W1: ds2490: Increase timeout when waiting for status
[deliverable/linux.git] / drivers / w1 / masters / ds2490.c
1 /*
2 * ds2490.c USB to one wire bridge
3 *
4 * Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/usb.h>
26 #include <linux/slab.h>
27
28 #include "../w1_int.h"
29 #include "../w1.h"
30
31 /* USB Standard */
32 /* USB Control request vendor type */
33 #define VENDOR 0x40
34
35 /* COMMAND TYPE CODES */
36 #define CONTROL_CMD 0x00
37 #define COMM_CMD 0x01
38 #define MODE_CMD 0x02
39
40 /* CONTROL COMMAND CODES */
41 #define CTL_RESET_DEVICE 0x0000
42 #define CTL_START_EXE 0x0001
43 #define CTL_RESUME_EXE 0x0002
44 #define CTL_HALT_EXE_IDLE 0x0003
45 #define CTL_HALT_EXE_DONE 0x0004
46 #define CTL_FLUSH_COMM_CMDS 0x0007
47 #define CTL_FLUSH_RCV_BUFFER 0x0008
48 #define CTL_FLUSH_XMT_BUFFER 0x0009
49 #define CTL_GET_COMM_CMDS 0x000A
50
51 /* MODE COMMAND CODES */
52 #define MOD_PULSE_EN 0x0000
53 #define MOD_SPEED_CHANGE_EN 0x0001
54 #define MOD_1WIRE_SPEED 0x0002
55 #define MOD_STRONG_PU_DURATION 0x0003
56 #define MOD_PULLDOWN_SLEWRATE 0x0004
57 #define MOD_PROG_PULSE_DURATION 0x0005
58 #define MOD_WRITE1_LOWTIME 0x0006
59 #define MOD_DSOW0_TREC 0x0007
60
61 /* COMMUNICATION COMMAND CODES */
62 #define COMM_ERROR_ESCAPE 0x0601
63 #define COMM_SET_DURATION 0x0012
64 #define COMM_BIT_IO 0x0020
65 #define COMM_PULSE 0x0030
66 #define COMM_1_WIRE_RESET 0x0042
67 #define COMM_BYTE_IO 0x0052
68 #define COMM_MATCH_ACCESS 0x0064
69 #define COMM_BLOCK_IO 0x0074
70 #define COMM_READ_STRAIGHT 0x0080
71 #define COMM_DO_RELEASE 0x6092
72 #define COMM_SET_PATH 0x00A2
73 #define COMM_WRITE_SRAM_PAGE 0x00B2
74 #define COMM_WRITE_EPROM 0x00C4
75 #define COMM_READ_CRC_PROT_PAGE 0x00D4
76 #define COMM_READ_REDIRECT_PAGE_CRC 0x21E4
77 #define COMM_SEARCH_ACCESS 0x00F4
78
79 /* Communication command bits */
80 #define COMM_TYPE 0x0008
81 #define COMM_SE 0x0008
82 #define COMM_D 0x0008
83 #define COMM_Z 0x0008
84 #define COMM_CH 0x0008
85 #define COMM_SM 0x0008
86 #define COMM_R 0x0008
87 #define COMM_IM 0x0001
88
89 #define COMM_PS 0x4000
90 #define COMM_PST 0x4000
91 #define COMM_CIB 0x4000
92 #define COMM_RTS 0x4000
93 #define COMM_DT 0x2000
94 #define COMM_SPU 0x1000
95 #define COMM_F 0x0800
96 #define COMM_NTF 0x0400
97 #define COMM_ICP 0x0200
98 #define COMM_RST 0x0100
99
100 #define PULSE_PROG 0x01
101 #define PULSE_SPUE 0x02
102
103 #define BRANCH_MAIN 0xCC
104 #define BRANCH_AUX 0x33
105
106 /* Status flags */
107 #define ST_SPUA 0x01 /* Strong Pull-up is active */
108 #define ST_PRGA 0x02 /* 12V programming pulse is being generated */
109 #define ST_12VP 0x04 /* external 12V programming voltage is present */
110 #define ST_PMOD 0x08 /* DS2490 powered from USB and external sources */
111 #define ST_HALT 0x10 /* DS2490 is currently halted */
112 #define ST_IDLE 0x20 /* DS2490 is currently idle */
113 #define ST_EPOF 0x80
114 /* Status transfer size, 16 bytes status, 16 byte result flags */
115 #define ST_SIZE 0x20
116
117 /* Result Register flags */
118 #define RR_DETECT 0xA5 /* New device detected */
119 #define RR_NRS 0x01 /* Reset no presence or ... */
120 #define RR_SH 0x02 /* short on reset or set path */
121 #define RR_APP 0x04 /* alarming presence on reset */
122 #define RR_VPP 0x08 /* 12V expected not seen */
123 #define RR_CMP 0x10 /* compare error */
124 #define RR_CRC 0x20 /* CRC error detected */
125 #define RR_RDP 0x40 /* redirected page */
126 #define RR_EOS 0x80 /* end of search error */
127
128 #define SPEED_NORMAL 0x00
129 #define SPEED_FLEXIBLE 0x01
130 #define SPEED_OVERDRIVE 0x02
131
132 #define NUM_EP 4
133 #define EP_CONTROL 0
134 #define EP_STATUS 1
135 #define EP_DATA_OUT 2
136 #define EP_DATA_IN 3
137
138 struct ds_device
139 {
140 struct list_head ds_entry;
141
142 struct usb_device *udev;
143 struct usb_interface *intf;
144
145 int ep[NUM_EP];
146
147 /* Strong PullUp
148 * 0: pullup not active, else duration in milliseconds
149 */
150 int spu_sleep;
151 /* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
152 * should be active or not for writes.
153 */
154 u16 spu_bit;
155
156 struct w1_bus_master master;
157 };
158
159 struct ds_status
160 {
161 u8 enable;
162 u8 speed;
163 u8 pullup_dur;
164 u8 ppuls_dur;
165 u8 pulldown_slew;
166 u8 write1_time;
167 u8 write0_time;
168 u8 reserved0;
169 u8 status;
170 u8 command0;
171 u8 command1;
172 u8 command_buffer_status;
173 u8 data_out_buffer_status;
174 u8 data_in_buffer_status;
175 u8 reserved1;
176 u8 reserved2;
177
178 };
179
180 static struct usb_device_id ds_id_table [] = {
181 { USB_DEVICE(0x04fa, 0x2490) },
182 { },
183 };
184 MODULE_DEVICE_TABLE(usb, ds_id_table);
185
186 static int ds_probe(struct usb_interface *, const struct usb_device_id *);
187 static void ds_disconnect(struct usb_interface *);
188
189 static int ds_send_control(struct ds_device *, u16, u16);
190 static int ds_send_control_cmd(struct ds_device *, u16, u16);
191
192 static LIST_HEAD(ds_devices);
193 static DEFINE_MUTEX(ds_mutex);
194
195 static struct usb_driver ds_driver = {
196 .name = "DS9490R",
197 .probe = ds_probe,
198 .disconnect = ds_disconnect,
199 .id_table = ds_id_table,
200 };
201
202 static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
203 {
204 int err;
205
206 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
207 CONTROL_CMD, VENDOR, value, index, NULL, 0, 1000);
208 if (err < 0) {
209 pr_err("Failed to send command control message %x.%x: err=%d.\n",
210 value, index, err);
211 return err;
212 }
213
214 return err;
215 }
216
217 static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
218 {
219 int err;
220
221 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
222 MODE_CMD, VENDOR, value, index, NULL, 0, 1000);
223 if (err < 0) {
224 pr_err("Failed to send mode control message %x.%x: err=%d.\n",
225 value, index, err);
226 return err;
227 }
228
229 return err;
230 }
231
232 static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
233 {
234 int err;
235
236 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
237 COMM_CMD, VENDOR, value, index, NULL, 0, 1000);
238 if (err < 0) {
239 pr_err("Failed to send control message %x.%x: err=%d.\n",
240 value, index, err);
241 return err;
242 }
243
244 return err;
245 }
246
247 static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
248 unsigned char *buf, int size)
249 {
250 int count, err;
251
252 memset(st, 0, sizeof(*st));
253
254 count = 0;
255 err = usb_interrupt_msg(dev->udev, usb_rcvintpipe(dev->udev,
256 dev->ep[EP_STATUS]), buf, size, &count, 1000);
257 if (err < 0) {
258 pr_err("Failed to read 1-wire data from 0x%x: err=%d.\n",
259 dev->ep[EP_STATUS], err);
260 return err;
261 }
262
263 if (count >= sizeof(*st))
264 memcpy(st, buf, sizeof(*st));
265
266 return count;
267 }
268
269 static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
270 {
271 pr_info("%45s: %8x\n", str, buf[off]);
272 }
273
274 static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
275 {
276 int i;
277
278 pr_info("0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
279 for (i=0; i<count; ++i)
280 pr_info("%02x ", buf[i]);
281 pr_info("\n");
282
283 if (count >= 16) {
284 ds_print_msg(buf, "enable flag", 0);
285 ds_print_msg(buf, "1-wire speed", 1);
286 ds_print_msg(buf, "strong pullup duration", 2);
287 ds_print_msg(buf, "programming pulse duration", 3);
288 ds_print_msg(buf, "pulldown slew rate control", 4);
289 ds_print_msg(buf, "write-1 low time", 5);
290 ds_print_msg(buf, "data sample offset/write-0 recovery time",
291 6);
292 ds_print_msg(buf, "reserved (test register)", 7);
293 ds_print_msg(buf, "device status flags", 8);
294 ds_print_msg(buf, "communication command byte 1", 9);
295 ds_print_msg(buf, "communication command byte 2", 10);
296 ds_print_msg(buf, "communication command buffer status", 11);
297 ds_print_msg(buf, "1-wire data output buffer status", 12);
298 ds_print_msg(buf, "1-wire data input buffer status", 13);
299 ds_print_msg(buf, "reserved", 14);
300 ds_print_msg(buf, "reserved", 15);
301 }
302 for (i = 16; i < count; ++i) {
303 if (buf[i] == RR_DETECT) {
304 ds_print_msg(buf, "new device detect", i);
305 continue;
306 }
307 ds_print_msg(buf, "Result Register Value: ", i);
308 if (buf[i] & RR_NRS)
309 pr_info("NRS: Reset no presence or ...\n");
310 if (buf[i] & RR_SH)
311 pr_info("SH: short on reset or set path\n");
312 if (buf[i] & RR_APP)
313 pr_info("APP: alarming presence on reset\n");
314 if (buf[i] & RR_VPP)
315 pr_info("VPP: 12V expected not seen\n");
316 if (buf[i] & RR_CMP)
317 pr_info("CMP: compare error\n");
318 if (buf[i] & RR_CRC)
319 pr_info("CRC: CRC error detected\n");
320 if (buf[i] & RR_RDP)
321 pr_info("RDP: redirected page\n");
322 if (buf[i] & RR_EOS)
323 pr_info("EOS: end of search error\n");
324 }
325 }
326
327 static void ds_reset_device(struct ds_device *dev)
328 {
329 ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
330 /* Always allow strong pullup which allow individual writes to use
331 * the strong pullup.
332 */
333 if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
334 pr_err("ds_reset_device: Error allowing strong pullup\n");
335 /* Chip strong pullup time was cleared. */
336 if (dev->spu_sleep) {
337 /* lower 4 bits are 0, see ds_set_pullup */
338 u8 del = dev->spu_sleep>>4;
339 if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
340 pr_err("ds_reset_device: Error setting duration\n");
341 }
342 }
343
344 static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
345 {
346 int count, err;
347 struct ds_status st;
348
349 /* Careful on size. If size is less than what is available in
350 * the input buffer, the device fails the bulk transfer and
351 * clears the input buffer. It could read the maximum size of
352 * the data buffer, but then do you return the first, last, or
353 * some set of the middle size bytes? As long as the rest of
354 * the code is correct there will be size bytes waiting. A
355 * call to ds_wait_status will wait until the device is idle
356 * and any data to be received would have been available.
357 */
358 count = 0;
359 err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
360 buf, size, &count, 1000);
361 if (err < 0) {
362 u8 buf[ST_SIZE];
363 int count;
364
365 pr_info("Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
366 usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
367
368 count = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
369 ds_dump_status(dev, buf, count);
370 return err;
371 }
372
373 #if 0
374 {
375 int i;
376
377 printk("%s: count=%d: ", __func__, count);
378 for (i=0; i<count; ++i)
379 printk("%02x ", buf[i]);
380 printk("\n");
381 }
382 #endif
383 return count;
384 }
385
386 static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
387 {
388 int count, err;
389
390 count = 0;
391 err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
392 if (err < 0) {
393 pr_err("Failed to write 1-wire data to ep0x%x: "
394 "err=%d.\n", dev->ep[EP_DATA_OUT], err);
395 return err;
396 }
397
398 return err;
399 }
400
401 #if 0
402
403 int ds_stop_pulse(struct ds_device *dev, int limit)
404 {
405 struct ds_status st;
406 int count = 0, err = 0;
407 u8 buf[ST_SIZE];
408
409 do {
410 err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
411 if (err)
412 break;
413 err = ds_send_control(dev, CTL_RESUME_EXE, 0);
414 if (err)
415 break;
416 err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
417 if (err)
418 break;
419
420 if ((st.status & ST_SPUA) == 0) {
421 err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
422 if (err)
423 break;
424 }
425 } while(++count < limit);
426
427 return err;
428 }
429
430 int ds_detect(struct ds_device *dev, struct ds_status *st)
431 {
432 int err;
433
434 err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
435 if (err)
436 return err;
437
438 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
439 if (err)
440 return err;
441
442 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
443 if (err)
444 return err;
445
446 err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
447 if (err)
448 return err;
449
450 err = ds_dump_status(dev, st);
451
452 return err;
453 }
454
455 #endif /* 0 */
456
457 static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
458 {
459 u8 buf[ST_SIZE];
460 int err, count = 0;
461
462 do {
463 st->status = 0;
464 err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
465 #if 0
466 if (err >= 0) {
467 int i;
468 printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
469 for (i=0; i<err; ++i)
470 printk("%02x ", buf[i]);
471 printk("\n");
472 }
473 #endif
474 } while (!(st->status & ST_IDLE) && !(err < 0) && ++count < 100);
475
476 if (err >= 16 && st->status & ST_EPOF) {
477 pr_info("Resetting device after ST_EPOF.\n");
478 ds_reset_device(dev);
479 /* Always dump the device status. */
480 count = 101;
481 }
482
483 /* Dump the status for errors or if there is extended return data.
484 * The extended status includes new device detection (maybe someone
485 * can do something with it).
486 */
487 if (err > 16 || count >= 100 || err < 0)
488 ds_dump_status(dev, buf, err);
489
490 /* Extended data isn't an error. Well, a short is, but the dump
491 * would have already told the user that and we can't do anything
492 * about it in software anyway.
493 */
494 if (count >= 100 || err < 0)
495 return -1;
496 else
497 return 0;
498 }
499
500 static int ds_reset(struct ds_device *dev)
501 {
502 int err;
503
504 /* Other potentionally interesting flags for reset.
505 *
506 * COMM_NTF: Return result register feedback. This could be used to
507 * detect some conditions such as short, alarming presence, or
508 * detect if a new device was detected.
509 *
510 * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
511 * Select the data transfer rate.
512 */
513 err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
514 if (err)
515 return err;
516
517 return 0;
518 }
519
520 #if 0
521 static int ds_set_speed(struct ds_device *dev, int speed)
522 {
523 int err;
524
525 if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
526 return -EINVAL;
527
528 if (speed != SPEED_OVERDRIVE)
529 speed = SPEED_FLEXIBLE;
530
531 speed &= 0xff;
532
533 err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
534 if (err)
535 return err;
536
537 return err;
538 }
539 #endif /* 0 */
540
541 static int ds_set_pullup(struct ds_device *dev, int delay)
542 {
543 int err = 0;
544 u8 del = 1 + (u8)(delay >> 4);
545 /* Just storing delay would not get the trunication and roundup. */
546 int ms = del<<4;
547
548 /* Enable spu_bit if a delay is set. */
549 dev->spu_bit = delay ? COMM_SPU : 0;
550 /* If delay is zero, it has already been disabled, if the time is
551 * the same as the hardware was last programmed to, there is also
552 * nothing more to do. Compare with the recalculated value ms
553 * rather than del or delay which can have a different value.
554 */
555 if (delay == 0 || ms == dev->spu_sleep)
556 return err;
557
558 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
559 if (err)
560 return err;
561
562 dev->spu_sleep = ms;
563
564 return err;
565 }
566
567 static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
568 {
569 int err;
570 struct ds_status st;
571
572 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
573 0);
574 if (err)
575 return err;
576
577 ds_wait_status(dev, &st);
578
579 err = ds_recv_data(dev, tbit, sizeof(*tbit));
580 if (err < 0)
581 return err;
582
583 return 0;
584 }
585
586 #if 0
587 static int ds_write_bit(struct ds_device *dev, u8 bit)
588 {
589 int err;
590 struct ds_status st;
591
592 /* Set COMM_ICP to write without a readback. Note, this will
593 * produce one time slot, a down followed by an up with COMM_D
594 * only determing the timing.
595 */
596 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
597 (bit ? COMM_D : 0), 0);
598 if (err)
599 return err;
600
601 ds_wait_status(dev, &st);
602
603 return 0;
604 }
605 #endif
606
607 static int ds_write_byte(struct ds_device *dev, u8 byte)
608 {
609 int err;
610 struct ds_status st;
611 u8 rbyte;
612
613 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
614 if (err)
615 return err;
616
617 if (dev->spu_bit)
618 msleep(dev->spu_sleep);
619
620 err = ds_wait_status(dev, &st);
621 if (err)
622 return err;
623
624 err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
625 if (err < 0)
626 return err;
627
628 return !(byte == rbyte);
629 }
630
631 static int ds_read_byte(struct ds_device *dev, u8 *byte)
632 {
633 int err;
634 struct ds_status st;
635
636 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
637 if (err)
638 return err;
639
640 ds_wait_status(dev, &st);
641
642 err = ds_recv_data(dev, byte, sizeof(*byte));
643 if (err < 0)
644 return err;
645
646 return 0;
647 }
648
649 static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
650 {
651 struct ds_status st;
652 int err;
653
654 if (len > 64*1024)
655 return -E2BIG;
656
657 memset(buf, 0xFF, len);
658
659 err = ds_send_data(dev, buf, len);
660 if (err < 0)
661 return err;
662
663 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
664 if (err)
665 return err;
666
667 ds_wait_status(dev, &st);
668
669 memset(buf, 0x00, len);
670 err = ds_recv_data(dev, buf, len);
671
672 return err;
673 }
674
675 static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
676 {
677 int err;
678 struct ds_status st;
679
680 err = ds_send_data(dev, buf, len);
681 if (err < 0)
682 return err;
683
684 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
685 if (err)
686 return err;
687
688 if (dev->spu_bit)
689 msleep(dev->spu_sleep);
690
691 ds_wait_status(dev, &st);
692
693 err = ds_recv_data(dev, buf, len);
694 if (err < 0)
695 return err;
696
697 return !(err == len);
698 }
699
700 static void ds9490r_search(void *data, struct w1_master *master,
701 u8 search_type, w1_slave_found_callback callback)
702 {
703 /* When starting with an existing id, the first id returned will
704 * be that device (if it is still on the bus most likely).
705 *
706 * If the number of devices found is less than or equal to the
707 * search_limit, that number of IDs will be returned. If there are
708 * more, search_limit IDs will be returned followed by a non-zero
709 * discrepency value.
710 */
711 struct ds_device *dev = data;
712 int err;
713 u16 value, index;
714 struct ds_status st;
715 u8 st_buf[ST_SIZE];
716 int search_limit;
717 int found = 0;
718 int i;
719
720 /* DS18b20 spec, 13.16 ms per device, 75 per second, sleep for
721 * discovering 8 devices (1 bulk transfer and 1/2 FIFO size) at a time.
722 */
723 const unsigned long jtime = msecs_to_jiffies(1000*8/75);
724 /* FIFO 128 bytes, bulk packet size 64, read a multiple of the
725 * packet size.
726 */
727 u64 buf[2*64/8];
728
729 mutex_lock(&master->bus_mutex);
730
731 /* address to start searching at */
732 if (ds_send_data(dev, (u8 *)&master->search_id, 8) < 0)
733 goto search_out;
734 master->search_id = 0;
735
736 value = COMM_SEARCH_ACCESS | COMM_IM | COMM_RST | COMM_SM | COMM_F |
737 COMM_RTS;
738 search_limit = master->max_slave_count;
739 if (search_limit > 255)
740 search_limit = 0;
741 index = search_type | (search_limit << 8);
742 if (ds_send_control(dev, value, index) < 0)
743 goto search_out;
744
745 do {
746 schedule_timeout(jtime);
747
748 if (ds_recv_status_nodump(dev, &st, st_buf, sizeof(st_buf)) <
749 sizeof(st)) {
750 break;
751 }
752
753 if (st.data_in_buffer_status) {
754 /* Bulk in can receive partial ids, but when it does
755 * they fail crc and will be discarded anyway.
756 * That has only been seen when status in buffer
757 * is 0 and bulk is read anyway, so don't read
758 * bulk without first checking if status says there
759 * is data to read.
760 */
761 err = ds_recv_data(dev, (u8 *)buf, sizeof(buf));
762 if (err < 0)
763 break;
764 for (i = 0; i < err/8; ++i) {
765 ++found;
766 if (found <= search_limit)
767 callback(master, buf[i]);
768 /* can't know if there will be a discrepancy
769 * value after until the next id */
770 if (found == search_limit)
771 master->search_id = buf[i];
772 }
773 }
774
775 if (test_bit(W1_ABORT_SEARCH, &master->flags))
776 break;
777 } while (!(st.status & (ST_IDLE | ST_HALT)));
778
779 /* only continue the search if some weren't found */
780 if (found <= search_limit) {
781 master->search_id = 0;
782 } else if (!test_bit(W1_WARN_MAX_COUNT, &master->flags)) {
783 /* Only max_slave_count will be scanned in a search,
784 * but it will start where it left off next search
785 * until all ids are identified and then it will start
786 * over. A continued search will report the previous
787 * last id as the first id (provided it is still on the
788 * bus).
789 */
790 dev_info(&dev->udev->dev, "%s: max_slave_count %d reached, "
791 "will continue next search.\n", __func__,
792 master->max_slave_count);
793 set_bit(W1_WARN_MAX_COUNT, &master->flags);
794 }
795 search_out:
796 mutex_unlock(&master->bus_mutex);
797 }
798
799 #if 0
800 static int ds_match_access(struct ds_device *dev, u64 init)
801 {
802 int err;
803 struct ds_status st;
804
805 err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
806 if (err)
807 return err;
808
809 ds_wait_status(dev, &st);
810
811 err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
812 if (err)
813 return err;
814
815 ds_wait_status(dev, &st);
816
817 return 0;
818 }
819
820 static int ds_set_path(struct ds_device *dev, u64 init)
821 {
822 int err;
823 struct ds_status st;
824 u8 buf[9];
825
826 memcpy(buf, &init, 8);
827 buf[8] = BRANCH_MAIN;
828
829 err = ds_send_data(dev, buf, sizeof(buf));
830 if (err)
831 return err;
832
833 ds_wait_status(dev, &st);
834
835 err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
836 if (err)
837 return err;
838
839 ds_wait_status(dev, &st);
840
841 return 0;
842 }
843
844 #endif /* 0 */
845
846 static u8 ds9490r_touch_bit(void *data, u8 bit)
847 {
848 u8 ret;
849 struct ds_device *dev = data;
850
851 if (ds_touch_bit(dev, bit, &ret))
852 return 0;
853
854 return ret;
855 }
856
857 #if 0
858 static void ds9490r_write_bit(void *data, u8 bit)
859 {
860 struct ds_device *dev = data;
861
862 ds_write_bit(dev, bit);
863 }
864
865 static u8 ds9490r_read_bit(void *data)
866 {
867 struct ds_device *dev = data;
868 int err;
869 u8 bit = 0;
870
871 err = ds_touch_bit(dev, 1, &bit);
872 if (err)
873 return 0;
874
875 return bit & 1;
876 }
877 #endif
878
879 static void ds9490r_write_byte(void *data, u8 byte)
880 {
881 struct ds_device *dev = data;
882
883 ds_write_byte(dev, byte);
884 }
885
886 static u8 ds9490r_read_byte(void *data)
887 {
888 struct ds_device *dev = data;
889 int err;
890 u8 byte = 0;
891
892 err = ds_read_byte(dev, &byte);
893 if (err)
894 return 0;
895
896 return byte;
897 }
898
899 static void ds9490r_write_block(void *data, const u8 *buf, int len)
900 {
901 struct ds_device *dev = data;
902
903 ds_write_block(dev, (u8 *)buf, len);
904 }
905
906 static u8 ds9490r_read_block(void *data, u8 *buf, int len)
907 {
908 struct ds_device *dev = data;
909 int err;
910
911 err = ds_read_block(dev, buf, len);
912 if (err < 0)
913 return 0;
914
915 return len;
916 }
917
918 static u8 ds9490r_reset(void *data)
919 {
920 struct ds_device *dev = data;
921 int err;
922
923 err = ds_reset(dev);
924 if (err)
925 return 1;
926
927 return 0;
928 }
929
930 static u8 ds9490r_set_pullup(void *data, int delay)
931 {
932 struct ds_device *dev = data;
933
934 if (ds_set_pullup(dev, delay))
935 return 1;
936
937 return 0;
938 }
939
940 static int ds_w1_init(struct ds_device *dev)
941 {
942 memset(&dev->master, 0, sizeof(struct w1_bus_master));
943
944 /* Reset the device as it can be in a bad state.
945 * This is necessary because a block write will wait for data
946 * to be placed in the output buffer and block any later
947 * commands which will keep accumulating and the device will
948 * not be idle. Another case is removing the ds2490 module
949 * while a bus search is in progress, somehow a few commands
950 * get through, but the input transfers fail leaving data in
951 * the input buffer. This will cause the next read to fail
952 * see the note in ds_recv_data.
953 */
954 ds_reset_device(dev);
955
956 dev->master.data = dev;
957 dev->master.touch_bit = &ds9490r_touch_bit;
958 /* read_bit and write_bit in w1_bus_master are expected to set and
959 * sample the line level. For write_bit that means it is expected to
960 * set it to that value and leave it there. ds2490 only supports an
961 * individual time slot at the lowest level. The requirement from
962 * pulling the bus state down to reading the state is 15us, something
963 * that isn't realistic on the USB bus anyway.
964 dev->master.read_bit = &ds9490r_read_bit;
965 dev->master.write_bit = &ds9490r_write_bit;
966 */
967 dev->master.read_byte = &ds9490r_read_byte;
968 dev->master.write_byte = &ds9490r_write_byte;
969 dev->master.read_block = &ds9490r_read_block;
970 dev->master.write_block = &ds9490r_write_block;
971 dev->master.reset_bus = &ds9490r_reset;
972 dev->master.set_pullup = &ds9490r_set_pullup;
973 dev->master.search = &ds9490r_search;
974
975 return w1_add_master_device(&dev->master);
976 }
977
978 static void ds_w1_fini(struct ds_device *dev)
979 {
980 w1_remove_master_device(&dev->master);
981 }
982
983 static int ds_probe(struct usb_interface *intf,
984 const struct usb_device_id *udev_id)
985 {
986 struct usb_device *udev = interface_to_usbdev(intf);
987 struct usb_endpoint_descriptor *endpoint;
988 struct usb_host_interface *iface_desc;
989 struct ds_device *dev;
990 int i, err, alt;
991
992 dev = kzalloc(sizeof(struct ds_device), GFP_KERNEL);
993 if (!dev) {
994 pr_info("Failed to allocate new DS9490R structure.\n");
995 return -ENOMEM;
996 }
997 dev->udev = usb_get_dev(udev);
998 if (!dev->udev) {
999 err = -ENOMEM;
1000 goto err_out_free;
1001 }
1002 memset(dev->ep, 0, sizeof(dev->ep));
1003
1004 usb_set_intfdata(intf, dev);
1005
1006 err = usb_reset_configuration(dev->udev);
1007 if (err) {
1008 dev_err(&dev->udev->dev,
1009 "Failed to reset configuration: err=%d.\n", err);
1010 goto err_out_clear;
1011 }
1012
1013 /* alternative 3, 1ms interrupt (greatly speeds search), 64 byte bulk */
1014 alt = 3;
1015 err = usb_set_interface(dev->udev,
1016 intf->altsetting[alt].desc.bInterfaceNumber, alt);
1017 if (err) {
1018 dev_err(&dev->udev->dev, "Failed to set alternative setting %d "
1019 "for %d interface: err=%d.\n", alt,
1020 intf->altsetting[alt].desc.bInterfaceNumber, err);
1021 goto err_out_clear;
1022 }
1023
1024 iface_desc = &intf->altsetting[alt];
1025 if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
1026 pr_info("Num endpoints=%d. It is not DS9490R.\n",
1027 iface_desc->desc.bNumEndpoints);
1028 err = -EINVAL;
1029 goto err_out_clear;
1030 }
1031
1032 /*
1033 * This loop doesn'd show control 0 endpoint,
1034 * so we will fill only 1-3 endpoints entry.
1035 */
1036 for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
1037 endpoint = &iface_desc->endpoint[i].desc;
1038
1039 dev->ep[i+1] = endpoint->bEndpointAddress;
1040 #if 0
1041 printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
1042 i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
1043 (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
1044 endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
1045 #endif
1046 }
1047
1048 err = ds_w1_init(dev);
1049 if (err)
1050 goto err_out_clear;
1051
1052 mutex_lock(&ds_mutex);
1053 list_add_tail(&dev->ds_entry, &ds_devices);
1054 mutex_unlock(&ds_mutex);
1055
1056 return 0;
1057
1058 err_out_clear:
1059 usb_set_intfdata(intf, NULL);
1060 usb_put_dev(dev->udev);
1061 err_out_free:
1062 kfree(dev);
1063 return err;
1064 }
1065
1066 static void ds_disconnect(struct usb_interface *intf)
1067 {
1068 struct ds_device *dev;
1069
1070 dev = usb_get_intfdata(intf);
1071 if (!dev)
1072 return;
1073
1074 mutex_lock(&ds_mutex);
1075 list_del(&dev->ds_entry);
1076 mutex_unlock(&ds_mutex);
1077
1078 ds_w1_fini(dev);
1079
1080 usb_set_intfdata(intf, NULL);
1081
1082 usb_put_dev(dev->udev);
1083 kfree(dev);
1084 }
1085
1086 module_usb_driver(ds_driver);
1087
1088 MODULE_LICENSE("GPL");
1089 MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>");
1090 MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");
This page took 0.065248 seconds and 5 git commands to generate.