm->locked = 0;
1168 mutex_unlock(&lm->mtx);
1169 err_lm:
1170 err_bus:
1171 return NULL;
1172 }
1173 EXPORT_SYMBOL(vme_lm_request);
1174
1175 int vme_lm_count(struct vme_resource *resource)
1176 {
1177 struct vme_lm_resource *lm;
1178
1179 if (resource->type != VME_LM) {
1180 printk(KERN_ERR "Not a Location Monitor resource\n");
1181 return -EINVAL;
1182 }
1183
1184 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1185
1186 return lm->monitors;
1187 }
1188 EXPORT_SYMBOL(vme_lm_count);
1189
1190 int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base,
1191 u32 aspace, u32 cycle)
1192 {
1193 struct vme_bridge *bridge = find_bridge(resource);
1194 struct vme_lm_resource *lm;
1195
1196 if (resource->type != VME_LM) {
1197 printk(KERN_ERR "Not a Location Monitor resource\n");
1198 return -EINVAL;
1199 }
1200
1201 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1202
1203 if (bridge->lm_set == NULL) {
1204 printk(KERN_ERR "vme_lm_set not supported\n");
1205 return -EINVAL;
1206 }
1207
1208 return bridge->lm_set(lm, lm_base, aspace, cycle);
1209 }
1210 EXPORT_SYMBOL(vme_lm_set);
1211
1212 int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base,
1213 u32 *aspace, u32 *cycle)
1214 {
1215 struct vme_bridge *bridge = find_bridge(resource);
1216 struct vme_lm_resource *lm;
1217
1218 if (resource->type != VME_LM) {
1219 printk(KERN_ERR "Not a Location Monitor resource\n");
1220 return -EINVAL;
1221 }
1222
1223 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1224
1225 if (bridge->lm_get == NULL) {
1226 printk(KERN_ERR "vme_lm_get not supported\n");
1227 return -EINVAL;
1228 }
1229
1230 return bridge->lm_get(lm, lm_base, aspace, cycle);
1231 }
1232 EXPORT_SYMBOL(vme_lm_get);
1233
1234 int vme_lm_attach(struct vme_resource *resource, int monitor,
1235 void (*callback)(int))
1236 {
1237 struct vme_bridge *bridge = find_bridge(resource);
1238 struct vme_lm_resource *lm;
1239
1240 if (resource->type != VME_LM) {
1241 printk(KERN_ERR "Not a Location Monitor resource\n");
1242 return -EINVAL;
1243 }
1244
1245 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1246
1247 if (bridge->lm_attach == NULL) {
1248 printk(KERN_ERR "vme_lm_attach not supported\n");
1249 return -EINVAL;
1250 }
1251
1252 return bridge->lm_attach(lm, monitor, callback);
1253 }
1254 EXPORT_SYMBOL(vme_lm_attach);
1255
1256 int vme_lm_detach(struct vme_resource *resource, int monitor)
1257 {
1258 struct vme_bridge *bridge = find_bridge(resource);
1259 struct vme_lm_resource *lm;
1260
1261 if (resource->type != VME_LM) {
1262 printk(KERN_ERR "Not a Location Monitor resource\n");
1263 return -EINVAL;
1264 }
1265
1266 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1267
1268 if (bridge->lm_detach == NULL) {
1269 printk(KERN_ERR "vme_lm_detach not supported\n");
1270 return -EINVAL;
1271 }
1272
1273 return bridge->lm_detach(lm, monitor);
1274 }
1275 EXPORT_SYMBOL(vme_lm_detach);
1276
1277 void vme_lm_free(struct vme_resource *resource)
1278 {
1279 struct vme_lm_resource *lm;
1280
1281 if (resource->type != VME_LM) {
1282 printk(KERN_ERR "Not a Location Monitor resource\n");
1283 return;
1284 }
1285
1286 lm = list_entry(resource->entry, struct vme_lm_resource, list);
1287
1288 mutex_lock(&lm->mtx);
1289
1290 /* XXX
1291 * Check to see that there aren't any callbacks still attached, if
1292 * there are we should probably be detaching them!
1293 */
1294
1295 lm->locked = 0;
1296
1297 mutex_unlock(&lm->mtx);
1298
1299 kfree(resource);
1300 }
1301 EXPORT_SYMBOL(vme_lm_free);
1302
1303 int vme_slot_num(struct vme_dev *vdev)
1304 {
1305 struct vme_bridge *bridge;
1306
1307 bridge = vdev->bridge;
1308 if (bridge == NULL) {
1309 printk(KERN_ERR "Can't find VME bus\n");
1310 return -EINVAL;
1311 }
1312
1313 if (bridge->slot_get == NULL) {
1314 printk(KERN_WARNING "vme_slot_num not supported\n");
1315 return -EINVAL;
1316 }
1317
1318 return bridge->slot_get(bridge);
1319 }
1320 EXPORT_SYMBOL(vme_slot_num);
1321
1322 int vme_bus_num(struct vme_dev *vdev)
1323 {
1324 struct vme_bridge *bridge;
1325
1326 bridge = vdev->bridge;
1327 if (bridge == NULL) {
1328 pr_err("Can't find VME bus\n");
1329 return -EINVAL;
1330 }
1331
1332 return bridge->num;
1333 }
1334 EXPORT_SYMBOL(vme_bus_num);
1335
1336 /* - Bridge Registration --------------------------------------------------- */
1337
1338 static void vme_dev_release(struct device *dev)
1339 {
1340 kfree(dev_to_vme_dev(dev));
1341 }
1342
1343 int vme_register_bridge(struct vme_bridge *bridge)
1344 {
1345 int i;
1346 int ret = -1;
1347
1348 mutex_lock(&vme_buses_lock);
1349 for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) {
1350 if ((vme_bus_numbers & (1 << i)) == 0) {
1351 vme_bus_numbers |= (1 << i);
1352 bridge->num = i;
1353 INIT_LIST_HEAD(&bridge->devices);
1354 list_add_tail(&bridge->bus_list, &vme_bus_list);
1355 ret = 0;
1356 break;
1357 }
1358 }
1359 mutex_unlock(&vme_buses_lock);
1360
1361 return ret;
1362 }
1363 EXPORT_SYMBOL(vme_register_bridge);
1364
1365 void vme_unregister_bridge(struct vme_bridge *bridge)
1366 {
1367 struct vme_dev *vdev;
1368 struct vme_dev *tmp;
1369
1370 mutex_lock(&vme_buses_lock);
1371 vme_bus_numbers &= ~(1 << bridge->num);
1372 list_for_each_entry_safe(vdev, tmp, &bridge->devices, bridge_list) {
1373 list_del(&vdev->drv_list);
1374 list_del(&vdev->bridge_list);
1375 device_unregister(&vdev->dev);
1376 }
1377 list_del(&bridge->bus_list);
1378 mutex_unlock(&vme_buses_lock);
1379 }
1380 EXPORT_SYMBOL(vme_unregister_bridge);
1381
1382 /* - Driver Registration --------------------------------------------------- */
1383
1384 static int __vme_register_driver_bus(struct vme_driver *drv,
1385 struct vme_bridge *bridge, unsigned int ndevs)
1386 {
1387 int err;
1388 unsigned int i;
1389 struct vme_dev *vdev;
1390 struct vme_dev *tmp;
1391
1392 for (i = 0; i < ndevs; i++) {
1393 vdev = kzalloc(sizeof(struct vme_dev), GFP_KERNEL);
1394 if (!vdev) {
1395 err = -ENOMEM;
1396 goto err_devalloc;
1397 }
1398 vdev->num = i;
1399 vdev->bridge = bridge;
1400 vdev->dev.platform_data = drv;
1401 vdev->dev.release = vme_dev_release;
1402 vdev->dev.parent = bridge->parent;
1403 vdev->dev.bus = &vme_bus_type;
1404 dev_set_name(&vdev->dev, "%s.%u-%u", drv->name, bridge->num,
1405 vdev->num);
1406
1407 err = device_register(&vdev->dev);
1408 if (err)
1409 goto err_reg;
1410
1411 if (vdev->dev.platform_data) {
1412 list_add_tail(&vdev->drv_list, &drv->devices);
1413 list_add_tail(&vdev->bridge_list, &bridge->devices);
1414 } else
1415 device_unregister(&vdev->dev);
1416 }
1417 return 0;
1418
1419 err_reg:
1420 put_device(&vdev->dev);
1421 kfree(vdev);
1422 err_devalloc:
1423 list_for_each_entry_safe(vdev, tmp, &drv->devices, drv_list) {
1424 list_del(&vdev->drv_list);
1425 list_del(&vdev->bridge_list);
1426 device_unregister(&vdev->dev);
1427 }
1428 return err;
1429 }
1430
1431 static int __vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1432 {
1433 struct vme_bridge *bridge;
1434 int err = 0;
1435
1436 mutex_lock(&vme_buses_lock);
1437 list_for_each_entry(bridge, &vme_bus_list, bus_list) {
1438 /*
1439 * This cannot cause trouble as we already have vme_buses_lock
1440 * and if the bridge is removed, it will have to go through
1441 * vme_unregister_bridge() to do it (which calls remove() on
1442 * the bridge which in turn tries to acquire vme_buses_lock and
1443 * will have to wait).
1444 */
1445 err = __vme_register_driver_bus(drv, bridge, ndevs);
1446 if (err)
1447 break;
1448 }
1449 mutex_unlock(&vme_buses_lock);
1450 return err;
1451 }
1452
1453 int vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1454 {
1455 int err;
1456
1457 drv->driver.name = drv->name;
1458 drv->driver.bus = &vme_bus_type;
1459 INIT_LIST_HEAD(&drv->devices);
1460
1461 err = driver_register(&drv->driver);
1462 if (err)
1463 return err;
1464
1465 err = __vme_register_driver(drv, ndevs);
1466 if (err)
1467 driver_unregister(&drv->driver);
1468
1469 return err;
1470 }
1471 EXPORT_SYMBOL(vme_register_driver);
1472
1473 void vme_unregister_driver(struct vme_driver *drv)
1474 {
1475 struct vme_dev *dev, *dev_tmp;
1476
1477 mutex_lock(&vme_buses_lock);
1478 list_for_each_entry_safe(dev, dev_tmp, &drv->devices, drv_list) {
1479 list_del(&dev->drv_list);
1480 list_del(&dev->bridge_list);
1481 device_unregister(&dev->dev);
1482 }
1483 mutex_unlock(&vme_buses_lock);
1484
1485 driver_unregister(&drv->driver);
1486 }
1487 EXPORT_SYMBOL(vme_unregister_driver);
1488
1489 /* - Bus Registration ------------------------------------------------------ */
1490
1491 static int vme_bus_match(struct device *dev, struct device_driver *drv)
1492 {
1493 struct vme_driver *vme_drv;
1494
1495 vme_drv = container_of(drv, struct vme_driver, driver);
1496
1497 if (dev->platform_data == vme_drv) {
1498 struct vme_dev *vdev = dev_to_vme_dev(dev);
1499
1500 if (vme_drv->match && vme_drv->match(vdev))
1501 return 1;
1502
1503 dev->platform_data = NULL;
1504 }
1505 return 0;
1506 }
1507
1508 static int vme_bus_probe(struct device *dev)
1509 {
1510 int retval = -ENODEV;
1511 struct vme_driver *driver;
1512 struct vme_dev *vdev = dev_to_vme_dev(dev);
1513
1514 driver = dev->platform_data;
1515
1516 if (driver->probe != NULL)
1517 retval = driver->probe(vdev);
1518
1519 return retval;
1520 }
1521
1522 static int vme_bus_remove(struct device *dev)
1523 {
1524 int retval = -ENODEV;
1525 struct vme_driver *driver;
1526 struct vme_dev *vdev = dev_to_vme_dev(dev);
1527
1528 driver = dev->platform_data;
1529
1530 if (driver->remove != NULL)
1531 retval = driver->remove(vdev);
1532
1533 return retval;
1534 }
1535
1536 struct bus_type vme_bus_type = {
1537 .name = "vme",
1538 .match = vme_bus_match,
1539 .probe = vme_bus_probe,
1540 .remove = vme_bus_remove,
1541 };
1542 EXPORT_SYMBOL(vme_bus_type);
1543
1544 static int __init vme_init(void)
1545 {
1546 return bus_register(&vme_bus_type);
1547 }
1548
1549 static void __exit vme_exit(void)
1550 {
1551 bus_unregister(&vme_bus_type);
1552 }
1553
1554 subsys_initcall(vme_init);
1555 module_exit(vme_exit);
This page took 0.06588 seconds and 5 git commands to generate.