xen/privcmd: print SIGBUS faults
[deliverable/linux.git] / drivers / xen / events.c
1 /*
2 * Xen event channels
3 *
4 * Xen models interrupts with abstract event channels. Because each
5 * domain gets 1024 event channels, but NR_IRQ is not that large, we
6 * must dynamically map irqs<->event channels. The event channels
7 * interface with the rest of the kernel by defining a xen interrupt
8 * chip. When an event is recieved, it is mapped to an irq and sent
9 * through the normal interrupt processing path.
10 *
11 * There are four kinds of events which can be mapped to an event
12 * channel:
13 *
14 * 1. Inter-domain notifications. This includes all the virtual
15 * device events, since they're driven by front-ends in another domain
16 * (typically dom0).
17 * 2. VIRQs, typically used for timers. These are per-cpu events.
18 * 3. IPIs.
19 * 4. Hardware interrupts. Not supported at present.
20 *
21 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
22 */
23
24 #include <linux/linkage.h>
25 #include <linux/interrupt.h>
26 #include <linux/irq.h>
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/bootmem.h>
30 #include <linux/slab.h>
31
32 #include <asm/desc.h>
33 #include <asm/ptrace.h>
34 #include <asm/irq.h>
35 #include <asm/idle.h>
36 #include <asm/sync_bitops.h>
37 #include <asm/xen/hypercall.h>
38 #include <asm/xen/hypervisor.h>
39
40 #include <xen/xen.h>
41 #include <xen/hvm.h>
42 #include <xen/xen-ops.h>
43 #include <xen/events.h>
44 #include <xen/interface/xen.h>
45 #include <xen/interface/event_channel.h>
46 #include <xen/interface/hvm/hvm_op.h>
47 #include <xen/interface/hvm/params.h>
48
49 /*
50 * This lock protects updates to the following mapping and reference-count
51 * arrays. The lock does not need to be acquired to read the mapping tables.
52 */
53 static DEFINE_SPINLOCK(irq_mapping_update_lock);
54
55 /* IRQ <-> VIRQ mapping. */
56 static DEFINE_PER_CPU(int [NR_VIRQS], virq_to_irq) = {[0 ... NR_VIRQS-1] = -1};
57
58 /* IRQ <-> IPI mapping */
59 static DEFINE_PER_CPU(int [XEN_NR_IPIS], ipi_to_irq) = {[0 ... XEN_NR_IPIS-1] = -1};
60
61 /* Interrupt types. */
62 enum xen_irq_type {
63 IRQT_UNBOUND = 0,
64 IRQT_PIRQ,
65 IRQT_VIRQ,
66 IRQT_IPI,
67 IRQT_EVTCHN
68 };
69
70 /*
71 * Packed IRQ information:
72 * type - enum xen_irq_type
73 * event channel - irq->event channel mapping
74 * cpu - cpu this event channel is bound to
75 * index - type-specific information:
76 * PIRQ - vector, with MSB being "needs EIO"
77 * VIRQ - virq number
78 * IPI - IPI vector
79 * EVTCHN -
80 */
81 struct irq_info
82 {
83 enum xen_irq_type type; /* type */
84 unsigned short evtchn; /* event channel */
85 unsigned short cpu; /* cpu bound */
86
87 union {
88 unsigned short virq;
89 enum ipi_vector ipi;
90 struct {
91 unsigned short gsi;
92 unsigned short vector;
93 } pirq;
94 } u;
95 };
96
97 static struct irq_info irq_info[NR_IRQS];
98
99 static int evtchn_to_irq[NR_EVENT_CHANNELS] = {
100 [0 ... NR_EVENT_CHANNELS-1] = -1
101 };
102 struct cpu_evtchn_s {
103 unsigned long bits[NR_EVENT_CHANNELS/BITS_PER_LONG];
104 };
105 static struct cpu_evtchn_s *cpu_evtchn_mask_p;
106 static inline unsigned long *cpu_evtchn_mask(int cpu)
107 {
108 return cpu_evtchn_mask_p[cpu].bits;
109 }
110
111 /* Xen will never allocate port zero for any purpose. */
112 #define VALID_EVTCHN(chn) ((chn) != 0)
113
114 static struct irq_chip xen_dynamic_chip;
115 static struct irq_chip xen_percpu_chip;
116
117 /* Constructor for packed IRQ information. */
118 static struct irq_info mk_unbound_info(void)
119 {
120 return (struct irq_info) { .type = IRQT_UNBOUND };
121 }
122
123 static struct irq_info mk_evtchn_info(unsigned short evtchn)
124 {
125 return (struct irq_info) { .type = IRQT_EVTCHN, .evtchn = evtchn,
126 .cpu = 0 };
127 }
128
129 static struct irq_info mk_ipi_info(unsigned short evtchn, enum ipi_vector ipi)
130 {
131 return (struct irq_info) { .type = IRQT_IPI, .evtchn = evtchn,
132 .cpu = 0, .u.ipi = ipi };
133 }
134
135 static struct irq_info mk_virq_info(unsigned short evtchn, unsigned short virq)
136 {
137 return (struct irq_info) { .type = IRQT_VIRQ, .evtchn = evtchn,
138 .cpu = 0, .u.virq = virq };
139 }
140
141 static struct irq_info mk_pirq_info(unsigned short evtchn,
142 unsigned short gsi, unsigned short vector)
143 {
144 return (struct irq_info) { .type = IRQT_PIRQ, .evtchn = evtchn,
145 .cpu = 0, .u.pirq = { .gsi = gsi, .vector = vector } };
146 }
147
148 /*
149 * Accessors for packed IRQ information.
150 */
151 static struct irq_info *info_for_irq(unsigned irq)
152 {
153 return &irq_info[irq];
154 }
155
156 static unsigned int evtchn_from_irq(unsigned irq)
157 {
158 return info_for_irq(irq)->evtchn;
159 }
160
161 unsigned irq_from_evtchn(unsigned int evtchn)
162 {
163 return evtchn_to_irq[evtchn];
164 }
165 EXPORT_SYMBOL_GPL(irq_from_evtchn);
166
167 static enum ipi_vector ipi_from_irq(unsigned irq)
168 {
169 struct irq_info *info = info_for_irq(irq);
170
171 BUG_ON(info == NULL);
172 BUG_ON(info->type != IRQT_IPI);
173
174 return info->u.ipi;
175 }
176
177 static unsigned virq_from_irq(unsigned irq)
178 {
179 struct irq_info *info = info_for_irq(irq);
180
181 BUG_ON(info == NULL);
182 BUG_ON(info->type != IRQT_VIRQ);
183
184 return info->u.virq;
185 }
186
187 static unsigned gsi_from_irq(unsigned irq)
188 {
189 struct irq_info *info = info_for_irq(irq);
190
191 BUG_ON(info == NULL);
192 BUG_ON(info->type != IRQT_PIRQ);
193
194 return info->u.pirq.gsi;
195 }
196
197 static unsigned vector_from_irq(unsigned irq)
198 {
199 struct irq_info *info = info_for_irq(irq);
200
201 BUG_ON(info == NULL);
202 BUG_ON(info->type != IRQT_PIRQ);
203
204 return info->u.pirq.vector;
205 }
206
207 static enum xen_irq_type type_from_irq(unsigned irq)
208 {
209 return info_for_irq(irq)->type;
210 }
211
212 static unsigned cpu_from_irq(unsigned irq)
213 {
214 return info_for_irq(irq)->cpu;
215 }
216
217 static unsigned int cpu_from_evtchn(unsigned int evtchn)
218 {
219 int irq = evtchn_to_irq[evtchn];
220 unsigned ret = 0;
221
222 if (irq != -1)
223 ret = cpu_from_irq(irq);
224
225 return ret;
226 }
227
228 static inline unsigned long active_evtchns(unsigned int cpu,
229 struct shared_info *sh,
230 unsigned int idx)
231 {
232 return (sh->evtchn_pending[idx] &
233 cpu_evtchn_mask(cpu)[idx] &
234 ~sh->evtchn_mask[idx]);
235 }
236
237 static void bind_evtchn_to_cpu(unsigned int chn, unsigned int cpu)
238 {
239 int irq = evtchn_to_irq[chn];
240
241 BUG_ON(irq == -1);
242 #ifdef CONFIG_SMP
243 cpumask_copy(irq_to_desc(irq)->affinity, cpumask_of(cpu));
244 #endif
245
246 __clear_bit(chn, cpu_evtchn_mask(cpu_from_irq(irq)));
247 __set_bit(chn, cpu_evtchn_mask(cpu));
248
249 irq_info[irq].cpu = cpu;
250 }
251
252 static void init_evtchn_cpu_bindings(void)
253 {
254 #ifdef CONFIG_SMP
255 struct irq_desc *desc;
256 int i;
257
258 /* By default all event channels notify CPU#0. */
259 for_each_irq_desc(i, desc) {
260 cpumask_copy(desc->affinity, cpumask_of(0));
261 }
262 #endif
263
264 memset(cpu_evtchn_mask(0), ~0, sizeof(cpu_evtchn_mask(0)));
265 }
266
267 static inline void clear_evtchn(int port)
268 {
269 struct shared_info *s = HYPERVISOR_shared_info;
270 sync_clear_bit(port, &s->evtchn_pending[0]);
271 }
272
273 static inline void set_evtchn(int port)
274 {
275 struct shared_info *s = HYPERVISOR_shared_info;
276 sync_set_bit(port, &s->evtchn_pending[0]);
277 }
278
279 static inline int test_evtchn(int port)
280 {
281 struct shared_info *s = HYPERVISOR_shared_info;
282 return sync_test_bit(port, &s->evtchn_pending[0]);
283 }
284
285
286 /**
287 * notify_remote_via_irq - send event to remote end of event channel via irq
288 * @irq: irq of event channel to send event to
289 *
290 * Unlike notify_remote_via_evtchn(), this is safe to use across
291 * save/restore. Notifications on a broken connection are silently
292 * dropped.
293 */
294 void notify_remote_via_irq(int irq)
295 {
296 int evtchn = evtchn_from_irq(irq);
297
298 if (VALID_EVTCHN(evtchn))
299 notify_remote_via_evtchn(evtchn);
300 }
301 EXPORT_SYMBOL_GPL(notify_remote_via_irq);
302
303 static void mask_evtchn(int port)
304 {
305 struct shared_info *s = HYPERVISOR_shared_info;
306 sync_set_bit(port, &s->evtchn_mask[0]);
307 }
308
309 static void unmask_evtchn(int port)
310 {
311 struct shared_info *s = HYPERVISOR_shared_info;
312 unsigned int cpu = get_cpu();
313
314 BUG_ON(!irqs_disabled());
315
316 /* Slow path (hypercall) if this is a non-local port. */
317 if (unlikely(cpu != cpu_from_evtchn(port))) {
318 struct evtchn_unmask unmask = { .port = port };
319 (void)HYPERVISOR_event_channel_op(EVTCHNOP_unmask, &unmask);
320 } else {
321 struct vcpu_info *vcpu_info = __get_cpu_var(xen_vcpu);
322
323 sync_clear_bit(port, &s->evtchn_mask[0]);
324
325 /*
326 * The following is basically the equivalent of
327 * 'hw_resend_irq'. Just like a real IO-APIC we 'lose
328 * the interrupt edge' if the channel is masked.
329 */
330 if (sync_test_bit(port, &s->evtchn_pending[0]) &&
331 !sync_test_and_set_bit(port / BITS_PER_LONG,
332 &vcpu_info->evtchn_pending_sel))
333 vcpu_info->evtchn_upcall_pending = 1;
334 }
335
336 put_cpu();
337 }
338
339 static int find_unbound_irq(void)
340 {
341 int irq;
342 struct irq_desc *desc;
343
344 for (irq = 0; irq < nr_irqs; irq++) {
345 desc = irq_to_desc(irq);
346 /* only 0->15 have init'd desc; handle irq > 16 */
347 if (desc == NULL)
348 break;
349 if (desc->chip == &no_irq_chip)
350 break;
351 if (desc->chip != &xen_dynamic_chip)
352 continue;
353 if (irq_info[irq].type == IRQT_UNBOUND)
354 break;
355 }
356
357 if (irq == nr_irqs)
358 panic("No available IRQ to bind to: increase nr_irqs!\n");
359
360 desc = irq_to_desc_alloc_node(irq, 0);
361 if (WARN_ON(desc == NULL))
362 return -1;
363
364 dynamic_irq_init_keep_chip_data(irq);
365
366 return irq;
367 }
368
369 int bind_evtchn_to_irq(unsigned int evtchn)
370 {
371 int irq;
372
373 spin_lock(&irq_mapping_update_lock);
374
375 irq = evtchn_to_irq[evtchn];
376
377 if (irq == -1) {
378 irq = find_unbound_irq();
379
380 set_irq_chip_and_handler_name(irq, &xen_dynamic_chip,
381 handle_edge_irq, "event");
382
383 evtchn_to_irq[evtchn] = irq;
384 irq_info[irq] = mk_evtchn_info(evtchn);
385 }
386
387 spin_unlock(&irq_mapping_update_lock);
388
389 return irq;
390 }
391 EXPORT_SYMBOL_GPL(bind_evtchn_to_irq);
392
393 static int bind_ipi_to_irq(unsigned int ipi, unsigned int cpu)
394 {
395 struct evtchn_bind_ipi bind_ipi;
396 int evtchn, irq;
397
398 spin_lock(&irq_mapping_update_lock);
399
400 irq = per_cpu(ipi_to_irq, cpu)[ipi];
401
402 if (irq == -1) {
403 irq = find_unbound_irq();
404 if (irq < 0)
405 goto out;
406
407 set_irq_chip_and_handler_name(irq, &xen_percpu_chip,
408 handle_percpu_irq, "ipi");
409
410 bind_ipi.vcpu = cpu;
411 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi,
412 &bind_ipi) != 0)
413 BUG();
414 evtchn = bind_ipi.port;
415
416 evtchn_to_irq[evtchn] = irq;
417 irq_info[irq] = mk_ipi_info(evtchn, ipi);
418 per_cpu(ipi_to_irq, cpu)[ipi] = irq;
419
420 bind_evtchn_to_cpu(evtchn, cpu);
421 }
422
423 out:
424 spin_unlock(&irq_mapping_update_lock);
425 return irq;
426 }
427
428
429 static int bind_virq_to_irq(unsigned int virq, unsigned int cpu)
430 {
431 struct evtchn_bind_virq bind_virq;
432 int evtchn, irq;
433
434 spin_lock(&irq_mapping_update_lock);
435
436 irq = per_cpu(virq_to_irq, cpu)[virq];
437
438 if (irq == -1) {
439 bind_virq.virq = virq;
440 bind_virq.vcpu = cpu;
441 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq,
442 &bind_virq) != 0)
443 BUG();
444 evtchn = bind_virq.port;
445
446 irq = find_unbound_irq();
447
448 set_irq_chip_and_handler_name(irq, &xen_percpu_chip,
449 handle_percpu_irq, "virq");
450
451 evtchn_to_irq[evtchn] = irq;
452 irq_info[irq] = mk_virq_info(evtchn, virq);
453
454 per_cpu(virq_to_irq, cpu)[virq] = irq;
455
456 bind_evtchn_to_cpu(evtchn, cpu);
457 }
458
459 spin_unlock(&irq_mapping_update_lock);
460
461 return irq;
462 }
463
464 static void unbind_from_irq(unsigned int irq)
465 {
466 struct evtchn_close close;
467 int evtchn = evtchn_from_irq(irq);
468
469 spin_lock(&irq_mapping_update_lock);
470
471 if (VALID_EVTCHN(evtchn)) {
472 close.port = evtchn;
473 if (HYPERVISOR_event_channel_op(EVTCHNOP_close, &close) != 0)
474 BUG();
475
476 switch (type_from_irq(irq)) {
477 case IRQT_VIRQ:
478 per_cpu(virq_to_irq, cpu_from_evtchn(evtchn))
479 [virq_from_irq(irq)] = -1;
480 break;
481 case IRQT_IPI:
482 per_cpu(ipi_to_irq, cpu_from_evtchn(evtchn))
483 [ipi_from_irq(irq)] = -1;
484 break;
485 default:
486 break;
487 }
488
489 /* Closed ports are implicitly re-bound to VCPU0. */
490 bind_evtchn_to_cpu(evtchn, 0);
491
492 evtchn_to_irq[evtchn] = -1;
493 }
494
495 if (irq_info[irq].type != IRQT_UNBOUND) {
496 irq_info[irq] = mk_unbound_info();
497
498 dynamic_irq_cleanup(irq);
499 }
500
501 spin_unlock(&irq_mapping_update_lock);
502 }
503
504 int bind_evtchn_to_irqhandler(unsigned int evtchn,
505 irq_handler_t handler,
506 unsigned long irqflags,
507 const char *devname, void *dev_id)
508 {
509 unsigned int irq;
510 int retval;
511
512 irq = bind_evtchn_to_irq(evtchn);
513 retval = request_irq(irq, handler, irqflags, devname, dev_id);
514 if (retval != 0) {
515 unbind_from_irq(irq);
516 return retval;
517 }
518
519 return irq;
520 }
521 EXPORT_SYMBOL_GPL(bind_evtchn_to_irqhandler);
522
523 int bind_virq_to_irqhandler(unsigned int virq, unsigned int cpu,
524 irq_handler_t handler,
525 unsigned long irqflags, const char *devname, void *dev_id)
526 {
527 unsigned int irq;
528 int retval;
529
530 irq = bind_virq_to_irq(virq, cpu);
531 retval = request_irq(irq, handler, irqflags, devname, dev_id);
532 if (retval != 0) {
533 unbind_from_irq(irq);
534 return retval;
535 }
536
537 return irq;
538 }
539 EXPORT_SYMBOL_GPL(bind_virq_to_irqhandler);
540
541 int bind_ipi_to_irqhandler(enum ipi_vector ipi,
542 unsigned int cpu,
543 irq_handler_t handler,
544 unsigned long irqflags,
545 const char *devname,
546 void *dev_id)
547 {
548 int irq, retval;
549
550 irq = bind_ipi_to_irq(ipi, cpu);
551 if (irq < 0)
552 return irq;
553
554 irqflags |= IRQF_NO_SUSPEND;
555 retval = request_irq(irq, handler, irqflags, devname, dev_id);
556 if (retval != 0) {
557 unbind_from_irq(irq);
558 return retval;
559 }
560
561 return irq;
562 }
563
564 void unbind_from_irqhandler(unsigned int irq, void *dev_id)
565 {
566 free_irq(irq, dev_id);
567 unbind_from_irq(irq);
568 }
569 EXPORT_SYMBOL_GPL(unbind_from_irqhandler);
570
571 void xen_send_IPI_one(unsigned int cpu, enum ipi_vector vector)
572 {
573 int irq = per_cpu(ipi_to_irq, cpu)[vector];
574 BUG_ON(irq < 0);
575 notify_remote_via_irq(irq);
576 }
577
578 irqreturn_t xen_debug_interrupt(int irq, void *dev_id)
579 {
580 struct shared_info *sh = HYPERVISOR_shared_info;
581 int cpu = smp_processor_id();
582 int i;
583 unsigned long flags;
584 static DEFINE_SPINLOCK(debug_lock);
585
586 spin_lock_irqsave(&debug_lock, flags);
587
588 printk("vcpu %d\n ", cpu);
589
590 for_each_online_cpu(i) {
591 struct vcpu_info *v = per_cpu(xen_vcpu, i);
592 printk("%d: masked=%d pending=%d event_sel %08lx\n ", i,
593 (get_irq_regs() && i == cpu) ? xen_irqs_disabled(get_irq_regs()) : v->evtchn_upcall_mask,
594 v->evtchn_upcall_pending,
595 v->evtchn_pending_sel);
596 }
597 printk("pending:\n ");
598 for(i = ARRAY_SIZE(sh->evtchn_pending)-1; i >= 0; i--)
599 printk("%08lx%s", sh->evtchn_pending[i],
600 i % 8 == 0 ? "\n " : " ");
601 printk("\nmasks:\n ");
602 for(i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--)
603 printk("%08lx%s", sh->evtchn_mask[i],
604 i % 8 == 0 ? "\n " : " ");
605
606 printk("\nunmasked:\n ");
607 for(i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--)
608 printk("%08lx%s", sh->evtchn_pending[i] & ~sh->evtchn_mask[i],
609 i % 8 == 0 ? "\n " : " ");
610
611 printk("\npending list:\n");
612 for(i = 0; i < NR_EVENT_CHANNELS; i++) {
613 if (sync_test_bit(i, sh->evtchn_pending)) {
614 printk(" %d: event %d -> irq %d\n",
615 cpu_from_evtchn(i), i,
616 evtchn_to_irq[i]);
617 }
618 }
619
620 spin_unlock_irqrestore(&debug_lock, flags);
621
622 return IRQ_HANDLED;
623 }
624
625 static DEFINE_PER_CPU(unsigned, xed_nesting_count);
626
627 /*
628 * Search the CPUs pending events bitmasks. For each one found, map
629 * the event number to an irq, and feed it into do_IRQ() for
630 * handling.
631 *
632 * Xen uses a two-level bitmap to speed searching. The first level is
633 * a bitset of words which contain pending event bits. The second
634 * level is a bitset of pending events themselves.
635 */
636 static void __xen_evtchn_do_upcall(void)
637 {
638 int cpu = get_cpu();
639 struct shared_info *s = HYPERVISOR_shared_info;
640 struct vcpu_info *vcpu_info = __get_cpu_var(xen_vcpu);
641 unsigned count;
642
643 do {
644 unsigned long pending_words;
645
646 vcpu_info->evtchn_upcall_pending = 0;
647
648 if (__get_cpu_var(xed_nesting_count)++)
649 goto out;
650
651 #ifndef CONFIG_X86 /* No need for a barrier -- XCHG is a barrier on x86. */
652 /* Clear master flag /before/ clearing selector flag. */
653 wmb();
654 #endif
655 pending_words = xchg(&vcpu_info->evtchn_pending_sel, 0);
656 while (pending_words != 0) {
657 unsigned long pending_bits;
658 int word_idx = __ffs(pending_words);
659 pending_words &= ~(1UL << word_idx);
660
661 while ((pending_bits = active_evtchns(cpu, s, word_idx)) != 0) {
662 int bit_idx = __ffs(pending_bits);
663 int port = (word_idx * BITS_PER_LONG) + bit_idx;
664 int irq = evtchn_to_irq[port];
665 struct irq_desc *desc;
666
667 if (irq != -1) {
668 desc = irq_to_desc(irq);
669 if (desc)
670 generic_handle_irq_desc(irq, desc);
671 }
672 }
673 }
674
675 BUG_ON(!irqs_disabled());
676
677 count = __get_cpu_var(xed_nesting_count);
678 __get_cpu_var(xed_nesting_count) = 0;
679 } while (count != 1 || vcpu_info->evtchn_upcall_pending);
680
681 out:
682
683 put_cpu();
684 }
685
686 void xen_evtchn_do_upcall(struct pt_regs *regs)
687 {
688 struct pt_regs *old_regs = set_irq_regs(regs);
689
690 exit_idle();
691 irq_enter();
692
693 __xen_evtchn_do_upcall();
694
695 irq_exit();
696 set_irq_regs(old_regs);
697 }
698
699 void xen_hvm_evtchn_do_upcall(void)
700 {
701 __xen_evtchn_do_upcall();
702 }
703 EXPORT_SYMBOL_GPL(xen_hvm_evtchn_do_upcall);
704
705 /* Rebind a new event channel to an existing irq. */
706 void rebind_evtchn_irq(int evtchn, int irq)
707 {
708 struct irq_info *info = info_for_irq(irq);
709
710 /* Make sure the irq is masked, since the new event channel
711 will also be masked. */
712 disable_irq(irq);
713
714 spin_lock(&irq_mapping_update_lock);
715
716 /* After resume the irq<->evtchn mappings are all cleared out */
717 BUG_ON(evtchn_to_irq[evtchn] != -1);
718 /* Expect irq to have been bound before,
719 so there should be a proper type */
720 BUG_ON(info->type == IRQT_UNBOUND);
721
722 evtchn_to_irq[evtchn] = irq;
723 irq_info[irq] = mk_evtchn_info(evtchn);
724
725 spin_unlock(&irq_mapping_update_lock);
726
727 /* new event channels are always bound to cpu 0 */
728 irq_set_affinity(irq, cpumask_of(0));
729
730 /* Unmask the event channel. */
731 enable_irq(irq);
732 }
733
734 /* Rebind an evtchn so that it gets delivered to a specific cpu */
735 static int rebind_irq_to_cpu(unsigned irq, unsigned tcpu)
736 {
737 struct evtchn_bind_vcpu bind_vcpu;
738 int evtchn = evtchn_from_irq(irq);
739
740 /* events delivered via platform PCI interrupts are always
741 * routed to vcpu 0 */
742 if (!VALID_EVTCHN(evtchn) ||
743 (xen_hvm_domain() && !xen_have_vector_callback))
744 return -1;
745
746 /* Send future instances of this interrupt to other vcpu. */
747 bind_vcpu.port = evtchn;
748 bind_vcpu.vcpu = tcpu;
749
750 /*
751 * If this fails, it usually just indicates that we're dealing with a
752 * virq or IPI channel, which don't actually need to be rebound. Ignore
753 * it, but don't do the xenlinux-level rebind in that case.
754 */
755 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_vcpu, &bind_vcpu) >= 0)
756 bind_evtchn_to_cpu(evtchn, tcpu);
757
758 return 0;
759 }
760
761 static int set_affinity_irq(unsigned irq, const struct cpumask *dest)
762 {
763 unsigned tcpu = cpumask_first(dest);
764
765 return rebind_irq_to_cpu(irq, tcpu);
766 }
767
768 int resend_irq_on_evtchn(unsigned int irq)
769 {
770 int masked, evtchn = evtchn_from_irq(irq);
771 struct shared_info *s = HYPERVISOR_shared_info;
772
773 if (!VALID_EVTCHN(evtchn))
774 return 1;
775
776 masked = sync_test_and_set_bit(evtchn, s->evtchn_mask);
777 sync_set_bit(evtchn, s->evtchn_pending);
778 if (!masked)
779 unmask_evtchn(evtchn);
780
781 return 1;
782 }
783
784 static void enable_dynirq(unsigned int irq)
785 {
786 int evtchn = evtchn_from_irq(irq);
787
788 if (VALID_EVTCHN(evtchn))
789 unmask_evtchn(evtchn);
790 }
791
792 static void disable_dynirq(unsigned int irq)
793 {
794 int evtchn = evtchn_from_irq(irq);
795
796 if (VALID_EVTCHN(evtchn))
797 mask_evtchn(evtchn);
798 }
799
800 static void ack_dynirq(unsigned int irq)
801 {
802 int evtchn = evtchn_from_irq(irq);
803
804 move_native_irq(irq);
805
806 if (VALID_EVTCHN(evtchn))
807 clear_evtchn(evtchn);
808 }
809
810 static int retrigger_dynirq(unsigned int irq)
811 {
812 int evtchn = evtchn_from_irq(irq);
813 struct shared_info *sh = HYPERVISOR_shared_info;
814 int ret = 0;
815
816 if (VALID_EVTCHN(evtchn)) {
817 int masked;
818
819 masked = sync_test_and_set_bit(evtchn, sh->evtchn_mask);
820 sync_set_bit(evtchn, sh->evtchn_pending);
821 if (!masked)
822 unmask_evtchn(evtchn);
823 ret = 1;
824 }
825
826 return ret;
827 }
828
829 static void restore_cpu_virqs(unsigned int cpu)
830 {
831 struct evtchn_bind_virq bind_virq;
832 int virq, irq, evtchn;
833
834 for (virq = 0; virq < NR_VIRQS; virq++) {
835 if ((irq = per_cpu(virq_to_irq, cpu)[virq]) == -1)
836 continue;
837
838 BUG_ON(virq_from_irq(irq) != virq);
839
840 /* Get a new binding from Xen. */
841 bind_virq.virq = virq;
842 bind_virq.vcpu = cpu;
843 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq,
844 &bind_virq) != 0)
845 BUG();
846 evtchn = bind_virq.port;
847
848 /* Record the new mapping. */
849 evtchn_to_irq[evtchn] = irq;
850 irq_info[irq] = mk_virq_info(evtchn, virq);
851 bind_evtchn_to_cpu(evtchn, cpu);
852
853 /* Ready for use. */
854 unmask_evtchn(evtchn);
855 }
856 }
857
858 static void restore_cpu_ipis(unsigned int cpu)
859 {
860 struct evtchn_bind_ipi bind_ipi;
861 int ipi, irq, evtchn;
862
863 for (ipi = 0; ipi < XEN_NR_IPIS; ipi++) {
864 if ((irq = per_cpu(ipi_to_irq, cpu)[ipi]) == -1)
865 continue;
866
867 BUG_ON(ipi_from_irq(irq) != ipi);
868
869 /* Get a new binding from Xen. */
870 bind_ipi.vcpu = cpu;
871 if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi,
872 &bind_ipi) != 0)
873 BUG();
874 evtchn = bind_ipi.port;
875
876 /* Record the new mapping. */
877 evtchn_to_irq[evtchn] = irq;
878 irq_info[irq] = mk_ipi_info(evtchn, ipi);
879 bind_evtchn_to_cpu(evtchn, cpu);
880
881 /* Ready for use. */
882 unmask_evtchn(evtchn);
883
884 }
885 }
886
887 /* Clear an irq's pending state, in preparation for polling on it */
888 void xen_clear_irq_pending(int irq)
889 {
890 int evtchn = evtchn_from_irq(irq);
891
892 if (VALID_EVTCHN(evtchn))
893 clear_evtchn(evtchn);
894 }
895
896 void xen_set_irq_pending(int irq)
897 {
898 int evtchn = evtchn_from_irq(irq);
899
900 if (VALID_EVTCHN(evtchn))
901 set_evtchn(evtchn);
902 }
903
904 bool xen_test_irq_pending(int irq)
905 {
906 int evtchn = evtchn_from_irq(irq);
907 bool ret = false;
908
909 if (VALID_EVTCHN(evtchn))
910 ret = test_evtchn(evtchn);
911
912 return ret;
913 }
914
915 /* Poll waiting for an irq to become pending. In the usual case, the
916 irq will be disabled so it won't deliver an interrupt. */
917 void xen_poll_irq(int irq)
918 {
919 evtchn_port_t evtchn = evtchn_from_irq(irq);
920
921 if (VALID_EVTCHN(evtchn)) {
922 struct sched_poll poll;
923
924 poll.nr_ports = 1;
925 poll.timeout = 0;
926 set_xen_guest_handle(poll.ports, &evtchn);
927
928 if (HYPERVISOR_sched_op(SCHEDOP_poll, &poll) != 0)
929 BUG();
930 }
931 }
932
933 void xen_irq_resume(void)
934 {
935 unsigned int cpu, irq, evtchn;
936
937 init_evtchn_cpu_bindings();
938
939 /* New event-channel space is not 'live' yet. */
940 for (evtchn = 0; evtchn < NR_EVENT_CHANNELS; evtchn++)
941 mask_evtchn(evtchn);
942
943 /* No IRQ <-> event-channel mappings. */
944 for (irq = 0; irq < nr_irqs; irq++)
945 irq_info[irq].evtchn = 0; /* zap event-channel binding */
946
947 for (evtchn = 0; evtchn < NR_EVENT_CHANNELS; evtchn++)
948 evtchn_to_irq[evtchn] = -1;
949
950 for_each_possible_cpu(cpu) {
951 restore_cpu_virqs(cpu);
952 restore_cpu_ipis(cpu);
953 }
954 }
955
956 static struct irq_chip xen_dynamic_chip __read_mostly = {
957 .name = "xen-dyn",
958
959 .disable = disable_dynirq,
960 .mask = disable_dynirq,
961 .unmask = enable_dynirq,
962
963 .ack = ack_dynirq,
964 .set_affinity = set_affinity_irq,
965 .retrigger = retrigger_dynirq,
966 };
967
968 static struct irq_chip xen_percpu_chip __read_mostly = {
969 .name = "xen-percpu",
970
971 .disable = disable_dynirq,
972 .mask = disable_dynirq,
973 .unmask = enable_dynirq,
974
975 .ack = ack_dynirq,
976 };
977
978 int xen_set_callback_via(uint64_t via)
979 {
980 struct xen_hvm_param a;
981 a.domid = DOMID_SELF;
982 a.index = HVM_PARAM_CALLBACK_IRQ;
983 a.value = via;
984 return HYPERVISOR_hvm_op(HVMOP_set_param, &a);
985 }
986 EXPORT_SYMBOL_GPL(xen_set_callback_via);
987
988 #ifdef CONFIG_XEN_PVHVM
989 /* Vector callbacks are better than PCI interrupts to receive event
990 * channel notifications because we can receive vector callbacks on any
991 * vcpu and we don't need PCI support or APIC interactions. */
992 void xen_callback_vector(void)
993 {
994 int rc;
995 uint64_t callback_via;
996 if (xen_have_vector_callback) {
997 callback_via = HVM_CALLBACK_VECTOR(XEN_HVM_EVTCHN_CALLBACK);
998 rc = xen_set_callback_via(callback_via);
999 if (rc) {
1000 printk(KERN_ERR "Request for Xen HVM callback vector"
1001 " failed.\n");
1002 xen_have_vector_callback = 0;
1003 return;
1004 }
1005 printk(KERN_INFO "Xen HVM callback vector for event delivery is "
1006 "enabled\n");
1007 /* in the restore case the vector has already been allocated */
1008 if (!test_bit(XEN_HVM_EVTCHN_CALLBACK, used_vectors))
1009 alloc_intr_gate(XEN_HVM_EVTCHN_CALLBACK, xen_hvm_callback_vector);
1010 }
1011 }
1012 #else
1013 void xen_callback_vector(void) {}
1014 #endif
1015
1016 void __init xen_init_IRQ(void)
1017 {
1018 int i;
1019
1020 cpu_evtchn_mask_p = kcalloc(nr_cpu_ids, sizeof(struct cpu_evtchn_s),
1021 GFP_KERNEL);
1022 BUG_ON(cpu_evtchn_mask_p == NULL);
1023
1024 init_evtchn_cpu_bindings();
1025
1026 /* No event channels are 'live' right now. */
1027 for (i = 0; i < NR_EVENT_CHANNELS; i++)
1028 mask_evtchn(i);
1029
1030 if (xen_hvm_domain()) {
1031 xen_callback_vector();
1032 native_init_IRQ();
1033 } else {
1034 irq_ctx_init(smp_processor_id());
1035 }
1036 }
This page took 0.053832 seconds and 5 git commands to generate.