W1: ds2490.c magic number work
[deliverable/linux.git] / drivers / w1 / masters / ds2490.c
1 /*
2 * dscore.c
3 *
4 * Copyright (c) 2004 Evgeniy Polyakov <johnpol@2ka.mipt.ru>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/usb.h>
26
27 #include "../w1_int.h"
28 #include "../w1.h"
29
30 /* COMMAND TYPE CODES */
31 #define CONTROL_CMD 0x00
32 #define COMM_CMD 0x01
33 #define MODE_CMD 0x02
34
35 /* CONTROL COMMAND CODES */
36 #define CTL_RESET_DEVICE 0x0000
37 #define CTL_START_EXE 0x0001
38 #define CTL_RESUME_EXE 0x0002
39 #define CTL_HALT_EXE_IDLE 0x0003
40 #define CTL_HALT_EXE_DONE 0x0004
41 #define CTL_FLUSH_COMM_CMDS 0x0007
42 #define CTL_FLUSH_RCV_BUFFER 0x0008
43 #define CTL_FLUSH_XMT_BUFFER 0x0009
44 #define CTL_GET_COMM_CMDS 0x000A
45
46 /* MODE COMMAND CODES */
47 #define MOD_PULSE_EN 0x0000
48 #define MOD_SPEED_CHANGE_EN 0x0001
49 #define MOD_1WIRE_SPEED 0x0002
50 #define MOD_STRONG_PU_DURATION 0x0003
51 #define MOD_PULLDOWN_SLEWRATE 0x0004
52 #define MOD_PROG_PULSE_DURATION 0x0005
53 #define MOD_WRITE1_LOWTIME 0x0006
54 #define MOD_DSOW0_TREC 0x0007
55
56 /* COMMUNICATION COMMAND CODES */
57 #define COMM_ERROR_ESCAPE 0x0601
58 #define COMM_SET_DURATION 0x0012
59 #define COMM_BIT_IO 0x0020
60 #define COMM_PULSE 0x0030
61 #define COMM_1_WIRE_RESET 0x0042
62 #define COMM_BYTE_IO 0x0052
63 #define COMM_MATCH_ACCESS 0x0064
64 #define COMM_BLOCK_IO 0x0074
65 #define COMM_READ_STRAIGHT 0x0080
66 #define COMM_DO_RELEASE 0x6092
67 #define COMM_SET_PATH 0x00A2
68 #define COMM_WRITE_SRAM_PAGE 0x00B2
69 #define COMM_WRITE_EPROM 0x00C4
70 #define COMM_READ_CRC_PROT_PAGE 0x00D4
71 #define COMM_READ_REDIRECT_PAGE_CRC 0x21E4
72 #define COMM_SEARCH_ACCESS 0x00F4
73
74 /* Communication command bits */
75 #define COMM_TYPE 0x0008
76 #define COMM_SE 0x0008
77 #define COMM_D 0x0008
78 #define COMM_Z 0x0008
79 #define COMM_CH 0x0008
80 #define COMM_SM 0x0008
81 #define COMM_R 0x0008
82 #define COMM_IM 0x0001
83
84 #define COMM_PS 0x4000
85 #define COMM_PST 0x4000
86 #define COMM_CIB 0x4000
87 #define COMM_RTS 0x4000
88 #define COMM_DT 0x2000
89 #define COMM_SPU 0x1000
90 #define COMM_F 0x0800
91 #define COMM_NTF 0x0400
92 #define COMM_ICP 0x0200
93 #define COMM_RST 0x0100
94
95 #define PULSE_PROG 0x01
96 #define PULSE_SPUE 0x02
97
98 #define BRANCH_MAIN 0xCC
99 #define BRANCH_AUX 0x33
100
101 /* Status flags */
102 #define ST_SPUA 0x01 /* Strong Pull-up is active */
103 #define ST_PRGA 0x02 /* 12V programming pulse is being generated */
104 #define ST_12VP 0x04 /* external 12V programming voltage is present */
105 #define ST_PMOD 0x08 /* DS2490 powered from USB and external sources */
106 #define ST_HALT 0x10 /* DS2490 is currently halted */
107 #define ST_IDLE 0x20 /* DS2490 is currently idle */
108 #define ST_EPOF 0x80
109
110 /* Result Register flags */
111 #define RR_DETECT 0xA5 /* New device detected */
112 #define RR_NRS 0x01 /* Reset no presence or ... */
113 #define RR_SH 0x02 /* short on reset or set path */
114 #define RR_APP 0x04 /* alarming presence on reset */
115 #define RR_VPP 0x08 /* 12V expected not seen */
116 #define RR_CMP 0x10 /* compare error */
117 #define RR_CRC 0x20 /* CRC error detected */
118 #define RR_RDP 0x40 /* redirected page */
119 #define RR_EOS 0x80 /* end of search error */
120
121 #define SPEED_NORMAL 0x00
122 #define SPEED_FLEXIBLE 0x01
123 #define SPEED_OVERDRIVE 0x02
124
125 #define NUM_EP 4
126 #define EP_CONTROL 0
127 #define EP_STATUS 1
128 #define EP_DATA_OUT 2
129 #define EP_DATA_IN 3
130
131 struct ds_device
132 {
133 struct list_head ds_entry;
134
135 struct usb_device *udev;
136 struct usb_interface *intf;
137
138 int ep[NUM_EP];
139
140 /* Strong PullUp
141 * 0: pullup not active, else duration in milliseconds
142 */
143 int spu_sleep;
144
145 struct w1_bus_master master;
146 };
147
148 struct ds_status
149 {
150 u8 enable;
151 u8 speed;
152 u8 pullup_dur;
153 u8 ppuls_dur;
154 u8 pulldown_slew;
155 u8 write1_time;
156 u8 write0_time;
157 u8 reserved0;
158 u8 status;
159 u8 command0;
160 u8 command1;
161 u8 command_buffer_status;
162 u8 data_out_buffer_status;
163 u8 data_in_buffer_status;
164 u8 reserved1;
165 u8 reserved2;
166
167 };
168
169 static struct usb_device_id ds_id_table [] = {
170 { USB_DEVICE(0x04fa, 0x2490) },
171 { },
172 };
173 MODULE_DEVICE_TABLE(usb, ds_id_table);
174
175 static int ds_probe(struct usb_interface *, const struct usb_device_id *);
176 static void ds_disconnect(struct usb_interface *);
177
178 static int ds_send_control(struct ds_device *, u16, u16);
179 static int ds_send_control_cmd(struct ds_device *, u16, u16);
180
181 static LIST_HEAD(ds_devices);
182 static DEFINE_MUTEX(ds_mutex);
183
184 static struct usb_driver ds_driver = {
185 .name = "DS9490R",
186 .probe = ds_probe,
187 .disconnect = ds_disconnect,
188 .id_table = ds_id_table,
189 };
190
191 static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
192 {
193 int err;
194
195 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
196 CONTROL_CMD, 0x40, value, index, NULL, 0, 1000);
197 if (err < 0) {
198 printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n",
199 value, index, err);
200 return err;
201 }
202
203 return err;
204 }
205
206 static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
207 {
208 int err;
209
210 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
211 MODE_CMD, 0x40, value, index, NULL, 0, 1000);
212 if (err < 0) {
213 printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n",
214 value, index, err);
215 return err;
216 }
217
218 return err;
219 }
220
221 static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
222 {
223 int err;
224
225 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
226 COMM_CMD, 0x40, value, index, NULL, 0, 1000);
227 if (err < 0) {
228 printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n",
229 value, index, err);
230 return err;
231 }
232
233 return err;
234 }
235
236 static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
237 unsigned char *buf, int size)
238 {
239 int count, err;
240
241 memset(st, 0, sizeof(*st));
242
243 count = 0;
244 err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_STATUS]), buf, size, &count, 100);
245 if (err < 0) {
246 printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err);
247 return err;
248 }
249
250 if (count >= sizeof(*st))
251 memcpy(st, buf, sizeof(*st));
252
253 return count;
254 }
255
256 static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
257 {
258 printk(KERN_INFO "%45s: %8x\n", str, buf[off]);
259 }
260
261 static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
262 {
263 int i;
264
265 printk(KERN_INFO "0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
266 for (i=0; i<count; ++i)
267 printk("%02x ", buf[i]);
268 printk(KERN_INFO "\n");
269
270 if (count >= 16) {
271 ds_print_msg(buf, "enable flag", 0);
272 ds_print_msg(buf, "1-wire speed", 1);
273 ds_print_msg(buf, "strong pullup duration", 2);
274 ds_print_msg(buf, "programming pulse duration", 3);
275 ds_print_msg(buf, "pulldown slew rate control", 4);
276 ds_print_msg(buf, "write-1 low time", 5);
277 ds_print_msg(buf, "data sample offset/write-0 recovery time",
278 6);
279 ds_print_msg(buf, "reserved (test register)", 7);
280 ds_print_msg(buf, "device status flags", 8);
281 ds_print_msg(buf, "communication command byte 1", 9);
282 ds_print_msg(buf, "communication command byte 2", 10);
283 ds_print_msg(buf, "communication command buffer status", 11);
284 ds_print_msg(buf, "1-wire data output buffer status", 12);
285 ds_print_msg(buf, "1-wire data input buffer status", 13);
286 ds_print_msg(buf, "reserved", 14);
287 ds_print_msg(buf, "reserved", 15);
288 }
289 for (i = 16; i < count; ++i) {
290 if (buf[i] == RR_DETECT) {
291 ds_print_msg(buf, "new device detect", i);
292 continue;
293 }
294 ds_print_msg(buf, "Result Register Value: ", i);
295 if (buf[i] & RR_NRS)
296 printk(KERN_INFO "NRS: Reset no presence or ...\n");
297 if (buf[i] & RR_SH)
298 printk(KERN_INFO "SH: short on reset or set path\n");
299 if (buf[i] & RR_APP)
300 printk(KERN_INFO "APP: alarming presence on reset\n");
301 if (buf[i] & RR_VPP)
302 printk(KERN_INFO "VPP: 12V expected not seen\n");
303 if (buf[i] & RR_CMP)
304 printk(KERN_INFO "CMP: compare error\n");
305 if (buf[i] & RR_CRC)
306 printk(KERN_INFO "CRC: CRC error detected\n");
307 if (buf[i] & RR_RDP)
308 printk(KERN_INFO "RDP: redirected page\n");
309 if (buf[i] & RR_EOS)
310 printk(KERN_INFO "EOS: end of search error\n");
311 }
312 }
313
314 static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
315 {
316 int count, err;
317 struct ds_status st;
318
319 /* Careful on size. If size is less than what is available in
320 * the input buffer, the device fails the bulk transfer and
321 * clears the input buffer. It could read the maximum size of
322 * the data buffer, but then do you return the first, last, or
323 * some set of the middle size bytes? As long as the rest of
324 * the code is correct there will be size bytes waiting. A
325 * call to ds_wait_status will wait until the device is idle
326 * and any data to be received would have been available.
327 */
328 count = 0;
329 err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
330 buf, size, &count, 1000);
331 if (err < 0) {
332 u8 buf[0x20];
333 int count;
334
335 printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
336 usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
337
338 count = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
339 ds_dump_status(dev, buf, count);
340 return err;
341 }
342
343 #if 0
344 {
345 int i;
346
347 printk("%s: count=%d: ", __func__, count);
348 for (i=0; i<count; ++i)
349 printk("%02x ", buf[i]);
350 printk("\n");
351 }
352 #endif
353 return count;
354 }
355
356 static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
357 {
358 int count, err;
359
360 count = 0;
361 err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
362 if (err < 0) {
363 printk(KERN_ERR "Failed to write 1-wire data to ep0x%x: "
364 "err=%d.\n", dev->ep[EP_DATA_OUT], err);
365 return err;
366 }
367
368 return err;
369 }
370
371 #if 0
372
373 int ds_stop_pulse(struct ds_device *dev, int limit)
374 {
375 struct ds_status st;
376 int count = 0, err = 0;
377 u8 buf[0x20];
378
379 do {
380 err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
381 if (err)
382 break;
383 err = ds_send_control(dev, CTL_RESUME_EXE, 0);
384 if (err)
385 break;
386 err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
387 if (err)
388 break;
389
390 if ((st.status & ST_SPUA) == 0) {
391 err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
392 if (err)
393 break;
394 }
395 } while(++count < limit);
396
397 return err;
398 }
399
400 int ds_detect(struct ds_device *dev, struct ds_status *st)
401 {
402 int err;
403
404 err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
405 if (err)
406 return err;
407
408 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
409 if (err)
410 return err;
411
412 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
413 if (err)
414 return err;
415
416 err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
417 if (err)
418 return err;
419
420 err = ds_dump_status(dev, st);
421
422 return err;
423 }
424
425 #endif /* 0 */
426
427 static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
428 {
429 u8 buf[0x20];
430 int err, count = 0;
431
432 do {
433 err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
434 #if 0
435 if (err >= 0) {
436 int i;
437 printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
438 for (i=0; i<err; ++i)
439 printk("%02x ", buf[i]);
440 printk("\n");
441 }
442 #endif
443 } while (!(buf[0x08] & ST_IDLE) && !(err < 0) && ++count < 100);
444
445 if (err >= 16 && st->status & ST_EPOF) {
446 printk(KERN_INFO "Resetting device after ST_EPOF.\n");
447 ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
448 /* Always dump the device status. */
449 count = 101;
450 }
451
452 /* Dump the status for errors or if there is extended return data.
453 * The extended status includes new device detection (maybe someone
454 * can do something with it).
455 */
456 if (err > 16 || count >= 100 || err < 0)
457 ds_dump_status(dev, buf, err);
458
459 /* Extended data isn't an error. Well, a short is, but the dump
460 * would have already told the user that and we can't do anything
461 * about it in software anyway.
462 */
463 if (count >= 100 || err < 0)
464 return -1;
465 else
466 return 0;
467 }
468
469 static int ds_reset(struct ds_device *dev)
470 {
471 int err;
472
473 /* Other potentionally interesting flags for reset.
474 *
475 * COMM_NTF: Return result register feedback. This could be used to
476 * detect some conditions such as short, alarming presence, or
477 * detect if a new device was detected.
478 *
479 * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
480 * Select the data transfer rate.
481 */
482 err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
483 if (err)
484 return err;
485
486 return 0;
487 }
488
489 #if 0
490 static int ds_set_speed(struct ds_device *dev, int speed)
491 {
492 int err;
493
494 if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
495 return -EINVAL;
496
497 if (speed != SPEED_OVERDRIVE)
498 speed = SPEED_FLEXIBLE;
499
500 speed &= 0xff;
501
502 err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
503 if (err)
504 return err;
505
506 return err;
507 }
508 #endif /* 0 */
509
510 static int ds_set_pullup(struct ds_device *dev, int delay)
511 {
512 int err;
513 u8 del = 1 + (u8)(delay >> 4);
514
515 dev->spu_sleep = 0;
516 err = ds_send_control_mode(dev, MOD_PULSE_EN, delay ? PULSE_SPUE : 0);
517 if (err)
518 return err;
519
520 if (delay) {
521 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
522 if (err)
523 return err;
524
525 /* Just storing delay would not get the trunication and
526 * roundup.
527 */
528 dev->spu_sleep = del<<4;
529 }
530
531 return err;
532 }
533
534 static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
535 {
536 int err;
537 struct ds_status st;
538
539 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
540 0);
541 if (err)
542 return err;
543
544 ds_wait_status(dev, &st);
545
546 err = ds_recv_data(dev, tbit, sizeof(*tbit));
547 if (err < 0)
548 return err;
549
550 return 0;
551 }
552
553 #if 0
554 static int ds_write_bit(struct ds_device *dev, u8 bit)
555 {
556 int err;
557 struct ds_status st;
558
559 /* Set COMM_ICP to write without a readback. Note, this will
560 * produce one time slot, a down followed by an up with COMM_D
561 * only determing the timing.
562 */
563 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
564 (bit ? COMM_D : 0), 0);
565 if (err)
566 return err;
567
568 ds_wait_status(dev, &st);
569
570 return 0;
571 }
572 #endif
573
574 static int ds_write_byte(struct ds_device *dev, u8 byte)
575 {
576 int err;
577 struct ds_status st;
578 u8 rbyte;
579
580 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | COMM_SPU, byte);
581 if (err)
582 return err;
583
584 if (dev->spu_sleep)
585 msleep(dev->spu_sleep);
586
587 err = ds_wait_status(dev, &st);
588 if (err)
589 return err;
590
591 err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
592 if (err < 0)
593 return err;
594
595 return !(byte == rbyte);
596 }
597
598 static int ds_read_byte(struct ds_device *dev, u8 *byte)
599 {
600 int err;
601 struct ds_status st;
602
603 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
604 if (err)
605 return err;
606
607 ds_wait_status(dev, &st);
608
609 err = ds_recv_data(dev, byte, sizeof(*byte));
610 if (err < 0)
611 return err;
612
613 return 0;
614 }
615
616 static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
617 {
618 struct ds_status st;
619 int err;
620
621 if (len > 64*1024)
622 return -E2BIG;
623
624 memset(buf, 0xFF, len);
625
626 err = ds_send_data(dev, buf, len);
627 if (err < 0)
628 return err;
629
630 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
631 if (err)
632 return err;
633
634 ds_wait_status(dev, &st);
635
636 memset(buf, 0x00, len);
637 err = ds_recv_data(dev, buf, len);
638
639 return err;
640 }
641
642 static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
643 {
644 int err;
645 struct ds_status st;
646
647 err = ds_send_data(dev, buf, len);
648 if (err < 0)
649 return err;
650
651 ds_wait_status(dev, &st);
652
653 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | COMM_SPU, len);
654 if (err)
655 return err;
656
657 if (dev->spu_sleep)
658 msleep(dev->spu_sleep);
659
660 ds_wait_status(dev, &st);
661
662 err = ds_recv_data(dev, buf, len);
663 if (err < 0)
664 return err;
665
666 return !(err == len);
667 }
668
669 #if 0
670
671 static int ds_search(struct ds_device *dev, u64 init, u64 *buf, u8 id_number, int conditional_search)
672 {
673 int err;
674 u16 value, index;
675 struct ds_status st;
676
677 memset(buf, 0, sizeof(buf));
678
679 err = ds_send_data(ds_dev, (unsigned char *)&init, 8);
680 if (err)
681 return err;
682
683 ds_wait_status(ds_dev, &st);
684
685 value = COMM_SEARCH_ACCESS | COMM_IM | COMM_SM | COMM_F | COMM_RTS;
686 index = (conditional_search ? 0xEC : 0xF0) | (id_number << 8);
687 err = ds_send_control(ds_dev, value, index);
688 if (err)
689 return err;
690
691 ds_wait_status(ds_dev, &st);
692
693 err = ds_recv_data(ds_dev, (unsigned char *)buf, 8*id_number);
694 if (err < 0)
695 return err;
696
697 return err/8;
698 }
699
700 static int ds_match_access(struct ds_device *dev, u64 init)
701 {
702 int err;
703 struct ds_status st;
704
705 err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
706 if (err)
707 return err;
708
709 ds_wait_status(dev, &st);
710
711 err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
712 if (err)
713 return err;
714
715 ds_wait_status(dev, &st);
716
717 return 0;
718 }
719
720 static int ds_set_path(struct ds_device *dev, u64 init)
721 {
722 int err;
723 struct ds_status st;
724 u8 buf[9];
725
726 memcpy(buf, &init, 8);
727 buf[8] = BRANCH_MAIN;
728
729 err = ds_send_data(dev, buf, sizeof(buf));
730 if (err)
731 return err;
732
733 ds_wait_status(dev, &st);
734
735 err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
736 if (err)
737 return err;
738
739 ds_wait_status(dev, &st);
740
741 return 0;
742 }
743
744 #endif /* 0 */
745
746 static u8 ds9490r_touch_bit(void *data, u8 bit)
747 {
748 u8 ret;
749 struct ds_device *dev = data;
750
751 if (ds_touch_bit(dev, bit, &ret))
752 return 0;
753
754 return ret;
755 }
756
757 #if 0
758 static void ds9490r_write_bit(void *data, u8 bit)
759 {
760 struct ds_device *dev = data;
761
762 ds_write_bit(dev, bit);
763 }
764
765 static u8 ds9490r_read_bit(void *data)
766 {
767 struct ds_device *dev = data;
768 int err;
769 u8 bit = 0;
770
771 err = ds_touch_bit(dev, 1, &bit);
772 if (err)
773 return 0;
774
775 return bit & 1;
776 }
777 #endif
778
779 static void ds9490r_write_byte(void *data, u8 byte)
780 {
781 struct ds_device *dev = data;
782
783 ds_write_byte(dev, byte);
784 }
785
786 static u8 ds9490r_read_byte(void *data)
787 {
788 struct ds_device *dev = data;
789 int err;
790 u8 byte = 0;
791
792 err = ds_read_byte(dev, &byte);
793 if (err)
794 return 0;
795
796 return byte;
797 }
798
799 static void ds9490r_write_block(void *data, const u8 *buf, int len)
800 {
801 struct ds_device *dev = data;
802
803 ds_write_block(dev, (u8 *)buf, len);
804 }
805
806 static u8 ds9490r_read_block(void *data, u8 *buf, int len)
807 {
808 struct ds_device *dev = data;
809 int err;
810
811 err = ds_read_block(dev, buf, len);
812 if (err < 0)
813 return 0;
814
815 return len;
816 }
817
818 static u8 ds9490r_reset(void *data)
819 {
820 struct ds_device *dev = data;
821 int err;
822
823 err = ds_reset(dev);
824 if (err)
825 return 1;
826
827 return 0;
828 }
829
830 static u8 ds9490r_set_pullup(void *data, int delay)
831 {
832 struct ds_device *dev = data;
833
834 if (ds_set_pullup(dev, delay))
835 return 1;
836
837 return 0;
838 }
839
840 static int ds_w1_init(struct ds_device *dev)
841 {
842 memset(&dev->master, 0, sizeof(struct w1_bus_master));
843
844 /* Reset the device as it can be in a bad state.
845 * This is necessary because a block write will wait for data
846 * to be placed in the output buffer and block any later
847 * commands which will keep accumulating and the device will
848 * not be idle. Another case is removing the ds2490 module
849 * while a bus search is in progress, somehow a few commands
850 * get through, but the input transfers fail leaving data in
851 * the input buffer. This will cause the next read to fail
852 * see the note in ds_recv_data.
853 */
854 ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
855
856 dev->master.data = dev;
857 dev->master.touch_bit = &ds9490r_touch_bit;
858 /* read_bit and write_bit in w1_bus_master are expected to set and
859 * sample the line level. For write_bit that means it is expected to
860 * set it to that value and leave it there. ds2490 only supports an
861 * individual time slot at the lowest level. The requirement from
862 * pulling the bus state down to reading the state is 15us, something
863 * that isn't realistic on the USB bus anyway.
864 dev->master.read_bit = &ds9490r_read_bit;
865 dev->master.write_bit = &ds9490r_write_bit;
866 */
867 dev->master.read_byte = &ds9490r_read_byte;
868 dev->master.write_byte = &ds9490r_write_byte;
869 dev->master.read_block = &ds9490r_read_block;
870 dev->master.write_block = &ds9490r_write_block;
871 dev->master.reset_bus = &ds9490r_reset;
872 dev->master.set_pullup = &ds9490r_set_pullup;
873
874 return w1_add_master_device(&dev->master);
875 }
876
877 static void ds_w1_fini(struct ds_device *dev)
878 {
879 w1_remove_master_device(&dev->master);
880 }
881
882 static int ds_probe(struct usb_interface *intf,
883 const struct usb_device_id *udev_id)
884 {
885 struct usb_device *udev = interface_to_usbdev(intf);
886 struct usb_endpoint_descriptor *endpoint;
887 struct usb_host_interface *iface_desc;
888 struct ds_device *dev;
889 int i, err;
890
891 dev = kmalloc(sizeof(struct ds_device), GFP_KERNEL);
892 if (!dev) {
893 printk(KERN_INFO "Failed to allocate new DS9490R structure.\n");
894 return -ENOMEM;
895 }
896 dev->spu_sleep = 0;
897 dev->udev = usb_get_dev(udev);
898 if (!dev->udev) {
899 err = -ENOMEM;
900 goto err_out_free;
901 }
902 memset(dev->ep, 0, sizeof(dev->ep));
903
904 usb_set_intfdata(intf, dev);
905
906 err = usb_set_interface(dev->udev, intf->altsetting[0].desc.bInterfaceNumber, 3);
907 if (err) {
908 printk(KERN_ERR "Failed to set alternative setting 3 for %d interface: err=%d.\n",
909 intf->altsetting[0].desc.bInterfaceNumber, err);
910 goto err_out_clear;
911 }
912
913 err = usb_reset_configuration(dev->udev);
914 if (err) {
915 printk(KERN_ERR "Failed to reset configuration: err=%d.\n", err);
916 goto err_out_clear;
917 }
918
919 iface_desc = &intf->altsetting[0];
920 if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
921 printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints);
922 err = -EINVAL;
923 goto err_out_clear;
924 }
925
926 /*
927 * This loop doesn'd show control 0 endpoint,
928 * so we will fill only 1-3 endpoints entry.
929 */
930 for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
931 endpoint = &iface_desc->endpoint[i].desc;
932
933 dev->ep[i+1] = endpoint->bEndpointAddress;
934 #if 0
935 printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
936 i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
937 (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
938 endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
939 #endif
940 }
941
942 err = ds_w1_init(dev);
943 if (err)
944 goto err_out_clear;
945
946 mutex_lock(&ds_mutex);
947 list_add_tail(&dev->ds_entry, &ds_devices);
948 mutex_unlock(&ds_mutex);
949
950 return 0;
951
952 err_out_clear:
953 usb_set_intfdata(intf, NULL);
954 usb_put_dev(dev->udev);
955 err_out_free:
956 kfree(dev);
957 return err;
958 }
959
960 static void ds_disconnect(struct usb_interface *intf)
961 {
962 struct ds_device *dev;
963
964 dev = usb_get_intfdata(intf);
965 if (!dev)
966 return;
967
968 mutex_lock(&ds_mutex);
969 list_del(&dev->ds_entry);
970 mutex_unlock(&ds_mutex);
971
972 ds_w1_fini(dev);
973
974 usb_set_intfdata(intf, NULL);
975
976 usb_put_dev(dev->udev);
977 kfree(dev);
978 }
979
980 static int ds_init(void)
981 {
982 int err;
983
984 err = usb_register(&ds_driver);
985 if (err) {
986 printk(KERN_INFO "Failed to register DS9490R USB device: err=%d.\n", err);
987 return err;
988 }
989
990 return 0;
991 }
992
993 static void ds_fini(void)
994 {
995 usb_deregister(&ds_driver);
996 }
997
998 module_init(ds_init);
999 module_exit(ds_fini);
1000
1001 MODULE_LICENSE("GPL");
1002 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
1003 MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");
This page took 0.067576 seconds and 5 git commands to generate.